WorldWideScience

Sample records for macaque somatosensory cortex

  1. Reorganization of the Human Somatosensory Cortex in Hand Dystonia

    Directory of Open Access Journals (Sweden)

    Maria Jose Catalan

    2012-05-01

    Full Text Available Background and Purpose: Abnormalities of finger representations in the somatosensory cortex have been identified in patients with focal hand dystonia. Measuring blood flow with positron emission tomography (PET can be use to demonstrate functional localization of receptive fields. Methods: A vibratory stimulus was applied to the right thumb and little finger of six healthy volunteers and six patients with focal hand dystonia to map their receptive fields using H215O PET. Results: The cortical finger representations in the primary somatosensory cortex were closer to each other in patients than in normal subjects. No abnormalities were found in secondary somatosensory cortex, but the somatotopy there is less well distinguished. Conclusions: These data confirm prior electrophysiological and functional neuroimaging observations showing abnormalities of finger representations in somatosensory cortex of patients with focal hand dystonia.

  2. Structural and functional changes in the somatosensory cortex in euthymic females with bipolar disorder.

    Science.gov (United States)

    Minuzzi, Luciano; Syan, Sabrina K; Smith, Mara; Hall, Alexander; Hall, Geoffrey Bc; Frey, Benicio N

    2017-12-01

    Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.

  3. Discriminability of Single and Multichannel Intracortical Microstimulation within Somatosensory Cortex

    Directory of Open Access Journals (Sweden)

    Cynthia Kay Overstreet

    2016-12-01

    Full Text Available The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g. encoding contact events and pressure on multiple digits.In this study, we evaluated the ability of an awake, behaving non-human primate (Macaca mulatta to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex.

  4. Cortical plasticity induced by spike-triggered microstimulation in primate somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Weiguo Song

    Full Text Available Electrical stimulation of the nervous system for therapeutic purposes, such as deep brain stimulation in the treatment of Parkinson's disease, has been used for decades. Recently, increased attention has focused on using microstimulation to restore functions as diverse as somatosensation and memory. However, how microstimulation changes the neural substrate is still not fully understood. Microstimulation may cause cortical changes that could either compete with or complement natural neural processes, and could result in neuroplastic changes rendering the region dysfunctional or even epileptic. As part of our efforts to produce neuroprosthetic devices and to further study the effects of microstimulation on the cortex, we stimulated and recorded from microelectrode arrays in the hand area of the primary somatosensory cortex (area 1 in two awake macaque monkeys. We applied a simple neuroprosthetic microstimulation protocol to a pair of electrodes in the area 1 array, using either random pulses or pulses time-locked to the recorded spiking activity of a reference neuron. This setup was replicated using a computer model of the thalamocortical system, which consisted of 1980 spiking neurons distributed among six cortical layers and two thalamic nuclei. Experimentally, we found that spike-triggered microstimulation induced cortical plasticity, as shown by increased unit-pair mutual information, while random microstimulation did not. In addition, there was an increased response to touch following spike-triggered microstimulation, along with decreased neural variability. The computer model successfully reproduced both qualitative and quantitative aspects of the experimental findings. The physiological findings of this study suggest that even simple microstimulation protocols can be used to increase somatosensory information flow.

  5. Volumetric localization of somatosensory cortex in children using synthetic aperture magnetometry

    International Nuclear Information System (INIS)

    Xiang, Jing; Holowka, Stephanie; Chuang, Sylvester; Sharma, Rohit; Hunjan, Amrita; Otsubo, Hiroshi

    2003-01-01

    Magnetic signal from the human brain can be measured noninvasively by using magnetoencephalography (MEG). This study was designed to localize and reconstruct the neuromagnetic activity in the somatosensory cortex in children Twenty children were studied using a 151-channel MEG system with electrical stimulation applied to median nerves. Data were analyzed using synthetic aperture magnetometry (SAM). A clear deflection (M1) was clearly identified in 18 children (90%, 18/20). Two frequency bands, 30-60 Hz and 60-120 Hz, were found to be related to somatosensory cortex. Magnetic activity was localized in the posterior bank of the central sulcus in 16 children. The extent of the reconstructed neuromagnetic activity of the left hemisphere was significantly larger than that of the right hemisphere (P<0.01). Somatosensory cortex was accurately localized by using SAM. The extent of the reconstructed neuromagnetic activity suggested that the left hemisphere was the dominant side in the somatosensory system in children. We postulate that the volumetric characteristics of the reconstructed neuromagnetic activity are able to indicate the functionality of the brain. (orig.)

  6. Prefrontal cortex and somatosensory cortex in tactile crossmodal association: an independent component analysis of ERP recordings.

    Directory of Open Access Journals (Sweden)

    Yixuan Ku

    2007-08-01

    Full Text Available Our previous studies on scalp-recorded event-related potentials (ERPs showed that somatosensory N140 evoked by a tactile vibration in working memory tasks was enhanced when human subjects expected a coming visual stimulus that had been paired with the tactile stimulus. The results suggested that such enhancement represented the cortical activities involved in tactile-visual crossmodal association. In the present study, we further hypothesized that the enhancement represented the neural activities in somatosensory and frontal cortices in the crossmodal association. By applying independent component analysis (ICA to the ERP data, we found independent components (ICs located in the medial prefrontal cortex (around the anterior cingulate cortex, ACC and the primary somatosensory cortex (SI. The activity represented by the IC in SI cortex showed enhancement in expectation of the visual stimulus. Such differential activity thus suggested the participation of SI cortex in the task-related crossmodal association. Further, the coherence analysis and the Granger causality spectral analysis of the ICs showed that SI cortex appeared to cooperate with ACC in attention and perception of the tactile stimulus in crossmodal association. The results of our study support with new evidence an important idea in cortical neurophysiology: higher cognitive operations develop from the modality-specific sensory cortices (in the present study, SI cortex that are involved in sensation and perception of various stimuli.

  7. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject.

    Science.gov (United States)

    Ioannides, Andreas A; Liu, Lichan; Poghosyan, Vahe; Saridis, George A; Gjedde, Albert; Ptito, Maurice; Kupers, Ron

    2013-01-01

    Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG) data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1) and motor (M1) cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45-70 Hz activity at latencies of 20-50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA) 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong, and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI) revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occurred in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.

  8. Intraoperative intrinsic optical imaging of human somatosensory cortex during neurosurgical operations.

    Science.gov (United States)

    Sato, Katsushige; Nariai, Tadashi; Momose-Sato, Yoko; Kamino, Kohtaro

    2017-07-01

    Intrinsic optical imaging as developed by Grinvald et al. is a powerful technique for monitoring neural function in the in vivo central nervous system. The advent of this dye-free imaging has also enabled us to monitor human brain function during neurosurgical operations. We briefly describe our own experience in functional mapping of the human somatosensory cortex, carried out using intraoperative optical imaging. The maps obtained demonstrate new additional evidence of a hierarchy for sensory response patterns in the human primary somatosensory cortex.

  9. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject

    Directory of Open Access Journals (Sweden)

    Andreas A Ioannides

    2013-08-01

    Full Text Available Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1 and motor (M1 cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45 to 70 Hz activity at latencies of 20 to 50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occured in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.

  10. Human perception of electrical stimulation on the surface of somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Shivayogi V Hiremath

    Full Text Available Recent advancement in electrocorticography (ECoG-based brain-computer interface technology has sparked a new interest in providing somatosensory feedback using ECoG electrodes, i.e., cortical surface electrodes. We conducted a 28-day study of cortical surface stimulation in an individual with arm paralysis due to brachial plexus injury to examine the sensation produced by electrical stimulation of the somatosensory cortex. A high-density ECoG grid was implanted over the somatosensory and motor cortices. Stimulation through cortical surface electrodes over the somatosensory cortex successfully elicited arm and hand sensations in our participant with chronic paralysis. There were three key findings. First, the intensity of perceived sensation increased monotonically with both pulse amplitude and pulse frequency. Second, changing pulse width changed the type of sensation based on qualitative description provided by the human participant. Third, the participant could distinguish between stimulation applied to two neighboring cortical surface electrodes, 4.5 mm center-to-center distance, for three out of seven electrode pairs tested. Taken together, we found that it was possible to modulate sensation intensity, sensation type, and evoke sensations across a range of locations from the fingers to the upper arm using different stimulation electrodes even in an individual with chronic impairment of somatosensory function. These three features are essential to provide effective somatosensory feedback for neuroprosthetic applications.

  11. Inhibitory rTMS applied on somatosensory cortex in Wilson's disease patients with hand dystonia.

    Science.gov (United States)

    Lozeron, Pierre; Poujois, Aurélia; Meppiel, Elodie; Masmoudi, Sana; Magnan, Thierry Peron; Vicaut, Eric; Houdart, Emmanuel; Guichard, Jean-Pierre; Trocello, Jean-Marc; Woimant, France; Kubis, Nathalie

    2017-10-01

    Hand dystonia is a common complication of Wilson's disease (WD), responsible for handwriting difficulties and disability. Alteration of sensorimotor integration and overactivity of the somatosensory cortex have been demonstrated in dystonia. This study investigated the immediate after effect of an inhibitory repetitive transcranial magnetic stimulation (rTMS) applied over the somatosensory cortex on the writing function in WD patients with hand dystonia. We performed a pilot prospective randomized double-blind sham-controlled crossover rTMS study. A 20-min 1-Hz rTMS session, stereotaxically guided, was applied over the left somatosensory cortex in 13 WD patients with right dystonic writer's cramp. After 3 days, each patient was crossed-over to the alternative treatment. Patients were clinically evaluated before and immediately after each rTMS session with the Unified Wilson's Disease rating scale (UWDRS), the Writers' Cramp Rating Scale (WCRS), a specifically designed scale for handwriting difficulties in Wilson's disease patients (FAR, flow, accuracy, and rhythmicity evaluation), and a visual analog scale (VAS) for handwriting discomfort. No significant change in UWDRS, WCRS, VAS, or FAR scores was observed in patients treated with somatosensory inhibitory rTMS compared to the sham protocol. The FAR negatively correlated with UWDRS (r = -0.6; P = 0.02), but not with the WCRS score, disease duration, MRI diffusion lesions, or with atrophy scores. In our experimental conditions, a single inhibitory rTMS session applied over somatosensory cortex did not improve dystonic writer cramp in WD patients.

  12. Beta 2-adrenergic receptors are colocalized and coregulated with whisker barrels in rat somatosensory cortex

    International Nuclear Information System (INIS)

    Vos, P.; Kaufmann, D.; Hand, P.J.; Wolfe, B.B.

    1990-01-01

    Autoradiography has been used to visualize independently the subtypes of beta-adrenergic receptors in rat somatosensory cortex. Beta 2-adrenergic receptors, but not beta 1-adrenergic receptors colocalize with whisker barrels in this tissue. Thus, each whisker sends a specific multisynaptic pathway to the somatosensory cortex that can be histochemically visualized and only one subtype of beta-adrenergic receptor is specifically associated with this cortical representation. Additionally, neonatal lesion of any or all of the whisker follicles results in loss of the corresponding barrel(s) as shown by histochemical markers. This loss is paralleled by a similar loss in the organization of beta 2-adrenergic receptors in the somatosensory cortex. Other results indicate that these beta 2-adrenergic receptors are not involved in moment-to-moment signal transmission in this pathway and, additionally, are not involved in a gross way in the development of whisker-barrel array

  13. Visual cortex and auditory cortex activation in early binocularly blind macaques: A BOLD-fMRI study using auditory stimuli.

    Science.gov (United States)

    Wang, Rong; Wu, Lingjie; Tang, Zuohua; Sun, Xinghuai; Feng, Xiaoyuan; Tang, Weijun; Qian, Wen; Wang, Jie; Jin, Lixin; Zhong, Yufeng; Xiao, Zebin

    2017-04-15

    Cross-modal plasticity within the visual and auditory cortices of early binocularly blind macaques is not well studied. In this study, four healthy neonatal macaques were assigned to group A (control group) or group B (binocularly blind group). Sixteen months later, blood oxygenation level-dependent functional imaging (BOLD-fMRI) was conducted to examine the activation in the visual and auditory cortices of each macaque while being tested using pure tones as auditory stimuli. The changes in the BOLD response in the visual and auditory cortices of all macaques were compared with immunofluorescence staining findings. Compared with group A, greater BOLD activity was observed in the bilateral visual cortices of group B, and this effect was particularly obvious in the right visual cortex. In addition, more activated volumes were found in the bilateral auditory cortices of group B than of group A, especially in the right auditory cortex. These findings were consistent with the fact that there were more c-Fos-positive cells in the bilateral visual and auditory cortices of group B compared with group A (p visual cortices of binocularly blind macaques can be reorganized to process auditory stimuli after visual deprivation, and this effect is more obvious in the right than the left visual cortex. These results indicate the establishment of cross-modal plasticity within the visual and auditory cortices. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Seeing is not feeling: posterior parietal but not somatosensory cortex engagement during touch observation.

    Science.gov (United States)

    Chan, Annie W-Y; Baker, Chris I

    2015-01-28

    Observing touch has been reported to elicit activation in human primary and secondary somatosensory cortices and is suggested to underlie our ability to interpret other's behavior and potentially empathy. However, despite these reports, there are a large number of inconsistencies in terms of the precise topography of activation, the extent of hemispheric lateralization, and what aspects of the stimulus are necessary to drive responses. To address these issues, we investigated the localization and functional properties of regions responsive to observed touch in a large group of participants (n = 40). Surprisingly, even with a lenient contrast of hand brushing versus brushing alone, we did not find any selective activation for observed touch in the hand regions of somatosensory cortex but rather in superior and inferior portions of neighboring posterior parietal cortex, predominantly in the left hemisphere. These regions in the posterior parietal cortex required the presence of both brush and hand to elicit strong responses and showed some selectivity for the form of the object or agent of touch. Furthermore, the inferior parietal region showed nonspecific tactile and motor responses, suggesting some similarity to area PFG in the monkey. Collectively, our findings challenge the automatic engagement of somatosensory cortex when observing touch, suggest mislocalization in previous studies, and instead highlight the role of posterior parietal cortex. Copyright © 2015 the authors 0270-6474/15/351468-13$15.00/0.

  15. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex

    Science.gov (United States)

    Smiley, John F.; Schroeder, Charles E.

    2017-01-01

    Prior studies have reported “local” field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be “contaminated” by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such “far-field” activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is

  16. Delineating the Macroscale Areal Organization of the Macaque Cortex In Vivo

    Directory of Open Access Journals (Sweden)

    Ting Xu

    2018-04-01

    Full Text Available Summary: Complementing long-standing traditions centered on histology, fMRI approaches are rapidly maturing in delineating brain areal organization at the macroscale. The non-human primate (NHP provides the opportunity to overcome critical barriers in translational research. Here, we establish the data requirements for achieving reproducible and internally valid parcellations in individuals. We demonstrate that functional boundaries serve as a functional fingerprint of the individual animals and can be achieved under anesthesia or awake conditions (rest, naturalistic viewing, though differences between awake and anesthetized states precluded the detection of individual differences across states. Comparison of awake and anesthetized states suggested a more nuanced picture of changes in connectivity for higher-order association areas, as well as visual and motor cortex. These results establish feasibility and data requirements for the generation of reproducible individual-specific parcellations in NHPs, provide insights into the impact of scan state, and motivate efforts toward harmonizing protocols. : Noninvasive fMRI in macaques is an essential tool in translation research. Xu et al. establish the individual functional parcellation of the macaque cortex and demonstrate that brain organization is unique, reproducible, and valid, serving as a fingerprint for an individual macaque. Keywords: macaque, parcellation, cortical areas, gradient, functional connectivity

  17. Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque.

    Science.gov (United States)

    Soares, David; Goldrick, Isabelle; Lemon, Roger N; Kraskov, Alexander; Greensmith, Linda; Kalmar, Bernadett

    2017-06-15

    There are substantial differences across species in the organization and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration "thin" spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the Kv3.1b expression in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin-positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labeled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, and lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium, and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32-postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  18. Detection of optogenetic stimulation in somatosensory cortex by non-human primates--towards artificial tactile sensation.

    Science.gov (United States)

    May, Travis; Ozden, Ilker; Brush, Benjamin; Borton, David; Wagner, Fabien; Agha, Naubahar; Sheinberg, David L; Nurmikko, Arto V

    2014-01-01

    Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest.

  19. Detection of optogenetic stimulation in somatosensory cortex by non-human primates--towards artificial tactile sensation.

    Directory of Open Access Journals (Sweden)

    Travis May

    Full Text Available Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest.

  20. Abnormal activation of the primary somatosensory cortex in spasmodic dysphonia: an fMRI study.

    Science.gov (United States)

    Simonyan, Kristina; Ludlow, Christy L

    2010-11-01

    Spasmodic dysphonia (SD) is a task-specific focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speaking. Our aim was to identify symptom-specific functional brain activation abnormalities in adductor spasmodic dysphonia (ADSD) and abductor spasmodic dysphonia (ABSD). Both SD groups showed increased activation extent in the primary sensorimotor cortex, insula, and superior temporal gyrus during symptomatic and asymptomatic tasks and decreased activation extent in the basal ganglia, thalamus, and cerebellum during asymptomatic tasks. Increased activation intensity in SD patients was found only in the primary somatosensory cortex during symptomatic voice production, which showed a tendency for correlation with ADSD symptoms. Both SD groups had lower correlation of activation intensities between the primary motor and sensory cortices and additional correlations between the basal ganglia, thalamus, and cerebellum during symptomatic and asymptomatic tasks. Compared with ADSD patients, ABSD patients had larger activation extent in the primary sensorimotor cortex and ventral thalamus during symptomatic task and in the inferior temporal cortex and cerebellum during symptomatic and asymptomatic voice production. The primary somatosensory cortex shows consistent abnormalities in activation extent, intensity, correlation with other brain regions, and symptom severity in SD patients and, therefore, may be involved in the pathophysiology of SD.

  1. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject

    DEFF Research Database (Denmark)

    Ioannides, Andreas A; Liu, Lichan; Poghosyan, Vahe

    2013-01-01

    magnetoencephalography (MEG) data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified...... reproducible brain responses in the primary somatosensory (S1) and motor (M1) cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45-70 Hz activity at latencies of 20-50 ms in S1 and M1, and posterior parietal cortex Brodmann...... of information through this pathway occurred in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first...

  2. Metabolic changes in the visual cortex of binocular blindness macaque monkeys: a proton magnetic resonance spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Lingjie Wu

    Full Text Available PURPOSE: To evaluate proton magnetic resonance spectroscopy ((1H-MRS in a study of cross-modal plasticity in the visual cortex of binocular blindness macaque monkeys. MATERIALS AND METHODS: Four healthy neonatal macaque monkeys were randomly divided into 2 groups, with 2 in each group. Optic nerve transection was performed in both monkeys in the experimental group (group B to obtain binocular blindness. Two healthy macaque monkeys served as a control group (group A. After sixteen months post-procedure, (1H-MRS was performed in the visual cortex of all monkeys. We compared the peak areas of NAA, Cr, Cho, Glx and Ins and the ratios of NAA/Cr, Cho/Cr, Glx/Cr and Ins/Cr of each monkey in group B with group A. RESULTS: The peak area of NAA and the NAA/Cr ratio in the visual cortex of monkey 4 in group B were found to be dramatically decreased, the peak area of NAA slightly decreased and the NAA/Cr ratio clearly decreased in visual cortex of monkey 3 in group B than those in group A. The peak area of Ins and the Ins/Cr ratio in the visual cortex of monkey 4 in group B slightly increased. The peak area of Cho and the Cho/Cr ratio in the visual cortex of all monkeys in group B dramatically increased compared with group A. The peak area of Glx in the visual cortex of all monkeys in group B slightly increased compared with group A. CONCLUSIONS: (1H-MRS could detect biochemical and metabolic changes in the visual cortex and therefore this technique can be used to provide valuable information for investigating the mechanisms of cross-modal plasticity of binocular blindness in a macaque monkey model.

  3. Reduced resting state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa

    Directory of Open Access Journals (Sweden)

    Luca eLavagnino

    2014-08-01

    Full Text Available BackgroundAlterations in the resting state functional connectivity (rs-FC of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN. The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. MethodsSixteen medication-free women with BN (age=23±5 years and 18 matched controls (age=23±3 years underwent a functional magnetic resonance resting state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. ResultsBN patients showed a decreased resting state functional connectivity both within the somatosensory network (t=9.0, df=1, P=0.005 and with posterior cingulate cortex (PCC and two visual areas (the right middle occipital gyrus and the right cuneus(P=0.05 corrected for multiple comparison. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area, or EBA. The rs-FC of the left paracentral lobule with the EBA correlated with psychopathology measures like bulimia (r=-0.4; P=0.02 and interoceptive awareness (r=-0.4; P=0.01. Analyses were conducted using age, BMI (body mass index and depressive symptoms as covariates. ConclusionsOur findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size.

  4. Reduced resting-state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa.

    Science.gov (United States)

    Lavagnino, Luca; Amianto, Federico; D'Agata, Federico; Huang, Zirui; Mortara, Paolo; Abbate-Daga, Giovanni; Marzola, Enrica; Spalatro, Angela; Fassino, Secondo; Northoff, Georg

    2014-01-01

    Alterations in the resting-state functional connectivity (rs-FC) of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN). The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. Sixteen medication-free women with BN (age = 23 ± 5 years) and 18 matched controls (age = 23 ± 3 years) underwent a functional magnetic resonance resting-state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. Bulimia nervosa patients showed a decreased rs-FC both within the somatosensory network (t = 9.0, df = 1, P = 0.005) and with posterior cingulate cortex and two visual areas (the right middle occipital gyrus and the right cuneus) (P = 0.05 corrected for multiple comparison). The rs-FC of the left paracentral lobule with the right middle occipital gyrus correlated with psychopathology measures like bulimia (r = -0.4; P = 0.02) and interoceptive awareness (r = -0.4; P = 0.01). Analyses were conducted using age, BMI (body mass index), and depressive symptoms as covariates. Our findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area (EBA). The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size.

  5. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways.

    Science.gov (United States)

    Kunori, Nobuo; Takashima, Ichiro

    2016-12-01

    The motor cortex of rats contains two forelimb motor areas; the caudal forelimb area (CFA) and the rostral forelimb area (RFA). Although the RFA is thought to correspond to the premotor and/or supplementary motor cortices of primates, which are higher-order motor areas that receive somatosensory inputs, it is unknown whether the RFA of rats receives somatosensory inputs in the same manner. To investigate this issue, voltage-sensitive dye (VSD) imaging was used to assess the motor cortex in rats following a brief electrical stimulation of the forelimb. This procedure was followed by intracortical microstimulation (ICMS) mapping to identify the motor representations in the imaged cortex. The combined use of VSD imaging and ICMS revealed that both the CFA and RFA received excitatory synaptic inputs after forelimb stimulation. Further evaluation of the sensory input pathway to the RFA revealed that the forelimb-evoked RFA response was abolished either by the pharmacological inactivation of the CFA or a cortical transection between the CFA and RFA. These results suggest that forelimb-related sensory inputs would be transmitted to the RFA from the CFA via the cortico-cortical pathway. Thus, the present findings imply that sensory information processed in the RFA may be used for the generation of coordinated forelimb movements, which would be similar to the function of the higher-order motor cortex in primates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Frequency specific modulation of human somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Matteo eFeurra

    2011-02-01

    Full Text Available Oscillatory neuronal activities are commonly observed in response to sensory stimulation. However, their functional roles are still the subject of debate. One way to probe the roles of oscillatory neural activities is to deliver alternating current to the cortex at biologically relevant frequencies and examine whether such stimulation influences perception and cognition. In this study, we tested whether transcranial alternating current stimulation (tACS over the primary somatosensory cortex (SI could elicit tactile sensations in humans in a frequency dependent manner. We tested the effectiveness of tACS over SI at frequency bands ranging from 2 to 70 Hz. Our results show that stimulation in alpha (10-14 Hz and high gamma (52-70 Hz frequency range produces a tactile sensation in the contralateral hand. A weaker effect was also observed for beta (16-20 Hz stimulation. These findings highlight the frequency-dependency of effective tACS over SI with the effective frequencies corresponding to those observed in previous EEG/MEG studies of tactile perception. Our present study suggests that tACS could be used as a powerful online stimulation technique to reveal the causal roles of oscillatory brain activities.

  7. Asymmetric Functional Connectivity of the Contra- and Ipsilateral Secondary Somatosensory Cortex during Tactile Object Recognition

    Directory of Open Access Journals (Sweden)

    Yinghua Yu

    2018-01-01

    Full Text Available In the somatosensory system, it is well known that the bilateral secondary somatosensory cortex (SII receives projections from the unilateral primary somatosensory cortex (SI, and the SII, in turn, sends feedback projections to SI. Most neuroimaging studies have clearly shown bilateral SII activation using only unilateral stimulation for both anatomical and functional connectivity across SII subregions. However, no study has unveiled differences in the functional connectivity of the contra- and ipsilateral SII network that relates to frontoparietal areas during tactile object recognition. Therefore, we used event-related functional magnetic resonance imaging (fMRI and a delayed match-to-sample (DMS task to investigate the contributions of bilateral SII during tactile object recognition. In the fMRI experiment, 14 healthy subjects were presented with tactile angle stimuli on their right index finger and asked to encode three sample stimuli during the encoding phase and one test stimulus during the recognition phase. Then, the subjects indicated whether the angle of test stimulus was presented during the encoding phase. The results showed that contralateral (left SII activity was greater than ipsilateral (right SII activity during the encoding phase, but there was no difference during the recognition phase. A subsequent psycho-physiological interaction (PPI analysis revealed distinct connectivity from the contra- and ipsilateral SII to other regions. The left SII functionally connected to the left SI and right primary and premotor cortex, while the right SII functionally connected to the left posterior parietal cortex (PPC. Our findings suggest that in situations involving unilateral tactile object recognition, contra- and ipsilateral SII will induce an asymmetrical functional connectivity to other brain areas, which may occur by the hand contralateral effect of SII.

  8. P1-27: Localizing Regions Activated by Surface Gloss in Macaque Visual Cortex by fMRI

    Directory of Open Access Journals (Sweden)

    Gouki Okazawa

    2012-10-01

    Full Text Available Surface properties of objects such as gloss provide important information about the states or materials of objects in our visual experiences. Previous studies have shown that there are cortical regions responding to shapes, colors, faces etc. in the macaque visual cortex. However, we still lack the information about where the surface properties are processed in the macaque visual cortex. In this study, we examined whether there are regions activated by surface gloss, an important surface property, in the macaque visual cortex by using functional magnetic resonance imaging (fMRI. We trained two monkeys to fixate on a small spot on the screen in MRI scanner, while the images of glossy and matte objects were presented. As a control condition for low-level image features, such as spatial frequency or luminance contrast, we generated scrambled images by locally randomizing the luminance phases of images using wavelet filters. By contrasting the responses to glossy images to those to matte and scrambled images, we found the activation in wide regions along the ventral visual pathway including V1, V2, V3, V4, and the posterior part of the inferior temporal (IT cortex. In one monkey, we also found the activations in the central part of IT cortex. In another control experiment, we manipulated the image contrasts and found that the responses in these regions cannot be explained simply by the image contrasts. These results suggest that surface gloss is processed along the ventral pathway and, in the IT cortex there are distinct regions processing surface gloss.

  9. Asymmetric multisensory interactions of visual and somatosensory responses in a region of the rat parietal cortex.

    Directory of Open Access Journals (Sweden)

    Michael T Lippert

    Full Text Available Perception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent. Using optical imaging combined with laminar electrophysiological recordings, the rat parietal cortex was identified as an area where visual and somatosensory inputs converge and interact. Our results reveal similar response patterns to visual and somatosensory stimuli at the level of current source density (CSD responses and multi-unit responses within a strip in parietal cortex. Surprisingly, a selective asymmetry was observed in multisensory interactions: when the somatosensory response preceded the visual response, supra-linear summation of CSD was observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This asymmetry was not present in multi-unit activity however, which showed consistently sub-linear interactions. These interactions were restricted to a specific temporal window, and pharmacological tests revealed significant local intra-cortical contributions to this phenomenon. Our results highlight the rodent parietal cortex as a system to model the neural underpinnings of multisensory processing in behaving animals and at the cellular level.

  10. Somatostatin-immunoreactive senile plaque-like structures in the frontal cortex and nucleus accumbens of aged tree shrews and Japanese macaques.

    Science.gov (United States)

    Yamashita, Akiko; Fuchs, Eberhard; Taira, Masato; Yamamoto, Takamitsu; Hayashi, Motoharu

    2012-06-01

    Previously, we demonstrated decreased expression of somatostatin mRNA in aged macaque brain, particularly in the prefrontal cortex. To investigate whether or not this age-dependent decrease in mRNA is related to morphological changes, we analyzed somatostatin cells in the cerebra of aged Japanese macaques and compared them with those in rats and tree shrews, the latter of which are closely related to primates. Brains of aged macaques, tree shrews, and rats were investigated by immunohistochemistry with special emphasis on somatostatin. We observed degenerating somatostatin-immunoreactive cells in the cortices of aged macaques and tree shrews. Somatostatin-immunoreactive senile plaque-like structures were found in areas 6 and 8 and in the nucleus accumbens of macaques, as well as in the nucleus accumbens and the cortex of aged tree shrews, where amyloid accumulations were observed. Somatostatin degenerations may be related to amyloid accumulations and may play roles in impairments of cognitive functions during aging. © 2012 John Wiley & Sons A/S.

  11. Encoding of Touch Intensity But Not Pleasantness in Human Primary Somatosensory Cortex

    Science.gov (United States)

    Laubacher, Claire M.; Olausson, Håkan; Wang, Binquan; Spagnolo, Primavera A.; Bushnell, M. Catherine

    2016-01-01

    Growing interest in affective touch has delineated a neural network that bypasses primary somatosensory cortex (S1). Several recent studies, however, have cast doubt on the segregation of touch discrimination and affect, suggesting that S1 also encodes affective qualities. We used functional magnetic resonance imaging (fMRI) and repetitive transcranial magnetic stimulation (rTMS) to examine the role of S1 in processing touch intensity and pleasantness. Twenty-six healthy human adults rated brushing on the hand during fMRI. Intensity ratings significantly predicted activation in S1, whereas pleasantness ratings predicted activation only in the anterior cingulate cortex. Nineteen subjects also received inhibitory rTMS over right hemisphere S1 and the vertex (control). After S1 rTMS, but not after vertex rTMS, sensory discrimination was reduced and subjects with reduced sensory discrimination rated touch as more intense. In contrast, rTMS did not alter ratings of touch pleasantness. Our findings support divergent neural processing of touch intensity and pleasantness, with affective touch encoded outside of S1. SIGNIFICANCE STATEMENT Growing interest in affective touch has identified a neural network that bypasses primary somatosensory cortex (S1). Several recent studies, however, cast doubt on the separation of touch discrimination and affect. We used functional magnetic resonance imaging and repetitive transcranial magnetic stimulation to demonstrate the representation of touch discrimination and intensity in S1, but the representation of pleasantness in the anterior cingulate cortex, not S1. Our findings support divergent neural processing of touch intensity and pleasantness, with affective touch encoded outside of S1. Our study contributes to growing delineation of the affective touch system, a crucial step in understanding its dysregulation in numerous clinical conditions such as autism, eating disorders, depression, and chronic pain. PMID:27225773

  12. Loss of Ensemble Segregation in Dentate Gyrus, but Not in Somatosensory Cortex, during Contextual Fear Memory Generalization

    Directory of Open Access Journals (Sweden)

    Marie Yokoyama

    2016-11-01

    Full Text Available The details of contextual or episodic memories are lost and generalized with the passage of time. Proper generalization may underlie the formation and assimilation of semantic memories and enable animals to adapt to ever-changing environments, whereas overgeneralization of fear memory evokes maladaptive fear responses to harmless stimuli, which is a symptom of anxiety disorders such as post-traumatic stress disorder (PTSD. To understand the neural basis of fear memory generalization, we investigated the patterns of neuronal ensemble reactivation during memory retrieval when contextual fear memory expression is generalized using transgenic mice that allowed us to visualize specific neuronal ensembles activated during memory encoding and retrieval. We found preferential reactivations of neuronal ensembles in the primary somatosensory cortex, when mice were returned to the conditioned context to retrieve their memory 1 day after conditioning. In the hippocampal dentate gyrus (DG, exclusively separated ensemble reactivation was observed when mice were exposed to a novel context. These results suggest that the DG as well as the somatosensory cortex were likely to distinguish the two different contexts at the ensemble activity level when memory is not generalized at the behavioral level. However, 9 days after conditioning when animals exhibited generalized fear, the unique reactivation pattern in the DG, but not in the somatosensory cortex, was lost. Our results suggest that the alternations in the ensemble representation within the DG, or in upstream structures that link the sensory cortex to the hippocampus, may underlie generalized contextual fear memory expression.

  13. Exposure to Music and Noise During Pregnancy Influences Neurogenesis and Thickness in Motor and Somatosensory Cortex of Rat Pups

    Directory of Open Access Journals (Sweden)

    Chang-Hee Kim

    2013-09-01

    Full Text Available Purpose Prenatal environmental conditions affect the development of the fetus. In the present study, we investigated the effects of exposure to music and noise during pregnancy on neurogenesis and thickness in the motor and somatosensory cortex of rat pups. Methods The pregnant rats in the music-applied group were exposed to 65 dB of comfortable music for 1 hour, once per day, from the 15th day of pregnancy until delivery. The pregnant rats in the noise-applied group were exposed to 95 dB of sound from a supersonic sound machine for 1 hour, once per day, from the 15th day of pregnancy until delivery. After birth, the offspring were left undisturbed together with their mother. The rat pups were sacrificed at 21 days after birth. Results Exposure to music during pregnancy increased neurogenesis in the motor and somatosensory cortex of rat pups. In contrast, rat pups exposed to noise during pregnancy showed decreased neurogenesis and thickness in the motor and somatosensory cortex. Conclusions Our study suggests that music and noise during the developmental period are important factors influencing brain development and urogenital disorders.

  14. Imaging the spatio-temporal dynamics of supragranular activity in the rat somatosensory cortex in response to stimulation of the paws.

    Directory of Open Access Journals (Sweden)

    M L Morales-Botello

    Full Text Available We employed voltage-sensitive dye (VSD imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1 Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2 While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3 Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4 Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli.

  15. Weak but Critical Links between Primary Somatosensory Centers and Motor Cortex during Movement

    Directory of Open Access Journals (Sweden)

    Pengxu Wei

    2018-01-01

    Full Text Available Motor performance is improved by stimulation of the agonist muscle during movement. However, related brain mechanisms remain unknown. In this work, we perform a functional magnetic resonance imaging (fMRI study in 21 healthy subjects under three different conditions: (1 movement of right ankle alone; (2 movement and simultaneous stimulation of the agonist muscle; or (3 movement and simultaneous stimulation of a control area. We constructed weighted brain networks for each condition by using functional connectivity. Network features were analyzed using graph theoretical approaches. We found that: (1 the second condition evokes the strongest and most widespread brain activations (5147 vs. 4419 and 2320 activated voxels; and (2 this condition also induces a unique network layout and changes hubs and the modular structure of the brain motor network by activating the most “silent” links between primary somatosensory centers and the motor cortex, particularly weak links from the thalamus to the left primary motor cortex (M1. Significant statistical differences were found when the strength values of the right cerebellum (P < 0.001 or the left thalamus (P = 0.006 were compared among the three conditions. Over the years, studies reported a small number of projections from the thalamus to the motor cortex. This is the first work to present functions of these pathways. These findings reveal mechanisms for enhancing motor function with somatosensory stimulation, and suggest that network function cannot be thoroughly understood when weak ties are disregarded.

  16. Rapid-rate paired associative stimulation over the primary somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Philemon Tsang

    Full Text Available Rapid-rate paired associative stimulation (rPAS involves repeat pairing of peripheral nerve stimulation and Transcranial magnetic stimulation (TMS pulses at a 5 Hz frequency. RPAS over primary motor cortex (M1 operates with spike-timing dependent plasticity such that increases in corticospinal excitability occur when the nerve and TMS pulse temporally coincide in cortex. The present study investigates the effects of rPAS over primary somatosensory cortex (SI which has not been performed to date. In a series of experiments, rPAS was delivered over SI and M1 at varying timing intervals between the nerve and TMS pulse based on the latency of the N20 somatosensory evoked potential (SEP component within each participant (intervals for SI-rPAS: N20, N20-2.5 ms, N20 + 2.5 ms, intervals for M1-rPAS: N20, N20+5 ms. Changes in SI physiology were measured via SEPs (N20, P25, N20-P25 and SEP paired-pulse inhibition, and changes in M1 physiology were measured with motor evoked potentials and short-latency afferent inhibition. Measures were obtained before rPAS and at 5, 25 and 45 minutes following stimulation. Results indicate that paired-pulse inhibition and short-latency afferent inhibition were reduced only when the SI-rPAS nerve-TMS timing interval was set to N20-2.5 ms. SI-rPAS over SI also led to remote effects on motor physiology over a wider range of nerve-TMS intervals (N20-2.5 ms - N20+2.5 ms during which motor evoked potentials were increased. M1-rPAS increased motor evoked potentials and reduced short-latency afferent inhibition as previously reported. These data provide evidence that, similar to M1, rPAS over SI is spike-timing dependent and is capable of exerting changes in SI and M1 physiology.

  17. Theta-Burst Stimulation-Induced Plasticity over Primary Somatosensory Cortex Changes Somatosensory Temporal Discrimination in Healthy Humans

    Science.gov (United States)

    Conte, Antonella; Rocchi, Lorenzo; Nardella, Andrea; Dispenza, Sabrina; Scontrini, Alessandra; Khan, Nashaba; Berardelli, Alfredo

    2012-01-01

    Background The somatosensory temporal discrimination threshold (STDT) measures the ability to perceive two stimuli as being sequential. Precisely how the single cerebral structures contribute in controlling the STDT is partially known and no information is available about whether STDT can be modulated by plasticity-inducing protocols. Methodology/Principal Findings To investigate how the cortical and cerebellar areas contribute to the STDT we used transcranial magnetic stimulation and a neuronavigation system. We enrolled 18 healthy volunteers and 10 of these completed all the experimental sessions, including the control experiments. STDT was measured on the left hand before and after applying continuous theta-burst stimulation (cTBS) on the right primary somatosensory area (S1), pre-supplementary motor area (pre-SMA), right dorsolateral prefrontal cortex (DLPFC) and left cerebellar hemisphere. We then investigated whether intermittent theta-burst stimulation (iTBS) on the right S1 improved the STDT. After right S1 cTBS, STDT values increased whereas after iTBS to the same cortical site they decreased. cTBS over the DLPFC and left lateral cerebellum left the STDT statistically unchanged. cTBS over the pre-SMA also left the STDT statistically unchanged, but it increased the number of errors subjects made in distinguishing trials testing a single stimulus and those testing paired stimuli. Conclusions/Significance Our findings obtained by applying TBS to the cortical areas involved in processing sensory discrimination show that the STDT is encoded in S1, possibly depends on intrinsic S1 neural circuit properties, and can be modulated by plasticity-inducing TBS protocols delivered over S1. Our findings, giving further insight into mechanisms involved in somatosensory temporal discrimination, help interpret STDT abnormalities in movement disorders including dystonia and Parkinson's disease. PMID:22412964

  18. Theta-burst stimulation-induced plasticity over primary somatosensory cortex changes somatosensory temporal discrimination in healthy humans.

    Directory of Open Access Journals (Sweden)

    Antonella Conte

    Full Text Available BACKGROUND: The somatosensory temporal discrimination threshold (STDT measures the ability to perceive two stimuli as being sequential. Precisely how the single cerebral structures contribute in controlling the STDT is partially known and no information is available about whether STDT can be modulated by plasticity-inducing protocols. METHODOLOGY/PRINCIPAL FINDINGS: To investigate how the cortical and cerebellar areas contribute to the STDT we used transcranial magnetic stimulation and a neuronavigation system. We enrolled 18 healthy volunteers and 10 of these completed all the experimental sessions, including the control experiments. STDT was measured on the left hand before and after applying continuous theta-burst stimulation (cTBS on the right primary somatosensory area (S1, pre-supplementary motor area (pre-SMA, right dorsolateral prefrontal cortex (DLPFC and left cerebellar hemisphere. We then investigated whether intermittent theta-burst stimulation (iTBS on the right S1 improved the STDT. After right S1 cTBS, STDT values increased whereas after iTBS to the same cortical site they decreased. cTBS over the DLPFC and left lateral cerebellum left the STDT statistically unchanged. cTBS over the pre-SMA also left the STDT statistically unchanged, but it increased the number of errors subjects made in distinguishing trials testing a single stimulus and those testing paired stimuli. CONCLUSIONS/SIGNIFICANCE: Our findings obtained by applying TBS to the cortical areas involved in processing sensory discrimination show that the STDT is encoded in S1, possibly depends on intrinsic S1 neural circuit properties, and can be modulated by plasticity-inducing TBS protocols delivered over S1. Our findings, giving further insight into mechanisms involved in somatosensory temporal discrimination, help interpret STDT abnormalities in movement disorders including dystonia and Parkinson's disease.

  19. Glutamate-Mediated Primary Somatosensory Cortex Excitability Correlated with Circulating Copper and Ceruloplasmin

    Directory of Open Access Journals (Sweden)

    Franca Tecchio

    2011-01-01

    Full Text Available Objective. To verify whether markers of metal homeostasis are related to a magnetoencephalographic index representative of glutamate-mediated excitability of the primary somatosensory cortex. The index is identified as the source strength of the earliest component (M20 of the somatosensory magnetic fields (SEFs evoked by right median nerve stimulation at wrist. Method. Thirty healthy right-handed subjects (51±22 years were enrolled in the study. A source reconstruction algorithm was applied to assess the amount of synchronously activated neurons subtending the M20 and the following SEF component (M30, which is generated by two independent contributions of gabaergic and glutamatergic transmission. Serum copper, ceruloplasmin, iron, transferrin, transferrin saturation, and zinc levels were measured. Results. Total copper and ceruloplasmin negatively correlated with the M20 source strength. Conclusion. This pilot study suggests that higher level of body copper reserve, as marked by ceruloplasmin variations, parallels lower cortical glutamatergic responsiveness.

  20. Representation of dynamic interaural phase difference in auditory cortex of awake rhesus macaques.

    Science.gov (United States)

    Scott, Brian H; Malone, Brian J; Semple, Malcolm N

    2009-04-01

    Neurons in auditory cortex of awake primates are selective for the spatial location of a sound source, yet the neural representation of the binaural cues that underlie this tuning remains undefined. We examined this representation in 283 single neurons across the low-frequency auditory core in alert macaques, trained to discriminate binaural cues for sound azimuth. In response to binaural beat stimuli, which mimic acoustic motion by modulating the relative phase of a tone at the two ears, these neurons robustly modulate their discharge rate in response to this directional cue. In accordance with prior studies, the preferred interaural phase difference (IPD) of these neurons typically corresponds to azimuthal locations contralateral to the recorded hemisphere. Whereas binaural beats evoke only transient discharges in anesthetized cortex, neurons in awake cortex respond throughout the IPD cycle. In this regard, responses are consistent with observations at earlier stations of the auditory pathway. Discharge rate is a band-pass function of the frequency of IPD modulation in most neurons (73%), but both discharge rate and temporal synchrony are independent of the direction of phase modulation. When subjected to a receiver operator characteristic analysis, the responses of individual neurons are insufficient to account for the perceptual acuity of these macaques in an IPD discrimination task, suggesting the need for neural pooling at the cortical level.

  1. The reactivation of somatosensory cortex and behavioral recovery after sensory loss in mature primates

    Directory of Open Access Journals (Sweden)

    Hui-Xin eQi

    2014-05-01

    Full Text Available In our experiments, we removed a major source of activation of somatosensory cortex in mature monkeys by unilaterally sectioning the sensory afferents in the dorsal columns of the spinal cord at a high cervical level. At this level, the ascending branches of tactile afferents from the hand are cut, while other branches of these afferents remain intact to terminate on neurons in the dorsal horn of the spinal cord. Immediately after such a lesion, the monkeys seem relatively unimpaired in locomotion and often use the forelimb, but further inspection reveals that they prefer to use the unaffected hand in reaching for food. In addition, systematic testing indicates that they make more errors in retrieving pieces of food, and start using visual inspection of the rotated hand to confirm the success of the grasping of the food. Such difficulties are not surprising as a complete dorsal column lesion totally deactivates the contralateral hand representation in primary somatosensory cortex (area 3b. However, hand use rapidly improves over the first post-lesion weeks, and much of the hand representational territory in contralateral area 3b is reactivated by inputs from the hand in roughly a normal somatotopic pattern. Quantitative measures of single neuron response properties reveal that reactivated neurons respond to tactile stimulation on the hand with high firing rates and only slightly longer latencies. We conclude that preserved dorsal column afferents after nearly complete lesions contribute to the reactivation of cortex and the recovery of the behavior, but second-order sensory pathways in the spinal cord may also play an important role. Our microelectrode recordings indicate that these preserved first-order, and second-order pathways are initially weak and largely ineffective in activating cortex, but they are potentiated during the recovery process. Therapies that would promote this potentiation could usefully enhance recovery after spinal cord

  2. Postnatal Development of CB1 Receptor Expression in Rodent Somatosensory Cortex

    Science.gov (United States)

    Deshmukh, Suvarna; Onozuka, Kaori; Bender, Kevin J.; Bender, Vanessa A.; Lutz, Beat; Mackie, Ken; Feldman, Daniel E.

    2007-01-01

    Endocannabinoids are powerful modulators of synaptic transmission that act on presynaptic cannabinoid receptors. Cannabinoid receptor type 1 (CB1) is the dominant receptor in the CNS, and is present in many brain regions, including sensory cortex. To investigate the potential role of CB1 receptors in cortical development, we examined the developmental expression of CB1 in rodent primary somatosensory (barrel) cortex, using immunohistochemistry with a CB1-specific antibody. We found that before postnatal day (P) 6, CB1 receptor staining was present exclusively in the cortical white matter, and that CB1 staining appeared in the grey matter between P6 and P20 in a specific laminar pattern. CB1 staining was confined to axons, and was most prominent in cortical layers 2/3, 5a, and 6. CB1 null (−/−) mice showed altered anatomical barrel maps in layer 4, with enlarged inter-barrel septa, but normal barrel size. These results indicate that CB1 receptors are present in early postnatal development and influence development of sensory maps. PMID:17210229

  3. Amygdala Contributions to Stimulus–Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning

    Science.gov (United States)

    Averbeck, Bruno B.

    2017-01-01

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus–reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus–reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus–reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus–reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus–reward associations. MFC also

  4. Decoding stimulus features in primate somatosensory cortex during perceptual categorization

    Science.gov (United States)

    Alvarez, Manuel; Zainos, Antonio; Romo, Ranulfo

    2015-01-01

    Neurons of the primary somatosensory cortex (S1) respond as functions of frequency or amplitude of a vibrotactile stimulus. However, whether S1 neurons encode both frequency and amplitude of the vibrotactile stimulus or whether each sensory feature is encoded by separate populations of S1 neurons is not known, To further address these questions, we recorded S1 neurons while trained monkeys categorized only one sensory feature of the vibrotactile stimulus: frequency, amplitude, or duration. The results suggest a hierarchical encoding scheme in S1: from neurons that encode all sensory features of the vibrotactile stimulus to neurons that encode only one sensory feature. We hypothesize that the dynamic representation of each sensory feature in S1 might serve for further downstream processing that leads to the monkey’s psychophysical behavior observed in these tasks. PMID:25825711

  5. Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex

    OpenAIRE

    Noonan, M. P.; Walton, M. E.; Behrens, T. E. J.; Sallet, J.; Buckley, M. J.; Rushworth, M. F. S.

    2010-01-01

    Uncertainty about the function of orbitofrontal cortex (OFC) in guiding decision-making may be a result of its medial (mOFC) and lateral (lOFC) divisions having distinct functions. Here we test the hypothesis that the mOFC is more concerned with reward-guided decision making, in contrast with the lOFC's role in reward-guided learning. Macaques performed three-armed bandit tasks and the effects of selective mOFC lesions were contrasted against lOFC lesions. First, we present analyses that make...

  6. Metaplasticity in human primary somatosensory cortex: effects on physiology and tactile perception.

    Science.gov (United States)

    Jones, Christina B; Lulic, Tea; Bailey, Aaron Z; Mackenzie, Tanner N; Mi, Yi Qun; Tommerdahl, Mark; Nelson, Aimee J

    2016-05-01

    Theta-burst stimulation (TBS) over human primary motor cortex evokes plasticity and metaplasticity, the latter contributing to the homeostatic balance of excitation and inhibition. Our knowledge of TBS-induced effects on primary somatosensory cortex (SI) is limited, and it is unknown whether TBS induces metaplasticity within human SI. Sixteen right-handed participants (6 females, mean age 23 yr) received two TBS protocols [continuous TBS (cTBS) and intermittent TBS (iTBS)] delivered in six different combinations over SI in separate sessions. TBS protocols were delivered at 30 Hz and were as follows: a single cTBS protocol, a single iTBS protocol, cTBS followed by cTBS, iTBS followed by iTBS, cTBS followed by iTBS, and iTBS followed by cTBS. Measures included the amplitudes of the first and second somatosensory evoked potentials (SEPs) via median nerve stimulation, their paired-pulse ratio (PPR), and temporal order judgment (TOJ). Dependent measures were obtained before TBS and at 5, 25, 50, and 90 min following stimulation. Results indicate similar effects following cTBS and iTBS; increased amplitudes of the second SEP and PPR without amplitude changes to SEP 1, and impairments in TOJ. Metaplasticity was observed such that TOJ impairments following a single cTBS protocol were abolished following consecutive cTBS protocols. Additionally, consecutive iTBS protocols altered the time course of effects when compared with a single iTBS protocol. In conclusion, 30-Hz cTBS and iTBS protocols delivered in isolation induce effects consistent with a TBS-induced reduction in intracortical inhibition within SI. Furthermore, cTBS- and iTBS-induced metaplasticity appear to follow homeostatic and nonhomeostatic rules, respectively. Copyright © 2016 the American Physiological Society.

  7. An electrocorticographic electrode array for simultaneous recording from medial, lateral, and intrasulcal surface of the cortex in macaque monkeys.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Mullarkey, Matthew; Doyle, Alexandra M; Mishkin, Mortimer; Fujii, Naotaka

    2014-08-15

    Electrocorticography (ECoG) permits recording electrical field potentials with high spatiotemporal resolution over a large part of the cerebral cortex. Application of chronically implanted ECoG arrays in animal models provides an opportunity to investigate global spatiotemporal neural patterns and functional connectivity systematically under various experimental conditions. Although ECoG is conventionally used to cover the gyral cortical surface, recent studies have shown the feasibility of intrasulcal ECoG recordings in macaque monkeys. Here we developed a new ECoG array to record neural activity simultaneously from much of the medial and lateral cortical surface of a single hemisphere, together with the supratemporal plane (STP) of the lateral sulcus in macaque monkeys. The ECoG array consisted of 256 electrodes for bipolar recording at 128 sites. We successfully implanted the ECoG array in the left hemisphere of three rhesus monkeys. The electrodes in the auditory and visual cortex detected robust event related potentials to auditory and visual stimuli, respectively. Bipolar recording from adjacent electrode pairs effectively eliminated chewing artifacts evident in monopolar recording, demonstrating the advantage of using the ECoG array under conditions that generate significant movement artifacts. Compared with bipolar ECoG arrays previously developed for macaque monkeys, this array significantly expands the number of cortical target areas in gyral and intralsulcal cortex. This new ECoG array provides an opportunity to investigate global network interactions among gyral and intrasulcal cortical areas. Published by Elsevier B.V.

  8. Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2012-06-07

    In the absence of sensory stimuli, spontaneous activity in the brain has been shown to exhibit organization at multiple spatiotemporal scales. In the macaque auditory cortex, responses to acoustic stimuli are tonotopically organized within multiple, adjacent frequency maps aligned in a caudorostral direction on the supratemporal plane (STP) of the lateral sulcus. Here, we used chronic microelectrocorticography to investigate the correspondence between sensory maps and spontaneous neural fluctuations in the auditory cortex. We first mapped tonotopic organization across 96 electrodes spanning approximately two centimeters along the primary and higher auditory cortex. In separate sessions, we then observed that spontaneous activity at the same sites exhibited spatial covariation that reflected the tonotopic map of the STP. This observation demonstrates a close relationship between functional organization and spontaneous neural activity in the sensory cortex of the awake monkey. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Amygdala Contributions to Stimulus-Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning.

    Science.gov (United States)

    Rudebeck, Peter H; Ripple, Joshua A; Mitz, Andrew R; Averbeck, Bruno B; Murray, Elisabeth A

    2017-02-22

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus-reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus-reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus-reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus-reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus-reward associations. MFC also showed

  10. Somatosensory Representations Link the Perception of Emotional Expressions and Sensory Experience.

    Science.gov (United States)

    Kragel, Philip A; LaBar, Kevin S

    2016-01-01

    Studies of human emotion perception have linked a distributed set of brain regions to the recognition of emotion in facial, vocal, and body expressions. In particular, lesions to somatosensory cortex in the right hemisphere have been shown to impair recognition of facial and vocal expressions of emotion. Although these findings suggest that somatosensory cortex represents body states associated with distinct emotions, such as a furrowed brow or gaping jaw, functional evidence directly linking somatosensory activity and subjective experience during emotion perception is critically lacking. Using functional magnetic resonance imaging and multivariate decoding techniques, we show that perceiving vocal and facial expressions of emotion yields hemodynamic activity in right somatosensory cortex that discriminates among emotion categories, exhibits somatotopic organization, and tracks self-reported sensory experience. The findings both support embodied accounts of emotion and provide mechanistic insight into how emotional expressions are capable of biasing subjective experience in those who perceive them.

  11. Projections of Somatosensory Cortex and Frontal Eye Fields onto Incertotectal Neurons in the Cat

    Science.gov (United States)

    Perkins, Eddie; Warren, Susan; Lin, Rick C.-S.; May, Paul J.

    2014-01-01

    The goal of this study was to determine whether the input-output characteristics of the zona incerta (ZI) are appropriate for it to serve as a conduit for cortical control over saccade-related activity in the superior colliculus. The study utilized the neuronal tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and biotinylated dextran amine (BDA) in the cat. Injections of WGA-HRP into primary somatosensory cortex (SI) revealed sparse, widespread nontopographic projections throughout ZI. In addition, region-specific areas of more intense termination were present in ventral ZI, although strict topography was not observed. In comparison, the frontal eye fields (FEF) also projected sparsely throughout ZI, but terminated more heavily, medially, along the border between the two sublaminae. Furthermore, retrogradely labeled incertocortical neurons were observed in both experiments. The relationship of these two cortical projections to incertotectal cells was also directly examined by retrogradely labeling incertotectal cells with WGA-HRP in animals that had also received cortical BDA injections. Labeled axonal arbors from both SI and FEF had thin, sparsely branched axons with numerous en passant boutons. They formed numerous close associations with the somata and dendrites of WGA-HRP-labeled incertotectal cells. In summary, these results indicate that both sensory and motor cortical inputs to ZI display similar morphologies and distributions. In addition, both display close associations with incertotectal cells, suggesting direct synaptic contact. From these data, we conclude that inputs from somatosensory and FEF cortex both play a role in controlling gaze-related activity in the superior colliculus by way of the inhibitory incertotectal projection. PMID:17083121

  12. Posterior insular cortex - a site of vestibular-somatosensory interaction?

    Science.gov (United States)

    Baier, Bernhard; Zu Eulenburg, Peter; Best, Christoph; Geber, Christian; Müller-Forell, Wibke; Birklein, Frank; Dieterich, Marianne

    2013-09-01

    Background In previous imaging studies the insular cortex (IC) has been identified as an essential part of the processing of a wide spectrum of perception and sensorimotor integration. Yet, there are no systematic lesion studies in a sufficient number of patients examining whether processing of vestibular and the interaction of somatosensory and vestibular signals take place in the IC. Methods We investigated acute stroke patients with lesions affecting the IC in order to fill this gap. In detail, we explored signs of a vestibular tone imbalance such as the deviation of the subjective visual vertical (SVV). We applied voxel-lesion behaviour mapping analysis in 27 patients with acute unilateral stroke. Results Our data demonstrate that patients with lesions of the posterior IC have an abnormal tilt of SVV. Furthermore, re-analysing data of 20 patients from a previous study, we found a positive correlation between thermal perception contralateral to the stroke and the severity of the SVV tilt. Conclusions We conclude that the IC is a sensory brain region where different modalities might interact.

  13. Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits

    Directory of Open Access Journals (Sweden)

    Sarah Meyer

    2016-01-01

    Full Text Available The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand.

  14. Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits.

    Science.gov (United States)

    Meyer, Sarah; Kessner, Simon S; Cheng, Bastian; Bönstrup, Marlene; Schulz, Robert; Hummel, Friedhelm C; De Bruyn, Nele; Peeters, Andre; Van Pesch, Vincent; Duprez, Thierry; Sunaert, Stefan; Schrooten, Maarten; Feys, Hilde; Gerloff, Christian; Thomalla, Götz; Thijs, Vincent; Verheyden, Geert

    2016-01-01

    The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand.

  15. Cortico-cortical connections of areas 44 and 45B in the macaque monkey.

    Science.gov (United States)

    Frey, Stephen; Mackey, Scott; Petrides, Michael

    2014-04-01

    In the human brain, areas 44 and 45 constitute Broca's region, the ventrolateral frontal region critical for language production. The homologues of these areas in the macaque monkey brain have been established by direct cytoarchitectonic comparison with the human brain. The cortical areas that project monosynaptically to areas 44 and 45B in the macaque monkey brain require clarification. Fluorescent retrograde tracers were placed in cytoarchitectonic areas 44 and 45B of the macaque monkey, as well as in the anterior part of the inferior parietal lobule and the superior temporal gyrus. The results demonstrate that ipsilateral afferent connections of area 44 arise from local frontal areas, including rostral premotor cortical area 6, from secondary somatosensory cortex, the caudal insula, and the cingulate motor region. Area 44 is strongly linked with the anterior inferior parietal lobule (particularly area PFG and the adjacent anterior intraparietal sulcus). Input from the temporal lobe is limited to the fundus of the superior temporal sulcus extending caudal to the central sulcus. There is also input from the sulcal part of area Tpt in the upper bank of the superior temporal sulcus. Area 45B shares some of the connections of area 44, but can be distinguished from area 44 by input from the caudal inferior parietal lobule (area PG) and significant input from the part of the superior temporal sulcus that extends anterior to the central sulcus. Area 45B also receives input from visual association cortex that is not observed in area 44. The results have provided a clarification of the relative connections of areas 44 and 45B of the ventrolateral frontal region which, in the human brain, subserves certain aspects of language processing. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Influence of dopaminergically mediated reward on somatosensory decision-making.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    2009-07-01

    Full Text Available Reward-related dopaminergic influences on learning and overt behaviour are well established, but any influence on sensory decision-making is largely unknown. We used functional magnetic resonance imaging (fMRI while participants judged electric somatosensory stimuli on one hand or other, before being rewarded for correct performance at trial end via a visual signal, at one of four anticipated financial levels. Prior to the procedure, participants received either placebo (saline, a dopamine agonist (levodopa, or an antagonist (haloperidol.higher anticipated reward improved tactile decisions. Visually signalled reward reactivated primary somatosensory cortex for the judged hand, more strongly for higher reward. After receiving a higher reward on one trial, somatosensory activations and decisions were enhanced on the next trial. These behavioural and neural effects were all enhanced by levodopa and attenuated by haloperidol, indicating dopaminergic dependency. Dopaminergic reward-related influences extend even to early somatosensory cortex and sensory decision-making.

  17. Somato-motor haptic processing in posterior inner perisylvian region (SII/pIC of the macaque monkey.

    Directory of Open Access Journals (Sweden)

    Hiroaki Ishida

    Full Text Available The posterior inner perisylvian region including the secondary somatosensory cortex (area SII and the adjacent region of posterior insular cortex (pIC has been implicated in haptic processing by integrating somato-motor information during hand-manipulation, both in humans and in non-human primates. However, motor-related properties during hand-manipulation are still largely unknown. To investigate a motor-related activity in the hand region of SII/pIC, two macaque monkeys were trained to perform a hand-manipulation task, requiring 3 different grip types (precision grip, finger exploration, side grip both in light and in dark conditions. Our results showed that 70% (n = 33/48 of task related neurons within SII/pIC were only activated during monkeys' active hand-manipulation. Of those 33 neurons, 15 (45% began to discharge before hand-target contact, while the remaining neurons were tonically active after contact. Thirty-percent (n = 15/48 of studied neurons responded to both passive somatosensory stimulation and to the motor task. A consistent percentage of task-related neurons in SII/pIC was selectively activated during finger exploration (FE and precision grasping (PG execution, suggesting they play a pivotal role in control skilled finger movements. Furthermore, hand-manipulation-related neurons also responded when visual feedback was absent in the dark. Altogether, our results suggest that somato-motor neurons in SII/pIC likely contribute to haptic processing from the initial to the final phase of grasping and object manipulation. Such motor-related activity could also provide the somato-motor binding principle enabling the translation of diachronic somatosensory inputs into a coherent image of the explored object.

  18. Golgi Analysis of Neuron Morphology in the Presumptive Somatosensory Cortex and Visual Cortex of the Florida Manatee (Trichechus manatus latirostris).

    Science.gov (United States)

    Reyes, Laura D; Harland, Tessa; Reep, Roger L; Sherwood, Chet C; Jacobs, Bob

    2016-01-01

    The current study investigates neuron morphology in presumptive primary somatosensory (S1) and primary visual (V1) cortices of the Florida manatee (Trichechus manatus latirostris) as revealed by Golgi impregnation. Sirenians, including manatees, have an aquatic lifestyle, a large body size, and a relatively large lissencephalic brain. The present study examines neuron morphology in 3 cortical areas: in S1, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2) and in V1, dorsolateral cortex area 4 (DL4). Neurons exhibited a variety of morphological types, with pyramidal neurons being the most common. The large variety of neuron types present in the manatee cortex was comparable to that seen in other eutherian mammals, except for rodents and primates, where pyramid-shaped neurons predominate. A comparison between pyramidal neurons in S1 and V1 indicated relatively greater dendritic branching in S1. Across all 3 areas, the dendritic arborization pattern of pyramidal neurons was also similar to that observed previously in the afrotherian rock hyrax, cetartiodactyls, opossums, and echidnas but did not resemble the widely bifurcated dendrites seen in the large-brained African elephant. Despite adaptations for an aquatic environment, manatees did not share specific neuron types such as tritufted and star-like neurons that have been found in cetaceans. Manatees exhibit an evolutionarily primitive pattern of cortical neuron morphology shared with most other mammals and do not appear to have neuronal specializations for an aquatic niche. © 2016 S. Karger AG, Basel.

  19. Posterior insular cortex – a site of vestibular–somatosensory interaction?

    Science.gov (United States)

    Baier, Bernhard; zu Eulenburg, Peter; Best, Christoph; Geber, Christian; Müller-Forell, Wibke; Birklein, Frank; Dieterich, Marianne

    2013-01-01

    Background In previous imaging studies the insular cortex (IC) has been identified as an essential part of the processing of a wide spectrum of perception and sensorimotor integration. Yet, there are no systematic lesion studies in a sufficient number of patients examining whether processing of vestibular and the interaction of somatosensory and vestibular signals take place in the IC. Methods We investigated acute stroke patients with lesions affecting the IC in order to fill this gap. In detail, we explored signs of a vestibular tone imbalance such as the deviation of the subjective visual vertical (SVV). We applied voxel-lesion behaviour mapping analysis in 27 patients with acute unilateral stroke. Results Our data demonstrate that patients with lesions of the posterior IC have an abnormal tilt of SVV. Furthermore, re-analysing data of 20 patients from a previous study, we found a positive correlation between thermal perception contralateral to the stroke and the severity of the SVV tilt. Conclusions We conclude that the IC is a sensory brain region where different modalities might interact. PMID:24392273

  20. Activity in the primary somatosensory cortex induced by reflexological stimulation is unaffected by pseudo-information: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Miura, Naoki; Akitsuki, Yuko; Sekiguchi, Atsushi; Kawashima, Ryuta

    2013-05-27

    Reflexology is an alternative medical practice that produces beneficial effects by applying pressure to specific reflex areas. Our previous study suggested that reflexological stimulation induced cortical activation in somatosensory cortex corresponding to the stimulated reflex area; however, we could not rule out the possibility of a placebo effect resulting from instructions given during the experimental task. We used functional magnetic resonance imaging (fMRI) to investigate how reflexological stimulation of the reflex area is processed in the primary somatosensory cortex when correct and pseudo-information about the reflex area is provided. Furthermore, the laterality of activation to the reflexological stimulation was investigated. Thirty-two healthy Japanese volunteers participated. The experiment followed a double-blind design. Half of the subjects received correct information, that the base of the second toe was the eye reflex area, and pseudo-information, that the base of the third toe was the shoulder reflex area. The other half of the subjects received the opposite information. fMRI time series data were acquired during reflexological stimulation to both feet. The experimenter stimulated each reflex area in accordance with an auditory cue. The fMRI data were analyzed using a conventional two-stage approach. The hemodynamic responses produced by the stimulation of each reflex area were assessed using a general linear model on an intra-subject basis, and a two-way repeated-measures analysis of variance was performed on an intersubject basis to determine the effect of reflex area laterality and information accuracy. Our results indicated that stimulation of the eye reflex area in either foot induced activity in the left middle postcentral gyrus, the area to which tactile sensation to the face projects, as well as in the postcentral gyrus contralateral foot representation area. This activity was not affected by pseudo information. The results also indicate

  1. Activity in the primary somatosensory cortex induced by reflexological stimulation is unaffected by pseudo-information: a functional magnetic resonance imaging study

    Science.gov (United States)

    2013-01-01

    Background Reflexology is an alternative medical practice that produces beneficial effects by applying pressure to specific reflex areas. Our previous study suggested that reflexological stimulation induced cortical activation in somatosensory cortex corresponding to the stimulated reflex area; however, we could not rule out the possibility of a placebo effect resulting from instructions given during the experimental task. We used functional magnetic resonance imaging (fMRI) to investigate how reflexological stimulation of the reflex area is processed in the primary somatosensory cortex when correct and pseudo-information about the reflex area is provided. Furthermore, the laterality of activation to the reflexological stimulation was investigated. Methods Thirty-two healthy Japanese volunteers participated. The experiment followed a double-blind design. Half of the subjects received correct information, that the base of the second toe was the eye reflex area, and pseudo-information, that the base of the third toe was the shoulder reflex area. The other half of the subjects received the opposite information. fMRI time series data were acquired during reflexological stimulation to both feet. The experimenter stimulated each reflex area in accordance with an auditory cue. The fMRI data were analyzed using a conventional two-stage approach. The hemodynamic responses produced by the stimulation of each reflex area were assessed using a general linear model on an intra-subject basis, and a two-way repeated-measures analysis of variance was performed on an intersubject basis to determine the effect of reflex area laterality and information accuracy. Results Our results indicated that stimulation of the eye reflex area in either foot induced activity in the left middle postcentral gyrus, the area to which tactile sensation to the face projects, as well as in the postcentral gyrus contralateral foot representation area. This activity was not affected by pseudo information

  2. Temporal Lobe Lesions and Perception of Species-Specific Vocalizations by Macaques

    Science.gov (United States)

    Heffner, Henry E.; Heffner, Rickye S.

    1984-10-01

    Japanese macaques were trained to discriminate two forms of their coo vocalization before and after unilateral and bilateral ablation of the temporal cortex. Unilateral ablation of the left superior temporal gyrus, including auditory cortex, resulted in an initial impairment in the discrimination, but similar unilateral ablation of the right superior temporal gyrus had no effect. Bilateral temporal lesions including auditory cortex completely abolished the ability of the animals to discriminate their coos. Neither unilateral nor bilateral ablation of cortex dorsal to and sparing the auditory cortex had any effect on the discrimination. The perception of species-specific vocalizations by Japanese macaques seems to be mediated by the temporal cortex, with the left hemisphere playing a predominant role.

  3. Behavioral Consequences of a Bifacial Map in the Mouse Somatosensory Cortex.

    Science.gov (United States)

    Tsytsarev, Vassiliy; Arakawa, Hiroyuki; Zhao, Shuxin; Chédotal, Alain; Erzurumlu, Reha S

    2017-07-26

    The whisker system is an important sensory organ with extensive neural representations in the brain of the mouse. Patterned neural modules (barrelettes) in the ipsilateral principal sensory nucleus of the trigeminal nerve (PrV) correspond to the whiskers. Axons of the PrV barrelette neurons cross the midline and confer the whisker-related patterning to the contralateral ventroposteromedial nucleus of the thalamus, and subsequently to the cortex. In this way, specific neural modules called barreloids and barrels in the contralateral thalamus and cortex represent each whisker. Partial midline crossing of the PrV axons, in a conditional Robo3 mutant ( Robo3 R3-5 cKO ) mouse line, leads to the formation of bilateral whisker maps in the ventroposteromedial, as well as the barrel cortex. We used voltage-sensitive dye optical imaging and somatosensory and motor behavioral tests to characterize the consequences of bifacial maps in the thalamocortical system. Voltage-sensitive dye optical imaging verified functional, bilateral whisker representation in the barrel cortex and activation of distinct cortical loci following ipsilateral and contralateral stimulation of the specific whiskers. The mutant animals were comparable with the control animals in sensorimotor tests. However, they showed noticeable deficits in all of the whisker-dependent or -related tests, including Y-maze exploration, horizontal surface approach, bridge crossing, gap crossing, texture discrimination, floating in water, and whisking laterality. Our results indicate that bifacial maps along the thalamocortical system do not offer a functional advantage. Instead, they lead to impairments, possibly due to the smaller size of the whisker-related modules and interference between the ipsilateral and contralateral whisker representations in the same thalamus and cortex. SIGNIFICANCE STATEMENT The whisker sensory system plays a quintessentially important role in exploratory behavior of mice and other nocturnal

  4. Mapping visual cortex in monkeys and humans using surface-based atlases

    Science.gov (United States)

    Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.

    2001-01-01

    We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.

  5. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception

    Science.gov (United States)

    Muller, Leah; Rolston, John D.; Fox, Neal P.; Knowlton, Robert; Rao, Vikram R.; Chang, Edward F.

    2018-04-01

    Objective. Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. Approach. To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. Main results. We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. Significance. Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.

  6. Increased neuronal firing in resting and sleep in areas of the macaque medial prefrontal cortex.

    Science.gov (United States)

    Gabbott, Paul L; Rolls, Edmund T

    2013-06-01

    The medial prefrontal cortex (mPFC) of humans and macaques is an integral part of the default mode network and is a brain region that shows increased activation in the resting state. A previous paper from our laboratory reported significantly increased firing rates of neurons in the macaque subgenual cingulate cortex, Brodmann area (BA) 25, during disengagement from a task and also during slow wave sleep [E.T. Rolls et al. (2003) J. Neurophysiology, 90, 134-142]. Here we report the finding that there are neurons in other areas of mPFC that also increase their firing rates during disengagement from a task, drowsiness and eye-closure. During the neurophysiological recording of single mPFC cells (n = 249) in BAs 9, 10, 13 m, 14c, 24b and especially pregenual area 32, populations of neurons were identified whose firing rates altered significantly with eye-closure compared with eye-opening. Three types of neuron were identified: Type 1 cells (28.1% of the total population) significantly increased (mean + 329%; P ≪ 0.01) their average firing rate with eye-closure, from 3.1 spikes/s when awake to 10.2 spikes/s when asleep; Type 2 cells (6.0%) significantly decreased (mean -68%; P areas of mPFC, implicated in the anterior default mode network, there is a substantial population of neurons that significantly increase their firing rates during periods of eye-closure. Such neurons may be part of an interconnected network of distributed brain regions that are more active during periods of relaxed wakefulness than during attention-demanding tasks. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  7. Differential effects of aging on fore- and hindpaw maps of rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Marianne David-Jürgens

    Full Text Available Getting older is associated with a decline of cognitive and sensorimotor abilities, but it remains elusive whether age-related changes are due to accumulating degenerational processes, rendering them largely irreversible, or whether they reflect plastic, adaptational and presumably compensatory changes. Using aged rats as a model we studied how aging affects neural processing in somatosensory cortex. By multi-unit recordings in the fore- and hindpaw cortical maps we compared the effects of aging on receptive field size and response latencies. While in aged animals response latencies of neurons of both cortical representations were lengthened by approximately the same amount, only RFs of hindpaw neurons showed severe expansion with only little changes of forepaw RFs. To obtain insight into parallel changes of walking behavior, we recorded footprints in young and old animals which revealed a general age-related impairment of walking. In addition we found evidence for a limb-specific deterioration of the hindlimbs that was not observed in the forelimbs. Our results show that age-related changes of somatosensory cortical neurons display a complex pattern of regional specificity and parameter-dependence indicating that aging acts rather selectively on cortical processing of sensory information. The fact that RFs of the fore- and hindpaws do not co-vary in aged animals argues against degenerational processes on a global scale. We therefore conclude that age-related alterations are composed of plastic-adaptive alterations in response to modified use and degenerational changes developing with age. As a consequence, age-related changes need not be irreversible but can be subject to amelioration through training and stimulation.

  8. Modulation of Somatosensory Alpha Rhythm by Transcranial Alternating Current Stimulation at Mu-Frequency

    Directory of Open Access Journals (Sweden)

    Christopher Gundlach

    2017-08-01

    Full Text Available Introduction: Transcranial alternating current stimulation (tACS is emerging as an interventional tool to modulate different functions of the brain, potentially by interacting with intrinsic ongoing neuronal oscillations. Functionally different intrinsic alpha oscillations are found throughout the cortex. Yet it remains unclear whether tACS is capable of specifically modulating the somatosensory mu-rhythm in amplitude.Objectives: We used tACS to modulate mu-alpha oscillations in amplitude. When compared to sham stimulation we expected a modulation of mu-alpha oscillations but not visual alpha oscillations by tACS.Methods: Individual mu-alpha frequencies were determined in 25 participants. Subsequently, blocks of tACS with individual mu-alpha frequency and sham stimulation were applied over primary somatosensory cortex (SI. Electroencephalogram (EEG was recorded before and after either stimulation or sham. Modulations of mu-alpha and, for control, visual alpha amplitudes were then compared between tACS and sham.Results: Somatosensory mu-alpha oscillations decreased in amplitude after tACS was applied at participants’ individual mu-alpha frequency. No changes in amplitude were observed for sham stimulation. Furthermore, visual alpha oscillations were not affected by tACS or sham, respectively.Conclusion: Our results demonstrate the capability of tACS to specifically modulate the targeted somatosensory mu-rhythm when the tACS frequency is tuned to the individual endogenous rhythm and applied over somatosensory areas. Our results are in contrast to previously reported amplitude increases of visual alpha oscillations induced by tACS applied over visual cortex. Our results may point to a specific interaction between our stimulation protocol and the functional architecture of the somatosensory system.

  9. Primary somatosensory cortex in chronic low back pain – a 1H-MRS study

    Directory of Open Access Journals (Sweden)

    Sharma KN

    2011-05-01

    Full Text Available Neena K Sharma1, Kenneth McCarson2, Linda Van Dillen5, Angela Lentz1, Talal Khan3, Carmen M Cirstea1,41Department of Physical Therapy and Rehabilitation Science, 2Department of Pharmacology, Toxicology and Therapeutics, 3Department of Anesthesiology, 4Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA; 5Program in Physical Therapy and Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO, USAAbstract: The goal of this study was to investigate whether certain metabolites, specific to neurons, glial cells, and the neuronal-glial neurotransmission system, in the primary somatosensory cortex (SSC, are altered and correlated with clinical characteristics of pain in patients with chronic low back pain (LBP. Eleven LBP patients and eleven age-matched healthy controls were included. N-acetylaspartate (NAA, choline (Cho, myo-inositol (mI, and glutamine/glutamate (Glx were measured with proton magnetic resonance spectroscopy (1H-MRS in left and right SSC. Differences in metabolite concentrations relative to those of controls were evaluated as well as analyses of metabolite correlations within and between SSCs. Relationships between metabolite concentrations and pain characteristics were also evaluated. We found decreased NAA in the left SSC (P = 0.001 and decreased Cho (P = 0.04 along with lower correlations between all metabolites in right SSC (P = 0.007 in LBP compared to controls. In addition, we found higher and significant correlations between left and right mI (P < 0.001 in LBP vs P = 0.1 in controls and between left mI and right Cho (P = 0.048 vs P = 0.6. Left and right NAA levels were negatively correlated with pain duration (P = 0.04 and P = 0.02 respectively while right Glx was positively correlated with pain severity (P = 0.04. Our preliminary results demonstrated significant altered neuronal-glial interactions in SSC, with left neural alterations related to pain duration

  10. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus

    Science.gov (United States)

    Nakata, Hiroki; Sakamoto, Kiwako; Kakigi, Ryusuke

    2014-01-01

    Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging, and neurophysiological methods, such as magnetoencephalography and electroencephalography, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC) and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation.’ In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation. PMID:25566158

  11. Altered Balance of Receptive Field Excitation and Suppression in Visual Cortex of Amblyopic Macaque Monkeys.

    Science.gov (United States)

    Hallum, Luke E; Shooner, Christopher; Kumbhani, Romesh D; Kelly, Jenna G; García-Marín, Virginia; Majaj, Najib J; Movshon, J Anthony; Kiorpes, Lynne

    2017-08-23

    In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys ( Macaca nemestrina ) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes. SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys ( Macaca nemestrina ) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is

  12. Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.

    Science.gov (United States)

    Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa; Grün, Sonja

    2016-08-10

    The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons ("cell assemblies"). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published

  13. [Neurophysiological investigations of information processing in the somato-sensory system].

    Science.gov (United States)

    Kunesch, E

    2009-08-01

    The ability of the human hand to perform complex sensorimotor tasks such as tactile exploration and grasping is based on 1. exact encoding of somatosensory information by cutaneous mechanoreceptors, 2. elaborated processing of afferent signals in somatosensory relay stations and cortex fields, 3. rapid and effective interaction of sensory feedback with motor programs, and 4. different modes of sensory control, which can be switched over. (c) Georg Thieme Verlag KG Stuttgart-New York.

  14. Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Premji, Azra; Ziluk, Angela; Nelson, Aimee J

    2010-08-05

    Intermittent theta-burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI). The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs) recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS. Compared to pre-iTBS, the amplitude of cortical potential N20/P25 was significantly increased for 5 minutes from non-stimulated SI and for 15 to 25 minutes from stimulated SI. Subcortical potentials recorded bilaterally remained unaltered following iTBS. We conclude that iTBS increases the cortical excitability of SI bilaterally and does not alter thalamocortical afferent input to SI. ITBS may provide one avenue to induce cortical plasticity in the somatosensory cortex.

  15. Experience-induced plasticity of cutaneous maps in the primary somatosensory cortex of adult monkeys and rats.

    Science.gov (United States)

    Xerri, C; Coq, J O; Merzenich, M M; Jenkins, W M

    1996-01-01

    In a first study, the representations of skin surfaces of the hand in the primary somatosensory cortex, area 3b, were reconstructed in owl monkeys and squirrel monkeys trained to pick up food pellets from small, shallow wells, a task which required skilled use of the digits. Training sessions included limited manual exercise over a total period of a few hours of practice. From an early clumsy performance in which many retrieval attempts were required for each successful pellet retrieval, the monkeys exhibited a gradual improvement. Typically, the animals used various combinations of digits before developing a successful retrieval strategy. As the behavior came to be stereotyped, monkeys consistently engaged surfaces of the distal phalanges of one or two digits in the palpation and capture of food pellets from the smallest wells. Microelectrode mapping of the hand surfaces revealed that the glabrous skin of the fingertips predominantly involved in the dexterity task was represented over topographically expanded cortical sectors. Furthermore, cutaneous receptive fields which covered the most frequently stimulated digital tip surfaces were less than half as large as were those representing the corresponding surfaces of control digits. In a second series of experiments, Long-Evans rats were assigned to environments promoting differential tactile experience (standard, enriched, and impoverished) for 80 to 115 days from the time of weaning. A fourth group of young adult rat experienced a severe restriction of forepaw exploratory movement for either 7 or 15 days. Cortical maps derived in the primary somatosensory cortex showed that environmental enrichment induced a substantial enlargement of the cutaneous forepaw representation, and improved its spatial resolution (smaller glabrous receptive fields). In contrast, tactile impoverishment resulted in a degradation of the forepaw representation that was characterized by larger cutaneous receptive fields and the emergence of

  16. Subliminal stimulation and somatosensory signal detection.

    Science.gov (United States)

    Ferrè, Elisa Raffaella; Sahani, Maneesh; Haggard, Patrick

    2016-10-01

    Only a small fraction of sensory signals is consciously perceived. The brain's perceptual systems may include mechanisms of feedforward inhibition that protect the cortex from subliminal noise, thus reserving cortical capacity and conscious awareness for significant stimuli. Here we provide a new view of these mechanisms based on signal detection theory, and gain control. We demonstrated that subliminal somatosensory stimulation decreased sensitivity for the detection of a subsequent somatosensory input, largely due to increased false alarm rates. By delivering the subliminal somatosensory stimulus and the to-be-detected somatosensory stimulus to different digits of the same hand, we show that this effect spreads across the sensory surface. In addition, subliminal somatosensory stimulation tended to produce an increased probability of responding "yes", whether the somatosensory stimulus was present or not. Our results suggest that subliminal stimuli temporarily reduce input gain, avoiding excessive responses to further small inputs. This gain control may be automatic, and may precede discriminative classification of inputs into signals or noise. Crucially, we found that subliminal inputs influenced false alarm rates only on blocks where the to-be-detected stimuli were present, and not on pre-test control blocks where they were absent. Participants appeared to adjust their perceptual criterion according to a statistical distribution of stimuli in the current context, with the presence of supraliminal stimuli having an important role in the criterion-setting process. These findings clarify the cognitive mechanisms that reserve conscious perception for salient and important signals. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey

    International Nuclear Information System (INIS)

    Humphrey, A.L.; Hendrickson, A.E.

    1983-01-01

    We have used 2-deoxy-D-[ 14 C]glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The zones extended through all laminae except IVc beta and, when viewed tangentially, formed separate patches 500 microns apart. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided with the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in the cortex, while the cytochrome label in these animals remained patchy. When monkeys were kept in the dark during 2-DG exposure, 2-DG-labeled patches were not seen but cytochrome oxidase-positive patches remained. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake in layers I to IVa and VI. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli

  18. Corticofugal projections induce long-lasting effects on somatosensory responses in the trigeminal complex of the rat

    Directory of Open Access Journals (Sweden)

    Angel eNunez

    2014-05-01

    Full Text Available The sensory information flow at subcortical relay stations is controlled by the action of topographic connections from the neocortex. To determinate the functional properties of the somatosensory corticofugal projections to the principal (Pr5 and caudal spinal (Sp5C trigeminal nuclei, we performed unitary recordings in anesthetized rats. To examine the effect of these cortical projections we used tactile stimulation of the whisker and electrical stimulation of somatosensory cortices. Corticofugal anatomical projections to Pr5 and Sp5C nuclei were detected by using retrograde fluorescent tracers. Neurons projecting exclusively to Pr5 were located in the cingulate cortex while neurons projecting to both Sp5C and Pr5 nuclei were located in the somatosensory and insular cortices (>75% of neurons. Physiological results indicated that primary somatosensory cortex produced a short-lasting facilitating or inhibiting effects (< 5 minutes of tactile responses in Pr5 nucleus through activation of NMDA glutamatergic or GABAA receptors since effects were blocked by iontophoretically application of APV and bicuculline, respectively. In contrast, stimulation of secondary somatosensory cortex did not affect most of the Pr5 neurons; however both cortices inhibited the nociceptive responses in the Sp5C nucleus through activation of glycinergic or GABAA receptors because effects were blocked by iontophoretically application of strychnine and bicuculline, respectively. These and anatomical results demonstrated that the somatosensory cortices projects to Pr5 nucleus to modulate tactile responses by excitatory and inhibitory actions, while projections to the Sp5C nucleus control nociceptive sensory transmission by only inhibitory effects. Thus, somatosensory cortices may modulate innocuous and noxious inputs simultaneously, contributing to the perception of specifically tactile or painful sensations.

  19. Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Ziluk Angela

    2010-08-01

    Full Text Available Abstract Background Intermittent theta-burst stimulation (iTBS is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI. The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS. Results Compared to pre-iTBS, the amplitude of cortical potential N20/P25 was significantly increased for 5 minutes from non-stimulated SI and for 15 to 25 minutes from stimulated SI. Subcortical potentials recorded bilaterally remained unaltered following iTBS. Conclusion We conclude that iTBS increases the cortical excitability of SI bilaterally and does not alter thalamocortical afferent input to SI. ITBS may provide one avenue to induce cortical plasticity in the somatosensory cortex.

  20. HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients.

    Science.gov (United States)

    Sczesny-Kaiser, Matthias; Höffken, Oliver; Aach, Mirko; Cruciger, Oliver; Grasmücke, Dennis; Meindl, Renate; Schildhauer, Thomas A; Schwenkreis, Peter; Tegenthoff, Martin

    2015-08-20

    Reorganization in the sensorimotor cortex accompanied by increased excitability and enlarged body representations is a consequence of spinal cord injury (SCI). Robotic-assisted bodyweight supported treadmill training (BWSTT) was hypothesized to induce reorganization and improve walking function. To assess whether BWSTT with hybrid assistive limb® (HAL®) exoskeleton affects cortical excitability in the primary somatosensory cortex (S1) in SCI patients, as measured by paired-pulse somatosensory evoked potentials (ppSEP) stimulated above the level of injury. Eleven SCI patients took part in HAL® assisted BWSTT for 3 months. PpSEP were conducted before and after this training period, where the amplitude ratios (SEP amplitude following double pulses - SEP amplitude following single pulses) were assessed and compared to eleven healthy control subjects. To assess improvement in walking function, we used the 10-m walk test, timed-up-and-go test, the 6-min walk test, and the lower extremity motor score. PpSEPs were significantly increased in SCI patients as compared to controls at baseline. Following training, ppSEPs were increased from baseline and no longer significantly differed from controls. Walking parameters also showed significant improvements, yet there was no significant correlation between ppSEP measures and walking parameters. The findings suggest that robotic-assisted BWSTT with HAL® in SCI patients is capable of inducing cortical plasticity following highly repetitive, active locomotive use of paretic legs. While there was no significant correlation of excitability with walking parameters, brain areas other than S1 might reflect improvement of walking functions. EEG and neuroimaging studies may provide further information about supraspinal plastic processes and foci in SCI rehabilitation.

  1. Influence of body position on cortical pain-related somatosensory processing: an ERP study.

    Directory of Open Access Journals (Sweden)

    Chiara Spironelli

    Full Text Available BACKGROUND: Despite the consistent information available on the physiological changes induced by head down bed rest, a condition which simulates space microgravity, our knowledge on the possible perceptual-cortical alterations is still poor. The present study investigated the effects of 2-h head-down bed rest on subjective and cortical responses elicited by electrical, pain-related somatosensory stimulation. METHODOLOGY/PRINCIPAL FINDINGS: Twenty male subjects were randomly assigned to two groups, head-down bed rest (BR or sitting control condition. Starting from individual electrical thresholds, Somatosensory Evoked Potentials were elicited by electrical stimuli administered randomly to the left wrist and divided into four conditions: control painless condition, electrical pain threshold, 30% above pain threshold, 30% below pain threshold. Subjective pain ratings collected during the EEG session showed significantly reduced pain perception in BR compared to Control group. Statistical analysis on four electrode clusters and sLORETA source analysis revealed, in sitting controls, a P1 component (40-50 ms in the right somatosensory cortex, whereas it was bilateral and differently located in BR group. Controls' N1 (80-90 ms had widespread right hemisphere activation, involving also anterior cingulate, whereas BR group showed primary somatosensory cortex activation. The P2 (190-220 ms was larger in left-central locations of Controls compared with BR group. CONCLUSIONS/SIGNIFICANCE: Head-down bed rest was associated to an overall decrease of pain sensitivity and an altered pain network also outside the primary somatosensory cortex. Results have implications not only for astronauts' health and spaceflight risks, but also for the clinical aspects of pain detection in bedridden patients at risk of fatal undetected complications.

  2. Rhythm generation through period concatenation in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Mark A Kramer

    2008-09-01

    Full Text Available Rhythmic voltage oscillations resulting from the summed activity of neuronal populations occur in many nervous systems. Contemporary observations suggest that coexistent oscillations interact and, in time, may switch in dominance. We recently reported an example of these interactions recorded from in vitro preparations of rat somatosensory cortex. We found that following an initial interval of coexistent gamma ( approximately 25 ms period and beta2 ( approximately 40 ms period rhythms in the superficial and deep cortical layers, respectively, a transition to a synchronous beta1 ( approximately 65 ms period rhythm in all cortical layers occurred. We proposed that the switch to beta1 activity resulted from the novel mechanism of period concatenation of the faster rhythms: gamma period (25 ms+beta2 period (40 ms = beta1 period (65 ms. In this article, we investigate in greater detail the fundamental mechanisms of the beta1 rhythm. To do so we describe additional in vitro experiments that constrain a biologically realistic, yet simplified, computational model of the activity. We use the model to suggest that the dynamic building blocks (or motifs of the gamma and beta2 rhythms combine to produce a beta1 oscillation that exhibits cross-frequency interactions. Through the combined approach of in vitro experiments and mathematical modeling we isolate the specific components that promote or destroy each rhythm. We propose that mechanisms vital to establishing the beta1 oscillation include strengthened connections between a population of deep layer intrinsically bursting cells and a transition from antidromic to orthodromic spike generation in these cells. We conclude that neural activity in the superficial and deep cortical layers may temporally combine to generate a slower oscillation.

  3. Anticipation increases tactile stimulus processing in the ipsilateral primary somatosensory cortex.

    Science.gov (United States)

    van Ede, Freek; de Lange, Floris P; Maris, Eric

    2014-10-01

    Stimulus anticipation improves perception. To account for this improvement, we investigated how stimulus processing is altered by anticipation. In contrast to a large body of previous work, we employed a demanding perceptual task and investigated sensory responses that occur beyond early evoked activity in contralateral primary sensory areas: Stimulus-induced modulations of neural oscillations. For this, we recorded magnetoencephalography in 19 humans while they performed a cued tactile identification task involving the identification of either a proximal or a distal stimulation on the fingertips. We varied the cue-target interval between 0 and 1000 ms such that tactile targets occurred at various degrees of anticipation. This allowed us to investigate the influence of anticipation on stimulus processing in a parametric fashion. We observed that anticipation increases the stimulus-induced response (suppression of beta-band oscillations) originating from the ipsilateral primary somatosensory cortex. This occurs in the period in which the tactile memory trace is analyzed and is correlated with the anticipation-induced improvement in tactile perception. We propose that this ipsilateral response indicates distributed processing across bilateral primary sensory cortices, of which the extent increases with anticipation. This constitutes a new and potentially important mechanism contributing to perception and its improvement following anticipation. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Age Effect on Automatic Inhibitory Function of the Somatosensory and Motor Cortex: An MEG Study

    Directory of Open Access Journals (Sweden)

    Chia-Hsiung Cheng

    2018-03-01

    Full Text Available Age-related deficiency in the top-down modulation of cognitive inhibition has been extensively documented, whereas the effects of age on a bottom-up or automatic operation of inhibitory function were less investigated. It is unknown that whether the older adults (OA’ reduced behavioral performance and neural responses are due to the insufficient bottom-up processes. Compared to behavioral assessments which have been widely used to examine the top-down control of response inhibition, electrophysiological recordings are more suitable to probe the early-stage processes of automatic inhibitory function. Sensory gating (SG, a phenomenon of attenuated neural response to the second identical stimulus in a paired-pulse paradigm, is an indicator to assess automatic inhibitory function of the sensory cortex. On the other hand, electricity-induced beta rebound oscillation in a single-pulse paradigm reflects cortical inhibition of the motor cortex. From the neurophysiological perspective, SG and beta rebound oscillation are replicable indicators to examine the automatic inhibitory function of human sensorimotor cortices. Thus, the present study aimed to use a whole-head magnetoencephalography (MEG to investigate the age-related alterations of SG function in the primary somatosensory cortex (SI and of beta rebound oscillation in the primary motor cortex (MI in 17 healthy younger and 15 older adults. The Stimulus 2/Stimulus 1 (S2/S1 amplitude ratio in response to the paired-pulse electrical stimulation to the left median nerve was used to evaluate the automatic inhibitory function of SI, and the beta rebound response in the single-pulse paradigm was used to evaluate the automatic inhibitory function of MI. Although there were no significant age-related differences found in the SI SG ratios, the MI beta rebound power was reduced and peak latency was prolonged in the OA. Furthermore, significant association between the SI SG ratio and the MI beta rebound

  5. Age Effect on Automatic Inhibitory Function of the Somatosensory and Motor Cortex: An MEG Study

    Science.gov (United States)

    Cheng, Chia-Hsiung; Lin, Mei-Yin; Yang, Shiou-Han

    2018-01-01

    Age-related deficiency in the top-down modulation of cognitive inhibition has been extensively documented, whereas the effects of age on a bottom-up or automatic operation of inhibitory function were less investigated. It is unknown that whether the older adults (OA)’ reduced behavioral performance and neural responses are due to the insufficient bottom-up processes. Compared to behavioral assessments which have been widely used to examine the top-down control of response inhibition, electrophysiological recordings are more suitable to probe the early-stage processes of automatic inhibitory function. Sensory gating (SG), a phenomenon of attenuated neural response to the second identical stimulus in a paired-pulse paradigm, is an indicator to assess automatic inhibitory function of the sensory cortex. On the other hand, electricity-induced beta rebound oscillation in a single-pulse paradigm reflects cortical inhibition of the motor cortex. From the neurophysiological perspective, SG and beta rebound oscillation are replicable indicators to examine the automatic inhibitory function of human sensorimotor cortices. Thus, the present study aimed to use a whole-head magnetoencephalography (MEG) to investigate the age-related alterations of SG function in the primary somatosensory cortex (SI) and of beta rebound oscillation in the primary motor cortex (MI) in 17 healthy younger and 15 older adults. The Stimulus 2/Stimulus 1 (S2/S1) amplitude ratio in response to the paired-pulse electrical stimulation to the left median nerve was used to evaluate the automatic inhibitory function of SI, and the beta rebound response in the single-pulse paradigm was used to evaluate the automatic inhibitory function of MI. Although there were no significant age-related differences found in the SI SG ratios, the MI beta rebound power was reduced and peak latency was prolonged in the OA. Furthermore, significant association between the SI SG ratio and the MI beta rebound power, which was

  6. Effects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats

    Directory of Open Access Journals (Sweden)

    Chengdong Yuan

    2016-07-01

    Full Text Available Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex by using the whole-cell patch-clamp method. Methods: Sprague-Dawley rats (11–19 postnatal days, n=36 were used to obtain brain slices (300 μM. Spontaneous excitatory postsynaptic currents (data from 40 neurons were recorded at a command potential of -70 mV in the presence of bicuculline (a competitive antagonist of GABAA receptors, 30 μM and strychnine (glycine receptor antagonist, 30 μM. Miniature excitatory postsynaptic currents (data from 40 neurons were also recorded when 1 μM of tetrodotoxin was added into the artificial cerebrospinal fluid. We used GraphPad Prism5for statistical analysis. Significant differences in the mean amplitude and frequency were tested using the Student paired 2-tailed t test. Values of P<0.05 were considered significant. Results: Different concentrations of ketamine inhibited the frequency and amplitude of the spontaneous excitatory postsynaptic currents as well as the amplitude of the miniature excitatory postsynaptic currents in a concentration-dependent manner, but they exerted no significant effect on the frequency of the miniature excitatory postsynaptic currents. Conclusion: Ketamine inhibited the excitatory synaptic transmission of the neurons in the primary somatosensory cortex. The inhibition may have been mediated by a reduction in the sensitivity of the postsynaptic glutamatergic receptors.

  7. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, M.; Abe, K.; Yanagihara, T.; Sakoda, S. [Dept. of Neurology D4, Osaka Univ. Graduate School of Medicine, Suita City, Osaka (Japan); Tanaka, H.; Hirabuki, N.; Nakamura, H.; Fujita, N. [Dept. of Radiology, Osaka Univ. Graduate School of Medicine, Suita City, Osaka (Japan)

    2003-03-01

    Somatotopic representation in the cerebral cortex of somatosensory stimulation has been widely reported, but that in the cerebellum has not. We investigated the latter in the human cerebellum by functional MRI (fMRI). Using a 1.5 tesla imager, we obtained multislice blood oxygen level-dependent fMRI with single-shot gradient-echo echoplanar imaging in seven right-handed volunteers during electrical stimulation of the left index finger and big toe. In the anterior and posterior cerebellum, activated pixels for the index finger were separate from those for the toe. This suggests that somatosensory stimulation of different parts of the body may involve distinct areas of in the cerebellum as well as the cerebral cortex. (orig.)

  8. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum

    International Nuclear Information System (INIS)

    Takanashi, M.; Abe, K.; Yanagihara, T.; Sakoda, S.; Tanaka, H.; Hirabuki, N.; Nakamura, H.; Fujita, N.

    2003-01-01

    Somatotopic representation in the cerebral cortex of somatosensory stimulation has been widely reported, but that in the cerebellum has not. We investigated the latter in the human cerebellum by functional MRI (fMRI). Using a 1.5 tesla imager, we obtained multislice blood oxygen level-dependent fMRI with single-shot gradient-echo echoplanar imaging in seven right-handed volunteers during electrical stimulation of the left index finger and big toe. In the anterior and posterior cerebellum, activated pixels for the index finger were separate from those for the toe. This suggests that somatosensory stimulation of different parts of the body may involve distinct areas of in the cerebellum as well as the cerebral cortex. (orig.)

  9. MOBIUS-STRIP-LIKE COLUMNAR FUNCTIONAL CONNECTIONS ARE REVEALED IN SOMATO-SENSORY RECEPTIVE FIELD CENTROIDS.

    Directory of Open Access Journals (Sweden)

    James Joseph Wright

    2014-10-01

    Full Text Available Receptive fields of neurons in the forelimb region of areas 3b and 1 of primary somatosensory cortex, in cats and monkeys, were mapped using extracellular recordings obtained sequentially from nearly radial penetrations. Locations of the field centroids indicated the presence of a functional system, in which cortical homotypic representations of the limb surfaces are entwined in three-dimensional Mobius-strip-like patterns of synaptic connections. Boundaries of somatosensory receptive field in nested groups irregularly overlie the centroid order, and are interpreted as arising from the superposition of learned connections upon the embryonic order. Since the theory of embryonic synaptic self-organisation used to model these results was devised and earlier used to explain findings in primary visual cortex, the present findings suggest the theory may be of general application throughout cortex, and may reveal a modular functional synaptic system, which, only in some parts of the cortex, and in some species, is manifest as anatomical ordering into columns.

  10. Four-dimensional maps of the human somatosensory system.

    Science.gov (United States)

    Avanzini, Pietro; Abdollahi, Rouhollah O; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A

    2016-03-29

    A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans.

  11. Regional structural differences across functionally parcellated Brodmann areas of human primary somatosensory cortex.

    Science.gov (United States)

    Sánchez-Panchuelo, Rosa-María; Besle, Julien; Mougin, Olivier; Gowland, Penny; Bowtell, Richard; Schluppeck, Denis; Francis, Susan

    2014-06-01

    Ultra-high-field (UHF) MRI is ideally suited for structural and functional imaging of the brain. High-resolution structural MRI can be used to map the anatomical boundaries between functional domains of the brain by identifying changes related to the pattern of myelination within cortical gray matter, opening up the possibility to study the relationship between functional domains and underlying structure in vivo. In a recent study, we demonstrated the correspondence between functional (based on retinotopic mapping) and structural (based on changes in T2(⁎)-weighted images linked to myelination) parcellations of the primary visual cortex (V1) in vivo at 7T (Sanchez-Panchuelo et al., 2012b). Here, we take advantage of the improved BOLD CNR and high spatial resolution achievable at 7T to study regional structural variations across the functionally defined areas within the primary somatosensory cortex (S1) in individual subjects. Using a traveling wave fMRI paradigm to map the internal somatotopic representation of the index, middle, and ring fingers in S1, we were able to identify multiple map reversals at the tip and base, corresponding to the boundaries between Brodmann areas 3a, 3b, 1 and 2. Based on high resolution structural MRI data acquired in the same subjects, we inspected these functionally-parcellated Brodmann areas for differences in cortical thickness and MR contrast measures (magnetization transfer ratio (MTR) and signal intensity in phase sensitive inversion recovery (PSIR) images) that are sensitive to myelination. Consistent area-related differences in cortical thickness and MTR/PSIR measurements were found across subjects. However these measures did not have sufficient sensitivity to allow definition of areal boundaries. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Whisker Deprivation Drives Two Phases of Inhibitory Synapse Weakening in Layer 4 of Rat Somatosensory Cortex.

    Directory of Open Access Journals (Sweden)

    Melanie A Gainey

    Full Text Available Inhibitory synapse development in sensory neocortex is experience-dependent, with sustained sensory deprivation yielding fewer and weaker inhibitory synapses. Whether this represents arrest of synapse maturation, or a more complex set of processes, is unclear. To test this, we measured the dynamics of inhibitory synapse development in layer 4 of rat somatosensory cortex (S1 during continuous whisker deprivation from postnatal day 7, and in age-matched controls. In deprived columns, spontaneous miniature inhibitory postsynaptic currents (mIPSCs and evoked IPSCs developed normally until P15, when IPSC amplitude transiently decreased, recovering by P16 despite ongoing deprivation. IPSCs remained normal until P22, when a second, sustained phase of weakening began. Delaying deprivation onset by 5 days prevented the P15 weakening. Both early and late phase weakening involved measurable reduction in IPSC amplitude relative to prior time points. Thus, deprivation appears to drive two distinct phases of active IPSC weakening, rather than simple arrest of synapse maturation.

  13. Phantom somatosensory evoked potentials following selective intraneural electrical stimulation in two amputees.

    Science.gov (United States)

    Granata, Giuseppe; Di Iorio, Riccardo; Romanello, Roberto; Iodice, Francesco; Raspopovic, Stanisa; Petrini, Francesco; Strauss, Ivo; Valle, Giacomo; Stieglitz, Thomas; Čvančara, Paul; Andreu, David; Divoux, Jean-Louis; Guiraud, David; Wauters, Loic; Hiairrassary, Arthur; Jensen, Winnie; Micera, Silvestro; Rossini, Paolo Maria

    2018-06-01

    The aim of the paper is to objectively demonstrate that amputees implanted with intraneural interfaces are truly able to feel a sensation in the phantom hand by recording "phantom" somatosensory evoked potentials from the corresponding brain areas. We implanted four transverse intrafascicular multichannel electrodes, available with percutaneous connections to a multichannel electrical stimulator, in the median and ulnar nerves of two left trans-radial amputees. Two channels of the implants that were able to elicit sensations during intraneural nerve stimulation were chosen, in both patients, for recording somatosensory evoked potentials. We recorded reproducible evoked responses by stimulating the median and the ulnar nerves in both cases. Latencies were in accordance with the arrival of somatosensory information to the primary somatosensory cortex. Our results provide evidence that sensations generated by intraneural stimulation are truly perceived by amputees and located in the phantom hand. Moreover, our results strongly suggest that sensations perceived in different parts of the phantom hand result in different evoked responses. Somatosensory evoked potentials obtained by selective intraneural electrical stimulation in amputee patients are a useful tool to provide an objective demonstration of somatosensory feedback in new generation bidirectional prostheses. Copyright © 2018. Published by Elsevier B.V.

  14. Neuron Types in the Presumptive Primary Somatosensory Cortex of the Florida Manatee (Trichechus manatus latirostris).

    Science.gov (United States)

    Reyes, Laura D; Stimpson, Cheryl D; Gupta, Kanika; Raghanti, Mary Ann; Hof, Patrick R; Reep, Roger L; Sherwood, Chet C

    2015-01-01

    Within afrotherians, sirenians are unusual due to their aquatic lifestyle, large body size and relatively large lissencephalic brain. However, little is known about the neuron type distributions of the cerebral cortex in sirenians within the context of other afrotherians and aquatic mammals. The present study investigated two cortical regions, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2), in the presumptive primary somatosensory cortex (S1) in Florida manatees (Trichechus manatus latirostris) to characterize cyto- and chemoarchitecture. The mean neuron density for both cortical regions was 35,617 neurons/mm(3) and fell within the 95% prediction intervals relative to brain mass based on a reference group of afrotherians and xenarthrans. Densities of inhibitory interneuron subtypes labeled against calcium-binding proteins and neuropeptide Y were relatively low compared to afrotherians and xenarthrans and also formed a small percentage of the overall population of inhibitory interneurons as revealed by GAD67 immunoreactivity. Nonphosphorylated neurofilament protein-immunoreactive (NPNFP-ir) neurons comprised a mean of 60% of neurons in layer V across DL1 and CL2. DL1 contained a higher percentage of NPNFP-ir neurons than CL2, although CL2 had a higher variety of morphological types. The mean percentage of NPNFP-ir neurons in the two regions of the presumptive S1 were low compared to other afrotherians and xenarthrans but were within the 95% prediction intervals relative to brain mass, and their morphologies were comparable to those found in other afrotherians and xenarthrans. Although this specific pattern of neuron types and densities sets the manatee apart from other afrotherians and xenarthrans, the manatee isocortex does not appear to be explicitly adapted for an aquatic habitat. Many of the features that are shared between manatees and cetaceans are also shared with a diverse array of terrestrial mammals and likely represent highly conserved

  15. Descending projections from the dysgranular zone of rat primary somatosensory cortex processing deep somatic input.

    Science.gov (United States)

    Lee, Taehee; Kim, Uhnoh

    2012-04-01

    In the mammalian somatic system, peripheral inputs from cutaneous and deep receptors ascend via different subcortical channels and terminate in largely separate regions of the primary somatosensory cortex (SI). How these inputs are processed in SI and then projected back to the subcortical relay centers is critical for understanding how SI may regulate somatic information processing in the subcortex. Although it is now relatively well understood how SI cutaneous areas project to the subcortical structures, little is known about the descending projections from SI areas processing deep somatic input. We examined this issue by using the rodent somatic system as a model. In rat SI, deep somatic input is processed mainly in the dysgranular zone (DSZ) enclosed by the cutaneous barrel subfields. By using biotinylated dextran amine (BDA) as anterograde tracer, we characterized the topography of corticostriatal and corticofugal projections arising in the DSZ. The DSZ projections terminate mainly in the lateral subregions of the striatum that are also known as the target of certain SI cutaneous areas. This suggests that SI processing of deep and cutaneous information may be integrated, to a certain degree, in this striatal region. By contrast, at both thalamic and prethalamic levels as far as the spinal cord, descending projections from DSZ terminate in areas largely distinguishable from those that receive input from SI cutaneous areas. These subcortical targets of DSZ include not only the sensory but also motor-related structures, suggesting that SI processing of deep input may engage in regulating somatic and motor information flow between the cortex and periphery. Copyright © 2011 Wiley-Liss, Inc.

  16. Postictal inhibition of the somatosensory cortex

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Jovanovic, Marina; Atkins, Mary Doreen

    2011-01-01

    Transient suppression of the motor cortex and of the speech areas cause well-described postictal phenomena following seizures involving the respective cortical areas. Pain is a rare symptom in epileptic seizures. We present a patient with painful tonic seizures in the left leg. The amplitude...

  17. Brownian Optogenetic-Noise-Photostimulation on the Brain Amplifies Somatosensory-Evoked Field Potentials

    Directory of Open Access Journals (Sweden)

    Nayeli Huidobro

    2017-08-01

    Full Text Available Stochastic resonance (SR is an inherent and counter-intuitive mechanism of signal-to-noise ratio (SNR facilitation in biological systems associated with the application of an intermediate level of noise. As a first step to investigate in detail this phenomenon in the somatosensory system, here we examined whether the direct application of noisy light on pyramidal neurons from the mouse-barrel cortex expressing a light-gated channel channelrhodopsin-2 (ChR2 can produce facilitation in somatosensory evoked field potentials. Using anesthetized Thy1-ChR2-YFP transgenic mice, and a new neural technology, that we called Brownian optogenetic-noise-photostimulation (BONP, we provide evidence for how BONP directly applied on the barrel cortex modulates the SNR in the amplitude of whisker-evoked field potentials (whisker-EFP. In all transgenic mice, we found that the SNR in the amplitude of whisker-EFP (at 30% of the maximal whisker-EFP exhibited an inverted U-like shape as a function of the BONP level. As a control, we also applied the same experimental paradigm, but in wild-type mice, as expected, we did not find any facilitation effects. Our results show that the application of an intermediate intensity of BONP on the barrel cortex of ChR2 transgenic mice amplifies the SNR of somatosensory whisker-EFPs. This result may be relevant to explain the improvements found in sensory detection in humans produced by the application of transcranial-random-noise-stimulation (tRNS on the scalp.

  18. Comparison of functional recovery of manual dexterity after unilateral spinal cord lesion or motor cortex lesion in adult macaque monkeys

    Directory of Open Access Journals (Sweden)

    Florence eHoogewoud

    2013-07-01

    Full Text Available In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots, in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n=6 or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n=6. In addition, in each subgroup, one half of monkeys (n=3 were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n=3 represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed.For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion, post-lesion restoration of the original movement patterns (true recovery led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.

  19. Vibration and muscle contraction affect somatosensory evoked potentials

    OpenAIRE

    Cohen, LG; Starr, A

    1985-01-01

    We recorded potentials evoked by specific somatosensory stimuli over peripheral nerve, spinal cord, and cerebral cortex. Vibration attenuated spinal and cerebral potentials evoked by mixed nerve and muscle spindle stimulation; in one subject that was tested, there was no effect on cutaneous input. Presynaptic inhibition of Ia input in the spinal cord and muscle spindle receptor occupancy are probably the responsible mechanisms. In contrast, muscle contraction attenuated cerebral potentials to...

  20. Beta oscillations define discrete perceptual cycles in the somatosensory domain.

    Science.gov (United States)

    Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2015-09-29

    Whether seeing a movie, listening to a song, or feeling a breeze on the skin, we coherently experience these stimuli as continuous, seamless percepts. However, there are rare perceptual phenomena that argue against continuous perception but, instead, suggest discrete processing of sensory input. Empirical evidence supporting such a discrete mechanism, however, remains scarce and comes entirely from the visual domain. Here, we demonstrate compelling evidence for discrete perceptual sampling in the somatosensory domain. Using magnetoencephalography (MEG) and a tactile temporal discrimination task in humans, we find that oscillatory alpha- and low beta-band (8-20 Hz) cycles in primary somatosensory cortex represent neurophysiological correlates of discrete perceptual cycles. Our results agree with several theoretical concepts of discrete perceptual sampling and empirical evidence of perceptual cycles in the visual domain. Critically, these results show that discrete perceptual cycles are not domain-specific, and thus restricted to the visual domain, but extend to the somatosensory domain.

  1. Distribution and morphology of nitridergic neurons across functional domains of the rat primary somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Anaelli A Nogueira-Campos

    2012-11-01

    Full Text Available The rat primary somatosensory cortex (S1 is remarkable for its conspicuous vertical compartmentalization in barrels and septal columns, which are additionally stratified in horizontal layers. Whereas excitatory neurons from each of these compartments perform different types of processing, the role of interneurons is much less clear. Among the numerous types of GABAergic interneurons, those producing nitric oxide (NO are especially puzzling, since this gaseous messenger can modulate neural activity, synaptic plasticity and neurovascular coupling. We used a quantitative morphological approach to investigate whether nitrergic interneurons, which might therefore be considered both as NO volume diffusers and as elements of local circuitry, display features that could relate to barrel cortex architecture. In fixed brain sections, nitrergic interneurons can be revealed by histochemical processing for NADPH-diaphorase (NADPHd. Here, the dendritic arbors of nitrergic neurons from different compartments of area S1 were 3D reconstructed from serial 200-μm thick sections, using 100x objective and the Neurolucida system. Standard morphological parameters were extracted for all individual arbors and compared across columns and layers. Wedge analysis was used to compute dendritic orientation indices. Supragranular layers displayed the highest density of nitrergic neurons, whereas layer IV contained nitrergic neurons with largest soma area. The highest nitrergic neuronal density was found in septa, where dendrites were previously characterized as more extense and ramified than in barrels. Dendritic arbors were not confined to the boundaries of the column nor layer of their respective soma, being mostly double-tufted and vertically oriented, except in supragranular layers. These data strongly suggest that nitrergic interneurons adapt their morphology to the dynamics of processing performed by cortical compartments.

  2. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Maren Geissler

    Full Text Available Intraperitoneal transplantation of human umbilical cord blood (hUCB cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury.

  3. Seeing touch in the somatosensory cortex: a TMS study of the visual perception of touch.

    Science.gov (United States)

    Bolognini, Nadia; Rossetti, Angela; Maravita, Angelo; Miniussi, Carlo

    2011-12-01

    Recent studies suggest the existence of a visuo-tactile mirror system, comprising the primary (SI) and secondary (SII) somatosensory cortices, which matches observed touch with felt touch. Here, repetitive transcranial magnetic stimulation (rTMS) was used to determine whether SI or SII play a functional role in the visual processing of tactile events. Healthy participants performed a visual discrimination task with tactile stimuli (a finger touching a hand) and a control task (a finger moving without touching). During both tasks, rTMS was applied over either SI or SII, and to the occipital cortex. rTMS over SI selectively reduced subject performance for interpreting whether a contralateral visual tactile stimulus contains a tactile event, whereas SII stimulation impaired visual processing regardless of the tactile component. These findings provide evidence for a multimodal sensory-motor system with mirror properties, where somatic and visual properties of action converge. SI, a cortical area traditionally viewed as modality-specific, is selectively implicated in the visual processing of touch. These results are in line with the existence of a sensory mirror system mediating the embodied simulation concept. Copyright © 2010 Wiley Periodicals, Inc.

  4. Blood oxygenation level dependent signal and neuronal adaptation to optogenetic and sensory stimulation in somatosensory cortex in awake animals.

    Science.gov (United States)

    Aksenov, Daniil P; Li, Limin; Miller, Michael J; Wyrwicz, Alice M

    2016-11-01

    The adaptation of neuronal responses to stimulation, in which a peak transient response is followed by a sustained plateau, has been well-studied. The blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal has also been shown to exhibit adaptation on a longer time scale. However, some regions such as the visual and auditory cortices exhibit significant BOLD adaptation, whereas other such as the whisker barrel cortex may not adapt. In the sensory cortex a combination of thalamic inputs and intracortical activity drives hemodynamic changes, although the relative contributions of these components are not entirely understood. The aim of this study is to assess the role of thalamic inputs vs. intracortical processing in shaping BOLD adaptation during stimulation in the somatosensory cortex. Using simultaneous fMRI and electrophysiology in awake rabbits, we measured BOLD, local field potentials (LFPs), single- and multi-unit activity in the cortex during whisker and optogenetic stimulation. This design allowed us to compare BOLD and haemodynamic responses during activation of the normal thalamocortical sensory pathway (i.e., both inputs and intracortical activity) vs. the direct optical activation of intracortical circuitry alone. Our findings show that whereas LFP and multi-unit (MUA) responses adapted, neither optogenetic nor sensory stimulation produced significant BOLD adaptation. We observed for both paradigms a variety of excitatory and inhibitory single unit responses. We conclude that sensory feed-forward thalamic inputs are not primarily responsible for shaping BOLD adaptation to stimuli; but the single-unit results point to a role in this behaviour for specific excitatory and inhibitory neuronal sub-populations, which may not correlate with aggregate neuronal activity. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Suppression of metabolic activity caused by infantile strabismus and strabismic amblyopia in striate visual cortex of macaque monkeys.

    Science.gov (United States)

    Wong, Agnes M F; Burkhalter, Andreas; Tychsen, Lawrence

    2005-02-01

    Suppression is a major sensorial abnormality in humans and monkeys with infantile strabismus. We previously reported evidence of metabolic suppression in the visual cortex of strabismic macaques, using the mitochondrial enzyme cytochrome oxidase as an anatomic label. The purpose of this study was to further elucidate alterations in cortical metabolic activity, with or without amblyopia. Six macaque monkeys were used in the experiments (four strabismic and two control). Three of the strabismic monkeys had naturally occurring, infantile strabismus (two esotropic, one exotropic). The fourth strabismic monkey had infantile microesotropia induced by alternating monocular occlusion in the first months of life. Ocular motor behaviors and visual acuity were tested after infancy in each animal, and development of stereopsis was recorded during infancy in one strabismic and one control monkey. Ocular dominance columns (ODCs) of the striate visual cortex (area V1) were labeled using cytochrome oxidase (CO) histochemistry alone, or CO in conjunction with an anterograde tracer ([H 3 ]proline or WGA-HRP) injected into one eye. Each of the strabismic monkeys showed inequalities of metabolic activity in ODCs of opposite ocularity, visible as rows of lighter CO staining, corresponding to ODCs of lower metabolic activity, alternating with rows of darker CO staining, corresponding to ODCs of higher metabolic activity. In monkeys who had infantile strabismus and unilateral amblyopia, lower metabolic activity was found in (suppressed) ODCs driven by the nondominant eye in each hemisphere. In monkeys who had infantile esotropia and alternating fixation (no amblyopia), metabolic activity was lower in ODCs driven by the ipsilateral eye in each hemisphere. The suppression included a monocular core zone at the center of ODCs and binocular border zones at the boundaries of ODCs. This suppression was not evident in the monocular lamina of the LGN, indicating an intracortical rather than

  6. Long-term neuroplasticity of the face primary motor cortex and adjacent somatosensory cortex induced by tooth loss can be reversed following dental implant replacement in rats.

    Science.gov (United States)

    Avivi-Arber, Limor; Lee, Jye-Chang; Sood, Mandeep; Lakschevitz, Flavia; Fung, Michelle; Barashi-Gozal, Maayan; Glogauer, Michael; Sessle, Barry J

    2015-11-01

    Tooth loss is common, and exploring the neuroplastic capacity of the face primary motor cortex (face-M1) and adjacent primary somatosensory cortex (face-S1) is crucial for understanding how subjects adapt to tooth loss and their prosthetic replacement. The aim was to test if functional reorganization of jaw and tongue motor representations in the rat face-M1 and face-S1 occurs following tooth extraction, and if subsequent dental implant placement can reverse this neuroplasticity. Rats (n = 22) had the right maxillary molar teeth extracted under local and general anesthesia. One month later, seven rats had dental implant placement into healed extraction sites. Naive rats (n = 8) received no surgical treatment. Intracortical microstimulation (ICMS) and recording of evoked jaw and tongue electromyographic responses were used to define jaw and tongue motor representations at 1 month (n = 8) or 2 months (n = 7) postextraction, 1 month postimplant placement, and at 1-2 months in naive rats. There were no significant differences across study groups in the onset latencies of the ICMS-evoked responses (P > 0.05), but in comparison with naive rats, tooth extraction caused a significant (P rats. These novel findings suggest that face-M1 and adjacent face-S1 may play a role in adaptive mechanisms related to tooth loss and their replacement with dental implants. © 2015 Wiley Periodicals, Inc.

  7. Functional response of cerebral blood flow induced by somatosensory stimulation in rats with subarachnoid hemorrhage

    Science.gov (United States)

    Li, Zhiguo; Huang, Qin; Liu, Peng; Li, Pengcheng; Ma, Lianting; Lu, Jinling

    2015-09-01

    Subarachnoid hemorrhage (SAH) is often accompanied by cerebral vasospasm (CVS), which is the phenomenon of narrowing of large cerebral arteries, and then can produce delayed ischemic neurological deficit (DIND) such as lateralized sensory dysfunction. CVS was regarded as a major contributor to DIND in patients with SAH. However, therapy for preventing vasospasm after SAH to improve the outcomes may not work all the time. It is important to find answers to the relationship between CVS and DIND after SAH. How local cerebral blood flow (CBF) is regulated during functional activation after SAH still remains poorly understood, whereas, the regulation of CBF may play an important role in weakening the impact of CVS on cortex function. Therefore, it is worthwhile to evaluate the functional response of CBF in the activated cortex in an SAH animal model. Most evaluation of the effect of SAH is presently carried out by neurological behavioral scales. The functional imaging of cortical activation during sensory stimulation may help to reflect the function of the somatosensory cortex more locally than the behavioral scales do. We investigated the functional response of CBF in the somatosensory cortex induced by an electrical stimulation to contralateral forepaw via laser speckle imaging in a rat SAH model. Nineteen Sprague-Dawley rats from two groups (control group, n=10 and SAH group, n=9) were studied. SAH was induced in rats by double injection of autologous blood into the cisterna magna after CSF aspiration. The same surgical procedure was applied in the control group without CSF aspiration or blood injection. Significant CVS was found in the SAH group. Meanwhile, we observed a delayed peak of CBF response in rats with SAH compared with those in the control group, whereas no significant difference was found in magnitude, duration, and areas under curve of relative CBF changes between the two groups. The results suggest that the regulation function of local CBF during

  8. Occipital White Matter Tracts in Human and Macaque.

    Science.gov (United States)

    Takemura, Hiromasa; Pestilli, Franco; Weiner, Kevin S; Keliris, Georgios A; Landi, Sofia M; Sliwa, Julia; Ye, Frank Q; Barnett, Michael A; Leopold, David A; Freiwald, Winrich A; Logothetis, Nikos K; Wandell, Brian A

    2017-06-01

    We compare several major white-matter tracts in human and macaque occipital lobe using diffusion magnetic resonance imaging. The comparison suggests similarities but also significant differences in the tracts. There are several apparently homologous tracts in the 2 species, including the vertical occipital fasciculus (VOF), optic radiation, forceps major, and inferior longitudinal fasciculus (ILF). There is one large human tract, the inferior fronto-occipital fasciculus, with no corresponding fasciculus in macaque. We could identify the macaque VOF (mVOF), which has been little studied. Its position is consistent with classical invasive anatomical studies by Wernicke. VOF homology is supported by similarity of the endpoints in V3A and ventral V4 across species. The mVOF fibers intertwine with the dorsal segment of the ILF, but the human VOF appears to be lateral to the ILF. These similarities and differences between the occipital lobe tracts will be useful in establishing which circuitry in the macaque can serve as an accurate model for human visual cortex. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Impaired verbal memory in Parkinson disease: relationship to prefrontal dysfunction and somatosensory discrimination

    Directory of Open Access Journals (Sweden)

    Weniger Dorothea

    2009-12-01

    Full Text Available Abstract Objective To study the neurocognitive profile and its relationship to prefrontal dysfunction in non-demented Parkinson's disease (PD with deficient haptic perception. Methods Twelve right-handed patients with PD and 12 healthy control subjects underwent thorough neuropsychological testing including Rey complex figure, Rey auditory verbal and figural learning test, figural and verbal fluency, and Stroop test. Test scores reflecting significant differences between patients and healthy subjects were correlated with the individual expression coefficients of one principal component, obtained in a principal component analysis of an oxygen-15-labeled water PET study exploring somatosensory discrimination that differentiated between the two groups and involved prefrontal cortices. Results We found significantly decreased total scores for the verbal learning trials and verbal delayed free recall in PD patients compared with normal volunteers. Further analysis of these parameters using Spearman's ranking correlation showed a significantly negative correlation of deficient verbal recall with expression coefficients of the principal component whose image showed a subcortical-cortical network, including right dorsolateral-prefrontal cortex, in PD patients. Conclusion PD patients with disrupted right dorsolateral prefrontal cortex function and associated diminished somatosensory discrimination are impaired also in verbal memory functions. A negative correlation between delayed verbal free recall and PET activation in a network including the prefrontal cortices suggests that verbal cues and accordingly declarative memory processes may be operative in PD during activities that demand sustained attention such as somatosensory discrimination. Verbal cues may be compensatory in nature and help to non-specifically enhance focused attention in the presence of a functionally disrupted prefrontal cortex.

  10. The coincident activation of lemniscal and paralemniscal inputs can drive synaptic plasticity in layer 2/3 pyramidal neurons of the mouse somatosensory cortex in vivo

    Directory of Open Access Journals (Sweden)

    Vassilis Kehayas

    2014-03-01

    Full Text Available Structural plasticity in the somatosensory cortex is maintained throughout life. In adult animals structural changes occur at the level of dendritic spines and axonal boutons in response to alterations in sensory experience. The causal relationship between synaptic activity and structural changes, however, is not clear. Hebbian-plasticity models predict that synapses will be stabilized at the nodes of neuronal networks that display high levels of coincident activity. Here, we aim at studying the effects of a targeted increase in coincident activity between segregated inputs on pyramidal cell synapses of the mouse somatosensory barrel cortex in vivo. Supragranular layers of the barrel cortex receive anatomically distinct inputs from two thalamic pathways: the ‘lemniscal’ pathway that originates in the ventral posteromedial (VPM nucleus and projects in a whisker-specific fashion to the barrel columns, and the ‘paralemniscal’ pathway that originates in the posteromedial (POm nucleus and projects to the cortex in a non-specific manner. Previous work from our lab shows that rhythmic (8Hz whisker stimulation-evoked LTP (RWS-LTP in layer (L 2/3 pyramidal cells relies on the combined activity of lemniscal and paralemniscal pathways. Here, we targeted ChR2 expression to POm neurons using AAV-mediated gene transfer in order to optically control the activity of those inputs. As a first step, we show that photostimulation of the POm nucleus induces NMDA-dependent, sub-threshold responses in L2/3 pyramidal cells similar to those that are required for the induction of RWS-LTP. In addition, simultaneous photostimulation of POm neurons together with whisker stimulation at low frequencies (1Hz can also elicit LTP, suggesting that coincident lemniscal and paralemniscal input can drive LTP induction. Next, we combined the ChR2-tdTomato expression in POm neurons with sparse AAV-mediated eGFP expression in L2/3 pyramidal cells in order to study the effects

  11. Diffuse optical tomography activation in the somatosensory cortex: specific activation by painful vs. non-painful thermal stimuli.

    Directory of Open Access Journals (Sweden)

    Lino Becerra

    2009-11-01

    Full Text Available Pain is difficult to assess due to the subjective nature of self-reporting. The lack of objective measures of pain has hampered the development of new treatments as well as the evaluation of current ones. Functional MRI studies of pain have begun to delineate potential brain response signatures that could be used as objective read-outs of pain. Using Diffuse Optical Tomography (DOT, we have shown in the past a distinct DOT signal over the somatosensory cortex to a noxious heat stimulus that could be distinguished from the signal elicited by innocuous mechanical stimuli. Here we further our findings by studying the response to thermal innocuous and noxious stimuli.Innocuous and noxious thermal stimuli were applied to the skin of the face of the first division (ophthalmic of the trigeminal nerve in healthy volunteers (N = 6. Stimuli temperatures were adjusted for each subject to evoke warm (equivalent to a 3/10 and painful hot (7/10 sensations in a verbal rating scale (0/10 = no/max pain. A set of 26 stimuli (5 sec each was applied for each temperature with inter-stimulus intervals varied between 8 and 15 sec using a Peltier thermode. A DOT system was used to capture cortical responses on both sides of the head over the primary somatosensory cortical region (S1. For the innocuous stimuli, group results indicated mainly activation on the contralateral side with a weak ipsilateral response. For the noxious stimuli, bilateral activation was observed with comparable amplitudes on both sides. Furthermore, noxious stimuli produced a temporal biphasic response while innocuous stimuli produced a monophasic response.These results are in accordance with fMRI and our other DOT studies of innocuous mechanical and noxious heat stimuli. The data indicate the differentiation of DOT cortical responses for pain vs. innocuous stimuli that may be useful in assessing objectively acute pain.

  12. Inhibitory Mechanisms in Primary Somatosensory Cortex Mediate the Effects of Peripheral Electrical Stimulation on Tactile Spatial Discrimination.

    Science.gov (United States)

    Saito, Kei; Otsuru, Naofumi; Inukai, Yasuto; Kojima, Sho; Miyaguchi, Shota; Tsuiki, Shota; Sasaki, Ryoki; Onishi, Hideaki

    2018-06-01

    Selective afferent activation can be used to improve somatosensory function, possibly by altering cortical inhibitory circuit activity. Peripheral electrical stimulation (PES) is widely used to induce selective afferent activation, and its effect may depend on PES intensity. Therefore, we investigated the effects of high- and low-intensity PES applied to the right index finger on tactile discrimination performance and cortical sensory-evoked potential paired-pulse depression (SEP-PPD) in 25 neurologically healthy subjects. In Experiment 1, a grating orientation task (GOT) was performed before and immediately after local high- and low-intensity PES (both delivered as 1-s, 20-Hz trains of 0.2-ms electrical pulses at 5-s intervals). In Experiment 2, PPD of SEP components N20/P25_SEP-PPD and N20_SEP-PPD, respectively, were assessed before and immediately after high- and low-intensity PES. Improved GOT discrimination performance after high-intensity PES (reduced discrimination threshold) was associated with lower baseline performance (higher baseline discrimination threshold). Subjects were classified into low and high (baseline) GOT performance groups. Improved GOT discrimination performance in the low GOT performance group was significantly associated with a greater N20_SEP-PPD decrease (weaker PPD). Subjects were also classified into GOT improvement and GOT decrement groups. High-intensity PES decreased N20_SEP-PPD in the GOT improvement group but increased N20_SEP-PPD in the GOT decrement group. Furthermore, a greater decrease in GOT discrimination threshold was significantly associated with a greater N20_SEP-PPD decrease in the GOT improvement group. These results suggest that high-intensity PES can improve sensory perception in subjects with low baseline function by modulating cortical inhibitory circuits in primary somatosensory cortex. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Factors Affecting Volume Changes of the Somatosensory Cortex in Patients with Spinal Cord Injury: To Be Considered for Future Neuroprosthetic Design

    Directory of Open Access Journals (Sweden)

    Yvonne Höller

    2017-12-01

    Full Text Available Spinal cord injury (SCI leads to severe chronic disability, but also to secondary adaptive changes upstream to the injury in the brain which are most likely induced due to the lack of afferent information. These neuroplastic changes are a potential target for innovative therapies such as neuroprostheses, e.g., by stimulation in order to evoke sensation or in order to suppress phantom limb pain. Diverging results on gray matter atrophy have been reported in patients with SCI. Detectability of atrophy seems to depend on the selection of the regions of interest, while whole-brain approaches are not sensitive enough. In this study, we discussed previous research approaches and analyzed differential atrophic changes in incomplete SCI using manual segmentation of the somatosensory cortex. Patients with incomplete SCI (ASIA C-D, with cervical (N = 5 and thoracic (N = 6 injury were included. Time since injury was ≤12 months in 7 patients, and 144, 152, 216, and 312 months in the other patients. Age at the injury was ≤26 years in 4 patients and ≥50 years in 7 patients. A sample of 12 healthy controls was included in the study. In contrast to all previous studies that used voxel-based morphometry, we performed manual segmentation of the somatosensory cortex in the postcentral gyrus from structural magnetic resonance images and normalized the calculated volumes against the sum of volumes of an automated whole-head segmentation. Volumes were smaller in patients than in controls (p = 0.011, and as a tendency, female patients had smaller volumes than male patients (p = 0.017, uncorrected. No effects of duration (subacute vs. chronic, level of lesion (cervical vs. thoracic, region (left vs. right S1, and age at onset (≤26 vs. ≥50 years was found. Our results demonstrate volume loss of S1 in incomplete SCI and encourage further research with larger sample sizes on volumetric changes in the acute and chronic stage of SCI, in

  14. Laterodorsal nucleus of the thalamus: A processor of somatosensory inputs.

    Science.gov (United States)

    Bezdudnaya, Tatiana; Keller, Asaf

    2008-04-20

    The laterodorsal (LD) nucleus of the thalamus has been considered a "higher order" nucleus that provides inputs to limbic cortical areas. Although its functions are largely unknown, it is often considered to be involved in spatial learning and memory. Here we provide evidence that LD is part of a hitherto unknown pathway for processing somatosensory information. Juxtacellular and extracellular recordings from LD neurons reveal that they respond to vibrissa stimulation with short latency (median = 7 ms) and large magnitude responses (median = 1.2 spikes/stimulus). Most neurons (62%) had large receptive fields, responding to six and more individual vibrissae. Electrical stimulation of the trigeminal nucleus interpolaris (SpVi) evoked short latency responses (median = 3.8 ms) in vibrissa-responsive LD neurons. Labeling produced by anterograde and retrograde neuroanatomical tracers confirmed that LD neurons receive direct inputs from SpVi. Electrophysiological and neuroanatomical analyses revealed also that LD projects upon the cingulate and retrosplenial cortex, but has only sparse projections to the barrel cortex. These findings suggest that LD is part of a novel processing stream involved in spatial orientation and learning related to somatosensory cues. (c) 2008 Wiley-Liss, Inc.

  15. Negative BOLD signal changes in ipsilateral primary somatosensory cortex are associated with perfusion decreases and behavioral evidence for functional inhibition

    DEFF Research Database (Denmark)

    Schäfer, Katharina; Blankenburg, Felix; Kupers, Ron

    2012-01-01

    that the negative BOLD signal is associated with functional inhibition. Electrical stimulation of the median nerve at 7Hz evoked robust negative BOLD signals in the primary somatosensory cortex (SI) ipsilateral to stimulation, and positive BOLD signals in contralateral SI. The negative BOLD signal in ipsilateral SI......) at the ipsilateral finger during concomitant stimulation of the contralateral median nerve increased significantly, suggesting augmented functional inhibition. Since the CPT in the ipsilateral hallux did not significantly change in response to median nerve stimulation, it is more likely that the CPT......-increase for the finger is due to functional inhibition (Kastrup et al., 2008) than to changes in selective attention. In conclusion, our data provide evidence that stimulus-induced reductions in relative rCBF may underlie the negative BOLD signal, which in turn may reflect increments in functional inhibition....

  16. Reduction of pain sensitivity after somatosensory therapy in adults with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Inmaculada eRiquelme

    2013-06-01

    Full Text Available Objective. Pain and deficits in somatosensory processing seem to play a relevant role in cerebral palsy (CP. Rehabilitation techniques based on neuroplasticity mechanisms may induce powerful changes in the organization of the primary somatosensory cortex and have been proved to reduce levels of pain and discomfort in neurological pathologies. However, little is known about the efficacy of such interventions for pain sensitivity in CP individuals. Methods. Adults with cerebral palsy participated in the study and were randomly assigned to the intervention (n=17 or the control group (n=20. The intervention group received a somatosensory therapy including 4 types of exercises (touch, proprioception, vibration, and stereognosis. All participants were asked to continue their standardized motor therapy during the study period. Several somatosensory (pain and touch thresholds, stereognosis, propioception, texture recognition and motor parameters (fine motor skills were assessed before, immediately after and three months after the therapy (follow-up. Results. Participants of the intervention group showed a significant reduction on pain sensitivity after treatment and at follow-up after three months, whereas participants in the control group displayed increasing pain sensitivity over time. No improvements were found on touch sensitivity, proprioception, texture recognition or fine motor skills. Conclusions. Data suggest the possibility that somatosensory therapy was effective in eliciting changes in central somatosensory processing. This hypothesis may have implications for future neuromodulatory treatment of pain complaints in children and adults with cerebral palsy.

  17. Structural reorganization of the early visual cortex following Braille training in sighted adults.

    Science.gov (United States)

    Bola, Łukasz; Siuda-Krzywicka, Katarzyna; Paplińska, Małgorzata; Sumera, Ewa; Zimmermann, Maria; Jednoróg, Katarzyna; Marchewka, Artur; Szwed, Marcin

    2017-12-12

    Training can induce cross-modal plasticity in the human cortex. A well-known example of this phenomenon is the recruitment of visual areas for tactile and auditory processing. It remains unclear to what extent such plasticity is associated with changes in anatomy. Here we enrolled 29 sighted adults into a nine-month tactile Braille-reading training, and used voxel-based morphometry and diffusion tensor imaging to describe the resulting anatomical changes. In addition, we collected resting-state fMRI data to relate these changes to functional connectivity between visual and somatosensory-motor cortices. Following Braille-training, we observed substantial grey and white matter reorganization in the anterior part of early visual cortex (peripheral visual field). Moreover, relative to its posterior, foveal part, the peripheral representation of early visual cortex had stronger functional connections to somatosensory and motor cortices even before the onset of training. Previous studies show that the early visual cortex can be functionally recruited for tactile discrimination, including recognition of Braille characters. Our results demonstrate that reorganization in this region induced by tactile training can also be anatomical. This change most likely reflects a strengthening of existing connectivity between the peripheral visual cortex and somatosensory cortices, which suggests a putative mechanism for cross-modal recruitment of visual areas.

  18. Neural mechanisms of selective attention in the somatosensory system.

    Science.gov (United States)

    Gomez-Ramirez, Manuel; Hysaj, Kristjana; Niebur, Ernst

    2016-09-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. Copyright © 2016 the American Physiological Society.

  19. Disruption of visuospatial and somatosensory functional connectivity in anorexia nervosa.

    Science.gov (United States)

    Favaro, Angela; Santonastaso, Paolo; Manara, Renzo; Bosello, Romina; Bommarito, Giulia; Tenconi, Elena; Di Salle, Francesco

    2012-11-15

    Although body image disturbance is considered one of the core characteristics of anorexia nervosa (AN), the exact nature of this complex feature is poorly understood. Task-related functional magnetic resonance imaging studies can only partially explore the multimodal complexity of body consciousness, which is a complex cognition underpinned by aspects of visual perception, proprioception, and touch. The aim of the present study was to explore the functional connectivity of networks involved in visuospatial and somatosensory processing in AN. Twenty-nine subjects with AN, 16 women who had recovered from it, and 26 healthy women underwent a resting-state functional magnetic resonance imaging scan and neuropsychological assessment of their visuospatial abilities using the Rey-Osterrieth Complex Figure Test. Both AN groups showed areas of decreased connectivity in the ventral visual network, a network involved in the "what?" pathway of visual perception. Even more interestingly, the AN group, but not the recovered AN group, displayed increased coactivation in the left parietal cortex, encompassing the somatosensory cortex, in an area implicated in long-term multimodal spatial memory and representation, even in the absence of visual information. A neuropsychological assessment of visuospatial abilities revealed that aspects of detail processing and global integration (central coherence) showed correlations with connectivity of this brain area in the AN group. Our findings show that AN is associated with double disruption of brain connectivity, which shows a specific association with visuospatial difficulties and may explain the failure of the integration process between visual and somatosensory perceptual information that might sustain body image disturbance. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Functional activity of the sensorimotor cortex and cerebellum relates to cervical dystonia symptoms.

    Science.gov (United States)

    Burciu, Roxana G; Hess, Christopher W; Coombes, Stephen A; Ofori, Edward; Shukla, Priyank; Chung, Jae Woo; McFarland, Nikolaus R; Wagle Shukla, Aparna; Okun, Michael S; Vaillancourt, David E

    2017-09-01

    Cervical dystonia (CD) is the most common type of focal dystonia, causing abnormal movements of the neck and head. In this study, we used noninvasive imaging to investigate the motor system of patients with CD and uncover the neural correlates of dystonic symptoms. Furthermore, we examined whether a commonly prescribed anticholinergic medication in CD has an effect on the dystonia-related brain abnormalities. Participants included 16 patients with CD and 16 healthy age-matched controls. We collected functional MRI scans during a force task previously shown to extensively engage the motor system, and diffusion and T1-weighted MRI scans from which we calculated free-water and brain tissue densities. The dystonia group was also scanned ca. 2 h after a 2-mg dose of trihexyphenidyl. Severity of dystonia was assessed pre- and post-drug using the Burke-Fahn-Marsden Dystonia Rating Scale. Motor-related activity in CD was altered relative to controls in the primary somatosensory cortex, cerebellum, dorsal premotor and posterior parietal cortices, and occipital cortex. Most importantly, a regression model showed that increased severity of symptoms was associated with decreased functional activity of the somatosensory cortex and increased activity of the cerebellum. Structural imaging measures did not differ between CD and controls. The single dose of trihexyphenidyl altered the fMRI signal in the somatosensory cortex but not in the cerebellum. Symptom severity was not significantly reduced post-treatment. Findings show widespread changes in functional brain activity in CD and most importantly that dystonic symptoms relate to disrupted activity in the somatosensory cortex and cerebellum. Hum Brain Mapp 38:4563-4573, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. The laminar organization of the motor cortex in monodactylous mammals: a comparative assessment based on horse, chimpanzee, and macaque.

    Science.gov (United States)

    Cozzi, Bruno; De Giorgio, Andrea; Peruffo, A; Montelli, S; Panin, M; Bombardi, C; Grandis, A; Pirone, A; Zambenedetti, P; Corain, L; Granato, Alberto

    2017-08-01

    The architecture of the neocortex classically consists of six layers, based on cytological criteria and on the layout of intra/interlaminar connections. Yet, the comparison of cortical cytoarchitectonic features across different species proves overwhelmingly difficult, due to the lack of a reliable model to analyze the connection patterns of neuronal ensembles forming the different layers. We first defined a set of suitable morphometric cell features, obtained in digitized Nissl-stained sections of the motor cortex of the horse, chimpanzee, and crab-eating macaque. We then modeled them using a quite general non-parametric data representation model, showing that the assessment of neuronal cell complexity (i.e., how a given cell differs from its neighbors) can be performed using a suitable measure of statistical dispersion such as the mean absolute deviation-mean absolute deviation (MAD). Along with the non-parametric combination and permutation methodology, application of MAD allowed not only to estimate, but also to compare and rank the motor cortical complexity across different species. As to the instances presented in this paper, we show that the pyramidal layers of the motor cortex of the horse are far more irregular than those of primates. This feature could be related to the different organizations of the motor system in monodactylous mammals.

  2. Tactile information processing in primate hand somatosensory cortex (S1) during passive arm movement.

    Science.gov (United States)

    Song, Weiguo; Francis, Joseph Thachil

    2013-11-01

    Motor output mostly depends on sensory input, which also can be affected by action. To further our understanding of how tactile information is processed in the primary somatosensory cortex (S1) in dynamic environments, we recorded neural responses to tactile stimulation of the hand in three awake monkeys under arm/hand passive movement and rest. We found that neurons generally responded to tactile stimulation under both conditions and were modulated by movement: with a higher baseline firing rate, a suppressed peak rate, and a smaller dynamic range during passive movement than during rest, while the area under the response curve was stable across these two states. By using an information theory-based method, the mutual information between tactile stimulation and neural responses was quantified with rate and spatial coding models under the two conditions. The two potential encoding models showed different contributions depending on behavioral contexts. Tactile information encoded with rate coding from individual units was lower than spatial coding of unit pairs, especially during movement; however, spatial coding had redundant information between unit pairs. Passive movement regulated the mutual information, and such regulation might play different roles depending on the encoding strategies used. The underlying mechanisms of our observation most likely come from a bottom-up strategy, where neurons in S1 were regulated through the activation of the peripheral tactile/proprioceptive receptors and the interactions between these different types of information.

  3. TMS-induced neural noise in sensory cortex interferes with short-term memory storage in prefrontal cortex

    OpenAIRE

    Bancroft, Tyler D.; Hogeveen, Jeremy; Hockley, William E.; Servos, Philip

    2014-01-01

    In a previous study, Harris et al. (2002) found disruption of vibrotactile short-term memory after applying single-pulse transcranial magnetic stimulation (TMS) to primary somatosensory cortex (SI) early in the maintenance period, and suggested that this demonstrated a role for SI in vibrotactile memory storage. While such a role is compatible with recent suggestions that sensory cortex is the storage substrate for working memory, it stands in contrast to a relatively large body of evidence f...

  4. Predicting Spike Occurrence and Neuronal Responsiveness from LFPs in Primary Somatosensory Cortex

    Science.gov (United States)

    Storchi, Riccardo; Zippo, Antonio G.; Caramenti, Gian Carlo; Valente, Maurizio; Biella, Gabriele E. M.

    2012-01-01

    Local Field Potentials (LFPs) integrate multiple neuronal events like synaptic inputs and intracellular potentials. LFP spatiotemporal features are particularly relevant in view of their applications both in research (e.g. for understanding brain rhythms, inter-areal neural communication and neronal coding) and in the clinics (e.g. for improving invasive Brain-Machine Interface devices). However the relation between LFPs and spikes is complex and not fully understood. As spikes represent the fundamental currency of neuronal communication this gap in knowledge strongly limits our comprehension of neuronal phenomena underlying LFPs. We investigated the LFP-spike relation during tactile stimulation in primary somatosensory (S-I) cortex in the rat. First we quantified how reliably LFPs and spikes code for a stimulus occurrence. Then we used the information obtained from our analyses to design a predictive model for spike occurrence based on LFP inputs. The model was endowed with a flexible meta-structure whose exact form, both in parameters and structure, was estimated by using a multi-objective optimization strategy. Our method provided a set of nonlinear simple equations that maximized the match between models and true neurons in terms of spike timings and Peri Stimulus Time Histograms. We found that both LFPs and spikes can code for stimulus occurrence with millisecond precision, showing, however, high variability. Spike patterns were predicted significantly above chance for 75% of the neurons analysed. Crucially, the level of prediction accuracy depended on the reliability in coding for the stimulus occurrence. The best predictions were obtained when both spikes and LFPs were highly responsive to the stimuli. Spike reliability is known to depend on neuron intrinsic properties (i.e. on channel noise) and on spontaneous local network fluctuations. Our results suggest that the latter, measured through the LFP response variability, play a dominant role. PMID:22586452

  5. BOLD responses in somatosensory cortices better reflect heat sensation than pain.

    Science.gov (United States)

    Moulton, Eric A; Pendse, Gautam; Becerra, Lino R; Borsook, David

    2012-04-25

    The discovery of cortical networks that participate in pain processing has led to the common generalization that blood oxygen level-dependent (BOLD) responses in these areas indicate the processing of pain. Physical stimuli have fundamental properties that elicit sensations distinguishable from pain, such as heat. We hypothesized that pain intensity coding may reflect the intensity coding of heat sensation during the presentation of thermal stimuli during fMRI. Six 3T fMRI heat scans were collected for 16 healthy subjects, corresponding to perceptual levels of "low innocuous heat," "moderate innocuous heat," "high innocuous heat," "low painful heat," "moderate painful heat," and "high painful heat" delivered by a contact thermode to the face. Subjects rated pain and heat intensity separately after each scan. A general linear model analysis detected different patterns of brain activation for the different phases of the biphasic response to heat. During high painful heat, the early phase was associated with significant anterior insula and anterior cingulate cortex activation. Persistent responses were detected in the right dorsolateral prefrontal cortex and inferior parietal lobule. Only the late phase showed significant correlations with perceptual ratings. Significant heat intensity correlated activation was identified in contralateral primary and secondary somatosensory cortices, motor cortex, and superior temporal lobe. These areas were significantly more related to heat ratings than pain. These results indicate that heat intensity is encoded by the somatosensory cortices, and that pain evaluation may either arise from multimodal evaluative processes, or is a distributed process.

  6. Electrophysiological Evidence for a Sensory Recruitment Model of Somatosensory Working Memory.

    Science.gov (United States)

    Katus, Tobias; Grubert, Anna; Eimer, Martin

    2015-12-01

    Sensory recruitment models of working memory assume that information storage is mediated by the same cortical areas that are responsible for the perceptual processing of sensory signals. To test this assumption, we measured somatosensory event-related brain potentials (ERPs) during a tactile delayed match-to-sample task. Participants memorized a tactile sample set at one task-relevant hand to compare it with a subsequent test set on the same hand. During the retention period, a sustained negativity (tactile contralateral delay activity, tCDA) was elicited over primary somatosensory cortex contralateral to the relevant hand. The amplitude of this component increased with memory load and was sensitive to individual limitations in memory capacity, suggesting that the tCDA reflects the maintenance of tactile information in somatosensory working memory. The tCDA was preceded by a transient negativity (N2cc component) with a similar contralateral scalp distribution, which is likely to reflect selection of task-relevant tactile stimuli at the encoding stage. The temporal sequence of N2cc and tCDA components mirrors previous observations from ERP studies of working memory in vision. The finding that the sustained somatosensory delay period activity varies as a function of memory load supports a sensory recruitment model for spatial working memory in touch. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis.

    Science.gov (United States)

    Wise, Nan J; Frangos, Eleni; Komisaruk, Barry R

    2016-01-01

    During the course of a previous study, our laboratory made a serendipitous finding that just thinking about genital stimulation resulted in brain activations that overlapped with, and differed from, those generated by physical genital stimulation. This study extends our previous findings by further characterizing how the brain differentially processes physical 'touch' stimulation and 'imagined' stimulation. Eleven healthy women (age range 29-74) participated in an fMRI study of the brain response to imagined or actual tactile stimulation of the nipple and clitoris. Two additional conditions - imagined dildo self-stimulation and imagined speculum stimulation - were included to characterize the effects of erotic versus non-erotic imagery. Imagined and tactile self-stimulation of the nipple and clitoris each activated the paracentral lobule (the genital region of the primary sensory cortex) and the secondary somatosensory cortex. Imagined self-stimulation of the clitoris and nipple resulted in greater activation of the frontal pole and orbital frontal cortex compared to tactile self-stimulation of these two bodily regions. Tactile self-stimulation of the clitoris and nipple activated the cerebellum, primary somatosensory cortex (hand region), and premotor cortex more than the imagined stimulation of these body regions. Imagining dildo stimulation generated extensive brain activation in the genital sensory cortex, secondary somatosensory cortex, hippocampus, amygdala, insula, nucleus accumbens, and medial prefrontal cortex, whereas imagining speculum stimulation generated only minimal activation. The present findings provide evidence of the potency of imagined stimulation of the genitals and that the following brain regions may participate in erogenous experience: primary and secondary sensory cortices, sensory-motor integration areas, limbic structures, and components of the 'reward system'. In addition, these results suggest a mechanism by which some individuals may

  8. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis

    Directory of Open Access Journals (Sweden)

    Nan J. Wise

    2016-10-01

    Full Text Available Background: During the course of a previous study, our laboratory made a serendipitous finding that just thinking about genital stimulation resulted in brain activations that overlapped with, and differed from, those generated by physical genital stimulation. Objective: This study extends our previous findings by further characterizing how the brain differentially processes physical ‘touch’ stimulation and ‘imagined’ stimulation. Design: Eleven healthy women (age range 29–74 participated in an fMRI study of the brain response to imagined or actual tactile stimulation of the nipple and clitoris. Two additional conditions – imagined dildo self-stimulation and imagined speculum stimulation – were included to characterize the effects of erotic versus non-erotic imagery. Results: Imagined and tactile self-stimulation of the nipple and clitoris each activated the paracentral lobule (the genital region of the primary sensory cortex and the secondary somatosensory cortex. Imagined self-stimulation of the clitoris and nipple resulted in greater activation of the frontal pole and orbital frontal cortex compared to tactile self-stimulation of these two bodily regions. Tactile self-stimulation of the clitoris and nipple activated the cerebellum, primary somatosensory cortex (hand region, and premotor cortex more than the imagined stimulation of these body regions. Imagining dildo stimulation generated extensive brain activation in the genital sensory cortex, secondary somatosensory cortex, hippocampus, amygdala, insula, nucleus accumbens, and medial prefrontal cortex, whereas imagining speculum stimulation generated only minimal activation. Conclusion: The present findings provide evidence of the potency of imagined stimulation of the genitals and that the following brain regions may participate in erogenous experience: primary and secondary sensory cortices, sensory-motor integration areas, limbic structures, and components of the

  9. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic Acid animal model of autism

    DEFF Research Database (Denmark)

    Rinaldi, Tania; Perrodin, Catherine; Markram, Henry

    2008-01-01

    of synapses. The microcircuit alterations found in the prefrontal cortex are therefore similar to the alterations previously found in the somatosensory cortex. Hyper-connectivity and hyper-plasticity in the prefrontal cortex implies hyper-functionality of one of the highest order processing regions...

  10. Synaptic and Cellular Organization of Layer 1 of the Developing Rat Somatosensory Cortex

    Directory of Open Access Journals (Sweden)

    Shruti eMuralidhar

    2014-01-01

    Full Text Available We have performed a systematic and quantitative study of the neuronal and synaptic organisation of neocortical layer 1 in the somatosensory cortex in juvenile rats (P13 – P16 using multi-neuron patch-clamp and 3D morphology reconstructions. We used both subjective expert based and objective classification to establish distinct morphological groups. According to expert based subjective classification, the neurons were classified into six morphological types: (1 the dense axon neurogliaform cell (NGC-DA and (2 a sparse axon neurogliaform cell (NGC-SA, (3 the horizontal axon cell (HAC and (4 those with descending axonal colaterals (DAC, (5 the large axon cell (LAC and (6 the small axon cell (SAC. We also used objective supervised and unsupervised analyses that confirmed 4 out of the 6 expert proposed groups, namely, DAC, HAC, LAC and a combined NGC. The cells were also classified into 5 electrophysiological types based on the Petilla convention; classical non-adapting (cNAC, burst non-adapting (bNAC, classical adapting (cAC, classical stuttering (cSTUT and classical irregular spiking (cIR. The most common electrophysiological type was the cNAC type (40% and the most commonly encountered morpho-electrical type of neuron was the NGC-DA - cNAC. Layer 1 cells are connected by GABAergic inhibitory synaptic connections with a 7.9% connection probability, as well gap junctions with 5.2% connection probability. Most synaptic connections were mediated by both GABAA and GABAB receptors (62.6%, as observed from the response characteristics to single pulse and train stimulations. A smaller fraction of synaptic connections were mediated exclusively by GABAA (15.4% or GABAB (21.8% receptors. Based on the morphological reconstructions, we found multi-synapse connections with an average of 9 putative synapses per connection. These putative touches were widely distributed with 39% on somata and 61% on dendrites.

  11. Ketogenic diet alters dopaminergic activity in the mouse cortex.

    Science.gov (United States)

    Church, William H; Adams, Ryan E; Wyss, Livia S

    2014-06-13

    The present study was conducted to determine if the ketogenic diet altered basal levels of monoamine neurotransmitters in mice. The catecholamines dopamine (DA) and norephinephrine (NE) and the indolamine serotonin (5HT) were quantified postmortem in six different brain regions of adult mice fed a ketogenic diet for 3 weeks. The dopamine metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and the serotonin metabolite 5-hydroxyindole acetic acid (5HIAA) were also measured. Tissue punches were collected bilaterally from the motor cortex, somatosensory cortex, nucleus accumbens, anterior caudate-putamen, posterior caudate-putamen and the midbrain. Dopaminergic activity, as measured by the dopamine metabolites to dopamine content ratio - ([DOPAC]+[HVA])/[DA] - was significantly increased in the motor and somatosensory cortex regions of mice fed the ketogenic diet when compared to those same areas in brains of mice fed a normal diet. These results indicate that the ketogenic diet alters the activity of the meso-cortical dopaminergic system, which may contribute to the diet's therapeutic effect in reducing epileptic seizure activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  13. The nucleus pararaphales in the human, chimpanzee, and macaque monkey.

    Science.gov (United States)

    Baizer, Joan S; Weinstock, Nadav; Witelson, Sandra F; Sherwood, Chet C; Hof, Patrick R

    2013-03-01

    The human cerebral cortex and cerebellum are greatly expanded compared to those of other mammals, including the great apes. This expansion is reflected in differences in the size and organization of precerebellar brainstem structures, such as the inferior olive. In addition, there are cell groups unique to the human brainstem. One such group may be the nucleus pararaphales (PRa); however, there is disagreement among authors about the size and location of this nucleus in the human brainstem. The name "pararaphales" has also been used for neurons in the medulla shown to project to the flocculus in the macaque monkey. We have re-examined the existence and status of the PRa in eight humans, three chimpanzees, and four macaque monkeys using Nissl-stained sections as well as immunohistochemistry. In the human we found a cell group along the midline of the medulla in all cases; it had the form of interrupted cell columns and was variable among cases in rostrocaudal and dorsoventral extent. Cells and processes were highly immunoreactive for non-phosphorylated neurofilament protein (NPNFP); somata were immunoreactive to the synthetic enzyme for nitric oxide, nitric oxide synthase, and for calretinin. In macaque monkey, there was a much smaller oval cell group with NPNFP immunoreactivity. In the chimpanzee, we found a region of NPNFP-immunoreactive cells and fibers similar to what was observed in macaques. These results suggest that the "PRa" in the human may not be the same structure as the flocculus-projecting cell group described in the macaque. The PRa, like the arcuate nucleus, therefore may be unique to humans.

  14. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    Science.gov (United States)

    Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R

    2016-03-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

  15. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    Directory of Open Access Journals (Sweden)

    Matthew W Self

    2016-03-01

    Full Text Available Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

  16. TMS-induced neural noise in sensory cortex interferes with short-term memory storage in prefrontal cortex.

    Science.gov (United States)

    Bancroft, Tyler D; Hogeveen, Jeremy; Hockley, William E; Servos, Philip

    2014-01-01

    In a previous study, Harris et al. (2002) found disruption of vibrotactile short-term memory after applying single-pulse transcranial magnetic stimulation (TMS) to primary somatosensory cortex (SI) early in the maintenance period, and suggested that this demonstrated a role for SI in vibrotactile memory storage. While such a role is compatible with recent suggestions that sensory cortex is the storage substrate for working memory, it stands in contrast to a relatively large body of evidence from human EEG and single-cell recording in primates that instead points to prefrontal cortex as the storage substrate for vibrotactile memory. In the present study, we use computational methods to demonstrate how Harris et al.'s results can be reproduced by TMS-induced activity in sensory cortex and subsequent feedforward interference with memory traces stored in prefrontal cortex, thereby reconciling discordant findings in the tactile memory literature.

  17. Within-digit functional parcellation of Brodmann areas of the human primary somatosensory cortex using functional magnetic resonance imaging at 7 tesla.

    Science.gov (United States)

    Sanchez-Panchuelo, Rosa M; Besle, Julien; Beckett, Alex; Bowtell, Richard; Schluppeck, Denis; Francis, Susan

    2012-11-07

    The primary somatosensory cortex (S1) can be subdivided cytoarchitectonically into four distinct Brodmann areas (3a, 3b, 1, and 2), but these areas have never been successfully delineated in vivo in single human subjects. Here, we demonstrate the functional parcellation of four areas of S1 in individual human subjects based on high-resolution functional MRI measurements made at 7 T using vibrotactile stimulation. By stimulating four sites along the length of the index finger, we were able to identify and locate map reversals of the base to tip representation of the index finger in S1. We suggest that these reversals correspond to the areal borders between the mirrored representations in the four Brodmann areas, as predicted from electrophysiology measurements in nonhuman primates. In all subjects, maps were highly reproducible across scanning sessions and stable over weeks. In four of the six subjects scanned, four, mirrored, within-finger somatotopic maps defining the extent of the Brodmann areas could be directly observed on the cortical surface. In addition, by using multivariate classification analysis, the location of stimulation on the index finger (four distinct sites) could be decoded with a mean accuracy of 65% across subjects. Our measurements thus show that within-finger topography is present at the millimeter scale in the cortex and is highly reproducible. The ability to identify functional areas of S1 in vivo in individual subjects will provide a framework for investigating more complex aspects of tactile representation in S1.

  18. Inhibition of somatosensory-evoked cortical responses by a weak leading stimulus.

    Science.gov (United States)

    Nakagawa, Kei; Inui, Koji; Yuge, Louis; Kakigi, Ryusuke

    2014-11-01

    We previously demonstrated that auditory-evoked cortical responses were suppressed by a weak leading stimulus in a manner similar to the prepulse inhibition (PPI) of startle reflexes. The purpose of the present study was to investigate whether a similar phenomenon was present in the somatosensory system, and also whether this suppression reflected an inhibitory process. We recorded somatosensory-evoked magnetic fields following stimulation of the median nerve and evaluated the extent by which they were suppressed by inserting leading stimuli at an intensity of 2.5-, 1.5-, 1.1-, or 0.9-fold the sensory threshold (ST) in healthy participants (Experiment 1). The results obtained demonstrated that activity in the secondary somatosensory cortex in the hemisphere contralateral to the stimulated side (cSII) was significantly suppressed by a weak leading stimulus with the intensity larger than 1.1-fold ST. This result implied that the somatosensory system had an inhibitory process similar to that of PPI. We then presented two successive leading stimuli before the test stimulus, and compared the extent of suppression between the test stimulus-evoked responses and those obtained with the second prepulse alone and with two prepulses (first and second) (Experiment 2). When two prepulses were preceded, cSII responses to the second prepulse were suppressed by the first prepulse, whereas the ability of the second prepulse to suppress the test stimulus remained unchanged. These results suggested the presence of at least two individual pathways; response-generating and inhibitory pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Information processing architecture of functionally defined clusters in the macaque cortex.

    Science.gov (United States)

    Shen, Kelly; Bezgin, Gleb; Hutchison, R Matthew; Gati, Joseph S; Menon, Ravi S; Everling, Stefan; McIntosh, Anthony R

    2012-11-28

    Computational and empirical neuroimaging studies have suggested that the anatomical connections between brain regions primarily constrain their functional interactions. Given that the large-scale organization of functional networks is determined by the temporal relationships between brain regions, the structural limitations may extend to the global characteristics of functional networks. Here, we explored the extent to which the functional network community structure is determined by the underlying anatomical architecture. We directly compared macaque (Macaca fascicularis) functional connectivity (FC) assessed using spontaneous blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) to directed anatomical connectivity derived from macaque axonal tract tracing studies. Consistent with previous reports, FC increased with increasing strength of anatomical connection, and FC was also present between regions that had no direct anatomical connection. We observed moderate similarity between the FC of each region and its anatomical connectivity. Notably, anatomical connectivity patterns, as described by structural motifs, were different within and across functional modules: partitioning of the functional network was supported by dense bidirectional anatomical connections within clusters and unidirectional connections between clusters. Together, our data directly demonstrate that the FC patterns observed in resting-state BOLD-fMRI are dictated by the underlying neuroanatomical architecture. Importantly, we show how this architecture contributes to the global organizational principles of both functional specialization and integration.

  20. Corticothalamic and corticotectal somatosensory projections from the anterior ectosylvian sulcus (SIV cortex) in neonatal cats: an anatomical demonstration with HRP and 3H-leucine

    International Nuclear Information System (INIS)

    McHaffie, J.G.; Kruger, L.; Clemo, H.R.; Stein, B.E.

    1988-01-01

    Corticothalamic and corticotectal projections from the anterior ectosylvian sulcus (AES) in neonatal cats were studied with anterograde and retrograde neuroanatomical techniques. When the injection site was relatively restricted to the sulcal walls and fundus of the rostral AES (i.e., the SIV cortex), heavy ipsilateral thalamic label was observed in the medial subdivision of the posterior group, in the suprageniculate nucleus, and in the external medullary lamina. No terminal label was seen in the contralateral thalamus although the contralateral homotopic cortex was heavily labeled. Within the ventrobasal complex (VB), dense axonal label was observed in fascicles that traversed VB, but only light terminal label was observed within VB itself. However, in cases where the tracer spread into adjacent SII, terminal label in VB was pronounced. Similarly, when the injection site extended into auditory cortex, terminal label was observed in the lateral and intermediate subdivisions of the posterior group. Rostral AES injections produced distinct, predominantly ipsilateral, terminal label in the superior colliculus that was distributed in two tiers: a discontinuous band in the stratum griseum intermedium and a more diffuse band in stratum griseum profundum. Caudally, dense terminal label was seen in the intercollicular zone and dorsolateral periaqueductal gray. When the injection site did not include rostral AES, no label was observed in the superior colliculus. Horseradish peroxidase injections into the superior colliculus of neonates produced retrogradely labeled neurons throughout the AES, but none was found on the crown of the gyrus where SII is located. Thus, the neonatal corticotectal somatosensory projection arises exclusively from AES and parallels that found in adults

  1. Asymmetric Dichoptic Masking in Visual Cortex of Amblyopic Macaque Monkeys.

    Science.gov (United States)

    Shooner, Christopher; Hallum, Luke E; Kumbhani, Romesh D; García-Marín, Virginia; Kelly, Jenna G; Majaj, Najib J; Movshon, J Anthony; Kiorpes, Lynne

    2017-09-06

    In amblyopia, abnormal visual experience leads to an extreme form of eye dominance, in which vision through the nondominant eye is degraded. A key aspect of this disorder is perceptual suppression: the image seen by the stronger eye often dominates during binocular viewing, blocking the image of the weaker eye from reaching awareness. Interocular suppression is the focus of ongoing work aimed at understanding and treating amblyopia, yet its physiological basis remains unknown. We measured binocular interactions in visual cortex of anesthetized amblyopic monkeys (female Macaca nemestrina ), using 96-channel "Utah" arrays to record from populations of neurons in V1 and V2. In an experiment reported recently (Hallum et al., 2017), we found that reduced excitatory input from the amblyopic eye (AE) revealed a form of balanced binocular suppression that is unaltered in amblyopia. Here, we report on the modulation of the gain of excitatory signals from the AE by signals from its dominant fellow eye (FE). Using a dichoptic masking technique, we found that AE responses to grating stimuli were attenuated by the presentation of a noise mask to the FE, as in a normal control animal. Responses to FE stimuli, by contrast, could not be masked from the AE. We conclude that a weakened ability of the amblyopic eye to modulate cortical response gain creates an imbalance of suppression that favors the dominant eye. SIGNIFICANCE STATEMENT In amblyopia, vision in one eye is impaired as a result of abnormal early visual experience. Behavioral observations in humans with amblyopia suggest that much of their visual loss is due to active suppression of their amblyopic eye. Here we describe experiments in which we studied binocular interactions in macaques with experimentally induced amblyopia. In normal monkeys, the gain of neuronal response to stimulation of one eye is modulated by contrast in the other eye, but in monkeys with amblyopia the balance of gain modulation is altered so that

  2. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

    Science.gov (United States)

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.

    2014-10-01

    Objective. Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. Approach. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide ‘tactile’ sensation to a non-human primate. Main result. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Significance. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.

  3. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in the rat somatosensory cortex: a quantitative immunocytochemical image analysis

    Science.gov (United States)

    D'Amelio, F.; Wu, L. C.; Fox, R. A.; Daunton, N. G.; Corcoran, M. L.; Polyakov, I.

    1998-01-01

    Quantitative evaluation of gamma-aminobutyric acid immunoreactivity (GABA-IR) in the hindlimb representation of the rat somatosensory cortex after 14 days of exposure to hypergravity (hyper-G) was conducted by using computer-assisted image processing. The area of GABA-IR axosomatic terminals apposed to pyramidal cells of cortical layer V was reduced in rats exposed to hyper-G compared with control rats, which were exposed either to rotation alone or to vivarium conditions. Based on previous immunocytochemical and behavioral studies, we suggest that this reduction is due to changes in sensory feedback information from muscle receptors. Consequently, priorities for muscle recruitment are altered at the cortical level, and a new pattern of muscle activity is thus generated. It is proposed that the reduction observed in GABA-IR of the terminal area around pyramidal neurons is the immunocytochemical expression of changes in the activity of GABAergic cells that participate in reprogramming motor outputs to achieve effective movement control in response to alterations in the afferent information.

  4. Maps of the Auditory Cortex.

    Science.gov (United States)

    Brewer, Alyssa A; Barton, Brian

    2016-07-08

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration.

  5. The third-stimulus temporal discrimination threshold: focusing on the temporal processing of sensory input within primary somatosensory cortex.

    Science.gov (United States)

    Leodori, Giorgio; Formica, Alessandra; Zhu, Xiaoying; Conte, Antonella; Belvisi, Daniele; Cruccu, Giorgio; Hallett, Mark; Berardelli, Alfredo

    2017-10-01

    The somatosensory temporal discrimination threshold (STDT) has been used in recent years to investigate time processing of sensory information, but little is known about the physiological correlates of somatosensory temporal discrimination. The objective of this study was to investigate whether the time interval required to discriminate between two stimuli varies according to the number of stimuli in the task. We used the third-stimulus temporal discrimination threshold (ThirdDT), defined as the shortest time interval at which an individual distinguishes a third stimulus following a pair of stimuli delivered at the STDT. The STDT and ThirdDT were assessed in 31 healthy subjects. In a subgroup of 10 subjects, we evaluated the effects of the stimuli intensity on the ThirdDT. In a subgroup of 16 subjects, we evaluated the effects of S1 continuous theta-burst stimulation (S1-cTBS) on the STDT and ThirdDT. Results show that ThirdDT is shorter than STDT. We found a positive correlation between STDT and ThirdDT values. As long as the stimulus intensity was within the perceivable and painless range, it did not affect ThirdDT values. S1-cTBS significantly affected both STDT and ThirdDT, although the latter was affected to a greater extent and for a longer period of time. We conclude that the interval needed to discriminate between time-separated tactile stimuli is related to the number of stimuli used in the task. STDT and ThirdDT are encoded in S1, probably by a shared tactile temporal encoding mechanism whose performance rapidly changes during the perception process. ThirdDT is a new method to measure somatosensory temporal discrimination. NEW & NOTEWORTHY To investigate whether the time interval required to discriminate between stimuli varies according to changes in the stimulation pattern, we used the third-stimulus temporal discrimination threshold (ThirdDT). We found that the somatosensory temporal discrimination acuity varies according to the number of stimuli in the

  6. Distribution of cortical neurons projecting to the superior colliculus in macaque monkeys

    Directory of Open Access Journals (Sweden)

    Cerkevich CM

    2014-09-01

    Full Text Available Christina M Cerkevich,1 David C Lyon,2 Pooja Balaram,3 Jon H Kaas3 1Department of Neurobiology, University of Pittsburgh School of Medicine, Systems Neuroscience Institute, Pittsburgh, PA, USA; 2Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA; 3Department of Psychology, Vanderbilt University, Nashville, TN, USA Abstract: To better reveal the pattern of corticotectal projections to the superficial layers of the superior colliculus (SC, we made a total of ten retrograde tracer injections into the SC of three macaque monkeys (Macaca mulatta. The majority of these injections were in the superficial layers of the SC, which process visual information. To isolate inputs to the purely visual layers in the superficial SC from those inputs to the motor and multisensory layers deeper in the SC, two injections were placed to include the intermediate and deep layers of the SC. In another case, an injection was placed in the medial pulvinar, a nucleus not known to be strongly connected with visual cortex, to identify possible projections from tracer spread past the lateral boundary of the SC. Four conclusions are supported by the results: 1 all early visual areas of cortex, including V1, V2, V3, and the middle temporal area, project to the superficial layers of the SC; 2 with the possible exception of the frontal eye field, few areas of cortex outside of the early visual areas project to the superficial SC, although many do, however, project to the intermediate and deep layers of the SC; 3 roughly matching retinotopy is conserved in the projections of visual areas to the SC; and 4 the projections from different visual areas are similarly dense, although projections from early visual areas appear somewhat denser than those of higher order visual areas in macaque cortex. Keywords: visual cortex, superior colliculus, frontal eye field, posterior parietal cortex, visual system

  7. Keeping in Touch With the Visual System: Spatial Alignment and Multisensory Integration of Visual-Somatosensory Inputs

    Directory of Open Access Journals (Sweden)

    Jeannette Rose Mahoney

    2015-08-01

    Full Text Available Correlated sensory inputs coursing along the individual sensory processing hierarchies arrive at multisensory convergence zones in cortex where inputs are processed in an integrative manner. The exact hierarchical level of multisensory convergence zones and the timing of their inputs are still under debate, although increasingly, evidence points to multisensory integration at very early sensory processing levels. The objective of the current study was to determine, both psychophysically and electrophysiologically, whether differential visual-somatosensory integration patterns exist for stimuli presented to the same versus opposite hemifields. Using high-density electrical mapping and complementary psychophysical data, we examined multisensory integrative processing for combinations of visual and somatosensory inputs presented to both left and right spatial locations. We assessed how early during sensory processing visual-somatosensory (VS interactions were seen in the event-related potential and whether spatial alignment of the visual and somatosensory elements resulted in differential integration effects. Reaction times to all VS pairings were significantly faster than those to the unisensory conditions, regardless of spatial alignment, pointing to engagement of integrative multisensory processing in all conditions. In support, electrophysiological results revealed significant differences between multisensory simultaneous VS and summed V+S responses, regardless of the spatial alignment of the constituent inputs. Nonetheless, multisensory effects were earlier in the aligned conditions, and were found to be particularly robust in the case of right-sided inputs (beginning at just 55ms. In contrast to previous work on audio-visual and audio-somatosensory inputs, the current work suggests a degree of spatial specificity to the earliest detectable multisensory integrative effects in response to visual-somatosensory pairings.

  8. Learning Touch Preferences with a Tactile Robot Using Dopamine Modulated STDP in a Model of Insular Cortex

    Directory of Open Access Journals (Sweden)

    Ting-Shuo eChou

    2015-07-01

    Full Text Available Neurorobots enable researchers to study how behaviors are produced by neural mechanisms in an uncertain, noisy, real-world environment. To investigate how the somatosensory system processes noisy, real-world touch inputs, we introduce a neurorobot called CARL-SJR, which has a full-body tactile sensory area. The design of CARL-SJR is such that it encourages people to communicate with it through gentle touch. CARL-SJR provides feedback to users by displaying bright colors on its surface. In the present study, we show that CARL-SJR is capable of learning associations between conditioned stimuli (CS; a color pattern on its surface and unconditioned stimuli (US; a preferred touch pattern by applying a spiking neural network (SNN with neurobiologically inspired plasticity. Specifically, we modeled the primary somatosensory cortex, prefrontal cortex, striatum, and the insular cortex, which is important for hedonic touch, to process noisy data generated directly from CARL-SJR’s tactile sensory area. To facilitate learning, we applied dopamine-modulated Spike Timing Dependent Plasticity (STDP to our simulated prefrontal cortex, striatum and insular cortex. To cope with noisy, varying inputs, the SNN was tuned to produce traveling waves of activity that carried spatiotemporal information. Despite the noisy tactile sensors, spike trains, and variations in subject hand swipes, the learning was quite robust. Further, the plasticity (i.e., STDP in primary somatosensory cortex and insular cortex in the incremental pathway of dopaminergic reward system allowed us to control CARL-SJR’s preference for touch direction without heavily pre-processed inputs. The emerged behaviors we found in this model match animal’s behaviors wherein they prefer touch in particular areas and directions. Thus, the results in this paper could serve as an explanation on the underlying neural mechanisms for developing tactile preferences and hedonic touch.

  9. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.

    Science.gov (United States)

    McGregor, Heather R; Gribble, Paul L

    2017-08-01

    Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.

  10. Optogenetic conditioning of paradigm and pattern discrimination in the rat somatosensory system.

    Directory of Open Access Journals (Sweden)

    Kenta Abe

    Full Text Available The rodent whisker-barrel cortical system is a model for studying somatosensory discrimination at high spatiotemporal precision. Here, we applied optogenetics to produce somatosensory inputs in the whisker area using one of transgenic rat lines, W-TChR2V4, which expresses channelrhodopsin-2 (ChR2 in the mechanoreceptive nerve endings around whisker follicles. An awake W-TChR2V4 rat was head-fixed and irradiated by blue LED light on the whisker area with a paradigm conditioned with a reward. The Go task was designed so the rat is allowed to receive a reward, when it licked the nozzle within 5 s after photostimulation. The No-go task was designed so as the rat has to withhold licking for at least 5 s to obtain a reward after photostimulation. The Go-task conditioning was established within 1 hr of training with a reduction in the reaction time and increase of the success rate. To investigate the relationship between the spatiotemporal pattern of sensory inputs and the behavioral output, we designed a multi-optical fiber system that irradiates the whisker area at 9 spots in a 3×3 matrix. Although the Go-task conditioning was established using synchronous irradiation of 9 spots, the success rate was decreased with an increase of the reaction time for the asynchronous irradiation. After conditioning to the Go task, the rat responded to the blue LED flash irradiated on the barrel cortex, where many neurons also express ChR2, or photostimulation of the contralateral whisker area with a similar reaction time and success rate. Synchronous activation of the peripheral mechanoreceptive nerves is suggested to drive a neural circuit in the somatosensory cortex that efficiently couples with the decision. Our optogenetic system would enable the precise evaluation of the psychophysical values, such as the reaction time and success rate, to gain some insight into the brain mechanisms underlying conditioned behaviors.

  11. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    Directory of Open Access Journals (Sweden)

    Carly Demopoulos

    2017-05-01

    Full Text Available This study compared magnetoencephalographic (MEG imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18, those with sensory processing dysfunction (SPD; N = 13 who do not meet ASD criteria, and typically developing control (TDC; N = 19 participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain.

  12. SOMATOSENSORY EVOKED POTENTIALS IN DIABETES MELLITUS TYPE - 2

    Directory of Open Access Journals (Sweden)

    Rekha

    2015-10-01

    Full Text Available Diabetes mellitus is the most common metabolic disorder affecting majority of population. It is estimated that over 400 million people throughout the world have diabetes. It has progressed to be a pandemic from an epidemic causing morbidity and mortality in the population. Among the many complications of diabetes, diabetic neuropathies contribute majorly to the morbidity associated with the disease. Axonal conduction is affected by elevated levels of protein kinase c causing neuronal ischemia; decreased ce llular myoinositol affecting sodium potassium ATPase pump leads to decreased nerve conduction; Somatosensory E voked P otentials (SSEPs reflect the activity of somatosensory pathways mediated through the dorsal columns of the spinal cord and the specific so matosensory cortex. Recording of Somatosensory Evoked Potentials in diabetics is done to assess the sensory involvement of spinal cord. Presence of SEPs provides clear evidence for axonal continuity and by using different stimulation sites, the rate of reg eneration can be determined. Both onset and peak latencies of all SEP components are prolonged in patients with diabetes. Present study is done to compare somatosensory evoked potentials in diabetics and normal subjects. MATERIALS AND METHOD S: The present study was undertaken at the Upgraded Department of Physiology, Osmania Medical College, Koti, Hyderabad. The study was conducted on subjects, both male and female in the age group of 45 to 55 years, suffering from type II diabetes excluding other neurologi cal disorders. Non - invasive method of estimation of nerve conduction studies using SFEMG/EP — Electromyography or evoked potential system (Nicolet systems — USA using surface electrodes with automated computerized monitor attached with printer is used. RESUL TS : ANOVA showed statistically significant N9 latency (right & left sides. Latencies of all the components of SSEPs were more significant than amplitudes in Diabetic

  13. Somatosensory abnormalities in knee OA.

    Science.gov (United States)

    Wylde, Vikki; Palmer, Shea; Learmonth, Ian D; Dieppe, Paul

    2012-03-01

    The aim of this study was to use quantitative sensory testing (QST) to explore the range and prevalence of somatosensory abnormalities demonstrated by patients with advanced knee OA. One hundred and seven knee OA patients and 50 age- and sex-matched healthy participants attended a 1-h QST session. Testing was performed on the medial side of the knee and the pain-free forearm. Light-touch thresholds were assessed using von Frey filaments, pressure pain thresholds using a digital pressure algometer, and thermal sensation and pain thresholds using a Thermotest MSA. Significant differences in median threshold values from knee OA patients and healthy participants were identified using Mann-Whitney U-tests. The z-score transformations were used to determine the prevalence of the different somatosensory abnormalities in knee OA patients. Testing identified 70% of knee OA patients as having at least one somatosensory abnormality. Comparison of median threshold values between knee OA patients and healthy participants revealed that patients had localized thermal and tactile hypoaesthesia and pressure hyperalgesia at the osteoarthritic knee. Tactile hypoaesthesia and pressure hyperalgesia were also present at the pain-free forearm. The most prevalent somatosensory abnormalities were tactile hypoaesthesia and pressure hyperalgesia, evident in between 20 and 34% of patients. This study found that OA patients demonstrate an array of somatosensory abnormalities, of which the most prevalent were tactile hypoaesthesia and pressure hyperalgesia. Further research is now needed to establish the clinical implications of these somatosensory abnormalities.

  14. [Pain information pathways from the periphery to the cerebral cortex].

    Science.gov (United States)

    Kuroda, Ryotaro; Kawabata, Atsufumi

    2003-07-01

    A recent PET study revealed that the first and second somatosensory cortices (SI, SII), and the anterior cingulate cortex are activated by painful peripheral stimulation in humans. It has become clear that painful signals (nociceptive information) evoked at the periphery are transmitted via various circuits to the multiple cerebral cortices where pain signals are processed and perceived. Human or clinical pain is not merely a modality of somatic sensation, but associated with the affect that accompanies sensation. Consequently, pain has a somatosensory-discriminative aspect and an affective-cognitive aspect that are processed in different but correlated brain structures in the ascending circuits. Considering the physiologic characteristics and fiber connections, the SI and SII cortices appear to be involved in somatosensory-discriminative pain, and the anterior cingulate cortex (area 24) in the affective-cognitive aspect of pain. This paper deals with the ascending pain pathways from the periphery to these cortices and their interconnections. Our recent findings on the protease-activated receptors 1 and 2 (PAR-1, and -2), which are confirmed to exist in the dorsal root ganglion cells, are also described. Activation of PAR-2 during inflammation or tissue injury at the periphery is pronociceptive, while PAR-1 appears to be antinociceptive. Based on the these findings, PAR-1 and PAR-2 are attracting interest as target molecules for new drug development.

  15. Neural cell adhesion molecule, NCAM, regulates thalamocortical axon pathfinding and the organization of the cortical somatosensory representation in mouse

    Science.gov (United States)

    Enriquez-Barreto, Lilian; Palazzetti, Cecilia; Brennaman, Leann H.; Maness, Patricia F.; Fairén, Alfonso

    2012-01-01

    To study the potential role of neural cell adhesion molecule (NCAM) in the development of thalamocortical (TC) axon topography, wild type, and NCAM null mutant mice were analyzed for NCAM expression, projection, and targeting of TC afferents within the somatosensory area of the neocortex. Here we report that NCAM and its α-2,8-linked polysialic acid (PSA) are expressed in developing TC axons during projection to the neocortex. Pathfinding of TC axons in wild type and null mutant mice was mapped using anterograde DiI labeling. At embryonic day E16.5, null mutant mice displayed misguided TC axons in the dorsal telencephalon, but not in the ventral telencephalon, an intermediate target that initially sorts TC axons toward correct neocortical areas. During the early postnatal period, rostrolateral TC axons within the internal capsule along the ventral telencephalon adopted distorted trajectories in the ventral telencephalon and failed to reach the neocortex in NCAM null mutant animals. NCAM null mutants showed abnormal segregation of layer IV barrels in a restricted portion of the somatosensory cortex. As shown by Nissl and cytochrome oxidase staining, barrels of the anterolateral barrel subfield (ALBSF) and the most distal barrels of the posteromedial barrel subfield (PMBSF) did not segregate properly in null mutant mice. These results indicate a novel role for NCAM in axonal pathfinding and topographic sorting of TC axons, which may be important for the function of specific territories of sensory representation in the somatosensory cortex. PMID:22723769

  16. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography.

    Science.gov (United States)

    Merkle, Conrad W; Srinivasan, Vivek J

    2016-01-15

    The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Functional MRI activation of somatosensory and motor cortices in a hand-grafted patient with early clinical sensorimotor recovery

    International Nuclear Information System (INIS)

    Neugroschl, C.; Denolin, V.; Schuind, F.; Holder, C. van; David, P.; Baleriaux, D.; Metens, T.

    2005-01-01

    The aim of this study was to investigate somatosensory and motor cortical activity with functional MRI (fMRI) in a hand-grafted patient with early clinical recovery. The patient had motor fMRI examinations before transplantation, and motor and passive tactile stimulations after surgery. His normal hand and a normal group were studied for comparison. A patient with complete brachial plexus palsy was studied to assess the lack of a fMRI signal in somatosensory areas in the case of total axonal disconnection. Stimulating the grafted hand revealed significant activation in the contralateral somatosensory cortical areas in all fMRI examinations. The activation was seen as early as 10 days after surgery; this effect cannot be explained by the known physiological mechanisms of nerve regeneration. Although an imagination effect cannot be excluded, the objective clinical recovery of sensory function led us to formulate the hypothesis that a connection to the somatosensory cortex was rapidly established. Additional cases and fundamental studies are needed to assess this hypothesis, but several observations were compatible with this explanation. Before surgery, imaginary motion of the amputated hand produced less intense responses than executed movements of the intact hand, whereas the normal activation pattern for right-handed subjects was found after surgery, in agreement with the good clinical motor recovery. (orig.)

  18. Resolving the organization of the third tier visual cortex in primates: a hypothesis-based approach.

    Science.gov (United States)

    Angelucci, Alessandra; Rosa, Marcello G P

    2015-01-01

    As highlighted by several contributions to this special issue, there is still ongoing debate about the number, exact location, and boundaries of the visual areas located in cortex immediately rostral to the second visual area (V2), i.e., the "third tier" visual cortex, in primates. In this review, we provide a historical overview of the main ideas that have led to four models of third tier cortex organization, which are at the center of today's debate. We formulate specific predictions of these models, and compare these predictions with experimental evidence obtained primarily in New World primates. From this analysis, we conclude that only one of these models (the "multiple-areas" model) can accommodate the breadth of available experimental evidence. According to this model, most of the third tier cortex in New World primates is occupied by two distinct areas, both representing the full contralateral visual quadrant: the dorsomedial area (DM), restricted to the dorsal half of the third visual complex, and the ventrolateral posterior area (VLP), occupying its ventral half and a substantial fraction of its dorsal half. DM belongs to the dorsal stream of visual processing, and overlaps with macaque parietooccipital (PO) area (or V6), whereas VLP belongs to the ventral stream and overlaps considerably with area V3 proposed by others. In contrast, there is substantial evidence that is inconsistent with the concept of a single elongated area V3 lining much of V2. We also review the experimental evidence from macaque monkey and humans, and propose that, once the data are interpreted within an evolutionary-developmental context, these species share a homologous (but not necessarily identical) organization of the third tier cortex as that observed in New World monkeys. Finally, we identify outstanding issues, and propose experiments to resolve them, highlighting in particular the need for more extensive, hypothesis-driven investigations in macaque and humans.

  19. Effect of Somatosensory Impairments on Balance Control

    Directory of Open Access Journals (Sweden)

    Alireza Hassanpour

    2012-10-01

    Full Text Available Background and Aim: The somatosensory system is one of the most effective systems in balance control. It consists of peripheral and central components. Knowing the role of these components in balance control assists the developing of effective rehabilitation protocols. In some diseases peripheral components and in others central components are impaired. This paper reviews the effect of impairment of peripheral and central components of the somatosensory system on balance control.Methods: In this study publication about somatosensory impairments from 1983 through 2011 in PubMed, Scopus, ProQuest, Google Scholar, Iran Medex, Iran Doc and Magiran were reviewed. Medical subject headings terms and keywords related to balance, somatosensory, somatosensory loss, and sensory integration/processing were used to perform the searches.Conclusion: Somatosensory impairments either with peripheral or central origin, can cause problems in balance control. However, these problems are not considered in some patients. In these impairments, balance training is recommended to be used alongside other routine treatments in the patients' rehabilitation programs.

  20. Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1.

    Science.gov (United States)

    Seillier, Lenka; Lorenz, Corinna; Kawaguchi, Katsuhisa; Ott, Torben; Nieder, Andreas; Pourriahi, Paria; Nienborg, Hendrikje

    2017-11-22

    Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals. We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus ("noise-correlation"). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity. Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal's behavioral or motivational context, complementing other known state-dependent gain-control mechanisms. SIGNIFICANCE STATEMENT Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless, surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This

  1. Physiological slowing and upregulation of inhibition in cortex are correlated with behavioral deficits in protein malnourished rats.

    Directory of Open Access Journals (Sweden)

    Rahul Chaudhary

    Full Text Available Protein malnutrition during early development has been correlated with cognitive and learning disabilities in children, but the neuronal deficits caused by long-term protein deficiency are not well understood. We exposed rats from gestation up to adulthood to a protein-deficient (PD diet, to emulate chronic protein malnutrition in humans. The offspring exhibited significantly impaired performance on the 'Gap-crossing' (GC task after reaching maturity, a behavior that has been shown to depend on normal functioning of the somatosensory cortex. The physiological state of the somatosensory cortex was examined to determine neuronal correlates of the deficits in behavior. Extracellular multi-unit recording from layer 4 (L4 neurons that receive direct thalamocortical inputs and layers 2/3 (L2/3 neurons that are dominated by intracortical connections in the whisker-barrel cortex of PD rats exhibited significantly low spontaneous activity and depressed responses to whisker stimulation. L4 neurons were more severely affected than L2/3 neurons. The response onset was significantly delayed in L4 cells. The peak response latency of L4 and L2/3 neurons was delayed significantly. In L2/3 and L4 of the barrel cortex there was a substantial increase in GAD65 (112% over controls and much smaller increase in NMDAR1 (12-20%, suggesting enhanced inhibition in the PD cortex. These results show that chronic protein deficiency negatively affects both thalamo-cortical and cortico-cortical transmission during somatosensory information processing. The findings support the interpretation that sustained protein deficiency interferes with features of cortical sensory processing that are likely to underlie the cognitive impairments reported in humans who have suffered from prolonged protein deficiency.

  2. Developmental Anatomy of Cerebellum of Long-Tailed Macaque (Macaca fascicularis at the First Trimester of Gestation

    Directory of Open Access Journals (Sweden)

    Tri Wahyu Pangestiningsih

    2014-11-01

    Full Text Available Long tailed macaque was one of animal models in biomedical research because it has  many similarities with humans, both anatomical and physiological properties. There were many research about cerebellum associated with its role in the coordination of muscle activity. Understanding of normal development of cerebellum long tailed macaque may help to understand about the development in human cerebellum and its abnormalities. Embryonic and fetal brain samples were obtained through caesarean section and were  then made for histological preparation stained with cresyl violet. Staining results were observed using a microscope with a digital camera. Images obtained are processed by graphics software Adobe Photoshop CS 8.0. Cerebellum Macaca fascicularis Ed40 showed the isthmus and rhombic lip that were composed of ventricular layer, mantle layer, and marginal layer. Cerebellum Macaca fascicularis Fd55 showed future lobes and future  fissures, but the cortex and medulla are not bounded clear. The cortex consisted of the external granular layer, neuroblast basket, and neuroblast stellate, while the  medulla consisted of neuroblast deep cerebellar nuclei. From this research, we concluded that neurons were on stage of proliferation and migration in the embryo aged 40 days, then differentiated and migrated to form cortex  cerebellum and deep cerebellar nuclei at the age of 55 days, but the development of the cerebellum was not fully completed yet.

  3. Connections of the medial posterior parietal cortex (area 7m) in the monkey.

    Science.gov (United States)

    Leichnetz, G R

    2001-06-01

    The afferent and efferent cortical and subcortical connections of the medial posterior parietal cortex (area 7m) were studied in cebus (Cebus apella) and macaque (Macaca fascicularis) monkeys using the retrograde and anterograde capabilities of the horseradish peroxidase (HRP) technique. The principal intraparietal corticocortical connections of area 7m in both cebus and macaque cases were with the ipsilateral medial bank of the intraparietal sulcus (MIP) and adjacent superior parietal lobule (area 5), inferior parietal lobule (area 7a), lateral bank of the IPS (area 7ip), caudal parietal operculum (PGop), dorsal bank of the caudal superior temporal sulcus (visual area MST), and medial prestriate cortex (including visual area PO and caudal medial lobule). Its principal frontal corticocortical connections were with the prefrontal cortex in the shoulder above the principal sulcus and the cortex in the shoulder above the superior ramus of the arcuate sulcus (SAS), the area purported to contain the smooth eye movement-related frontal eye field (FEFsem) in the cebus monkey by other investigators. There were moderate connections with the cortex in the rostral bank of the arcuate sulcus (purported to contain the saccade-related frontal eye field; FEFsac), supplementary eye field (SEF), and rostral dorsal premotor area (PMDr). Area 7m also had major connections with the cingulate cortex (area 23), particularly the ventral bank of the cingulate sulcus. The principal subcortical connections of area 7m were with the dorsal portion of the ventrolateral thalamic (VLc) nucleus, lateral posterior thalamic nucleus, lateral pulvinar, caudal mediodorsal thalamic nucleus and medial pulvinar, central lateral, central superior lateral, and central inferior intralaminar thalamic nuclei, dorsolateral caudate nucleus and putamen, middle region of the claustrum, nucleus of the diagonal band, zona incerta, pregeniculate nucleus, anterior and posterior pretectal nuclei, intermediate layer of

  4. Postnatal Developmental Trajectories of Neural Circuits in the Primate Prefrontal Cortex: Identifying Sensitive Periods for Vulnerability to Schizophrenia

    Science.gov (United States)

    Hoftman, Gil D.; Lewis, David A.

    2011-01-01

    Schizophrenia is a disorder of cognitive neurodevelopment with characteristic abnormalities in working memory attributed, at least in part, to alterations in the circuitry of the dorsolateral prefrontal cortex. Various environmental exposures from conception through adolescence increase risk for the illness, possibly by altering the developmental trajectories of prefrontal cortical circuits. Macaque monkeys provide an excellent model system for studying the maturation of prefrontal cortical circuits. Here, we review the development of glutamatergic and γ-aminobutyric acid (GABA)-ergic circuits in macaque monkey prefrontal cortex and discuss how these trajectories may help to identify sensitive periods during which environmental exposures, such as those associated with increased risk for schizophrenia, might lead to the types of abnormalities in prefrontal cortical function present in schizophrenia. PMID:21505116

  5. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  6. More than skin deep: body representation beyond primary somatosensory cortex.

    Science.gov (United States)

    Longo, Matthew R; Azañón, Elena; Haggard, Patrick

    2010-02-01

    The neural circuits underlying initial sensory processing of somatic information are relatively well understood. In contrast, the processes that go beyond primary somatosensation to create more abstract representations related to the body are less clear. In this review, we focus on two classes of higher-order processing beyond somatosensation. Somatoperception refers to the process of perceiving the body itself, and particularly of ensuring somatic perceptual constancy. We review three key elements of somatoperception: (a) remapping information from the body surface into an egocentric reference frame, (b) exteroceptive perception of objects in the external world through their contact with the body, and (c) interoceptive percepts about the nature and state of the body itself. Somatorepresentation, in contrast, refers to the essentially cognitive process of constructing semantic knowledge and attitudes about the body, including: (d) lexical-semantic knowledge about bodies generally and one's own body specifically, (e) configural knowledge about the structure of bodies, (f) emotions and attitudes directed towards one's own body, and (g) the link between physical body and psychological self. We review a wide range of neuropsychological, neuroimaging and neurophysiological data to explore the dissociation between these different aspects of higher somatosensory function. 2009 Elsevier Ltd. All rights reserved.

  7. Decoding the dopamine signal in macaque prefrontal cortex: a simulation study using the Cx3Dp simulator.

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler

    Full Text Available Dopamine transmission in the prefrontal cortex plays an important role in reward based learning, working memory and attention. Dopamine is thought to be released non-synaptically into the extracellular space and to reach distant receptors through diffusion. This simulation study examines how the dopamine signal might be decoded by the recipient neuron. The simulation was based on parameters from the literature and on our own quantified, structural data from macaque prefrontal area 10. The change in extracellular dopamine concentration was estimated at different distances from release sites and related to the affinity of the dopamine receptors. Due to the sparse and random distribution of release sites, a transient heterogeneous pattern of dopamine concentration emerges. Our simulation predicts, however, that at any point in the simulation volume there is sufficient dopamine to bind and activate high-affinity dopamine receptors. We propose that dopamine is broadcast to its distant receptors and any change from the local baseline concentration might be decoded by a transient change in the binding probability of dopamine receptors. Dopamine could thus provide a graduated 'teaching' signal to reinforce concurrently active synapses and cell assemblies. In conditions of highly reduced or highly elevated dopamine levels the simulations predict that relative changes in the dopamine signal can no longer be decoded, which might explain why cognitive deficits are observed in patients with Parkinson's disease, or induced through drugs blocking dopamine reuptake.

  8. Decoding the Dopamine Signal in Macaque Prefrontal Cortex: A Simulation Study Using the Cx3Dp Simulator

    Science.gov (United States)

    Spühler, Isabelle Ayumi; Hauri, Andreas

    2013-01-01

    Dopamine transmission in the prefrontal cortex plays an important role in reward based learning, working memory and attention. Dopamine is thought to be released non-synaptically into the extracellular space and to reach distant receptors through diffusion. This simulation study examines how the dopamine signal might be decoded by the recipient neuron. The simulation was based on parameters from the literature and on our own quantified, structural data from macaque prefrontal area 10. The change in extracellular dopamine concentration was estimated at different distances from release sites and related to the affinity of the dopamine receptors. Due to the sparse and random distribution of release sites, a transient heterogeneous pattern of dopamine concentration emerges. Our simulation predicts, however, that at any point in the simulation volume there is sufficient dopamine to bind and activate high-affinity dopamine receptors. We propose that dopamine is broadcast to its distant receptors and any change from the local baseline concentration might be decoded by a transient change in the binding probability of dopamine receptors. Dopamine could thus provide a graduated ‘teaching’ signal to reinforce concurrently active synapses and cell assemblies. In conditions of highly reduced or highly elevated dopamine levels the simulations predict that relative changes in the dopamine signal can no longer be decoded, which might explain why cognitive deficits are observed in patients with Parkinson’s disease, or induced through drugs blocking dopamine reuptake. PMID:23951205

  9. Touching Textured Surfaces: Cells in Somatosensory Cortex Respond Both to Finger Movement and to Surface Features

    Science.gov (United States)

    Darian-Smith, Ian; Sugitani, Michio; Heywood, John; Karita, Keishiro; Goodwin, Antony

    1982-11-01

    Single neurons in Brodmann's areas 3b and 1 of the macaque postcentral gyrus discharge when the monkey rubs the contralateral finger pads across a textured surface. Both the finger movement and the spatial pattern of the surface determine this discharge in each cell. The spatial features of the surface are represented unambiguously only in the responses of populations of these neurons, and not in the responses of the constituent cells.

  10. Long-term stability of sensitivity to intracortical microstimulation of somatosensory cortex

    Science.gov (United States)

    Callier, Thierri; Schluter, Erik W.; Tabot, Gregg A.; Miller, Lee E.; Tenore, Francesco V.; Bensmaia, Sliman J.

    2015-10-01

    Objective. The dexterous manipulation of objects depends heavily on somatosensory signals from the limb. The development of anthropomorphic robotic arms and of algorithms to decode intended movements from neuronal signals has stimulated the need to restore somatosensation for use in upper-limb neuroprostheses. Without touch and proprioception, patients have difficulty controlling prosthetic limbs to a level that justifies the required invasive surgery. Intracortical microstimulation (ICMS) through chronically implanted electrode arrays has the potential to provide rich and intuitive sensory feedback. This approach to sensory restoration requires, however, that the evoked sensations remain stable over time. Approach. To investigate the stability of ICMS-evoked sensations, we measured the ability of non-human primates to detect ICMS over experimental sessions that spanned years. Main results. We found that the performance of the animals remained highly stable over time, even when they were tested with electrodes that had experienced extensive stimulation. Significance. Given the stability of the sensations that it evokes, ICMS may thus be a viable approach for sensory restoration.

  11. Right secondary somatosensory cortex-a promising novel target for the treatment of drug-resistant neuropathic orofacial pain with repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Lindholm, Pauliina; Lamusuo, Salla; Taiminen, Tero; Pesonen, Ullamari; Lahti, Ari; Virtanen, Arja; Forssell, Heli; Hietala, Jarmo; Hagelberg, Nora; Pertovaara, Antti; Parkkola, Riitta; Jääskeläinen, Satu

    2015-07-01

    High-frequency repetitive transcranial magnetic stimulation (rTMS) of the motor cortex has analgesic effect; however, the efficacy of other cortical targets and the mode of action remain unclear. We examined the effects of rTMS in neuropathic orofacial pain, and compared 2 cortical targets against placebo. Furthermore, as dopaminergic mechanisms modulate pain responses, we assessed the influence of the functional DRD2 gene polymorphism (957C>T) and the catechol-O-methyltransferase (COMT) Val158Met polymorphism on the analgesic effect of rTMS. Sixteen patients with chronic drug-resistant neuropathic orofacial pain participated in this randomized, placebo-controlled, crossover study. Navigated high-frequency rTMS was given to the sensorimotor (S1/M1) and the right secondary somatosensory (S2) cortices. All subjects were genotyped for the DRD2 957C>T and COMT Val158Met polymorphisms. Pain, mood, and quality of life were monitored throughout the study. The numerical rating scale pain scores were significantly lower after the S2 stimulation than after the S1/M1 (P = 0.0071) or the sham (P = 0.0187) stimulations. The Brief Pain Inventory scores were also lower 3 to 5 days after the S2 stimulation than those at pretreatment baseline (P = 0.0127 for the intensity of pain and P = 0.0074 for the interference of pain) or after the S1/M1 (P = 0.001 and P = 0.0001) and sham (P = 0.0491 and P = 0.0359) stimulations. No correlations were found between the genetic polymorphisms and the analgesic effect in the present small clinical sample. The right S2 cortex is a promising new target for the treatment of neuropathic orofacial pain with high-frequency rTMS.

  12. Chemosensory Learning in the Cortex

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2011-09-01

    Full Text Available Taste is a primary reinforcer. Olfactory-taste and visual-taste association learning takes place in the primate including human orbitofrontal cortex to build representations of flavour. Rapid reversal of this learning can occur using a rule-based learning system that can be reset when an expected taste or flavour reward is not obtained, that is by negative reward prediction error, to which a population of neurons in the orbitofrontal cortex responds. The representation in the orbitofrontal cortex but not the primary taste or olfactory cortex is of the reward value of the visual / olfactory / taste / input as shown by devaluation experiments in which food is fed to satiety, and by correlations with the activations with subjective pleasantness ratings in humans. Sensory-specific satiety for taste, olfactory, visual, and oral somatosensory inputs produced by feeding a particular food to satiety are implemented it is proposed by medium-term synaptic adaptation in the orbitofrontal cortex. Cognitive factors, including word-level descriptions, modulate the representation of the reward value of food in the orbitofrontal cortex, and this effect is learned it is proposed by associative modification of top-down synapses onto neurons activated by bottom-up taste and olfactory inputs when both are active in the orbitofrontal cortex. A similar associative synaptic learning process is proposed to be part of the mechanism for the top-down attentional control to the reward value vs the sensory properties such as intensity of taste and olfactory inputs in the orbitofrontal cortex, as part of a biased activation theory of selective attention.

  13. Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex

    NARCIS (Netherlands)

    Cerliani, Leonardo; Thomas, Rajat M.; Jbabdi, Saad; Siero, Jeroen C. W.; Nanetti, Luca; Crippa, Alessandro; Gazzola, Valeria; D'Arceuil, Helen; Keysers, Christian

    The insular cortex of macaques has a wide spectrum of anatomical connections whose distribution is related to its heterogeneous cytoarchitecture. Although there is evidence of a similar cytoarchitectural arrangement in humans, the anatomical connectivity of the insula in the human brain has not yet

  14. Development of rat female genital cortex and control of female puberty by sexual touch.

    Directory of Open Access Journals (Sweden)

    Constanze Lenschow

    2017-09-01

    Full Text Available Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch.

  15. Development of rat female genital cortex and control of female puberty by sexual touch.

    Science.gov (United States)

    Lenschow, Constanze; Sigl-Glöckner, Johanna; Brecht, Michael

    2017-09-01

    Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory) male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch.

  16. Excessive body fat linked to blunted somatosensory cortex response to general reward in adolescents.

    Science.gov (United States)

    Navas, J F; Barrós-Loscertales, A; Costumero-Ramos, V; Verdejo-Román, J; Vilar-López, R; Verdejo-García, A

    2018-01-01

    The brain reward system is key to understanding adolescent obesity in the current obesogenic environment, rich in highly appetising stimuli, to which adolescents are particularly sensitive. We aimed to examine the association between body fat levels and brain reward system responsivity to general (monetary) rewards in male and female adolescents. Sixty-eight adolescents (34 females; mean age (s.d.)= 16.56 (1.35)) were measured for body fat levels with bioelectric impedance, and underwent a functional magnetic resonance imaging (fMRI) scan during the Monetary Incentive Delay (MID) task. The MID task reliably elicits brain activations associated with two fundamental aspects of reward processing: anticipation and feedback. We conducted regression analyses to examine the association between body fat and brain reward system responsivity during reward anticipation and feedback, while controlling for sex, age and socioeconomic status. We also analysed the moderating impact of sex on the relationship between fat levels and brain responsivity measures. Brain imaging analyses were corrected for multiple comparisons, with a cluster-defining threshold of Preward feedback after controlling for key sociodemographic variables. Although we did not find significant associations between body fat and brain activations during reward anticipation, S1/supramarginal gyrus activation during feedback was linked to increased negative prediction error, that is, less reward than expected, in illustrative post hoc analyses. Sex did not significantly moderate the association between body fat and brain activation in the MID task. In adolescents, higher adiposity is linked to hypo-responsivity of somatosensory regions during general (monetary) reward feedback. Findings suggest that adolescents with excess weight have blunted activation in somatosensory regions involved in reward feedback learning.

  17. Laminar pattern of cholinergic and adrenergic receptors in rat visual cortex using quantitative receptor autoradiography

    International Nuclear Information System (INIS)

    Schliebs, R.; Walch, C.

    1989-01-01

    The laminar distribution of muscarinic acetylcholine receptors, including the M1-receptor subtype, of beta-adrenergic receptors, and noradrenaline uptake sites, was studied in the adult rat visual, frontal, somatosensory and motor cortex, using quantitative receptor autoradiography. In the visual cortex, the highest density of muscarinic acetylcholine receptors was found in layer I. From layer II/III to layer V binding decreases continueously reaching a constant binding level in layers V and VI. This laminar pattern of muscarinic receptor density differs somewhat from that observed in the non-visual cortical regions examined: layer II/III contained the highest receptor density followed by layer I and IV: lowest density was found in layer V and VI. The binding profile of the muscarinic cholinergic M1-subtype through the visual cortex shows a peak in cortical layer II and in the upper part of layer VI, whereas in the non-visual cortical regions cited the binding level was high in layer II/III, moderate in layer I and IV, and low in layer VI. Layers I to IV of the visual cortex contained the highest beta-adrenergic receptor densities, whereas only low binding levels were observed in the deeper layers. A similar laminar distribution was found also in the frontal, somatosensory and motor cortex. The density of noradrenaline uptake sites was high in all layers of the cortical regions studied, but with noradrenaline uptake sites somewhat more concentrated in the superficial layers than in deeper ones. The distinct laminar pattern of cholinergic and noradrenergic receptor sites indicates a different role for acetylcholine and noradrenaline in the functional anatomy of the cerebral cortex, and in particular, the visual cortex. (author)

  18. Laminar pattern of cholinergic and adrenergic receptors in rat visual cortex using quantitative receptor autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Schliebs, R; Walch, C [Leipzig Univ. (German Democratic Republic). Bereich Medizin; Stewart, M G [Open Univ., Milton Keynes (UK)

    1989-01-01

    The laminar distribution of muscarinic acetylcholine receptors, including the M1-receptor subtype, of beta-adrenergic receptors, and noradrenaline uptake sites, was studied in the adult rat visual, frontal, somatosensory and motor cortex, using quantitative receptor autoradiography. In the visual cortex, the highest density of muscarinic acetylcholine receptors was found in layer I. From layer II/III to layer V binding decreases continueously reaching a constant binding level in layers V and VI. This laminar pattern of muscarinic receptor density differs somewhat from that observed in the non-visual cortical regions examined: layer II/III contained the highest receptor density followed by layer I and IV: lowest density was found in layer V and VI. The binding profile of the muscarinic cholinergic M1-subtype through the visual cortex shows a peak in cortical layer II and in the upper part of layer VI, whereas in the non-visual cortical regions cited the binding level was high in layer II/III, moderate in layer I and IV, and low in layer VI. Layers I to IV of the visual cortex contained the highest beta-adrenergic receptor densities, whereas only low binding levels were observed in the deeper layers. A similar laminar distribution was found also in the frontal, somatosensory and motor cortex. The density of noradrenaline uptake sites was high in all layers of the cortical regions studied, but with noradrenaline uptake sites somewhat more concentrated in the superficial layers than in deeper ones. The distinct laminar pattern of cholinergic and noradrenergic receptor sites indicates a different role for acetylcholine and noradrenaline in the functional anatomy of the cerebral cortex, and in particular, the visual cortex. (author).

  19. The primary motor and premotor areas of the human cerebral cortex.

    Science.gov (United States)

    Chouinard, Philippe A; Paus, Tomás

    2006-04-01

    Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.

  20. Voronoi-based spatial analysis reveals selective interneuron changes in the cortex of FALS mice.

    Science.gov (United States)

    Minciacchi, Diego; Kassa, Roman M; Del Tongo, Claudia; Mariotti, Raffaella; Bentivoglio, Marina

    2009-01-01

    The neurodegenerative disease amyotrophic lateral sclerosis affects lower motoneurons and corticospinal cells. Mice expressing human mutant superoxide dismutase (SOD)1 provide widely investigated models of the familial form of disease, but information on cortical changes in these mice is still limited. We here analyzed the spatial organization of interneurons characterized by parvalbumin immunoreactivity in the motor, somatosensory, and visual cortical areas of SOD1(G93A) mice. Cell number and sociological spatial behavior were assessed by digital charts of cell location in cortical samples, cell counts, and generation of two-dimensional Voronoi diagrams. In end-stage SOD1-mutant mice, an increase of parvalbumin-containing cortical interneurons was found in the motor and somatosensory areas (about 35% and 20%, respectively) with respect to wild-type littermates. Changes in cell spatial distribution, as documented by Voronoi-derived coefficients of variation, indicated increased tendency of parvalbumin cells to aggregate into clusters in the same areas of the SOD1-mutant cortex. Counts and coefficients of variation of parvalbumin cells in the visual cortex gave instead similar results in SOD1-mutant and wild-type mice. Analyses of motor and somatosensory areas in presymptomatic SOD1-mutant mice provided findings very similar to those obtained at end-stage, indicating early changes of interneurons in these cortical areas during the pathology. Altogether the data reveal in the SOD1-mutant mouse cortex an altered architectonic pattern of interneurons, which selectively affects areas involved in motor control. The findings, which can be interpreted as pathogenic factors or early disease-related adaptations, point to changes in the cortical regulation and modulation of the motor circuit during motoneuron disease.

  1. Clinical application of somatosensory amplification in psychosomatic medicine

    Directory of Open Access Journals (Sweden)

    Nakao Mutsuhiro

    2007-10-01

    Full Text Available Abstract Many patients with somatoform disorders are frequently encountered in psychosomatic clinics as well as in primary care clinics. To assess such patients objectively, the concept of somatosensory amplification may be useful. Somatosensory amplification refers to the tendency to experience a somatic sensation as intense, noxious, and disturbing. It may have a role in a variety of medical conditions characterized by somatic symptoms that are disproportionate to demonstrable organ pathology. It may also explain some of the variability in somatic symptomatology found among different patients with the same serious medical disorder. It has been assessed with a self-report questionnaire, the Somatosensory Amplification Scale. This instrument was developed in a clinical setting in the U.S., and the reliability and validity of the Japanese and Turkish versions have been confirmed as well. Many studies have attempted to clarify the specific role of somatosensory amplification as a pathogenic mechanism in somatization. It has been reported that somatosensory amplification does not correlate with heightened sensitivity to bodily sensations and that emotional reactivity exerts its influence on somatization via a negatively biased reporting style. According to our recent electroencephalographic study, somatosensory amplification appears to reflect some aspects of long-latency cognitive processing rather than short-latency interoceptive sensitivity. The concept of somatosensory amplification can be useful as an indicator of somatization in the therapy of a broad range of disorders, from impaired self-awareness to various psychiatric disorders. It also provides useful information for choosing appropriate pharmacological or psychological therapy. While somatosensory amplification has a role in the presentation of somatic symptoms, it is closely associated with other factors, namely, anxiety, depression, and alexithymia that may also influence the same

  2. Distribution of glutamatergic, GABAergic, and glycinergic neurons in the auditory pathways of macaque monkeys.

    Science.gov (United States)

    Ito, T; Inoue, K; Takada, M

    2015-12-03

    Macaque monkeys use complex communication calls and are regarded as a model for studying the coding and decoding of complex sound in the auditory system. However, little is known about the distribution of excitatory and inhibitory neurons in the auditory system of macaque monkeys. In this study, we examined the overall distribution of cell bodies that expressed mRNAs for VGLUT1, and VGLUT2 (markers for glutamatergic neurons), GAD67 (a marker for GABAergic neurons), and GLYT2 (a marker for glycinergic neurons) in the auditory system of the Japanese macaque. In addition, we performed immunohistochemistry for VGLUT1, VGLUT2, and GAD67 in order to compare the distribution of proteins and mRNAs. We found that most of the excitatory neurons in the auditory brainstem expressed VGLUT2. In contrast, the expression of VGLUT1 mRNA was restricted to the auditory cortex (AC), periolivary nuclei, and cochlear nuclei (CN). The co-expression of GAD67 and GLYT2 mRNAs was common in the ventral nucleus of the lateral lemniscus (VNLL), CN, and superior olivary complex except for the medial nucleus of the trapezoid body, which expressed GLYT2 alone. In contrast, the dorsal nucleus of the lateral lemniscus, inferior colliculus, thalamus, and AC expressed GAD67 alone. The absence of co-expression of VGLUT1 and VGLUT2 in the medial geniculate, medial superior olive, and VNLL suggests that synaptic responses in the target neurons of these nuclei may be different between rodents and macaque monkeys. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Migraine with visual aura associated with thicker visual cortex

    DEFF Research Database (Denmark)

    Gaist, David; Hougaard, Anders; Garde, Ellen

    2018-01-01

    Until recent years it was believed that migraine with aura was a disorder causing intermittent neurological symptoms, with no impact on brain structure. However, recent MRI studies have reported increased cortical thickness of visual and somatosensory areas in patients with migraine with aura...... number of subjects. In this cross-sectional study, we recruited females aged 30-60 years from the nationwide Danish Twin Registry. Brain MRI of females with migraine with aura (patients), their co-twins, and unrelated migraine-free twins (controls) were performed at a single centre and assessed...... for cortical thickness in predefined cortical areas (V1, V2, V3A, MT, somatosensory cortex), blinded to headache diagnoses. The difference in cortical thickness between patients and controls adjusted for age, and other potential confounders was assessed. Comparisons of twin pairs discordant for migraine...

  4. When seeing outweighs feeling: a role for prefrontal cortex in passive control of negative affect in blindsight.

    Science.gov (United States)

    Anders, Silke; Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk

    2009-11-01

    Affective neuroscience has been strongly influenced by the view that a 'feeling' is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients' response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients' phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with

  5. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function.

    Directory of Open Access Journals (Sweden)

    Carlos Castejon

    Full Text Available Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1 in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.

  6. TMS-induced neural noise in sensory cortex interferes with short-term memory storage

    Directory of Open Access Journals (Sweden)

    Tyler D Bancroft

    2014-03-01

    Full Text Available In a previous study, Harris et al. (2002 found disruption of vibrotactile short-term memory after applying single-pulse transcranial magnetic stimulation to primary somatosensory cortex (SI early in the maintenance period, and suggested that this demonstrated a role for SI in vibrotactile memory storage. While such a role is compatible with recent suggestions that sensory cortex is the storage substrate for working memory, it stands in contrast to a relatively large body of evidence from human EEG and single-cell recording in primates that instead points to prefrontal cortex as the storage substrate for vibrotactile memory. In the present study, we use computational methods to demonstrate how Harris et al.’s results can be reproduced by TMS-induced activity in sensory cortex and subsequent feedforward interference with memory traces stored in prefrontal cortex, thereby reconciling discordant findings in the tactile memory literature.

  7. Functional MRI of the vocalization-processing network in the macaque brain

    Directory of Open Access Journals (Sweden)

    Michael eOrtiz-Rios

    2015-04-01

    Full Text Available Using functional magnetic resonance imaging in awake behaving monkeys we investigated how species-specific vocalizations are represented in auditory and auditory-related regions of the macaque brain. We found clusters of active voxels along the ascending auditory pathway that responded to various types of complex sounds: inferior colliculus (IC, medial geniculate nucleus (MGN, auditory core, belt, and parabelt cortex, and other parts of the superior temporal gyrus (STG and sulcus (STS. Regions sensitive to monkey calls were most prevalent in the anterior STG, but some clusters were also found in frontal and parietal cortex on the basis of comparisons between responses to calls and environmental sounds. Surprisingly, we found that spectrotemporal control sounds derived from the monkey calls (scrambled calls also activated the parietal and frontal regions. Taken together, our results demonstrate that species-specific vocalizations in rhesus monkeys activate preferentially the auditory ventral stream, and in particular areas of the antero-lateral belt and parabelt.

  8. Subtype-Specific Genes that Characterize Subpopulations of Callosal Projection Neurons in Mouse Identify Molecularly Homologous Populations in Macaque Cortex.

    Science.gov (United States)

    Fame, Ryann M; Dehay, Colette; Kennedy, Henry; Macklis, Jeffrey D

    2017-03-01

    Callosal projection neurons (CPN) interconnect the neocortical hemispheres via the corpus callosum and are implicated in associative integration of multimodal information. CPN have undergone differential evolutionary elaboration, leading to increased diversity of cortical neurons-and more extensive and varied connections in neocortical gray and white matter-in primates compared with rodents. In mouse, distinct sets of genes are enriched in discrete subpopulations of CPN, indicating the molecular diversity of rodent CPN. Elements of rodent CPN functional and organizational diversity might thus be present in the further elaborated primate cortex. We address the hypothesis that genes controlling mouse CPN subtype diversity might reflect molecular patterns shared among mammals that arose prior to the divergence of rodents and primates. We find that, while early expression of the examined CPN-enriched genes, and postmigratory expression of these CPN-enriched genes in deep layers are highly conserved (e.g., Ptn, Nnmt, Cited2, Dkk3), in contrast, the examined genes expressed by superficial layer CPN show more variable levels of conservation (e.g., EphA3, Chn2). These results suggest that there has been evolutionarily differential retraction and elaboration of superficial layer CPN subpopulations between mouse and macaque, with independent derivation of novel populations in primates. Together, these data inform future studies regarding CPN subpopulations that are unique to primates and rodents, and indicate putative evolutionary relationships. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Listening to another sense: somatosensory integration in the auditory system.

    Science.gov (United States)

    Wu, Calvin; Stefanescu, Roxana A; Martel, David T; Shore, Susan E

    2015-07-01

    Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body and the auditory cortex. In this review, we explore the process of multisensory integration from (1) anatomical (inputs and connections), (2) physiological (cellular responses), (3) functional and (4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing and offers a multisensory perspective regarding the understanding of sensory disorders.

  10. Feedforward somatosensory inhibition is normal in cervical dystonia.

    Science.gov (United States)

    Ferrè, Elisa R; Ganos, Christos; Bhatia, Kailash P; Haggard, Patrick

    2015-03-01

    Insufficient cortical inhibition is a key pathophysiological finding in dystonia. Subliminal sensory stimuli were reported to transiently inhibit somatosensory processing. Here we investigated whether such subliminal feedforward inhibition is reduced in patients with cervical dystonia. Sixteen cervical dystonia patients and 16 matched healthy controls performed a somatosensory detection task. We measured the drop in sensitivity to detect a threshold-level digital nerve shock when it was preceded by a subliminal conditioning shock, compared to when it was not. Subliminal conditioning shocks reduced sensitivity to threshold stimuli to a similar extent in both patients and controls, suggesting that somatosensory subliminal feedforward inhibition is normal in cervical dystonia. Somatosensory feedforward inhibition was normal in this group of cervical dystonia patients. Our results qualify previous concepts of a general dystonic deficit in sensorimotor inhibitory processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effects of mastication on human somatosensory processing: A study using somatosensory-evoked potentials.

    Science.gov (United States)

    Nakata, Hiroki; Aoki, Mai; Sakamoto, Kiwako

    2017-04-01

    The aim of the present study was to investigate the effects of mastication on somatosensory processing using somatosensory-evoked potentials (SEPs). Fourteen healthy subjects received a median nerve stimulation at the right wrist under two conditions: Mastication and Control. SEPs were recorded in five sessions for approximately seven minutes: Pre, Post 1, 2, 3, and 4. Subjects were asked to chew gum for five minutes after one session in Mastication. Control included the same five sessions. The amplitudes and latencies of P14, N20, P25, N35, P45, and N60 components at C3', frontal N30 component at Fz, and P100 and N140 components at Pz were analyzed. The amplitude of P45-N60 was significantly smaller at Post 1, 2, 3, and 4 than at Pre in Control, but not in Mastication. The latency of P25 was significantly longer at Post 2, 3, and 4 than at Pre in Control, but not in Mastication. The latency of P100 was significantly longer at Post 2 than at Pre in Control, but not in Mastication. These results suggest the significant effects of mastication on the neural activity of human somatosensory processing. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  12. Ancestry, Plasmodium cynomolgi prevalence and rhesus macaque admixture in cynomolgus macaques (Macaca fascicularis) bred for export in Chinese breeding farms.

    Science.gov (United States)

    Zhang, Xinjun; Meng, Yuhuan; Houghton, Paul; Liu, Mingyu; Kanthaswamy, Sreetharan; Oldt, Robert; Ng, Jillian; Trask, Jessica Satkoski; Huang, Ren; Singh, Balbir; Du, Hongli; Smith, David Glenn

    2017-04-01

    Most cynomolgus macaques (Macaca fascicularis) used in the United States as animal models are imported from Chinese breeding farms without documented ancestry. Cynomolgus macaques with varying rhesus macaque ancestry proportions may exhibit differences, such as susceptibility to malaria, that affect their suitability as a research model. DNA of 400 cynomolgus macaques from 10 Chinese breeding farms was genotyped to characterize their regional origin and rhesus ancestry proportion. A nested PCR assay was used to detect Plasmodium cynomolgi infection in sampled individuals. All populations exhibited high levels of genetic heterogeneity and low levels of inbreeding and genetic subdivision. Almost all individuals exhibited an Indochinese origin and a rhesus ancestry proportion of 5%-48%. The incidence of P. cynomolgi infection in cynomolgus macaques is strongly associated with proportion of rhesus ancestry. The varying amount of rhesus ancestry in cynomolgus macaques underscores the importance of monitoring their genetic similarity in malaria research. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Molecular Correlates of Cortical Network Modulation by Long-Term Sensory Experience in the Adult Rat Barrel Cortex

    Science.gov (United States)

    Vallès, Astrid; Granic, Ivica; De Weerd, Peter; Martens, Gerard J. M.

    2014-01-01

    Modulation of cortical network connectivity is crucial for an adaptive response to experience. In the rat barrel cortex, long-term sensory stimulation induces cortical network modifications and neuronal response changes of which the molecular basis is unknown. Here, we show that long-term somatosensory stimulation by enriched environment…

  14. Body Topography Parcellates Human Sensory and Motor Cortex.

    Science.gov (United States)

    Kuehn, Esther; Dinse, Juliane; Jakobsen, Estrid; Long, Xiangyu; Schäfer, Andreas; Bazin, Pierre-Louis; Villringer, Arno; Sereno, Martin I; Margulies, Daniel S

    2017-07-01

    The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing. © The Author 2017. Published by Oxford University Press.

  15. Making sense out of spinal cord somatosensory development

    Science.gov (United States)

    Seal, Rebecca P.

    2016-01-01

    The spinal cord integrates and relays somatosensory input, leading to complex motor responses. Research over the past couple of decades has identified transcription factor networks that function during development to define and instruct the generation of diverse neuronal populations within the spinal cord. A number of studies have now started to connect these developmentally defined populations with their roles in somatosensory circuits. Here, we review our current understanding of how neuronal diversity in the dorsal spinal cord is generated and we discuss the logic underlying how these neurons form the basis of somatosensory circuits. PMID:27702783

  16. A Cognição Social e o Córtex Cerebral Social Cognition and the Brain Cortex

    Directory of Open Access Journals (Sweden)

    Judith Butman

    2001-01-01

    Full Text Available A cognição social é o processo que orienta condutas frente a outros indivíduos da mesma espécie. Várias estruturas cerebrais têm um papel chave para controlar as condutas sociais: o córtex pré-frontal ventromedial, a amígdala, o córtex somatosensorial direito e a ínsula. O córtex pré-frontal ventromedial está comprometido com o raciocínio social e com a tomada de decisões; a amígdala com o julgamento social de faces; o córtex somatosensorial direito, com a empatia e com a simulação; enquanto que a insula, com a resposta autonômica. Estes achados estão de acordo com a hipótese do marcador somático, um mecanismo específico por meio do qual adquirimos, representamos ou memorizamos os valores de nossas ações. Estas estruturas cerebrais atuam como mediadores entre as representações perceptuais dos estímulos sensoriais e a recuperação do conhecimento que o estímulo pode ativar. O sistema límbico é a zona limítrofe; nela, a psicologia se encontra com a neurologia. A correta sincronização destas zonas e estruturas, no adulto, é a chave para uma situação livre de patologia.Social cognition refers to the processes that subserve behavior in response to other individuals of the same species. Several brain structures play a key role in guiding social behaviors: ventromedial prefrontal cortex, amygdala, right somatosensory cortex and insula. The ventromedial prefrontal cortex is most directly involved in social reasoning and decision making; the amygdala in social judgment of faces, the right somatosensory cortex in empathy and simulation and the insula in autonomic responses. These findings are corresponding to the somatic marker hypothesis, particular mechanism by which we acquire, represent and retrieve the values of our actions. These brain structures appear to mediate between perceptual representation of social stimuli and retrieval of knowledge that such stimuli can trigger. The limbic system is the border zone

  17. Cortical Local Field Potential Power Is Associated with Behavioral Detection of Near-threshold Stimuli in the Rat Whisker System: Dissociation between Orbitofrontal and Somatosensory Cortices.

    Science.gov (United States)

    Rickard, Rachel E; Young, Andrew M J; Gerdjikov, Todor V

    2018-01-01

    There is growing evidence that ongoing brain oscillations may represent a key regulator of attentional processes and as such may contribute to behavioral performance in psychophysical tasks. OFC appears to be involved in the top-down modulation of sensory processing; however, the specific contribution of ongoing OFC oscillations to perception has not been characterized. Here we used the rat whiskers as a model system to further characterize the relationship between cortical state and tactile detection. Head-fixed rats were trained to report the presence of a vibrotactile stimulus (frequency = 60 Hz, duration = 2 sec, deflection amplitude = 0.01-0.5 mm) applied to a single vibrissa. We calculated power spectra of local field potentials preceding the onset of near-threshold stimuli from microelectrodes chronically implanted in OFC and somatosensory cortex. We found a dissociation between slow oscillation power in the two regions in relation to detection probability: Higher OFC but not somatosensory delta power was associated with increased detection probability. Furthermore, coherence between OFC and barrel cortex was reduced preceding successful detection. Consistent with the role of OFC in attention, our results identify a cortical network whose activity is differentially modulated before successful tactile detection.

  18. Differential expression of secreted phosphoprotein 1 in the motor cortex among primate species and during postnatal development and functional recovery.

    Directory of Open Access Journals (Sweden)

    Tatsuya Yamamoto

    Full Text Available We previously reported that secreted phosphoprotein 1 (SPP1 mRNA is expressed in neurons whose axons form the corticospinal tract (CST of the rhesus macaque, but not in the corresponding neurons of the marmoset and rat. This suggests that SPP1 expression is involved in the functional or structural specialization of highly developed corticospinal systems in certain primate species. To further examine this hypothesis, we evaluated the expression of SPP1 mRNA in the motor cortex from three viewpoints: species differences, postnatal development, and functional/structural changes of the CST after a lesion of the lateral CST (l-CST at the mid-cervical level. The density of SPP1-positive neurons in layer V of the primary motor cortex (M1 was much greater in species with highly developed corticospinal systems (i.e., rhesus macaque, capuchin monkey, and humans than in those with less developed corticospinal systems (i.e., squirrel monkey, marmoset, and rat. SPP1-positive neurons in the macaque monkey M1 increased logarithmically in layer V during postnatal development, following a time course consistent with the increase in conduction velocity of the CST. After an l-CST lesion, SPP1-positive neurons increased in layer V of the ventral premotor cortex, in which compensatory changes in CST function/structure may occur, which positively correlated with the extent of finger dexterity recovery. These results further support the concept that the expression of SPP1 may reflect functional or structural specialization of highly developed corticospinal systems in certain primate species.

  19. Cortical somatosensory reorganization in children with spastic cerebral palsy: a multimodal neuroimaging study

    Directory of Open Access Journals (Sweden)

    CHRISTOS ePAPADELIS

    2014-09-01

    Full Text Available Although cerebral palsy (CP is among the most common causes of physical disability in early childhood, we know little about the functional and structural changes of this disorder in the developing brain. Here, we investigated with three different neuroimaging modalities (magnetoencephalography (MEG, diffusion tension imaging (DTI, and resting state fMRI whether spastic CP is associated with functional and anatomical abnormalities in the sensorimotor network. Ten children participated in the study: four with diplegic CP (DCP, three with hemiplegic CP (HCP, and three typically-developing (TD children. Somatosensory evoked fields (SEFs were recorded in response to pneumatic stimuli applied to digits D1, D3, and D5 of both hands. Several parameters of water diffusion were calculated from DTI between the thalamus and the precentral and postcentral gyri in both hemispheres. The sensorimotor resting state networks (RSNs were examined by using an independent component analysis method. Tactile stimulation of the fingers elicited the first prominent cortical response at ~50 ms, in all except one child, localized over the primary somatosensory cortex (S1. In five CP children, abnormal somatotopic organization was observed in the affected (or more affected hemisphere. Euclidean distances were markedly different between the two hemispheres in the HCP children, and between DCP and TD children for both hemispheres. DTI analysis revealed decreased fractional anisotropy and increased apparent diffusion coefficient for the thalamocortical pathways in the more affected compared to less affected hemisphere in CP children. Rs-fMRI results indicated absent and/or abnormal sensorimotor RSNs for children with HCP and DCP consistent with the severity and location of their lesions. Our findings suggest an abnormal somatosensory processing mechanism in the sensorimotor network of children with CP possibly as a result of diminished thalamocortical projections.

  20. The influence of vibrissal somatosensory processing in rat superior colliculus on prey capture.

    Science.gov (United States)

    Favaro, P D N; Gouvêa, T S; de Oliveira, S R; Vautrelle, N; Redgrave, P; Comoli, E

    2011-03-10

    The lateral part of intermediate layer of superior colliculus (SCl) is a critical substrate for successful predation by rats. Hunting-evoked expression of the activity marker Fos is concentrated in SCl while prey capture in rats with NMDA lesions in SCl is impaired. Particularly affected are rapid orienting and stereotyped sequences of actions associated with predation of fast moving prey. Such deficits are consistent with the view that the deep layers of SC are important for sensory guidance of movement. Although much of the relevant evidence involves visual control of movement, less is known about movement guidance by somatosensory input from vibrissae. Indeed, our impression is that prey contact with whiskers is a likely stimulus to trigger predation. Moreover, SCl receives whisker and orofacial somatosensory information directly from trigeminal complex, and indirectly from zona incerta, parvicelular reticular formation and somatosensory barrel cortex. To better understand sensory guidance of predation by vibrissal information we investigated prey capture by rats after whisker removal and the role of superior colliculus (SC) by comparing Fos expression after hunting with and without whiskers. Rats were allowed to hunt cockroaches, after which their whiskers were removed. Two days later they were allowed to hunt cockroaches again. Without whiskers the rats were less able to retain the cockroaches after capture and less able to pursue them in the event of the cockroach escaping. The predatory behaviour of rats with re-grown whiskers returned to normal. In parallel, Fos expression in SCl induced by predation was significantly reduced in whiskerless animals. We conclude that whiskers contribute to the efficiency of rat prey capture and that the loss of vibrissal input to SCl, as reflected by reduced Fos expression, could play a critical role in predatory deficits of whiskerless rats. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Central Somatosensory Networks Respond to a De Novo Innervated Penis: A Proof of Concept in Three Spina Bifida Patients.

    Science.gov (United States)

    Kortekaas, Rudie; Nanetti, Luca; Overgoor, Max L E; de Jong, Bauke M; Georgiadis, Janniko R

    2015-09-01

    Spina bifida (SB) causes low spinal lesions, and patients often have absent genital sensation and a highly impaired sex life. TOMAX (TO MAX-imize sensation, sexuality and quality of life) is a surgical procedure whereby the penis is newly innervated using a sensory nerve originally targeting the inguinal area. Most TOMAX-treated SB patients initially experience penile stimulation as inguinal sensation, but eventually, the perception shifts to penis sensation with erotic feelings. The brain mechanisms mediating this perceptual shift, which are completely unknown, could hold relevance for understanding the brain's role in sexual development. The aim of this study was to study how a newly perceived penis would be mapped onto the brain after a lifelong disconnection. Three TOMAX-treated SB patients participated in a functional magnetic resonance imagery experiment while glans penis, inguinal area, and index finger were stimulated with a paint brush. Brush stimulation-induced activation of the primary somatosensory cortex (SI) and functional connectivity between SI and remote cerebral regions. Stimulation of the re-innervated side of the glans penis and the intact contralateral inguinal area activated a very similar location on SI. Yet, connectivity analysis identified distinct SI functional networks. In all three subjects, the middle cingulate cortex (MCC) and the parietal operculum-insular cortex (OIC) were functionally connected to SI activity during glans penis stimulation, but not to SI activity induced by inguinal stimulation. Investigating central somatosensory network activity to a de novo innervated penis in SB patients is feasible and informative. The consistent involvement of MCC and OIC above and beyond the brain network expected on the basis of inguinal stimulation suggests that these areas mediate the novel penis sensation in these patients. The potential role of MCC and OIC in this process is discussed, along with recommendations for further research.

  2. Monkey business : the illegal trade in Barbary macaques

    NARCIS (Netherlands)

    van Uhm, D.P.|info:eu-repo/dai/nl/380477025

    2016-01-01

    This article focuses on the organization, modus operandi and trade route of the illegal trade in Barbary macaques. The Barbary macaque is the most seized CITES mammal in the EU, accounting for almost 25% of live mammalrelated seizures. It is estimated that as few as 5,000-6,000 Barbary macaques

  3. Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex.

    Science.gov (United States)

    Takeuchi, Daigo; Hirabayashi, Toshiyuki; Tamura, Keita; Miyashita, Yasushi

    2011-03-18

    The primate temporal cortex implements visual long-term memory. However, how its interlaminar circuitry executes cognitive computations is poorly understood. Using linear-array multicontact electrodes, we simultaneously recorded unit activities across cortical layers in the perirhinal cortex of macaques performing a pair-association memory task. Cortical layers were estimated on the basis of current source density profiles with histological verifications, and the interlaminar signal flow was determined with cross-correlation analysis between spike trains. During the cue period, canonical "feed-forward" signals flowed from granular to supragranular layers and from supragranular to infragranular layers. During the delay period, however, the signal flow reversed to the "feed-back" direction: from infragranular to supragranular layers. This reversal of signal flow highlights how the temporal cortex differentially recruits its laminar circuits for sensory and mnemonic processing.

  4. Sexually Monomorphic Maps and Dimorphic Responses in Rat Genital Cortex.

    Science.gov (United States)

    Lenschow, Constanze; Copley, Sean; Gardiner, Jayne M; Talbot, Zoe N; Vitenzon, Ariel; Brecht, Michael

    2016-01-11

    Mammalian external genitals show sexual dimorphism [1, 2] and can change size and shape upon sexual arousal. Genitals feature prominently in the oldest pieces of figural art [3] and phallic depictions of penises informed psychoanalytic thought about sexuality [4, 5]. Despite this longstanding interest, the neural representations of genitals are still poorly understood [6]. In somatosensory cortex specifically, many studies did not detect any cortical representation of genitals [7-9]. Studies in humans debate whether genitals are represented displaced below the foot of the cortical body map [10-12] or whether they are represented somatotopically [13-15]. We wondered what a high-resolution mapping of genital representations might tell us about the sexual differentiation of the mammalian brain. We identified genital responses in rat somatosensory cortex in a region previously assigned as arm/leg cortex. Genital responses were more common in males than in females. Despite such response dimorphism, we observed a stunning anatomical monomorphism of cortical penis and clitoris input maps revealed by cytochrome-oxidase-staining of cortical layer 4. Genital representations were somatotopic and bilaterally symmetric, and their relative size increased markedly during puberty. Size, shape, and erect posture give the cortical penis representation a phallic appearance pointing to a role in sexually aroused states. Cortical genital neurons showed unusual multi-body-part responses and sexually dimorphic receptive fields. Specifically, genital neurons were co-activated by distant body regions, which are touched during mounting in the respective sex. Genital maps indicate a deep homology of penis and clitoris representations in line with a fundamentally bi-sexual layout [16] of the vertebrate brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Temporal structure in neuronal activity during working memory in Macaque parietal cortex

    CERN Document Server

    Pesaran, B; Sahami, M; Mitra, P; Andersen, R A

    2000-01-01

    A number of cortical structures are reported to have elevated single unit firing rates sustained throughout the memory period of a working memory task. How the nervous system forms and maintains these memories is unknown but reverberating neuronal network activity is thought to be important. We studied the temporal structure of single unit (SU) activity and simultaneously recorded local field potential (LFP) activity from area LIP in the inferior parietal lobe of two awake macaques during a memory-saccade task. Using multitaper techniques for spectral analysis, which play an important role in obtaining the present results, we find elevations in spectral power in a 50--90 Hz (gamma) frequency band during the memory period in both SU and LFP activity. The activity is tuned to the direction of the saccade providing evidence for temporal structure that codes for movement plans during working memory. We also find SU and LFP activity are coherent during the memory period in the 50--90 Hz gamma band and no consisten...

  6. Vestibular-somatosensory interactions: effects of passive whole-body rotation on somatosensory detection.

    Directory of Open Access Journals (Sweden)

    Elisa Raffaella Ferrè

    Full Text Available Vestibular signals are strongly integrated with information from several other sensory modalities. For example, vestibular stimulation was reported to improve tactile detection. However, this improvement could reflect either a multimodal interaction or an indirect interaction driven by vestibular effects on spatial attention and orienting. Here we investigate whether natural vestibular activation induced by passive whole-body rotation influences tactile detection. In particular, we assessed the ability to detect faint tactile stimuli to the fingertips of the left and right hand during spatially congruent or incongruent rotations. We found that passive whole-body rotations significantly enhanced sensitivity to faint shocks, without affecting response bias. Critically, this enhancement of somatosensory sensitivity did not depend on the spatial congruency between the direction of rotation and the hand stimulated. Thus, our results support a multimodal interaction, likely in brain areas receiving both vestibular and somatosensory signals.

  7. Assessing Somatosensory Utilization during Unipedal Postural Control

    OpenAIRE

    Goel, Rahul; De Dios, Yiri E.; Gadd, Nichole E.; Caldwell, Erin E.; Peters, Brian T.; Reschke, Millard F.; Bloomberg, Jacob J.; Oddsson, Lars I. E.; Mulavara, Ajitkumar P.

    2017-01-01

    Multisensory—visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orie...

  8. Membrane potential correlates of sensory perception in mouse barrel cortex.

    Science.gov (United States)

    Sachidhanandam, Shankar; Sreenivasan, Varun; Kyriakatos, Alexandros; Kremer, Yves; Petersen, Carl C H

    2013-11-01

    Neocortical activity can evoke sensory percepts, but the cellular mechanisms remain poorly understood. We trained mice to detect single brief whisker stimuli and report perceived stimuli by licking to obtain a reward. Pharmacological inactivation and optogenetic stimulation demonstrated a causal role for the primary somatosensory barrel cortex. Whole-cell recordings from barrel cortex neurons revealed membrane potential correlates of sensory perception. Sensory responses depended strongly on prestimulus cortical state, but both slow-wave and desynchronized cortical states were compatible with task performance. Whisker deflection evoked an early (sensory response that was encoded through cell-specific reversal potentials. A secondary late (50-400 ms) depolarization was enhanced on hit trials compared to misses. Optogenetic inactivation revealed a causal role for late excitation. Our data reveal dynamic processing in the sensory cortex during task performance, with an early sensory response reliably encoding the stimulus and later secondary activity contributing to driving the subjective percept.

  9. Associative learning changes cross-modal representations in the gustatory cortex.

    Science.gov (United States)

    Vincis, Roberto; Fontanini, Alfredo

    2016-08-30

    A growing body of literature has demonstrated that primary sensory cortices are not exclusively unimodal, but can respond to stimuli of different sensory modalities. However, several questions concerning the neural representation of cross-modal stimuli remain open. Indeed, it is poorly understood if cross-modal stimuli evoke unique or overlapping representations in a primary sensory cortex and whether learning can modulate these representations. Here we recorded single unit responses to auditory, visual, somatosensory, and olfactory stimuli in the gustatory cortex (GC) of alert rats before and after associative learning. We found that, in untrained rats, the majority of GC neurons were modulated by a single modality. Upon learning, both prevalence of cross-modal responsive neurons and their breadth of tuning increased, leading to a greater overlap of representations. Altogether, our results show that the gustatory cortex represents cross-modal stimuli according to their sensory identity, and that learning changes the overlap of cross-modal representations.

  10. Multi-sensory integration in brainstem and auditory cortex.

    Science.gov (United States)

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2012-11-16

    Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory-somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory-somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience

  11. Sub-threshold cross-modal sensory interaction in the thalamus: lemniscal auditory response in the medial geniculate nucleus is modulated by somatosensory stimulation.

    Science.gov (United States)

    Donishi, T; Kimura, A; Imbe, H; Yokoi, I; Kaneoke, Y

    2011-02-03

    Recent studies have highlighted cross-modal sensory modulations in the primary sensory areas in the cortex, suggesting that cross-modal sensory interactions occur at early stages in the hierarchy of sensory processing. Multi-modal sensory inputs from non-lemniscal thalamic nuclei and cortical inputs from the secondary sensory and association areas are considered responsible for the modulations. On the other hand, there is little evidence of cross-sensory modal sensitivities in lemniscal thalamic nuclei. In the present study, we were interested in a possibility that somatosensory stimulation may affect auditory response in the ventral division (MGV) of the medial geniculate nucleus (MG), a lemniscal thalamic nucleus that is considered to be dedicated to auditory uni-modal processing. Experiments were performed on anesthetized rats. Transcutaneous electrical stimulation of the hindpaw, which is thought to evoke nociception and seems unrelated to auditory processing, modulated unit discharges in response to auditory stimulation (noise bursts). The modulation was observed in the MGV and non-lemniscal auditory thalamic nuclei such as the dorsal and medial divisions of the MG. The major effect of somatosensory stimulation was suppression. The most robust suppression was induced by electrical stimuli given simultaneously with noise bursts or preceding noise bursts by 10 to 20 ms. The results indicate that the lemniscal (MGV) and non-lemniscal auditory nuclei are subject to somatosensory influence. In everyday experience intense somatosensory stimuli such as pain interrupt our ongoing hearing or interfere with clear recognition of sound. The modulation of lemniscal auditory response by somatosensory stimulation may underlie such cross-modal disturbance of auditory perception as a form of cross-modal switching of attention. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Human exposure to herpesvirus B-seropositive macaques, Bali, Indonesia.

    Science.gov (United States)

    Engel, Gregory A; Jones-Engel, Lisa; Schillaci, Michael A; Suaryana, Komang Gde; Putra, Artha; Fuentes, Agustin; Henkel, Richard

    2002-08-01

    Herpesvirus B (Cercopithecine herpesvirus 1) has been implicated as the cause of approximately 40 cases of meningoencephalitis affecting persons in direct or indirect contact with laboratory macaques. However, the threat of herpesvirus B in nonlaboratory settings worldwide remains to be addressed. We investigated the potential for exposure to herpesvirus B in workers at a "monkey forest" (a temple that has become a tourist attraction because of its monkeys) in Bali, Indonesia. In July 2000, 105 workers at the Sangeh Monkey Forest in Central Bali were surveyed about contact with macaques (Macaca fascicularis). Nearly half of those interviewed had either been bitten or scratched by a macaque. Prevalence of injury was higher in those who fed macaques. Serum from 31 of 38 Sangeh macaques contained antibodies to herpesvirus B. We conclude that workers coming into contact with macaques at the Sangeh Monkey Forest are at risk for exposure to herpesvirus B.

  13. Layer- and column-specific knockout of NMDA receptors in pyramidal neurons of the mouse barrel cortex.

    Directory of Open Access Journals (Sweden)

    Rachel Aronoff

    2007-11-01

    Full Text Available Viral vectors injected into the mouse brain offer the possibility for localized genetic modifications in a highly controlled manner. Lentivector injection into mouse neocortex transduces cells within a diameter of approximately 200µm, which closely matches the lateral scale of a column in barrel cortex. The depth and volume of the injection determines which cortical layer is transduced. Furthermore, transduced gene expression from the lentivector can be limited to predominantly pyramidal neurons by using a 1.3kb fragment of the αCaMKII promoter. This technique therefore allows genetic manipulation of a specific cell type in defined columns and layers of the neocortex. By expressing Cre recombinase from such a lentivector in gene-targeted mice carrying a floxed gene, highly specific genetic lesions can be induced. Here, we demonstrate the utility of this approach by specifically knocking out NMDA receptors (NMDARs in pyramidal neurons in the somatosensory barrel cortex of gene-targeted mice carrying floxed NMDAR 1 genes. Neurons transduced with lentivector encoding GFP and Cre recombinase exhibit not only reductions in NMDAR 1 mRNA levels, but reduced NMDAR-dependent currents and pairing-induced synaptic potentiation. This technique for knockout of NMDARs in a cell type, column- and layer-specific manner in the mouse somatosensory cortex may help further our understanding of the functional roles of NMDARs in vivo during sensory perception and learning.

  14. The influence of visual perspective on the somatosensory steady-state response during pain observation

    Directory of Open Access Journals (Sweden)

    Dora Linsey Canizales

    2013-12-01

    Full Text Available The observation and evaluation of other's pain activate part of the neuronal network involved in the actual experience of pain, including those regions subserving the sensori-discriminative dimension of pain. This was largely interpreted as evidence showing that part of the painful experience can be shared vicariously. Here, we investigated the effect of the visual perspective from which other people’s pain is seen on the cortical response to continuous 25 Hz non-painful somatosensory stimulation (somatosensory steady-state response: SSSR. Based on the shared representation framework, we expected first-person visual perspective (1PP to yield more changes in cortical activity than third-person visual perspective (3PP during pain observation. Twenty healthy adults were instructed to rate a series of pseudo-dynamic pictures depicting hands in either painful or non-painful scenarios, presented either in 1PP (0°-45° angle or 3PP (180° angle, while changes in brain activity was measured with a 128-electode EEG system. The ratings demonstrated that the same scenarios were rated on average as more painful when observed from the 1PP than from the 3PP. As expected from previous works, the SSSR response was decreased after stimulus onset over the left caudal part of the parieto-central cortex, contralateral to the stimulation side. Moreover, the difference between the SSSR was of greater amplitude when the painful situations were presented from the 1PP compared to the 3PP. Together, these results suggest that a visuospatial congruence between the viewer and the observed scenarios is associated with both a higher subjective evaluation of pain and an increased modulation in the somatosensory representation of observed pain. These findings are discussed with regards to the potential role of visual perspective in pain communication and empathy.

  15. Steady-state dynamics and experience-dependent plasticity of dendritic spines of layer 4/5a pyramidal neurons in somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Amaya Miquelajauregui

    2014-04-01

    Full Text Available The steady state dynamics and experience-dependent plasticity of dendritic spines of layer (L 2/3 and L5B cortical pyramidal neurons have recently been assessed using in vivo two-photon microscopy (Trachtenberg et al., 2002; Zuo et al., 2005; Holtmaat et al., 2006. In contrast, not much is known about spine dynamics in L4/5a neurons, regarded as direct recipients of thalamocortical input (Constantinople and Bruno, 2013. In the adult mouse somatosensory cortex (SCx, the transcription factor Ebf2 is enriched in excitatory neurons of L4/5a, including pyramidal neurons. We assessed the molecular and electrophysiological properties of these neurons as well as the morphology of their apical tufts (Scholl analysis and cortical outputs (optogenetics within the SCx. To test the hypothesis that L4/5a pyramidal neurons play an important role in sensory processing (given their key laminar position; soma depth ~450-480 µm, we successfully labeled them in Ebf2-Cre mice with EGFP by expressing recombinant rAAV vectors in utero. Using longitudinal in vivo two-photon microscopy through a craniotomy (Mostany and Portera-Cailliau, 2008, we repeatedly imaged spines in apical dendritic tufts of L4/5a neurons under basal conditions and after sensory deprivation. Under steady-state conditions in adults, the morphology of the apical tufts and the mean spine density were stable at 0.39 ± 0.05 spines/μm (comparable to L5B, Mostany et al., 2011. Interestingly, spine elimination increases 4-8 days after sensory deprivation, probably due to input loss. This suggests that Ebf2+ L4/5a neurons could be involved in early steps of processing of thalamocortical information.

  16. Neuromagnetic beta and gamma oscillations in the somatosensory cortex after music training in healthy older adults and a chronic stroke patient.

    Science.gov (United States)

    Jamali, Shahab; Fujioka, Takako; Ross, Bernhard

    2014-06-01

    Extensive rehabilitation training can lead to functional improvement even years after a stroke. Although neuronal plasticity is considered as a main origin of such ameliorations, specific subtending mechanisms need further investigation. Our aim was to obtain objective neuromagnetic measures sensitive to brain reorganizations induced by a music-supported training. We applied 20-Hz vibrotactile stimuli to the index finger and the ring finger, recorded somatosensory steady-state responses with magnetoencephalography, and analyzed the cortical sources displaying oscillations synchronized with the external stimuli in two groups of healthy older adults before and after musical training or without training. In addition, we applied the same analysis for an anecdotic report of a single chronic stroke patient with hemiparetic arm and hand problems, who received music-supported therapy (MST). Healthy older adults showed significant finger separation within the primary somatotopic map. Beta dipole sources were more anterior located compared to gamma sources. An anterior shift of sources and increases in synchrony between the stimuli and beta and gamma oscillations were observed selectively after music training. In the stroke patient a normalization of somatotopic organization was observed after MST, with digit separation recovered after training and stimulus induced gamma synchrony increased. The proposed stimulation paradigm captures the integrity of primary somatosensory hand representation. Source position and synchronization between the stimuli and gamma activity are indices, sensitive to music-supported training. Responsiveness was also observed in a chronic stroke patient, encouraging for the music-supported therapy. Notably, changes in somatosensory responses were observed, even though the therapy did not involve specific sensory discrimination training. The proposed protocol can be used for monitoring changes in neuronal organization during training and will improve

  17. TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers.

    Science.gov (United States)

    Ptito, M; Fumal, A; de Noordhout, A Martens; Schoenen, J; Gjedde, A; Kupers, R

    2008-01-01

    Various non-visual inputs produce cross-modal responses in the visual cortex of early blind subjects. In order to determine the qualitative experience associated with these occipital activations, we systematically stimulated the entire occipital cortex using single pulse transcranial magnetic stimulation (TMS) in early blind subjects and in blindfolded seeing controls. Whereas blindfolded seeing controls reported only phosphenes following occipital cortex stimulation, some of the blind subjects reported tactile sensations in the fingers that were somatotopically organized onto the visual cortex. The number of cortical sites inducing tactile sensations appeared to be related to the number of hours of Braille reading per day, Braille reading speed and dexterity. These data, taken in conjunction with previous anatomical, behavioural and functional imaging results, suggest the presence of a polysynaptic cortical pathway between the somatosensory cortex and the visual cortex in early blind subjects. These results also add new evidence that the activity of the occipital lobe in the blind takes its qualitative expression from the character of its new input source, therefore supporting the cortical deference hypothesis.

  18. Orosensory and Homeostatic Functions of the Insular Taste Cortex.

    Science.gov (United States)

    de Araujo, Ivan E; Geha, Paul; Small, Dana M

    2012-03-01

    The gustatory aspect of the insular cortex is part of the brain circuit that controls ingestive behaviors based on chemosensory inputs. However, the sensory properties of foods are not restricted to taste and should also include salient features such as odor, texture, temperature, and appearance. Therefore, it is reasonable to hypothesize that specialized circuits within the central taste pathways must be involved in representing several other oral sensory modalities in addition to taste. In this review, we evaluate current evidence indicating that the insular gustatory cortex functions as an integrative circuit, with taste-responsive regions also showing heightened sensitivity to olfactory, somatosensory, and even visual stimulation. We also review evidence for modulation of taste-responsive insular areas by changes in physiological state, with taste-elicited neuronal responses varying according to the nutritional state of the organism. We then examine experimental support for a functional map within the insular cortex that might reflect the various sensory and homeostatic roles associated with this region. Finally, we evaluate the potential role of the taste insular cortex in weight-gain susceptibility. Taken together, the current experimental evidence favors the view that the insular gustatory cortex functions as an orosensory integrative system that not only enables the formation of complex flavor representations but also mediates their modulation by the internal state of the body, playing therefore a central role in food intake regulation.

  19. Attention and normalization circuits in macaque V1

    Science.gov (United States)

    Sanayei, M; Herrero, J L; Distler, C; Thiele, A

    2015-01-01

    Attention affects neuronal processing and improves behavioural performance. In extrastriate visual cortex these effects have been explained by normalization models, which assume that attention influences the circuit that mediates surround suppression. While normalization models have been able to explain attentional effects, their validity has rarely been tested against alternative models. Here we investigate how attention and surround/mask stimuli affect neuronal firing rates and orientation tuning in macaque V1. Surround/mask stimuli provide an estimate to what extent V1 neurons are affected by normalization, which was compared against effects of spatial top down attention. For some attention/surround effect comparisons, the strength of attentional modulation was correlated with the strength of surround modulation, suggesting that attention and surround/mask stimulation (i.e. normalization) might use a common mechanism. To explore this in detail, we fitted multiplicative and additive models of attention to our data. In one class of models, attention contributed to normalization mechanisms, whereas in a different class of models it did not. Model selection based on Akaike's and on Bayesian information criteria demonstrated that in most cells the effects of attention were best described by models where attention did not contribute to normalization mechanisms. This demonstrates that attentional influences on neuronal responses in primary visual cortex often bypass normalization mechanisms. PMID:25757941

  20. Genetic characterization of rhesus macaques (Macaca mulatta) in Nepal.

    Science.gov (United States)

    Kyes, Randall C; Jones-Engel, Lisa; Chalise, Mukesh K; Engel, Gregory; Heidrich, John; Grant, Richard; Bajimaya, Shyam S; McDonough, John; Smith, David Glenn; Ferguson, Betsy

    2006-05-01

    Indian-origin rhesus macaques (Macaca mulatta) have long served as an animal model for the study of human disease and behavior. Given the current shortage of Indian-origin rhesus, many researchers have turned to rhesus macaques from China as a substitute. However, a number of studies have identified marked genetic differences between the Chinese and Indian animals. We investigated the genetic characteristics of a third rhesus population, the rhesus macaques of Nepal. Twenty-one rhesus macaques at the Swoyambhu Temple in Kathmandu, Nepal, were compared with more than 300 Indian- and Chinese-origin rhesus macaques. The sequence analyses of two mitochondrial DNA (mtDNA) loci, from the HVS I and 12 S rRNA regions, showed that the Nepali animals were more similar to Indian-origin than to Chinese-origin animals. The distribution of alleles at 24 short tandem repeat (STR) loci distributed across 17 chromosomes also showed greater similarity between the Nepali and Indian-origin animals. Finally, an analysis of seven major histocompatibility complex (MHC) alleles showed that the Nepali animals expressed Class I alleles that are common to Indian-origin animals, including Mamu-A*01. All of these analyses also revealed a low level of genetic diversity within this Nepali rhesus sample. We conclude that the rhesus macaques of Nepal more closely resemble rhesus macaques of Indian origin than those of Chinese origin. As such, the Nepali rhesus may offer an additional resource option for researchers who wish to maintain research protocols with animals that possess key genetic features characteristic of Indian-origin rhesus macaques. 2005 Wiley-Liss, Inc.

  1. Adaptation in human somatosensory cortex as a model of sensory memory construction: a study using high-density EEG.

    Science.gov (United States)

    Bradley, Claire; Joyce, Niamh; Garcia-Larrea, Luis

    2016-01-01

    Adaptation in sensory cortices has been seen as a mechanism allowing the creation of transient memory representations. Here we tested the adapting properties of early responses in human somatosensory areas SI and SII by analysing somatosensory-evoked potentials over the very first repetitions of a stimulus. SI and SII generators were identified by well-defined scalp potentials and source localisation from high-density 128-channel EEG. Earliest responses (~20 ms) from area 3b in the depth of the post-central gyrus did not show significant adaptation to stimuli repeated at 300 ms intervals. In contrast, responses around 45 ms from the crown of the gyrus (areas 1 and 2) rapidly lessened to a plateau and abated at the 20th stimulation, and activities from SII in the parietal operculum at ~100 ms displayed strong adaptation with a steady amplitude decrease from the first repetition. Although responses in both SI (1-2) and SII areas showed adapting properties and hence sensory memory capacities, evidence of sensory mismatch detection has been demonstrated only for responses reflecting SII activation. This may index the passage from an early form of sensory storage in SI to more operational memory codes in SII, allowing the prediction of forthcoming input and the triggering of a specific signal when such input differs from the previous sequence. This is consistent with a model whereby the length of temporal receptive windows increases with progression in the cortical hierarchy, in parallel with the complexity and abstraction of neural representations.

  2. Cortical chemoarchitecture shapes macroscale effective functional connectivity patterns in macaque cerebral cortex

    NARCIS (Netherlands)

    Turk, Elise; Scholtens, Lianne H.; van den Heuvel, Martijn P.

    The mammalian cortex is a complex system of-at the microscale level-interconnected neurons and-at the macroscale level-interconnected areas, forming the infrastructure for local and global neural processing and information integration. While the effects of regional chemoarchitecture on local

  3. Mimetic Muscles in a Despotic Macaque (Macaca mulatta) Differ from Those in a Closely Related Tolerant Macaque (M. nigra).

    Science.gov (United States)

    Burrows, Anne M; Waller, Bridget M; Micheletta, Jérôme

    2016-10-01

    Facial displays (or expressions) are a primary means of visual communication among conspecifics in many mammalian orders. Macaques are an ideal model among primates for investigating the co-evolution of facial musculature, facial displays, and social group size/behavior under the umbrella of "ecomorphology". While all macaque species share some social behaviors, dietary, and ecological parameters, they display a range of social dominance styles from despotic to tolerant. A previous study found a larger repertoire of facial displays in tolerant macaque species relative to despotic species. The present study was designed to further explore this finding by comparing the gross morphological features of mimetic muscles between the Sulawesi macaque (Macaca nigra), a tolerant species, and the rhesus macaque (M. mulatta), a despotic species. Five adult M. nigra heads were dissected and mimetic musculature was compared to those from M. mulatta. Results showed that there was general similarity in muscle presence/absence between the species as well as muscle form except for musculature around the external ear. M. mulatta had more musculature around the external ear than M. nigra. In addition, M. nigra lacked a zygomaticus minor while M. mulatta is reported to have one. These morphological differences match behavioral observations documenting a limited range of ear movements used by M. nigra during facial displays. Future studies focusing on a wider phylogenetic range of macaques with varying dominance styles may further elucidate the roles of phylogeny, ecology, and social variables in the evolution of mimetic muscles within Macaca Anat Rec, 299:1317-1324, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Index finger somatosensory evoked potentials in blind Braille readers.

    Science.gov (United States)

    Giriyappa, Dayananda; Subrahmanyam, Roopakala Mysore; Rangashetty, Srinivasa; Sharma, Rajeev

    2009-01-01

    Traditionally, vision has been considered the dominant modality in our multi-sensory perception of the surrounding world. Sensory input via non-visual tracts becomes of greater behavioural relevance in totally blind individuals to enable effective interaction with the world around them. These include audition and tactile perceptions, leading to an augmentation in these perceptions when compared with normal sighted individuals. The objective of the present work was to study the index finger somatosensory evoked potentials (SEPs) in totally blind and normal sighted individuals. SEPs were recorded in 15 Braille reading totally blind females and compared with 15 age-matched normal sighted females. Latency and amplitudes of somatosensory evoked potential waveforms (N9, N13, and N20) were measured. Amplitude of N20 SEP (a cortical somatosensory evoked potential) was significantly larger in the totally blind than in normal sighted individuals (p Braille reading right index finger. Totally blind Braille readers have larger N20 amplitude, suggestive of greater somatosensory cortical representation of the Braille reading index finger.

  5. Evaluation of the kappa-opioid receptor-selective tracer [11C]GR103545 in awake rhesus macaques

    International Nuclear Information System (INIS)

    Schoultz, Bent W.; Hjornevik, Trine; Willoch, Frode; Marton, Janos; Noda, Akihiro; Murakami, Yoshihiro; Miyoshi, Sosuke; Nishimura, Shintaro; Aarstad, Erik; Drzezga, Alexander; Matsunari, Ichiro; Henriksen, Gjermund

    2010-01-01

    The recent development in radiosynthesis of the 11 C-carbamate function increases the potential of [ 11 C]GR103545, which for the last decade has been regarded as promising for imaging the kappa-opioid receptor (κ-OR) with PET. In the present study, [ 11 C]GR103545 was evaluated in awake rhesus macaques. Separate investigations were performed to clarify the OR subtype selectivity of this compound. Regional brain uptake kinetics of [ 11 C]GR103545 was studied 0-120 min after injection. The binding affinity and opioid subtype selectivity of [ 11 C]GR103545 was determined in cells transfected with cloned human opioid receptors. In vitro binding assays demonstrated a high affinity of GR103545 for κ-OR (K i = 0.02 ±0.01 nM) with excellent selectivity over μ-OR (6 x 10 2 -fold) and δ-OR (2 x 10 4 -fold). PET imaging revealed a volume of distribution (V T ) pattern consistent with the known distribution of κ-OR, with striatum = temporal cortex > cingulate cortex > frontal cortex > parietal cortex > thalamus > cerebellum. [ 11 C]GR103545 is selective for κ-OR and holds promise for use to selectively depict and quantify this receptor in humans by means of PET. (orig.)

  6. Late emergence of the vibrissa direction selectivity map in the rat barrel cortex.

    Science.gov (United States)

    Kremer, Yves; Léger, Jean-François; Goodman, Dan; Brette, Romain; Bourdieu, Laurent

    2011-07-20

    In the neocortex, neuronal selectivities for multiple sensorimotor modalities are often distributed in topographical maps thought to emerge during a restricted period in early postnatal development. Rodent barrel cortex contains a somatotopic map for vibrissa identity, but the existence of maps representing other tactile features has not been clearly demonstrated. We addressed the issue of the existence in the rat cortex of an intrabarrel map for vibrissa movement direction using in vivo two-photon imaging. We discovered that the emergence of a direction map in rat barrel cortex occurs long after all known critical periods in the somatosensory system. This map is remarkably specific, taking a pinwheel-like form centered near the barrel center and aligned to the barrel cortex somatotopy. We suggest that this map may arise from intracortical mechanisms and demonstrate by simulation that the combination of spike-timing-dependent plasticity at synapses between layer 4 and layer 2/3 and realistic pad stimulation is sufficient to produce such a map. Its late emergence long after other classical maps suggests that experience-dependent map formation and refinement continue throughout adult life.

  7. Somatosensory tinnitus: Current evidence and future perspectives

    Science.gov (United States)

    Greco, Antonio; Turchetta, Rosaria; Altissimi, Giancarlo; de Vincentiis, Marco; Cianfrone, Giancarlo

    2017-01-01

    In some individuals, tinnitus can be modulated by specific maneuvers of the temporomandibular joint, head and neck, eyes, and limbs. Neuroplasticity seems to play a central role in this capacity for modulation, suggesting that abnormal interactions between the sensory modalities, sensorimotor systems, and neurocognitive and neuroemotional networks may contribute to the development of somatosensory tinnitus. Current evidence supports a link between somatic disorders and higher modulation of tinnitus, especially in patients with a normal hearing threshold. Patients with tinnitus who have somatic disorders seems to have a higher chance of modulating their tinnitus with somatic maneuvers; consistent improvements in tinnitus symptoms have been observed in patients with temporomandibular joint disease following targeted therapy for temporomandibular disorders. Somatosensory tinnitus is often overlooked by otolaryngologists and not fully investigated during the diagnostic process. Somatic disorders, when identified and treated, can be a valid therapeutic target for tinnitus; however, somatic screening of subjects for somatosensory tinnitus is imperative for correct selection of patients who would benefit from a multidisciplinary somatic approach. PMID:28553764

  8. Somatosensory tinnitus: Current evidence and future perspectives.

    Science.gov (United States)

    Ralli, Massimo; Greco, Antonio; Turchetta, Rosaria; Altissimi, Giancarlo; de Vincentiis, Marco; Cianfrone, Giancarlo

    2017-06-01

    In some individuals, tinnitus can be modulated by specific maneuvers of the temporomandibular joint, head and neck, eyes, and limbs. Neuroplasticity seems to play a central role in this capacity for modulation, suggesting that abnormal interactions between the sensory modalities, sensorimotor systems, and neurocognitive and neuroemotional networks may contribute to the development of somatosensory tinnitus. Current evidence supports a link between somatic disorders and higher modulation of tinnitus, especially in patients with a normal hearing threshold. Patients with tinnitus who have somatic disorders seems to have a higher chance of modulating their tinnitus with somatic maneuvers; consistent improvements in tinnitus symptoms have been observed in patients with temporomandibular joint disease following targeted therapy for temporomandibular disorders. Somatosensory tinnitus is often overlooked by otolaryngologists and not fully investigated during the diagnostic process. Somatic disorders, when identified and treated, can be a valid therapeutic target for tinnitus; however, somatic screening of subjects for somatosensory tinnitus is imperative for correct selection of patients who would benefit from a multidisciplinary somatic approach.

  9. Neurochemical changes in the pericalcarine cortex in congenital blindness attributable to bilateral anophthalmia.

    Science.gov (United States)

    Coullon, Gaelle S L; Emir, Uzay E; Fine, Ione; Watkins, Kate E; Bridge, Holly

    2015-09-01

    Congenital blindness leads to large-scale functional and structural reorganization in the occipital cortex, but relatively little is known about the neurochemical changes underlying this cross-modal plasticity. To investigate the effect of complete and early visual deafferentation on the concentration of metabolites in the pericalcarine cortex, (1)H magnetic resonance spectroscopy was performed in 14 sighted subjects and 5 subjects with bilateral anophthalmia, a condition in which both eyes fail to develop. In the pericalcarine cortex, where primary visual cortex is normally located, the proportion of gray matter was significantly greater, and levels of choline, glutamate, glutamine, myo-inositol, and total creatine were elevated in anophthalmic relative to sighted subjects. Anophthalmia had no effect on the structure or neurochemistry of a sensorimotor cortex control region. More gray matter, combined with high levels of choline and myo-inositol, resembles the profile of the cortex at birth and suggests that the lack of visual input from the eyes might have delayed or arrested the maturation of this cortical region. High levels of choline and glutamate/glutamine are consistent with enhanced excitatory circuits in the anophthalmic occipital cortex, which could reflect a shift toward enhanced plasticity or sensitivity that could in turn mediate or unmask cross-modal responses. Finally, it is possible that the change in function of the occipital cortex results in biochemical profiles that resemble those of auditory, language, or somatosensory cortex. Copyright © 2015 the American Physiological Society.

  10. Characterization of 47 MHC class I sequences in Filipino cynomolgus macaques

    Science.gov (United States)

    Campbell, Kevin J.; Detmer, Ann M.; Karl, Julie A.; Wiseman, Roger W.; Blasky, Alex J.; Hughes, Austin L.; Bimber, Benjamin N.; O’Connor, Shelby L.; O’Connor, David H.

    2009-01-01

    Cynomolgus macaques (Macaca fascicularis) provide increasingly common models for infectious disease research. Several geographically distinct populations of these macaques from Southeast Asia and the Indian Ocean island of Mauritius are available for pathogenesis studies. Though host genetics may profoundly impact results of such studies, similarities and differences between populations are often overlooked. In this study we identified 47 full-length MHC class I nucleotide sequences in 16 cynomolgus macaques of Filipino origin. The majority of MHC class I sequences characterized (39 of 47) were unique to this regional population. However, we discovered eight sequences with perfect identity and six sequences with close similarity to previously defined MHC class I sequences from other macaque populations. We identified two ancestral MHC haplotypes that appear to be shared between Filipino and Mauritian cynomolgus macaques, notably a Mafa-B haplotype that has previously been shown to protect Mauritian cynomolgus macaques against challenge with a simian/human immunodeficiency virus, SHIV89.6P. We also identified a Filipino cynomolgus macaque MHC class I sequence for which the predicted protein sequence differs from Mamu-B*17 by a single amino acid. This is important because Mamu-B*17 is strongly associated with protection against simian immunodeficiency virus (SIV) challenge in Indian rhesus macaques. These findings have implications for the evolutionary history of Filipino cynomolgus macaques as well as for the use of this model in SIV/SHIV research protocols. PMID:19107381

  11. Evaluation of the kappa-opioid receptor-selective tracer [{sup 11}C]GR103545 in awake rhesus macaques

    Energy Technology Data Exchange (ETDEWEB)

    Schoultz, Bent W. [University of Oslo, Department of Chemistry, Oslo (Norway); Hjornevik, Trine; Willoch, Frode [University of Oslo, Centre for Molecular Biology and Neuroscience and Institute of Basic Medical Sciences, Oslo (Norway); Akershus University Hospital, Department of Nuclear Medicine, Loerenskog (Norway); Marton, Janos [ABX Advanced Biochemical Compounds GmbH, Radeberg (Germany); Noda, Akihiro; Murakami, Yoshihiro; Miyoshi, Sosuke; Nishimura, Shintaro [Medical and Pharmacological Research Center Foundation, Basic Research Department, Hakui City, Ishikawa (Japan); Aarstad, Erik [University College of London, Institute of Nuclear Medicine, London (United Kingdom); Drzezga, Alexander [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Matsunari, Ichiro [Medical and Pharmacological Research Center Foundation, Clinical Research Department, Hakui City, Ishikawa (Japan); Henriksen, Gjermund [University of Oslo, Department of Chemistry, Oslo (Norway); Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany)

    2010-06-15

    The recent development in radiosynthesis of the {sup 11}C-carbamate function increases the potential of [{sup 11}C]GR103545, which for the last decade has been regarded as promising for imaging the kappa-opioid receptor ({kappa}-OR) with PET. In the present study, [{sup 11}C]GR103545 was evaluated in awake rhesus macaques. Separate investigations were performed to clarify the OR subtype selectivity of this compound. Regional brain uptake kinetics of [{sup 11}C]GR103545 was studied 0-120 min after injection. The binding affinity and opioid subtype selectivity of [{sup 11}C]GR103545 was determined in cells transfected with cloned human opioid receptors. In vitro binding assays demonstrated a high affinity of GR103545 for {kappa}-OR (K{sub i} = 0.02 {+-}0.01 nM) with excellent selectivity over {mu}-OR (6 x 10{sup 2}-fold) and {delta}-OR (2 x 10{sup 4}-fold). PET imaging revealed a volume of distribution (V{sub T}) pattern consistent with the known distribution of {kappa}-OR, with striatum = temporal cortex > cingulate cortex > frontal cortex > parietal cortex > thalamus > cerebellum. [{sup 11}C]GR103545 is selective for {kappa}-OR and holds promise for use to selectively depict and quantify this receptor in humans by means of PET. (orig.)

  12. Thalamic connections of the core auditory cortex and rostral supratemporal plane in the macaque monkey.

    Science.gov (United States)

    Scott, Brian H; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C

    2017-11-01

    In the primate auditory cortex, information flows serially in the mediolateral dimension from core, to belt, to parabelt. In the caudorostral dimension, stepwise serial projections convey information through the primary, rostral, and rostrotemporal (AI, R, and RT) core areas on the supratemporal plane, continuing to the rostrotemporal polar area (RTp) and adjacent auditory-related areas of the rostral superior temporal gyrus (STGr) and temporal pole. In addition to this cascade of corticocortical connections, the auditory cortex receives parallel thalamocortical projections from the medial geniculate nucleus (MGN). Previous studies have examined the projections from MGN to auditory cortex, but most have focused on the caudal core areas AI and R. In this study, we investigated the full extent of connections between MGN and AI, R, RT, RTp, and STGr using retrograde and anterograde anatomical tracers. Both AI and R received nearly 90% of their thalamic inputs from the ventral subdivision of the MGN (MGv; the primary/lemniscal auditory pathway). By contrast, RT received only ∼45% from MGv, and an equal share from the dorsal subdivision (MGd). Area RTp received ∼25% of its inputs from MGv, but received additional inputs from multisensory areas outside the MGN (30% in RTp vs. 1-5% in core areas). The MGN input to RTp distinguished this rostral extension of auditory cortex from the adjacent auditory-related cortex of the STGr, which received 80% of its thalamic input from multisensory nuclei (primarily medial pulvinar). Anterograde tracers identified complementary descending connections by which highly processed auditory information may modulate thalamocortical inputs. © 2017 Wiley Periodicals, Inc.

  13. Attention and normalization circuits in macaque V1.

    Science.gov (United States)

    Sanayei, M; Herrero, J L; Distler, C; Thiele, A

    2015-04-01

    Attention affects neuronal processing and improves behavioural performance. In extrastriate visual cortex these effects have been explained by normalization models, which assume that attention influences the circuit that mediates surround suppression. While normalization models have been able to explain attentional effects, their validity has rarely been tested against alternative models. Here we investigate how attention and surround/mask stimuli affect neuronal firing rates and orientation tuning in macaque V1. Surround/mask stimuli provide an estimate to what extent V1 neurons are affected by normalization, which was compared against effects of spatial top down attention. For some attention/surround effect comparisons, the strength of attentional modulation was correlated with the strength of surround modulation, suggesting that attention and surround/mask stimulation (i.e. normalization) might use a common mechanism. To explore this in detail, we fitted multiplicative and additive models of attention to our data. In one class of models, attention contributed to normalization mechanisms, whereas in a different class of models it did not. Model selection based on Akaike's and on Bayesian information criteria demonstrated that in most cells the effects of attention were best described by models where attention did not contribute to normalization mechanisms. This demonstrates that attentional influences on neuronal responses in primary visual cortex often bypass normalization mechanisms. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Differences in the Electrophysiological Properties of Mouse Somatosensory Layer 2/3 Neurons In Vivo and Slice Stem from Intrinsic Sources Rather than a Network-Generated High Conductance State

    Science.gov (United States)

    2018-01-01

    Abstract Synaptic activity in vivo can potentially alter the integration properties of neurons. Using recordings in awake mice, we targeted somatosensory layer 2/3 pyramidal neurons and compared neuronal properties with those from slices. Pyramidal cells in vivo had lower resistance and gain values, as well as broader spikes and increased spike frequency adaptation compared to the same cells in slices. Increasing conductance in neurons using dynamic clamp to levels observed in vivo, however, did not lessen the differences between in vivo and slice conditions. Further, local application of tetrodotoxin (TTX) in vivo blocked synaptic-mediated membrane voltage fluctuations but had little impact on pyramidal cell membrane input resistance and time constant values. Differences in electrophysiological properties of layer 2/3 neurons in mouse somatosensory cortex, therefore, stem from intrinsic sources separate from synaptic-mediated membrane voltage fluctuations. PMID:29662946

  15. Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey.

    Science.gov (United States)

    Morecraft, R J; Cipolloni, P B; Stilwell-Morecraft, K S; Gedney, M T; Pandya, D N

    2004-01-26

    The cytoarchitecture and connections of the caudal cingulate and medial somatosensory areas were investigated in the rhesus monkey. There is a stepwise laminar differentiation starting from retrosplenial area 30 towards the isocortical regions of the medial parietal cortex. This includes a gradational emphasis on supragranular laminar organization and general reduction of the infragranular neurons as one proceeds from area 30 toward the medial parietal regions, including areas 3, 1, 2, 5, 31, and the supplementary sensory area (SSA). This trend includes a progressive increase in layer IV neurons. Area 23c in the lower bank and transitional somatosensory area (TSA) in the upper bank of the cingulate sulcus appear as nodal points. From area 23c and TSA the architectonic progression can be traced in three directions: one culminates in areas 3a and 3b (core line), the second in areas 1, 2, and 5 (belt line), and the third in areas 31 and SSA (root line). These architectonic gradients are reflected in the connections of these regions. Thus, cingulate areas (30, 23a, and 23b) are connected with area 23c and TSA on the one hand and have widespread connections with parieto-temporal, frontal, and parahippocampal (limbic) regions on the other. Area 23c has connections with areas 30, 23a and b, and TSA as well as with medial somatosensory areas 3, 1, 2, 5, and SSA. Area 23c also has connections with parietotemporal, frontal, and limbic areas similar to areas 30, 23a, and 23b. Area TSA, like area 23c, has connections with areas 3, 1, 2, 5, and SSA. However, it has only limited connections with the parietotemporal and frontal regions and none with the parahippocampal gyrus. Medial area 3 is mainly connected to medial and dorsal sensory areas 3, 1, 2, 5, and SSA and to areas 4 and 6 as well as to supplementary (M2 or area 6m), rostral cingulate (M3 or areas 24c and d), and caudal cingulate (M4 or areas 23c and d) motor cortices. Thus, in parallel with the architectonic gradient

  16. Assessing Somatosensory Utilization during Unipedal Postural Control.

    Science.gov (United States)

    Goel, Rahul; De Dios, Yiri E; Gadd, Nichole E; Caldwell, Erin E; Peters, Brian T; Reschke, Millard F; Bloomberg, Jacob J; Oddsson, Lars I E; Mulavara, Ajitkumar P

    2017-01-01

    Multisensory-visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects "stood" supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control.

  17. Somatosensory evoked potentials and dynamic postural assessment in adolescent idiopathic scoliosis

    Directory of Open Access Journals (Sweden)

    Dalia Mohamed Ezz El Mikkawy

    2016-01-01

    Conclusion The study demonstrates abnormal somatosensory and postural function in patients with AIS, and a significant inter-relationship between the scoliotic angle, the somatosensory system, and posture. Thus, optimum assessment and treatment of neurological pathway and balance are important in these patients.

  18. Rhesus macaques (Macaca mulatta are natural hosts of specific Staphylococcus aureus lineages.

    Directory of Open Access Journals (Sweden)

    Sanne van den Berg

    Full Text Available Currently, there is no animal model known that mimics natural nasal colonization by Staphylococcus aureus in humans. We investigated whether rhesus macaques are natural nasal carriers of S. aureus. Nasal swabs were taken from 731 macaques. S. aureus isolates were typed by pulsed-field gel electrophoresis (PFGE, spa repeat sequencing and multi-locus sequence typing (MLST, and compared with human strains. Furthermore, the isolates were characterized by several PCRs. Thirty-nine percent of 731 macaques were positive for S. aureus. In general, the macaque S. aureus isolates differed from human strains as they formed separate PFGE clusters, 50% of the isolates were untypeable by agr genotyping, 17 new spa types were identified, which all belonged to new sequence types (STs. Furthermore, 66% of macaque isolates were negative for all superantigen genes. To determine S. aureus nasal colonization, three nasal swabs from 48 duo-housed macaques were taken during a 5 month period. In addition, sera were analyzed for immunoglobulin G and A levels directed against 40 staphylococcal proteins using a bead-based flow cytometry technique. Nineteen percent of the animals were negative for S. aureus, and 17% were three times positive. S. aureus strains were easily exchanged between macaques. The antibody response was less pronounced in macaques compared to humans, and nasal carrier status was not associated with differences in serum anti-staphylococcal antibody levels. In conclusion, rhesus macaques are natural hosts of S. aureus, carrying host-specific lineages. Our data indicate that rhesus macaques are useful as an autologous model for studying S. aureus nasal colonization and infection prevention.

  19. [Maturation of cerebral somatosensory evoked potentials].

    Science.gov (United States)

    Cadilhac, J; Zhu, Y; Georgesco, M; Echenne, B; Rodiere, M

    1985-07-01

    Cerebral somatosensory evoked potentials (SEPs) were elicited by stimulation of the median nerve and/or posterior tibial nerve in 117 children of 1 day to 16 years old. A major negative wave (N) was consistently recorded from the parietal region of the scalp when the arm was stimulated. The peak latency, the onset latency, the rising time and the duration of H wave are closely correlated with age and body length. The latencies are shortest in the subjects of 1-3 years old. SEPs to lower extremity stimulation were inconstant in the infants before the age of one. The major positive wave (P) has a variable topographic distribution along the middle line, over the scalp. The latencies are also very variable in the different subjects of the same age as well as in the same subject with different locations of active electrode. Among the parameters studied as for N wave, only the rising time of P wave is significantly correlated with age. The latencies of P wave have the shortest value in the subjects of 1-3 years old. The comparison of SEPs to upper and to lower limb stimulations shows that there is no relationship between them in respect to their morphology and amplitude. The minimum value of the latencies of N and P waves was observed at the same age but the difference between the peak latencies of P and N waves in the same subject increases considerably after 2 years of age and reaches the adult value after 5 years of age. These resultats indicate that the maturation of the peripheral somatosensory pathways proceeds at a higher rate than that of the central somatosensory pathways, that the maturation of the somatosensory pathways of the upper limb precedes that of the lower limb, and that the rising time of N or P waves is a good index of cortical maturation. The clinical utility of these SEPs in pediatrics is discussed.

  20. Motor cortex stimulation in the treatment of central and neuropathic pain.

    Science.gov (United States)

    Nguyen, J P; Lefaucher, J P; Le Guerinel, C; Eizenbaum, J F; Nakano, N; Carpentier, A; Brugières, P; Pollin, B; Rostaing, S; Keravel, Y

    2000-01-01

    Motor cortex stimulation has been proposed for the treatment of central pain. Thirty-two patients with refractory central and neuropathic pain of peripheral origin were treated by chronic stimulation of the motor cortex between May 1993 and January 1997. The mean follow-up was 27.3 months. The first 24 patients were operated on according to the technique described by Tsubokawa. The last 13 cases (8 new patients and 5 reinterventions) were operated on by a technique including localization by superficial CT reconstruction of the central region and neuronavigator guidance. The position of the central sulcus was confirmed by the use of intraoperative somatosensory evoked potentials. The somatotopic organization of the motor cortex was established preoperatively by studying the motor responses at stimulation of the motor cortex through the dura. Ten of the 13 patients with central pain (77%) and 10 of the 12 patients with neuropathic facial pain experienced substantial pain relief (83.3%). One of the three patients with post-paraplegia pain was clearly improved. A satisfactory result was obtained in one patient with pain related to plexus avulsion and in one patient with pain related to intercostal herpes zoster. None of the patients developed epileptic seizures. Our results confirm that chronic stimulation of the motor cortex is an effective method in treating certain forms of refractory pain.

  1. Category-specific responses to faces and objects in primate auditory cortex

    Directory of Open Access Journals (Sweden)

    Kari L Hoffman

    2008-03-01

    Full Text Available Auditory and visual signals often occur together, and the two sensory channels are known to infl uence each other to facilitate perception. The neural basis of this integration is not well understood, although other forms of multisensory infl uences have been shown to occur at surprisingly early stages of processing in cortex. Primary visual cortex neurons can show frequency-tuning to auditory stimuli, and auditory cortex responds selectively to certain somatosensory stimuli, supporting the possibility that complex visual signals may modulate early stages of auditory processing. To elucidate which auditory regions, if any, are responsive to complex visual stimuli, we recorded from auditory cortex and the superior temporal sulcus while presenting visual stimuli consisting of various objects, neutral faces, and facial expressions generated during vocalization. Both objects and conspecifi c faces elicited robust fi eld potential responses in auditory cortex sites, but the responses varied by category: both neutral and vocalizing faces had a highly consistent negative component (N100 followed by a broader positive component (P180 whereas object responses were more variable in time and shape, but could be discriminated consistently from the responses to faces. The face response did not vary within the face category, i.e., for expressive vs. neutral face stimuli. The presence of responses for both objects and neutral faces suggests that auditory cortex receives highly informative visual input that is not restricted to those stimuli associated with auditory components. These results reveal selectivity for complex visual stimuli in a brain region conventionally described as non-visual unisensory cortex.

  2. Gene targeting in adult rhesus macaque fibroblasts

    Directory of Open Access Journals (Sweden)

    Wolf Don P

    2008-03-01

    Full Text Available Abstract Background Gene targeting in nonhuman primates has the potential to produce critical animal models for translational studies related to human diseases. Successful gene targeting in fibroblasts followed by somatic cell nuclear transfer (SCNT has been achieved in several species of large mammals but not yet in primates. Our goal was to establish the protocols necessary to achieve gene targeting in primary culture of adult rhesus macaque fibroblasts as a first step in creating nonhuman primate models of genetic disease using nuclear transfer technology. Results A primary culture of adult male fibroblasts was transfected with hTERT to overcome senescence and allow long term in vitro manipulations. Successful gene targeting of the HPRT locus in rhesus macaques was achieved by electroporating S-phase synchronized cells with a construct containing a SV40 enhancer. Conclusion The cell lines reported here could be used for the production of null mutant rhesus macaque models of human genetic disease using SCNT technology. In addition, given the close evolutionary relationship and biological similarity between rhesus macaques and humans, the protocols described here may prove useful in the genetic engineering of human somatic cells.

  3. Neurophysiological changes in the afferent somatosensory system indices in the case of vertebrogenic spine pathology in miners

    Directory of Open Access Journals (Sweden)

    Sharbanu Battakova

    2013-04-01

    Full Text Available Objectives: The aim of the paper was to prove that job conditions impact the state of the afferent part of the somatosensory system in miners. Materials and Methods: Data analysis of the electrophysiological examination of the syndrome in 148 patients, aged from 28 to 55 years, with a mild, moderate and severe degree of the pain syndrome was performed. The control group included 28 people without any pain symptoms. The method used was that of somatosensory stimulated potential (SSP with the potentials amplitude and latency main components taken into consideration. Results: It was proven that the true decrease of the somatosensory stimulated potential SSP N22 (p < 0.05 component amplitudes by 41%; N30 component amplitude tend to decrease by 26%. This proves that the true N22 (p < 0.01 component latency increase by 63.8% corresponds to afferent excitation wave conductibility under the pain syndrome of vertebral pathology through sensitivity pathways mainly in the posterior spinal cord columns and then, through the parts of the brain stem, involving the cerebral cortex, which is confirmed by the fact that the P38 and P46 components amplitudes tend to decrease. In addition to this, the proven N10–N13 (p < 0.05, N13–N20 (p < 0.05, N10–N20 (p < 0.05 intervals increases by 43.5–41.8–38.7%, respectively, correspond to the nervous impulse conductibility through the peripheral nervous system structures and allow to reveal the subclinical slowdown of impulse conductibility, which indicates that the conducting system is changed even under a mild pain syndrome. Conclusions: It was found that the data obtained allow for the better understanding of how the neuropathological pain syndrome under vertebral spine pathology is formed.

  4. Pharmacokinetics of Cefovecin in Cynomolgus Macaques (Macaca fascicularis), Olive Baboons (Papio anubis), and Rhesus Macaques (Macaca mulatto)

    Energy Technology Data Exchange (ETDEWEB)

    Raabe, Brigitte M.; Lovaglio, Jamie A.; Grover, GScott; Brown, Scott A.; Boucher, Joseph F.; Yuan, Yang; Civil, Jacqueline R.; Gillhouse, Kimberly A.; Stubbs, Makeida N.; Hoggatt, Amber F.; Halliday, Lisa C.; Fortman, Jeffrey D.

    2011-05-01

    Cefovecin sodium is a long-acting, third-generation, cephalosporin antibiotic approved for the treatment of skin infections in dogs and cats. The pharmacokinetic properties of cefovecin were evaluated in cynomolgus macaques (Macaca fascicularis), olive baboons (Papio anubis), and rhesus macaques (Macaca mulatto) by using a single-dose (8 mg/kg SC) dosing regimen. Plasma cefovecin concentrations were determined by using ultra-performance liquid chromatography with tandem mass spectrometry, and a noncompartmental model was used to determine pharmacokinetic parameters. The half-life of cefovecin was 4.95 {+-} 1.47 h in cynomolgus macaques, 9.17 {+-} 1.84 h in olive baboons, and 8.40 {+-} 2.53 h in rhesus macaques. These values are considerably lower than the half-lives previously published for dogs (133 h) and cats (166 h). The extended half-life of cefovecin in dogs and cats is speculated to be due to active reabsorption of drug in the kidney tubules because plasma clearance is well below the normal glomerular filtration rate. In nonhuman primates, renal clearance rates approximated plasma clearance rates, suggesting that active renal reabsorption of cefovecin does not occur in these species. The pharmacokinetic properties of cefovecin in nonhuman primates are vastly different from the pharmacokinetic properties in dogs and cats, precluding its use as a long-acting antibiotic in nonhuman primates. This study highlights the importance of performing pharmacokinetic studies prior to extralabel drug usage.

  5. Rotational displacement skills in rhesus macaques (Macaca mulatta).

    Science.gov (United States)

    Hughes, Kelly D; Santos, Laurie R

    2012-11-01

    Rotational displacement tasks, in which participants must track an object at a hiding location within an array while the array rotates, exhibit a puzzling developmental pattern in humans. Human children take an unusually long time to master this task and tend to solve rotational problems through the use of nongeometric features or landmarks as opposed to other kinds of spatial cues. We investigated whether these developmental characteristics are unique to humans by testing rotational displacement skills in a monkey species, the rhesus macaque (Macaca mulatta), using a looking-time method. Monkeys first saw food hidden in two differently colored boxes within an array. The array was then rotated 180° and the boxes reopened to reveal the food in an expected or unexpected location. Our first two experiments explored the developmental time-course of performance on this rotational displacement task. We found that adult macaques looked longer at the unexpected event, but such performance was not mirrored in younger-aged macaques. In a third study, we systematically varied featural information and visible access to the array to investigate which strategies adult macaques used in solving rotational displacements. Our results show that adult macaques need both sets of information to solve the task. Taken together, these results suggest both similarities and differences in mechanisms by which human and nonhuman primates develop this spatial skill.

  6. Estimation of Shear Wave Speed in the Rhesus Macaques Uterine Cervix

    Science.gov (United States)

    Huang, Bin; Drehfal, Lindsey C.; Rosado-Mendez, Ivan M.; Guerrero, Quinton W.; Palmeri, Mark L.; Simmons, Heather A.; Feltovich, Helen; Hall, Timothy J.

    2016-01-01

    Cervical softness is a critical parameter in pregnancy. Clinically, preterm birth is associated with premature cervical softening and post-dates birth is associated with delayed cervical softening. In practice, the assessment of softness is subjective, based on digital examination. Fortunately, objective, quantitative techniques to assess softness and other parameters associated with microstructural cervical change are emerging. One of these is shear wave speed (SWS) estimation. In principle, this allows objective characterization of stiffness because waves travel more slowly in softer tissue. We are studying SWS in humans and rhesus macaques, the latter in order to accelerate translation from bench to bedside. For the current study, we estimated SWS in ex vivo cervices of rhesus macaques, n=24 nulliparous (never given birth) and n=9 multiparous (delivered at least 1 baby). Misoprostol (a prostaglandin used to soften human cervices prior to gynecological procedures) was administered to 13 macaques prior to necropsy (nulliparous: 7, multiparous: 6). SWS measurements were made at predetermined locations from the distal to proximal end of the cervix on both the anterior and posterior cervix, with 5 repeat measures at each location. The intent was to explore macaque cervical microstructure, including biological and spatial variability, to elucidate the similarities and differences between the macaque and the human cervix in order to facilitate future in vivo studies. We found that SWS is dependent on location in the normal nonpregnant macaque cervix, as in the human cervix. Unlike the human cervix, we detected no difference between ripened and unripened rhesus macaque cervix samples, nor nulliparous versus multiparous samples, although we observed a trend toward stiffer tissue in nulliparous samples. We found rhesus macaque cervix to be much stiffer than human, which is important for technique refinement. These findings are useful for guiding study of cervical

  7. Mapping the Hierarchical Layout of the Structural Network of the Macaque Prefrontal Cortex

    NARCIS (Netherlands)

    Goulas, A.; Uylings, H.B.M.; Stiers, P.

    2014-01-01

    A consensus on the prefrontal cortex (PFC) holds that it is pivotal for flexible behavior and the integration of the cognitive, affective, and motivational domains. Certain models have been put forth and a dominant model postulates a hierarchical anterior-posterior gradient. The structural

  8. Manual lateralization in macaques: handedness, target laterality and task complexity.

    Science.gov (United States)

    Regaiolli, Barbara; Spiezio, Caterina; Vallortigara, Giorgio

    2016-01-01

    Non-human primates represent models to understand the evolution of handedness in humans. Despite several researches have been investigating non-human primates handedness, few studies examined the relationship between target position, hand preference and task complexity. This study aimed at investigating macaque handedness in relation to target laterality and tastiness, as well as task complexity. Seven pig-tailed macaques (Macaca nemestrina) were involved in three different "two alternative choice" tests: one low-level task and two high-level tasks (HLTs). During the first and the third tests macaques could select a preferred food and a non-preferred food, whereas by modifying the design of the second test, macaques were presented with no-difference alternative per trial. Furthermore, a simple-reaching test was administered to assess hand preference in a social context. Macaques showed hand preference at individual level both in simple and complex tasks, but not in the simple-reaching test. Moreover, target position seemed to affect hand preference in retrieving an object in the low-level task, but not in the HLT. Additionally, individual hand preference seemed to be affected from the tastiness of the item to be retrieved. The results suggest that both target laterality and individual motivation might influence hand preference of macaques, especially in simple tasks.

  9. Context-Dependent Modulation of Functional Connectivity: Secondary Somatosensory Cortex to Prefrontal Cortex Connections in Two-Stimulus-Interval Discrimination Tasks

    OpenAIRE

    Chow, Stephanie S.; Romo, Ranulfo; Brody, Carlos D.

    2009-01-01

    In a complex world, a sensory cue may prompt different actions in different contexts. A laboratory example of context-dependent sensory processing is the two-stimulus-interval discrimination task. In each trial, a first stimulus (f1) must be stored in short-term memory and later compared with a second stimulus (f2), for the animal to come to a binary decision. Prefrontal cortex (PFC) neurons need to interpret the f1 information in one way (perhaps with a positive weight) and the f2 informatio...

  10. MEG event-related desynchronization and synchronization deficits during basic somatosensory processing in individuals with ADHD

    Directory of Open Access Journals (Sweden)

    Wang Frank

    2008-02-01

    Full Text Available Abstract Background Attention-Deficit/Hyperactivity Disorder (ADHD is a prevalent, complex disorder which is characterized by symptoms of inattention, hyperactivity, and impulsivity. Convergent evidence from neurobiological studies of ADHD identifies dysfunction in fronto-striatal-cerebellar circuitry as the source of behavioural deficits. Recent studies have shown that regions governing basic sensory processing, such as the somatosensory cortex, show abnormalities in those with ADHD suggesting that these processes may also be compromised. Methods We used event-related magnetoencephalography (MEG to examine patterns of cortical rhythms in the primary (SI and secondary (SII somatosensory cortices in response to median nerve stimulation, in 9 adults with ADHD and 10 healthy controls. Stimuli were brief (0.2 ms non-painful electrical pulses presented to the median nerve in two counterbalanced conditions: unpredictable and predictable stimulus presentation. We measured changes in strength, synchronicity, and frequency of cortical rhythms. Results Healthy comparison group showed strong event-related desynchrony and synchrony in SI and SII. By contrast, those with ADHD showed significantly weaker event-related desynchrony and event-related synchrony in the alpha (8–12 Hz and beta (15–30 Hz bands, respectively. This was most striking during random presentation of median nerve stimulation. Adults with ADHD showed significantly shorter duration of beta rebound in both SI and SII except for when the onset of the stimulus event could be predicted. In this case, the rhythmicity of SI (but not SII in the ADHD group did not differ from that of controls. Conclusion Our findings suggest that somatosensory processing is altered in individuals with ADHD. MEG constitutes a promising approach to profiling patterns of neural activity during the processing of sensory input (e.g., detection of a tactile stimulus, stimulus predictability and facilitating our

  11. Homologous mechanisms of visuospatial working memory maintenance in macaque and human: Properties and sources

    Science.gov (United States)

    Reinhart, Robert M.G.; Heitz, Richard P.; Purcell, Braden A.; Weigand, Pauline K.; Schall, Jeffrey D.; Woodman, Geoffrey F.

    2012-01-01

    Although areas of frontal cortex are thought to be critical for maintaining information in visuospatial working memory, the event-related potential (ERP) index of maintenance is found over posterior cortex in humans. In the present study, we reconcile these seemingly contradictory findings. Here we show that macaque monkeys and humans exhibit the same posterior ERP signature of working memory maintenance that predicts the precision of the memory-based behavioral responses. In addition, we show that the specific pattern of rhythmic oscillations in the alpha band, recently demonstrated to underlie the human visual working memory ERP component, is also present in monkeys. Next, we concurrently recorded intracranial local field potentials from two prefrontal and another frontal cortical area to determine their contribution to the surface potential indexing maintenance. The local fields in the two prefrontal areas, but not the cortex immediately posterior, exhibited amplitude modulations, timing, and relationships to behavior indicating that they contribute to the generation of the surface ERP component measured from the distal posterior electrodes. Rhythmic neural activity in the theta and gamma bands during maintenance provided converging support for the engagement of the same brain regions. These findings demonstrate that nonhuman primates have homologous electrophysiological signatures of visuospatial working memory to those of humans and that a distributed neural network, including frontal areas, underlies the posterior ERP index of visuospatial working memory maintenance. PMID:22649249

  12. Human-wildlife conflict: proximate predictors of aggression between humans and rhesus macaques in India.

    Science.gov (United States)

    Beisner, Brianne A; Heagerty, Allison; Seil, Shannon K; Balasubramaniam, Krishna N; Atwill, Edward R; Gupta, Brij K; Tyagi, Praveen C; Chauhan, Netrapal P S; Bonal, B S; Sinha, P R; McCowan, Brenda

    2015-02-01

    Macaques live in close contact with humans across South and Southeast Asia, and direct interaction is frequent. Aggressive contact is a concern in many locations, particularly among populations of rhesus and longtail macaques that co-inhabit urbanized cities and towns with humans. We investigated the proximate factors influencing the occurrence of macaque aggression toward humans as well as human aggression toward macaques to determine the extent to which human behavior elicits macaque aggression and vice versa. We conducted a 3-month study of four free-ranging populations of rhesus macaques in Dehradun, India from October-December 2012, using event sampling to record all instances of human-macaque interaction (N = 3120). Our results show that while human aggression was predicted by the potential for economic losses or damage, macaque aggression was influenced by aggressive or intimidating behavior by humans as well as recent rates of conspecific aggression. Further, adult female macaques participated in aggression more frequently than expected, whereas adult and subadult males participated as frequently as expected. Our analyses demonstrate that neither human nor macaque aggression is unprovoked. Rather, both humans and macaques are responding to one another's behavior. Mitigation of human-primate conflict, and indeed other types of human-wildlife conflict in such coupled systems, will require a holistic investigation of the ways in which each participant is responding to, and consequently altering, the behavior of the other. © 2015 Wiley Periodicals, Inc.

  13. Spontaneous Fluctuations of PO2 in the Rabbit Somatosensory Cortex.

    Science.gov (United States)

    Linsenmeier, Robert A; Aksenov, Daniil P; Faber, Holden M; Makar, Peter; Wyrwicz, Alice M

    2016-01-01

    In many tissues, PO2 fluctuates spontaneously with amplitudes of a few mmHg. Here we further characterized these oscillations. PO2 recordings were made from the whisker barrel cortex of six rabbits with acutely or chronically placed polarographic electrodes. Measurements were made while rabbits were awake and while anesthetized with isoflurane, during air breathing, and during 100% oxygen inspiration. In awake rabbits, 90% of the power was between 0 and 20 cycles per minute (cpm), not uniformly distributed over this range, but with a peak frequently near 10 cpm. This was much slower than heart or respiratory rhythms and is similar to the frequency content observed in other tissues. During hyperoxia, total power was higher than during air-breathing, and the dominant frequencies tended to shift toward lower values (0-10 cpm). These observations suggest that at least the lower frequency fluctuations represent efforts by the circulation to regulate local PO2. There were no consistent changes in total power during 0.5 or 1.5% isoflurane anesthesia, but the power shifted to lower frequencies. Thus, both hyperoxia and anesthesia cause characteristic, but distinct, changes in spontaneous fluctuations. These PO2 fluctuations may be caused by vasomotion, but other factors cannot be ruled out.

  14. Atrophy and Primary Somatosensory Cortical Reorganization after Unilateral Thoracic Spinal Cord Injury: A Longitudinal Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Jia-Sheng Rao

    2013-01-01

    Full Text Available The effects of traumatic spinal cord injury (SCI on the changes in the central nervous system (CNS over time may depend on the dynamic interaction between the structural integrity of the spinal cord and the capacity of the brain plasticity. Functional magnetic resonance imaging (fMRI was used in a longitudinal study on five rhesus monkeys to observe cerebral activation during upper limb somatosensory tasks in healthy animals and after unilateral thoracic SCI. The changes in the spinal cord diameters were measured, and the correlations among time after the lesion, structural changes in the spinal cord, and primary somatosensory cortex (S1 reorganization were also determined. After SCI, activation of the upper limb in S1 shifted to the region which generally dominates the lower limb, and the rostral spinal cord transverse diameter adjacent to the lesion exhibited obvious atrophy, which reflects the SCI-induced changes in the CNS. A significant correlation was found among the time after the lesion, the spinal cord atrophy, and the degree of contralateral S1 reorganization. The results indicate the structural changes in the spinal cord and the dynamic reorganization of the cerebral activation following early SCI stage, which may help to further understand the neural plasticity in the CNS.

  15. Lutein Is Differentially Deposited across Brain Regions following Formula or Breast Feeding of Infant Rhesus Macaques.

    Science.gov (United States)

    Jeon, Sookyoung; Ranard, Katherine M; Neuringer, Martha; Johnson, Emily E; Renner, Lauren; Kuchan, Matthew J; Pereira, Suzette L; Johnson, Elizabeth J; Erdman, John W

    2018-01-01

    Lutein, a yellow xanthophyll, selectively accumulates in primate retina and brain. Lutein may play a critical role in neural and retinal development, but few studies have investigated the impact of dietary source on its bioaccumulation in infants. We explored the bioaccumulation of lutein in infant rhesus macaques following breastfeeding or formula-feeding. From birth to 6 mo of age, male and female rhesus macaques (Macaca mulatta) were either breastfed (BF) (n = 8), fed a formula supplemented with lutein, zeaxanthin, β-carotene, and lycopene (237, 19.0, 74.2, and 338 nmol/kg, supplemented formula-fed; SF) (n = 8), or fed a formula with low amounts of these carotenoids (38.6, 2.3, 21.5, and 0 nmol/kg, unsupplemented formula-fed; UF) (n = 7). The concentrations of carotenoids in serum and tissues were analyzed by HPLC. At 6 mo of age, the BF group exhibited significantly higher lutein concentrations in serum, all brain regions, macular and peripheral retina, adipose tissue, liver, and other tissues compared to both formula-fed groups (P Lutein concentrations were higher in the SF group than in the UF group in serum and all tissues, with the exception of macular retina. Lutein was differentially distributed across brain areas, with the highest concentrations in the occipital cortex, regardless of the diet. Zeaxanthin was present in all brain regions but only in the BF infants; it was present in both retinal regions in all groups but was significantly enhanced in BF infants compared to either formula group (P lutein concentrations compared to unsupplemented formula, concentrations were still well below those in BF infants. Regardless of diet, occipital cortex showed selectively higher lutein deposition than other brain regions, suggesting lutein's role in visual processing in early life. © 2018 American Society for Nutrition. All rights reserved.

  16. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism

    Directory of Open Access Journals (Sweden)

    Tania Rinaldi

    2008-10-01

    Full Text Available The prefrontal cortex has been extensively implicated in autism to explain deficits in executive and other higher-order functions related to cognition, language, sociability and emotion. The possible changes at the level of the neuronal microcircuit are however not known. We studied microcircuit alterations in the prefrontal cortex in the valproic acid rat model of autism and found that the layer 5 pyramidal neurons are connected to significantly more neighbouring neurons than in controls. These excitatory connections are more plastic displaying enhanced long-term potentiation of the strength of synapses. The microcircuit alterations found in the prefrontal cortex are therefore similar to the alterations previously found in the somatosensory cortex. Hyper-connectivity and hyper-plasticity in the prefrontal cortex implies hyper-functionality of one of the highest order processing regions in the brain, and stands in contrast to the hypo-functionality that is normally proposed in this region to explain some of the autistic symptoms. We propose that a number of deficits in autism such as sociability, attention, multi-tasking and repetitive behaviours, should be re-interpreted in the light of a hyper-functional prefrontal cortex.

  17. Feedforward motor information enhances somatosensory responses and sharpens angular tuning of rat S1 barrel cortex neurons.

    Science.gov (United States)

    Khateb, Mohamed; Schiller, Jackie; Schiller, Yitzhak

    2017-01-06

    The primary vibrissae motor cortex (vM1) is responsible for generating whisking movements. In parallel, vM1 also sends information directly to the sensory barrel cortex (vS1). In this study, we investigated the effects of vM1 activation on processing of vibrissae sensory information in vS1 of the rat. To dissociate the vibrissae sensory-motor loop, we optogenetically activated vM1 and independently passively stimulated principal vibrissae. Optogenetic activation of vM1 supra-linearly amplified the response of vS1 neurons to passive vibrissa stimulation in all cortical layers measured. Maximal amplification occurred when onset of vM1 optogenetic activation preceded vibrissa stimulation by 20 ms. In addition to amplification, vM1 activation also sharpened angular tuning of vS1 neurons in all cortical layers measured. Our findings indicated that in addition to output motor signals, vM1 also sends preparatory signals to vS1 that serve to amplify and sharpen the response of neurons in the barrel cortex to incoming sensory input signals.

  18. Natural asynchronies in audiovisual communication signals regulate neuronal multisensory interactions in voice-sensitive cortex.

    Science.gov (United States)

    Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K; Petkov, Christopher I

    2015-01-06

    When social animals communicate, the onset of informative content in one modality varies considerably relative to the other, such as when visual orofacial movements precede a vocalization. These naturally occurring asynchronies do not disrupt intelligibility or perceptual coherence. However, they occur on time scales where they likely affect integrative neuronal activity in ways that have remained unclear, especially for hierarchically downstream regions in which neurons exhibit temporally imprecise but highly selective responses to communication signals. To address this, we exploited naturally occurring face- and voice-onset asynchronies in primate vocalizations. Using these as stimuli we recorded cortical oscillations and neuronal spiking responses from functional MRI (fMRI)-localized voice-sensitive cortex in the anterior temporal lobe of macaques. We show that the onset of the visual face stimulus resets the phase of low-frequency oscillations, and that the face-voice asynchrony affects the prominence of two key types of neuronal multisensory responses: enhancement or suppression. Our findings show a three-way association between temporal delays in audiovisual communication signals, phase-resetting of ongoing oscillations, and the sign of multisensory responses. The results reveal how natural onset asynchronies in cross-sensory inputs regulate network oscillations and neuronal excitability in the voice-sensitive cortex of macaques, a suggested animal model for human voice areas. These findings also advance predictions on the impact of multisensory input on neuronal processes in face areas and other brain regions.

  19. Glial cell morphological and density changes through the lifespan of rhesus macaques.

    Science.gov (United States)

    Robillard, Katelyn N; Lee, Kim M; Chiu, Kevin B; MacLean, Andrew G

    2016-07-01

    How aging impacts the central nervous system (CNS) is an area of intense interest. Glial morphology is known to affect neuronal and immune function as well as metabolic and homeostatic balance. Activation of glia, both astrocytes and microglia, occurs at several stages during development and aging. The present study analyzed changes in glial morphology and density through the entire lifespan of rhesus macaques, which are physiologically and anatomically similar to humans. We observed apparent increases in gray matter astrocytic process length and process complexity as rhesus macaques matured from juveniles through adulthood. These changes were not attributed to cell enlargement because they were not accompanied by proportional changes in soma or process volume. There was a decrease in white matter microglial process length as rhesus macaques aged. Aging was shown to have a significant effect on gray matter microglial density, with a significant increase in aged macaques compared with adults. Overall, we observed significant changes in glial morphology as macaques age indicative of astrocytic activation with subsequent increase in microglial density in aged macaques. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system

    Science.gov (United States)

    Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.

    1996-01-01

    We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.

  1. On the presence of high-order interactions among somatosensory neurons and their effect on information transmission

    International Nuclear Information System (INIS)

    Ince, Robin A A; Montani, Fernando; Panzeri, Stefano; Arabzadeh, Ehsan; Diamond, Mathew E

    2009-01-01

    In order to understand how populations of neurons encode information about external correlates, it is important to develop minimal models of the probability of neural population responses which capture all the salient changes of neural responses with stimuli. In this context, it is particularly useful to determine whether interactions among neurons responding to stimuli can be described by a pairwise interaction model, or whether a higher order interaction model is needed. To address this question, we compared real neural population activity obtained from the rat somatosensory cortex to maximum-entropy models which take into account only interaction of up any given order. By performing these comparisons, we found that interactions of order two were sufficient to explain a large amount of observed stimulus-response distributions, but not all of them. Triple-wise interactions were necessary to fully explain the data. We then used Shannon information to compute the impact of high order correlations on the amount of somatosensory information transmitted by the neural population. We found that correlations of order two gave a good approximation of information carried by the neural population, within 4% of the true value. Third order correlations gave an even better approximation, within 2% of the true value. Taken together, these results suggest that higher order interactions exist and shape the dynamics of cortical networks, but play a quantitatively minor role in determining the information capacity of neural populations.

  2. On the presence of high-order interactions among somatosensory neurons and their effect on information transmission

    Energy Technology Data Exchange (ETDEWEB)

    Ince, Robin A A [Faculty of Life Science, University of Manchester, 3.431 Stopford Building, Oxford Road, Manchester M13 9PL (United Kingdom); Montani, Fernando; Panzeri, Stefano [Robotics, Brain, and Cognitive Sciences Department, Italian Institute of Technology, Via Morego 30, 16163 Genova (Italy); Arabzadeh, Ehsan [School of Psychology, University of New South Wales, Sydney, New South Wales (Australia); Diamond, Mathew E, E-mail: stefano.panzeri@iit.i [Cognitive Neuroscience Sector, International School for Advanced Studies, Trieste (Italy) and the SISSA Unit, Italian Institute of Technology, Trieste (Italy)

    2009-12-01

    In order to understand how populations of neurons encode information about external correlates, it is important to develop minimal models of the probability of neural population responses which capture all the salient changes of neural responses with stimuli. In this context, it is particularly useful to determine whether interactions among neurons responding to stimuli can be described by a pairwise interaction model, or whether a higher order interaction model is needed. To address this question, we compared real neural population activity obtained from the rat somatosensory cortex to maximum-entropy models which take into account only interaction of up any given order. By performing these comparisons, we found that interactions of order two were sufficient to explain a large amount of observed stimulus-response distributions, but not all of them. Triple-wise interactions were necessary to fully explain the data. We then used Shannon information to compute the impact of high order correlations on the amount of somatosensory information transmitted by the neural population. We found that correlations of order two gave a good approximation of information carried by the neural population, within 4% of the true value. Third order correlations gave an even better approximation, within 2% of the true value. Taken together, these results suggest that higher order interactions exist and shape the dynamics of cortical networks, but play a quantitatively minor role in determining the information capacity of neural populations.

  3. Personality structure and social style in macaques.

    Science.gov (United States)

    Adams, Mark James; Majolo, Bonaventura; Ostner, Julia; Schülke, Oliver; De Marco, Arianna; Thierry, Bernard; Engelhardt, Antje; Widdig, Anja; Gerald, Melissa S; Weiss, Alexander

    2015-08-01

    Why regularities in personality can be described with particular dimensions is a basic question in differential psychology. Nonhuman primates can also be characterized in terms of personality structure. Comparative approaches can help reveal phylogenetic constraints and social and ecological patterns associated with the presence or absence of specific personality dimensions. We sought to determine how different personality structures are related to interspecific variation in social style. Specifically, we examined this question in 6 different species of macaques, because macaque social style is well characterized and can be categorized on a spectrum of despotic (Grade 1) versus tolerant (Grade 4) social styles. We derived personality structures from adjectival ratings of Japanese (Macaca fuscata; Grade 1), Assamese (M. assamensis; Grade 2), Barbary (M. sylvanus; Grade 3), Tonkean (M. tonkeana; Grade 4), and crested (M. nigra; Grade 4) macaques and compared these species with rhesus macaques (M. mulatta; Grade 1) whose personality was previously characterized. Using a nonparametric method, fuzzy set analysis, to identify commonalities in personality dimensions across species, we found that all but 1 species exhibited consistently defined Friendliness and Openness dimensions, but that similarities in personality dimensions capturing aggression and social competence reflect similarities in social styles. These findings suggest that social and phylogenetic relationships contribute to the origin, maintenance, and diversification of personality. (c) 2015 APA, all rights reserved.

  4. ASYMMETRY OF SOMATOSENSORY CORTICAL PLASTICITY IN PATIENT WITH BILATERAL CARPAL TUNNEL SYNDROME

    Directory of Open Access Journals (Sweden)

    Hikmat Hadoush

    2017-09-01

    Full Text Available Background: Following peripheral nerve lesion, the adult somatosensory system showedcortical reorganizational abilities.Previous studies identified the digits' somatotopy map changes and somatosensory cortical plasticity in response to the Carpal Tunnel Syndrome (CTS that affected the dominant hand only. Objective: Answering the remained question is that what the extent of the cortical plasticity would be in left and right somatosensory cortices in response to CTS affecting the right and left hands simultaneously. Methods: Cortical representations activated by tactile stimulation of median nerve (index and ulnar nerve (little of both dominant and non-dominant hands were evaluated by Magnetoencephalography (MEG systemfor healthy participants and patient with bilateral moderate CTS. index – little fingers'somatotopy map and inter-digit cortical distance was then mapped and calculated for each participant on the real MRI data and the 3D brain surface image. Results: in healthy participants, index – little inter-digit somatosensory cortical distance of right hand (dominant was significantly larger than the index – little inter-digitsomatosensory cortical distance of left hand (11.2±2.1mm vs.7.0±2.9mm, P = 0.006. However, in patient with bilateral CTS, the index – little inter-digit somatosensory cortical distance of righthand (dominant was significantly smaller than the index – little inter-digit somatosensory cortical distance of left hand (5.8mm vs. 7.4mm. Conclusion: our data could be interpreted as the hand use – dependency served more median nerve – cortical territory from the ulnar nerve invasion in the right somatotopy map (left hand than the left somatotopy map of the right hand.

  5. Correction of refractive errors in rhesus macaques (Macaca mulatta) involved in visual research.

    Science.gov (United States)

    Mitchell, Jude F; Boisvert, Chantal J; Reuter, Jon D; Reynolds, John H; Leblanc, Mathias

    2014-08-01

    Macaques are the most common animal model for studies in vision research, and due to their high value as research subjects, often continue to participate in studies well into old age. As is true in humans, visual acuity in macaques is susceptible to refractive errors. Here we report a case study in which an aged macaque demonstrated clear impairment in visual acuity according to performance on a demanding behavioral task. Refraction demonstrated bilateral myopia that significantly affected behavioral and visual tasks. Using corrective lenses, we were able to restore visual acuity. After correction of myopia, the macaque's performance on behavioral tasks was comparable to that of a healthy control. We screened 20 other male macaques to assess the incidence of refractive errors and ocular pathologies in a larger population. Hyperopia was the most frequent ametropia but was mild in all cases. A second macaque had mild myopia and astigmatism in one eye. There were no other pathologies observed on ocular examination. We developed a simple behavioral task that visual research laboratories could use to test visual acuity in macaques. The test was reliable and easily learned by the animals in 1 d. This case study stresses the importance of screening macaques involved in visual science for refractive errors and ocular pathologies to ensure the quality of research; we also provide simple methodology for screening visual acuity in these animals.

  6. The role of parietal cortex in the formation of colour and motion based concepts

    Directory of Open Access Journals (Sweden)

    Samuel William Cheadle

    2014-07-01

    Full Text Available Imaging evidence shows that separate subdivisions of parietal cortex, in and around the intraparietal sulcus (IPS, are engaged when stimuli are grouped according to colour and to motion (Zeki and Stutters 2013. Since grouping is an essential step in the formation of concepts, we wanted to learn whether parietal cortex is also engaged in the formation of concepts according to these two attributes. Using functional magnetic resonance imaging (fMRI, and choosing the recognition of concept-based colour or motion stimuli as our paradigm, we found that there was strong concept-related activity in and around the intraparietal sulcus (IPS, a region whose homologue in the macaque monkey is known to receive direct but segregated anatomical inputs from V4 and V5. Parietal activity related to colour concepts was juxtaposed but did not overlap with activity related to motion concepts, thus emphasizing the continuation of the segregation of colour and motion into the conceptual system. Concurrent retinotopic mapping experiments showed that within the parietal cortex, concept-related activity increases within later stage IPS areas.

  7. The Influence of Eye Closure on Somatosensory Discrimination: A Trade-off Between Simple Perception and Discrimination.

    Science.gov (United States)

    Götz, Theresa; Hanke, David; Huonker, Ralph; Weiss, Thomas; Klingner, Carsten; Brodoehl, Stefan; Baumbach, Philipp; Witte, Otto W

    2017-06-01

    We often close our eyes to improve perception. Recent results have shown a decrease of perception thresholds accompanied by an increase in somatosensory activity after eye closure. However, does somatosensory spatial discrimination also benefit from eye closure? We previously showed that spatial discrimination is accompanied by a reduction of somatosensory activity. Using magnetoencephalography, we analyzed the magnitude of primary somatosensory (somatosensory P50m) and primary auditory activity (auditory P50m) during a one-back discrimination task in 21 healthy volunteers. In complete darkness, participants were requested to pay attention to either the somatosensory or auditory stimulation and asked to open or close their eyes every 6.5 min. Somatosensory P50m was reduced during a task requiring the distinguishing of stimulus location changes at the distal phalanges of different fingers. The somatosensory P50m was further reduced and detection performance was higher during eyes open. A similar reduction was found for the auditory P50m during a task requiring the distinguishing of changing tones. The function of eye closure is more than controlling visual input. It might be advantageous for perception because it is an effective way to reduce interference from other modalities, but disadvantageous for spatial discrimination because it requires at least one top-down processing stage. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. A new psychometric questionnaire for reporting of somatosensory percepts

    Science.gov (United States)

    Kim, L. H.; McLeod, R. S.; Kiss, Z. H. T.

    2018-02-01

    Objective. There have been remarkable advances over the past decade in neural prostheses to restore lost motor function. However, restoration of somatosensory feedback, which is essential for fine motor control and user acceptance, has lagged behind. With an increasing interest in using electrical stimulation to restore somatosensory sensations within the peripheral (PNS) and central nervous systems (CNS), it is critical to characterize the percepts evoked by electrical stimulation in a standardized manner with a validated psychometric questionnaire. This will allow comparison of results from applications at various nervous system levels in multiple settings. Approach. We compiled a summary of published reports of somatosensory percepts that were elicited by electrical stimulation in humans and used these to develop a new psychometric questionnaire. Results. This new questionnaire was able to characterize subjective evoked sensations with good test-retest reliability (Spearman’s correlation coefficients ranging 0.716  ⩽  ρ  ⩽  1.000, p  ⩽  0.005) in 13 subjects receiving stimulation through neural implants in both the CNS and PNS. Furthermore, the new questionnaire captured more descriptors (M  =  2.65, SD  =  0.91) that would have been missed by being categorized as ‘other sensations’, using a previous questionnaire (M  =  1.40, SD  =  0.77, t(12)  =  -10.24, p  psychometric questionnaire will aid in establishing consistency and standardization of reporting in future studies of somatosensory neural prostheses.

  9. Molecular characterization and polymorphisms of butyrylcholinesterase in cynomolgus macaques.

    Science.gov (United States)

    Uno, Yasuhiro; Uehara, Shotaro; Mahadhi, Hassan M D; Ohura, Kayoko; Hosokawa, Masakiyo; Imai, Teruko

    2018-06-01

    Butyrylcholinesterase (BChE), an enzyme essential for drug metabolism, has been investigated as antidotes against organophosphorus nerve agents, and the efficacy and safety have been studied in cynomolgus macaques. BChE polymorphisms partly account for variable BChE activities among individuals in humans, but have not been investigated in cynomolgus macaques. Molecular characterization was carried out by analyzing primary sequence, gene, tissue expression, and genetic variants. In cynomolgus and human BChE, phylogenetically closely related, amino acid residues important for enzyme function were conserved, and gene and genomic structure were similar. Cynomolgus BChE mRNA was most abundantly expressed in liver among the 10 tissue types analyzed. Re-sequencing found 26 non-synonymous genetic variants in 121 cynomolgus and 23 rhesus macaques, indicating that macaque BChE is polymorphic, although none of these variants corresponded to the null or defective alleles of human BChE. These results suggest molecular similarities of cynomolgus and human BChE. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Enriched housing enhances recovery of limb placement ability and reduces aggrecan-containing perineuronal nets in the rat somatosensory cortex after experimental stroke.

    Directory of Open Access Journals (Sweden)

    Alexandre Madinier

    Full Text Available Stroke causes life long disabilities where few therapeutic options are available. Using electrical and magnetic stimulation of the brain and physical rehabilitation, recovery of brain function can be enhanced even late after stroke. Animal models support this notion, and housing rodents in an enriched environment (EE several days after experimental stroke stimulates lost brain function by multisensory mechanisms. We studied the dynamics of functional recovery of rats with a lesion to the fore and hind limb motor areas induced by photothrombosis (PT, and with subsequent housing in either standard (STD or EE. In this model, skilled motor function is not significantly enhanced by enriched housing, while the speed of recovery of sensori-motor function substantially improves over the 9-week study period. In particular, this stroke lesion completely obliterates the fore and hind limb placing ability when visual and whisker guidance is prevented, a deficit that persists for up to 9 weeks of recovery, but that is markedly restored within 2 weeks by enriched housing. Enriched housing after stroke also leads to a significant loss of perineuronal net (PNN immunoreactivity; detection of aggrecan protein backbone with AB1031 antibody was decreased by 13-22%, and labelling of a glycan moiety of aggrecan with Cat-315 antibody was reduced by 25-30% in the peri-infarct area and in the somatosensory cortex, respectively. The majority of these cells are parvalbumin/GABA inhibitory interneurons that are important in sensori-information processing. We conclude that damage to the fore and hind limb motor areas provides a model of loss of limb placing response without visual guidance, a deficit also seen in more than 50% of stroke patients. This loss is amenable to recovery induced by multiple sensory stimulation and correlates with a decrease in aggrecan-containing PNNs around inhibitory interneurons. Modulating the PNN structure after ischemic damage may provide new

  11. Persistence of Functional Sensory Maps in the Absence of Cortical Layers in the Somsatosensory Cortex of Reeler Mice

    OpenAIRE

    Guy, Julien; Wagener, Robin J.; M?ck, Martin; Staiger, Jochen F.

    2014-01-01

    In rodents, layer IV of the primary somatosensory cortex contains the barrel field, where individual, large facial whiskers are represented as a dense cluster of cells. In the reeler mouse, a model of disturbed cortical development characterized by a loss of cortical lamination, the barrel field exists in a distorted manner. Little is known about the consequences of such a highly disturbed lamination on cortical function in this model. We used in vivo intrinsic signal optical imaging together...

  12. Principles of Network Architecture Emerging from Comparisons of the Cerebral Cortex in Large and Small Brains.

    Directory of Open Access Journals (Sweden)

    Barbara L Finlay

    2016-09-01

    Full Text Available The cerebral cortex retains its fundamental organization, layering, and input-output relations as it scales in volume over many orders of magnitude in mammals. How is its network architecture affected by size scaling? By comparing network organization of the mouse and rhesus macaque cortical connectome derived from complete neuroanatomical tracing studies, a recent study in PLOS Biology shows that an exponential distance rule emerges that reveals the falloff in connection probability with distance in the two brains that in turn determines common organizational features.

  13. Origin and Function of Tuning Diversity in Macaque Visual Cortex.

    Science.gov (United States)

    Goris, Robbe L T; Simoncelli, Eero P; Movshon, J Anthony

    2015-11-18

    Neurons in visual cortex vary in their orientation selectivity. We measured responses of V1 and V2 cells to orientation mixtures and fit them with a model whose stimulus selectivity arises from the combined effects of filtering, suppression, and response nonlinearity. The model explains the diversity of orientation selectivity with neuron-to-neuron variability in all three mechanisms, of which variability in the orientation bandwidth of linear filtering is the most important. The model also accounts for the cells' diversity of spatial frequency selectivity. Tuning diversity is matched to the needs of visual encoding. The orientation content found in natural scenes is diverse, and neurons with different selectivities are adapted to different stimulus configurations. Single orientations are better encoded by highly selective neurons, while orientation mixtures are better encoded by less selective neurons. A diverse population of neurons therefore provides better overall discrimination capabilities for natural images than any homogeneous population. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs

    DEFF Research Database (Denmark)

    Pötter-Nerger, Monika; Fischer, Sarah; Mastroeni, Claudia

    2009-01-01

    Transcranial stimulation techniques have revealed homeostatic-like metaplasticity in the hand area of the human primary motor cortex (M1(HAND)) that controls stimulation-induced changes in corticospinal excitability. Here we combined two interventional protocols that induce long-term depression......TMS) of the left dorsal premotor cortex (PMD) was first applied to produce an LTP-like increase (5 Hz rTMS) or LTD-like decrease (1 Hz rTMS) in corticospinal excitability in left M1(HAND) via premotor-to-motor inputs. Following PMD rTMS, paired-associative stimulation (PAS) was applied to the right median nerve...... and left M1(HAND) to induce spike-time-dependent plasticity in sensory-to-motor inputs to left M1(HAND). We adjusted the interstimulus interval to the N20 latency of the median nerve somatosensory-evoked cortical potential to produce an LTP-like increase (PAS(N20+2ms)) or an LTD-like decrease (PAS(N20-5ms...

  15. Adaptation can explain evidence for encoding of probabilistic information in macaque inferior temporal cortex.

    Science.gov (United States)

    Vinken, Kasper; Vogels, Rufin

    2017-11-20

    In predictive coding theory, the brain is conceptualized as a prediction machine that constantly constructs and updates expectations of the sensory environment [1]. In the context of this theory, Bell et al.[2] recently studied the effect of the probability of task-relevant stimuli on the activity of macaque inferior temporal (IT) neurons and observed a reduced population response to expected faces in face-selective neurons. They concluded that "IT neurons encode long-term, latent probabilistic information about stimulus occurrence", supporting predictive coding. They manipulated expectation by the frequency of face versus fruit stimuli in blocks of trials. With such a design, stimulus repetition is confounded with expectation. As previous studies showed that IT neurons decrease their response with repetition [3], such adaptation (or repetition suppression), instead of expectation suppression as assumed by the authors, could explain their effects. The authors attempted to control for this alternative interpretation with a multiple regression approach. Here we show by using simulation that adaptation can still masquerade as expectation effects reported in [2]. Further, the results from the regression model used for most analyses cannot be trusted, because the model is not uniquely defined. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Intrinsic Connections of the Core Auditory Cortical Regions and Rostral Supratemporal Plane in the Macaque Monkey.

    Science.gov (United States)

    Scott, Brian H; Leccese, Paul A; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Mullarkey, Matthew P; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C

    2017-01-01

    In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: A 7T fMRI study.

    Science.gov (United States)

    Akselrod, Michel; Martuzzi, Roberto; Serino, Andrea; van der Zwaag, Wietske; Gassert, Roger; Blanke, Olaf

    2017-10-01

    Primary somatosensory cortex (S1) processes somatosensory information and is composed of multiple subregions. In particular, tactile information from the skin is encoded in three subregions, namely Brodmann areas (BAs) 3b, 1 and 2, with each area representing a complete map of the contralateral body. Although, much is known about the somatotopic organization of the hand in human S1, less research has been carried out regarding the somatotopic maps of the foot and leg in S1. Moreover, a latero-medial S1 organization along the superior part of the postcentral gyrus has been reported when moving from hip to toes, yet to date there is no study investigating leg/foot maps within the different subregions of S1. Using ultra-high field MRI (7T), we mapped six cortical representations of the lower limb (hip to toes) at the single subject level and performed this analysis separately for BAs 3b, 1 and 2. Analyzing the BOLD responses associated with tactile stimulations of the mapped foot and leg regions on each side, we quantified the extent and the strength of activation to determine somatotopic organization. In addition, we investigated whether each mapped representation also responded to the stimulation of other body parts (i.e. response selectivity) and conducted dissimilarity analysis relating these anatomical and functional properties of S1 to the physical structure of the lower limbs. Our data reveal somatotopy for the leg, but not for the foot in all investigated BAs, with large inter-subject variability. We found only minor differences between the properties of the three investigated BAs, suggesting that S1 maps for the lower limbs differ from those described for the hand. We also describe greater extent/strength of S1 activation for the big toe representation (compared to the other mapped representations) within all BAs, suggesting a possible homology between the first digit of upper and lower extremity in humans, and report different patterns of selectivity in the

  18. Hair loss and hair-pulling in rhesus macaques (Macaca mulatta).

    Science.gov (United States)

    Lutz, Corrine K; Coleman, Kristine; Worlein, Julie; Novak, Melinda A

    2013-07-01

    Alopecia is a common problem in rhesus macaque colonies. A possible cause of this condition is hair-pulling; however the true relationship between hair-pulling and alopecia is unknown. The purpose of this study was to examine the relationship between hair loss and hair-pulling in 1258 rhesus macaques housed in 4 primate colonies across the United States. Alopecia levels ranged from 34.3% to 86.5% (mean, 49.3%) at the primate facilities. At facilities reporting a sex-associated difference, more female macaques were reported to exhibit alopecia than were males. In contrast, more males were reported to hair-pull. Animals reported to hair-pull were significantly more likely to have some amount of alopecia, but rates of hair-pulling were substantially lower than rates of alopecia, ranging from 0.6% to 20.5% (mean, 7.7%) of the populations. These results further demonstrate that hair-pulling plays only a small role in alopecia in rhesus macaques.

  19. Impaired somatosensory discrimination of shape in Parkinson's disease : Association with caudate nucleus dopaminergic function

    NARCIS (Netherlands)

    Weder, BJ; Leenders, KL; Vontobel, P; Nienhusmeier, M; Keel, A; Zaunbauer, W; Vonesch, T; Ludin, HP

    1999-01-01

    Tactile discrimination of macrogeometric objects in a two-alternative forced-choice procedure represents a demanding task involving somatosensory pathways and higher cognitive processing. The objects for somatosensory discrimination, i.e., rectangular parallelepipeds differing only in oblongness,

  20. Reduced somatosensory impairment by piezosurgery during orthognathic surgery of the mandible.

    Science.gov (United States)

    Brockmeyer, Phillipp; Hahn, Wolfram; Fenge, Stefan; Moser, Norman; Schliephake, Henning; Gruber, Rudolf Matthias

    2015-09-01

    This clinical trial aimed to test the hypothesis that piezosurgery causes reduced nerval irritations and, thus, reduced somatosensory impairment when used in orthognathic surgery of the mandible. To this end, 37 consecutive patients with Angle Class II and III malocclusion were treated using bilateral sagittal split osteotomies (BSSO) of the mandible. In a split mouth design, randomized one side of the mandible was operated using a conventional saw, while a piezosurgery device was used on the contralateral side. In order to test the individual qualities of somatosensory function, quantitative sensory testings (QSTs) were performed 1 month, 6 months and 1 year after surgery. A comparison of the data using a two-way analysis of variance (ANOVA) revealed a significant reduction in postoperative impairment in warm detection threshold (WDT) (P = 0.046), a decreased dynamic mechanical allodynia (ALL) (P = 0.002) and a decreased vibration detection threshold (VDT) (P = 0.030) on the piezosurgery side of the mandible as opposed to the conventionally operated control side. In the remaining QSTs, minor deviations from the preoperative baseline conditions and a more rapid regression could be observed. Piezosurgery caused reduced somatosensory impairment and a faster recovery of somatosensory functions in the present investigation.

  1. Somatosensory cortices are required for the acquisition of morphine-induced conditioned place preference.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Meng

    Full Text Available BACKGROUND: Sensory system information is thought to play an important role in drug addiction related responses. However, how somatic sensory information participates in the drug related behaviors is still unclear. Many studies demonstrated that drug addiction represents a pathological usurpation of neural mechanisms of learning and memory that normally relate to the pursuit of rewards. Thus, elucidate the role of somatic sensory in drug related learning and memory is of particular importance to understand the neurobiological mechanisms of drug addiction. PRINCIPAL FINDINGS: In the present study, we investigated the role of somatosensory system in reward-related associative learning using the conditioned place preference model. Lesions were made in somatosensory cortices either before or after conditioning training. We found that lesion of somatosensory cortices before, rather than after morphine conditioning impaired the acquisition of place preference. CONCLUSION: These results demonstrate that somatosensory cortices are necessary for the acquisition but not retention of morphine induced place preference.

  2. The Functional Organization and Cortical Connections of Motor Cortex in Squirrels

    Science.gov (United States)

    Cooke, Dylan F.; Padberg, Jeffrey; Zahner, Tony

    2012-01-01

    Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We distinguish a primary motor area, M1, based on intracortical microstimulation (ICMS), myeloarchitecture, and patterns of connectivity. A sensorimotor area between M1 and the primary somatosensory area, S1, was also distinguished based on connections, functional organization, and myeloarchitecture. We term this field 3a based on similarities with area 3a in nonrodent mammals. Movements are evoked with ICMS in both M1 and 3a in a roughly somatotopic pattern. Connections of 3a and M1 are distinct and suggest the presence of a third far rostral field, termed “F,” possibly involved in motor processing based on its connections. We hypothesize that 3a is homologous to the dysgranular zone (DZ) in S1 of rats and mice. Our results demonstrate that squirrels have both similar and unique features of M1 organization compared with those described in rats and mice, and that changes in 3a/DZ borders appear to have occurred in both lineages. PMID:22021916

  3. Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity.

    Directory of Open Access Journals (Sweden)

    Laura M J Ylinen

    2010-08-01

    Full Text Available TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5alpha but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations.

  4. Evolutionary appearance of von Economo's neurons in the mammalian cerebral cortex.

    Science.gov (United States)

    Cauda, Franco; Geminiani, Giuliano Carlo; Vercelli, Alessandro

    2014-01-01

    von Economo's neurons (VENs) are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI) cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months. VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like social cognitive abilities and self-awareness. VENs are also found in whales, in a number of different cetaceans, and in the elephant. This phylogenetic distribution may suggest a correlation among the VENs, brain size and the "social brain." VENs may be involved in the pathogenesis of specific neurological and psychiatric diseases, such as autism, callosal agenesis and schizophrenia. VENs are selectively affected in a behavioral variant of frontotemporal dementia in which empathy, social awareness and self-control are seriously compromised, thus associating VENs with the social brain. However, the presence of VENs has also been related to special functions such as mirror self-recognition. Areas containing VENs have been related to motor awareness or sense-of-knowing, discrimination between self and other, and between self and the external environment. Along this line, VENs have been related to the "global Workspace" architecture: in accordance the VENs have been correlated to emotional and interoceptive signals by providing fast connections (large axons = fast communication) between salience-related insular and cingulate and other widely separated brain areas. Nevertheless, the lack of a characterization of their physiology and anatomical connectivity allowed only to infer their functional role based on their location and on the functional magnetic resonance imaging data. The recent finding of VENs in the anterior insula of the macaque opens the way to new insights and experimental

  5. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces

    Science.gov (United States)

    Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.

  6. Information processing occurs via critical avalanches in a model of the primary visual cortex

    International Nuclear Information System (INIS)

    Bortolotto, G. S.; Girardi-Schappo, M.; Gonsalves, J. J.; Tragtenberg, M. H. R.; Pinto, L. T.

    2016-01-01

    We study a new biologically motivated model for the Macaque monkey primary visual cortex which presents power-law avalanches after a visual stimulus. The signal propagates through all the layers of the model via avalanches that depend on network structure and synaptic parameter. We identify four different avalanche profiles as a function of the excitatory postsynaptic potential. The avalanches follow a size-duration scaling relation and present critical exponents that match experiments. The structure of the network gives rise to a regime of two characteristic spatial scales, one of which vanishes in the thermodynamic limit. (paper)

  7. Somatosensory mismatch response in young and elderly adults

    Directory of Open Access Journals (Sweden)

    Juho M. Strömmer

    2014-10-01

    Full Text Available Aging is associated with cognitive decline and alterations in early perceptual processes. Studies in the auditory and visual modalities have shown that the mismatch negativity (or the mismatch response, MMR, an event-related potential (ERP elicited by a deviant stimulus in a background of homogenous events, diminishes with aging and cognitive decline. However, the effects of aging on the somatosensory MMR are not known. In the current study, we recorded ERPs to electrical pulses to different fingers of the left hand in a passive oddball experiment in young (22–36 years and elderly (66–95 years adults engaged in a visual task. The MMR was found to deviants as compared to standards at two latency ranges: 180–220 ms and 250–290 ms post-stimulus onset. At 180–220 ms, within the young, the MMR was found at medial electrode sites, whereas aged did not show any amplitude difference between the stimulus types at the same latency range. At 250–290 ms, the MMR was evident with attenuated amplitude and narrowed scalp distribution among aged (Fz compared to young (fronto-centrally and lateral parietal sites. Hence, the results reveal that the somatosensory change detection mechanism is altered in aging. The somatosensory MMR can be used as a reliable measure of age-related changes in sensory-cognitive functions.

  8. Effect of somatosensory and neurofeedback training on balance in older healthy adults: a preliminary investigation.

    Science.gov (United States)

    Azarpaikan, Atefeh; Taheri Torbati, Hamidreza

    2017-10-23

    The aim of this study was to assess the effectiveness of balance training with somatosensory and neurofeedback training on dynamic and static balance in healthy, elderly adults. The sample group consisted of 45 healthy adults randomly assigned to one of the three test groups: somatosensory, neurofeedback, and a control. Individualization of the balance program started with pre-tests for static and dynamic balances. Each group had 15- and 30-min training sessions. All groups were tested for static (postural stability) and dynamic balances (Berg Balance Scale) in acquisition and transfer tests (fall risk of stability and timed up and go). Improvements in static and dynamic balances were assessed by somatosensory and neurofeedback groups and then compared with the control group. Results indicated significant improvements in static and dynamic balances in both test groups in the acquisition test. Results revealed a significant improvement in the transfer test in the neurofeedback and somatosensory groups, in static and dynamic conditions, respectively. The findings suggest that these methods of balance training had a significant influence on balance. Both the methods are appropriate to prevent falling in adults. Neurofeedback training helped the participants to learn static balance, while somatosensory training was effective on dynamic balance learning. Further research is needed to assess the effects of longer and discontinuous stimulation with somatosensory and neurofeedback training on balance in elderly adults.

  9. Robust selectivity to two-object images in human visual cortex

    Science.gov (United States)

    Agam, Yigal; Liu, Hesheng; Papanastassiou, Alexander; Buia, Calin; Golby, Alexandra J.; Madsen, Joseph R.; Kreiman, Gabriel

    2010-01-01

    SUMMARY We can recognize objects in a fraction of a second in spite of the presence of other objects [1–3]. The responses in macaque areas V4 and inferior temporal cortex [4–15] to a neuron’s preferred stimuli are typically suppressed by the addition of a second object within the receptive field (see however [16, 17]). How can this suppression be reconciled with rapid visual recognition in complex scenes? One option is that certain “special categories” are unaffected by other objects [18] but this leaves the problem unsolved for other categories. Another possibility is that serial attentional shifts help ameliorate the problem of distractor objects [19–21]. Yet, psychophysical studies [1–3], scalp recordings [1] and neurophysiological recordings [14, 16, 22–24], suggest that the initial sweep of visual processing contains a significant amount of information. We recorded intracranial field potentials in human visual cortex during presentation of flashes of two-object images. Visual selectivity from temporal cortex during the initial ~200 ms was largely robust to the presence of other objects. We could train linear decoders on the responses to isolated objects and decode information in two-object images. These observations are compatible with parallel, hierarchical and feed-forward theories of rapid visual recognition [25] and may provide a neural substrate to begin to unravel rapid recognition in natural scenes. PMID:20417105

  10. Pain from Dental Implant Placement, Inflammatory Pulpitis Pain, and Neuropathic Pain Present Different Somatosensory Profiles.

    Science.gov (United States)

    Porporatti, André Luís; Bonjardim, Leonardo Rigoldi; Stuginski-Barbosa, Juliana; Bonfante, Estevam Augusto; Costa, Yuri Martins; Rodrigues Conti, Paulo César

    2017-01-01

    To address the two following questions: (1) What kind of somatosensory abnormalities may be characterized in patients receiving dental implants (IMP), in ongoing inflammatory dental pulpitis (IP) patients, and in neuropathic pain (atypical odontalgia [AO]) patients? and (2) What sort of sensory and neural changes may result from dental implant placement surgery and pulpectomy? A total of 60 subjects were divided into three groups: the IMP (n = 20), IP (n = 20), and AO groups (n = 20). Quantitative sensory testing (QST) was performed preoperatively (baseline) for all three groups and postoperatively at 1 month and 3 months after dental implant placement or pulpectomy (in the IMP group and IP group, respectively). Statistical analyses were completed with one-way and two-way analysis of variance and z score transformations (α = 5%). The main findings of this study indicated that: (1) Elevations in mechanical detection threshold (MDT) and in current perception threshold (CPT) related to C-fiber activation, indicating a loss of function, were found at baseline in IP patients; (2) Somatosensory abnormalities such as allodynia, reduced MDT and mechanical pain threshold (MPT), and impaired pain modulation were found in AO patients; (3) No somatosensory alterations after implant placement were found in the IMP group; and (4) Somatosensory alterations in the form of reduction in the CPT related to C-fiber activation were reported 3 months after pulpectomy in the IP group. This study showed that somatosensory abnormalities were evident in AO and IP patients, and somatosensory alterations were seen in IP patients even 3 months after pulpectomy. However, no somatosensory alterations were seen after implant placement.

  11. The Cortical Connectivity of the Prefrontal Cortex in the Monkey Brain

    Science.gov (United States)

    Yeterian, Edward H.; Pandya, Deepak N.; Tomaiuolo, Francesco; Petrides, Michael

    2011-01-01

    One dimension of understanding the functions of the prefrontal cortex is knowledge of cortical connectivity. We have surveyed three aspects of prefrontal cortical connections: local projections (within the frontal lobe), the termination patterns of long association (post-Rolandic) projections, and the trajectories of major fiber pathways. The local connections appear to be organized in relation to dorsal (hippocampal origin) and ventral (paleocortical origin) architectonic trends. According to the proposal of a dual origin of the cerebral cortex, cortical areas can be traced as originating from archicortex (hippocampus) on the one hand, and paleocortex, on the other hand, in a stepwise manner (e.g., Sanides, 1969; Pandya and Yeterian, 1985). Prefrontal areas within each trend are connected with less architectonically differentiated areas, and, on the other hand, with more differentiated areas. Such organization may allow for the systematic exchange of information within each architectonic trend. The long connections of the prefrontal cortex with post-Rolandic regions seem to be organized preferentially in relation to dorsal and ventral prefrontal architectonic trends. Prefrontal areas are connected with post-Rolandic auditory, visual and somatosensory association areas, and with multimodal and paralimbic regions. This long connectivity likely works in conjunction with local connections to serve prefrontal cortical functions. The afferent and efferent connections of the prefrontal cortex with post-Rolandic regions are conveyed by specific long association pathways. These pathways as well appear to be organized in relation to dorsal and ventral prefrontal architectonic trends. Finally, although prefrontal areas have preferential connections in relation to dual architectonic trends, it is clear that there are interconnections between and among areas in each trend, which may provide a substrate for the overall integrative function of the prefrontal cortex. Prefrontal

  12. Cyto- and receptor architecture of area 32 in human and macaque brains.

    Science.gov (United States)

    Palomero-Gallagher, Nicola; Zilles, Karl; Schleicher, Axel; Vogt, Brent A

    2013-10-01

    Human area 32 plays crucial roles in emotion and memory consolidation. It has subgenual (s32), pregenual (p32), dorsal, and midcingulate components. We seek to determine whether macaque area 32 has subgenual and pregenual subdivisions and the extent to which they are comparable to those in humans by means of NeuN immunohistochemistry and multireceptor analysis of laminar profiles. The macaque has areas s32 and p32. In s32, layer IIIa/b neurons are larger than those of layer IIIc. This relationship is reversed in p32. Layer Va is thicker and Vb thinner in s32. Area p32 contains higher kainate, benzodiazepine (BZ), and serotonin (5-HT)1A but lower N-methyl-D-aspartate (NMDA) and α2 receptor densities. Most differences were found in layers I, II, and VI. Together, these differences support the dual nature of macaque area 32. Comparative analysis of human and macaque s32 and p32 supports equivalences in cyto- and receptor architecture. Although there are differences in mean areal receptor densities, there are considerable similarities at the layer level. Laminar receptor distribution patterns in each area are comparable in the two species in layers III-Va for kainate, NMDA, γ-aminobutyric acid (GABA)B , BZ, and 5-HT1A receptors. Multivariate statistical analysis of laminar receptor densities revealed that human s32 is more similar to macaque s32 and p32 than to human p32. Thus, macaque 32 is more complex than hitherto known. Our data suggest a homologous neural architecture in anterior cingulate s32 and p32 in human and macaque brains. © 2013 Wiley Periodicals, Inc.

  13. Brain-wide map of efferent projections from rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Izabela M. Zakiewicz

    2014-02-01

    Full Text Available The somatotopically organized whisker barrel field of the rat primary somatosensory (S1 cortex is a commonly used model system for anatomical and physiological investigations of sensory processing. The neural connections of the barrel cortex have been extensively mapped. But most investigations have focused on connections to limited regions of the brain, and overviews in the literature of the connections across the brain thus build on a range of material from different laboratories, presented in numerous publications. Furthermore, given the limitations of the conventional journal article format, analyses and interpretations are hampered by lack of access to the underlying experimental data. New opportunities for analyses have emerged with the recent release of an online resource of experimental data consisting of collections of high-resolution images from 6 experiments in which anterograde tracers were injected in S1 whisker or forelimb representations. Building on this material, we have conducted a detailed analysis of the brain wide distribution of the efferent projections of the rat barrel cortex. We compare our findings with the available literature and reports accumulated in the Brain Architecture Management System (BAMS2 database. We report well-known and less known intracortical and subcortical projections of the barrel cortex, as well as distinct differences between S1 whisker and forelimb related projections. Our results correspond well with recently published overviews, but provide additional information about relative differences among S1 projection targets. Our approach demonstrates how collections of shared experimental image data are suitable for brain-wide analysis and interpretation of connectivity mapping data.

  14. P1-24: Neural Representation of Gloss in the Macaque Inferior Temporal Cortex

    OpenAIRE

    Akiko Nishio; Naokazu Goda; Hidehiko Komatsu

    2012-01-01

    The variation of the appearance such as gloss provides one of the most important information for object recognition. However, little is known about the neural mechanisms related to the perception of gloss. We examined whether the neurons in the inferior temporal (IT) cortex of the monkeys are coding gloss of objects. We made visual stimuli which have various surface reflectance properties, and tested responses of IT neurons to these stimuli while a monkey was performing a visual fixation task...

  15. Texture coarseness responsive neurons and their mapping in layer 2–3 of the rat barrel cortex in vivo

    Science.gov (United States)

    Garion, Liora; Dubin, Uri; Rubin, Yoav; Khateb, Mohamed; Schiller, Yitzhak; Azouz, Rony; Schiller, Jackie

    2014-01-01

    Texture discrimination is a fundamental function of somatosensory systems, yet the manner by which texture is coded and spatially represented in the barrel cortex are largely unknown. Using in vivo two-photon calcium imaging in the rat barrel cortex during artificial whisking against different surface coarseness or controlled passive whisker vibrations simulating different coarseness, we show that layer 2–3 neurons within barrel boundaries differentially respond to specific texture coarsenesses, while only a minority of neurons responded monotonically with increased or decreased surface coarseness. Neurons with similar preferred texture coarseness were spatially clustered. Multi-contact single unit recordings showed a vertical columnar organization of texture coarseness preference in layer 2–3. These findings indicate that layer 2–3 neurons perform high hierarchical processing of tactile information, with surface coarseness embodied by distinct neuronal subpopulations that are spatially mapped onto the barrel cortex. DOI: http://dx.doi.org/10.7554/eLife.03405.001 PMID:25233151

  16. Non-invasive modulation of somatosensory evoked potentials by the application of static magnetic fields over the primary and supplementary motor cortices.

    Science.gov (United States)

    Kirimoto, Hikari; Asao, Akihiko; Tamaki, Hiroyuki; Onishi, Hideaki

    2016-10-04

    This study was performed to investigate the possibility of non-invasive modulation of SEPs by the application of transcranial static magnetic field stimulation (tSMS) over the primary motor cortex (M1) and supplementary motor cortex (SMA), and to measure the strength of the NdFeB magnetic field by using a gaussmeter. An NdFeB magnet or a non-magnetic stainless steel cylinder (for sham stimulation) was settled on the scalp over M1 and SMA of 14 subjects for periods of 15 min. SEPs following right median nerve stimulation were recorded before and immediately after, 5 min after, and 10 min after tSMS from sites C3' and F3. Amplitudes of the N33 component of SEPs at C3' significantly decreased immediately after tSMS over M1 by up to 20%. However, tSMS over the SMA did not affect the amplitude of any of the SEP components. At a distance of 2-3 cm (rough depth of the cortex), magnetic field strength was in the range of 110-190 mT. Our results that tSMS over M1 can reduce the amplitude of SEPs are consistent with those of low-frequency repeated TMS and cathodal tDCS studies. Therefore, tSMS could be a useful tool for modulating cortical somatosensory processing.

  17. Ipsilateral corticotectal projections from the primary, premotor and supplementary motor cortical areas in adult macaque monkeys: a quantitative anterograde tracing study

    Science.gov (United States)

    Fregosi, Michela; Rouiller, Eric M.

    2018-01-01

    The corticotectal projection from cortical motor areas is one of several descending pathways involved in the indirect control of spinal motoneurons. In non-human primates, previous studies reported that cortical projections to the superior colliculus originated from the premotor cortex and the primary motor cortex, whereas no projection originated from the supplementary motor area. The aim of the present study was to investigate and compare the properties of corticotectal projections originating from these three cortical motor areas in intact adult macaques (n=9). The anterograde tracer BDA was injected into one of these cortical areas in each animal. Individual axonal boutons, both en passant and terminaux, were charted and counted in the different layers of the ipsilateral superior colliculus. The data confirmed the presence of strong corticotectal projections from the premotor cortex. A new observation was that strong corticotectal projections were also found to originate from the supplementary motor area (its proper division). The corticotectal projection from the primary motor cortex was quantitatively less strong than that from either the premotor or supplementary motor areas. The corticotectal projection from each motor area was directed mainly to the deep layer of the superior colliculus, although its intermediate layer was also a consistent target of fairly dense terminations. The strong corticotectal projections from non-primary motor areas are in position to influence the preparation and planning of voluntary movements. PMID:28921678

  18. Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity.

    Science.gov (United States)

    Fame, Ryann M; MacDonald, Jessica L; Dunwoodie, Sally L; Takahashi, Emi; Macklis, Jeffrey D

    2016-06-15

    The neocortex contains hundreds to thousands of distinct subtypes of precisely connected neurons, allowing it to perform remarkably complex tasks of high-level cognition. Callosal projection neurons (CPN) connect the cerebral hemispheres via the corpus callosum, integrating cortical information and playing key roles in associative cognition. CPN are a strikingly diverse set of neuronal subpopulations, and development of this diversity requires precise control by a complex, interactive set of molecular effectors. We have found that the transcriptional coregulator Cited2 regulates and refines two stages of CPN development. Cited2 is expressed broadly by progenitors in the embryonic day 15.5 subventricular zone, during the peak of superficial layer CPN birth, with a progressive postmitotic refinement in expression, becoming restricted to CPN of the somatosensory cortex postnatally. We generated progenitor-stage and postmitotic forebrain-specific Cited2 conditional knock-out mice, using the Emx1-Cre and NEX-Cre mouse lines, respectively. We demonstrate that Cited2 functions in progenitors, but is not necessary postmitotically, to regulate both (1) broad generation of layer II/III CPN and (2) acquisition of precise area-specific molecular identity and axonal/dendritic connectivity of somatosensory CPN. This novel CPN subtype-specific and area-specific control from progenitor action of Cited2 adds yet another layer of complexity to the multistage developmental regulation of neocortical development. This study identifies Cited2 as a novel subtype-specific and area-specific control over development of distinct subpopulations within the broad population of callosal projection neurons (CPN), whose axons connect the two cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We found that Cited2 functions within

  19. Neurobiological evidence for attention bias to food, emotional dysregulation, disinhibition and deficient somatosensory awareness in obesity with binge eating disorder.

    Science.gov (United States)

    Aviram-Friedman, Roni; Astbury, Nerys; Ochner, Christopher N; Contento, Isobel; Geliebter, Allan

    2018-02-01

    To refine the biobehavioral markers of binge eating disorder (BED). We conducted fMRI brain scans using images of high energy processed food (HEPF), low energy unprocessed food (LEUF), or non-foods (NF) in 42 adults (obese with BED [obese -BED; n=13] and obese with no BED [obese non-BED; n=29]) selected via ads. Two blood oxygenated level dependent (BOLD) signal contrast maps were examined: food versus nonfood, and HEPF versus LEUF. In addition, score differences on the disinhibition scale were correlated with BOLD signals. food versus nonfood showed greater BOLD activity for BED in emotional, motivational and somatosensory brain areas: insula, anterior cingulate cortex (ACC), Brodmann areas (BA) 19 & 32, inferior parietal lobule (IPL), posterior cingulate cortex (PCC), and lingual, postcentral, middle temporal and cuneate gyri (p≤0.005; k≥88). HEPF versus LEUF showed greater BOLD activity for BED in inhibitory brain regions: BA 6, middle and superior frontal gyri (pFood images elicited neural activity indicating attention bias (cuneate & PCG), emotion dysregulation (BA 19 & 32), and disinhibition (MFG, BA6 & SFG) in obese with BED. These may help tailor a treatment for the obesity with BED phenotype. Copyright © 2017. Published by Elsevier Inc.

  20. Temporally evolving gain mechanisms of attention in macaque area V4.

    Science.gov (United States)

    Sani, Ilaria; Santandrea, Elisa; Morrone, Maria Concetta; Chelazzi, Leonardo

    2017-08-01

    Cognitive attention and perceptual saliency jointly govern our interaction with the environment. Yet, we still lack a universally accepted account of the interplay between attention and luminance contrast, a fundamental dimension of saliency. We measured the attentional modulation of V4 neurons' contrast response functions (CRFs) in awake, behaving macaque monkeys and applied a new approach that emphasizes the temporal dynamics of cell responses. We found that attention modulates CRFs via different gain mechanisms during subsequent epochs of visually driven activity: an early contrast-gain, strongly dependent on prestimulus activity changes (baseline shift); a time-limited stimulus-dependent multiplicative modulation, reaching its maximal expression around 150 ms after stimulus onset; and a late resurgence of contrast-gain modulation. Attention produced comparable time-dependent attentional gain changes on cells heterogeneously coding contrast, supporting the notion that the same circuits mediate attention mechanisms in V4 regardless of the form of contrast selectivity expressed by the given neuron. Surprisingly, attention was also sometimes capable of inducing radical transformations in the shape of CRFs. These findings offer important insights into the mechanisms that underlie contrast coding and attention in primate visual cortex and a new perspective on their interplay, one in which time becomes a fundamental factor. NEW & NOTEWORTHY We offer an innovative perspective on the interplay between attention and luminance contrast in macaque area V4, one in which time becomes a fundamental factor. We place emphasis on the temporal dynamics of attentional effects, pioneering the notion that attention modulates contrast response functions of V4 neurons via the sequential engagement of distinct gain mechanisms. These findings advance understanding of attentional influences on visual processing and help reconcile divergent results in the literature. Copyright © 2017 the

  1. Delineation of somatosensory finger areas using vibrotactile stimulation, an ECoG study.

    Science.gov (United States)

    Wahnoun, Rémy; Benson, Michelle; Helms-Tillery, Stephen; Adelson, P David

    2015-10-01

    In surgical planning for epileptic focus resection, functional mapping of eloquent cortex is attained through direct electrical stimulation of the brain. This procedure is uncomfortable, can trigger seizures or nausea, and relies on subjective evaluation. We hypothesize that a method combining vibrotactile stimulation and statistical clustering may provide improved somatosensory mapping. Seven pediatric candidates for surgical resection underwent a task in which their fingers were independently stimulated using a custom designed finger pad, during electrocorticographic monitoring. A cluster-based statistical analysis was then performed to localize the elicited activity on the recording grids. Mid-Gamma clusters (65-115 Hz) arose in areas consistent with anatomical predictions as well as clinical findings, with five subjects presenting a somatotopic organization of the fingers. This process allowed us to delineate finger representation even in patients who were sleeping, with strong interictal activity, or when electrical stimulation did not successfully locate eloquent areas. We suggest that this scheme, relying on the endogenous neural response rather than exogenous electrical activation, could eventually be extended to map other sensory areas and provide a faster and more objective map to better anticipate outcomes of surgical resection.

  2. Evolutionary appearance of Von Economo’s Neurons in the mammalian cerebral cortex

    Directory of Open Access Journals (Sweden)

    Franco eCauda

    2014-03-01

    Full Text Available Von Economo’s neurons (VENs are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months.VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like social cognitive abilities and self-awareness. VENs are also found in whales, in a number of different cetaceans, and in the elephant. This phylogenetic distribution may suggest a correlation among the VENs, brain size and the social brain. VENs may be involved in the pathogenesis of specific neurological and psychiatric diseases, such as autism, callosal agenesis and schizophrenia. VENs are selectively affected in a behavioral variant of frontotemporal dementia in which empathy, social awareness and self-control are seriously compromised, thus associating VENs with the social brain.However, the presence of VENs has also been related to special functions such as mirror self-recognition. Areas containing VENs have been related to motor awareness or sense-of-knowing, discrimination between self and other, and between self and the external environment. Along this line, VENs have been related to the global Workspace architecture: in accordance the VENs have been correlated to emotional and interoceptive signals by providing fast connections (large axons = fast communication between salience-related insular and cingulate and other widely separated brain areas.Nevertheless, the lack of a characterization of their physiology and anatomical connectivity allowed only to infer their functional role based on their location and on the fMRI data. The recent finding of VENs in the anterior insula of the macaque opens the way to new insights and experimental investigatio

  3. A reaction-diffusion model to capture disparity selectivity in primary visual cortex.

    Directory of Open Access Journals (Sweden)

    Mohammed Sultan Mohiuddin Siddiqui

    Full Text Available Decades of experimental studies are available on disparity selective cells in visual cortex of macaque and cat. Recently, local disparity map for iso-orientation sites for near-vertical edge preference is reported in area 18 of cat visual cortex. No experiment is yet reported on complete disparity map in V1. Disparity map for layer IV in V1 can provide insight into how disparity selective complex cell receptive field is organized from simple cell subunits. Though substantial amounts of experimental data on disparity selective cells is available, no model on receptive field development of such cells or disparity map development exists in literature. We model disparity selectivity in layer IV of cat V1 using a reaction-diffusion two-eye paradigm. In this model, the wiring between LGN and cortical layer IV is determined by resource an LGN cell has for supporting connections to cortical cells and competition for target space in layer IV. While competing for target space, the same type of LGN cells, irrespective of whether it belongs to left-eye-specific or right-eye-specific LGN layer, cooperate with each other while trying to push off the other type. Our model captures realistic 2D disparity selective simple cell receptive fields, their response properties and disparity map along with orientation and ocular dominance maps. There is lack of correlation between ocular dominance and disparity selectivity at the cell population level. At the map level, disparity selectivity topography is not random but weakly clustered for similar preferred disparities. This is similar to the experimental result reported for macaque. The details of weakly clustered disparity selectivity map in V1 indicate two types of complex cell receptive field organization.

  4. Persistent Neuronal Firing in Primary Somatosensory Cortex in the Absence of Working Memory of Trial-Specific Features of the Sample Stimuli in a Haptic Working Memory Task

    Science.gov (United States)

    Wang, Liping; Li, Xianchun; Hsiao, Steven S.; Bodner, Mark; Lenz, Fred; Zhou, Yong-Di

    2012-01-01

    Previous studies suggested that primary somatosensory (SI) neurons in well-trained monkeys participated in the haptic-haptic unimodal delayed matching-to-sample (DMS) task. In this study, 585 SI neurons were recorded in monkeys performing a task that was identical to that in the previous studies but without requiring discrimination and active…

  5. Ex-vivo α-galactosylceramide activation of NKT cells in humans and macaques.

    Science.gov (United States)

    Fernandez, Caroline S; Cameron, Garth; Godfrey, Dale I; Kent, Stephen J

    2012-08-31

    NKT cells are key mediators of antiviral and anticancer immunity. Experiments in mice have demonstrated that activation of NKT cells in vivo induces the expression of multiple effector molecules critical to successful immunity. Human clinical trials have shown similar responses, although in vivo activation of NKT cells in humans or primate models are far more limited in number and scope. Measuring ex vivo activation of NKT cells by the CD1d-restricted glycolipid ligand α-Galactosylceramide (α-GalCer) through cytokine expression profiles is a useful marker of NKT cell function, but for reasons that are unclear, this approach does not appear to work as well in humans and non-human primate macaque models in comparison to mice. We performed a series of experiments on human and macaque (Macaca nemestrina) fresh whole blood samples to define optimal conditions to detect NKT cell cytokine (TNF, IFNγ, IL-2) and degranulation marker (CD107a) expression by flow cytometry. We found that conditions previously described for mouse splenocyte NKT cell activation were suboptimal on human or macaque blood NKT cells. In contrast, a 6h incubation with brefeldin A added for the last 4h, in a 96-well plate based assay, and using an α-GalCer concentration of 1 μg/ml were optimal methods to stimulate NKT cells in fresh blood from both humans and macaques. Unexpectedly, we noted that blood NKT cells from macaques infected with SIV were more readily activated by α-GalCer than NKT cells from uninfected macaques, suggesting that SIV infection may have primed the NKT cells. In conclusion, we describe optimized methods for the ex vivo antigen-specific activation of human and macaque blood NKT cells. These assays should be useful in monitoring NKT cells in disease and in immunotherapy studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. The development of object recognition memory in rhesus macaques with neonatal lesions of the perirhinal cortex

    Directory of Open Access Journals (Sweden)

    Alyson Zeamer

    2015-02-01

    Full Text Available To investigate the role of the perirhinal cortex on the development of recognition measured by the visual paired-comparison (VPC task, infant monkeys with neonatal perirhinal lesions and sham-operated controls were tested at 1.5, 6, 18, and 48 months of age on the VPC task with color stimuli and intermixed delays of 10 s, 30 s, 60 s, and 120 s. Monkeys with neonatal perirhinal lesions showed an increase in novelty preference between 1.5 and 6 months of age similar to controls, although at these two ages, performance remained significantly poorer than that of control animals. With age, performance in animals with neonatal perirhinal lesions deteriorated as compared to that of controls. In contrast to the lack of novelty preference in monkeys with perirhinal lesions acquired in adulthood, novelty preference in the neonatally operated animals remained above chance at all delays and all ages. The data suggest that, although incidental recognition memory processes can be supported by the perirhinal cortex in early infancy, other temporal cortical areas may support these processes in the absence of a functional perirhinal cortex early in development. The neural substrates mediating incidental recognition memory processes appear to be more widespread in early infancy than in adulthood.

  7. High-resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex.

    Science.gov (United States)

    McCasland, J S; Woolsey, T A

    1988-12-22

    Cortical columns associated with barrels in layer IV of the somatosensory cortex were characterized by high-resolution 2-deoxy-D-glucose (2DG) autoradiography in freely behaving mice. The method demonstrates a more exact match between columnar labeling and cytoarchitectonic barrel boundaries than previously reported. The pattern of cortical activation seen with stimulation of a single whisker (third whisker in the middle row of large hairs--C3) was compared with the patterns from two control conditions--normal animals with all whiskers present ("positive control")--and with all large whiskers clipped ("negative control"). Two types of measurements were made from 2DG autoradiograms of tangential cortical sections: 1) labeled cells were identified by eye and tabulated with a computer, and 2) grain densities were obtained automatically with a computer-controlled microscope and image processor. We studied the fine-grained patterns of 2DG labeling in a nine-barrel grid with the C3 barrel in the center. From the analysis we draw five major conclusions. 1. Approximately 30-40% of the total number of neurons in the C3 barrel column are activated when only the C3 whisker is stimulated. This is about twice the number of neurons labeled in the C3 column when all whiskers are stimulated and about ten times the number of neurons labeled when all large whiskers are clipped. 2. There is evidence for a vertical functional organization within a barrel-related whisker column which has smaller dimensions in the tangential direction than a barrel. There are densely labeled patches within a barrel which are unique to an individual cortex. The same patchy pattern is found in the appropriate regions of sections above and below the barrels through the full thickness of the cortex. This functional arrangement could be considered to be a "minicolumn" or more likely a group of "minicolumns" (Mountcastle: In G.M. Edelman and U.B. Mountcastle (eds): The Material Brain: Cortical Organization

  8. Risk and Resilience: Early Manipulation of Macaque Social Experience and Persistent Behavioral and Neurophysiological Outcomes

    Science.gov (United States)

    Stevens, Hanna E.; Leckman, James F.; Coplan, Jeremy D.; Suomi, Stephen J.

    2009-01-01

    A literature review on macaque monkeys finds that peer rearing of young macaques and rearing of young macaques by mothers that are undergoing variable foraging conditions result in emotional and neurophysiological disturbance. Certain genotypes contribute to resilience to this disturbance. The findings have implications to child mental health and…

  9. Somatosensory evoked potentials in children with autism | Azouz ...

    African Journals Online (AJOL)

    SSEPs) changesamong children with autism, and their relation to somatosensory manifestations and severity of autism. Subjects: Thirty children with autism aged 2–12 years were included in the study, all of them fulfilling criteria of the Diagnostic ...

  10. A long-acting integrase inhibitor protects female macaques from repeated high-dose intravaginal SHIV challenge.

    Science.gov (United States)

    Andrews, Chasity D; Yueh, Yun Lan; Spreen, William R; St Bernard, Leslie; Boente-Carrera, Mar; Rodriguez, Kristina; Gettie, Agegnehu; Russell-Lodrigue, Kasi; Blanchard, James; Ford, Susan; Mohri, Hiroshi; Cheng-Mayer, Cecilia; Hong, Zhi; Ho, David D; Markowitz, Martin

    2015-01-14

    Long-acting GSK1265744 (GSK744 LA) is a strand transfer inhibitor of the HIV/SIV (simian immunodeficiency virus) integrase and was shown to be an effective preexposure prophylaxis (PrEP) agent in a low-dose intrarectal SHIV (simian-human immunodeficiency virus) rhesus macaque challenge model. We examined the pharmacokinetics and efficacy of GSK744 LA as PrEP against repeat high-dose intravaginal SHIV challenge in female rhesus macaques treated with Depo-Provera (depot medroxyprogesterone acetate), which promotes viral transmission vaginally. When Depo-Provera-treated female rhesus macaques were dosed with GSK744 LA (50 mg/kg) monthly, systemic and tissue drug concentrations were lower than previously observed in male rhesus macaques. GSK744 concentrations were fivefold lower on average in cervical tissues than in rectal tissues. Eight female rhesus macaques were treated with GSK744 LA at week 0, and four female rhesus macaques served as controls. All animals received a high-dose challenge of SHIV162P3 at week 1. No infection was detected in GSK744 LA-treated rhesus macaques, whereas viremia was detected 1 to 2 weeks after SHIV challenge in all control animals. The GSK744 LA-treated rhesus macaques were given a second administration of drug at week 4 and further challenged at weeks 5 and 7. GSK744 LA treatment protected six of eight female rhesus macaques against three high-dose SHIV challenges, whereas all control animals became infected after the first challenge (P = 0.0003, log-rank test). These results support further clinical development of GSK744 LA for PrEP. Copyright © 2015, American Association for the Advancement of Science.

  11. Posterior Inferotemporal Cortex Cells Use Multiple Input Pathways for Shape Encoding.

    Science.gov (United States)

    Ponce, Carlos R; Lomber, Stephen G; Livingstone, Margaret S

    2017-05-10

    In the macaque monkey brain, posterior inferior temporal (PIT) cortex cells contribute to visual object recognition. They receive concurrent inputs from visual areas V4, V3, and V2. We asked how these different anatomical pathways shape PIT response properties by deactivating them while monitoring PIT activity in two male macaques. We found that cooling of V4 or V2|3 did not lead to consistent changes in population excitatory drive; however, population pattern analyses showed that V4-based pathways were more important than V2|3-based pathways. We did not find any image features that predicted decoding accuracy differences between both interventions. Using the HMAX hierarchical model of visual recognition, we found that different groups of simulated "PIT" units with different input histories (lacking "V2|3" or "V4" input) allowed for comparable levels of object-decoding performance and that removing a large fraction of "PIT" activity resulted in similar drops in performance as in the cooling experiments. We conclude that distinct input pathways to PIT relay similar types of shape information, with V1-dependent V4 cells providing more quantitatively useful information for overall encoding than cells in V2 projecting directly to PIT. SIGNIFICANCE STATEMENT Convolutional neural networks are the best models of the visual system, but most emphasize input transformations across a serial hierarchy akin to the primary "ventral stream" (V1 → V2 → V4 → IT). However, the ventral stream also comprises parallel "bypass" pathways: V1 also connects to V4, and V2 to IT. To explore the advantages of mixing long and short pathways in the macaque brain, we used cortical cooling to silence inputs to posterior IT and compared the findings with an HMAX model with parallel pathways. Copyright © 2017 the authors 0270-6474/17/375019-16$15.00/0.

  12. Modulation of Neuronal Responses by Exogenous Attention in Macaque Primary Visual Cortex.

    Science.gov (United States)

    Wang, Feng; Chen, Minggui; Yan, Yin; Zhaoping, Li; Li, Wu

    2015-09-30

    Visual perception is influenced by attention deployed voluntarily or triggered involuntarily by salient stimuli. Modulation of visual cortical processing by voluntary or endogenous attention has been extensively studied, but much less is known about how involuntary or exogenous attention affects responses of visual cortical neurons. Using implanted microelectrode arrays, we examined the effects of exogenous attention on neuronal responses in the primary visual cortex (V1) of awake monkeys. A bright annular cue was flashed either around the receptive fields of recorded neurons or in the opposite visual field to capture attention. A subsequent grating stimulus probed the cue-induced effects. In a fixation task, when the cue-to-probe stimulus onset asynchrony (SOA) was visual fields weakened or diminished both the physiological and behavioral cueing effects. Our findings indicate that exogenous attention significantly modulates V1 responses and that the modulation strength depends on both novelty and task relevance of the stimulus. Significance statement: Visual attention can be involuntarily captured by a sudden appearance of a conspicuous object, allowing rapid reactions to unexpected events of significance. The current study discovered a correlate of this effect in monkey primary visual cortex. An abrupt, salient, flash enhanced neuronal responses, and shortened the animal's reaction time, to a subsequent visual probe stimulus at the same location. However, the enhancement of the neural responses diminished after repeated exposures to this flash if the animal was not required to react to the probe. Moreover, a second, simultaneous, flash at another location weakened the neuronal and behavioral effects of the first one. These findings revealed, beyond the observations reported so far, the effects of exogenous attention in the brain. Copyright © 2015 the authors 0270-6474/15/3513419-11$15.00/0.

  13. [Treatment of central and neuropathic facial pain by chronic stimulation of the motor cortex: value of neuronavigation guidance systems for the localization of the motor cortex].

    Science.gov (United States)

    Nguyen, J P; Lefaucheur, J P; Le Guerinel, C; Fontaine, D; Nakano, N; Sakka, L; Eizenbaum, J F; Pollin, B; Keravel, Y

    2000-11-01

    Thirty two patients with refractory central and neuropathic pain of peripheral origin were treated by chronic stimulation of the motor cortex between May 1993 and January 1997. The mean follow-up was 27. 3 months. The first 24 patients were operated according to the technique described by Tsubokawa. The last 13 cases (8 new patients and 5 reinterventions) were operated by a technique including localization by superficial CT reconstruction of the central region and neuronavigator guidance. The position of the central sulcus was confirmed by the use of intraoperative somatosensory evoked potentials. The somatotopic organisation of the motor cortex was established peroperatively by studying the motor responses at stimulation of the motor cortex through the dura. Ten of the 13 patients with central pain (77%) and nine of the 12 patients with neuropathic facial pain had experienced substantial pain relief (75%). One of the 3 patients with post-paraplegia pain was clearly improved. A satisfactory result was obtained in one patient with pain related to plexus avulsion and in one patient with pain related to intercostal herpes zoster. None of the patients developed epileptic seizures. The position of the stimulating poles effective on pain corresponded to the somatotopic representation of the motor cortex. The neuronavigator localization and guidance technique proved to be most useful identifying the appropriate portion of the motor gyrus. It also allowed the establishment of reliable correlations between electrophysiological-clinical and anatomical data which may be used to improve the clinical results and possibly to extend the indications of this technique.

  14. Identification and characterization of short tandem repeats in the Tibetan macaque genome based on resequencing data.

    Science.gov (United States)

    Liu, San-Xu; Hou, Wei; Zhang, Xue-Yan; Peng, Chang-Jun; Yue, Bi-Song; Fan, Zhen-Xin; Li, Jing

    2018-07-18

    The Tibetan macaque, which is endemic to China, is currently listed as a Near Endangered primate species by the International Union for Conservation of Nature (IUCN). Short tandem repeats (STRs) refer to repetitive elements of genome sequence that range in length from 1-6 bp. They are found in many organisms and are widely applied in population genetic studies. To clarify the distribution characteristics of genome-wide STRs and understand their variation among Tibetan macaques, we conducted a genome-wide survey of STRs with next-generation sequencing of five macaque samples. A total of 1 077 790 perfect STRs were mined from our assembly, with an N50 of 4 966 bp. Mono-nucleotide repeats were the most abundant, followed by tetra- and di-nucleotide repeats. Analysis of GC content and repeats showed consistent results with other macaques. Furthermore, using STR analysis software (lobSTR), we found that the proportion of base pair deletions in the STRs was greater than that of insertions in the five Tibetan macaque individuals (Pgenome showed good amplification efficiency and could be used to study population genetics in Tibetan macaques. The neighbor-joining tree classified the five macaques into two different branches according to their geographical origin, indicating high genetic differentiation between the Huangshan and Sichuan populations. We elucidated the distribution characteristics of STRs in the Tibetan macaque genome and provided an effective method for screening polymorphic STRs. Our results also lay a foundation for future genetic variation studies of macaques.

  15. Morphometric analysis of feedforward pathways from the primary somatosensory area (S1 of rats

    Directory of Open Access Journals (Sweden)

    A.L. de Sá

    2016-01-01

    Full Text Available We used biotinylated dextran amine (BDA to anterogradely label individual axons projecting from primary somatosensory cortex (S1 to four different cortical areas in rats. A major goal was to determine whether axon terminals in these target areas shared morphometric similarities based on the shape of individual terminal arbors and the density of two bouton types: en passant (Bp and terminaux (Bt. Evidence from tridimensional reconstructions of isolated axon terminal fragments (n=111 did support a degree of morphological heterogeneity establishing two broad groups of axon terminals. Morphological parameters associated with the complexity of terminal arbors and the proportion of beaded Bp vs stalked Bt were found to differ significantly in these two groups following a discriminant function statistical analysis across axon fragments. Interestingly, both groups occurred in all four target areas, possibly consistent with a commonality of presynaptic processing of tactile information. These findings lay the ground for additional work aiming to investigate synaptic function at the single bouton level and see how this might be associated with emerging properties in postsynaptic targets.

  16. Stepping toward a Macaque Model of HIV-1 Induced AIDS

    Directory of Open Access Journals (Sweden)

    Jason T. Kimata

    2014-09-01

    Full Text Available HIV-1 exhibits a narrow host range, hindering the development of a robust animal model of pathogenesis. Past studies have demonstrated that the restricted host range of HIV-1 may be largely due to the inability of the virus to antagonize and evade effector molecules of the interferon response in other species. They have also guided the engineering of HIV-1 clones that can replicate in CD4 T-cells of Asian macaque species. However, while replication of these viruses in macaque hosts is persistent, it has been limited and without progression to AIDS. In a new study, Hatziioannou et al., demonstrate for the first time that adapted macaque-tropic HIV-1 can persistently replicate at high levels in pigtailed macaques (Macaca nemestrina, but only if CD8 T-cells are depleted at the time of inoculation. The infection causes rapid disease and recapitulates several aspects of AIDS in humans. Additionally, the virus undergoes genetic changes to further escape innate immunity in association with disease progression. Here, the importance of these findings is discussed, as they relate to pathogenesis and model development.

  17. Skill-Specific Changes in Somatosensory Nogo Potentials in Baseball Players.

    Directory of Open Access Journals (Sweden)

    Koya Yamashiro

    Full Text Available Athletic training is known to induce neuroplastic alterations in specific somatosensory circuits, which are reflected by changes in somatosensory evoked potentials and event-related potentials. The aim of this study was to clarify whether specific athletic training also affects somatosensory Nogo potentials related to the inhibition of movements. The Nogo potentials were recorded at nine cortical electrode positions (Fz, Cz, Pz, F3, F4, C3, C4, P3 and P4 in 12 baseball players (baseball group and in 12 athletes in sports, such as track and field events and swimming, that do not require response inhibition, such as batting for training or performance (sports group. The Nogo potentials and Go/Nogo reaction times (Go/Nogo RTs were measured under a somatosensory Go/Nogo paradigm in which subjects were instructed to rapidly push a button in response to stimulus presentation. The Nogo potentials were obtained by subtracting the Go trial from the Nogo trial. The peak Nogo-N2 was significantly shorter in the baseball group than that in the sports group. In addition, the amplitude of Nogo-N2 in the frontal area was significantly larger in the baseball group than that in the sports group. There was a significant positive correlation between the latency of Nogo-N2 and Go/Nogo RT. Moreover, there were significant correlations between the Go/Nogo RT and both the amplitude of Nogo-N2 and Nogo-P3 (i.e., amplitude of the Nogo-potentials increases with shorter RT. Specific athletic training regimens may induce neuroplastic alterations in sensorimotor inhibitory processes.

  18. Serotonin transporter genotype modulates social reward and punishment in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Karli K Watson

    Full Text Available Serotonin signaling influences social behavior in both human and nonhuman primates. In humans, variation upstream of the promoter region of the serotonin transporter gene (5-HTTLPR has recently been shown to influence both behavioral measures of social anxiety and amygdala response to social threats. Here we show that length polymorphisms in 5-HTTLPR predict social reward and punishment in rhesus macaques, a species in which 5-HTTLPR variation is analogous to that of humans.In contrast to monkeys with two copies of the long allele (L/L, monkeys with one copy of the short allele of this gene (S/L spent less time gazing at face than non-face images, less time looking in the eye region of faces, and had larger pupil diameters when gazing at photos of a high versus low status male macaques. Moreover, in a novel primed gambling task, presentation of photos of high status male macaques promoted risk-aversion in S/L monkeys but promoted risk-seeking in L/L monkeys. Finally, as measured by a "pay-per-view" task, S/L monkeys required juice payment to view photos of high status males, whereas L/L monkeys sacrificed fluid to see the same photos.These data indicate that genetic variation in serotonin function contributes to social reward and punishment in rhesus macaques, and thus shapes social behavior in humans and rhesus macaques alike.

  19. Analysis of carboxylesterase 2 transcript variants in cynomolgus macaque liver.

    Science.gov (United States)

    Uno, Yasuhiro; Igawa, Yoshiyuki; Tanaka, Maori; Ohura, Kayoko; Hosokawa, Masakiyo; Imai, Teruko

    2018-04-27

    Carboxylesterase (CES) is important for the detoxification of a wide range of drugs and xenobiotics. In this study, the hepatic level of CES2 mRNA was examined in cynomolgus macaques used widely in preclinical studies for drug metabolism. Three CES2 mRNAs were present in cynomolgus macaque liver. The mRNA level was highest for cynomolgus CES2A (formerly CES2v3), much lower for cynomolgus CES2B (formerly CES2v1) and extremely low for cynomolgus CES2C (formerly CES2v2). Most various transcript variants produced from cynomolgus CES2B gene did not contain a complete coding region. Thus, CES2A is the major CES2 enzyme in cynomolgus liver. A new transcript variant of CES2A, CES2Av2, was identified. CES2Av2 contained exon 3 region different from wild-type (CES2Av1). In cynomolgus macaques expressing only CES2Av2 transcript, CES2A contained the sequence of CES2B in exon 3 and vicinity, probably due to gene conversion. On genotyping, this CES2Av2 allele was prevalent in Indochinese cynomolgus macaques, but not in Indonesian cynomolgus or rhesus macaques. CES2Av2 recombinant protein showed similar activity to CES2Av1 protein for several substrates. It is concluded that CES2A is the major cynomolgus hepatic CES2, and new transcript variant, CES2Av2, has similar functions to CES2Av1.

  20. Heterologous Protection against Asian Zika Virus Challenge in Rhesus Macaques.

    Directory of Open Access Journals (Sweden)

    Matthew T Aliota

    2016-12-01

    Full Text Available Zika virus (ZIKV; Flaviviridae, Flavivirus was declared a public health emergency of international concern by the World Health Organization (WHO in February 2016, because of the evidence linking infection with ZIKV to neurological complications, such as Guillain-Barre Syndrome in adults and congenital birth defects including microcephaly in the developing fetus. Because development of a ZIKV vaccine is a top research priority and because the genetic and antigenic variability of many RNA viruses limits the effectiveness of vaccines, assessing whether immunity elicited against one ZIKV strain is sufficient to confer broad protection against all ZIKV strains is critical. Recently, in vitro studies demonstrated that ZIKV likely circulates as a single serotype. Here, we demonstrate that immunity elicited by African lineage ZIKV protects rhesus macaques against subsequent infection with Asian lineage ZIKV.Using our recently developed rhesus macaque model of ZIKV infection, we report that the prototypical ZIKV strain MR766 productively infects macaques, and that immunity elicited by MR766 protects macaques against heterologous Asian ZIKV. Furthermore, using next generation deep sequencing, we found in vivo restoration of a putative N-linked glycosylation site upon replication in macaques that is absent in numerous MR766 strains that are widely being used by the research community. This reversion highlights the importance of carefully examining the sequence composition of all viral stocks as well as understanding how passage history may alter a virus from its original form.An effective ZIKV vaccine is needed to prevent infection-associated fetal abnormalities. Macaques whose immune responses were primed by infection with East African ZIKV were completely protected from detectable viremia when subsequently rechallenged with heterologous Asian ZIKV. Therefore, these data suggest that immunogen selection is unlikely to adversely affect the breadth of

  1. Expression of cytochrome P450 regulators in cynomolgus macaque.

    Science.gov (United States)

    Uno, Yasuhiro; Yamazaki, Hiroshi

    2017-09-11

    1. Cytochrome P450 (P450) regulators including nuclear receptors and transcription factors have not been fully investigated in cynomolgus macaques, an important species used in drug metabolism studies. In this study, we analyzed 17 P450 regulators by sequence and phylogenetic analysis, and tissue expression. 2. Gene and genome structures of 17 P450 regulators were similar to the human orthologs, and the deduced amino acid sequences showed high sequence identities (92-95%) and more closely clustered in a phylogenetic tree, with the human orthologs. 3. Many of the P450 regulator mRNAs were preferentially expressed in the liver, kidney, and/or jejunum. Among the P450 regulator mRNAs, PXR was most abundant in the liver and jejunum, and HNF4α in the kidney. In the liver, the expression of most P450 regulator mRNAs did not show significant differential expression (>2.5-fold) between cynomolgus macaques bred in Cambodia, China, and Indonesia, or rhesus macaques. 4. By correlation analysis, most of the P450 regulators were significantly (p < 0.05) correlated to other P450 regulators, and many of them were also significantly (p < 0.05) correlated with P450s. 5. These results suggest that 17 P450 regulators of cynomolgus macaques had similar molecular characteristics to the human orthologs.

  2. ABO blood group phenotype frequency estimation using molecular phenotyping in rhesus and cynomolgus macaques.

    Science.gov (United States)

    Kanthaswamy, S; Ng, J; Oldt, R F; Valdivia, L; Houghton, P; Smith, D G

    2017-11-01

    A much larger sample (N = 2369) was used to evaluate a previously reported distribution of the A, AB and B blood group phenotypes in rhesus and cynomolgus macaques from six different regional populations. These samples, acquired from 15 different breeding and research facilities in the United States, were analyzed using a real-time quantitative polymerase chain reaction (qPCR) assay that targets single nucleotide polymorphisms (SNPs) responsible for the macaque A, B and AB phenotypes. The frequency distributions of blood group phenotypes of the two species differ significantly from each other and significant regional differentiation within the geographic ranges of each species was also observed. The B blood group phenotype was prevalent in rhesus macaques, especially those from India, while the frequencies of the A, B and AB phenotypes varied significantly among cynomolgus macaques from different geographic regions. The Mauritian cynomolgus macaques, despite having originated in Indonesia, showed significant (P ≪ .01) divergence from the Indonesian animals at the ABO blood group locus. Most Mauritian animals belonged to the B blood group while the Indonesian animals were mostly A. The close similarity in blood group frequency distributions between the Chinese rhesus and Indochinese cynomolgus macaques demonstrates that the introgression between these two species extends beyond the zone of intergradation in Indochina. This study underscores the importance of ABO blood group phenotyping of the domestic supply of macaques and their biospecimens. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar; Burkeen, Jeffrey; Connor, Michael [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Krishnan, Anitha Priya; White, Nathan S.; Farid, Nikdokht; Bartsch, Hauke [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Murzin, Vyacheslav [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Nguyen, Tanya T. [Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Brewer, James B. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Dale, Anders M. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-04-01

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations

  4. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    International Nuclear Information System (INIS)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar; Burkeen, Jeffrey; Connor, Michael; Krishnan, Anitha Priya; White, Nathan S.; Farid, Nikdokht; Bartsch, Hauke; Murzin, Vyacheslav; Nguyen, Tanya T.; Moiseenko, Vitali; Brewer, James B.; McDonald, Carrie R.; Dale, Anders M.; Hattangadi-Gluth, Jona A.

    2017-01-01

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations

  5. Laboratory rhesus macaque social housing and social changes: Implications for research.

    Science.gov (United States)

    Hannibal, Darcy L; Bliss-Moreau, Eliza; Vandeleest, Jessica; McCowan, Brenda; Capitanio, John

    2017-01-01

    Macaque species, specifically rhesus (Macaca mulatta), are the most common nonhuman primates (NHPs) used in biomedical research due to their suitability as a model of high priority diseases (e.g., HIV, obesity, cognitive aging), cost effective breeding and housing compared to most other NHPs, and close evolutionary relationship to humans. With this close evolutionary relationship, however, is a shared adaptation for a socially stimulating environment, without which both their welfare and suitability as a research model are compromised. While outdoor social group housing provides the best approximation of a social environment that matches the macaque behavioral biology in the wild, this is not always possible at all facilities, where animals may be housed indoors in small groups, in pairs, or alone. Further, animals may experience many housing changes in their lifetime depending on project needs, changes in social status, management needs, or health concerns. Here, we review the evidence for the physiological and health effects of social housing changes and the potential impacts on research outcomes for studies using macaques, particularly rhesus. We situate our review in the context of increasing regulatory pressure for research facilities to both house NHPs socially and mitigate trauma from social aggression. To meet these regulatory requirements and further refine the macaque model for research, significant advances must be made in our understanding and management of rhesus macaque social housing, particularly pair-housing since it is the most common social housing configuration for macaques while on research projects. Because most NHPs are adapted for sociality, a social context is likely important for improving repeatability, reproducibility, and external validity of primate biomedical research. Am. J. Primatol. 79:e22528, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. An SIV/macaque model targeted to study HIV-associated neurocognitive disorders.

    Science.gov (United States)

    Beck, Sarah E; Queen, Suzanne E; Metcalf Pate, Kelly A; Mangus, Lisa M; Abreu, Celina M; Gama, Lucio; Witwer, Kenneth W; Adams, Robert J; Zink, M Christine; Clements, Janice E; Mankowski, Joseph L

    2018-04-01

    Simian immunodeficiency virus (SIV) infection of pigtailed macaques is a highly representative and well-characterized animal model for HIV neuropathogenesis studies that provides an excellent opportunity to study and develop prognostic markers of HIV-associated neurocognitive disorders (HAND) for HIV-infected individuals. SIV studies can be performed in a controlled setting that enhances reproducibility and offers high-translational value. Similar to observations in HIV-infected patients receiving antiretroviral therapy (ART), ongoing neurodegeneration and inflammation are present in SIV-infected pigtailed macaques treated with suppressive ART. By developing quantitative viral outgrowth assays that measure both CD4+ T cells and macrophages harboring replication competent SIV as well as a highly sensitive mouse-based viral outgrowth assay, we have positioned the SIV/pigtailed macaque model to advance our understanding of latent cellular reservoirs, including potential CNS reservoirs, to promote HIV cure. In addition to contributing to our understanding of the pathogenesis of HAND, the SIV/pigtailed macaque model also provides an excellent opportunity to test innovative approaches to eliminate the latent HIV reservoir in the brain.

  7. Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific

    NARCIS (Netherlands)

    de Kock, C.P.J.; Sakmann, B.

    2009-01-01

    Sensation involves active movement of sensory organs, but it remains unknown how position or movement of sensory organs is encoded in cortex. In the rat whisker system, each whisker is represented by an individual cortical (barrel) column. Here, we quantified in awake, head-fixed rats the impact of

  8. Low-noise encoding of active touch by layer 4 in the somatosensory cortex.

    Science.gov (United States)

    Hires, Samuel Andrew; Gutnisky, Diego A; Yu, Jianing; O'Connor, Daniel H; Svoboda, Karel

    2015-08-06

    Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise.

  9. The genetic composition of populations of cynomolgus macaques (Macaca fascicularis) used in biomedical research.

    Science.gov (United States)

    Kanthaswamy, S; Ng, J; Satkoski Trask, J; George, D A; Kou, A J; Hoffman, L N; Doherty, T B; Houghton, P; Smith, D G

    2013-06-01

    The genetic composition of cynomolgus macaques used in biomedical research is not as well-characterized as that of rhesus macaques. Populations of cynomolgus macaques from Sumatra, Corregidor, Mauritius, Singapore, Cambodia, and Zamboanga were analyzed using 24 STRs. The Sumatran and Cambodian populations exhibited the highest allelic diversity, while the Mauritian population exhibited the lowest. Sumatran cynomolgus macaques were the most genetically similar to all others, consistent with an Indonesian origin of the species. The high diversity among Cambodian animals may result from interbreeding with rhesus macaques. The Philippine and Mauritian samples were the most divergent from other populations, the former due to separation from the Sunda Shelf by deepwater and the latter due to anthropogenic translocation and extreme founder effects. Investigators should verify their research subjects' origin, ancestry, and pedigree to minimize risks to biomedical experimentation from genetic variance stemming from close kinship and mixed ancestry as these can obscure treatment effects. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. High Infection Rates for Adult Macaques after Intravaginal or Intrarectal Inoculation with Zika Virus

    Science.gov (United States)

    Nalca, Aysegul; Rossi, Franco D.; Miller, Lynn J.; Wiley, Michael R.; Perez-Sautu, Unai; Washington, Samuel C.; Norris, Sarah L.; Wollen-Roberts, Suzanne E.; Shamblin, Joshua D.; Kimmel, Adrienne E.; Bloomfield, Holly A.; Valdez, Stephanie M.; Sprague, Thomas R.; Principe, Lucia M.; Bellanca, Stephanie A.; Cinkovich, Stephanie S.; Lugo-Roman, Luis; Cazares, Lisa H.; Pratt, William D.; Palacios, Gustavo F.; Bavari, Sina; Pitt, M. Louise; Nasar, Farooq

    2017-01-01

    Unprotected sexual intercourse between persons residing in or traveling from regions with Zika virus transmission is a risk factor for infection. To model risk for infection after sexual intercourse, we inoculated rhesus and cynomolgus macaques with Zika virus by intravaginal or intrarectal routes. In macaques inoculated intravaginally, we detected viremia and virus RNA in 50% of macaques, followed by seroconversion. In macaques inoculated intrarectally, we detected viremia, virus RNA, or both, in 100% of both species, followed by seroconversion. The magnitude and duration of infectious virus in the blood of macaques suggest humans infected with Zika virus through sexual transmission will likely generate viremias sufficient to infect competent mosquito vectors. Our results indicate that transmission of Zika virus by sexual intercourse might serve as a virus maintenance mechanism in the absence of mosquito-to-human transmission and could increase the probability of establishment and spread of Zika virus in regions where this virus is not present. PMID:28548637

  11. High Infection Rates for Adult Macaques after Intravaginal or Intrarectal Inoculation with Zika Virus.

    Science.gov (United States)

    Haddow, Andrew D; Nalca, Aysegul; Rossi, Franco D; Miller, Lynn J; Wiley, Michael R; Perez-Sautu, Unai; Washington, Samuel C; Norris, Sarah L; Wollen-Roberts, Suzanne E; Shamblin, Joshua D; Kimmel, Adrienne E; Bloomfield, Holly A; Valdez, Stephanie M; Sprague, Thomas R; Principe, Lucia M; Bellanca, Stephanie A; Cinkovich, Stephanie S; Lugo-Roman, Luis; Cazares, Lisa H; Pratt, William D; Palacios, Gustavo F; Bavari, Sina; Pitt, M Louise; Nasar, Farooq

    2017-08-01

    Unprotected sexual intercourse between persons residing in or traveling from regions with Zika virus transmission is a risk factor for infection. To model risk for infection after sexual intercourse, we inoculated rhesus and cynomolgus macaques with Zika virus by intravaginal or intrarectal routes. In macaques inoculated intravaginally, we detected viremia and virus RNA in 50% of macaques, followed by seroconversion. In macaques inoculated intrarectally, we detected viremia, virus RNA, or both, in 100% of both species, followed by seroconversion. The magnitude and duration of infectious virus in the blood of macaques suggest humans infected with Zika virus through sexual transmission will likely generate viremias sufficient to infect competent mosquito vectors. Our results indicate that transmission of Zika virus by sexual intercourse might serve as a virus maintenance mechanism in the absence of mosquito-to-human transmission and could increase the probability of establishment and spread of Zika virus in regions where this virus is not present.

  12. Airway somatosensory deficits and dysphagia in Parkinson's disease.

    Science.gov (United States)

    Hammer, Michael J; Murphy, Caitlin A; Abrams, Trisha M

    2013-01-01

    Individuals with Parkinson's disease (PD) often experience substantial impairment of swallow control, and are typically unaware of the presence or severity of their impairments suggesting that these individuals may also experience airway sensory deficits. However, the degree to which impaired swallow function in PD may relate to airway sensory deficits has yet to be formally tested. The purpose of this study was to examine whether airway sensory function is associated with swallow impairment in PD. Eighteen PD participants and 18 healthy controls participated in this study and underwent endoscopic assessment of airway somatosensory function, endoscopic assessment of swallow function, and clinical ratings of swallow and disease severity. PD participants exhibited abnormal airway somatosensory function and greater swallow impairment compared with healthy controls. Swallow and sensory deficits in PD were correlated with disease severity. Moreover, PD participants reported similar self-rated swallow function as healthy controls, and swallow deficits were correlated with sensory function suggesting an association between impaired sensory function and poor self-awareness of swallow deficits in PD. These results suggest that control of swallow is influenced by airway somatosensory function, that swallow-related deficits in PD are related to abnormal somatosensation, and that swallow and airway sensory function may degrade as a function of disease severity. Therefore, the basal ganglia and related neural networks may play an important role to integrate airway sensory input for swallow-related motor control. Furthermore, the airway deficits observed in PD suggest a disintegration of swallow-related sensory and motor control.

  13. High-Frequency Network Oscillations in Cerebellar Cortex

    Science.gov (United States)

    Middleton, Steven J.; Racca, Claudia; Cunningham, Mark O.; Traub, Roger D.; Monyer, Hannah; Knöpfel, Thomas; Schofield, Ian S.; Jenkins, Alistair; Whittington, Miles A.

    2016-01-01

    SUMMARY Both cerebellum and neocortex receive input from the somatosensory system. Interaction between these regions has been proposed to underpin the correct selection and execution of motor commands, but it is not clear how such interactions occur. In neocortex, inputs give rise to population rhythms, providing a spatiotemporal coding strategy for inputs and consequent outputs. Here, we show that similar patterns of rhythm generation occur in cerebellum during nicotinic receptor subtype activation. Both gamma oscillations (30–80 Hz) and very fast oscillations (VFOs, 80–160 Hz) were generated by intrinsic cerebellar cortical circuitry in the absence of functional glutamatergic connections. As in neocortex, gamma rhythms were dependent on GABAA receptor-mediated inhibition, whereas VFOs required only nonsynaptically connected intercellular networks. The ability of cerebellar cortex to generate population rhythms within the same frequency bands as neocortex suggests that they act as a common spatiotemporal code within which corticocerebellar dialog may occur. PMID:18549787

  14. Mycobacterium kansasii Isolated from Tuberculinpositive Rhesus Macaques (Macaca mulatta) in the Absence of Disease.

    Science.gov (United States)

    Shipley, Steven T; Johnson, David K; Roodgar, Morteza; Smith, David Glenn; Montgomery, Charles A; Lloyd, Steven M; Higgins, James A; Kriel, Edwin H; Klein, Hilton J; Porter, William P; Nazareno, Jerome B; Houghton, Paul W; Panda, Aruna; DeTolla, Louis J

    2017-08-01

    Mycobacterial infections are of primary health concern in NHP colonies in biomedical research. NHP are constantly monitored and screened for Mycobacterium spp. We report 6 Chinese-origin rhesus macaques infected with Mycobacterium kansasii that exhibited positive tuberculin skin tests in the absence of disease. Two of these macaques were being used for research purposes; the remaining 4 macaques were residing at the contract quarantine company. Histopathology and acid-fast staining of fixed tissues from all macaques showed that all were free of disease. Thoracic radiographs were negative for any signs of disease or infection. Samples from bronchial lavage and tissues including lung, spleen, hilar and mesenteric lymph nodes tested negative by PCR assay for Mycobacterium spp. One of the research macaques tested culture-positive for M. kansasii and a poorly characterized M. avium complex organism. One macaque from the contract quarantine facility tested culture positive for M. kansasii. Genomic testing and target gene RNA expression analysis of the 2 M. kansasii isolates were performed to evaluate possible kinship and affected genes that might contribute to susceptibility to mycobacterial infection. Genotyping of the 2 isolates revealed 2 genetically distinct strains (strains 1 and 4). The presence of positive tuberculin skin tests in the absence of disease raises serious concerns regarding diagnostic methods used for infected NHP.

  15. Reliability of Visual and Somatosensory Feedback in Skilled Movement: The Role of the Cerebellum.

    Science.gov (United States)

    Mizelle, J C; Oparah, Alexis; Wheaton, Lewis A

    2016-01-01

    The integration of vision and somatosensation is required to allow for accurate motor behavior. While both sensory systems contribute to an understanding of the state of the body through continuous updating and estimation, how the brain processes unreliable sensory information remains to be fully understood in the context of complex action. Using functional brain imaging, we sought to understand the role of the cerebellum in weighting visual and somatosensory feedback by selectively reducing the reliability of each sense individually during a tool use task. We broadly hypothesized upregulated activation of the sensorimotor and cerebellar areas during movement with reduced visual reliability, and upregulated activation of occipital brain areas during movement with reduced somatosensory reliability. As specifically compared to reduced somatosensory reliability, we expected greater activations of ipsilateral sensorimotor cerebellum for intact visual and somatosensory reliability. Further, we expected that ipsilateral posterior cognitive cerebellum would be affected with reduced visual reliability. We observed that reduced visual reliability results in a trend towards the relative consolidation of sensorimotor activation and an expansion of cerebellar activation. In contrast, reduced somatosensory reliability was characterized by the absence of cerebellar activations and a trend towards the increase of right frontal, left parietofrontal activation, and temporo-occipital areas. Our findings highlight the role of the cerebellum for specific aspects of skillful motor performance. This has relevance to understanding basic aspects of brain functions underlying sensorimotor integration, and provides a greater understanding of cerebellar function in tool use motor control.

  16. P1-24: Neural Representation of Gloss in the Macaque Inferior Temporal Cortex

    Directory of Open Access Journals (Sweden)

    Akiko Nishio

    2012-10-01

    Full Text Available The variation of the appearance such as gloss provides one of the most important information for object recognition. However, little is known about the neural mechanisms related to the perception of gloss. We examined whether the neurons in the inferior temporal (IT cortex of the monkeys are coding gloss of objects. We made visual stimuli which have various surface reflectance properties, and tested responses of IT neurons to these stimuli while a monkey was performing a visual fixation task. We found that there exist neurons in the lower bank of the superior temporal sulcus that selectively responded to specific stimuli. The selectivity was largely maintained when the object shape or illumination condition was changed. In contrast, neural selectivity was lost when the pixels of objects were randomly rearranged. In the former manipulation of the stimuli, gloss perceptions were maintained, whereas in the latter manipulation, gloss perception was dramatically changed. These results indicate that these IT neurons selectively responded to gloss, not to the irrelevant local image features or average luminance or color. Next, to understand how the responses of gloss selective neurons are related to perceived gloss, responses of gloss selective neurons were mapped in perceptual gloss space in which glossiness changes uniformly. I found that responses of most gloss selective neurons can be explained by linear combinations of two parameters that are shown to be important for gloss perception. This result suggests that the responses of gloss selective neurons of IT cortex are closely related to gloss perception.

  17. A neural circuit covarying with social hierarchy in macaques.

    Science.gov (United States)

    Noonan, MaryAnn P; Sallet, Jerome; Mars, Rogier B; Neubert, Franz X; O'Reilly, Jill X; Andersson, Jesper L; Mitchell, Anna S; Bell, Andrew H; Miller, Karla L; Rushworth, Matthew F S

    2014-09-01

    Despite widespread interest in social dominance, little is known of its neural correlates in primates. We hypothesized that social status in primates might be related to individual variation in subcortical brain regions implicated in other aspects of social and emotional behavior in other mammals. To examine this possibility we used magnetic resonance imaging (MRI), which affords the taking of quantitative measurements noninvasively, both of brain structure and of brain function, across many regions simultaneously. We carried out a series of tests of structural and functional MRI (fMRI) data in 25 group-living macaques. First, a deformation-based morphometric (DBM) approach was used to show that gray matter in the amygdala, brainstem in the vicinity of the raphe nucleus, and reticular formation, hypothalamus, and septum/striatum of the left hemisphere was correlated with social status. Second, similar correlations were found in the same areas in the other hemisphere. Third, similar correlations were found in a second data set acquired several months later from a subset of the same animals. Fourth, the strength of coupling between fMRI-measured activity in the same areas was correlated with social status. The network of subcortical areas, however, had no relationship with the sizes of individuals' social networks, suggesting the areas had a simple and direct relationship with social status. By contrast a second circuit in cortex, comprising the midsuperior temporal sulcus and anterior and dorsal prefrontal cortex, covaried with both individuals' social statuses and the social network sizes they experienced. This cortical circuit may be linked to the social cognitive processes that are taxed by life in more complex social networks and that must also be used if an animal is to achieve a high social status.

  18. A neural circuit covarying with social hierarchy in macaques.

    Directory of Open Access Journals (Sweden)

    MaryAnn P Noonan

    2014-09-01

    Full Text Available Despite widespread interest in social dominance, little is known of its neural correlates in primates. We hypothesized that social status in primates might be related to individual variation in subcortical brain regions implicated in other aspects of social and emotional behavior in other mammals. To examine this possibility we used magnetic resonance imaging (MRI, which affords the taking of quantitative measurements noninvasively, both of brain structure and of brain function, across many regions simultaneously. We carried out a series of tests of structural and functional MRI (fMRI data in 25 group-living macaques. First, a deformation-based morphometric (DBM approach was used to show that gray matter in the amygdala, brainstem in the vicinity of the raphe nucleus, and reticular formation, hypothalamus, and septum/striatum of the left hemisphere was correlated with social status. Second, similar correlations were found in the same areas in the other hemisphere. Third, similar correlations were found in a second data set acquired several months later from a subset of the same animals. Fourth, the strength of coupling between fMRI-measured activity in the same areas was correlated with social status. The network of subcortical areas, however, had no relationship with the sizes of individuals' social networks, suggesting the areas had a simple and direct relationship with social status. By contrast a second circuit in cortex, comprising the midsuperior temporal sulcus and anterior and dorsal prefrontal cortex, covaried with both individuals' social statuses and the social network sizes they experienced. This cortical circuit may be linked to the social cognitive processes that are taxed by life in more complex social networks and that must also be used if an animal is to achieve a high social status.

  19. A Neural Circuit Covarying with Social Hierarchy in Macaques

    Science.gov (United States)

    Neubert, Franz X.; O'Reilly, Jill X.; Andersson, Jesper L.; Mitchell, Anna S.; Bell, Andrew H.; Miller, Karla L.; Rushworth, Matthew F. S.

    2014-01-01

    Despite widespread interest in social dominance, little is known of its neural correlates in primates. We hypothesized that social status in primates might be related to individual variation in subcortical brain regions implicated in other aspects of social and emotional behavior in other mammals. To examine this possibility we used magnetic resonance imaging (MRI), which affords the taking of quantitative measurements noninvasively, both of brain structure and of brain function, across many regions simultaneously. We carried out a series of tests of structural and functional MRI (fMRI) data in 25 group-living macaques. First, a deformation-based morphometric (DBM) approach was used to show that gray matter in the amygdala, brainstem in the vicinity of the raphe nucleus, and reticular formation, hypothalamus, and septum/striatum of the left hemisphere was correlated with social status. Second, similar correlations were found in the same areas in the other hemisphere. Third, similar correlations were found in a second data set acquired several months later from a subset of the same animals. Fourth, the strength of coupling between fMRI-measured activity in the same areas was correlated with social status. The network of subcortical areas, however, had no relationship with the sizes of individuals' social networks, suggesting the areas had a simple and direct relationship with social status. By contrast a second circuit in cortex, comprising the midsuperior temporal sulcus and anterior and dorsal prefrontal cortex, covaried with both individuals' social statuses and the social network sizes they experienced. This cortical circuit may be linked to the social cognitive processes that are taxed by life in more complex social networks and that must also be used if an animal is to achieve a high social status. PMID:25180883

  20. Effect of feature-selective attention on neuronal responses in macaque area MT

    Science.gov (United States)

    Chen, X.; Hoffmann, K.-P.; Albright, T. D.

    2012-01-01

    Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color). PMID:22170961

  1. A Characterization of Aerosolized Sudan Virus Infection in African Green Monkeys, Cynomolgus Macaques, and Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Donald K. Nichols

    2012-10-01

    Full Text Available Filoviruses are members of the genera Ebolavirus, Marburgvirus, and “Cuevavirus”. Because they cause human disease with high lethality and could potentially be used as a bioweapon, these viruses are classified as CDC Category A Bioterrorism Agents. Filoviruses are relatively stable in aerosols, retain virulence after lyophilization, and can be present on contaminated surfaces for extended periods of time. This study explores the characteristics of aerosolized Sudan virus (SUDV Boniface in non-human primates (NHP belonging to three different species. Groups of cynomolgus macaques (cyno, rhesus macaques (rhesus, and African green monkeys (AGM were challenged with target doses of 50 or 500 plaque-forming units (pfu of aerosolized SUDV. Exposure to either viral dose resulted in increased body temperatures in all three NHP species beginning on days 4–5 post-exposure. Other clinical findings for all three NHP species included leukocytosis, thrombocytopenia, anorexia, dehydration, and lymphadenopathy. Disease in all of the NHPs was severe beginning on day 6 post-exposure, and all animals except one surviving rhesus macaque were euthanized by day 14. Serum alanine transaminase (ALT and aspartate transaminase (AST concentrations were elevated during the course of disease in all three species; however, AGMs had significantly higher ALT and AST concentrations than cynos and rhesus. While all three species had detectable viral load by days 3-4 post exposure, Rhesus had lower average peak viral load than cynos or AGMs. Overall, the results indicate that the disease course after exposure to aerosolized SUDV is similar for all three species of NHP.

  2. Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space.

    Science.gov (United States)

    Feng, Lei; Jeon, Tina; Yu, Qiaowen; Ouyang, Minhui; Peng, Qinmu; Mishra, Virendra; Pletikos, Mihovil; Sestan, Nenad; Miller, Michael I; Mori, Susumu; Hsiao, Steven; Liu, Shuwei; Huang, Hao

    2017-12-01

    Animal models of the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate, have been irreplaceable in neurobiological studies. However, a population-averaged macaque brain diffusion tensor imaging (DTI) atlas, including comprehensive gray and white matter labeling as well as bony and facial landmarks guiding invasive experimental procedures, is not available. The macaque white matter tract pathways and microstructures have been rarely recorded. Here, we established a population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space incorporating bony and facial landmarks, and delineated microstructures and three-dimensional pathways of major white matter tracts in vivo MRI/DTI and ex vivo (postmortem) DTI of ten rhesus macaque brains were acquired. Single-subject macaque brain DTI template was obtained by transforming the postmortem high-resolution DTI data into in vivo space. Ex vivo DTI of ten macaque brains was then averaged in the in vivo single-subject template space to generate population-averaged macaque brain DTI atlas. The white matter tracts were traced with DTI-based tractography. One hundred and eighteen neural structures including all cortical gyri, white matter tracts and subcortical nuclei, were labeled manually on population-averaged DTI-derived maps. The in vivo microstructural metrics of fractional anisotropy, axial, radial and mean diffusivity of the traced white matter tracts were measured. Population-averaged digital atlas integrated into in vivo space can be used to label the experimental macaque brain automatically. Bony and facial landmarks will be available for guiding invasive procedures. The DTI metric measurements offer unique insights into heterogeneous microstructural profiles of different white matter tracts.

  3. Somatosensory impairment and its association with balance limitation in people with multiple sclerosis.

    Science.gov (United States)

    Jamali, Akram; Sadeghi-Demneh, Ebrahim; Fereshtenajad, Niloufar; Hillier, Susan

    2017-09-01

    Somatosensory impairments are common in multiple sclerosis. However, little data are available to characterize the nature and frequency of these problems in people with multiple sclerosis. To investigate the frequency of somatosensory impairments and identify any association with balance limitations in people with multiple sclerosis. The design was a prospective cross-sectional study, involving 82 people with multiple sclerosis and 30 healthy controls. Tactile and proprioceptive sensory acuity were measured using the Rivermead Assessment of Somatosensory Performance. Vibration duration was assessed using a tuning fork. Duration for the Timed Up and Go Test and reaching distance of the Functional Reach Test were measured to assess balance limitations. The normative range of sensory modalities was defined using cut-off points in the healthy participants. The multivariate linear regression was used to identify the significant predictors of balance in people with multiple sclerosis. Proprioceptive impairments (66.7%) were more common than tactile (60.8%) and vibration impairments (44.9%). Somatosensory impairments were more frequent in the lower limb (78.2%) than the upper limb (64.1%). All sensory modalities were significantly associated with the Timed Up and Go and Functional Reach tests (plimitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. In vivo proton magnetic resonance spectroscopy reveals region specific metabolic responses to SIV infection in the macaque brain

    Directory of Open Access Journals (Sweden)

    Joo Chan-Gyu

    2009-06-01

    Full Text Available Abstract Background In vivo proton magnetic resonance spectroscopy (1H-MRS studies of HIV-infected humans have demonstrated significant metabolic abnormalities that vary by brain region, but the causes are poorly understood. Metabolic changes in the frontal cortex, basal ganglia and white matter in 18 SIV-infected macaques were investigated using MRS during the first month of infection. Results Changes in the N-acetylaspartate (NAA, choline (Cho, myo-inositol (MI, creatine (Cr and glutamine/glutamate (Glx resonances were quantified both in absolute terms and relative to the creatine resonance. Most abnormalities were observed at the time of peak viremia, 2 weeks post infection (wpi. At that time point, significant decreases in NAA and NAA/Cr, reflecting neuronal injury, were observed only in the frontal cortex. Cr was significantly elevated only in the white matter. Changes in Cho and Cho/Cr were similar across the brain regions, increasing at 2 wpi, and falling below baseline levels at 4 wpi. MI and MI/Cr levels were increased across all brain regions. Conclusion These data best support the hypothesis that different brain regions have variable intrinsic vulnerabilities to neuronal injury caused by the AIDS virus.

  5. Multiple pathways carry signals from short-wavelength-sensitive ('blue') cones to the middle temporal area of the macaque.

    Science.gov (United States)

    Jayakumar, Jaikishan; Roy, Sujata; Dreher, Bogdan; Martin, Paul R; Vidyasagar, Trichur R

    2013-01-01

    We recorded spike activity of single neurones in the middle temporal visual cortical area (MT or V5) of anaesthetised macaque monkeys. We used flashing, stationary spatially circumscribed, cone-isolating and luminance-modulated stimuli of uniform fields to assess the effects of signals originating from the long-, medium- or short- (S) wavelength-sensitive cone classes. Nearly half (41/86) of the tested MT neurones responded reliably to S-cone-isolating stimuli. Response amplitude in the majority of the neurones tested further (19/28) was significantly reduced, though not always completely abolished, during reversible inactivation of visuotopically corresponding regions of the ipsilateral primary visual cortex (striate cortex, area V1). Thus, the present data indicate that signals originating in S-cones reach area MT, either via V1 or via a pathway that does not go through area V1. We did not find a significant difference between the mean latencies of spike responses of MT neurones to signals that bypass V1 and those that do not; the considerable overlap we observed precludes the use of spike-response latency as a criterion to define the routes through which the signals reach MT.

  6. The roles of superficial amygdala and auditory cortex in music-evoked fear and joy.

    Science.gov (United States)

    Koelsch, Stefan; Skouras, Stavros; Fritz, Thomas; Herrera, Perfecto; Bonhage, Corinna; Küssner, Mats B; Jacobs, Arthur M

    2013-11-01

    This study investigates neural correlates of music-evoked fear and joy with fMRI. Studies on neural correlates of music-evoked fear are scant, and there are only a few studies on neural correlates of joy in general. Eighteen individuals listened to excerpts of fear-evoking, joy-evoking, as well as neutral music and rated their own emotional state in terms of valence, arousal, fear, and joy. Results show that BOLD signal intensity increased during joy, and decreased during fear (compared to the neutral condition) in bilateral auditory cortex (AC) and bilateral superficial amygdala (SF). In the right primary somatosensory cortex (area 3b) BOLD signals increased during exposure to fear-evoking music. While emotion-specific activity in AC increased with increasing duration of each trial, SF responded phasically in the beginning of the stimulus, and then SF activity declined. Psychophysiological Interaction (PPI) analysis revealed extensive emotion-specific functional connectivity of AC with insula, cingulate cortex, as well as with visual, and parietal attentional structures. These findings show that the auditory cortex functions as a central hub of an affective-attentional network that is more extensive than previously believed. PPI analyses also showed functional connectivity of SF with AC during the joy condition, taken to reflect that SF is sensitive to social signals with positive valence. During fear music, SF showed functional connectivity with visual cortex and area 7 of the superior parietal lobule, taken to reflect increased visual alertness and an involuntary shift of attention during the perception of auditory signals of danger. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Dramatic loss of Ube3A expression during aging of the mammalian cortex

    Directory of Open Access Journals (Sweden)

    Kate Williams

    2010-05-01

    Full Text Available Neurobiological studies of aging are beginning to link functional changes with a loss of experience-dependent plasticity. In the visual system, age-related functional changes include decreases in visual acuity, orientation selectivity, motion perception, and ocular dominance plasticity. A recent paper has shown that Ube3A, an E3 ubiquitin ligase that is absent in Angelman's Syndrome, is required for experience-dependent plasticity during development of the visual cortex. Knocking out Ube3A during development leads to rigidity of ocular dominance plasticity that is strikingly similar to the reduced plasticity seen in older animals. Furthermore, ubiquitin ligases have been linked with age-related neurodegenerative disorders and longevity. Ubiquitin ligases selectively mark proteins for degradation, and a balance between synaptic proteins and their degradation is important for neural transmission and plasticity. This led us to ask whether normal aging is characterized by a loss of Ube3A in the cortex. We used Western blot analysis in order to quantify Ube3A expression across the life span of humans, macaque monkeys, and cats. We found that Ube3A expression declines across the lifespan in human, monkey, and cat cortex. The losses were substantial (50-80% in all areas studied which includes V1, V3, V4, frontal, and auditory cortex. In addition, when compared with other synaptic proteins there was a selective loss of Ube3A in human cortex. The progressive loss of Ube3A expression during cortical aging is an important new finding. Furthermore, the selective loss of Ube3A in human cortex highlights a specific vulnerability in human brain aging that may signify a dramatic shift in cortical function and plasticity.

  8. The interaction between felt touch and tactile consequences of observed actions: an action-based somatosensory congruency paradigm.

    Science.gov (United States)

    Deschrijver, Eliane; Wiersema, Jan R; Brass, Marcel

    2016-07-01

    Action observation leads to a representation of both the motor aspect of an observed action (motor simulation) and its somatosensory consequences (action-based somatosensory simulation) in the observer's brain. In the current electroencephalography-study, we investigated the neuronal interplay of action-based somatosensory simulation and felt touch. We presented index or middle finger tapping movements of a human or a wooden hand, while simultaneously presenting 'tap-like' tactile sensations to either the corresponding or non-corresponding fingertip of the participant. We focused on an early stage of somatosensory processing [P50, N100 and N140 sensory evoked potentials (SEPs)] and on a later stage of higher-order processing (P3-complex). The results revealed an interaction effect of animacy and congruency in the early P50 SEP and an animacy effect in the N100/N140 SEPs. In the P3-complex, we found an interaction effect indicating that the influence of congruency was larger in the human than in the wooden hand. We argue that the P3-complex may reflect higher-order self-other distinction by signaling simulated action-based touch that does not match own tactile information. As such, the action-based somatosensory congruency paradigm might help understand higher-order social processes from a somatosensory point of view. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Region and task-specific activation of Arc in primary motor cortex of rats following motor skill learning.

    Science.gov (United States)

    Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R

    2013-10-10

    Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (pmotor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Rapid Integration of Artificial Sensory Feedback during Operant Conditioning of Motor Cortex Neurons.

    Science.gov (United States)

    Prsa, Mario; Galiñanes, Gregorio L; Huber, Daniel

    2017-02-22

    Neuronal motor commands, whether generating real or neuroprosthetic movements, are shaped by ongoing sensory feedback from the displacement being produced. Here we asked if cortical stimulation could provide artificial feedback during operant conditioning of cortical neurons. Simultaneous two-photon imaging and real-time optogenetic stimulation were used to train mice to activate a single neuron in motor cortex (M1), while continuous feedback of its activity level was provided by proportionally stimulating somatosensory cortex. This artificial signal was necessary to rapidly learn to increase the conditioned activity, detect correct performance, and maintain the learned behavior. Population imaging in M1 revealed that learning-related activity changes are observed in the conditioned cell only, which highlights the functional potential of individual neurons in the neocortex. Our findings demonstrate the capacity of animals to use an artificially induced cortical channel in a behaviorally relevant way and reveal the remarkable speed and specificity at which this can occur. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Modeling vocalization with ECoG cortical activity recorded during vocal production in the macaque monkey.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Fujii, Naotaka; Averbeck, Bruno B; Mishkin, Mortimer

    2014-01-01

    Vocal production is an example of controlled motor behavior with high temporal precision. Previous studies have decoded auditory evoked cortical activity while monkeys listened to vocalization sounds. On the other hand, there have been few attempts at decoding motor cortical activity during vocal production. Here we recorded cortical activity during vocal production in the macaque with a chronically implanted electrocorticographic (ECoG) electrode array. The array detected robust activity in motor cortex during vocal production. We used a nonlinear dynamical model of the vocal organ to reduce the dimensionality of `Coo' calls produced by the monkey. We then used linear regression to evaluate the information in motor cortical activity for this reduced representation of calls. This simple linear model accounted for circa 65% of the variance in the reduced sound representations, supporting the feasibility of using the dynamical model of the vocal organ for decoding motor cortical activity during vocal production.

  12. The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy.

    Science.gov (United States)

    Koelsch, Stefan; Skouras, Stavros; Lohmann, Gabriele

    2018-01-01

    Sound is a potent elicitor of emotions. Auditory core, belt and parabelt regions have anatomical connections to a large array of limbic and paralimbic structures which are involved in the generation of affective activity. However, little is known about the functional role of auditory cortical regions in emotion processing. Using functional magnetic resonance imaging and music stimuli that evoke joy or fear, our study reveals that anterior and posterior regions of auditory association cortex have emotion-characteristic functional connectivity with limbic/paralimbic (insula, cingulate cortex, and striatum), somatosensory, visual, motor-related, and attentional structures. We found that these regions have remarkably high emotion-characteristic eigenvector centrality, revealing that they have influential positions within emotion-processing brain networks with "small-world" properties. By contrast, primary auditory fields showed surprisingly strong emotion-characteristic functional connectivity with intra-auditory regions. Our findings demonstrate that the auditory cortex hosts regions that are influential within networks underlying the affective processing of auditory information. We anticipate our results to incite research specifying the role of the auditory cortex-and sensory systems in general-in emotion processing, beyond the traditional view that sensory cortices have merely perceptual functions.

  13. The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys

    OpenAIRE

    Gharbawie, Omar A.; Stepniewska, Iwona; Kaas, Jon H.

    2015-01-01

    The hand representation in primary motor cortex (M1) is instrumental to manual dexterity in primates. In Old World monkeys, rostral and caudal aspects of the hand representation are located in the precentral gyrus and the anterior bank of the central sulcus, respectively. We previously reported the organization of the cortico-cortical connections of the grasp zone in rostral M1. Here we describe the organization of thalamocortical connections that were labeled from the same tracer injections....

  14. Linking dynamic patterns of neural activity in orbitofrontal cortex with decision making.

    Science.gov (United States)

    Rich, Erin L; Stoll, Frederic M; Rudebeck, Peter H

    2018-04-01

    Humans and animals demonstrate extraordinary flexibility in choice behavior, particularly when deciding based on subjective preferences. We evaluate options on different scales, deliberate, and often change our minds. Little is known about the neural mechanisms that underlie these dynamic aspects of decision-making, although neural activity in orbitofrontal cortex (OFC) likely plays a central role. Recent evidence from studies in macaques shows that attention modulates value responses in OFC, and that ensembles of OFC neurons dynamically signal different options during choices. When contexts change, these ensembles flexibly remap to encode the new task. Determining how these dynamic patterns emerge and relate to choices will inform models of decision-making and OFC function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex

    Science.gov (United States)

    Hadj-Bouziane, Fadila; Liu, Ning; Bell, Andrew H.; Gothard, Katalin M.; Luh, Wen-Ming; Tootell, Roger B. H.; Murray, Elisabeth A.; Ungerleider, Leslie G.

    2012-01-01

    We previously showed that facial expressions modulate functional MRI activity in the face-processing regions of the macaque monkey’s amygdala and inferior temporal (IT) cortex. Specifically, we showed that faces expressing emotion yield greater activation than neutral faces; we term this difference the “valence effect.” We hypothesized that amygdala lesions would disrupt the valence effect by eliminating the modulatory feedback from the amygdala to the IT cortex. We compared the valence effects within the IT cortex in monkeys with excitotoxic amygdala lesions (n = 3) with those in intact control animals (n = 3) using contrast agent-based functional MRI at 3 T. Images of four distinct monkey facial expressions—neutral, aggressive (open mouth threat), fearful (fear grin), and appeasing (lip smack)—were presented to the subjects in a blocked design. Our results showed that in monkeys with amygdala lesions the valence effects were strongly disrupted within the IT cortex, whereas face responsivity (neutral faces > scrambled faces) and face selectivity (neutral faces > non-face objects) were unaffected. Furthermore, sparing of the anterior amygdala led to intact valence effects in the anterior IT cortex (which included the anterior face-selective regions), whereas sparing of the posterior amygdala led to intact valence effects in the posterior IT cortex (which included the posterior face-selective regions). Overall, our data demonstrate that the feedback projections from the amygdala to the IT cortex mediate the valence effect found there. Moreover, these modulatory effects are consistent with an anterior-to-posterior gradient of projections, as suggested by classical tracer studies. PMID:23184972

  16. [Intraoperative pain stimuli change somatosensory evoked potentials, but not auditory evoked potentials during isoflurane/nitrous oxide anesthesia].

    Science.gov (United States)

    Rundshagen, I; Kochs, E; Bischoff, P; Schulte am Esch, J

    1997-10-01

    Evoked potentials are used for intraoperative monitoring to assess changes of cerebral function. This prospective randomised study assesses the influence of surgical stimulation on midlatency components of somatosensory (SEPs) and auditory evoked potentials (AEPs) in anaesthetised patients. After approval of the Ethics Committee and written informed consent 36 orthopaedic patients (34 +/- 15 y, 73 +/- 14 kg. 1.71 +/- 0.07 m, ASA I-II) were randomly included in the study. Anaesthesia was induced with 1.5 micrograms/kg fentanyl, 0.3 mg/kg etomidate and 0.1 mg/kg vecuronium. The lungs were intubated and patients normoventilated in steady state anaesthesia with isoflurane (end-tidal 0.6%) and 66% nitrous oxide. 18 patients (group 1) were assigned to the SEP group: median nerve stimulation, recording at Erb, C 6 and the contralateral somatosensory cortex (N20, P25, N35) vs Fz. AEPs were recorded in group 2 (n = 18): binaural stimulation, recording at Cz versus linked mastoid (V, Na, Pa, Nb). Recordings were performed during 30 min before the start of surgery (baseline: BL), at skin incision (SURG1) and at the preparation of the periost (SURG2). Heart rate, mean arterial blood pressure, oxygen saturation, endtidal pCO2 and isoflurane (PetISO) concentrations were registered simultaneously. Data were analysed by one-way analysis of variance. Post hoc comparison were made by Mann-Whitney U-Wilcoxon Rank Sum Test with p beats/min) to SURG2 (76 +/- 12 beats/min). Increases of amplitudes of midlatency SEP amplitudes indicate increased nociceptive signal transmission which is not blunted by isoflurane-nitrous oxide anaesthesia. In contrast, unchanged AEPs indicate adequate levels of the hypnotic components of anaesthesia.

  17. Illegal trade in Barbary macaques

    NARCIS (Netherlands)

    van Uhm, Daan|info:eu-repo/dai/nl/380477025

    2014-01-01

    While Morocco is well known as the main port between Africa and the EU for the illegal drugs trade and migration, the illegal trade in wildlife is flourishing as well. Next to the illegal large-scale trafficking of tortoises and birds, it is estimated that as few as 5,000 Barbary macaques remain in

  18. Feature-Selective Attention Adaptively Shifts Noise Correlations in Primary Auditory Cortex.

    Science.gov (United States)

    Downer, Joshua D; Rapone, Brittany; Verhein, Jessica; O'Connor, Kevin N; Sutter, Mitchell L

    2017-05-24

    Sensory environments often contain an overwhelming amount of information, with both relevant and irrelevant information competing for neural resources. Feature attention mediates this competition by selecting the sensory features needed to form a coherent percept. How attention affects the activity of populations of neurons to support this process is poorly understood because population coding is typically studied through simulations in which one sensory feature is encoded without competition. Therefore, to study the effects of feature attention on population-based neural coding, investigations must be extended to include stimuli with both relevant and irrelevant features. We measured noise correlations ( r noise ) within small neural populations in primary auditory cortex while rhesus macaques performed a novel feature-selective attention task. We found that the effect of feature-selective attention on r noise depended not only on the population tuning to the attended feature, but also on the tuning to the distractor feature. To attempt to explain how these observed effects might support enhanced perceptual performance, we propose an extension of a simple and influential model in which shifts in r noise can simultaneously enhance the representation of the attended feature while suppressing the distractor. These findings present a novel mechanism by which attention modulates neural populations to support sensory processing in cluttered environments. SIGNIFICANCE STATEMENT Although feature-selective attention constitutes one of the building blocks of listening in natural environments, its neural bases remain obscure. To address this, we developed a novel auditory feature-selective attention task and measured noise correlations ( r noise ) in rhesus macaque A1 during task performance. Unlike previous studies showing that the effect of attention on r noise depends on population tuning to the attended feature, we show that the effect of attention depends on the tuning

  19. Human behavior and opportunities for parasite transmission in communities surrounding long-tailed macaque populations in Bali, Indonesia.

    Science.gov (United States)

    Lane-DeGraaf, Kelly E; Putra, I G A Arta; Wandia, I Nengah; Rompis, Aida; Hollocher, Hope; Fuentes, Agustin

    2014-02-01

    Spatial overlap and shared resources between humans and wildlife can exacerbate parasite transmission dynamics. In Bali, Indonesia, an agricultural-religious temple system provides sanctuaries for long-tailed macaques (Macaca fascicularis), concentrating them in areas in close proximity to humans. In this study, we interviewed individuals in communities surrounding 13 macaque populations about their willingness to participate in behaviors that would put them at risk of exposure to gastrointestinal parasites to understand if age, education level, or occupation are significant determinants of exposure behaviors. These exposure risk behaviors and attitudes include fear of macaques, direct contact with macaques, owning pet macaques, hunting and eating macaques, and overlapping water uses. We find that willingness to participate in exposure risk behaviors are correlated with an individual's occupation, age, and/or education level. We also found that because the actual risk of infection varies across populations, activities such as direct macaque contact and pet ownership, could be putting individuals at real risk in certain contexts. Thus, we show that human demographics and social structure can influence willingness to participate in behaviors putting them at increased risk for exposure to parasites. © 2013 Wiley Periodicals, Inc.

  20. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    International Nuclear Information System (INIS)

    Morioka, T.; Fujii, K.; Fukui, M.; Mizushima, A.; Matsumoto, S.; Hasuo, K.; Yamamoto, T.; Tobimatsu, S.

    1995-01-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  1. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, T. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fujii, K. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fukui, M. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Mizushima, A. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Matsumoto, S. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Hasuo, K. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Yamamoto, T. [Dept. of Otolaryngology, Kyushu Univ. Fukuoka (Japan); Tobimatsu, S. [Dept. of Clinical Neurophysiology, Neurological Inst., Kyushu Univ., Fukuoka (Japan)

    1995-10-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  2. Genetic influence demonstrated for MEG-recorded somatosensory evoked responses

    NARCIS (Netherlands)

    van 't Ent, D.; van Soelen, I.L.C.; Stam, K.J.; de Geus, E.J.C.; Boomsma, D.I.

    2010-01-01

    We tested for a genetic influence on magnetoencephalogram (MEG)-recorded somatosensory evoked fields (SEFs) in 20 monozygotic (MZ) and 14 dizygotic (DZ) twin pairs. Previous electroencephalogram (EEG) studies that demonstrated a genetic contribution to evoked responses generally focused on

  3. The Functioning of a Cortex without Layers

    Directory of Open Access Journals (Sweden)

    Julien Guy

    2017-07-01

    Full Text Available A major hallmark of cortical organization is the existence of a variable number of layers, i.e., sheets of neurons stacked on top of each other, in which neurons have certain commonalities. However, even for the neocortex, variable numbers of layers have been described and it is just a convention to distinguish six layers from each other. Whether cortical layers are a structural epiphenomenon caused by developmental dynamics or represent a functionally important modularization of cortical computation is still unknown. Here we present our insights from the reeler mutant mouse, a model for a developmental, “molecular lesion”-induced loss of cortical layering that could serve as ground truth of what an intact layering adds to the cortex in terms of functionality. We could demonstrate that the reeler neocortex shows no inversion of cortical layers but rather a severe disorganization that in the primary somatosensory cortex leads to the complete loss of layers. Nevertheless, the somatosensory system is well organized. When exploring an enriched environment with specific sets of whiskers, activity-dependent gene expression takes place in the corresponding modules. Precise whisker stimuli lead to the functional activation of somatotopically organized barrel columns as visualized by intrinsic signal optical imaging. Similar results were obtained in the reeler visual system. When analyzing pathways that could be responsible for preservation of tactile perception, lemniscal thalamic projections were found to be largely intact, despite the smearing of target neurons across the cortical mantle. However, with optogenetic experiments we found evidence for a mild dispersion of thalamic synapse targeting on layer IV-spiny stellate cells, together with a general weakening in thalamocortical input strength. This weakening of thalamic inputs was compensated by intracortical mechanisms involving increased recurrent excitation and/or reduced feedforward

  4. Phylogeny and History of the Lost SIV from Crab-Eating Macaques: SIVmfa.

    Directory of Open Access Journals (Sweden)

    Kevin R McCarthy

    Full Text Available In the 20th century, thirteen distinct human immunodeficiency viruses emerged following independent cross-species transmission events involving simian immunodeficiency viruses (SIV from African primates. In the late 1900s, pathogenic SIV strains also emerged in the United Sates among captive Asian macaque species following their unintentional infection with SIV from African sooty mangabeys (SIVsmm. Since their discovery in the 1980s, SIVs from rhesus macaques (SIVmac and pig-tailed macaques (SIVmne have become invaluable models for studying HIV pathogenesis, vaccine design and the emergence of viruses. SIV isolates from captive crab-eating macaques (SIVmfa were initially described but lost prior to any detailed molecular and genetic characterization. In order to infer the origins of the lost SIVmfa lineage, we located archived material and colony records, recovered its genomic sequence by PCR, and assessed its phylogenetic relationship to other SIV strains. We conclude that SIVmfa is the product of two cross-species transmission events. The first was the established transmission of SIVsmm to rhesus macaques, which occurred at the California National Primate Research Center in the late 1960s and the virus later emerged as SIVmac. In a second event, SIVmac was transmitted to crab-eating macaques, likely at the Laboratory for Experimental Medicine and Surgery in Primates in the early 1970s, and it was later spread to the New England Primate Research Center colony in 1973 and eventually isolated in 1986. Our analysis suggests that SIVmac had already emerged by the early 1970s and had begun to diverge into distinct lineages. Furthermore, our findings suggest that pathogenic SIV strains may have been more widely distributed than previously appreciated, raising the possibility that additional isolates may await discovery.

  5. Phylogeny and History of the Lost SIV from Crab-Eating Macaques: SIVmfa.

    Science.gov (United States)

    McCarthy, Kevin R; Johnson, Welkin E; Kirmaier, Andrea

    2016-01-01

    In the 20th century, thirteen distinct human immunodeficiency viruses emerged following independent cross-species transmission events involving simian immunodeficiency viruses (SIV) from African primates. In the late 1900s, pathogenic SIV strains also emerged in the United Sates among captive Asian macaque species following their unintentional infection with SIV from African sooty mangabeys (SIVsmm). Since their discovery in the 1980s, SIVs from rhesus macaques (SIVmac) and pig-tailed macaques (SIVmne) have become invaluable models for studying HIV pathogenesis, vaccine design and the emergence of viruses. SIV isolates from captive crab-eating macaques (SIVmfa) were initially described but lost prior to any detailed molecular and genetic characterization. In order to infer the origins of the lost SIVmfa lineage, we located archived material and colony records, recovered its genomic sequence by PCR, and assessed its phylogenetic relationship to other SIV strains. We conclude that SIVmfa is the product of two cross-species transmission events. The first was the established transmission of SIVsmm to rhesus macaques, which occurred at the California National Primate Research Center in the late 1960s and the virus later emerged as SIVmac. In a second event, SIVmac was transmitted to crab-eating macaques, likely at the Laboratory for Experimental Medicine and Surgery in Primates in the early 1970s, and it was later spread to the New England Primate Research Center colony in 1973 and eventually isolated in 1986. Our analysis suggests that SIVmac had already emerged by the early 1970s and had begun to diverge into distinct lineages. Furthermore, our findings suggest that pathogenic SIV strains may have been more widely distributed than previously appreciated, raising the possibility that additional isolates may await discovery.

  6. COMMUNICATION Designing a somatosensory neural prosthesis: percepts evoked by different patterns of thalamic stimulation

    Science.gov (United States)

    Heming, Ethan; Sanden, Andrew; Kiss, Zelma H. T.

    2010-12-01

    Although major advances have been made in the development of motor prostheses, fine motor control requires intuitive somatosensory feedback. Here we explored whether a thalamic site for a somatosensory neural prosthetic could provide natural somatic sensation to humans. Different patterns of electrical stimulation (obtained from thalamic spike trains) were applied in patients undergoing deep brain stimulation surgery. Changes in pattern produced different sensations, while preserving somatotopic representation. While most percepts were reported as 'unnatural', some stimulations produced more 'natural' sensations than others. However, the additional patterns did not elicit more 'natural' percepts than high-frequency (333 Hz) electrical stimulation. These features suggest that despite some limitations, the thalamus may be a feasible site for a somatosensory neural prosthesis and different stimulation patterns may be useful in its development.

  7. Specific properties of the SI and SII somatosensory areas and their effects on motor control: a system neurophysiological study.

    Science.gov (United States)

    Friedrich, Julia; Mückschel, Moritz; Beste, Christian

    2018-03-01

    Sensorimotor integration is essential for successful motor control and the somatosensory modality has been shown to have strong effects on the execution of motor plans. The primary (SI) and the secondary somatosensory (SII) cortices are known to differ in their neuroanatomical connections to prefrontal areas, as well as in their involvement to encode cognitive aspects of tactile processing. Here, we ask whether the area-specific processing architecture or the structural neuroanatomical connections with prefrontal areas determine the efficacy of sensorimotor integration processes for motor control. In a system neurophysiological study including EEG signal decomposition (i.e., residue iteration decomposition, RIDE) and source localization, we investigated this question using vibrotactile stimuli optimized for SI or SII processing. The behavioral data show that when being triggered via the SI area, inhibitory control of motor processes is stronger as when being triggered via the SII area. On a neurophysiological level, these effects were reflected in the C-cluster as a result of a temporal decomposition of EEG data, indicating that the sensory processes affecting motor inhibition modulate the response selection level. These modulations were associated with a stronger activation of the right inferior frontal gyrus extending to the right middle frontal gyrus as parts of a network known to be involved in inhibitory motor control when response inhibition is triggered over SI. In addition, areas important for sensorimotor integration like the postcentral gyrus and superior parietal cortex showed activation differences. The data suggest that connection patterns are more important for sensorimotor integration and control than the more restricted area-specific processing architecture.

  8. A single gp120 residue can affect HIV-1 tropism in macaques.

    Directory of Open Access Journals (Sweden)

    Gregory Q Del Prete

    2017-09-01

    Full Text Available Species-dependent variation in proteins that aid or limit virus replication determines the ability of lentiviruses to jump between host species. Identifying and overcoming these differences facilitates the development of animal models for HIV-1, including models based on chimeric SIVs that express HIV-1 envelope (Env glycoproteins, (SHIVs and simian-tropic HIV-1 (stHIV strains. Here, we demonstrate that the inherently poor ability of most HIV-1 Env proteins to use macaque CD4 as a receptor is improved during adaptation by virus passage in macaques. We identify a single amino acid, A281, in HIV-1 Env that consistently changes during adaptation in macaques and affects the ability of HIV-1 Env to use macaque CD4. Importantly, mutations at A281 do not markedly affect HIV-1 Env neutralization properties. Our findings should facilitate the design of HIV-1 Env proteins for use in non-human primate models and thus expedite the development of clinically relevant reagents for testing interventions against HIV-1.

  9. No costly prosociality among related long-tailed macaques (Macaca fascicularis).

    Science.gov (United States)

    Sterck, Elisabeth H M; Olesen, Caroline U; Massen, Jorg J M

    2015-08-01

    Altruism, benefiting another at a cost to the donor, may be achieved through prosocial behavior. Studies of nonhuman animals typically investigate prosocial behavior with paradigms in which the donor can choose to give a recipient a food item, and the choice does not affect the donor's reward (which is either present or absent). In such tasks, long-tailed macaques (Macaca fascicularis) show prosocial behavior, especially toward kin. Here, we tested captive long-tailed macaques with related recipients in an alternative task, in which the donor had to give up a preferred reward to benefit the recipient; that is, they had to choose a lower valued reward for themselves to provide food to their kin. Overall, the macaques did not provide their kin with food. The task forced the donor to balance its prosocial behavior with its selfish choice for a higher value reward, a balance that turned out to favor selfish motives. Consequently, our study shows that a prosocial tendency is not sufficient to elicit costly prosocial behavior in long-tailed macaques. Subsequently, we feel that tasks in which the donor must choose a lower value reward to benefit another individual may allow the titration of the strength of prosocial behavior, and thus provides interesting possibilities for future comparative studies. (c) 2015 APA, all rights reserved).

  10. Sacral nerve stimulation increases activation of the primary somatosensory cortex by anal canal stimulation in an experimental model.

    LENUS (Irish Health Repository)

    Griffin, K M

    2011-08-01

    Sacral and posterior tibial nerve stimulation may be used to treat faecal incontinence; however, the mechanism of action is unknown. The aim of this study was to establish whether sensory activation of the cerebral cortex by anal canal stimulation was increased by peripheral neuromodulation.

  11. The neurophysiology of figure-ground segregation in primary visual cortex.

    Science.gov (United States)

    Lamme, V A

    1995-02-01

    The activity of neurons in the primary visual cortex of the awake macaque monkey was recorded while the animals were viewing full screen arrays of either oriented line segments or moving random dots. A square patch of the screen was made to perceptually pop out as a circumscribed figure by virtue of differences between the orientation or the direction of motion of the texture elements within that patch and the surround. The animals were trained to identify the figure patches by making saccadic eye movements towards their positions. Almost every cell gave a significantly larger response to elements belonging to the figure than to similar elements belonging to the background. The figure-ground response enhancement was present along the entire extent of the patch and was absent as soon as the receptive field was outside the patch. The strength of the effect had no relation with classical receptive field properties like orientation or direction selectivity or receptive field size. The response enhancement had a latency of 30-40 msec relative to the onset of the neuronal response itself. The results show that context modulation within primary visual cortex has a highly sophisticated nature, putting the image features the cells are responding to into their fully evaluated perceptual context.

  12. Diversity and molecular phylogeny of mitochondrial DNA of rhesus macaques (Macaca mulatta) in Bangladesh.

    Science.gov (United States)

    Hasan, M Kamrul; Feeroz, M Mostafa; Jones-Engel, Lisa; Engel, Gregory A; Kanthaswamy, Sree; Smith, David Glenn

    2014-11-01

    While studies of rhesus macaques (Macaca mulatta) in the eastern (e.g., China) and western (e.g., India) parts of their geographic range have revealed major genetic differences that warrant the recognition of two different subspecies, little is known about genetic characteristics of rhesus macaques in the transitional zone extending from eastern India and Bangladesh through the northern part of Indo-China, the probable original homeland of the species. We analyzed genetic variation of 762 base pairs of mitochondrial DNA from 86 fecal swab samples and 19 blood samples from 25 local populations of rhesus macaque in Bangladesh collected from January 2010 to August 2012. These sequences were compared with those of rhesus macaques from India, China, and Myanmar. Forty-six haplotypes defined by 200 (26%) polymorphic nucleotide sites were detected. Estimates of gene diversity, expected heterozygosity, and nucleotide diversity for the total population were 0.9599 ± 0.0097, 0.0193 ± 0.0582, and 0.0196 ± 0.0098, respectively. A mismatch distribution of paired nucleotide differences yielded a statistically significantly negative value of Tajima's D, reflecting a population that rapidly expanded after the terminal Pleistocene. Most haplotypes throughout regions of Bangladesh, including an isolated region in the southwestern area (Sundarbans), clustered with haplotypes assigned to the minor haplogroup Ind-2 from India reflecting an east to west dispersal of rhesus macaques to India. Haplotypes from the southeast region of Bangladesh formed a cluster with those from Myanmar, and represent the oldest rhesus macaque haplotypes of Bangladesh. These results are consistent with the hypothesis that rhesus macaques first entered Bangladesh from the southeast, probably from Indo-China, then dispersed westward throughout eastern and central India. © 2014 Wiley Periodicals, Inc.

  13. Decreased somatosensory activity to non-threatening touch in combat veterans with posttraumatic stress disorder.

    Science.gov (United States)

    Badura-Brack, Amy S; Becker, Katherine M; McDermott, Timothy J; Ryan, Tara J; Becker, Madelyn M; Hearley, Allison R; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2015-08-30

    Posttraumatic stress disorder (PTSD) is a severe psychiatric disorder prevalent in combat veterans. Previous neuroimaging studies have demonstrated that patients with PTSD exhibit abnormal responses to non-threatening visual and auditory stimuli, but have not examined somatosensory processing. Thirty male combat veterans, 16 with PTSD and 14 without, completed a tactile stimulation task during a 306-sensor magnetoencephalography (MEG) recording. Significant oscillatory neural responses were imaged using a beamforming approach. Participants also completed clinical assessments of PTSD, combat exposure, and depression. We found that veterans with PTSD exhibited significantly reduced activity during early (0-125 ms) tactile processing compared with combat controls. Specifically, veterans with PTSD had weaker activity in the left postcentral gyrus, left superior parietal area, and right prefrontal cortex in response to nonthreatening tactile stimulation relative to veterans without PTSD. The magnitude of activity in these brain regions was inversely correlated with symptom severity, indicating that those with the most severe PTSD had the most abnormal neural responses. Our findings are consistent with a resource allocation view of perceptual processing in PTSD, which directs attention away from nonthreatening sensory information. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Increases in the numerical density of GAT-1 positive puncta in the barrel cortex of adult mice after fear conditioning.

    Directory of Open Access Journals (Sweden)

    Ewa Siucinska

    Full Text Available Three days of fear conditioning that combines tactile stimulation of a row of facial vibrissae (conditioned stimulus, CS with a tail shock (unconditioned stimulus, UCS expands the representation of "trained" vibrissae, which can be demonstrated by labeling with 2-deoxyglucose in layer IV of the barrel cortex. We have also shown that functional reorganization of the primary somatosensory cortex (S1 increases GABAergic markers in the hollows of "trained" barrels of the adult mouse. This study investigated how whisker-shock conditioning (CS+UCS affected the expression of puncta of a high-affinity GABA plasma membrane transporter GAT-1 in the barrel cortex of mice 24 h after associative learning paradigm. We found that whisker-shock conditioning (CS+UCS led to increase expression of neuronal and astroglial GAT-1 puncta in the "trained" row compared to controls: Pseudoconditioned, CS-only, UCS-only and Naïve animals. These findings suggest that fear conditioning specifically induces activation of systems regulating cellular levels of the inhibitory neurotransmitter GABA.

  15. Polymorphisms of cytochrome P450 2B6 (CYP2B6) in cynomolgus and rhesus macaques.

    Science.gov (United States)

    Uno, Yasuhiro; Uehara, Shotaro; Yamazaki, Hiroshi

    2018-02-22

    Cytochrome P450 2B6 (CYP2B6) is an important drug-metabolizing enzyme and is expressed in liver. Although human CYP2B6 variants account for variable enzyme properties among individuals and populations, CYP2B6 genetic variants have not been investigated in cynomolgus macaques, widely used in drug metabolism studies. CYP2B6 was resequenced in 120 cynomolgus macaques and 23 rhesus macaques by direct sequencing. Twenty-three non-synonymous variants were found, of which 12 and 3 were unique to cynomolgus macaques and rhesus macaques, respectively. By functional characterization using the 14 variant proteins, 8 variants (V114I, R253C, M435I, V459M, L465P, C475S, R487C, and R487H) showed different rate (>1.5-fold) of testosterone 16β-hydroxylation to wild type. However, the four variants (M435I, L465P, C475S, and R487H) were analyzed in liver microsomes, and the catalytic rates were not substantially different from wild type. Macaque CYP2B6 was polymorphic, and the genotype could partly account for variable enzyme activities of macaque CYP2B6. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Reorganization in Secondary Somatosensory Cortex in Chronic Low Back Pain Patients.

    Science.gov (United States)

    Hotz-Boendermaker, Sabina; Marcar, Valentine L; Meier, Michael L; Boendermaker, Bart; Humphreys, Barry K

    2016-06-01

    A cross-sectional comparative study between chronic low back pain (CLBP) patients and healthy control subjects. The aim of this study was to investigate reorganization in the sensory cortex by comparing cortical activity due to mechanosensory stimulation of the lumbar spine in CLBP patients versus a control group by using functional magnetic resonance imaging (fMRI). LBP is now the number 1 condition across the world in terms of years living with a disability. There is growing evidence that maladaptive changes in the processing of sensory input by the central nervous system are central to understanding chronic (back) pain. Nonpainful, posterior-anterior (PA) movement pressure was applied manually to lumbar vertebrae at L1, L3, and L5 in 13 healthy subjects and 13 CLBP patients. The manual pressure (30 N) was monitored and controlled using sensors. A randomized stimulation protocol was used consisting of 51 pressure stimuli of 5 seconds duration. fMRI data analysis was performed for the group activation within the primary and secondary sensory cortices (S1 and S2, respectively) and the representation of the individual vertebrae was extracted and statistically analyzed. Nonpainful PA pressure revealed no cortical reorganization in S1. In contrast, the extent of S2 activation in the CLBP group was significantly reduced in both hemispheres. In the control group, a somatotopy was identified for the lumbar vertebrae between L1 and L3, respectively, and L5 in S2 of the right hemisphere. Most importantly, a blurring of the somatotopic representation of the lumbar spine in S2 was observed in the patient group. Together, these maladaptive changes suggest a reorganization of higher-order processing for sensory information in CLBP patients that might have implications for a decreased sensory acuity, also related to body perception and subsequent altered functioning of the lumbar spine. 2.

  17. Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.

    Science.gov (United States)

    Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-10-01

    Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.

  18. Impact of menstruation on select hematology and clinical chemistry variables in cynomolgus macaques.

    Science.gov (United States)

    Perigard, Christopher J; Parrula, M Cecilia M; Larkin, Matthew H; Gleason, Carol R

    2016-06-01

    In preclinical studies with cynomolgus macaques, it is common to have one or more females presenting with menses. Published literature indicates that the blood lost during menses causes decreases in red blood cell mass variables (RBC, HGB, and HCT), which would be a confounding factor in the interpretation of drug-related effects on clinical pathology data, but no scientific data have been published to support this claim. This investigation was conducted to determine if the amount of blood lost during menses in cynomolgus macaques has an effect on routine hematology and serum chemistry variables. Ten female cynomolgus macaques (Macaca fascicularis), 5 to 6.5 years old, were observed daily during approximately 3 months (97 days) for the presence of menses. Hematology and serum chemistry variables were evaluated twice weekly. The results indicated that menstruation affects the erythrogram including RBC, HGB, HCT, MCHC, MCV, reticulocyte count, RDW, the leukogram including neutrophil, lymphocyte, and monocyte counts, and chemistry variables, including GGT activity, and the concentrations of total proteins, albumin, globulins, and calcium. The magnitude of the effect of menstruation on susceptible variables is dependent on the duration of the menstrual phase. Macaques with menstrual phases lasting ≥ 7 days are more likely to develop changes in variables related to chronic blood loss. In preclinical toxicology studies with cynomolgus macaques, interpretation of changes in several commonly evaluated hematology and serum chemistry variables requires adequate clinical observation and documentation concerning presence and duration of menses. There is a concern that macaques with long menstrual cycles can develop iron deficiency anemia due to chronic menstrual blood loss. © 2016 American Society for Veterinary Clinical Pathology.

  19. Mixed-complexity artificial grammar learning in humans and macaque monkeys: evaluating learning strategies.

    Science.gov (United States)

    Wilson, Benjamin; Smith, Kenny; Petkov, Christopher I

    2015-03-01

    Artificial grammars (AG) can be used to generate rule-based sequences of stimuli. Some of these can be used to investigate sequence-processing computations in non-human animals that might be related to, but not unique to, human language. Previous AG learning studies in non-human animals have used different AGs to separately test for specific sequence-processing abilities. However, given that natural language and certain animal communication systems (in particular, song) have multiple levels of complexity, mixed-complexity AGs are needed to simultaneously evaluate sensitivity to the different features of the AG. Here, we tested humans and Rhesus macaques using a mixed-complexity auditory AG, containing both adjacent (local) and non-adjacent (longer-distance) relationships. Following exposure to exemplary sequences generated by the AG, humans and macaques were individually tested with sequences that were either consistent with the AG or violated specific adjacent or non-adjacent relationships. We observed a considerable level of cross-species correspondence in the sensitivity of both humans and macaques to the adjacent AG relationships and to the statistical properties of the sequences. We found no significant sensitivity to the non-adjacent AG relationships in the macaques. A subset of humans was sensitive to this non-adjacent relationship, revealing interesting between- and within-species differences in AG learning strategies. The results suggest that humans and macaques are largely comparably sensitive to the adjacent AG relationships and their statistical properties. However, in the presence of multiple cues to grammaticality, the non-adjacent relationships are less salient to the macaques and many of the humans. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Structural and functional analyses of human cerebral cortex using a surface-based atlas

    Science.gov (United States)

    Van Essen, D. C.; Drury, H. A.

    1997-01-01

    We have analyzed the geometry, geography, and functional organization of human cerebral cortex using surface reconstructions and cortical flat maps of the left and right hemispheres generated from a digital atlas (the Visible Man). The total surface area of the reconstructed Visible Man neocortex is 1570 cm2 (both hemispheres), approximately 70% of which is buried in sulci. By linking the Visible Man cerebrum to the Talairach stereotaxic coordinate space, the locations of activation foci reported in neuroimaging studies can be readily visualized in relation to the cortical surface. The associated spatial uncertainty was empirically shown to have a radius in three dimensions of approximately 10 mm. Application of this approach to studies of visual cortex reveals the overall patterns of activation associated with different aspects of visual function and the relationship of these patterns to topographically organized visual areas. Our analysis supports a distinction between an anterior region in ventral occipito-temporal cortex that is selectively involved in form processing and a more posterior region (in or near areas VP and V4v) involved in both form and color processing. Foci associated with motion processing are mainly concentrated in a region along the occipito-temporal junction, the ventral portion of which overlaps with foci also implicated in form processing. Comparisons between flat maps of human and macaque monkey cerebral cortex indicate significant differences as well as many similarities in the relative sizes and positions of cortical regions known or suspected to be homologous in the two species.

  1. Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis.

    Science.gov (United States)

    Kielar, Catherine; Maddox, Lucy; Bible, Ellen; Pontikis, Charlie C; Macauley, Shannon L; Griffey, Megan A; Wong, Michael; Sands, Mark S; Cooper, Jonathan D

    2007-01-01

    Infantile neuronal ceroid lipofuscinosis (INCL) is caused by deficiency of the lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1). We have investigated the onset and progression of pathological changes in Ppt1 deficient mice (Ppt1-/-) and the development of their seizure phenotype. Surprisingly, cortical atrophy and neuron loss occurred only late in disease progression but were preceded by localized astrocytosis within individual thalamic nuclei and the progressive loss of thalamic neurons that relay different sensory modalities to the cortex. This thalamic neuron loss occurred first within the visual system and only subsequently in auditory and somatosensory relay nuclei or the inhibitory reticular thalamic nucleus. The loss of granule neurons and GABAergic interneurons followed in each corresponding cortical region, before the onset of seizure activity. These findings provide novel evidence for successive neuron loss within the thalamus and cortex in Ppt1-/- mice, revealing the thalamus as an important early focus of INCL pathogenesis.

  2. Prevention of rectal SHIV transmission in macaques by daily or intermittent prophylaxis with emtricitabine and tenofovir.

    Directory of Open Access Journals (Sweden)

    J Gerardo García-Lerma

    2008-02-01

    Full Text Available In the absence of an effective vaccine, HIV continues to spread globally, emphasizing the need for novel strategies to limit its transmission. Pre-exposure prophylaxis (PrEP with antiretroviral drugs could prove to be an effective intervention strategy if highly efficacious and cost-effective PrEP modalities are identified. We evaluated daily and intermittent PrEP regimens of increasing antiviral activity in a macaque model that closely resembles human transmission.We used a repeat-exposure macaque model with 14 weekly rectal virus challenges. Three drug treatments were given once daily, each to a different group of six rhesus macaques. Group 1 was treated subcutaneously with a human-equivalent dose of emtricitabine (FTC, group 2 received orally the human-equivalent dosing of both FTC and tenofovir-disoproxil fumarate (TDF, and group 3 received subcutaneously a similar dosing of FTC and a higher dose of tenofovir. A fourth group of six rhesus macaques (group 4 received intermittently a PrEP regimen similar to group 3 only 2 h before and 24 h after each weekly virus challenge. Results were compared to 18 control macaques that did not receive any drug treatment. The risk of infection in macaques treated in groups 1 and 2 was 3.8- and 7.8-fold lower than in untreated macaques (p = 0.02 and p = 0.008, respectively. All six macaques in group 3 were protected. Breakthrough infections had blunted acute viremias; drug resistance was seen in two of six animals. All six animals in group 4 that received intermittent PrEP were protected.This model suggests that single drugs for daily PrEP can be protective but a combination of antiretroviral drugs may be required to increase the level of protection. Short but potent intermittent PrEP can provide protection comparable to that of daily PrEP in this SHIV/macaque model. These findings support PrEP trials for HIV prevention in humans and identify promising PrEP modalities.

  3. Evaluation of various somatosensory stimulations for functional MRI

    International Nuclear Information System (INIS)

    Hara, Kazushi; Nakasato, Nobukazu; Mizoi, Kazuo; Yoshimoto, Takashi; Shimizu, Hiroaki.

    1997-01-01

    The aim of this functional magnetic resonance imaging (fMRI) study was to test detectability of activated area using various somatosensory stimulations. The following stimulations were performed in normal volunteers: regular or irregular electrical median nerve stimulation (n=5, each), tactile stimulation to the palm and fingers (n=8), pain stimulation to the index finger (n=5) or to the palm and fingers (n=5). fMRI was acquired with a spoiled gradient echo sequence at 1.5 T. Detectability of activated area was the highest when the pain stimulation was applied to the palm and fingers (80%). A successful rate for the tactile stimulation was 25%, and the other stimulations failed to demonstrate any activation. When successful, the highest signal activation on fMRI was seen on a sulcus, which presumably arose from a vein. The sulcus was defined as the central sulcus by somatosensory evoked field using a median nerve stimulation. Our study indicates that the pain stimulation to the palm and fingers may be a choice for the sensory fMRI. (author)

  4. Developmental Patterns of Doublecortin Expression and White Matter Neuron Density in the Postnatal Primate Prefrontal Cortex and Schizophrenia

    Science.gov (United States)

    Fung, Samantha J.; Joshi, Dipesh; Allen, Katherine M.; Sivagnanasundaram, Sinthuja; Rothmond, Debora A.; Saunders, Richard; Noble, Pamela L.; Webster, Maree J.; Shannon Weickert, Cynthia

    2011-01-01

    Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37) and matched controls (n = 37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia. PMID

  5. Developmental patterns of doublecortin expression and white matter neuron density in the postnatal primate prefrontal cortex and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Samantha J Fung

    Full Text Available Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC. Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX, a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque and density of white matter neurons (humans during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37 and matched controls (n = 37 and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in

  6. Peripheral nerve injury induces glial activation in primary motor cortex

    Directory of Open Access Journals (Sweden)

    Julieta Troncoso

    2015-02-01

    Full Text Available Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to either unilateral lesion of the facial nerve or sham surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Pyramidal cells’ dendritic arborization underwent overall shrinkage and transient spine pruning. Moreover, microglial cell density surrounding vM1 layer 5 pyramidal neurons was significantly increased with morphological bias towards the activated phenotype. Additionally, we induced facial nerve lesion in Wistar rats to evaluate the degree and extension of facial nerve lesion-induced reorganization processes in central nervous system using neuronal and glial markers. Immunoreactivity to NeuN (neuronal nuclei antigen, GAP-43 (growth-associated protein 43, GFAP (glial fibrillary acidic protein, and Iba 1 (Ionized calcium binding adaptor molecule 1 were evaluated 1, 3, 7, 14, 28 and 35 days after either unilateral facial nerve lesion or sham surgery. Patches of decreased NeuN immunoreactivity were found bilaterally in vM1 as well as in primary somatosensory cortex (CxS1. Significantly increased GAP-43 immunoreactivity was found bilaterally after the lesion in hippocampus, striatum, and sensorimotor cortex. One day after lesion GFAP immunoreactivity increased bilaterally in hippocampus, subcortical white

  7. Cortical thickness development of human primary visual cortex related to the age of blindness onset.

    Science.gov (United States)

    Li, Qiaojun; Song, Ming; Xu, Jiayuan; Qin, Wen; Yu, Chunshui; Jiang, Tianzi

    2017-08-01

    Blindness primarily induces structural alteration in the primary visual cortex (V1). Some studies have found that the early blind subjects had a thicker V1 compared to sighted controls, whereas late blind subjects showed no significant differences in the V1. This implies that the age of blindness onset may exert significant effects on the development of cortical thickness of the V1. However, no previous research used a trajectory of the age of blindness onset-related changes to investigate these effects. Here we explored this issue by mapping the cortical thickness trajectory of the V1 against the age of blindness onset using data from 99 blind individuals whose age of blindness onset ranged from birth to 34 years. We found that the cortical thickness of the V1 could be fitted well with a quadratic curve in both the left (F = 11.59, P = 3 × 10 -5 ) and right hemispheres (F = 6.54, P = 2 × 10 -3 ). Specifically, the cortical thickness of the V1 thinned rapidly during childhood and adolescence and did not change significantly thereafter. This trend was not observed in the primary auditory cortex (A1), primary motor cortex (M1), or primary somatosensory cortex (S1). These results provide evidence that an onset of blindness before adulthood significantly affects the cortical thickness of the V1 and suggest a critical period for cortical development of the human V1.

  8. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex

    Directory of Open Access Journals (Sweden)

    Jimmy eStehberg

    2014-09-01

    Full Text Available Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI and primary visual (VI. It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA and retrograde (CTb tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging and cortical parcellation are discussed.

  9. Recognition memory for vibrotactile rhythms: an fMRI study in blind and sighted individuals.

    Science.gov (United States)

    Sinclair, Robert J; Dixit, Sachin; Burton, Harold

    2011-01-01

    Calcarine sulcal cortex possibly contributes to semantic recognition memory in early blind (EB). We assessed a recognition memory role using vibrotactile rhythms and a retrieval success paradigm involving learned "old" and "new" rhythms in EB and sighted. EB showed no activation differences in occipital cortex indicating retrieval success but replicated findings of somatosensory processing. Both groups showed retrieval success in primary somatosensory, precuneus, and orbitofrontal cortex. The S1 activity might indicate generic sensory memory processes.

  10. New-Onset Diabetes Mellitus After Transplantation in a Cynomolgus Macaque (Macaca fasicularis).

    Science.gov (United States)

    Matthews, Kristin A; Tonsho, Makoto; Madsen, Joren C

    2015-08-01

    A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal's blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.

  11. Somatosensory BOLD fMRI reveals close link between salient blood pressure changes and the murine neuromatrix.

    Science.gov (United States)

    Reimann, Henning Matthias; Todiras, Mihail; Hodge, Russ; Huelnhagen, Till; Millward, Jason Michael; Turner, Robert; Seeliger, Erdmann; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2018-05-15

    The neuromatrix, or "pain matrix", is a network of cortical brain areas which is activated by noxious as well as salient somatosensory stimulation. This has been studied in mice and humans using blood oxygenation level-dependent (BOLD) fMRI. Here we demonstrate that BOLD effects observed in the murine neuromatrix in response to salient somatosensory stimuli are prone to reflect mean arterial blood pressure (MABP) changes, rather than neural activity. We show that a standard electrostimulus typically used in murine somatosensory fMRI can induce substantial elevations in MABP. Equivalent drug-induced MABP changes - without somatosensory stimulation - evoked BOLD patterns in the neuromatrix strikingly similar to those evoked by electrostimulation. This constitutes a serious caveat for murine fMRI. The regional specificity of these BOLD patterns can be attributed to the co-localization of the neuromatrix with large draining veins. Based on these findings we propose a cardiovascular support mechanism whereby abrupt elevations in MABP provide additional energy supply to the neuromatrix and other essential brain areas in fight-or-flight situations. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Alexithymia and Somatosensory Amplification Link Perceived Psychosocial Stress and Somatic Symptoms in Outpatients with Psychosomatic Illness

    Directory of Open Access Journals (Sweden)

    Mutsuhiro Nakao

    2018-05-01

    Full Text Available Background: Psychosomatic patients often complain of a variety of somatic symptoms. We sought to clarify the role of clinical predictors of complaints of somatic symptoms. Methods: We enrolled 604 patients visiting a psychosomatic outpatient clinic. The outcome was the total number of somatic symptoms, and the candidate clinical predictors were perceived psychosocial stress, alexithymia, somatosensory amplification, adaptation, anxiety, and depression. All participants completed questionnaires assessing the outcome and the predictors. Results: The average number of reported somatic symptoms was 4.8; the most frequent was fatigue (75.3%, followed by insomnia (56.1%, low-back pain (49.5%, headache (44.7%, and palpitations (43.1%. Multiple regression analysis showed that the total number of somatic symptoms was significantly associated with the degree of perceived psychosocial stress, alexithymia, somatosensory amplification, and depression. Also, structural equation models indicated links between excessive adaptation (via perceived psychosocial stress, alexithymia, and somatosensory amplification and the total number of somatic symptoms. Conclusion: The results suggested that the association between psychosocial stress and reported somatic symptoms is mediated by alexithymia and somatosensory amplification in psychosomatic patients.

  13. Ehlers-Danlos Syndrome, Hypermobility Type: Impact of Somatosensory Orthoses on Postural Control (A Pilot Study

    Directory of Open Access Journals (Sweden)

    Emma G. Dupuy

    2017-06-01

    Full Text Available Elhers-Danlos syndrome (EDS is the clinical manifestation of connective tissue disorders, and comprises several clinical forms with no specific symptoms and selective medical examinations which result in a delay in diagnosis of about 10 years. The EDS hypermobility type (hEDS is characterized by generalized joint hypermobility, variable skin hyperextensibility and impaired proprioception. Since somatosensory processing and multisensory integration are crucial for both perception and action, we put forth the hypothesis that somatosensory deficits in hEDS patients may lead, among other clinical symptoms, to misperception of verticality and postural instability. Therefore, the purpose of this study was twofold: (i to assess the impact of somatosensory deficit on subjective visual vertical (SVV and postural stability; and (ii to quantify the effect of wearing somatosensory orthoses (i.e., compressive garments and insoles on postural stability. Six hEDS patients and six age- and gender-matched controls underwent a SVV (sitting, standing, lying on the right side evaluation and a postural control evaluation on a force platform (Synapsys, with or without visual information (eyes open (EO/eyes closed (EC. These two latter conditions performed either without orthoses, or with compression garments (CG, or insoles, or both. Results showed that patients did not exhibit a substantial perceived tilt of the visual vertical in the direction of the body tilt (Aubert effect as did the control subjects. Interestingly, such differential effects were only apparent when the rod was initially positioned to the left of the vertical axis (opposite the longitudinal body axis. In addition, patients showed greater postural instability (sway area than the controls. The removal of vision exacerbated this instability, especially in the mediolateral (ML direction. The wearing of orthoses improved postural stability, especially in the eyes-closed condition, with a particularly

  14. Efficient generation of monoclonal antibodies from single rhesus macaque antibody secreting cells.

    Science.gov (United States)

    Meng, Weixu; Li, Leike; Xiong, Wei; Fan, Xuejun; Deng, Hui; Bett, Andrew J; Chen, Zhifeng; Tang, Aimin; Cox, Kara S; Joyce, Joseph G; Freed, Daniel C; Thoryk, Elizabeth; Fu, Tong-Ming; Casimiro, Danilo R; Zhang, Ningyan; A Vora, Kalpit; An, Zhiqiang

    2015-01-01

    Nonhuman primates (NHPs) are used as a preclinical model for vaccine development, and the antibody profiles to experimental vaccines in NHPs can provide critical information for both vaccine design and translation to clinical efficacy. However, an efficient protocol for generating monoclonal antibodies from single antibody secreting cells of NHPs is currently lacking. In this study we established a robust protocol for cloning immunoglobulin (IG) variable domain genes from single rhesus macaque (Macaca mulatta) antibody secreting cells. A sorting strategy was developed using a panel of molecular markers (CD3, CD19, CD20, surface IgG, intracellular IgG, CD27, Ki67 and CD38) to identify the kinetics of B cell response after vaccination. Specific primers for the rhesus macaque IG genes were designed and validated using cDNA isolated from macaque peripheral blood mononuclear cells. Cloning efficiency was averaged at 90% for variable heavy (VH) and light (VL) domains, and 78.5% of the clones (n = 335) were matched VH and VL pairs. Sequence analysis revealed that diverse IGHV subgroups (for VH) and IGKV and IGLV subgroups (for VL) were represented in the cloned antibodies. The protocol was tested in a study using an experimental dengue vaccine candidate. About 26.6% of the monoclonal antibodies cloned from the vaccinated rhesus macaques react with the dengue vaccine antigens. These results validate the protocol for cloning monoclonal antibodies in response to vaccination from single macaque antibody secreting cells, which have general applicability for determining monoclonal antibody profiles in response to other immunogens or vaccine studies of interest in NHPs.

  15. A case of polymicrogyria in macaque monkey: impact on anatomy and function of the motor system

    Directory of Open Access Journals (Sweden)

    Rouiller Eric M

    2009-12-01

    Full Text Available Abstract Background Polymicrogyria is a malformation of the cerebral cortex often resulting in epilepsy or mental retardation. It remains unclear whether this pathology affects the structure and function of the corticospinal (CS system. The anatomy and histology of the brain of one macaque monkey exhibiting a spontaneous polymicrogyria (PMG monkey were examined and compared to the brain of normal monkeys. The CS tract was labelled by injecting a neuronal tracer (BDA unilaterally in a region where low intensity electrical microstimulation elicited contralateral hand movements (presumably the primary motor cortex in the PMG monkey. Results The examination of the brain showed a large number of microgyri at macro- and microscopic levels, covering mainly the frontoparietal regions. The layered cortical organization was locally disrupted and the number of SMI-32 stained pyramidal neurons in the cortical layer III of the presumed motor cortex was reduced. We compared the distribution of labelled CS axons in the PMG monkey at spinal cervical level C5. The cumulated length of CS axon arbors in the spinal grey matter was not significantly different in the PMG monkey. In the red nucleus, numerous neurons presented large vesicles. We also assessed its motor performances by comparing its capacity to execute a complex reach and grasp behavioral task. The PMG monkey exhibited an increase of reaction time without any modification of other motor parameters, an observation in line with a normal CS tract organisation. Conclusion In spite of substantial cortical malformations in the frontal and parietal lobes, the PMG monkey exhibits surprisingly normal structure and function of the corticospinal system.

  16. Correlates of a single cortical action potential in the epidural EEG

    Science.gov (United States)

    Teleńczuk, Bartosz; Baker, Stuart N; Kempter, Richard; Curio, Gabriel

    2015-01-01

    To identify the correlates of a single cortical action potential in surface EEG, we recorded simultaneously epidural EEG and single-unit activity in the primary somatosensory cortex of awake macaque monkeys. By averaging over EEG segments coincident with more than hundred thousand single spikes, we found short-lived (≈ 0.5 ms) triphasic EEG deflections dominated by high-frequency components > 800 Hz. The peak-to-peak amplitude of the grand-averaged spike correlate was 80 nV, which matched theoretical predictions, while single-neuron amplitudes ranged from 12 to 966 nV. Combining these estimates with post-stimulus-time histograms of single-unit responses to median-nerve stimulation allowed us to predict the shape of the evoked epidural EEG response and to estimate the number of contributing neurons. These findings establish spiking activity of cortical neurons as a primary building block of high-frequency epidural EEG, which thus can serve as a quantitative macroscopic marker of neuronal spikes. PMID:25554430

  17. Project Lifescape - The Macaques of India

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Project Lifescape - The Macaques of India. Anindya Sinha. Classroom Volume 6 Issue 9 September 2001 pp 94-105. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/09/0094-0105 ...

  18. Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex

    Science.gov (United States)

    Markov, Nikola T; Vezoli, Julien; Chameau, Pascal; Falchier, Arnaud; Quilodran, René; Huissoud, Cyril; Lamy, Camille; Misery, Pierre; Giroud, Pascale; Ullman, Shimon; Barone, Pascal; Dehay, Colette; Knoblauch, Kenneth; Kennedy, Henry

    2013-01-01

    The laminar location of the cell bodies and terminals of interareal connections determines the hierarchical structural organization of the cortex and has been intensively studied. However, we still have only a rudimentary understanding of the connectional principles of feedforward (FF) and feedback (FB) pathways. Quantitative analysis of retrograde tracers was used to extend the notion that the laminar distribution of neurons interconnecting visual areas provides an index of hierarchical distance (percentage of supragranular labeled neurons [SLN]). We show that: 1) SLN values constrain models of cortical hierarchy, revealing previously unsuspected areal relations; 2) SLN reflects the operation of a combinatorial distance rule acting differentially on sets of connections between areas; 3) Supragranular layers contain highly segregated bottom-up and top-down streams, both of which exhibit point-to-point connectivity. This contrasts with the infragranular layers, which contain diffuse bottom-up and top-down streams; 4) Cell filling of the parent neurons of FF and FB pathways provides further evidence of compartmentalization; 5) FF pathways have higher weights, cross fewer hierarchical levels, and are less numerous than FB pathways. Taken together, the present results suggest that cortical hierarchies are built from supra- and infragranular counterstreams. This compartmentalized dual counterstream organization allows point-to-point connectivity in both bottom-up and top-down directions. PMID:23983048

  19. Effects of Transportation on Antioxidant Status in Cynomolgus Macaques (Macaca fascicularis).

    Science.gov (United States)

    Pan, Xueying; Lu, Liang; Zeng, Xiancheng; Chang, Yan; Hua, Xiuguo

    2016-01-01

    To evaluate the effects of transportation on oxidative stress in cynomolgus monkeys, we measured serum levels of reduced glutathione (GSH), malondialdehyde, and protein carbonyl (PC) and the activities of total antioxidant capacity (TAOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase in cynomolgus macaques before transportation (day 0), on the day of arrival (day 1), and on days 7, 14, and 21 after transportation. Compared with that on day 0, TAOC and catalase activities on days 1, 7, and 14 after transportation were significantly decreased, reached their nadirs on day 7, and increased thereafter to reach their pretransportation levels by day 21 after transportation. Compared with day 0 levels, mean SOD activity and GSH concentration were decreased significantly on day 1; they thereafter increased to reach their pretransportation measures by day 7 after transportation. In contrast, PC and malondialdehyde concentrations in serum and the activity of GSH-Px were increased on day 1 compared with day 0 and thereafter decreased to reach their pretransportation levels by day 14 after transportation. In summary, GSH, TAOC, catalase, and SOD levels decreased and malondialdehyde, PC, and GSH-Px concentrations increased in cynomolgus macaques after transportation. These results suggest that transportation might imbalance oxidant and antioxidant levels to create excess oxidative stress in cynomolgus macaques. Therefore, cynomolgus macaques should have at least 21 d to recover after transportation and regain their healthy status.

  20. Grasp movement decoding from premotor and parietal cortex.

    Science.gov (United States)

    Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg

    2011-10-05

    Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.

  1. c-Fos expression during temporal order judgment in mice.

    Directory of Open Access Journals (Sweden)

    Makoto Wada

    Full Text Available The neuronal mechanisms for ordering sensory signals in time still need to be clarified despite a long history of research. To address this issue, we recently developed a behavioral task of temporal order judgment in mice. In the present study, we examined the expression of c-Fos, a marker of neural activation, in mice just after they carried out the temporal order judgment task. The expression of c-Fos was examined in C57BL/6N mice (male, n = 5 that were trained to judge the order of two air-puff stimuli delivered bilaterally to the right and left whiskers with stimulation intervals of 50-750 ms. The mice were rewarded with a food pellet when they responded by orienting their head toward the first stimulus (n = 2 or toward the second stimulus (n = 3 after a visual "go" signal. c-Fos-stained cell densities of these mice (test group were compared with those of two control groups in coronal brain sections prepared at bregma -2, -1, 0, +1, and +2 mm by applying statistical parametric mapping to the c-Fos immuno-stained sections. The expression of c-Fos was significantly higher in the test group than in the other groups in the bilateral barrel fields of the primary somatosensory cortex, the left secondary somatosensory cortex, the dorsal part of the right secondary auditory cortex. Laminar analyses in the primary somatosensory cortex revealed that c-Fos expression in the test group was most evident in layers II and III, where callosal fibers project. The results suggest that temporal order judgment involves processing bilateral somatosensory signals through the supragranular layers of the primary sensory cortex and in the multimodal sensory areas, including marginal zone between the primary somatosensory cortex and the secondary sensory cortex.

  2. X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide

    International Nuclear Information System (INIS)

    Feng, Youjun; Qi, Jianxun; Zhang, Huimin; Wang, Jinzi; Liu, Jinhua; Jiang, Fan; Gao, Feng

    2005-01-01

    X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide. Simian immunodeficiency virus (SIV) in the rhesus macaque is regarded as a classic animal model, playing a crucial role in HIV vaccine strategies and therapeutics by characterizing various cytotoxic T-lymphocyte (CTL) responses in macaque monkeys. However, the availability of well documented structural reports focusing on rhesus macaque major histocompatibility complex class I (MHC I) molecules remains extremely limited. Here, a complex of the rhesus macaque MHC I molecule (Mamu-A*02) with human β 2 m and an immunodominant SIV-Gag nonapeptide, GESNLKSLY (GY9), has been crystallized. The crystal diffracts X-rays to 2.7 Å resolution and belongs to space group C2, with unit-cell parameters a = 124.11, b = 110.45, c = 100.06 Å, and contains two molecules in the asymmetric unit. The availability of the structure, which is being solved by molecular replacement, will provide new insights into rhesus macaque MHC I (Mamu-A*02) presenting pathogenic SIV peptides

  3. X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Youjun [Laboratory of Molecular Immunology and Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School, Chinese Academy of Sciences, Beijing (China); Qi, Jianxun [Graduate School, Chinese Academy of Sciences, Beijing (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Zhang, Huimin; Wang, Jinzi [Laboratory of Molecular Immunology and Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Liu, Jinhua [College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); Jiang, Fan [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Gao, Feng, E-mail: gaofeng@im.ac.cn [Laboratory of Molecular Immunology and Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China)

    2006-01-01

    X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide. Simian immunodeficiency virus (SIV) in the rhesus macaque is regarded as a classic animal model, playing a crucial role in HIV vaccine strategies and therapeutics by characterizing various cytotoxic T-lymphocyte (CTL) responses in macaque monkeys. However, the availability of well documented structural reports focusing on rhesus macaque major histocompatibility complex class I (MHC I) molecules remains extremely limited. Here, a complex of the rhesus macaque MHC I molecule (Mamu-A*02) with human β{sub 2}m and an immunodominant SIV-Gag nonapeptide, GESNLKSLY (GY9), has been crystallized. The crystal diffracts X-rays to 2.7 Å resolution and belongs to space group C2, with unit-cell parameters a = 124.11, b = 110.45, c = 100.06 Å, and contains two molecules in the asymmetric unit. The availability of the structure, which is being solved by molecular replacement, will provide new insights into rhesus macaque MHC I (Mamu-A*02) presenting pathogenic SIV peptides.

  4. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    Science.gov (United States)

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. Copyright © 2016. Published by Elsevier Inc.

  5. Novel assessment of cortical response to somatosensory stimuli in children with hemiparetic cerebral palsy.

    Science.gov (United States)

    Maitre, Nathalie L; Barnett, Zachary P; Key, Alexandra P F

    2012-10-01

    The brain's response to somatosensory stimuli is essential to experience-driven learning in children. It was hypothesized that advances in event-related potential technology could quantify the response to touch in somatosensory cortices and characterize the responses of hemiparetic children. In this prospective study of 8 children (5-8 years old) with hemiparetic cerebral palsy, both event-related potential responses to sham or air puff trials and standard functional assessments were used. Event-related potential technology consistently measured signals reflecting activity in the primary and secondary somatosensory cortices as well as complex cognitive processing of touch. Participants showed typical early responses but less efficient perceptual processes. Significant differences between affected and unaffected extremities correlated with sensorimotor testing, stereognosis, and 2-point discrimination (r > 0.800 and P = .001 for all). For the first time, a novel event-related potential paradigm shows that hemiparetic children have slower and less efficient tactile cortical perception in their affected extremities.

  6. Social interactions through the eyes of macaques and humans.

    Directory of Open Access Journals (Sweden)

    Richard McFarland

    Full Text Available Group-living primates frequently interact with each other to maintain social bonds as well as to compete for valuable resources. Observing such social interactions between group members provides individuals with essential information (e.g. on the fighting ability or altruistic attitude of group companions to guide their social tactics and choice of social partners. This process requires individuals to selectively attend to the most informative content within a social scene. It is unclear how non-human primates allocate attention to social interactions in different contexts, and whether they share similar patterns of social attention to humans. Here we compared the gaze behaviour of rhesus macaques and humans when free-viewing the same set of naturalistic images. The images contained positive or negative social interactions between two conspecifics of different phylogenetic distance from the observer; i.e. affiliation or aggression exchanged by two humans, rhesus macaques, Barbary macaques, baboons or lions. Monkeys directed a variable amount of gaze at the two conspecific individuals in the images according to their roles in the interaction (i.e. giver or receiver of affiliation/aggression. Their gaze distribution to non-conspecific individuals was systematically varied according to the viewed species and the nature of interactions, suggesting a contribution of both prior experience and innate bias in guiding social attention. Furthermore, the monkeys' gaze behavior was qualitatively similar to that of humans, especially when viewing negative interactions. Detailed analysis revealed that both species directed more gaze at the face than the body region when inspecting individuals, and attended more to the body region in negative than in positive social interactions. Our study suggests that monkeys and humans share a similar pattern of role-sensitive, species- and context-dependent social attention, implying a homologous cognitive mechanism of

  7. Cabotegravir long acting injection protects macaques against intravenous challenge with SIVmac251.

    Science.gov (United States)

    Andrews, Chasity D; Bernard, Leslie St; Poon, Amanda Yee; Mohri, Hiroshi; Gettie, Natanya; Spreen, William R; Gettie, Agegnehu; Russell-Lodrigue, Kasi; Blanchard, James; Hong, Zhi; Ho, David D; Markowitz, Martin

    2017-02-20

    We evaluated the effectiveness of cabotegravir (CAB; GSK1265744 or GSK744) long acting as preexposure prophylaxis (PrEP) against intravenous simian immunodeficiency virus (SIV) challenge in a model that mimics blood transfusions based on the per-act probability of infection. CAB long acting is an integrase strand transfer inhibitor formulated as a 200 mg/ml injectable nanoparticle suspension that is an effective PrEP agent against rectal and vaginal simian/human immunodeficiency virus transmission in macaques. Three groups of rhesus macaques (n = 8 per group) were injected intramuscularly with CAB long acting and challenged intravenously with 17 animal infectious dose 50% SIVmac251 on week 2. Group 1 was injected with 50 mg/kg on week 0 and 4 to evaluate the protective efficacy of the CAB long-acting dose used in macaque studies mimicking sexual transmission. Group 2 was injected with 50 mg/kg on week 0 to evaluate the necessity of the second injection of CAB long acting for protection against intravenous challenge. Group 3 was injected with 25 mg/kg on week 0 and 50 mg/kg on week 4 to correlate CAB plasma concentrations at the time of challenge with protection. Five additional macaques remained untreated as controls. CAB long acting was highly protective with 21 of the 24 CAB long-acting-treated macaques remaining aviremic, resulting in 88% protection. The plasma CAB concentration at the time of virus challenge appeared to be more important for protection than sustaining therapeutic plasma concentrations with the second CAB long acting injection. These results support the clinical investigation of CAB long acting as PrEP in people who inject drugs.

  8. Interindividual Differences in Neonatal Imitation and the Development of Action Chains in Rhesus Macaques

    Science.gov (United States)

    Ferrari, Pier Francesco; Paukner, Annika; Ruggiero, Angela; Darcey, Lisa; Unbehagen, Sarah; Suomi, Stephen J.

    2009-01-01

    The capacity to imitate facial gestures is highly variable in rhesus macaques and this variability may be related to differences in specific neurobehavioral patterns of development. This study evaluated the differential neonatal imitative response of 41 macaques in relation to the development of sensory, motor, and cognitive skills throughout the…

  9. Social management of laboratory rhesus macaques housed in large groups using a network approach: A review.

    Science.gov (United States)

    McCowan, Brenda; Beisner, Brianne; Hannibal, Darcy

    2017-12-07

    Biomedical facilities across the nation and worldwide aim to develop cost-effective methods for the reproductive management of macaque breeding groups, typically by housing macaques in large, multi-male multi-female social groups that provide monkey subjects for research as well as appropriate socialization for their psychological well-being. One of the most difficult problems in managing socially housed macaques is their propensity for deleterious aggression. From a management perspective, deleterious aggression (as opposed to less intense aggression that serves to regulate social relationships) is undoubtedly the most problematic behavior observed in group-housed macaques, which can readily escalate to the degree that it causes social instability, increases serious physical trauma leading to group dissolution, and reduces psychological well-being. Thus for both welfare and other management reasons, aggression among rhesus macaques at primate centers and facilities needs to be addressed with a more proactive approach.Management strategies need to be instituted that maximize social housing while also reducing problematic social aggression due to instability using efficacious methods for detection and prevention in the most cost effective manner. Herein we review a new proactive approach using social network analysis to assess and predict deleterious aggression in macaque groups. We discovered three major pathways leading to instability, such as unusually high rates and severity of trauma and social relocations.These pathways are linked either directly or indirectly to network structure in rhesus macaque societies. We define these pathways according to the key intrinsic and extrinsic variables (e.g., demographic, genetic or social factors) that influence network and behavioral measures of stability (see Fig. 1). They are: (1) presence of natal males, (2) matrilineal genetic fragmentation, and (3) the power structure and conflict policing behavior supported by this

  10. Spinal N13 versus cortical N20 and dermatomal somatosensory ...

    African Journals Online (AJOL)

    Mohamed Imam

    2013-04-06

    Apr 6, 2013 ... Spinal N13 versus cortical N20 and dermatomal somatosensory .... recording point for the right upper limb stimulation and the. C40 for the left upper limb stimulation. The reference ..... Brain 1992;115:1209–34. 298. M. Imam ...

  11. Seven years of recording from monkey cortex with a chronically implanted multiple microelectrode

    Directory of Open Access Journals (Sweden)

    Jürgen Krüger

    2010-05-01

    Full Text Available A brush of 64 microwires was chronically implanted in the ventral premotor cortex of a macaque monkey. Contrary to common approaches, the wires were inserted from the white matter side. This approach, by avoiding mechanical pressure on the dura and pia mater during penetration, disturbed only minimally the cortical recording site. With this approach isolated potentials and multiunit activity were recorded for more than seven years in about one third of electrodes. The indirect insertion method also provided an excellent stability within each recording session, and in some cases even allowed recording from the same neurons for several years. Histological examination of the implanted brain region shows only a very marginal damage the recording area. Advantages and problems related to long-term recording are discussed.

  12. Feature selectivity of the gamma-band of the local field potential in primate primary visual cortex

    Directory of Open Access Journals (Sweden)

    Philipp Berens

    2008-12-01

    Full Text Available Extra-cellular voltage fluctuations (local field potentials; LFPs reflecting neural mass action are ubiquitous across species and brain regions. Numerous studies have characterized the properties of LFP signals in the cortex to study sensory and motor computations as well as cognitive processes like attention, perception and memory. In addition, its extracranial counterpart – the electroencelphalogram (EEG – is widely used in clinical applications. However, the link between LFP signals and the underlying activity of local populations of neurons remains largely elusive. Here, we review recent work elucidating the relationship between spiking activity of local neural populations and LFP signals. We focus on oscillations in the gamma-band (30-90Hz of the local field potential in the primary visual cortex (V1 of the macaque that dominate during visual stimulation. Given that in area V1 much is known about the properties of single neurons and the cortical architecture, it provides an excellent opportunity to study the mechanisms underlying the generation of the local field potential.

  13. Motor cortex stimulation suppresses cortical responses to noxious hindpaw stimulation after spinal cord lesion in rats.

    Science.gov (United States)

    Jiang, Li; Ji, Yadong; Voulalas, Pamela J; Keaser, Michael; Xu, Su; Gullapalli, Rao P; Greenspan, Joel; Masri, Radi

    2014-01-01

    Motor cortex stimulation (MCS) is a potentially effective treatment for chronic neuropathic pain. The neural mechanisms underlying the reduction of hyperalgesia and allodynia after MCS are not completely understood. To investigate the neural mechanisms responsible for analgesic effects after MCS. We test the hypothesis that MCS attenuates evoked blood oxygen-level dependent signals in cortical areas involved in nociceptive processing in an animal model of chronic neuropathic pain. We used adult female Sprague-Dawley rats (n = 10) that received unilateral electrolytic lesions of the right spinal cord at the level of C6 (SCL animals). In these animals, we performed magnetic resonance imaging (fMRI) experiments to study the analgesic effects of MCS. On the day of fMRI experiment, 14 days after spinal cord lesion, the animals were anesthetized and epidural bipolar platinum electrodes were placed above the left primary motor cortex. Two 10-min sessions of fMRI were performed before and after a session of MCS (50 μA, 50 Hz, 300 μs, for 30 min). During each fMRI session, the right hindpaw was electrically stimulated (noxious stimulation: 5 mA, 5 Hz, 3 ms) using a block design of 20 s stimulation off and 20 s stimulation on. A general linear model-based statistical parametric analysis was used to analyze whole brain activation maps. Region of interest (ROI) analysis and paired t-test were used to compare changes in activation before and after MCS in these ROI. MCS suppressed evoked blood oxygen dependent signals significantly (Family-wise error corrected P cortex and the prefrontal cortex. These findings suggest that, in animals with SCL, MCS attenuates hypersensitivity by suppressing activity in the primary somatosensory cortex and prefrontal cortex. Copyright © 2014. Published by Elsevier Inc.

  14. The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making.

    Science.gov (United States)

    Rudebeck, P H; Bannerman, D M; Rushworth, M F S

    2008-12-01

    Damage to the ventromedial frontal cortex (VMFC) in humans is associated with deficits in decision making. Decision making, however, often happens while people are interacting with others, where it is important to take the social consequences of a course of action into account. It is well known that VMFC lesions also lead to marked alterations in patients' emotions and ability to interact socially; however, it has not been clear which parts of the VMFC are critical for these changes. Recently, there has been considerable interest in the role of the VMFC in choice behavior during interpersonal exchanges. Here, we highlight recent research that suggests that two areas within or adjacent to the VMFC, the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), may play distinct but complementary roles in mediating normal patterns of emotion and social behavior. Converging lines of evidence from human, macaque, and rat studies now suggest that the OFC may be more specialized for simple emotional responses, such as fear and aggression, through its role in representing primary reinforcement or punishment. By contrast, the ACC may play a distinct role in more complex aspects of emotion, such as social interaction, by virtue of its connections with the discrete parts of the temporal lobe and subcortical structures that control autonomic responses.

  15. The rhesus macaque is three times as diverse but more closely equivalent in damaging coding variation as compared to the human

    Directory of Open Access Journals (Sweden)

    Yuan Qiaoping

    2012-06-01

    Full Text Available Abstract Background As a model organism in biomedicine, the rhesus macaque (Macaca mulatta is the most widely used nonhuman primate. Although a draft genome sequence was completed in 2007, there has been no systematic genome-wide comparison of genetic variation of this species to humans. Comparative analysis of functional and nonfunctional diversity in this highly abundant and adaptable non-human primate could inform its use as a model for human biology, and could reveal how variation in population history and size alters patterns and levels of sequence variation in primates. Results We sequenced the mRNA transcriptome and H3K4me3-marked DNA regions in hippocampus from 14 humans and 14 rhesus macaques. Using equivalent methodology and sampling spaces, we identified 462,802 macaque SNPs, most of which were novel and disproportionately located in the functionally important genomic regions we had targeted in the sequencing. At least one SNP was identified in each of 16,797 annotated macaque genes. Accuracy of macaque SNP identification was conservatively estimated to be >90%. Comparative analyses using SNPs equivalently identified in the two species revealed that rhesus macaque has approximately three times higher SNP density and average nucleotide diversity as compared to the human. Based on this level of diversity, the effective population size of the rhesus macaque is approximately 80,000 which contrasts with an effective population size of less than 10,000 for humans. Across five categories of genomic regions, intergenic regions had the highest SNP density and average nucleotide diversity and CDS (coding sequences the lowest, in both humans and macaques. Although there are more coding SNPs (cSNPs per individual in macaques than in humans, the ratio of dN/dS is significantly lower in the macaque. Furthermore, the number of damaging nonsynonymous cSNPs (have damaging effects on protein functions from PolyPhen-2 prediction in the macaque is more

  16. The cortical eye proprioceptive signal modulates neural activity in higher-order visual cortex as predicted by the variation in visual sensitivity

    DEFF Research Database (Denmark)

    Balslev, Daniela; Siebner, Hartwig R; Paulson, Olaf B

    2012-01-01

    target when the right eye was rotated leftwards as compared with when it was rotated rightwards. This effect was larger after S1(EYE)-rTMS than after rTMS of a control area in the motor cortex. The neural response to retinally identical stimuli in this area could be predicted from the changes in visual......Whereas the links between eye movements and the shifts in visual attention are well established, less is known about how eye position affects the prioritization of visual space. It was recently observed that visual sensitivity varies with the direction of gaze and the level of excitability...... in the eye proprioceptive representation in human left somatosensory cortex (S1(EYE)), so that after 1Hz repetitive transcranial magnetic stimulation (rTMS) over S1(EYE), targets presented nearer the center of the orbit are detected more accurately. Here we used whole-brain functional magnetic resonance...

  17. Hyperspectral optical tomography of intrinsic signals in the rat cortex

    Science.gov (United States)

    Konecky, Soren D.; Wilson, Robert H.; Hagen, Nathan; Mazhar, Amaan; Tkaczyk, Tomasz S.; Frostig, Ron D.; Tromberg, Bruce J.

    2015-01-01

    Abstract. We introduce a tomographic approach for three-dimensional imaging of evoked hemodynamic activity, using broadband illumination and diffuse optical tomography (DOT) image reconstruction. Changes in diffuse reflectance in the rat somatosensory cortex due to stimulation of a single whisker were imaged at a frame rate of 5 Hz using a hyperspectral image mapping spectrometer. In each frame, images in 38 wavelength bands from 484 to 652 nm were acquired simultaneously. For data analysis, we developed a hyperspectral DOT algorithm that used the Rytov approximation to quantify changes in tissue concentration of oxyhemoglobin (ctHbO2) and deoxyhemoglobin (ctHb) in three dimensions. Using this algorithm, the maximum changes in ctHbO2 and ctHb were found to occur at 0.29±0.02 and 0.66±0.04  mm beneath the surface of the cortex, respectively. Rytov tomographic reconstructions revealed maximal spatially localized increases and decreases in ctHbO2 and ctHb of 321±53 and 555±96  nM, respectively, with these maximum changes occurring at 4±0.2  s poststimulus. The localized optical signals from the Rytov approximation were greater than those from modified Beer–Lambert, likely due in part to the inability of planar reflectance to account for partial volume effects. PMID:26835483

  18. Topical tenofovir protects against vaginal simian HIV infection in macaques coinfected with Chlamydia trachomatis and Trichomonas vaginalis.

    Science.gov (United States)

    Makarova, Natalia; Henning, Tara; Taylor, Andrew; Dinh, Chuong; Lipscomb, Jonathan; Aubert, Rachael; Hanson, Debra; Phillips, Christi; Papp, John; Mitchell, James; McNicholl, Janet; Garcia-Lerma, Gerardo J; Heneine, Walid; Kersh, Ellen; Dobard, Charles

    2017-03-27

    Chlamydia trachomatis and Trichomonas vaginalis, two prevalent sexually transmitted infections, are known to increase HIV risk in women and could potentially diminish preexposure prophylaxis efficacy, particularly for topical interventions that rely on local protection. We investigated in macaques whether coinfection with Chlamydia trachomatis/Trichomonas vaginalis reduces protection by vaginal tenofovir (TFV) gel. Vaginal TFV gel dosing previously shown to provide 100 or 74% protection when applied either 30 min or 3 days before simian HIV(SHIV) challenge was assessed in pigtailed macaques coinfected with Chlamydia trachomatis/Trichomonas vaginalis and challenged twice weekly with SHIV162p3 for up to 10 weeks (two menstrual cycles). Three groups of six macaques received either placebo or 1% TFV gel 30 min or 3 days before each SHIV challenge. We additionally assessed TFV and TFV diphosphate concentrations in plasma and vaginal tissues in Chlamydia trachomatis/Trichomonas vaginalis coinfected (n = 4) and uninfected (n = 4) macaques. Chlamydia trachomatis/Trichomonas vaginalis coinfections were maintained during the SHIV challenge period. All macaques that received placebo gel were SHIV infected after a median of seven challenges (one menstrual cycle). In contrast, no infections were observed in macaques treated with TFV gel 30 min before SHIV challenge (P vaginal lymphocytes were significantly higher in Chlamydia trachomatis/Trichomonas vaginalis coinfected compared with Chlamydia trachomatis/Trichomonas vaginalis uninfected macaques. Our findings in this model suggest that Chlamydia trachomatis/Trichomonas vaginalis coinfection may have little or no impact on the efficacy of highly effective topical TFV modalities and highlight a significant modulation of TFV pharmacokinetics.

  19. Auditory-somatosensory temporal sensitivity improves when the somatosensory event is caused by voluntary body movement

    Directory of Open Access Journals (Sweden)

    Norimichi Kitagawa

    2016-12-01

    Full Text Available When we actively interact with the environment, it is crucial that we perceive a precise temporal relationship between our own actions and sensory effects to guide our body movements.Thus, we hypothesized that voluntary movements improve perceptual sensitivity to the temporal disparity between auditory and movement-related somatosensory events compared to when they are delivered passively to sensory receptors. In the voluntary condition, participants voluntarily tapped a button, and a noise burst was presented at various onset asynchronies relative to the button press. The participants made either 'sound-first' or 'touch-first' responses. We found that the performance of temporal order judgment (TOJ in the voluntary condition (as indexed by the just noticeable difference was significantly better (M=42.5 ms ±3.8 s.e.m than that when their finger was passively stimulated (passive condition: M=66.8 ms ±6.3 s.e.m. We further examined whether the performance improvement with voluntary action can be attributed to the prediction of the timing of the stimulation from sensory cues (sensory-based prediction, kinesthetic cues contained in voluntary action, and/or to the prediction of stimulation timing from the efference copy of the motor command (motor-based prediction. When the participant’s finger was moved passively to press the button (involuntary condition and when three noise bursts were presented before the target burst with regular intervals (predictable condition, the TOJ performance was not improved from that in the passive condition. These results suggest that the improvement in sensitivity to temporal disparity between somatosensory and auditory events caused by the voluntary action cannot be attributed to sensory-based prediction and kinesthetic cues. Rather, the prediction from the efference copy of the motor command would be crucial for improving the temporal sensitivity.

  20. Noninvasive scalp recording of cortical auditory evoked potentials in the alert macaque monkey.

    Science.gov (United States)

    Itoh, Kosuke; Nejime, Masafumi; Konoike, Naho; Nakada, Tsutomu; Nakamura, Katsuki

    2015-09-01

    Scalp-recorded evoked potentials (EP) provide researchers and clinicians with irreplaceable means for recording stimulus-related neural activities in the human brain, due to its high temporal resolution, handiness, and, perhaps more importantly, non-invasiveness. This work recorded the scalp cortical auditory EP (CAEP) in unanesthetized monkeys by using methods that are essentially identical to those applied to humans. Young adult rhesus monkeys (Macaca mulatta, 5-7 years old) were seated in a monkey chair, and their head movements were partially restricted by polystyrene blocks and tension poles placed around their head. Individual electrodes were fixated on their scalp using collodion according to the 10-20 system. Pure tone stimuli were presented while electroencephalograms were recorded from up to nineteen channels, including an electrooculogram channel. In all monkeys (n = 3), the recorded CAEP comprised a series of positive and negative deflections, labeled here as macaque P1 (mP1), macaque N1 (mN1), macaque P2 (mP2), and macaque N2 (mN2), and these transient responses to sound onset were followed by a sustained potential that continued for the duration of the sound, labeled the macaque sustained potential (mSP). mP1, mN2 and mSP were the prominent responses, and they had maximal amplitudes over frontal/central midline electrode sites, consistent with generators in auditory cortices. The study represents the first noninvasive scalp recording of CAEP in alert rhesus monkeys, to our knowledge. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Diet of the Assamese macaque Macaca assamensis in lime-stone habitats of Nonggang, China

    Directory of Open Access Journals (Sweden)

    Qihai ZHOU, Hua WEI, Zhonghao HUANG, Chengming HUANG

    2011-02-01

    Full Text Available To enhance our understanding of dietary adaptations in macaques we studied the diet of the Assamese macaque Macaca assamensis in limestone seasonal rain forests at Nonggang Nature Reserve, China from September 2005 to August 2006. Our results show that although macaques fed on many plant species, 85.2% of the diet came from only 12 species, of which a bamboo species, Indocalamus calcicolus contributed to 62% of the diet. Young leaves were staple food items (74.1% of the diet for Assamese macaques at Nonggang, and constituted the bulk of monthly diets almost year-round, ranging from 44.9% (July to 92.9% (May. Young parts of Indocalamus calcicolus unexpanded leaves contributed to a large proportion of the young leaf diet in most months. Fruit accounted for only 17.4% of the diet, with a peak of consumption in July. We suggest that this highly folivorous diet may be related to the long lean season of fruit availability in limestone habitats as well as the utilization of cliffs of low fruit availability [Current Zoology 57 (1: 18–25, 2011].

  2. The Processing of Somatosensory Information shifts from an early parallel into a serial processing mode: a combined fMRI/MEG study.

    Directory of Open Access Journals (Sweden)

    Carsten Michael Klingner

    2016-12-01

    Full Text Available The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time. Specifically, we suggest that somatosensory stimuli are processed in parallel only during the early stage, whereas the processing is later dominated by serial processing. This hypothesis was revisited in the present study based on fMRI analyses of tactile stimuli and the application of DCM to magnetoencephalographic (MEG data collected during sustained (260 ms tactile stimulation. Bayesian model comparisons were used to infer the processing stream. We demonstrated that the favored processing stream changes over time. We found that the neural activity elicited in the first 100 ms following somatosensory stimuli is best explained by models that support a parallel processing route, whereas a serial processing route is subsequently favored. These results suggest that the secondary somatosensory area (SII receives information regarding a new stimulus in parallel with the primary somatosensory area (SI, whereas later processing in the SII is dominated by the preprocessed input from the SI.

  3. The Processing of Somatosensory Information Shifts from an Early Parallel into a Serial Processing Mode: A Combined fMRI/MEG Study.

    Science.gov (United States)

    Klingner, Carsten M; Brodoehl, Stefan; Huonker, Ralph; Witte, Otto W

    2016-01-01

    The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM) to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time. Specifically, we suggest that somatosensory stimuli are processed in parallel only during the early stage, whereas the processing is later dominated by serial processing. This hypothesis was revisited in the present study based on fMRI analyses of tactile stimuli and the application of DCM to magnetoencephalographic (MEG) data collected during sustained (260 ms) tactile stimulation. Bayesian model comparisons were used to infer the processing stream. We demonstrated that the favored processing stream changes over time. We found that the neural activity elicited in the first 100 ms following somatosensory stimuli is best explained by models that support a parallel processing route, whereas a serial processing route is subsequently favored. These results suggest that the secondary somatosensory area (SII) receives information regarding a new stimulus in parallel with the primary somatosensory area (SI), whereas later processing in the SII is dominated by the preprocessed input from the SI.

  4. Directed shift of vaginal microbiota induced by vaginal application of sucrose gel in rhesus macaques

    Directory of Open Access Journals (Sweden)

    Kai-tao Hu

    2015-04-01

    Conclusions: Rhesus macaques can be used as animal models of bacterial vaginosis to develop drugs and test treatment efficacy. Furthermore, the topical application of sucrose gel induced the shifting of vaginal flora of rhesus macaques from a BV kind of flora to a lactobacilli-dominating flora.

  5. Lateralized delay period activity marks the focus of spatial attention in working memory: evidence from somatosensory event-related brain potentials.

    Science.gov (United States)

    Katus, Tobias; Eimer, Martin

    2015-04-29

    The short-term retention of sensory information in working memory (WM) is known to be associated with a sustained enhancement of neural activity. What remains controversial is whether this neural trace indicates the sustained storage of information or the allocation of attention. To evaluate the storage and attention accounts, we examined sustained tactile contralateral delay activity (tCDA component) of the event-related potential. The tCDA manifests over somatosensory cortex contralateral to task-relevant tactile information during stimulus retention. Two tactile sample sets (S1, S2) were presented sequentially, separated by 1.5 s. Each set comprised two stimuli, one per hand. Human participants memorized the location of one task-relevant stimulus per sample set and judged whether one of these locations was stimulated again at memory test. The two relevant pulses were unpredictably located on the same hand (stay trials) or on different hands (shift trials). Initially, tCDA components emerged contralateral to the relevant S1 pulse. Sequential loading of WM enhanced the tCDA after S2 was presented on stay trials. On shift trials, the tCDA's polarity reversed after S2 presentation, resulting in delay activity that was now contralateral to the task-relevant S2 pulse. The disappearance of a lateralized neural trace for the relevant S1 pulse did not impair memory accuracy for this stimulus on shift trials. These results contradict the storage account and suggest that delay period activity indicates the sustained engagement of an attention-based rehearsal mechanism. In conclusion, somatosensory delay period activity marks the current focus of attention in tactile WM. Copyright © 2015 the authors 0270-6474/15/356689-07$15.00/0.

  6. Antinociception induced by epidural motor cortex stimulation in naive conscious rats is mediated by the opioid system.

    Science.gov (United States)

    Fonoff, Erich Talamoni; Dale, Camila Squarzoni; Pagano, Rosana Lima; Paccola, Carina Cicconi; Ballester, Gerson; Teixeira, Manoel Jacobsen; Giorgi, Renata

    2009-01-03

    Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids.

  7. Multimodal and widespread somatosensory abnormalities in persistent shoulder pain in the first 6 months after stroke: an exploratory study

    NARCIS (Netherlands)

    Roosink, M.; van Dongen, R.T.; Buitenweg, J.R.; Renzenbrink, G.J.; Geurts, A.C.H.; IJzerman, M.J.

    2012-01-01

    Roosink M, Van Dongen RT, Buitenweg JR, Renzenbrink GJ, Geurts AC, IJzerman MJ. Multimodal and widespread somatosensory abnormalities in persistent shoulder pain in the first 6 months after stroke: an exploratory study. OBJECTIVE: To explore the role of multimodal and widespread somatosensory

  8. Directed shift of vaginal microbiota induced by vaginal application of sucrose gel in rhesus macaques.

    Science.gov (United States)

    Hu, Kai-tao; Zheng, Jin-xin; Yu, Zhi-jian; Chen, Zhong; Cheng, Hang; Pan, Wei-guang; Yang, Wei-zhi; Wang, Hong-yan; Deng, Qi-wen; Zeng, Zhong-ming

    2015-04-01

    Sucrose gel was used to treat bacterial vaginosis in a phase III clinical trial. However, the changes of vaginal flora after treatment were only examined by Nugent score in that clinical trial, While the vaginal microbiota of rhesus macaques is characterized by anaerobic, Gram-negative bacteria, few lactobacilli, and pH levels above 4.6, similar to the microbiota of patients with bacterial vaginosis. This study is aimed to investigate the change of the vaginal microbiota of rehsus macaques after topical use of sucrose gel to reveal more precisely the bacterial population shift after the topical application of sucrose gel. Sixteen rhesus macaques were treated with 0.5 g sucrose gel vaginally and three with 0.5 g of placebo gel. Vaginal swabs were collected daily following treatment. Vaginal pH levels and Nugent scores were recorded. The composition of the vaginal micotbiota was tested by V3∼V4 16S rDNA metagenomic sequencing. Dynamic changes in the Lactobacillus genus were analyzed by qPCR. The vaginal microbiota of rhesus macaques are dominated by anaerobic Gram-negative bacteria, with few lactobacilli and high pH levels above 4.6. After five days' treatment with topical sucrose gel, the component percentage of Lactobacillus in vaginal microbiota increased from 1.31% to 81.59%, while the component percentage of Porphyromonas decreased from 18.60% to 0.43%, Sneathia decreased from 15.09% to 0.89%, Mobiluncus decreased from 8.23% to 0.12%, etc.. The average vaginal pH values of 16 rhesus macaques of the sucrose gel group decreased from 5.4 to 3.89. There were no significant changes in microbiota and vaginal pH observed in the placebo group. Rhesus macaques can be used as animal models of bacterial vaginosis to develop drugs and test treatment efficacy. Furthermore, the topical application of sucrose gel induced the shifting of vaginal flora of rhesus macaques from a BV kind of flora to a lactobacilli-dominating flora. Copyright © 2015 The Authors. Published by

  9. Molecular and functional aspects of menstruation in the macaque.

    Science.gov (United States)

    Brenner, Robert M; Slayden, Ov D

    2012-12-01

    Much of our understanding of the molecular control of menstruation arises from laboratory models that experimentally recapitulate some, but not all, aspects of uterine bleeding observed in women. These models include: in vitro culture of endometrial explants or isolated endometrial cells, transplantation of human endometrial tissue into immunodeficient mice and the induction of endometrial breakdown in appropriately pretreated mice. Each of these models has contributed to our understanding of molecular and cellular mechanisms of menstruation, but nonhuman primates, especially macaques, are the animal model of choice for evaluating therapies for menstrual disorders. In this chapter we review some basic aspects of menstruation, with special emphasis on the macaque model and its relevance to the clinical issues of irregular and heavy menstrual bleeding (HMB).

  10. Network and external perturbation induce burst synchronisation in cat cerebral cortex

    Science.gov (United States)

    Lameu, Ewandson L.; Borges, Fernando S.; Borges, Rafael R.; Batista, Antonio M.; Baptista, Murilo S.; Viana, Ricardo L.

    2016-05-01

    The brain of mammals are divided into different cortical areas that are anatomically connected forming larger networks which perform cognitive tasks. The cat cerebral cortex is composed of 65 areas organised into the visual, auditory, somatosensory-motor and frontolimbic cognitive regions. We have built a network of networks, in which networks are connected among themselves according to the connections observed in the cat cortical areas aiming to study how inputs drive the synchronous behaviour in this cat brain-like network. We show that without external perturbations it is possible to observe high level of bursting synchronisation between neurons within almost all areas, except for the auditory area. Bursting synchronisation appears between neurons in the auditory region when an external perturbation is applied in another cognitive area. This is a clear evidence that burst synchronisation and collective behaviour in the brain might be a process mediated by other brain areas under stimulation.

  11. Ranking network of a captive rhesus macaque society: a sophisticated corporative kingdom.

    Science.gov (United States)

    Fushing, Hsieh; McAssey, Michael P; Beisner, Brianne; McCowan, Brenda

    2011-03-15

    We develop a three-step computing approach to explore a hierarchical ranking network for a society of captive rhesus macaques. The computed network is sufficiently informative to address the question: Is the ranking network for a rhesus macaque society more like a kingdom or a corporation? Our computations are based on a three-step approach. These steps are devised to deal with the tremendous challenges stemming from the transitivity of dominance as a necessary constraint on the ranking relations among all individual macaques, and the very high sampling heterogeneity in the behavioral conflict data. The first step simultaneously infers the ranking potentials among all network members, which requires accommodation of heterogeneous measurement error inherent in behavioral data. Our second step estimates the social rank for all individuals by minimizing the network-wide errors in the ranking potentials. The third step provides a way to compute confidence bounds for selected empirical features in the social ranking. We apply this approach to two sets of conflict data pertaining to two captive societies of adult rhesus macaques. The resultant ranking network for each society is found to be a sophisticated mixture of both a kingdom and a corporation. Also, for validation purposes, we reanalyze conflict data from twenty longhorn sheep and demonstrate that our three-step approach is capable of correctly computing a ranking network by eliminating all ranking error.

  12. Pharmacokinetics of 2 Formulations of Transdermal Fentanyl in Cynomolgus Macaques (Macaca fascicularis)

    Science.gov (United States)

    Carlson, Amy M; Kelly, Richard; Fetterer, David P; Rico, Pedro J; Bailey, Emily J

    2016-01-01

    Fentanyl is a μ-opioid agonist that often is used as the analgesic component for balanced anesthesia in both human and veterinary patients. Minimal information has been published regarding appropriate dosing, and the pharmacokinetics of fentanyl are unknown in NHP. The pharmacokinetic properties of 2 transdermal fentanyl delivery methods, a solution (2.6 and 1.95 mg/kg) and a patch (25 µg/h), were determined when applied topically to the dorsal scapular area of cynomolgus macaques (Macaca fascicularis). Serum fentanyl concentrations were analyzed by using liquid chromatography–mass spectrometry. Compared with the patch, the transdermal fentanyl solution generated higher drug concentrations over longer time. Adverse reactions occurred in the macaques that received the transdermal fentanyl solution at 2.6 mg/kg. Both preparations showed significant interanimal variability in the maximal serum drug levels, time to achieve maximal fentanyl levels, elimination half-life, and AUC values. Both the maximal concentration and the time at which this concentration occurred were increased in macaques compared with most other species after application of the transdermal fentanyl patch and compared with dogs after application of the transdermal fentanyl solution. The pharmacokinetic properties of transdermal fentanyl in macaques are markedly different from those in other veterinary species and preclude its use as a long-acting analgesic drug in NHP. PMID:27423151

  13. Ranking network of a captive rhesus macaque society: a sophisticated corporative kingdom.

    Directory of Open Access Journals (Sweden)

    Hsieh Fushing

    2011-03-01

    Full Text Available We develop a three-step computing approach to explore a hierarchical ranking network for a society of captive rhesus macaques. The computed network is sufficiently informative to address the question: Is the ranking network for a rhesus macaque society more like a kingdom or a corporation? Our computations are based on a three-step approach. These steps are devised to deal with the tremendous challenges stemming from the transitivity of dominance as a necessary constraint on the ranking relations among all individual macaques, and the very high sampling heterogeneity in the behavioral conflict data. The first step simultaneously infers the ranking potentials among all network members, which requires accommodation of heterogeneous measurement error inherent in behavioral data. Our second step estimates the social rank for all individuals by minimizing the network-wide errors in the ranking potentials. The third step provides a way to compute confidence bounds for selected empirical features in the social ranking. We apply this approach to two sets of conflict data pertaining to two captive societies of adult rhesus macaques. The resultant ranking network for each society is found to be a sophisticated mixture of both a kingdom and a corporation. Also, for validation purposes, we reanalyze conflict data from twenty longhorn sheep and demonstrate that our three-step approach is capable of correctly computing a ranking network by eliminating all ranking error.

  14. Hierarchical differences in population coding within auditory cortex.

    Science.gov (United States)

    Downer, Joshua D; Niwa, Mamiko; Sutter, Mitchell L

    2017-08-01

    Most models of auditory cortical (AC) population coding have focused on primary auditory cortex (A1). Thus our understanding of how neural coding for sounds progresses along the cortical hierarchy remains obscure. To illuminate this, we recorded from two AC fields: A1 and middle lateral belt (ML) of rhesus macaques. We presented amplitude-modulated (AM) noise during both passive listening and while the animals performed an AM detection task ("active" condition). In both fields, neurons exhibit monotonic AM-depth tuning, with A1 neurons mostly exhibiting increasing rate-depth functions and ML neurons approximately evenly distributed between increasing and decreasing functions. We measured noise correlation ( r noise ) between simultaneously recorded neurons and found that whereas engagement decreased average r noise in A1, engagement increased average r noise in ML. This finding surprised us, because attentive states are commonly reported to decrease average r noise We analyzed the effect of r noise on AM coding in both A1 and ML and found that whereas engagement-related shifts in r noise in A1 enhance AM coding, r noise shifts in ML have little effect. These results imply that the effect of r noise differs between sensory areas, based on the distribution of tuning properties among the neurons within each population. A possible explanation of this is that higher areas need to encode nonsensory variables (e.g., attention, choice, and motor preparation), which impart common noise, thus increasing r noise Therefore, the hierarchical emergence of r noise -robust population coding (e.g., as we observed in ML) enhances the ability of sensory cortex to integrate cognitive and sensory information without a loss of sensory fidelity. NEW & NOTEWORTHY Prevailing models of population coding of sensory information are based on a limited subset of neural structures. An important and under-explored question in neuroscience is how distinct areas of sensory cortex differ in their

  15. Survey of prevalence of overweight body condition in laboratory-housed cynomolgus macaques (Macaca fascicularis).

    Science.gov (United States)

    Bauer, Sharon A; Leslie, Ken E; Pearl, David L; Fournier, Jocelyn; Turner, Patricia V

    2010-07-01

    Excessive weight gain has been reported to occur in captive cynomolgus macaques with little to no change in diet. Overweight body condition can result in development of hyperglycemia and type 2 diabetes and should be avoided. The purpose of this survey was to assess the prevalence of overweight cynomolgus macaques in North American research facilities, including breeding colonies and short-term and long-term facilities, and to describe current methods used to assess body condition. The survey consisted of 51 questions covering animal population demographics, body weight and body condition scoring, feeding, and behavior. Voluntary participants included veterinarians and animal care managers. Respondents from 13 facilities completed the survey, and information was collected on 17,500 cynomolgus macaques. The majority of surveyed facilities housed juvenile and young adult macaques. The reported prevalence of overweight (greater than 10% of ideal body weight) animals ranged between 0% and 20% and reportedly was more frequent in animals younger than 10 y. Most facilities had weight reduction strategies in place. Despite these programs, a significant proportion of animals were reported as being overweight. The results of this survey demonstrate that most North American facilities housing cynomolgus macaques recognize the importance of tracking body condition regularly. However, implementing effective weight reduction programs may be difficult in captive housing environments. Because of the potential for adverse health effects, facilities should have a means of regularly tracking body weight as well as an action plan for managing overweight animals.

  16. Processing of harmonics in the lateral belt of macaque auditory cortex.

    Science.gov (United States)

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer; Rauschecker, Josef P

    2014-01-01

    Many speech sounds and animal vocalizations contain components, referred to as complex tones, that consist of a fundamental frequency (F0) and higher harmonics. In this study we examined single-unit activity recorded in the core (A1) and lateral belt (LB) areas of auditory cortex in two rhesus monkeys as they listened to pure tones and pitch-shifted conspecific vocalizations ("coos"). The latter consisted of complex-tone segments in which F0 was matched to a corresponding pure-tone stimulus. In both animals, neuronal latencies to pure-tone stimuli at the best frequency (BF) were ~10 to 15 ms longer in LB than in A1. This might be expected, since LB is considered to be at a hierarchically higher level than A1. On the other hand, the latency of LB responses to coos was ~10 to 20 ms shorter than to the corresponding pure-tone BF, suggesting facilitation in LB by the harmonics. This latency reduction by coos was not observed in A1, resulting in similar coo latencies in A1 and LB. Multi-peaked neurons were present in both A1 and LB; however, harmonically-related peaks were observed in LB for both early and late response components, whereas in A1 they were observed only for late components. Our results suggest that harmonic features, such as relationships between specific frequency intervals of communication calls, are processed at relatively early stages of the auditory cortical pathway, but preferentially in LB.

  17. Plasticity of orientation preference maps in the visual cortex of adult cats

    Science.gov (United States)

    Godde, Ben; Leonhardt, Ralph; Cords, Sven M.; Dinse, Hubert R.

    2002-01-01

    In contrast to the high degree of experience-dependent plasticity usually exhibited by cortical representational maps, a number of experiments performed in visual cortex suggest that the basic layout of orientation preference maps is only barely susceptible to activity-dependent modifications. In fact, most of what we know about activity-dependent plasticity in adults comes from experiments in somatosensory, auditory, or motor cortex. Applying a stimulation protocol that has been proven highly effective in other cortical areas, we demonstrate here that enforced synchronous cortical activity induces major changes of orientation preference maps (OPMs) in adult cats. Combining optical imaging of intrinsic signals and electrophysiological single-cell recordings, we show that a few hours of intracortical microstimulation (ICMS) lead to an enlargement of the cortical representational zone at the ICMS site and an extensive restructuring of the entire OPM layout up to several millimeters away, paralleled by dramatic changes of pinwheel numbers and locations. At the single-cell level, we found that the preferred orientation was shifted toward the orientation of the ICMS site over a region of up to 4 mm. Our results show that manipulating the synchronicity of cortical activity locally without invoking training, attention, or reinforcement, OPMs undergo large-scale reorganization reminiscent of plastic changes observed for nonvisual cortical maps. However, changes were much more widespread and enduring. Such large-scale restructuring of the visual cortical networks indicates a substantial capability for activity-dependent plasticity of adult visual cortex and may provide the basis for cognitive learning processes. PMID:11959906

  18. Use-Wear Patterns on Wild Macaque Stone Tools Reveal Their Behavioural History

    OpenAIRE

    Haslam, Michael; Gumert, Michael D.; Biro, Dora; Carvalho, Susana; Malaivijitnond, Suchinda

    2013-01-01

    Burmese long-tailed macaques (Macaca fascicularis aurea) are one of a limited number of wild animal species to use stone tools, with their tool use focused on pounding shelled marine invertebrates foraged from intertidal habitats. These monkeys exhibit two main styles of tool use: axe hammering of oysters, and pound hammering of unattached encased foods. In this study, we examined macroscopic use-wear patterns on a sample of 60 wild macaque stone tools from Piak Nam Yai Island, Thailand, that...

  19. Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2.

    Science.gov (United States)

    Zarella, Mark D; Ts'o, Daniel Y

    2017-01-01

    Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure-ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure-ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure-ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization.

  20. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies.

    Science.gov (United States)

    Molenberghs, Pascal; Cunnington, Ross; Mattingley, Jason B

    2012-01-01

    Mirror neurons in macaque area F5 fire when an animal performs an action, such as a mouth or limb movement, and also when the animal passively observes an identical or similar action performed by another individual. Brain-imaging studies in humans conducted over the last 20 years have repeatedly attempted to reveal analogous brain regions with mirror properties in humans, with broad and often speculative claims about their functional significance across a range of cognitive domains, from language to social cognition. Despite such concerted efforts, the likely neural substrates of these mirror regions have remained controversial, and indeed the very existence of a distinct subcategory of human neurons with mirroring properties has been questioned. Here we used activation likelihood estimation (ALE), to provide a quantitative index of the consistency of patterns of fMRI activity measured in human studies of action observation and action execution. From an initial sample of more than 300 published works, data from 125 papers met our strict inclusion and exclusion criteria. The analysis revealed 14 separate clusters in which activation has been consistently attributed to brain regions with mirror properties, encompassing 9 different Brodmann areas. These clusters were located in areas purported to show mirroring properties in the macaque, such as the inferior parietal lobule, inferior frontal gyrus and the adjacent ventral premotor cortex, but surprisingly also in regions such as the primary visual cortex, cerebellum and parts of the limbic system. Our findings suggest a core network of human brain regions that possess mirror properties associated with action observation and execution, with additional areas recruited during tasks that engage non-motor functions, such as auditory, somatosensory and affective components. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  1. Complex Regional Pain Syndrome Type I Affects Brain Structure in Prefrontal and Motor Cortex

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the “non-flipped” data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the “flipped” data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control. PMID:24416397

  2. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    Full Text Available The complex regional pain syndrome (CRPS is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1 and motor cortex (M1 contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  3. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise.

    Science.gov (United States)

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Holschneider, Daniel P

    2015-05-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson's disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [(14)C]-iodoantipyrine 1week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Vestibular-Somatosensory Convergence in Head Movement Control During Locomotion after Long-Duration Space Flight

    Science.gov (United States)

    Mulavara, Ajitkumar; Ruttley, Tara; Cohen, Helen; Peters, Brian; Miller, Chris; Brady, Rachel; Merkle, Lauren; Bloomberg, Jacob

    2010-01-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibular-mediated reflexive head movement during locomotion after space flight. Space flight causes astronauts to be exposed to somatosensory adaptation in both the vestibular and body load-sensing (BLS) systems. The goal of these studies was to examine the contributions of vestibular and BLS-mediated somatosensory influences on head movement control during locomotion after long-duration space flight. Subjects were asked to walk on a treadmill driven at 1.8 m/s while performing a visual acuity task. Data were collected using the same testing protocol from three independent subject groups; 1) normal subjects before and after exposure to 30 minutes of 40% bodyweight unloaded treadmill walking, 2) bilateral labyrinthine deficient (LD) patients and 3) astronauts who performed the protocol before and after long duration space flight. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the LD patients the HP movements were significantly decreased. Astronaut subjects results showed a heterogeneous response of both increases and decreases in the amplitude of HP movement. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation mediated by the converging vestibular and body load-sensing somatosensory systems.

  5. Chronic stress and peripheral pain: Evidence for distinct, region-specific changes in visceral and somatosensory pain regulatory pathways.

    Science.gov (United States)

    Zheng, Gen; Hong, Shuangsong; Hayes, John M; Wiley, John W

    2015-11-01

    Chronic stress alters the hypothalamic-pituitary-adrenal (HPA) axis and enhances visceral and somatosensory pain perception. It is unresolved whether chronic stress has distinct effects on visceral and somatosensory pain regulatory pathways. Previous studies reported that stress-induced visceral hyperalgesia is associated with reciprocal alterations of endovanilloid and endocannabinoid pain pathways in DRG neurons innervating the pelvic viscera. In this study, we compared somatosensory and visceral hyperalgesia with respect to differential responses of peripheral pain regulatory pathways in a rat model of chronic, intermittent stress. We found that chronic stress induced reciprocal changes in the endocannabinoid 2-AG (increased) and endocannabinoid degradation enzymes COX-2 and FAAH (decreased), associated with down-regulation of CB1 and up-regulation of TRPV1 receptors in L6-S2 DRG but not L4-L5 DRG neurons. In contrast, sodium channels Nav1.7 and Nav1.8 were up-regulated in L4-L5 but not L6-S2 DRGs in stressed rats, which was reproduced in control DRGs treated with corticosterone in vitro. The reciprocal changes of CB1, TRPV1 and sodium channels were cell-specific and observed in the sub-population of nociceptive neurons. Behavioral assessment showed that visceral hyperalgesia persisted, whereas somatosensory hyperalgesia and enhanced expression of Nav1.7 and Nav1.8 sodium channels in L4-L5 DRGs normalized 3 days after completion of the stress phase. These data indicate that chronic stress induces visceral and somatosensory hyperalgesia that involves differential changes in endovanilloid and endocannabinoid pathways, and sodium channels in DRGs innervating the pelvic viscera and lower extremities. These results suggest that chronic stress-induced visceral and lower extremity somatosensory hyperalgesia can be treated selectively at different levels of the spinal cord. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Distributed acoustic cues for caller identity in macaque vocalization.

    Science.gov (United States)

    Fukushima, Makoto; Doyle, Alex M; Mullarkey, Matthew P; Mishkin, Mortimer; Averbeck, Bruno B

    2015-12-01

    Individual primates can be identified by the sound of their voice. Macaques have demonstrated an ability to discern conspecific identity from a harmonically structured 'coo' call. Voice recognition presumably requires the integrated perception of multiple acoustic features. However, it is unclear how this is achieved, given considerable variability across utterances. Specifically, the extent to which information about caller identity is distributed across multiple features remains elusive. We examined these issues by recording and analysing a large sample of calls from eight macaques. Single acoustic features, including fundamental frequency, duration and Weiner entropy, were informative but unreliable for the statistical classification of caller identity. A combination of multiple features, however, allowed for highly accurate caller identification. A regularized classifier that learned to identify callers from the modulation power spectrum of calls found that specific regions of spectral-temporal modulation were informative for caller identification. These ranges are related to acoustic features such as the call's fundamental frequency and FM sweep direction. We further found that the low-frequency spectrotemporal modulation component contained an indexical cue of the caller body size. Thus, cues for caller identity are distributed across identifiable spectrotemporal components corresponding to laryngeal and supralaryngeal components of vocalizations, and the integration of those cues can enable highly reliable caller identification. Our results demonstrate a clear acoustic basis by which individual macaque vocalizations can be recognized.

  7. Uptake of [3H]testosterone and its metabolites by the brain and pituitary gland of the fetal macaque

    International Nuclear Information System (INIS)

    Michael, R.P.; Bonsall, R.W.; Rees, H.D.

    1989-01-01

    Testosterone is secreted by the fetal testis during gestation, and this is thought to influence certain aspects of the brain's subsequent development. To study this action at the neuronal level, nine macaque fetuses were injected with 250 microCi [3H]testosterone via the umbilical vein at about 120 days gestation. After 60 min, samples of brain and peripheral tissue were studied by autoradiography or HPLC. Purified nuclear pellets were prepared, and radioactivity in ether extracts was fractionated by HPLC and identified by coelution with internal standard steroids. Concentrations of radioactivity were significantly higher (P less than 0.05) in the hypothalamus-preoptic area than in amygdala, hippocampus, midbrain, and cerebral and cerebellar cortexes, and most of the radioactivity (75%) in the hypothalamus-preoptic area coeluted with 17 beta-estradiol. Radioactivity coeluting with 17 beta-estradiol was also detected in nuclear fractions from amygdala (44%). In contrast, 80% of the radioactivity extracted from pituitary gland nuclei coeluted with testosterone. Most of the neurons labeled in autoradiograms were located in the hypothalamus and preoptic area, fewer were found in the amygdala, and labeling in the frontal or motor cortex did not exceed chance levels. Results suggested that aromatization and, consequently, estrogen receptors play a role in the effects of testosterone on the hypothalamus and amygdala of the primate fetus at this stage of development

  8. The life of the cortical column: opening the domain of functional architecture of the cortex (1955-1981).

    Science.gov (United States)

    Haueis, Philipp

    2016-09-01

    The concept of the cortical column refers to vertical cell bands with similar response properties, which were initially observed by Vernon Mountcastle's mapping of single cell recordings in the cat somatic cortex. It has subsequently guided over 50 years of neuroscientific research, in which fundamental questions about the modularity of the cortex and basic principles of sensory information processing were empirically investigated. Nevertheless, the status of the column remains controversial today, as skeptical commentators proclaim that the vertical cell bands are a functionally insignificant by-product of ontogenetic development. This paper inquires how the column came to be viewed as an elementary unit of the cortex from Mountcastle's discovery in 1955 until David Hubel and Torsten Wiesel's reception of the Nobel Prize in 1981. I first argue that Mountcastle's vertical electrode recordings served as criteria for applying the column concept to electrophysiological data. In contrast to previous authors, I claim that this move from electrophysiological data to the phenomenon of columnar responses was concept-laden, but not theory-laden. In the second part of the paper, I argue that Mountcastle's criteria provided Hubel Wiesel with a conceptual outlook, i.e. it allowed them to anticipate columnar patterns in the cat and macaque visual cortex. I argue that in the late 1970s, this outlook only briefly took a form that one could call a 'theory' of the cerebral cortex, before new experimental techniques started to diversify column research. I end by showing how this account of early column research fits into a larger project that follows the conceptual development of the column into the present.

  9. Assessment of sensorimotor cortical representation asymmetries and motor skills in violin players.

    Science.gov (United States)

    Schwenkreis, Peter; El Tom, Susan; Ragert, Patrick; Pleger, Burkhard; Tegenthoff, Martin; Dinse, Hubert R

    2007-12-01

    As a model for use-dependent plasticity, the brains of professional musicians have been extensively studied to examine structural and functional adaptation to unique requirements of skilled performance. Here we provide a combination of data on motor performance and hand representation in the primary motor and somatosensory cortex of professional violin players, with the aim of assessing possible behavioural consequences of sensorimotor cortical asymmetries. We studied 15 healthy right-handed professional violin players and 35 healthy nonmusician controls. Motor and somatosensory cortex asymmetry was assessed by recording the motor output map after transcranial magnetic stimulation from a small hand muscle, and by dipole source localization of somatosensory evoked potentials after electrical stimulation of the median and ulnar nerves. Motor performance was examined using a series of standardized motor tasks covering different aspects of hand function. Violin players showed a significant right-larger-than-left asymmetry of the motor and somatosensory cortex, whereas nonmusician controls showed no significant interhemispheric difference. The amount of asymmetry in the motor and somatosensory cortices of musicians was significantly correlated. At the behavioural level, motor performance did not significantly differ between musicians and nonmusicians. The results support a use-dependent enlargement of the left hand representation in the sensorimotor cortex of violin players. However, these cortical asymmetries were not paralleled by accompanying altered asymmetries at a behavioural level, suggesting that the reorganisation might be task-specific and does not lead to improved motor abilities in general.

  10. Plasmid-Mediated Quinolone Resistance in Shigella flexneri Isolated From Macaques

    Directory of Open Access Journals (Sweden)

    Anthony J. Mannion

    2018-03-01

    Full Text Available Non-human primates (NHPs for biomedical research are commonly infected with Shigella spp. that can cause acute dysentery or chronic episodic diarrhea. These animals are often prophylactically and clinically treated with quinolone antibiotics to eradicate these possible infections. However, chromosomally- and plasmid-mediated antibiotic resistance has become an emerging concern for species in the family Enterobacteriaceae. In this study, five individual isolates of multi-drug resistant Shigella flexneri were isolated from the feces of three macaques. Antibiotic susceptibility testing confirmed resistance or decreased susceptibility to ampicillin, amoxicillin-clavulanic acid, cephalosporins, gentamicin, tetracycline, ciprofloxacin, enrofloxacin, levofloxacin, and nalidixic acid. S. flexneri isolates were susceptible to trimethoprim-sulfamethoxazole, and this drug was used to eradicate infection in two of the macaques. Plasmid DNA from all isolates was positive for the plasmid-encoded quinolone resistance gene qnrS, but not qnrA and qnrB. Conjugation and transformation of plasmid DNA from several S. flexneri isolates into antibiotic-susceptible Escherichia coli strains conferred the recipients with resistance or decreased susceptibility to quinolones and beta-lactams. Genome sequencing of two representative S. flexneri isolates identified the qnrS gene on a plasmid-like contig. These contigs showed >99% homology to plasmid sequences previously characterized from quinolone-resistant Shigella flexneri 2a and Salmonella enterica strains. Other antibiotic resistance genes and virulence factor genes were also identified in chromosome and plasmid sequences in these genomes. The findings from this study indicate macaques harbor pathogenic S. flexneri strains with chromosomally- and plasmid-encoded antibiotic resistance genes. To our knowledge, this is the first report of plasmid-mediated quinolone resistance in S. flexneri isolated from NHPs and warrants

  11. Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques

    DEFF Research Database (Denmark)

    Yan, Guangmei; Zhang, Guojie; Fang, Xiaodong

    2011-01-01

    The nonhuman primates most commonly used in medical research are from the genus Macaca. To better understand the genetic differences between these animal models, we present high-quality draft genome sequences from two macaque species, the cynomolgus/crab-eating macaque and the Chinese rhesus...

  12. Visuotactile motion congruence enhances gamma-band activity in visual and somatosensory cortices.

    Science.gov (United States)

    Krebber, Martin; Harwood, James; Spitzer, Bernhard; Keil, Julian; Senkowski, Daniel

    2015-08-15

    When touching and viewing a moving surface our visual and somatosensory systems receive congruent spatiotemporal input. Behavioral studies have shown that motion congruence facilitates interplay between visual and tactile stimuli, but the neural mechanisms underlying this interplay are not well understood. Neural oscillations play a role in motion processing and multisensory integration. They may also be crucial for visuotactile motion processing. In this electroencephalography study, we applied linear beamforming to examine the impact of visuotactile motion congruence on beta and gamma band activity (GBA) in visual and somatosensory cortices. Visual and tactile inputs comprised of gratings that moved either in the same or different directions. Participants performed a target detection task that was unrelated to motion congruence. While there were no effects in the beta band (13-21Hz), the power of GBA (50-80Hz) in visual and somatosensory cortices was larger for congruent compared with incongruent motion stimuli. This suggests enhanced bottom-up multisensory processing when visual and tactile gratings moved in the same direction. Supporting its behavioral relevance, GBA was correlated with shorter reaction times in the target detection task. We conclude that motion congruence plays an important role for the integrative processing of visuotactile stimuli in sensory cortices, as reflected by oscillatory responses in the gamma band. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Evolutionary and biomedical insights from the rhesus macaque genome.

    Science.gov (United States)

    Gibbs, Richard A; Rogers, Jeffrey; Katze, Michael G; Bumgarner, Roger; Weinstock, George M; Mardis, Elaine R; Remington, Karin A; Strausberg, Robert L; Venter, J Craig; Wilson, Richard K; Batzer, Mark A; Bustamante, Carlos D; Eichler, Evan E; Hahn, Matthew W; Hardison, Ross C; Makova, Kateryna D; Miller, Webb; Milosavljevic, Aleksandar; Palermo, Robert E; Siepel, Adam; Sikela, James M; Attaway, Tony; Bell, Stephanie; Bernard, Kelly E; Buhay, Christian J; Chandrabose, Mimi N; Dao, Marvin; Davis, Clay; Delehaunty, Kimberly D; Ding, Yan; Dinh, Huyen H; Dugan-Rocha, Shannon; Fulton, Lucinda A; Gabisi, Ramatu Ayiesha; Garner, Toni T; Godfrey, Jennifer; Hawes, Alicia C; Hernandez, Judith; Hines, Sandra; Holder, Michael; Hume, Jennifer; Jhangiani, Shalini N; Joshi, Vandita; Khan, Ziad Mohid; Kirkness, Ewen F; Cree, Andrew; Fowler, R Gerald; Lee, Sandra; Lewis, Lora R; Li, Zhangwan; Liu, Yih-Shin; Moore, Stephanie M; Muzny, Donna; Nazareth, Lynne V; Ngo, Dinh Ngoc; Okwuonu, Geoffrey O; Pai, Grace; Parker, David; Paul, Heidie A; Pfannkoch, Cynthia; Pohl, Craig S; Rogers, Yu-Hui; Ruiz, San Juana; Sabo, Aniko; Santibanez, Jireh; Schneider, Brian W; Smith, Scott M; Sodergren, Erica; Svatek, Amanda F; Utterback, Teresa R; Vattathil, Selina; Warren, Wesley; White, Courtney Sherell; Chinwalla, Asif T; Feng, Yucheng; Halpern, Aaron L; Hillier, Ladeana W; Huang, Xiaoqiu; Minx, Pat; Nelson, Joanne O; Pepin, Kymberlie H; Qin, Xiang; Sutton, Granger G; Venter, Eli; Walenz, Brian P; Wallis, John W; Worley, Kim C; Yang, Shiaw-Pyng; Jones, Steven M; Marra, Marco A; Rocchi, Mariano; Schein, Jacqueline E; Baertsch, Robert; Clarke, Laura; Csürös, Miklós; Glasscock, Jarret; Harris, R Alan; Havlak, Paul; Jackson, Andrew R; Jiang, Huaiyang; Liu, Yue; Messina, David N; Shen, Yufeng; Song, Henry Xing-Zhi; Wylie, Todd; Zhang, Lan; Birney, Ewan; Han, Kyudong; Konkel, Miriam K; Lee, Jungnam; Smit, Arian F A; Ullmer, Brygg; Wang, Hui; Xing, Jinchuan; Burhans, Richard; Cheng, Ze; Karro, John E; Ma, Jian; Raney, Brian; She, Xinwei; Cox, Michael J; Demuth, Jeffery P; Dumas, Laura J; Han, Sang-Gook; Hopkins, Janet; Karimpour-Fard, Anis; Kim, Young H; Pollack, Jonathan R; Vinar, Tomas; Addo-Quaye, Charles; Degenhardt, Jeremiah; Denby, Alexandra; Hubisz, Melissa J; Indap, Amit; Kosiol, Carolin; Lahn, Bruce T; Lawson, Heather A; Marklein, Alison; Nielsen, Rasmus; Vallender, Eric J; Clark, Andrew G; Ferguson, Betsy; Hernandez, Ryan D; Hirani, Kashif; Kehrer-Sawatzki, Hildegard; Kolb, Jessica; Patil, Shobha; Pu, Ling-Ling; Ren, Yanru; Smith, David Glenn; Wheeler, David A; Schenck, Ian; Ball, Edward V; Chen, Rui; Cooper, David N; Giardine, Belinda; Hsu, Fan; Kent, W James; Lesk, Arthur; Nelson, David L; O'brien, William E; Prüfer, Kay; Stenson, Peter D; Wallace, James C; Ke, Hui; Liu, Xiao-Ming; Wang, Peng; Xiang, Andy Peng; Yang, Fan; Barber, Galt P; Haussler, David; Karolchik, Donna; Kern, Andy D; Kuhn, Robert M; Smith, Kayla E; Zwieg, Ann S

    2007-04-13

    The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.

  14. High resolution karyotype of Thai crab-eating macaque (Macaca fascicularis

    Directory of Open Access Journals (Sweden)

    Fan Xiaobo

    2014-01-01

    Full Text Available Comparative chromosome banding analysis and/or fluorescence in situ hybridization (FISH studies are established approaches to compare human and ape chromosomes. FISH banding is a relatively new and not routinely applied method very well suited to provide to a better understanding of the evolutionary history of primate and human phylogeny. Here multicolor banding (MCB-applying probes derived from Homo sapiens were used to analyze the chromosomes of Thai crab-eating macaque (Macaca fascicularis. The results agree with those of previous studies in other macaques, e.g. Macaca sylvanus or Macaca nemestrina. This result highlights that morphological differences within the Cercopithecoidea must be found rather in subchromosomal changes or even in epigenetics than in gross structural alterations.

  15. Somatosensory sensitivity in patients with persistent idiopathic orofacial pain is associated with pain relief from hypnosis and relaxation.

    Science.gov (United States)

    Baad-Hansen, Lene; Abrahamsen, Randi; Zachariae, Robert; List, Thomas; Svensson, Peter

    2013-06-01

    In a recent study hypnosis has been found to relieve persistent idiopathic orofacial pain. Quantitative sensory testing (QST) is widely used to evaluate somatosensory sensitivity, which has been suggested as a possible predictor of management outcome. The objectives of this study were to examine: (1) possible associations between clinical pain relief and baseline somatosensory sensitivity and (2) the effect of hypnosis management on QST parameters. Forty-one patients with persistent idiopathic orofacial pain completed this randomized controlled study in 1 of 2 groups: hypnosis (hypnotic analgesia suggestions) or control (relaxation). QST at 2 intraoral (pain region and contralateral mirror image region) and 3 extraoral (hand and both cheeks) sites was performed at baseline and after the hypnosis/control management, together with pressure pain thresholds and pressure pain tolerance thresholds determined bilaterally at the masseter and temporalis muscles, the temporomandibular joints, and the third finger. Degree of pain relief was negatively correlated with a summary statistic of baseline somatosensory sensitivity (summed z-score), that is, high baseline somatosensory sensitivity was associated with low pain relief (r=-0.372, P=0.020). Hypnosis had no major effect on any QST measure compared with relaxation (P>0.063). High pain sensitivity at baseline may predict poor pain management outcome. In addition, despite clear clinical pain relief, hypnosis did not significantly or specifically influence somatosensory sensitivity. Future studies should further explore QST measures as possible predictors of different management response in orofacial pain conditions.

  16. Adaptive evolution of simian immunodeficiency viruses isolated from two conventional progressor macaques with neuroaids

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Brian T [Los Alamos National Laboratory; Korber, Bette T [Los Alamos National Laboratory

    2008-01-01

    Simian immunodeficiency virus infection of macaques may result in neuroAIDS, a feature more commonly observed in macaques with rapid progressive disease than in those with conventional disease. This is the first report of two conventional progressors (H631 and H636) with encephalitis in rhesus macaques inoculated with a derivative of SIVsmES43-3. Phylogenetic analyses of viruses isolated from the cerebral spinal fluid (CSF) and plasma from both animals demonstrated tissue compartmentalization. Additionally, virus from the central nervous system (CNS) was able to infect primary macaque monocyte-derived macrophages more efficiently than virus from plasma. Conversely, virus isolated from plasma was able to replicate better in peripheral blood mononuclear cells than virus from CNS. We speculate that these viruses were under different selective pressures in their separate compartments. Furthermore, these viruses appear to have undergone adaptive evolution to preferentially replicate in their respective cell targets. Analysis of the number of potential N-linked glycosylation sites (PNGS) in gp160 showed that there was a statistically significant loss of PNGS in viruses isolated from CNS in both macaques compared to SIVsmE543-3. Moreover, virus isolated from the brain in H631, had statistically significant loss of PNGS compared to virus isolated from CSF and plasma of the same animal. It is possible that the brain isolate may have adapted to decrease the number of PNGS given that humoral immune selection pressure is less likely to be encountered in the brain. These viruses provide a relevant model to study the adaptations required for SIV to induce encephalitis.

  17. A MIV-150/zinc acetate gel inhibits SHIV-RT infection in macaque vaginal explants.

    Science.gov (United States)

    Barnable, Patrick; Calenda, Giulia; Ouattara, Louise; Gettie, Agegnehu; Blanchard, James; Jean-Pierre, Ninochka; Kizima, Larisa; Rodríguez, Aixa; Abraham, Ciby; Menon, Radhika; Seidor, Samantha; Cooney, Michael L; Roberts, Kevin D; Sperling, Rhoda; Piatak, Michael; Lifson, Jeffrey D; Fernandez-Romero, Jose A; Zydowsky, Thomas M; Robbiani, Melissa; Teleshova, Natalia

    2014-01-01

    To extend our observations that single or repeated application of a gel containing the NNRTI MIV-150 (M) and zinc acetate dihydrate (ZA) in carrageenan (CG) (MZC) inhibits vaginal transmission of simian/human immunodeficiency virus (SHIV)-RT in macaques, we evaluated safety and anti-SHIV-RT activity of MZC and related gel formulations ex vivo in macaque mucosal explants. In addition, safety was further evaluated in human ectocervical explants. The gels did not induce mucosal toxicity. A single ex vivo exposure to diluted MZC (1∶30, 1∶100) and MC (1∶30, the only dilution tested), but not to ZC gel, up to 4 days prior to viral challenge, significantly inhibited SHIV-RT infection in macaque vaginal mucosa. MZC's activity was not affected by seminal plasma. The antiviral activity of unformulated MIV-150 was not enhanced in the presence of ZA, suggesting that the antiviral activity of MZC was mediated predominantly by MIV-150. In vivo administration of MZC and CG significantly inhibited ex vivo SHIV-RT infection (51-62% inhibition relative to baselines) of vaginal (but not cervical) mucosa collected 24 h post last gel exposure, indicating barrier effect of CG. Although the inhibitory effect of MZC (65-74%) did not significantly differ from CG (32-45%), it was within the range of protection (∼75%) against vaginal SHIV-RT challenge 24 h after gel dosing. Overall, the data suggest that evaluation of candidate microbicides in macaque explants can inform macaque efficacy and clinical studies design. The data support advancing MZC gel for clinical evaluation.

  18. A MIV-150/zinc acetate gel inhibits SHIV-RT infection in macaque vaginal explants.

    Directory of Open Access Journals (Sweden)

    Patrick Barnable

    Full Text Available To extend our observations that single or repeated application of a gel containing the NNRTI MIV-150 (M and zinc acetate dihydrate (ZA in carrageenan (CG (MZC inhibits vaginal transmission of simian/human immunodeficiency virus (SHIV-RT in macaques, we evaluated safety and anti-SHIV-RT activity of MZC and related gel formulations ex vivo in macaque mucosal explants. In addition, safety was further evaluated in human ectocervical explants. The gels did not induce mucosal toxicity. A single ex vivo exposure to diluted MZC (1∶30, 1∶100 and MC (1∶30, the only dilution tested, but not to ZC gel, up to 4 days prior to viral challenge, significantly inhibited SHIV-RT infection in macaque vaginal mucosa. MZC's activity was not affected by seminal plasma. The antiviral activity of unformulated MIV-150 was not enhanced in the presence of ZA, suggesting that the antiviral activity of MZC was mediated predominantly by MIV-150. In vivo administration of MZC and CG significantly inhibited ex vivo SHIV-RT infection (51-62% inhibition relative to baselines of vaginal (but not cervical mucosa collected 24 h post last gel exposure, indicating barrier effect of CG. Although the inhibitory effect of MZC (65-74% did not significantly differ from CG (32-45%, it was within the range of protection (∼75% against vaginal SHIV-RT challenge 24 h after gel dosing. Overall, the data suggest that evaluation of candidate microbicides in macaque explants can inform macaque efficacy and clinical studies design. The data support advancing MZC gel for clinical evaluation.

  19. Expression, purification, crystallization and preliminary X-ray diffraction analysis of rhesus macaque CD8αα homodimer

    International Nuclear Information System (INIS)

    Zong, Lili; Chen, Yong; Yan, Jinghua; Zhang, Jianhua

    2010-01-01

    CD8α exodomain protein, a crucial immune-system factor in rhesus macaque (M. mulatta), one of the best animal models for vaccine design, was assembled and crystallized. The full structure data will contribute to future studies of immune responses in rhesus macaques. As a T-cell co-receptor, CD8 binds to MHC class I molecules and plays a pivotal role in the activation of cytotoxic T lymphocytes. To date, structures of CD8 have been solved for two different mammals: human and mouse. The infection of rhesus macaques (Macaca mulatta) by simian immunodeficiency virus (SIV) is the best animal model for studying HIV. In this study, the rhesus macaque CD8 (rCD8) αα homodimer was obtained and rCD8α exodomain protein crystals were successfully obtained for further structural analysis. Diffraction data were collected to a resolution of 2.4 Å. The crystal belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 46.52, b = 56.28, c = 82.40 Å. These data will facilitate further studies on the structural differences between these CD8 structures and the cellular immune responses of rhesus macaque

  20. High frequency repetitive sensory stimulation improves temporal discrimination in healthy subjects.

    Science.gov (United States)

    Erro, Roberto; Rocchi, Lorenzo; Antelmi, Elena; Palladino, Raffaele; Tinazzi, Michele; Rothwell, John; Bhatia, Kailash P

    2016-01-01

    High frequency electrical stimulation of an area of skin on a finger improves two-point spatial discrimination in the stimulated area, likely depending on plastic changes in the somatosensory cortex. However, it is unknown whether improvement also applies to temporal discrimination. Twelve young and ten elderly volunteers underwent the stimulation protocol onto the palmar skin of the right index finger. Somatosensory temporal discrimination threshold (STDT) was evaluated before and immediately after stimulation as well as 2.5h and 24h later. There was a significant reduction in somatosensory temporal threshold only on the stimulated finger. The effect was reversible, with STDT returning to the baseline values within 24h, and was smaller in the elderly than in the young participants. High frequency stimulation of the skin focally improves temporal discrimination in the area of stimulation. Given previous suggestions that the perceptual effects rely on plastic changes in the somatosensory cortex, our results are consistent with the idea that the timing of sensory stimuli is, at least partially, encoded in the primary somatosensory cortex. Such a protocol could potentially be used as a therapeutic intervention to ameliorate physiological decline in the elderly or in other disorders of sensorimotor integration. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Long-term immunogenicity studies of formalin-inactivated enterovirus 71 whole-virion vaccine in macaques.

    Directory of Open Access Journals (Sweden)

    Chia-Chyi Liu

    Full Text Available Enterovirus 71 (EV71 has caused epidemics of hand, foot and mouth diseases in Asia during the past decades and no vaccine is available. A formalin-inactivated EV71 candidate vaccine (EV71vac based on B4 subgenotype has previously been developed and found to elicit strong neutralizing antibody responses in mice and humans. In this study, we evaluated the long-term immunogenicity and safety of this EV71vac in a non-human primate model. Juvenile macaques were immunized at 0, 3 and 6 weeks either with 10 or 5 µg doses of EV71vac formulated with AlPO4 adjuvant, or PBS as control. During the 56 weeks of studies, no fever nor local redness and swelling at sites of injections was observed in the immunized macaques. After single immunization, 100% seroconversion based on 4-fold increased in neutralization titer (Nt was detected in EV71vac immunized monkeys but not PBS controls. A dose-dependent IgG antibody response was observed in monkeys receiving EV71vac immunization. The Nt of EV71vac immunized macaques had reached the peak after 3 vaccinations, then decreased gradually; however, the GMT of neutralizing antibody in the EV71vac immunized macaques were still above 100 at the end of the study. Correspondingly, both dose- and time-dependent interferon-γ and CD4+ T cell responses were detected in monkeys receiving EV71vac. Interestingly, similar to human responses, the dominant T cell epitopes of macaques were identified mainly in VP2 and VP3 regions. In addition, strong cross-neutralizing antibodies against most EV71 subgenotypes except some C2 and C4b strains, and Coxsackievirus A16 were observed. In summary, our results indicate that EV71vac elicits dose-dependent T-cell and antibody responses in macaques that could be a good animal model for evaluating the long-term immune responses elicited by EV71 vaccines.

  2. Characterization of claustral neurons by comparative gene expression profiling and dye-injection analyses

    Directory of Open Access Journals (Sweden)

    Akiya eWatakabe

    2014-05-01

    Full Text Available The identity of the claustrum as a part of cerebral cortex, and in particular of the adjacent insular cortex, has been investigated by connectivity features and patterns of gene expression. In the present paper, we mapped the cortical and claustral expression of several cortical genes in rodent and macaque monkey brains (nurr1, latexin, cux2, and netrinG2 to further assess shared features between cortex and claustrum. In mice, these genes were densely expressed in the claustrum, but very sparsely in the cortex and not present in the striatum. To test whether the cortical vs. claustral cell types can be distinguished by co-expression of these genes, we performed a panel of double ISH in mouse and macaque brain. NetrinG2 and nurr1 genes were co-expressed across entire cortex and claustrum, but cux2 and nurr1 were co-expressed only in the insular cortex and claustrum. Latexin was expressed, in the macaque, only in the claustrum. The nurr1+ claustral neurons expressed VGluT1, a marker for cortical glutamatergic cells and send cortical projections. Taken together, our data suggest a partial commonality between claustral neurons and a subtype of cortical neurons in the monkey brain. Moreover, in the embryonic (E110 macaque brain, many nurr1+ neurons were scattered in the white matter between the claustrum and the insular cortex, possibly representing their migratory history. In a second set of experiments, we injected Lucifer Yellow intracellularly in mouse and rat slices to investigate whether dendrites of insular and claustral neurons can cross the border of the two brain regions. Dendrites of claustral neurons did not invade the overlying insular territory. In summary, gene expression profile of the claustrum is similar to that of the neocortex, in both rodent and macaque brains, but with modifications in density of expression and cellular co-localization of specific genes.

  3. Illusory sensation of movement induced by repetitive transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Lundbye-Jensen, Jesper; Grey, Michael James

    2010-01-01

    Human movement sense relies on both somatosensory feedback and on knowledge of the motor commands used to produce the movement. We have induced a movement illusion using repetitive transcranial magnetic stimulation over primary motor cortex and dorsal premotor cortex in the absence of limb movement...... and its associated somatosensory feedback. Afferent and efferent neural signalling was abolished in the arm with ischemic nerve block, and in the leg with spinal nerve block. Movement sensation was assessed following trains of high-frequency repetitive transcranial magnetic stimulation applied over...... premotor cortex stimulation was less affected by sensory and motor deprivation than was primary motor cortex stimulation. We propose that repetitive transcranial magnetic stimulation over dorsal premotor cortex produces a corollary discharge that is perceived as movement....

  4. Brain Macrophages in Simian Immunodeficiency Virus-Infected, Antiretroviral-Suppressed Macaques: a Functional Latent Reservoir.

    Science.gov (United States)

    Avalos, Claudia R; Abreu, Celina M; Queen, Suzanne E; Li, Ming; Price, Sarah; Shirk, Erin N; Engle, Elizabeth L; Forsyth, Ellen; Bullock, Brandon T; Mac Gabhann, Feilim; Wietgrefe, Stephen W; Haase, Ashley T; Zink, M Christine; Mankowski, Joseph L; Clements, Janice E; Gama, Lucio

    2017-08-15

    A human immunodeficiency virus (HIV) infection cure requires an understanding of the cellular and anatomical sites harboring virus that contribute to viral rebound upon treatment interruption. Despite antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are reported in HIV-infected individuals on ART. Biomarkers for macrophage activation and neuronal damage in cerebrospinal fluid (CSF) of HIV-infected individuals demonstrate continued effects of HIV in brain and suggest that the central nervous system (CNS) may serve as a viral reservoir. Using a simian immunodeficiency virus (SIV)/macaque model for HIV encephalitis and AIDS, we evaluated whether infected cells persist in brain despite ART. Eight SIV-infected pig-tailed macaques were virally suppressed with ART, and plasma and CSF viremia levels were analyzed longitudinally. To assess whether virus persisted in brain macrophages (BrMΦ) in these macaques, we used a macrophage quantitative viral outgrowth assay (MΦ-QVOA), PCR, and in situ hybridization (ISH) to measure the frequency of infected cells and the levels of viral RNA and DNA in brain. Viral RNA in brain tissue of suppressed macaques was undetectable, although viral DNA was detected in all animals. The MΦ-QVOA demonstrated that the majority of suppressed animals contained latently infected BrMΦ. We also showed that virus produced in the MΦ-QVOAs was replication competent, suggesting that latently infected BrMΦ are capable of reestablishing productive infection upon treatment interruption. This report provides the first confirmation of the presence of replication-competent SIV in BrMΦ of ART-suppressed macaques and suggests that the highly debated issue of viral latency in macrophages, at least in brain, has been addressed in SIV-infected macaques treated with ART. IMPORTANCE Resting CD4 + T cells are currently the only cells that fit the definition of a latent reservoir. However, recent evidence suggests that HIV

  5. Acute-phase responses in healthy and diseased rhesus macaques (Macaca mulatta)

    DEFF Research Database (Denmark)

    Krogh, Anne Kirstine Havnsøe; Lundsgaard, Jo F. H.; Bakker, Jaco

    2014-01-01

    Five acute-phase reactants—serum amyloid A (SAA), C-reactive protein (CRP), haptoglobin, albumin, and iron—were measured using commercially available assays in 110 healthy rhesus macaques (Macaca mulatta), and reference intervals were established for future use in health monitoring of this species....... Reference intervals established were as follows: SAA, 29.5–87.7 mg/L; CRP, 0–17.5 mg/L; haptoglobin, 354.3–2,414.7 mg/L; albumin, 36.1–53.0 g/L; and iron, 13.3–40.2 lmol/L. Furthermore, changes in the acute-phase reactants were studied in two additional groups of animals: eight rhesus macaques suffering...... from acute traumatic injuries and nine rhesus macaques experimentally infected with Mycobacterium tuberculosis reflecting a chronic active inflammation. In animals with inflammation, SAA and haptoglobin concentrations were moderately increased, while CRP increased more than 200-fold. In addition, marked...

  6. Pair housing for female longtailed and rhesus macaques in the laboratory: behavior in protected contact versus full contact.

    Science.gov (United States)

    Baker, Kate C; Crockett, Carolyn M; Lee, Grace H; Oettinger, Brooke C; Schoof, Valérie; Thom, Jinhee P

    2012-01-01

    Pair housing for caged macaques in the laboratory generally allows unrestricted tactile contact but, less commonly, may involve limited contact via grooming-contact bars or perforated panels. The purpose of using this protected contact housing, which prevents entry into pair-mates' cages, typically is to accommodate research and management requirements. The study used behavioral data collected on 12 pairs of female longtailed macaques (Macaca fascicularis) at the Washington National Primate Research Center and 7 pairs of female rhesus macaques (Macaca mulatta) housed at the Tulane National Primate Research Center to assess the relative benefits of protected versus full protected contact. The study collected data in stable pairs housed first in protected contact followed by full contact. Species combined, the study found the presence of the panel was associated with lower levels of social grooming and higher levels of self-grooming, abnormal behavior, and tension-related behavior. Within species, only the protected- versus full-contact contrasts for abnormal and tension were statistically significant-and only for rhesus macaques. Results suggest that for female rhesus macaques, potential disadvantages or inconveniences of full contact should be balanced against the improved behavioral profile in comparison to protected contact. The use of protected contact among female longtailed macaques does not appear to require the same cost-benefit analysis. Copyright © Taylor & Francis Group, LLC

  7. Beneficial effect of hot spring bathing on stress levels in Japanese macaques.

    Science.gov (United States)

    Takeshita, Rafaela S C; Bercovitch, Fred B; Kinoshita, Kodzue; Huffman, Michael A

    2018-05-01

    The ability of animals to survive dramatic climates depends on their physiology, morphology and behaviour, but is often influenced by the configuration of their habitat. Along with autonomic responses, thermoregulatory behaviours, including postural adjustments, social aggregation, and use of trees for shelter, help individuals maintain homeostasis across climate variations. Japanese macaques (Macaca fuscata) are the world's most northerly species of nonhuman primates and have adapted to extremely cold environments. Given that thermoregulatory stress can increase glucocorticoid concentrations in primates, we hypothesized that by using an available hot spring, Japanese macaques could gain protection against weather-induced cold stress during winter. We studied 12 adult female Japanese macaques living in Jigokudani Monkey Park, Japan, during the spring birth season (April to June) and winter mating season (October to December). We collected faecal samples for determination of faecal glucocorticoid (fGC) metabolite concentrations by enzyme immunoassay, as well as behavioural data to determine time spent in the hot springs, dominance rank, aggression rates, and affiliative behaviours. We used nonparametric statistics to examine seasonal changes in hot spring bathing, and the relationship between rank and air temperature on hot spring bathing. We used general linear mixed-effect models to examine factors impacting hormone concentrations. We found that Japanese macaques use hot spring bathing for thermoregulation during the winter. In the studied troop, the single hot spring is a restricted resource favoured by dominant females. High social rank had both costs and benefits: dominant females sustained high fGC levels, which were associated with high aggression rates in winter, but benefited by priority of access to the hot spring, which was associated with low fGC concentrations and therefore might help reduce energy expenditure and subsequent body heat loss. This unique

  8. Attentional Modulation of Somatosensory Processing During the Anticipation of Movements Accompanying Pain: An Event-Related Potential Study.

    Science.gov (United States)

    Clauwaert, Amanda; Torta, Diana M; Danneels, Lieven; Van Damme, Stefaan

    2018-02-01

    Attending to pain-relevant information is crucial to protect us from physical harm. Behavioral studies have already suggested that during anticipation of pain somatosensory input at the body location under threat is prioritized. However, research using daily life cues for pain, especially movements, is lacking. Furthermore, to our knowledge, no studies have investigated cortical processing associated with somatosensory processing during threatened movements. The current study aims to investigate whether movements accompanying pain automatically steer attention toward somatosensory input at the threatened location, affecting somatosensory evoked potentials (SEPs). Healthy volunteers were cued to perform movements with the left or the right hand, and one of these movements could be accompanied by pain on the moving hand. During movement anticipation, a task-irrelevant tactile stimulus was presented to the threatened or pain-free hand to evoke SEPs. During anticipation of movements accompanying pain, the N120 component was increased for tactile stimuli at the threatened relative to the hand without pain. Moreover, the P200 SEP was enhanced during anticipation of movements accompanying pain relative to movements without pain, irrespective of which hand was stimulated. These findings show that the anticipation of pain-accompanying movements may affect the processing of somatosensory input, and that this is likely to be driven by attentional processes. This study shows that the anticipation of pain-related movements automatically biases attention toward stimuli at a pain-related location, measured according to SEPs. The present study provides important new insights in the interplay between pain and attention, and its consequences at the cortical level. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  9. Primary afferent terminal sprouting after a cervical dorsal rootlet section in the macaque monkey.

    Science.gov (United States)

    Darian-Smith, Corinna

    2004-03-01

    We examined the role of primary afferent neurons in the somatosensory cortical "reactivation" that occurs after a localized cervical dorsal root lesion (Darian-Smith and Brown [2000] Nat. Neurosci. 3:476-481). After section of the dorsal rootlets that enervate the macaque's thumb and index finger (segments C6-C8), the cortical representation of these digits was initially silenced but then re-emerged for these same digits over 2-4 postlesion months. Cortical reactivation was accompanied by the emergence of physiologically detectable input from these same digits within dorsal rootlets bordering the lesion site. We investigated whether central axonal sprouting of primary afferents spared by the rhizotomy could mediate this cortical reactivation. The cortical representation of the hand was mapped electrophysiologically 15-25 weeks after the dorsal rootlet section to define this reactivation. Cholera toxin subunit B conjugated to horseradish peroxidase was then injected into the thumb and index finger pads bilaterally to label the central terminals of any neurons that innervated these digits. Primary afferent terminal proliferation was assessed in the spinal dorsal horn and cuneate nucleus at 7 days and 15-25 postlesion weeks. Labeled terminal bouton distributions were reconstructed and the "lesion" and control sides compared within each monkey. Distributions were significantly larger on the side of the lesion in the dorsal horn and cuneate nucleus at 15-25 weeks after the dorsal rootlet section, than those mapped only 7 days postlesion. Our results provide direct evidence for localized sprouting of spared (uninjured) primary afferent terminals in the dorsal horn and cuneate nucleus after a restricted dorsal root injury. Copyright 2004 Wiley-Liss, Inc.

  10. Neuropeptide Y-immunoreactive neurons in the cerebral cortex of humans and other haplorrhine primates

    Science.gov (United States)

    Raghanti, Mary Ann; Conley, Tiffini; Sudduth, Jessica; Erwin, Joseph M.; Stimpson, Cheryl D.; Hof, Patrick R.; Sherwood, Chet C.

    2012-01-01

    We examined the distribution of neurons immunoreactive for neuropeptide Y (NPY) in the posterior part of the superior temporal cortex (Brodmann's area 22 or area Tpt) of humans and nonhuman haplorrhine primates. NPY has been implicated in learning and memory and the density of NPY-expressing cortical neurons and axons is reduced in depression, bipolar disorder, schizophrenia, and Alzheimer's disease. Due to the role that NPY plays in both cognition and neurodegenerative diseases, we tested the hypothesis that the density of cortical and interstitial neurons expressing NPY was increased in humans relative to other primate species. The study sample included great apes (chimpanzee and gorilla), Old World monkeys (pigtailed macaque, moor macaque, and baboon) and New World monkeys (squirrel monkey and capuchin). Stereologic methods were used to estimate the density of NPY-immunoreactive (-ir) neurons in layers I-VI of area Tpt and the subjacent white matter. Adjacent Nissl-stained sections were used to calculate local densities of all neurons. The ratio of NPY-ir neurons to total neurons within area Tpt and the total density of NPY-ir neurons within the white matter were compared among species. Overall, NPY-ir neurons represented only an average of 0.006% of the total neuron population. While there were significant differences among species, phylogenetic trends in NPY-ir neuron distributions were not observed and humans did not differ from other primates. However, variation among species warrants further investigation into the distribution of this neuromodulator system. PMID:23042407

  11. High serotonin levels during brain development alter the structural input-output connectivity of neural networks in the rat somatosensory layer IV

    Directory of Open Access Journals (Sweden)

    Stéphanie eMiceli

    2013-06-01

    Full Text Available Homeostatic regulation of serotonin (5-HT concentration is critical for normal topographical organization and development of thalamocortical (TC afferent circuits. Down-regulation of the serotonin transporter (SERT and the consequent impaired reuptake of 5-HT at the synapse, results in a reduced terminal branching of developing TC afferents within the primary somatosensory cortex (S1. Despite the presence of multiple genetic models, the effect of high extracellular 5-HT levels on the structure and function of developing intracortical neural networks is far from being understood. Here, using juvenile SERT knockout (SERT-/- rats we investigated, in vitro, the effect of increased 5-HT levels on the structural organization of (i the thalamocortical projections of the ventroposteromedial thalamic nucleus towards S1, (ii the general barrel-field pattern and (iii the electrophysiological and morphological properties of the excitatory cell population in layer IV of S1 (spiny stellate and pyramidal cells. Our results confirmed previous findings that high levels of 5-HT during development lead to a reduction of the topographical precision of TCA projections towards the barrel cortex. Also, the barrel pattern was altered but not abolished in SERT-/- rats. In layer IV, both excitatory spiny stellate and pyramidal cells showed a significantly reduced intracolumnar organization of their axonal projections. In addition, the layer IV spiny stellate cells gave rise to a prominent projection towards the infragranular layer Vb. Our findings point to a structural and functional reorganization, of TCAs, as well as early stage intracortical microcircuitry, following the disruption of 5-HT reuptake during critical developmental periods. The increased projection pattern of the layer IV neurons suggests that the intracortical network changes are not limited to the main entry layer IV but may also affect the subsequent stages of the canonical circuits of the barrel

  12. Radiographic changes in rhesus macaques affected by scurvy

    International Nuclear Information System (INIS)

    Morgan, J.P.; Eisele, P.H.

    1992-01-01

    Spontaneous vitamin C deficiency, or scurvy, was recognized in juvenile rhesus monkeys maintained in a research center as a result of being fed a commercial diet for 2 to 3 months with low levels of vitamin C. Most severely affected animals (13) were radiographed repeatedly up to day 300 following detection of the disease. Early radiographic changes consisted of widened, lucent metaphyses with lateral flaring and radiopaque metaphyseal lines at the junction of the metaphyses and physes. Physeal slippage was noted commonly. Following institution of vitamin C therapy, calcification of subperiosteal hemorrhage occurred in the metaphyseal regions. Metaphyses and physes returned to normal radiographic appearance within 15 to 30 days. Initially, the subperiosteal hemorrhage progressed and a longer time was required for solution of the calcified hematomas. The macaques improved clinically and were released from the hospital when fractures were stable at 4-5 weeks after admission. Of the 13 macaques studied, all but one returned as normal members of the colony

  13. Toxicity and efficacy of 2',3'-dideoxycytidine in clinical trials of pigtailed macaques infected with simian retrovirus type 2.

    OpenAIRE

    Tsai, C C; Follis, K E; Yarnall, M; Blakley, G A

    1989-01-01

    Four dosing regimens of 2',3'-dideoxycytidine (ddC) were administered intravenously for 10 to 28 days to 18 pigtailed macaques with simian acquired immunodeficiency syndrome. Ten macaques naturally infected with simian acquired immunodeficiency syndrome retrovirus serotype 2 (SRV-2), the etiologic agent of simian acquired immunodeficiency syndrome, received ddC by continuous intravenous infusion or by a daily bolus injection for 10 to 12 days. Another eight macaques that were negative for SRV...

  14. Somatosensory amplification mediates sex differences in psychological distress among cardioverter-defibrillator patients

    DEFF Research Database (Denmark)

    Versteeg, Henneke; Baumert, Jens; Kolb, Christof

    2010-01-01

    The present study examined whether female patients with an implantable cardioverter defibrillator (ICD) report more psychological distress than male patients, and whether somatosensory amplification mediates this relationship. Design: Consecutive ICD patients (N = 241; 33% women) participating in...

  15. Quantifying interhemispheric symmetry of somatosensory evoked potentials with the intraclass correlation coefficient

    NARCIS (Netherlands)

    van de Wassenberg, Wilma J. G.; van der Hoeven, Johannes H.; Leenders, Klaus L.; Maurits, Natasha M.

    Although large intersubject variability is reported for cortical somatosensory evoked potentials (SEPs), variability between hemispheres within one subject is thought to be small. Therefore, interhemispheric comparison of SEP waveforms might be clinically useful to detect unilateral abnormalities in

  16. Fetal demise and failed antibody therapy during Zika virus infection of pregnant macaques.

    Science.gov (United States)

    Magnani, Diogo M; Rogers, Thomas F; Maness, Nicholas J; Grubaugh, Nathan D; Beutler, Nathan; Bailey, Varian K; Gonzalez-Nieto, Lucas; Gutman, Martin J; Pedreño-Lopez, Núria; Kwal, Jaclyn M; Ricciardi, Michael J; Myers, Tereance A; Julander, Justin G; Bohm, Rudolf P; Gilbert, Margaret H; Schiro, Faith; Aye, Pyone P; Blair, Robert V; Martins, Mauricio A; Falkenstein, Kathrine P; Kaur, Amitinder; Curry, Christine L; Kallas, Esper G; Desrosiers, Ronald C; Goldschmidt-Clermont, Pascal J; Whitehead, Stephen S; Andersen, Kristian G; Bonaldo, Myrna C; Lackner, Andrew A; Panganiban, Antonito T; Burton, Dennis R; Watkins, David I

    2018-04-24

    Zika virus (ZIKV) infection of pregnant women is associated with pathologic complications of fetal development. Here, we infect pregnant rhesus macaques (Macaca mulatta) with a minimally passaged ZIKV isolate from Rio de Janeiro, where a high rate of fetal development complications was observed. The infection of pregnant macaques with this virus results in maternal viremia, virus crossing into the amniotic fluid (AF), and in utero fetal deaths. We also treated three additional ZIKV-infected pregnant macaques with a cocktail of ZIKV-neutralizing human monoclonal antibodies (nmAbs) at peak viremia. While the nmAbs can be effective in clearing the virus from the maternal sera of treated monkeys, it is not sufficient to clear ZIKV from AF. Our report suggests that ZIKV from Brazil causes fetal demise in non-human primates (NHPs) without additional mutations or confounding co-factors. Treatment with a neutralizing anti-ZIKV nmAb cocktail is insufficient to fully stop vertical transmission.

  17. Posterior Thalamic Nucleus Modulation of Tactile Stimuli Processing in Rat Motor and Primary Somatosensory Cortices

    Directory of Open Access Journals (Sweden)

    Diana Casas-Torremocha

    2017-09-01

    Full Text Available Rodents move rhythmically their facial whiskers and compute differences between signals predicted and those resulting from the movement to infer information about objects near their head. These computations are carried out by a large network of forebrain structures that includes the thalamus and the primary somatosensory (S1BF and motor (M1wk cortices. Spatially and temporally precise mechanorreceptive whisker information reaches the S1BF cortex via the ventroposterior medial thalamic nucleus (VPM. Other whisker-related information may reach both M1wk and S1BF via the axons from the posterior thalamic nucleus (Po. However, Po axons may convey, in addition to direct sensory signals, the dynamic output of computations between whisker signals and descending motor commands. It has been proposed that this input may be relevant for adjusting cortical responses to predicted vs. unpredicted whisker signals, but the effects of Po input on M1wk and S1BF function have not been directly tested or compared in vivo. Here, using electrophysiology, optogenetics and pharmacological tools, we compared in adult rats M1wk and S1BF in vivo responses in the whisker areas of the motor and primary somatosensory cortices to passive multi-whisker deflection, their dependence on Po activity, and their changes after a brief intense activation of Po axons. We report that the latencies of the first component of tactile-evoked local field potentials in M1wk and S1BF are similar. The evoked potentials decrease markedly in M1wk, but not in S1BF, by injection in Po of the GABAA agonist muscimol. A brief high-frequency electrical stimulation of Po decreases the responsivity of M1wk and S1BF cells to subsequent whisker stimulation. This effect is prevented by the local application of omega-agatoxin, suggesting that it may in part depend on GABA release by fast-spiking parvalbumin (PV-expressing cortical interneurons. Local optogenetic activation of Po synapses in different

  18. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex

    Science.gov (United States)

    Lafer-Sousa, Rosa; Conway, Bevil R.

    2014-01-01

    Visual-object processing culminates in inferior temporal (IT) cortex. To assess the organization of IT, we measured fMRI responses in alert monkey to achromatic images (faces, fruit, bodies, places) and colored gratings. IT contained multiple color-biased regions, which were typically ventral to face patches and, remarkably, yoked to them, spaced regularly at four locations predicted by known anatomy. Color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement. Responses to non-face shapes were found across IT, but were stronger outside color-biased regions and face patches, consistent with multiple parallel streams. IT also contained multiple coarse eccentricity maps: face patches overlapped central representations; color-biased regions spanned mid-peripheral representations; and place-biased regions overlapped peripheral representations. These results suggest that IT comprises parallel, multi-stage processing networks subject to one organizing principle. PMID:24141314

  19. Individual Differences in Reward and Somatosensory-Motor Brain Regions Correlate with Adiposity in Adolescents.

    Science.gov (United States)

    Rapuano, Kristina M; Huckins, Jeremy F; Sargent, James D; Heatherton, Todd F; Kelley, William M

    2016-06-01

    The prevalence of adolescent obesity has increased dramatically over the past three decades, and research has documented that the number of television shows viewed during childhood is associated with greater risk for obesity. In particular, considerable evidence suggests that exposure to food marketing promotes eating habits that contribute to obesity. The present study examines neural responses to dynamic food commercials in overweight and healthy-weight adolescents using functional magnetic resonance imaging (fMRI). Compared with non-food commercials, food commercials more strongly engaged regions involved in attention and saliency detection (occipital lobe, precuneus, superior temporal gyri, and right insula) and in processing rewards [left and right nucleus accumbens (NAcc) and left orbitofrontal cortex (OFC)]. Activity in the left OFC and right insula further correlated with subjects' percent body fat at the time of the scan. Interestingly, this reward-related activity to food commercials was accompanied by the additional recruitment of mouth-specific somatosensory-motor cortices-a finding that suggests the intriguing possibility that higher-adiposity adolescents mentally simulate eating behaviors and offers a potential neural mechanism for the formation and reinforcement of unhealthy eating habits that may hamper an individual's ability lose weight later in life. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. PET CT Identifies Reactivation Risk in Cynomolgus Macaques with Latent M. tuberculosis.

    Directory of Open Access Journals (Sweden)

    Philana Ling Lin

    2016-07-01

    Full Text Available Mycobacterium tuberculosis infection presents across a spectrum in humans, from latent infection to active tuberculosis. Among those with latent tuberculosis, it is now recognized that there is also a spectrum of infection and this likely contributes to the variable risk of reactivation tuberculosis. Here, functional imaging with 18F-fluorodeoxygluose positron emission tomography and computed tomography (PET CT of cynomolgus macaques with latent M. tuberculosis infection was used to characterize the features of reactivation after tumor necrosis factor (TNF neutralization and determine which imaging characteristics before TNF neutralization distinguish reactivation risk. PET CT was performed on latently infected macaques (n = 26 before and during the course of TNF neutralization and a separate set of latently infected controls (n = 25. Reactivation occurred in 50% of the latently infected animals receiving TNF neutralizing antibody defined as development of at least one new granuloma in adjacent or distant locations including extrapulmonary sites. Increased lung inflammation measured by PET and the presence of extrapulmonary involvement before TNF neutralization predicted reactivation with 92% sensitivity and specificity. To define the biologic features associated with risk of reactivation, we used these PET CT parameters to identify latently infected animals at high risk for reactivation. High risk animals had higher cumulative lung bacterial burden and higher maximum lesional bacterial burdens, and more T cells producing IL-2, IL-10 and IL-17 in lung granulomas as compared to low risk macaques. In total, these data support that risk of reactivation is associated with lung inflammation and higher bacterial burden in macaques with latent Mtb infection.

  1. Relationship between somatosensory event-related potential N140 aberrations and hemispatial agnosia in patients with stroke: a preliminary study.

    Science.gov (United States)

    Ueno, Tomoyuki; Hada, Yasushi; Shimizu, Yukiyo; Yamada, Thoru

    2018-06-01

    The somatosensory event-related potential N140 is thought to be related to selective attention. This study aimed to compare the somatosensory event-related potential N140 in healthy subjects to that in patients with stroke to determine whether N140 and attentiveness are associated in patients with stroke with or without hemispatial agnosia. Normal somatosensory event-related potential N140 values were determined using data from ten healthy subjects. Fifteen patients with stroke were divided into two groups based on the presence of hemispatial neglect. Somatosensory event-related potential N140 components were compared between the two groups. Stimulation of the affected limb in the hemispatial agnosia group resulted in significantly longer N140 latency at the contralateral vs. the ipsilateral electrode. This was the inverse of the relationship observed in normal subjects, with stimulation of the intact side in patients with hemispatial agnosia, and with stimulation of both the intact and affected sides in patients without agnosia. In the hemispatial agnosia group, the peak latency of N140 following stimulation of the affected side was significantly longer than it was following stimulation of the intact side and when compared to that in patients without agnosia. In addition, abnormal N140 peak latencies were observed at the Cz and ipsilateral electrodes in patients with hemispatial agnosia following stimulation of the intact side. These findings suggest that somatosensory event-related potential N140 is independently generated in each hemisphere and may reflect cognitive attention.

  2. Variation in hair δ13C and δ15N values in long-tailed macaques (Macaca fascicularis) from Singapore

    Science.gov (United States)

    Schillaci, Michael A.; Castellini, J. Margaret; Stricker, Craig A.; Jones-Engel, Lisa; Lee, Benjamin P.Y.-H.

    2014-01-01

    Much of the primatology literature on stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) has focused on African and New World species, with comparatively little research published on Asian primates. Here we present hair δ13C and δ15N isotope values for a sample of 33 long-tailed macaques from Singapore. We evaluate the suggestion by a previous researcher that forest degradation and biodiversity loss in Singapore have led to a decline in macaque trophic level. The results of our analysis indicated significant spatial variability in δ13C but not δ15N. The range of variation in δ13C was consistent with a diet based on C3 resources, with one group exhibiting low values consistent with a closed canopy environment. Relative to other macaque species from Europe and Asia, the macaques from Singapore exhibited a low mean δ13C value but mid-range mean δ15N value. Previous research suggesting a decline in macaque trophic level is not supported by the results of our study.

  3. The functional and anatomical dissection of somatosensory subpopulations using mouse genetics

    Directory of Open Access Journals (Sweden)

    Claire E Le Pichon

    2014-04-01

    Full Text Available The word somatosensation comes from joining the Greek word for body (soma with a word for perception (sensation. Somatosensory neurons comprise the largest sensory system in mammals and have nerve endings coursing throughout the skin, viscera, muscle, and bone. Their cell bodies reside in a chain of ganglia adjacent to the dorsal spinal cord (the dorsal root ganglia and at the base of the skull (the trigeminal ganglia. While the neuronal cell bodies are intermingled within the ganglia, the somatosensory system is in reality composed of numerous sub-systems, each specialized to detect distinct stimuli, such as temperature and touch. Historically, somatosensory neurons have been classified using a diverse host of anatomical and physiological parameters, such as the size of the cell body, degree of myelination, histological labeling with markers, specialization of the nerve endings, projection patterns in the spinal cord and brainstem, receptive tuning, and conduction velocity of their action potentials. While useful, the picture that emerged was one of heterogeneity, with many markers at least partially overlapping. More recently, by capitalizing on advances in molecular techniques, researchers have identified specific ion channels and sensory receptors expressed in subsets of sensory neurons. These studies have proved invaluable as they allow genetic access to small subsets of neurons for further molecular dissection. Data being generated from transgenic mice favor the model whereby an array of dedicated neurons is responsible for selectively encoding different modalities. Here we review the current knowledge of the different sensory neuron subtypes in the mouse, the markers used to study them, and the neurogenetic strategies used to define their anatomical projections and functional roles.

  4. The effect of water immersion on short-latency somatosensory evoked potentials in human

    Directory of Open Access Journals (Sweden)

    Sato Daisuke

    2012-01-01

    Full Text Available Abstract Background Water immersion therapy is used to treat a variety of cardiovascular, respiratory, and orthopedic conditions. It can also benefit some neurological patients, although little is known about the effects of water immersion on neural activity, including somatosensory processing. To this end, we examined the effect of water immersion on short-latency somatosensory evoked potentials (SEPs elicited by median nerve stimuli. Short-latency SEP recordings were obtained for ten healthy male volunteers at rest in or out of water at 30°C. Recordings were obtained from nine scalp electrodes according to the 10-20 system. The right median nerve at the wrist was electrically stimulated with the stimulus duration of 0.2 ms at 3 Hz. The intensity of the stimulus was fixed at approximately three times the sensory threshold. Results Water immersion significantly reduced the amplitudes of the short-latency SEP components P25 and P45 measured from electrodes over the parietal region and the P45 measured by central region. Conclusions Water immersion reduced short-latency SEP components known to originate in several cortical areas. Attenuation of short-latency SEPs suggests that water immersion influences the cortical processing of somatosensory inputs. Modulation of cortical processing may contribute to the beneficial effects of aquatic therapy. Trial Registration UMIN-CTR (UMIN000006492

  5. Paradigms for restoration of somatosensory feedback via stimulation of the peripheral nervous system.

    Science.gov (United States)

    Pasluosta, Cristian; Kiele, Patrick; Stieglitz, Thomas

    2018-04-01

    The somatosensory system contributes substantially to the integration of multiple sensor modalities into perception. Tactile sensations, proprioception and even temperature perception are integrated to perceive embodiment of our limbs. Damage of somatosensory networks can severely affect the execution of daily life activities. Peripheral injuries are optimally corrected via direct interfacing of the peripheral nerves. Recent advances in implantable devices, stimulation paradigms, and biomimetic sensors enabled the restoration of natural sensations after amputation of the limb. The refinement of stimulation patterns to deliver natural feedback that can be interpreted intuitively such to prescind from long-learning sessions is crucial to function restoration. For this review, we collected state-of-the-art knowledge on the evolution of stimulation paradigms from single fiber stimulation to the eliciting of multisensory sensations. Data from the literature are structured into six sections: (a) physiology of the somatosensory system; (b) stimulation of single fibers; (c) restoral of multisensory percepts; (d) closure of the control loop in hand prostheses; (e) sensory restoration and the sense of embodiment, and (f) methodologies to assess stimulation outcomes. Full functional recovery demands further research on multisensory integration and brain plasticity, which will bring new paradigms for intuitive sensory feedback in the next generation of limb prostheses. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  6. Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2

    Directory of Open Access Journals (Sweden)

    Zarella MD

    2017-04-01

    Full Text Available Mark D Zarella, Daniel Y Ts’o Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA Abstract: Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure–ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure–ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure–ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization. Keywords: striate, extrastriate, segmentation, figure–ground, functional organization

  7. Optical study of interactions among propagation waves of neural excitation in the rat somatosensory cortex evoked by forelimb and hindlimb stimuli.

    Science.gov (United States)

    Hama, Noriyuki; Kawai, Minako; Ito, Shin-Ichi; Hirota, Akihiko

    2018-02-14

    Multisite optical recording has revealed that the neural excitation wave induced by a sensory stimulation begins at a focus and propagates on the cortex. This wave is considered to be important for computation in the sensory cortex, particularly the integration of sensory information; however, the nature of this wave remains largely unknown. In the present study, we examined the interaction between two waves in the rat sensory cortex induced by hindlimb and forelimb stimuli with different inter-stimulus intervals. We classified the resultant patterns as follows: 1) the collision of two waves; 2) the hindlimb response being evoked while the forelimb-induced wave is passing the hindlimb focus; and 3) the hindlimb response being evoked after the forelimb-induced wave has passed the hindlimb focus. In pattern 1, the two waves fused into a single wave, but the propagation pattern differed from that predicted by the superimposition of two solely induced propagation courses. In pattern 2, the state of the interaction between the two waves varied depending on the phase of optical signals constituting the forelimb-induced wave around the hindlimb focus. Although no hindlimb-induced wave was observed in the rising phase, the propagating velocity of the forelimb-induced wave increased. At the peak, neither the hindlimb-induced response nor a modulatory effect on the forelimb-induced wave was detected. In pattern 3, the hindlimb-induced wave showed a reduced amplitude and spatial extent. These results indicate that the state of the interaction between waves was strongly influenced by the relative timing of sensory inputs.

  8. The embodiment of emotion: language use during the feeling of social emotions predicts cortical somatosensory activity.

    Science.gov (United States)

    Saxbe, Darby E; Yang, Xiao-Fei; Borofsky, Larissa A; Immordino-Yang, Mary Helen

    2013-10-01

    Complex social emotions involve both abstract cognitions and bodily sensations, and individuals may differ on their relative reliance on these. We hypothesized that individuals' descriptions of their feelings during a semi-structured emotion induction interview would reveal two distinct psychological styles-a more abstract, cognitive style and a more body-based, affective style-and that these would be associated with somatosensory neural activity. We examined 28 participants' open-ended verbal responses to admiration- and compassion-provoking narratives in an interview and BOLD activity to the same narratives during subsequent functional magnetic resonance imaging scanning. Consistent with hypotheses, individuals' affective and cognitive word use were stable across emotion conditions, negatively correlated and unrelated to reported emotion strength in the scanner. Greater use of affective relative to cognitive words predicted more activation in SI, SII, middle anterior cingulate cortex and insula during emotion trials. The results suggest that individuals' verbal descriptions of their feelings reflect differential recruitment of neural regions supporting physical body awareness. Although somatosensation has long been recognized as an important component of emotion processing, these results offer 'proof of concept' that individual differences in open-ended speech reflect different processing styles at the neurobiological level. This study also demonstrates SI involvement during social emotional experience.

  9. Resource use of Japanese macaques in heavy snowfall areas: implications for habitat management.

    Science.gov (United States)

    Enari, Hiroto; Sakamaki-Enari, Haruka

    2013-07-01

    Populations of Japanese macaque (Macaca fuscata) that inhabit the northernmost distribution of any nonhuman primates have been listed as endangered in Japan; however, macaques are widely known for being pests that cause agricultural damage. This study identified priority areas for the conservation and management of macaque habitats, by comparing the resource use of troops occupying remote mountains (montane troops) against troops inhabiting disturbed forests adjacent to settlements (rural troops). We collected species presence data across 2 years by radio-tracking two montane troops and two rural troops in the Shirakami Mountains. We developed seasonal utilization distributions by using the kernel method, and identified habitat characteristics by using ecological-niche factor analysis (ENFA). Our results indicate that environmental factors influencing the potential habitat varied widely with season in montane troops as compared with that in rural troops. ENFA results demonstrated that rural troops exhibited more biased resource use and narrower niche breadths than montane troops. Based on our findings, we propose that (1) primary broadleaf forests are the spring habitat conservation priority of montane troops; (2) the habitat unit--the product of habitat suitability index and its surface area--for montane troops is enhanced by removing old conifer plantations from the forest edge at low elevations; (3) such removal around settlements may also contribute toward removing a frontline refuge for rural troops intruding farmlands; and (4) intensive prevention measures against macaque intrusions into settlements during the bottleneck snowy season contribute toward reducing the habitat unit of rural troops.

  10. Effect of extradural morphine on somatosensory evoked potentials to dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Selmar, P; Hansen, O B

    1987-01-01

    The effect of the extradural (L2-3) administration of morphine 6 mg on early (less than 0.5 s) somatosensory evoked cortical potentials (SEP) to electrical stimulation of the L1- and S1-dermatomes was examined in eight patients. Extradural morphine did not influence SEP amplitude. SEP latency did...

  11. Plasticity in the sensorimotor cortex induced by Music-supported therapy in stroke patients: A TMS study

    Directory of Open Access Journals (Sweden)

    Jennifer eGrau-Sánchez

    2013-09-01

    Full Text Available Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician’s brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning. Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy.

  12. Plasticity in the sensorimotor cortex induced by Music-supported therapy in stroke patients: a TMS study.

    Science.gov (United States)

    Grau-Sánchez, Jennifer; Amengual, Julià L; Rojo, Nuria; Veciana de Las Heras, Misericordia; Montero, Jordi; Rubio, Francisco; Altenmüller, Eckart; Münte, Thomas F; Rodríguez-Fornells, Antoni

    2013-01-01

    Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician's brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST) has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning). Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS) was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy.

  13. Decoding complete reach and grasp actions from local primary motor cortex populations.

    Science.gov (United States)

    Vargas-Irwin, Carlos E; Shakhnarovich, Gregory; Yadollahpour, Payman; Mislow, John M K; Black, Michael J; Donoghue, John P

    2010-07-21

    How the activity of populations of cortical neurons generates coordinated multijoint actions of the arm, wrist, and hand is poorly understood. This study combined multielectrode recording techniques with full arm motion capture to relate neural activity in primary motor cortex (M1) of macaques (Macaca mulatta) to arm, wrist, and hand postures during movement. We find that the firing rate of individual M1 neurons is typically modulated by the kinematics of multiple joints and that small, local ensembles of M1 neurons contain sufficient information to reconstruct 25 measured joint angles (representing an estimated 10 functionally independent degrees of freedom). Beyond showing that the spiking patterns of local M1 ensembles represent a rich set of naturalistic movements involving the entire upper limb, the results also suggest that achieving high-dimensional reach and grasp actions with neuroprosthetic devices may be possible using small intracortical arrays like those already being tested in human pilot clinical trials.

  14. Predictability of painful stimulation modulates the somatosensory-evoked potential in the rat

    NARCIS (Netherlands)

    Schaap, M.W.H.; van Oostrom, H.; Doornenbal, A.; Baars, A.M.; Arndt, S.S.; Hellebrekers, L.J.

    2013-01-01

    Abstract Somatosensory-evoked potentials (SEPs) are used in humans and animals to increase knowledge about nociception and pain. Since the SEP in humans increases when noxious stimuli are administered unpredictably, predictability potentially influences the SEP in animals as well. To assess the

  15. A comparative study of middle cerebral pressure in dogs and macaques

    Science.gov (United States)

    Symon, Lindsay

    1967-01-01

    1. A comparison has been made of the pressures recorded from pial branches of the middle cerebral artery in dogs and macaques. This pressure has been shown to be between 88 and 95% of femoral arterial pressure in dogs under chloralose anaesthesia, and between 80 and 90% of femoral arterial pressure in macaques similarly anaesthetized. 2. The effect of occlusion of the main vessels in the neck is shown to differ considerably in the two species. Blood pressure within the forebrain of the dog is shown to be largely dependent upon the integrity of the external carotid artery, whereas in the monkey the external carotid artery is without effect in the maintenance of forebrain blood pressure. Occlusion of the four major arteries in the neck is shown to produce a greater effect in the macaque and to be accompanied by signs of medullary ischaemia in this species. 3. After occlusion of the main middle cerebral artery, arterial pressure measured distal to the occlusion depends upon the integrity of collateral vessels from the other cerebral arteries. When only a branch of the middle cerebral artery is occluded, the greater part of the residual blood pressure depends upon anastomoses from other branches of the middle cerebral artery itself. ImagesFig. 1 PMID:4963869

  16. Natural and cross-inducible anti-SIV antibodies in Mauritian cynomolgus macaques.

    Directory of Open Access Journals (Sweden)

    Hongzhao Li

    Full Text Available Cynomolgus macaques are an increasingly important nonhuman primate model for HIV vaccine research. SIV-free animals without pre-existing anti-SIV immune responses are generally needed to evaluate the effect of vaccine-induced immune responses against the vaccine epitopes. Here, in order to select such animals for vaccine studies, we screened 108 naïve female Mauritian cynomolgus macaques for natural (baseline antibodies to SIV antigens using a Bio-Plex multiplex system. The antigens included twelve 20mer peptides overlapping the twelve SIV protease cleavage sites (-10/+10, respectively (PCS peptides, and three non-PCS Gag or Env peptides. Natural antibodies to SIV antigens were detected in subsets of monkeys. The antibody reactivity to SIV was further confirmed by Western blot using purified recombinant SIV Gag and Env proteins. As expected, the immunization of monkeys with PCS antigens elicited anti-PCS antibodies. However, unexpectedly, antibodies to non-PCS peptides were also induced, as shown by both Bio-Plex and Western blot analyses, while the non-PCS peptides do not share sequence homology with PCS peptides. The presence of natural and vaccine cross-inducible SIV antibodies in Mauritian cynomolgus macaques should be considered in animal selection, experimental design and result interpretation, for their best use in HIV vaccine research.

  17. Risk factors affecting somatosensory function after sagittal split osteotomy

    DEFF Research Database (Denmark)

    Thygesen, Torben Henrik; Jensen, Allan Bardow; Helleberg, M

    2008-01-01

    Purpose The aim of this study was to evaluate potential individual and intraoperative risk factors associated with bilateral sagittal split osteotomy (BSSO) and to correlate the findings with postoperative changes in somatosensory function. Patients and Methods A total of 18 men and 29 women (mean...... and free dissection of the inferior alveolar nerve during BSSO increased self-reported changes in lower lip sensation and lower lip tactile threshold after BSSO (P discrimination (P

  18. Repair of Neocortex in a Model of Cortical Dysplasia

    Science.gov (United States)

    2007-03-27

    as dyslexia, intractable epilepsy, and schizophrenia which has been linked to abnormal reelin expression (Grayson et al., 2005; Brigman et al., 2006...exposure to ethanol on glutamate and GABA immunoreactivity in macaque somatosensory and motor cortices: critical timing of exposure. Neuroscience...Rothblat LA (2006) Executive functions in the heterozygous reeler mouse model of schizophrenia . Behav Neurosci 120:984-988. Caldwell MA, He X

  19. Evolutionary and biomedical insights from the rhesus macaque genome

    DEFF Research Database (Denmark)

    Gibbs, Richard A; Rogers, Jeffrey; Katze, Michael G

    2007-01-01

    The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied...

  20. Reconciliation and relationship quality in Assamese macaques (Macaca assamensis)

    NARCIS (Netherlands)

    Cooper, M.A.; Bernstein, I.S.; Hemelrijk, C.K.

    A consistent conclusion in reconciliation research is that animals that reconcile are likely to have strong social bonds. This has led to the hypothesis that reconciliation occurs most often between valuable social partners. We tested this hypothesis in a group of Assamese macaques (Macaca