WorldWideScience

Sample records for mac88105 lunar meteorite

  1. Geochemistry and petrography of the MacAlpine Hills lunar meteorites

    Science.gov (United States)

    Lindstrom, Marilyn M.; Mckay, David S.; Wentworth, Susan J.; Martinez, Rene R.; Mittlefehldt, David W.; Wang, Ming-Sheng; Lipschutz, Michael E.

    1991-01-01

    MacAlpine Hills 88104 and 88105, anorthositic lunar meteorites recovered form the same area in Antartica, are characterized. Petrographic studies show that MAC88104/5 is a polymict breccia dominated by impact melt clasts. It is better classified as a fragmental breccia than a regolith breccia. The bulk composition is ferroan and highly aluminous (Al2O3-28 percent).

  2. Lunar Meteorites: A Global Geochemical Dataset

    Science.gov (United States)

    Zeigler, R. A.; Joy, K. H.; Arai, T.; Gross, J.; Korotev, R. L.; McCubbin, F. M.

    2017-01-01

    To date, the world's meteorite collections contain over 260 lunar meteorite stones representing at least 120 different lunar meteorites. Additionally, there are 20-30 as yet unnamed stones currently in the process of being classified. Collectively these lunar meteorites likely represent 40-50 distinct sampling locations from random locations on the Moon. Although the exact provenance of each individual lunar meteorite is unknown, collectively the lunar meteorites represent the best global average of the lunar crust. The Apollo sites are all within or near the Procellarum KREEP Terrane (PKT), thus lithologies from the PKT are overrepresented in the Apollo sample suite. Nearly all of the lithologies present in the Apollo sample suite are found within the lunar meteorites (high-Ti basalts are a notable exception), and the lunar meteorites contain several lithologies not present in the Apollo sample suite (e.g., magnesian anorthosite). This chapter will not be a sample-by-sample summary of each individual lunar meteorite. Rather, the chapter will summarize the different types of lunar meteorites and their relative abundances, comparing and contrasting the lunar meteorite sample suite with the Apollo sample suite. This chapter will act as one of the introductory chapters to the volume, introducing lunar samples in general and setting the stage for more detailed discussions in later more specialized chapters. The chapter will begin with a description of how lunar meteorites are ejected from the Moon, how deep samples are being excavated from, what the likely pairing relationships are among the lunar meteorite samples, and how the lunar meteorites can help to constrain the impactor flux in the inner solar system. There will be a discussion of the biases inherent to the lunar meteorite sample suite in terms of underrepresented lithologies or regions of the Moon, and an examination of the contamination and limitations of lunar meteorites due to terrestrial weathering. The

  3. Noble Gases in the Lunar Meteorites Calcalong Creek and QUE 93069

    Science.gov (United States)

    Swindle, T. D.; Burkland, M. K.; Grier, J. A.

    1995-09-01

    Although the world's collections contain comparable numbers of martian and lunar meteorites (about 10 each), their ejection histories seem to be quite different [1]. We have sampled no more than four martian craters, but almost every one of the lunar meteorites apparently represents a separate cratering event. Furthermore, most lunar meteorites were apparently ejected from the top meter of the surface, unlike any of the martian meteorites. We have measured noble gases in two bulk samples of the lunar meteorite QUE93069 and three of Calcalong Creek, ranging in size from 7 to 15 mg. Averaged results are given in Table 1. Both meteorites contain solar-wind-implanted noble gas. QUE 93069, which is a mature anorthositic regolith breccia [2], contains amounts comparable to the most gas-rich lunar meteorites. The relatively low 40Ar/36Ar ratios of both meteorites suggest surface exposures no more than 2.5 Ga ago [3]. Calcalong Creek has readily observable spallogenic gas. The 131Xe/126Xe ratio of 4.8+/-0.3 corresponds to an average shielding depth of slightly more than 40 gm/cm^2 [4]. In common with many lunar breccias, Calcalong Creek has been exposed to cosmic rays for several hundred Ma (calculations based on [4] and [5]). The 3He apparent exposure age is much shorter, suggesting diffusive loss of He. To determine the detailed exposure history, it is necessary to have measurements of cosmogenic radionuclides. Our samples were too small to measure 81Kr, but [6] have measured 10Be, 26Al and 36Cl. Their data are consistent with either extended exposure at data, requiring several hundred Ma of exposure at an average depth of 40-50 gm/cm^2, are clearly more consistent with the first scenario. The only other lunar meteorite which could have been ejected at the same time is MAC 88104/5 [1], but the chemical differences between the two make it highly unlikely that they come from the same event. It is difficult to determine the amount of spallogenic gas in QUE 93069 because of

  4. NASA Lunar and Meteorite Sample Disk Program

    Science.gov (United States)

    Foxworth, Suzanne

    2017-01-01

    The Lunar and Meteorite Sample Disk Program is designed for K-12 classroom educators who work in K-12 schools, museums, libraries, or planetariums. Educators have to be certified to borrow the Lunar and Meteorite Sample Disks by attending a NASA Certification Workshop provided by a NASA Authorized Sample Disk Certifier.

  5. Geochemistry of Lunar Highland Meteorites Mil, 090034, 090036 AND 090070

    Science.gov (United States)

    Shirai, N.aoki; Ebihara, M.; Sekimoto, S.; Yamaguchi, A.; Nyquist, L.; Shih, C.-Y.; Park, J.; Nagao, K.

    2012-01-01

    Apollo and Luna samples were collected from a restricted area on the near side of the Moon, while the source craters of the lunar meteorites are randomly distributed. For example, Takeda et al. [1] and Yamaguchi et al. [2] found a variety of lithic clasts in Dho 489 and Y 86032 which were not represented by Apollo samples, and some of these clasts have lower rare earth elements (REE) and FeO abundances than Apollo anorthosites, respectively. Takeda et al. [1] and Yamaguchi et al. [2] concluded that Dho 489 and Y 86032 originated from the lunar farside. Therefore, lunar meteorites provide an opportunity to study lunar surface rocks from areas not sampled by Apollo and Luna missions. Three lunar anorthitic breccias (MIL 090034, 090036 and 090070) were found on the Miller Range Ice Field in Antarctica during the 2009-2010 ANSMET season [3]. In this study, we determined elemental abudnances for MIL 090034, 090036 and 090070 by using INAA and aimed to characterize these meteorites in chemical compositions in comparison with those for other lunar meteorites and Apollo samples.

  6. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model.

    Science.gov (United States)

    Russell, Sara S; Joy, Katherine H; Jeffries, Teresa E; Consolmagno, Guy J; Kearsley, Anton

    2014-09-13

    The lunar magma ocean model is a well-established theory of the early evolution of the Moon. By this model, the Moon was initially largely molten and the anorthositic crust that now covers much of the lunar surface directly crystallized from this enormous magma source. We are undertaking a study of the geochemical characteristics of anorthosites from lunar meteorites to test this model. Rare earth and other element abundances have been measured in situ in relict anorthosite clasts from two feldspathic lunar meteorites: Dhofar 908 and Dhofar 081. The rare earth elements were present in abundances of approximately 0.1 to approximately 10× chondritic (CI) abundance. Every plagioclase exhibited a positive Eu-anomaly, with Eu abundances of up to approximately 20×CI. Calculations of the melt in equilibrium with anorthite show that it apparently crystallized from a magma that was unfractionated with respect to rare earth elements and ranged in abundance from 8 to 80×CI. Comparisons of our data with other lunar meteorites and Apollo samples suggest that there is notable heterogeneity in the trace element abundances of lunar anorthosites, suggesting these samples did not all crystallize from a common magma source. Compositional and isotopic data from other authors also suggest that lunar anorthosites are chemically heterogeneous and have a wide range of ages. These observations may support other models of crust formation on the Moon or suggest that there are complexities in the lunar magma ocean scenario to allow for multiple generations of anorthosite formation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) with Raman Imaging Applied to Lunar Meteorites.

    Science.gov (United States)

    Smith, Joseph P; Smith, Frank C; Booksh, Karl S

    2018-03-01

    Lunar meteorites provide a more random sampling of the surface of the Moon than do the returned lunar samples, and they provide valuable information to help estimate the chemical composition of the lunar crust, the lunar mantle, and the bulk Moon. As of July 2014, ∼96 lunar meteorites had been documented and ten of these are unbrecciated mare basalts. Using Raman imaging with multivariate curve resolution-alternating least squares (MCR-ALS), we investigated portions of polished thin sections of paired, unbrecciated, mare-basalt lunar meteorites that had been collected from the LaPaz Icefield (LAP) of Antarctica-LAP 02205 and LAP 04841. Polarized light microscopy displays that both meteorites are heterogeneous and consist of polydispersed sized and shaped particles of varying chemical composition. For two distinct probed areas within each meteorite, the individual chemical species and associated chemical maps were elucidated using MCR-ALS applied to Raman hyperspectral images. For LAP 02205, spatially and spectrally resolved clinopyroxene, ilmenite, substrate-adhesive epoxy, and diamond polish were observed within the probed areas. Similarly, for LAP 04841, spatially resolved chemical images with corresponding resolved Raman spectra of clinopyroxene, troilite, a high-temperature polymorph of anorthite, substrate-adhesive epoxy, and diamond polish were generated. In both LAP 02205 and LAP 04841, substrate-adhesive epoxy and diamond polish were more readily observed within fractures/veinlet features. Spectrally diverse clinopyroxenes were resolved in LAP 04841. Factors that allow these resolved clinopyroxenes to be differentiated include crystal orientation, spatially distinct chemical zoning of pyroxene crystals, and/or chemical and molecular composition. The minerals identified using this analytical methodology-clinopyroxene, anorthite, ilmenite, and troilite-are consistent with the results of previous studies of the two meteorites using electron microprobe

  8. Element distribution and noble gas isotopic abundances in lunar meteorite Allan Hills A81005

    International Nuclear Information System (INIS)

    Kraehenbuehl, U.; Eugster, O.; Niedermann, S.

    1986-01-01

    Antarctic meteorite ALLAN HILLS A81005, an anorthositic breccia, is recognized to be of lunar origin. The noble gases in this meteorite were analyzed and found to be solar-wind implanted gases, whose absolute and relative concentrations are quite similar to those in lunar regolith samples. A sample of this meteorite was obtained for the analysis of the noble gas isotopes, including Kr(81), and for the determination of the elemental abundances. In order to better determine the volume derived from the surface correlated gases, grain size fractions were prepared. The results of the instrumental measurements of the gamma radiation are listed. From the amounts of cosmic ray produced noble gases and respective production rates, the lunar surface residence times were calculated. It was concluded that the lunar surface time is about half a billion years

  9. Feldspathic Meteorites MIL 090034 and 090070: Late Additions to the Lunar Crust

    Science.gov (United States)

    Nyquist, L. E.; Shirai, N.; Yamaguchi, A.; Shih, C.-Y.; Park, J.; Ebihara, M.

    2016-01-01

    Our studies of the Miller Range lunar meteorites MIL 090034, 090036, and 090070 show them to be a diverse suite of rocks from the lunar highlands hereafter referred to as MIL 34, MIL 36, and MIL 70, resp. MIL34 and MIL70, the focus of this work, are crystalline melt breccias. Plagioclase compositions in both peak sharply around An96-97. Mg numbers of olivine vary from 58-65 with a few higher values. MIL36 is a regolith breccia. MIL 34 and MIL 70 have some of the highest Al2O3 abundances of lunar highland meteorites, indicating that they have among the largest modal abundances of plagioclase for lunar meteorites. They have lower Sc and Cr abundances than nearly all lunar highland meteorites except Dho 081, Dho 489 and Dho 733. MIL34 and MIL70 also have similar cosmic ray exposure (CRE) ages of approximately 1-2 Ma indicating they are launch paired. (MIL36 has a larger CRE age approximately greater than 70 Ma). Park et al. found a variation in Ar-Ar ages among subsamples of MIL 34 and MIL70, but preferred ages of 3500+/-110 Ma for the "Dark" phase of MIL 34 anorthite and 3520+/-30 Ma for the "Light" phase of MIL70. Bouvier et al. reported a Pb-Pb age of 3894+/-39 Ma for a feldspathic clast of MIL 34 and a similar age for a melt lithology. Here we reexamine the Rb-Sr and Sm-Nd isotopic data, which show complexities qualitatively consistent with those of the Ar-Ar and Pb-Pb data. The Sm-Nd data in particular suggest that the feldspathic compositions of MIL 34 and MIL 70 formed during initial lunar geochemical differentiation, and REE modeling suggests a relatively late-stage formation.

  10. Pairing Relationships Among Feldspathic Lunar Meteorites from Miller Range, Antarctica

    Science.gov (United States)

    Zeigler, Ryan A.; Korotev, R. L.; Jolliff, B. L.

    2012-01-01

    The Miller Range ice fields have been amongst the most prolific for lunar meteorites that ANSMET has searched [1-3]. Six different stones have been recovered during the 2005, 2007, and 2009 field seasons: MIL 05035 (142 g), MIL 07006 (1.4 g), MIL 090034 (196 g), MIL 090036 (245 g), MIL 090070 (137 g), and MIL 090075 (144 g). Of these, the five stones collected during the 2007 and 2009 seasons are feldspathic breccias. Previous work on the Miller Range feldspathic lunar meteorites (FLMs) has suggested that they are not all paired with each other [4-5]. Here we examine the pairing relationships among the Miller Range FLMs using petrography in concert with traceand major-element compositions.

  11. Lunar and Meteorite Sample Education Disk Program — Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, J.; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-03-01

    NASA’s Lunar and Meteorite Sample Education Disk Program has Lucite disks containing Apollo lunar samples and meteorite samples that are available for trained educators to borrow for use in classrooms, museums, science center, and libraries.

  12. Lunar Meteorites Sayh Al Uhaymir 449 and Dhofar 925, 960, and 961: Windows into South Pole

    Science.gov (United States)

    Ziegler, Ryan A.; Jolliff, B. L.; Korotev, R. L.

    2013-01-01

    In 2003, three lunar meteorites were collected in close proximity to each other in the Dhofar region of Oman: Dhofar 925 (49 g), Dhofar 960 (35 g), and Dhofar 961 (22 g). In 2006, lunar meteorite Sayh al Uhaymir (SaU) 449 (16.5 g) was found about 100 km to the NE. Despite significant differences in the bulk composition of Dhofar 961 relative to Dhofar 925/960 and SaU 449 (which are identical to each other), these four meteorites are postulated to be paired based on their find locations, bulk composition, and detailed petrographic analysis. Hereafter, they will collectively be referred to as the Dhofar 961 clan. Comparison of meteorite and component bulk compositions to Lunar Prospector 5-degree gamma-ray data suggest the most likely provenance of this meteorite group is within the South Pole-Aitken Basin. As the oldest, largest, and deepest recognizable basin on the Moon, the composition of the material within the SPA basin is of particular importance to lunar science. Here we review and expand upon the geochemistry and petrography of the Dhofar 961 clan and assess the likelihood that these meteorites come from within the SPA basin based on their bulk compositions and the compositions and characteristics of the major lithologic components found within the breccia.

  13. Mineralogy and petrogenesis of lunar magnesian granulitic meteorite Northwest Africa 5744

    Science.gov (United States)

    Kent, Jeremy J.; Brandon, Alan D.; Joy, Katherine H.; Peslier, Anne H.; Lapen, Thomas J.; Irving, Anthony J.; Coleff, Daniel M.

    2017-09-01

    Lunar meteorite Northwest Africa (NWA) 5744 is a granulitic breccia with an anorthositic troctolite composition that may represent a distinct crustal lithology not previously described. This meteorite is the namesake and first-discovered stone of its pairing group. Bulk rock major element abundances show the greatest affinity to Mg-suite rocks, yet trace element abundances are more consistent with those of ferroan anorthosites. The relatively low abundances of incompatible trace elements (including K, P, Th, U, and rare earth elements) in NWA 5744 could indicate derivation from a highlands crustal lithology or mixture of lithologies that are distinct from the Procellarum KREEP terrane on the lunar nearside. Impact-related thermal and shock metamorphism of NWA 5744 was intense enough to recrystallize mafic minerals in the matrix, but not intense enough to chemically equilibrate the constituent minerals. Thus, we infer that NWA 5744 was likely metamorphosed near the lunar surface, either as a lithic component within an impact melt sheet or from impact-induced shock.

  14. Galactic cosmic-ray-produced radionuclides in Antarctic meteorites and a lunar core

    International Nuclear Information System (INIS)

    Fox, R.L.

    1987-01-01

    Radionuclide depth effects in a meteorite, the history and pairing of Antarctic meteorites and processes on the lunar surface are discussed in six chapters. A depth profile of 26 Al, 10 Be and 53 Mn activities have been measured in eleven metal phase samples of the Antarctic meteorite ALHA78084 to determine the importance of the secondary cascade in producing these nuclides in a 30 centimeter diameter meteorite. The results show a buildup of lower energy reaction products and a flat profile for high energy reaction products with depth. The activity of 53 Mn has been measured as a function of depth in eleven soil samples from the lunar double drive tubes 15011/15010. The results agree within error with the previous results of Nishiizumi. These data are consistent with the previously published 26 Al results of the Battelle Northwest group which indicated a disturbed profile down to 17 g/cm 2 and an accumulation rate of 2 cm/My. Comparison with the gardening models of Arnold and Langevin and the local topography suggests such a continuous accumulation is the result of steady downslope transport of surface soil for 7 to 10 My at this site. The 53 Mn activity was determined in eleven samples in eight Allan Hills-80 Antarctic meteorites and one sample from an Elephant Moraine Antarctic meteorite. Mineralogic and field relation data suggest that Allan Hills meteorites to be two sets of paired falls. The 53 Mn results are consistent with the grouping of these meteorites as paired falls excluding the meteorite ALHA80127. comparison with future nuclear particle track work and results from the measurement of other cosmogenic nuclides will provide more definitive results

  15. Workshop on past and present solar radiation: the record in meteoritic and lunar regolith material

    International Nuclear Information System (INIS)

    Pepin, R.O.; Mckay, D.S.

    1986-01-01

    The principal question addressed in the workshop was the extent to which asteroidal and lunar regoliths have collected and preserved, in meteoritic regolith breccias and in lunar soils and regolith breccias, a record of the flux, energy, and compositional history of the solar wind and solar flares. Six central discussion topics were identified. They are: (1)Trapped solar wind and flare gases, tracks, and micrometeorite pits in regolith components; (2)Comparison between lunar regolith breccias, meteoritic regolith breccias, and the lunar soil; (3)The special role of regolith breccias and the challenge of dating their times of compaction; (4)Implications of the data for the flux and compositional history of solar particle emission, composition, and physical mechanisms in the solar source regions, and the composition of the early nebula; (5)How and to what extent have records of incident radiation been altered in various types of grains; (6) Future research directions

  16. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the

  17. Lunar feldspathic meteorites: Constraints on the geology of the lunar highlands, and the origin of the lunar crust

    Science.gov (United States)

    Gross, Juliane; Treiman, Allan H.; Mercer, Celestine N.

    2014-02-01

    The composition of the lunar crust provides clues about the processes that formed it and hence contains information on the origin and evolution of the Moon. Current understanding of lunar evolution is built on the Lunar Magma Ocean hypothesis that early in its history, the Moon was wholly or mostly molten. This hypothesis is based on analyses of Apollo samples of ferroan anorthosites (>90% plagioclase; molar Mg/(Mg+Fe)=Mg#Moon's surface, and remote sensing data, show that ferroan anorthosites are not globally distributed and that the Apollo highland samples, used as a basis for the model, are influenced by ejecta from the Imbrium basin. In this study we evaluate anorthosites from all currently available adequately described lunar highland meteorites, representing a more widespread sampling of the lunar highlands than Apollo samples alone, and find that ∼80% of them are significantly more magnesian than Apollo ferroan anorthosites. Interestingly, Luna mission anorthosites, collected outside the continuous Imbrium ejecta, are also highly magnesian. If the lunar highland crust consists dominantly of magnesian anorthosites, as suggested by their abundance in samples sourced outside Imbrium ejecta, a reevaluation of the Lunar Magma Ocean model is a sensible step forward in the endeavor to understand lunar evolution. Our results demonstrate that lunar anorthosites are more similar in their chemical trends and mineral abundance to terrestrial massif anorthosites than to anorthosites predicted in a Lunar Magma Ocean. This analysis does not invalidate the idea of a Lunar Magma Ocean, which seems a necessity under the giant impact hypothesis for the origin of the moon. However, it does indicate that most rocks now seen at the Moon's surface are not primary products of a magma ocean alone, but are products of more complex crustal processes.

  18. In Situ Chemical Characterization of Mineral Phases in Lunar Granulite Meteorite Northwest Africa 5744

    Science.gov (United States)

    Kent, J. J.; Brandon, A. D.; Lapen, T. J.; Peslier, A. H.; Irving, A. J.; Coleff, D. M.

    2012-01-01

    Northwest Africa (NWA) 5744 meteorite is a granulitic and troctolitic lunar breccia which may represent nearly pristine lunar crust (Fig. 1). NWA 5744 is unusually magnesian compared to other lunar breccias, with bulk [Mg/(Mg+Fe)] 0.79 [1, 2]. Inspection shows impactor content is likely to be very minor, with low Ni content and a lack of metal grains. Some terrestrial contamination is present, evidenced by calcite within cracks. NWA 5744 has notably low concentrations of incompatible trace elements (ITEs) [2]. The goal of this study is to attempt to classify this lunar granulite through analyses of in situ phases.

  19. Late Bombardment of the Lunar Highlands Recorded in MIL 090034, MIL 090036 and MIL 090070 Lunar Meteorites

    Science.gov (United States)

    Park, J.; Nyquist, L. E.; Shih, C.-Y.; Herzog, G. F.; Yamaguchi, A.; Shirai, N.; Ebihara, M.; Lindsay, F. N.; Delaney, J.; Turrin, B.; hide

    2013-01-01

    The Kaguya mission detected small but widespread outcrops of nearly pure ferroan anorthosite in and around large impact basins on the Moon. Along with certain lunar rocks, highly feldspathic lunar meteorites such as MIL 090034 (M34), 090036 (M36), and 090070 (M70) may provide samples of this material. We have measured the Ar-40/Ar-39 release patterns and cosmogenic Ar-38 concentrations of several small (<200 microg) samples separated from M34,36, and 70. From petrographic observations concluded that "some of the clasts and grains experienced generations of modifications," a conclusion that we examine in light of our data.

  20. Solar flare and galactic cosmic ray tracks in lunar samples and meteorites - What they tell us about the ancient sun

    International Nuclear Information System (INIS)

    Crozaz, G.

    1980-01-01

    Evidence regarding the past activity of the sun in the form of nuclear particle tracks in lunar samples and meteorites produced by heavy ions in galactic cosmic rays and solar flares is reviewed. Observations of track-rich grains found in deep lunar cores and meteorite interiors are discussed which demonstrate the presence of solar flare activity for at least the past 4 billion years, and the similarity of track density profiles from various lunar and meteoritic samples with those in a glass filter from Surveyor 3 exposed at the lunar surface for almost three years is presented as evidence of the relative constancy of the solar flare energy spectrum over the same period. Indications of a heavy ion enrichment in solar flares are considered which are confirmed by recent satellite measurements, although difficult to quantify in lunar soil grains. Finally, it is argued that, despite previous claims, there exists as yet no conclusive evidence for either a higher solar activity during the early history of the moon or a change in galactic cosmic ray intensity, average composition or spectrum over the last 50 million years

  1. On the history of the early meteoritic bombardment of the Moon: Was there a terminal lunar cataclysm?

    Science.gov (United States)

    Michael, Greg; Basilevsky, Alexander; Neukum, Gerhard

    2018-03-01

    This work revisits the hypothesis of the so-called 'lunar terminal cataclysm' suggested by Tera et al. (1973, 1974) as a strong peak in the meteorite bombardment of the Moon around 3.9 Ga ago. According to the hypothesis, most of the impact craters observed on the lunar highlands formed during this short time period and thus formed the majority of the lunar highland impact breccias and melts. The hypothesis arose from the observation that the ages of highland samples from all the lunar missions are mostly grouped around 3.9-4.0 Ga. Since those missions, however, radiometric dating techniques have progressed and many samples, both old and new, have been re-analyzed. Nevertheless, the debate over whether there was a terminal cataclysm persists. To progress in this problem we summarized results of 269 K-Ar datings (mostly made using the 40Ar-39Ar technique) of highland rocks represented by the Apollo 14, 15, 16, 17 and Luna 20 samples and 94 datings of clasts of the highland rocks from 23 lunar meteorites representing 21 localities on the lunar surface, and considered them jointly with the results of our modelling of the cumulative effect of the impact gardening process on the presence of impact melt of different ages at the near-surface of the Moon. The considered results of K-Ar dating of the Apollo-Luna samples of lunar highland rocks confirmed a presence of strong peak centered at 3.87 Ga. But since the time when the hypothesis of terminal cataclysm was suggested, it has become clear that this peak could be a result of sampling bias: it is the only prominent feature at the sites with an apparent domination of Imbrium basin ejecta (Apollo 14 and 15) and the age pattern is more complicated for the sites influenced not only by Imbrium ejecta but also that of other basins (Nectaris at the Apollo 16 site and Serenitatis at the Apollo 17 site). Our modelling shows that the cataclysm, if it occurred, should produce a strong peak in the measured age values but we see in

  2. Gamma-emissions of some meteorites and terrestrial rocks. Evaluation of lunar soil radioactivity

    International Nuclear Information System (INIS)

    Nordemann, D.

    1966-01-01

    The gamma-emissions of some terrestrial rocks and of the following meteorites: Bogou, Eagle-Station, Granes, and Dosso were studied by quantitative low background gamma spectrometry. These measurements and their interpretation lead to the evaluation of the possible gamma-emissions of several models of lunar soils. (author) [fr

  3. Isotopic Evidence for Multi-stage Cosmic-ray Exposure Histories of Lunar Meteorites: Long Residence on the Moon and Short Transition to the Earth

    International Nuclear Information System (INIS)

    Hidaka, Hiroshi; Sakuma, Keisuke; Nishiizumi, Kunihiko; Yoneda, Shigekazu

    2017-01-01

    It is known that most lunar meteorites have complicated cosmic-ray exposure experiences on the Moon and in space. In this study, cosmic-ray irradiation histories of six lunar meteorites, Dhofar 489, Northwest Africa 032 (NWA 032), NWA 479, NWA 482, NWA 2995, and NWA 5000, were characterized from neutron-captured isotopic shifts of Sm and Gd, and from the abundances of long-lived cosmogenic radionuclides like 10 Be, 26 Al, 36 Cl, and 41 Ca. Sm and Gd isotopic data of all of six meteorites show significant isotopic shifts of 149 Sm– 150 Sm and 157 Gd– 158 Gd caused by accumulation of neutron capture reactions due to cosmic-ray irradiation, corresponding to the neutron fluences of (1.3–9.6) × 10 16 n cm −2 . In particular, very large Sm and Gd isotopic shifts of NWA 482 are over those of a lunar regolith 70002, having the largest isotopic shifts among the Apollo regolith samples, corresponding to cosmic-ray exposure duration over 800 million years in the lunar surface (2 π irradiation). Meanwhile, the concentrations of cosmogenic radionuclides for individual six meteorites show the short irradiation time less than one million years as their bodies in space (4 π irradiation). Our data also support the results of previous studies, revealing that most of lunar meteorites have long exposure ages at shallow depths on the Moon and short transit times from the Moon to the Earth.

  4. Isotopic Evidence for Multi-stage Cosmic-ray Exposure Histories of Lunar Meteorites: Long Residence on the Moon and Short Transition to the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Hiroshi; Sakuma, Keisuke [Department of Earth and Planetary Sciences, Nagoya University Nagoya 464-8601 (Japan); Nishiizumi, Kunihiko [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Yoneda, Shigekazu, E-mail: hidaka@eps.nagoya-u.ac.jp [Department of Science and Engineering, National Museum of Nature and Science Tsukuba 305-0005 (Japan)

    2017-06-01

    It is known that most lunar meteorites have complicated cosmic-ray exposure experiences on the Moon and in space. In this study, cosmic-ray irradiation histories of six lunar meteorites, Dhofar 489, Northwest Africa 032 (NWA 032), NWA 479, NWA 482, NWA 2995, and NWA 5000, were characterized from neutron-captured isotopic shifts of Sm and Gd, and from the abundances of long-lived cosmogenic radionuclides like {sup 10}Be, {sup 26}Al, {sup 36}Cl, and {sup 41}Ca. Sm and Gd isotopic data of all of six meteorites show significant isotopic shifts of {sup 149}Sm–{sup 150}Sm and {sup 157}Gd–{sup 158}Gd caused by accumulation of neutron capture reactions due to cosmic-ray irradiation, corresponding to the neutron fluences of (1.3–9.6) × 10{sup 16} n cm{sup −2}. In particular, very large Sm and Gd isotopic shifts of NWA 482 are over those of a lunar regolith 70002, having the largest isotopic shifts among the Apollo regolith samples, corresponding to cosmic-ray exposure duration over 800 million years in the lunar surface (2 π irradiation). Meanwhile, the concentrations of cosmogenic radionuclides for individual six meteorites show the short irradiation time less than one million years as their bodies in space (4 π irradiation). Our data also support the results of previous studies, revealing that most of lunar meteorites have long exposure ages at shallow depths on the Moon and short transit times from the Moon to the Earth.

  5. Cosmic-ray production of tungsten isotopes in lunar samples and meteorites and its implications for Hf-W cosmochemistry

    Science.gov (United States)

    Leya, Ingo; Wieler, Rainer; Halliday, Alex N.

    2000-01-01

    Excesses and deficiencies in 182W in meteorites and lunar samples relative to the terrestrial 182W atomic abundance have been assigned to the decay of 182Hf (t1/2=9 Ma) and have been used to date metal-silicate fractionation events in the early solar system. Because the effects are very small, production and burn-out of tungsten isotopes by cosmic ray interactions are a concern in such studies. Masarik [J. Masarik, Contribution of neutron-capture reactions to observed tungsten isotopic ratios, Earth Planet. Sci. Lett. 152 (1997) 181-185] showed that neutron-capture reactions on tungsten isotopes can account at best for a minor part of the observed deficit of 182W in Toluca and other iron meteorites. On the other hand, in lunar samples and stony meteorites the production of 182W from 181Ta may become crucial. Here, we calculate this contribution as well as production and consumption of 182-186W by other neutron-induced reactions. The neutron fluence of each sample is estimated by its nominal cosmic-ray exposure age deduced from noble gas data. This approach overestimates the true cosmogenic W isotopic shifts for samples that might have been irradiated very close to the regolith surface. A quantitative estimate is often also hampered by a lack of Ta data. Despite these reservations, it appears that in many lunar samples neutron-capture on Ta has caused a large part of the observed 182W excess. On the other hand, in some samples, especially those with very low exposure ages, clearly only a minor or even negligible fraction of the 182W excess can be cosmogenic. Therefore, the conclusion, based on Hf-W model ages, that the Moon formed 50 Myr after the start of the solar system remains valid. Martian meteorites have lower Ta/W ratios and cosmic ray exposure ages than most lunar samples. Therefore, cosmogenic production has not significantly altered the W isotopic composition in Martian meteorites. Observed 182W excesses in Martian meteorites as well as the very large

  6. U-Pb Dating of Zircons and Phosphates in Lunar Meteorites, Acapulcoites and Angrites

    Science.gov (United States)

    Zhou, Q.; Zeigler, R. A.; Yin, Q. Z.; Korotev, R. L.; Joliff, B. L.; Amelin, Y.; Marti, K.; Wu, F. Y.; Li, X. H.; Li, Q. L.; hide

    2012-01-01

    Zircon U-Pb geochronology has made a great contribution to the timing of magmatism in the early Solar System [1-3]. Ca phosphates are another group of common accessory minerals in meteorites with great potential for U-Pb geochronology. Compared to zircons, the lower closure temperatures of the U-Pb system for apatite and merrillite (the most common phosphates in achondrites) makes them susceptible to resetting during thermal metamorphism. The different closure temperatures of the U-Pb system for zircon and apatite provide us an opportunity to discover the evolutionary history of meteoritic parent bodies, such as the crystallization ages of magmatism, as well as later impact events and thermal metamorphism. We have developed techniques using the Cameca IMS-1280 ion microprobe to date both zircon and phosphate grains in meteorites. Here we report U-Pb dating results for zircons and phosphates from lunar meteorites Dhofar 1442 and SaU 169. To test and verify the reliability of the newly developed phosphate dating technique, two additional meteorites, Acapulco, obtained from Acapulco consortium, and angrite NWA 4590 were also selected for this study as both have precisely known phosphate U-Pb ages by TIMS [4,5]. Both meteorites are from very fast cooled parent bodies with no sign of resetting [4,5], satisfying a necessity for precise dating.

  7. Discovery of moganite in a lunar meteorite as a trace of H2O ice in the Moon’s regolith

    Science.gov (United States)

    Seto, Yusuke; Miyake, Akira; Sekine, Toshimori; Tomeoka, Kazushige; Matsumoto, Megumi; Kobayashi, Takamichi

    2018-01-01

    Moganite, a monoclinic SiO2 phase, has been discovered in a lunar meteorite. Silica micrograins occur as nanocrystalline aggregates of mostly moganite and occasionally coesite and stishovite in the KREEP (high potassium, rare-earth element, and phosphorus)–like gabbroic-basaltic breccia NWA 2727, although these grains are seemingly absent in other lunar meteorites. We interpret the origin of these grains as follows: alkaline water delivery to the Moon via carbonaceous chondrite collisions, fluid capture during impact-induced brecciation, moganite precipitation from the captured H2O at pH 9.5 to 10.5 and 363 to 399 K on the sunlit surface, and meteorite launch from the Moon caused by an impact at 8 to 22 GPa and >673 K. On the subsurface, this captured H2O may still remain as ice at estimated bulk content of >0.6 weight %. This indicates the possibility of the presence of abundant available water resources underneath local sites of the host bodies within the Procellarum KREEP and South Pole Aitken terranes. PMID:29732406

  8. Gamma-emissions of some meteorites and terrestrial rocks. Evaluation of lunar soil radioactivity; Emissions gamma de quelques meteorites et roches terrestres. Evaluation de la radioactivite du sol lunaire

    Energy Technology Data Exchange (ETDEWEB)

    Nordemann, D. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-07-01

    The gamma-emissions of some terrestrial rocks and of the following meteorites: Bogou, Eagle-Station, Granes, and Dosso were studied by quantitative low background gamma spectrometry. These measurements and their interpretation lead to the evaluation of the possible gamma-emissions of several models of lunar soils. (author) [French] Les emissions gamma des meteorites Bogou, Eagle-Station, Granes et Dosso et de quelques roches terrestres ont ete etudiees par spectrometrie gamma quantitative a faible mouvement propre. Ces mesures et leur interpretation permettent d'evaluer les principales contributions des emissions gamma du sol lunaire pour des modeles de compositions possibles variees. (auteur)

  9. Gamma-emissions of some meteorites and terrestrial rocks. Evaluation of lunar soil radioactivity; Emissions gamma de quelques meteorites et roches terrestres. Evaluation de la radioactivite du sol lunaire

    Energy Technology Data Exchange (ETDEWEB)

    Nordemann, D [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-07-01

    The gamma-emissions of some terrestrial rocks and of the following meteorites: Bogou, Eagle-Station, Granes, and Dosso were studied by quantitative low background gamma spectrometry. These measurements and their interpretation lead to the evaluation of the possible gamma-emissions of several models of lunar soils. (author) [French] Les emissions gamma des meteorites Bogou, Eagle-Station, Granes et Dosso et de quelques roches terrestres ont ete etudiees par spectrometrie gamma quantitative a faible mouvement propre. Ces mesures et leur interpretation permettent d'evaluer les principales contributions des emissions gamma du sol lunaire pour des modeles de compositions possibles variees. (auteur)

  10. The Meteoritical Bulletin, No. 103

    Science.gov (United States)

    Ruzicka, Alex; Grossman, Jeffrey; Bouvier, Audrey; Agee, Carl B.

    2017-05-01

    Meteoritical Bulletin 103 contains 2582 meteorites including 10 falls (Ardón, Demsa, Jinju, Križevci, Kuresoi, Novato, Tinajdad, Tirhert, Vicência, Wolcott), with 2174 ordinary chondrites, 130 HED achondrites, 113 carbonaceous chondrites, 41 ureilites, 27 lunar meteorites, 24 enstatite chondrites, 21 iron meteorites, 15 primitive achondrites, 11 mesosiderites, 10 Martian meteorites, 6 Rumuruti chondrites, 5 ungrouped achondrites, 2 enstatite achondrites, 1 relict meteorite, 1 pallasite, and 1 angrite, and with 1511 from Antarctica, 588 from Africa, 361 from Asia, 86 from South America, 28 from North America, and 6 from Europe. Note: 1 meteorite from Russia was counted as European. The complete contents of this bulletin (244 pages) are available on line. Information about approved meteorites can be obtained from the Meteoritical Bulletin Database (MBD) available on line at meteor/">http://www.lpi.usra.edu/meteor/.

  11. Allochthonous Addition of Meteoritic Organics to the Lunar Regolith

    Science.gov (United States)

    Thomas-Keprta, K. L.; Clemett, S.; Ross, D. K.; Le, L.; Rahman, Z.; McKay, D. S.; Gibson, E. K.; Gonzalez, C.

    2013-01-01

    Preparation of lunar samples 74220,861 was discussed in detail in [3, 4]. Our analysis sequence was as follows: optical microscopy, UV fluorescence imaging, -Raman, FESEM-EDX imaging and mapping, FETEMEDX imaging and mapping of a Focused Ion Beam (FIB) extracted section, and NanoSIMs analysis. We observed fluffytextured C-rich regions of interest (ROI) on three different volcanic glass beads. Each ROI was several m2 in size and fluoresced when exposed to UV. Using FESEM/EDX, the largest ROI measured 36 m and was located on an edge of a plateau located on the uppermost surface of the bead. The ROI was covered on one edge by a siliceous filament emanating from the plateau surface indicating it was attached to the bead while on the Moon. EDX mapping of the ROI shows it is composed primarily of heterogeneously distributed C. Embedded with the carbonaceous phase are localized concentrations of Si, Fe, Al and Ti indicating the presence of glass and/or minerals grains. -Raman showed strong D- and G-bands and their associated second order bands; intensity and location of these bands indicates the carbonaceous matter is structurally disorganized. A TEM thin section was extracted from the surface of a glass bead using FIB microscopy. High resolution TEM imaging and selected area electron diffraction demonstrate the carbonaceous layer to be amorphous; it lacked any long or short range order characteristic of micro- or nanocrystalline graphite. Additionally TEM imaging also revealed the presence of submicron mineral grains, typically < 50 nm in size, dispersed within the carbonaceous layer. NanoSIMs data will be presented and discussed at the meeting. Given the noted similarities between the carbonaceous matter present on 74220 glass beads and meteoritic kerogen, we suggest the allochthonous addition of meteoritic organics as the most probable source for the C-rich ROIs.

  12. Consortium study of lunar meteorites Yamato-793169 and Asuka-881757: Geochemical evidence of mutual similarity, and dissimilarity versus other mare basalts

    Science.gov (United States)

    Warren, Paul H.; Lindstrom, Marilyn M.

    1993-01-01

    Compositions of bulk powders and separated minerals from two meteorites derived from the mare lava plains of the Earth's Moon, Yamato-793169 and Asuka-881757, indicate a remarkable degree of similarity to one another, and clearly favor lunar origin. However, these meteorites are unlike any previously studied lunar rock. In both cases, the bulk-rock TiO2 content is slightly greater than the level separating VLT from low-Ti mare basalt, yet the Sc content is much higher than previously observed except among high-Ti mare basalts. Conceivably, the Sc enrichment in A881757 reflects origin of this rock as a cumulate from a mare magma of 'normal' Sc content, but this seems unlikely. Mineral-separate data suggest that most of the Sc is in pyroxene, and a variety of evidence weighs against the cumulus hypothesis as a major cause for the high Sc. The remarkable similarity between Y793169 and A881757 suggests the possibility that they were derived from a single source crater on the Moon.

  13. Volatile and siderophile trace elements in anorthositic rocks from Fiskenaesset, West Greenland: comparison with lunar and meteoritic analogues

    International Nuclear Information System (INIS)

    Morgan, J.W.; Ganapathy, R.; Higuchi, H.; Kraehenbuehl, U.

    1976-01-01

    Seventeen trace elements (Ag, Au, Bi, Br, Cd, Cs, Ge, Ir, Ni, Rb, Re, Sb, Se, Te, Tl, U, Zn) were analysed by radiochemical neutron activation and 13 other elements (Ce, Co, Cr, Eu, Fe, Hf, La, Lu, Na, Sc, Sm, Tb, Yb) by instrumental neutron activation in a total of 12 rocks from the layered anorthositic complex at Fiskenaesset, West Greenland, and in the plagioclase-rich unbrecciated eucrite, Serra de Mage. The results are discussed and compared with lunar and meteoritic analogues. (author)

  14. Meteorites and the Evolution of Our Solar System

    Science.gov (United States)

    Nava, David F.

    1999-01-01

    The study of meteorites has long been of intense interest ever since these objects were discovered to be of extraterrestrial origin. Meteorite research contributes to unraveling the mysteries in understanding the formation and evolution processes of our solar system. Meteorites, of which there are a variety of widely diverse types of chemical and mineralogical compositions, are the most ancient of solar system objects that can be studied in the laboratory. They preserve a unique historical record of the astronomical and astrophysical events of our solar system. This record is being discerned by a host of ever evolving analytical laboratory methods. Recent discoveries of what are believed to be Martian meteorites, lunar meteorites, a meteorite containing indigenous water, and the recovery from the Cretaceous layer of a small meteorite fragment thought to be from the dinosaur-killing asteroid have fueled additional excitement for studying meteorites.

  15. Sparking young minds with Moon rocks and meteorites

    Science.gov (United States)

    Taylor, G. Jeffrey; Lindstrom, Marilyn M.

    1993-01-01

    What could be more exciting than seeing pieces of other worlds? The Apollo program left a legacy of astounding accomplishments and precious samples. Part of the thrill of those lunar missions is brought to schools by the lunar sample educational disks, which contain artifacts of six piloted trips to the Moon. Johnson Space Center (JSC) is preparing 100 new educational disks containing pieces of meteorites collected in Antarctica. These represent chunks of several different asteroids, that were collected in one of the most remote, forbidding environments on Earth. These pieces of the Moon and asteroids represent the products of basic planetary processes (solar nebular processes, initial differentiation, volcanism, and impact), and, in turn, these processes are controlled by basic physical and chemical processes (energy, energy transfer, melting, buoyancy, etc.). Thus, the lunar and meteorite sample disks have enormous educational potential. New educational materials are being developed to accompany the disks. Present materials are not as effective as they could be, especially in relating samples to processes and to other types of data such as spectral studies and photogeology. Furthermore, the materials are out of date. New background materials will be produced for teachers, assembling slide sets with extensive captions, and devising numerous hands-on classroom activities to do while the disks are at a school and before and after they arrive. The classroom activities will be developed by teams of experienced teachers working with lunar and meteorite experts.

  16. Proceedings of the 40th Lunar and Planetary Science Conference

    Science.gov (United States)

    2009-01-01

    The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology

  17. Foundations of Forensic Meteoritics

    Science.gov (United States)

    Treiman, A. H.

    1992-07-01

    It may be useful to know if a meteorite was found at the site where it fell. For instance, the polymict ureilites North Haig and Nilpena were found 1100 km apart, yet are petrologically identical [1]. Could this distance represent transport from a single strewn field, or does it represent distinct fall sites? A meteorite may contain sufficient clues to suggest some characteristics of its fall site. If these inferences are inconsistent with the find site, one may infer that the meteorite has been transported. It will likely be impossible to determine the exact fall site of a transported meteorite. Data relevant to a meteorite's fall site may be intrinsic to the meteorite, or acquired at the site. For instance, an intrinsic property is terrestrial residence age (from abundances of cosmogenic radioisotopes and their decay products); a meteorite's terrestrial residence age must be the same or less than that of the surface on which it fell. After falling, a meteorite may acquire characteristic telltales of terrestrial geological, geochemical, and biological processes. These telltale clues may include products of chemical weathering, adhering geological materials, biological organisms living (or once living) on the meteorite, and biological materials adhering to (but never living on) the meteorite. The effects of chemical weathering, present in all but the freshest finds, range from slight rusting to extensive decomposition and veining The ages of weathering materials and veins, as with terrestrial residence ages above, must be less than the age of the fall surface. The mineralogy and chemistry, elemental and isotopic, of weathering materials will differ according to the mineralogy and composition of the meteorite, and the mineralogy, geochemistry, hydrology, and climate of the fall site. Weathering materials may also vary as climate changes and may vary among the microenvironments associated with a meteorite on the Earth's surface. Geological materials (rock, sediment

  18. A Comparison of Anorthositic Lunar Lithologies: Variation on the FAN Theme

    Science.gov (United States)

    Nyquist, L. E.; Shih, C-Y.; Yamaguchi, A.; Mittlefehldt, D. W.; Peng, Z. X.; Park, J.; Herzog, G. F.; Shirai, N.

    2014-01-01

    Certain anorthositic rocks that are rare in the returned lunar samples have been identified among lunar meteorites. The variety of anorthosites in the Apollo collection also is more varied than is widely recognized. James eta. identified three lithologies in a composite clast o ferroan anorthosite (FAN)-suite rocks in lunar breccia 64435. They further divided all FANs into four subgroups: anorthositic ferroan (AF), mafic magnesian (MM), mafic ferroan (MF), and anorthositic sodic (AS, absent in the 64435 clast). Here we report Sm-Nd isotopic studies of the lithologies present in the 64435 composite clast and compare the new data to our previous data for lunar anorthosites incuding lunar anorthositic meteorites. Mineralogy-petrography, in situ trace element studies, Sr-isotope studies, and Ar-Ar chronology are included, but only the Nd-isotopic studies are currently complete.

  19. Chronology of early lunar crust

    International Nuclear Information System (INIS)

    Dasch, E.J.; Nyquist, L.E.; Ryder, G.

    1988-01-01

    The chronology of lunar rocks is summarized. The oldest pristine (i.e., lacking meteoritic contamination of admixed components) lunar rock, recently dated with Sm-Nd by Lugmair, is a ferroan anorthosite, with an age of 4.44 + 0.02 Ga. Ages of Mg-suite rocks (4.1 to 4.5 Ga) have large uncertainties, so that age differences between lunar plutonic rock suites cannot yet be resolved. Most mare basalts crystallized between 3.1 and 3.9 Ga. The vast bulk of the lunar crust, therefore, formed before the oldest preserved terrestrial rocks. If the Moon accreted at 4.56 Ga, then 120 Ma may have elapsed before lunar crust was formed

  20. Organic compounds in the Murchison meteorite.

    Science.gov (United States)

    Ponnamperuma, C.

    1972-01-01

    Impressive supporting evidence for the concept of the chemical evolution of life has appeared in the discovery of biologically important compounds in extraterrestrial samples. The approaches pursued to detect extraterrestrial organic compounds include the study of interstellar space by radioastronomy, the evaluation of the Apollo lunar samples, and the analysis of meteorites, both ancient and recent. It has been found that the clouds of gas in the interstellar medium contain a wide variety of molecules, most of which are organic in nature. The carbonaceous chondrites contain polymeric organic matter. Amino acids have been detected in the Murchison meteorite.

  1. Nineteenth lunar and planetary science conference. Press abstracts

    International Nuclear Information System (INIS)

    1988-01-01

    Topics addressed include: origin of the moon; mineralogy of rocks; CO2 well gases; ureilites; antarctic meteorites; Al-26 decay in a Semarkona chondrule; meteorite impacts on early earth; crystal structure and density of helium; Murchison carbonaceous chondrite composition; greenhouse effect and dinosaurs; Simud-Tiu outflow system of Mars; and lunar radar images

  2. Lunar ash flows - Isothermal approximation.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  3. MoonDB — A Data System for Analytical Data of Lunar Samples

    Science.gov (United States)

    Lehnert, K.; Ji, P.; Cai, M.; Evans, C.; Zeigler, R.

    2018-04-01

    MoonDB is a data system that makes analytical data from the Apollo lunar sample collection and lunar meteorites accessible by synthesizing published and unpublished datasets in a relational database with an online search interface.

  4. Pigeonholing planetary meteorites: The lessons of misclassification of EET87521 and ALH84001

    Science.gov (United States)

    Lindstrom, M. M.; Treiman, A. H.; Mittlefehldt, D. W.

    1994-01-01

    The last few years have provided two noteworthy examples of misclassifications of achondritic meteorites because the samples were new kinds of meteorites from planetary rather than asteroidal parent bodies. Basaltic lunar meteorite EET87521 was misclassified as a eucrite and SNC (martian) orthopyroxenite ALH84001 was misclassified as a diogenite. In classifying meteorites we find what we expect: we pigeonhole meteorites into known categories most of which were derived from the more common asteroidal meteorites. But the examples of EET8752 and ALH84001 remind us that planets are more complex than asteroids and exhibit a wider variety of rock types. We should expect variety in planetary meteorites and we need to know how to recognize them when we have them. Our intent here is to show that our asteroidal perspective is inappropriate for planetary meteorites.

  5. Lunar and Planetary Science XXXII

    Science.gov (United States)

    2001-01-01

    This CD-ROM publication contains the extended abstracts that were accepted for presentation at the 32nd Lunar and Planetary Science Conference held at Houston, TX, March 12-16, 2001. The papers are presented in PDF format and are indexed by author, keyword, meteorite, program and samples for quick reference.

  6. Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust?

    Science.gov (United States)

    Rapp, Jennifer F.; Draper, David S.

    2013-01-01

    New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization

  7. Lunar Meteoroid Impacts and How to Observe Them

    CERN Document Server

    Cudnik, Brian

    2009-01-01

    We all know that the pock marked face of the Moon looks the way it does because it was hit by meteors. But not many people know that this is still happening today. While the era of major impacts is over, lunar meteorites still cause flashes and puffs of gas, vaporized rock, and dust that we can observe. The Moon itself has a fascinating history. It is now thought to have been formed after a Mars-sized object collided with Earth and stripped off a portion of its mass. This debris took shape within a few hundred years and was originally much closer to our planet. The craters on its surface were largely formed by intense meteorite and asteroid bombardment between 4.6 billion and 3.8 billion years ago. In this comprehensive book, Brian Cudnik, one of the first people to observe a meteorite impact on the Moon in real time, shows how both amateur and practical astronomers can look for these ‘lunar transient phenomena,’ or LTPs. He explains in detail the processes that formed the craters and impact marks we see ...

  8. Beneficiation of lunar ilmenite

    Science.gov (United States)

    Ruiz, Joaquin

    1991-01-01

    One of the most important commodities lacking in the moon is free oxygen which is required for life and used extensively for propellent. Free oxygen, however, can be obtained by liberating it from the oxides and silicates that form the lunar rocks and regolith. Ilmenite (FeTiO3) is considered one of the leading candidates for production of oxygen because it can be reduced with a reasonable amount of energy and it is an abundant mineral in the lunar regolith and many mare basalts. In order to obtain oxygen from ilmenite, a method must be developed to beneficiate ilmenite from lunar material. Two possible techniques are electrostatic or magnetic methods. Both methods have complications because lunar ilmenite completely lacks Fe(3+). Magnetic methods were tested on eucrite meteorites, which are a good chemical simulant for low Ti mare basalts. The ilmenite yields in the experiments were always very low and the eucrite had to be crushed to xxxx. These data suggest that magnetic separation of ilmenite from fine grain lunar basalts would not be cost effective. Presently, experiments are being performed with electrostatic separators, and lunar regolith is being waited for so that simulants do not have to be employed.

  9. What would we miss if we characterized the Moon and Mars with just planetary meteorites, remote mapping, and robotic landers?. [Abstract only

    Science.gov (United States)

    Lindstrom, M. M.

    1994-01-01

    Exploration of the Moon and planets began with telescopic studies of their surfaces, continued with orbiting spacecraft and robotic landers, and will culminate with manned exploration and sample return. For the Moon and Mars we also have accidental samples provided by impacts on their surfaces, the lunar and martian meteorites. How much would we know about the lunar surface if we only had lunar meteorites, orbital spacecraft, and robotic exploration, and not the Apollo and Luna returned samples? What does this imply for Mars? With martian meteorites and data from Mariner, Viking, and the future Pathfinder missions, how much could we learn about Mars? The basis of most of our detailed knowledge about the Moon is the Apollo samples. They provide ground truth for the remote mapping, timescales for lunar processes, and samples from the lunar interior. The Moon is the foundation of planetary science and the basis for our interpretation of the other planets. Mars is similar to the Moon in that impact and volcanism are the dominant processes, but Mars' surface has also been affected by wind and water, and hence has much more complex surface geology. Future geochemical or mineralogical mapping of Mars' surface should be able to tell us whether the dominant rock types of the ancient southern highlands are basaltic, anorthositic, granitic, or something else, but will not be able to tell us the detailed mineralogy, geochemistry, or age. Without many more martian meteorites or returned samples we will not know the diversity of martian rocks, and therefore will be limited in our ability to model martian geological evolution.

  10. Photomosaics of the cathodoluminescence of 60 sections of meteorites and lunar samples

    Science.gov (United States)

    Akridge, D.G.; Akridge, J.M.C.; Batchelor, J.D.; Benoit, P.H.; Brewer, J.; DeHart, J.M.; Keck, B.D.; Jie, L.; Meier, A.; Penrose, M.; Schneider, D.M.; Sears, D.W.G.; Symes, S.J.K.; Yanhong, Z.

    2004-01-01

    Cathodoluminescence (CL) petrography provides a means of observing petrographic and compositional properties of geological samples not readily observable by other techniques. We report the low-magnification CL images of 60 sections of extraterrestrial materials. The images we report include ordinary chondrites (including type 3 ordinary chondrites and gas-rich regolith breccias), enstatite chondrites, CO chondrites and a CM chondrite, eucrites and a howardite, lunar highland regolith breccias, and lunar soils. The CL images show how primitive materials respond to parent body metamorphism, how the metamorphic history of EL chondrites differs from that of EH chondrites, how dark matrix and light clasts of regolith breccias relate to each other, how metamorphism affects eucrites, the texture of lunar regolith breccias and the distribution of crystallized lunar spherules ("lunar chondrules"), and how regolith working affects the mineral properties of lunar soils. More particularly, we argue that such images are a rich source of new information on the nature and history of these materials and that our efforts to date are a small fraction of what can be done. Copyright 2004 by the American Geophysical Union.

  11. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    Science.gov (United States)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  12. The Lunar Regolith as a Recorder of Cosmic History

    Science.gov (United States)

    Cooper, Bonnie; McKay, D.; Riofrio, L.

    2012-01-01

    The Moon can be considered a giant tape recorder containing the history of the solar system and Universe. The lunar regolith (soil) has recorded the early history of the Moon, Earth, the solar system and Universe. A major goal of future lunar exploration should be to find and play back existing fragments of that tape . By reading the lunar tape, we can uncover a record of planetary bombardment, as well as solar and stellar variability. The Moon can tell us much about our place in the Universe. The lunar regolith has likely recorded the original meteoritic bombardment of Earth and Moon, a violent cataclysm that may have peaked around 4 Gyr, and the less intense bombardment occurring since that time. This impact history is preserved on the Moon as regolith layers, ejecta layers, impact melt rocks, and ancient impact breccias. The impact history of the Earth and Moon possibly had profound effects on the origin and development of life. Decrease in meteor bombardment allowed life to develop on Earth. Life may have developed first on another body, such as Mars, then arrived via meteorite on Earth. The solar system may have experienced bursts of severe radiation from the Sun, other stars, or from unknown sources. The lunar regolith has recorded this radiation history in the form of implanted solar wind, solar flare materials and radiation damage. Lunar soil can be found sandwiched between layers of basalt or pyroclastic deposits. This filling constitutes a buried time capsule that is likely to contain well-preserved ancient regolith. Study of such samples will show us how the solar system has evolved and changed over time. The lunar tape recorder can provide detailed information on specific portions of solar and stellar variability. Data from the Moon also offers clues as to whether so-called fundamental constants have changed over time.

  13. [Possibility of exacerbation of allergy by lunar regolith].

    Science.gov (United States)

    Horie, Masanori; Kambara, Tatsunori; Kuroda, Etsushi; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2012-09-01

    Japan, U.S.A. and other foreign space agencies have plans for the construction of a lunar base and long-term stay of astronauts on the moon. The surface of the moon is covered by a thick layer of soil that includes fine particles called "lunar regolith", which is formed by meteorite impact and space weathering. Risk assessment of particulate matter on the moon is important for astronauts working in microgravity on the moon. However, there are few investigations about the biological influences of lunar regolith. Especially, there is no investigation about allergic activity to lunar regolith. The main chemical components of lunar regolith are SiO2, Al2O3, CaO, FeO, etc. Of particular interest, approximately 50% of lunar regolith consists of SiO2. There is a report that the astronauts felt hay fever-like symptoms from the inhalation of the lunar regolith. Yellow sand, whose chemical components are similar to lunar regolith, enhances allergenic reactions, suggesting the possibility that lunar regolith has an adjuvant-like activity. Although intraperitoneal administration of lunar regolith with ovalbumin to mouse did not show enhancement of allergenic reactions, further evaluation of lunar regolith's potential to exacerbate the effects of allergies is essential for development of the moon.

  14. Scalable Lunar Surface Networks and Adaptive Orbit Access, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on our proposed innovations and accomplished work in Phase I, we will focus on developing the new MAC protocol and hybrid routing protocol for lunar surface...

  15. Scalable Lunar Surface Networks and Adaptive Orbit Access

    Science.gov (United States)

    Wang, Xudong

    2015-01-01

    Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.

  16. 35 seasons of US antarctic meteorites (1976-2010) a pictorial guide to the collection

    CERN Document Server

    Righter, Kevin; McCoy, Timothy; Harvey, Ralph; Harvey, Ralph

    2014-01-01

    The US Antarctic meteorite collection exists due to a cooperative program involving the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the Smithsonian Institution.  Since 1976, meteorites have been collected by a NSF-funded field team, shipped for curation, characterization, distribution, and storage at NASA, and classified and stored for long term at the Smithsonian.  It is the largest collection in the world with many significant samples including lunar, martian, many interesting chondrites and achondrites, and even several unusual one-of-

  17. Distribution of Amino Acids in Lunar Regolith

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  18. Magnetic Memory of two lunar samples, 15405 and 15445

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther; Kameníková, T.; Fuller, M.; Čížková, Kristýna

    2016-01-01

    Roč. 51, SI, Supplement 1 (2016), A375-A375 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /79./. 07.08.2016-12.08.2016, Berlin] Institutional support: RVO:67985831 Keywords : Lunar rocks * 15405 * 15445 * Apollo 15 * magnetic remanence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  19. Solar flare neon and solar cosmic ray fluxes in the past using gas-rich meteorites

    International Nuclear Information System (INIS)

    Nautiyal, C.M.; Rao, M.N.

    1986-01-01

    Methods were developed earlier to deduce the composition of solar flare neon and to determine the solar cosmic ray proton fluxes in the past using etched lunar samples and at present, these techniques are extended to gas rich meteorites. By considering high temperature Ne data points for Pantar, Fayetteville and other gas rich meteorites and by applying the three component Ne-decomposition methods, the solar cosmic ray and galactic cosmic ray produced spallation Ne components from the trapped SF-Ne was resolved. Using appropiate SCR and GCR production rates, in the case of Pantar, for example, a GCR exposure age of 2 m.y. was estimated for Pantar-Dark while Pantar-Light yielded a GCR age of approx. 3 m.y. However the SCR exposure age of Pantar-Dark is two orders of magnitude higher than the average surface exposure ages of lunar soils. The possibility of higher proton fluxes in the past is discussed

  20. Research-Grade 3D Virtual Astromaterials Samples: Novel Visualization of NASA's Apollo Lunar Samples and Antarctic Meteorite Samples to Benefit Curation, Research, and Education

    Science.gov (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K. R.; Zeigler, R. A.; Righter, K.; Hanna, R. D.; Ketcham, R. A.

    2017-01-01

    NASA's vast and growing collections of astromaterials are both scientifically and culturally significant, requiring unique preservation strategies that need to be recurrently updated to contemporary technological capabilities and increasing accessibility demands. New technologies have made it possible to advance documentation and visualization practices that can enhance conservation and curation protocols for NASA's Astromaterials Collections. Our interdisciplinary team has developed a method to create 3D Virtual Astromaterials Samples (VAS) of the existing collections of Apollo Lunar Samples and Antarctic Meteorites. Research-grade 3D VAS will virtually put these samples in the hands of researchers and educators worldwide, increasing accessibility and visibility of these significant collections. With new sample return missions on the horizon, it is of primary importance to develop advanced curation standards for documentation and visualization methodologies.

  1. Nuclear tracks in the Angra dos Reis and Moore County meteorites

    International Nuclear Information System (INIS)

    Carver, E.A.; Anders, E.

    1976-01-01

    Charged particle tracks were studied in the Angra dos Reis and Moore County meteorites, both of which contain an unexplained excess of He 4 . A selective annealing method was used to resolve cosmic-ray tracks from fission tracks. It gave the following cosmic-ray and fission-track densities, in units of 10 6 cm -2 : Angra dos Reis 1.3 to 4.4 and 7.8; Moore Co. feldspar 1.9 to 3.0 and 0.51; Moore Co. pigeonite 2.0 to 2.9 and 0.078 to 0.35. The fission-track densities are 10 to 100 times higher than expected from U 238 ; the excess is probably due to extinct Pu 244 . The Pu 244 /U 238 ratios at the start of track retention were 0.003 for Angra dos Reis and 0.002 to 0.03 got Moore Co. No evidence was found for fission tracks attributable to the unknown progenitor of excess He 4 in these meteorites; the fission branch of this progenitor comprises less than 10 -5 the α-branch. A search for pleochroic halos also gave negative results. The preatmospheric radii of the two meteorites are >= 13 and >= 7 cm. According to meteor theory, this implies geocentric velocities of >19 and >= 6 km/sec. The etching behaviour of Angra dos Reis augite is highly anomalous, giving rise to spurious angular anisotropies and skewed length distributions. This confirms similar observation by Fleischer et al (Proc. Apollo II Lunar Sci. Conf. Geochem. Cosmochim. Acta Suppl.; 1:2103 (1970)) on lunar augite. (author)

  2. Martian Pyroxenes in the Shergottite Meteorites; Zagami, SAU005, DAG476 and EETA79001

    Science.gov (United States)

    Stephen, N.; Benedix, G. K.; Bland, P.; Hamilton, V. E.

    2010-12-01

    means of FT-IR analyses in efforts to further constrain Martian-specific minerals such as pigeonite in the meteorites, and will be added to the current spectral database. References: [1] McSween, H.Y. Jnr (1994) Meteoritics and Planetary Science 29, 757-779 [2] Benedix G. and Hamilton V. (2007) Abstract #1805 Lunar and Planetary Science Conference XXXVIII [3] Benedix G.K. and Hamilton V.E. (2009) Abstract #5082 Meteoritics and Planetary Science Annual Meeting 44 [4] Stephen, N.R. et al. (2010) Abstract #2367 Lunar and Planetary Science Conference XLI [5] Stolper E. and McSween, H.Y. Jnr (1979) Geochemica et Cosomochimica Acta, 43, 1475-1498 [6] McCoy, T. et al. (1992) Geochemica et Cosomochimica Acta 56, 3571-3582 [7] Mikouchi, T. and Miyamoto, M. (1999) Meteoritics and Planetary Science, 35, 155-159

  3. The Microstructure of Lunar Micrometeorite Impact Craters

    Science.gov (United States)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2016-01-01

    The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.

  4. Parameters and structure of lunar regolith in Chang'E-3 landing area from lunar penetrating radar (LPR) data

    Science.gov (United States)

    Dong, Zehua; Fang, Guangyou; Ji, Yicai; Gao, Yunze; Wu, Chao; Zhang, Xiaojuan

    2017-01-01

    Chang'E-3 (CE-3) landed in the northwest Mare Imbrium, a region that has not been explored before. Yutu rover that released by CE-3 lander carried the first lunar surface penetrating radar (LPR) for exploring lunar regolith thickness and subsurface shallow geological structures. In this paper, based on the LPR data and the Panoramic Camera (PC) data, we first calculate the lunar surface regolith parameters in CE-3 landing area including its permittivity, density, conductivity and FeO + TiO2 content. LPR data provides a higher spatial resolution and more accuracy for the lunar regolith parameters comparing to other remote sensing techniques, such as orbit radar sounder and microwave sensing or earth-based powerful radar. We also derived the regolith thickness and its weathered rate with much better accuracy in the landing area. The results indicate that the regolith growth rate is much faster than previous estimation, the regolith parameters are not uniform even in such a small study area and the thickness and growth rate of lunar regolith here are different from other areas in Mare Imbrium. We infer that the main reason should be geological deformation that caused by multiple impacts of meteorites in different sizes.

  5. Lunar radionuclide records of average solar-cosmic-ray fluxes over the last ten million years

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1980-01-01

    Because changes in solar activity can modify the fluxes of cosmic-ray particles in the solar system, the nature of the galactic and solar cosmic rays and their interactions with matter are described and used to study the ancient sun. The use of cosmogenic nuclides in meteorites and lunar samples as detectors of past cosmic-ray variations are discussed. Meteorite records of the history of the galactic cosmic rays are reviewed. The fluxes of solar protons over various time periods as determined from lunar radionuclide data are presented and examined. The intensities of solar protons emitted during 1954 to 1964 (11-year solar cycle number 19) were much larger than those for 1965 to 1975 (solar cycle 20). Average solar-proton fluxes determined for the last one to ten million years from lunar 26 Al and 53 Mn data show little variation and are similar to the fluxes for recent solar cycles. Lunar activities of 14 C (and preliminary results for 81 Kr) indicate that the average fluxes of solar protons over the last 10 4 (and 10 5 ) years are several times larger than those for the last 10 6 to 10 7 years; however, cross-section measurements and other work are needed to confirm these flux variations

  6. Enterprise Mac Security Mac OS X Snow Leopard Security

    CERN Document Server

    Edge, Stephen Charles; Hunter, Beau; Sullivan, Gene; LeBlanc, Dee-Ann

    2010-01-01

    A common misconception in the Mac community is that Mac's operating system is more secure than others. While this might be true in certain cases, security on the Mac is still a crucial issue. When sharing is enabled or remote control applications are installed, Mac OS X faces a variety of security threats. Enterprise Mac Security: Mac OS X Snow Leopard is a definitive, expert-driven update of the popular, slash-dotted first edition and was written in part as a companion to the SANS Institute course for Mac OS X. It contains detailed Mac OS X security information, and walkthroughs on securing s

  7. Technical Report : ContikiMAC vs X-MAC performance analysis

    OpenAIRE

    Michel, Mathieu; Quoitin, Bruno

    2014-01-01

    This paper try to better understand the performance of ContikiMAC compared to X-MAC. ContikiMAC achieves a transmission by repeatedly transmitting a data packet until the reception of an ACK from the destination. While X-MAC uses a stream of small size strobes to advertise the destination of the incoming transmission. A priori, X-MAC is then less bandwidth consumptive. To better understand the efficiency of ContikiMAC, despite an intuitively more consumptive transmitting procedure, we have co...

  8. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    Science.gov (United States)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  9. Mac Bible

    CERN Document Server

    Spivey, Dwight

    2009-01-01

    This essential guide answers all your questions on using a Macintosh computer, whether you?re unpacking your very first Mac after switching from a PC or upgrading from an older Mac. You?ll walk through all pre-installed Mac applications, including using Mac OS X, browsing the Web using Safari, downloading music from the iTunes store, troubleshooting Mac-specific problems, organizing photos in iPhoto, organizing calendars in iCal, editing digital video in iMovie, and more.

  10. LEW 88516: A Meteorite Compositionally Close to the "Martian Mantle"

    Science.gov (United States)

    Dreibus, G.; Jochum, K. H.; Palme, H.; Spettel, B.; Wlotzka, F.; Wanke, H.

    1992-07-01

    Several samples from a total of 250 mg of the recently discovered Antarctic shergottite LEW 88516 were analysed for major and trace elements by neutron activation techniques, SSMS, and a carbon-sulfur analyser. Results are presented in Table 1, together with data on ALHA 77005 (Wanke et al., 1976). This and earlier results (Boynton et al., 1992; Lindstrom et al.,1992) show the close compositional similarity of Lew 88516 to ALHA 77005. A major difference between the two shergottites is the much lower iodine content of the ALHA 77005 meteorite. The absence of similar variations in Br and Cl confirms earlier suggestions of an Antarctic source for the I excess. In a Mg/Si vs. Al/Si diagram (Fig. 1) the LEW 88516 meteorite plots at the intersection of a Shergotty parent (SPB) body fractionation trend and a line connecting enstatite chondrites and CM chondrites. The position of LEW 88516 and also of ALHA 77005 in the vicinity of ordinary chondrites is indicative of their relatively primitive composition. Lithophile trace elements show some enhancement of Sc and V over heavy REE and depletion of light REE, suggesting either a residual character for the two meteorites or assimilation of a cumulate phase during their formation. Comparatively high Ni and Co also reflect the more mafic character of the two meteorites. The present analysis and the earlier data on ALHA 77005 unambiguously demonstrate the presence of Ir in an abundance range typical for the terrestrial upper mantle. A similar Ir level was found in Chassigny, but the more fractionated Shergotty has 100 times lower Ir contents. The presence of Ir in the martian mantle samples may be the result of sulfide-silicate equilibration. The sulfides in Lew 88516 are small pyrrhotite grains (5-30 micron, 52 atom% S) and occur often together with ilmenite, at grain boundaries of the major silicate minerals. Sulfides contain an average of 1.8% Ni. However, the major fraction of Ni must reside in oxides and/or silicates as the

  11. Osmium isotope and highly siderophile element systematics of the lunar crust

    Science.gov (United States)

    Day, J.M.D.; Walker, R.J.; James, O.B.; Puchtel, I.S.

    2010-01-01

    Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ?? 0.3 pg g- 1 Os, 1.5 ?? 0.6 pg g- 1 Ir, 6.8 ?? 2.7 pg g- 1 Ru, 16 ?? 15 pg g- 1 Pt, 33 ?? 30 pg g- 1 Pd and 0.29 ?? 0.10 pg g- 1 Re (??? 0.00002 ?? CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (??? 0.00007 ?? CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios (D-values) must be ??? 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat

  12. The record of solar and galactic radiations in the ancient lunar regolith and their implications for the early history of the sun and moon

    International Nuclear Information System (INIS)

    Crozaz, G.; Poupeau, G.; Walker, R.M.; Zinner, E.; Morrison, D.A.

    1977-01-01

    A variety of techniques are available for studying past variations of solar wind, solar flares, galactic cosmic rays, and micrometeorites. Lunar rock results which average over the recent past (approximately 10 Ma) indicate no major changes in any of these components. At longer times, recent data suggest secular changes in the 15 N/ 14 N ratio in the solar wind, possibly due to enhanced solar flare activity. With the deployment of new techniques, it now appears possible to measure solar wind, solar flare, and micro-meteorite records in individual grains removed from different layers of lunar cores. Such grains have been exposed for brief intervals of time (10 3 to 10 4 a) for times extending at least 10 9 a in the past. Lunar and meteoritic breccias are promising candidates for extending the record back still further, perhaps close to the beginning of the solar system. (author)

  13. Simulations of Water Migration in the Lunar Exosphere

    Science.gov (United States)

    Hurley, D.; Benna, M.; Mahaffy, P. R.; Elphic, R. C.; Goldstein, D. B.

    2014-12-01

    We perform modeling and analysis of water in the lunar exosphere. There were two controlled experiments of water interactions with the surface of the Moon observed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS). The Chang'e 3 landing on the Moon on 14 Dec 2013 putatively sprayed ~120 kg of water on the surface on the Moon at a mid-morning local time. Observations by LADEE near the noon meridian on six of the orbits in the 24 hours following the landing constrain the propagation of water vapor. Further, on 4 Apr 2014, LADEE's Orbital Maintenance Manuever (OMM) #21 sprayed the surface of the Moon with an estimated 0.73 kg of water in the pre-dawn sector. Observations of this maneuver and later in the day constrain the adsorption and release at dawn of adsorbed materials. Using the Chang'e 3 exhaust plume and LADEE's OMM-21 as control experiments, we set limits to the adsorption and thermalization of water with lunar regolith. This enables us to predict the efficiency of the migration of water as a delivery mechanism to the lunar poles. Then we simulate the migration of water through the lunar exosphere using the rate of sporadic inputs from meteoritic sources (Benna et al., this session). Simulations predict the amount of water adsorbed to the surface of the Moon and the effective delivery rate to the lunar polar cold traps.

  14. Record of solar and galactic radiations in the ancient lunar regolith and their implications for the early history of the sun and moon

    Energy Technology Data Exchange (ETDEWEB)

    Crozaz, G; Poupeau, G; Walker, R M; Zinner, E; Morrison, D A [Washington Univ., St. Louis, Mo. (USA)

    1977-03-31

    A variety of techniques are available for studying past variations of solar wind, solar flares, galactic cosmic rays, and micrometeorites. Lunar rock results which average over the recent past (approximately 10 Ma) indicate no major changes in any of these components. At longer times, recent data suggest secular changes in the /sup 15/N//sup 14/N ratio in the solar wind, possibly due to enhanced solar flare activity. With the deployment of new techniques, it now appears possible to measure solar wind, solar flare, and micro-meteorite records in individual grains removed from different layers of lunar cores. Such grains have been exposed for brief intervals of time (10/sup 3/ to 10/sup 4/ a) for times extending at least 10/sup 9/ a in the past. Lunar and meteoritic breccias are promising candidates for extending the record back still further, perhaps close to the beginning of the solar system.

  15. Principles of meteoritics

    CERN Document Server

    Krinov, E L

    1960-01-01

    Principles of Meteoritics examines the significance of meteorites in relation to cosmogony and to the origin of the planetary system. The book discusses the science of meteoritics and the sources of meteorites. Scientists study the morphology of meteorites to determine their motion in the atmosphere. The scope of such study includes all forms of meteorites, the circumstances of their fall to earth, their motion in the atmosphere, and their orbits in space. Meteoric bodies vary in sizes; in calculating their motion in interplanetary space, astronomers apply the laws of Kepler. In the region of

  16. Meteorites for K-12 Classrooms: NASA Meteorite Educational Materials

    Science.gov (United States)

    Lindstrom, M.; Allen, J.

    1995-09-01

    The fall of a new meteorite is an event that catches the interest of the public in matters of science. The threat of a huge impact like last year's comet Shoemaker-Levy 9 gives us all reason to evaluate such potential risks. NASA's meteorite educational materials use our natural interest in rocks from space to present classroom activities on planetary science. The meteorite educational package includes a meteorite sample disk, a teachers's guide and a slide set. The sample disk is a lucite disk containing chips of six different kinds of meteorites (3 chondrites, achondrite, iron, stony-iron). EXPLORING METEORITE MYSTERIES is a teacher's guide with background information and 19 hands-on or heads-on activities for grades 4-12. It was prepared in a partnership of planetary scientists and teachers. The slide set consists of 48 slides with captions to be used with the activities. The materials will be available in Fall 1995. Teachers may obtain a loan of the whole package from NASA Teacher Resource Centers; researchers may borrow them from the JSC meteorite curator. The booklet is available separately from the same sources, and the slide set will be available from NASA CORE. EXPLORING METEORITE MYSTERIES is an interdisciplinary planetary science unit which teaches basic science concepts and techniques together with math, reading, writing and social studies The activities are done in a variety of different teaching styles which emphasize observation, experimentation and critical thinking. The activities are ideal for middle schools where teaming makes interdisciplinary units desireable, but most of the activities can be easily modified for grade levels from upper elementary through high school. Meteorites are a natural subject for interdisciplinary teaching because their study involves all fields of science and offers fascinating historical accounts and possibilities for creative expression. Topics covered in EXPLORING METEORITE MYSTERES are centered around basic

  17. Kosice meteorite analysis

    International Nuclear Information System (INIS)

    Sitek, J.; Degmova, J.; Dekan, J.

    2011-01-01

    Meteorite Kosice fell down 28 th of February 2010 near the Kosice and represents an unique find, because the last fall of meteorite was observed in Slovakia at the year 1895. It supposes that for this kind of meteorite the orbit in cosmic space could be calculated. This is one of most important part because until now 13 places of meteorite find are known in the world of which cosmic orbit in space have been calculated. Slovakia is member of international bolide net, dealing with meteorite analysis in Middle Europe .Analysis of Kosice meteorite will also concern at the long live and short live nuclides. Results should be a contribution to determination of radiation and formative ages. From structural analysis of meteorite it will be possible to compare it with similar types of meteorites. In this work Moessbauer spectroscopy will be used for phase analysis from point of view iron contain components with the aim to identify magnetic and non magnetic fractions. From the analysis of magnetic part we can find that the first sextet with hyperfine magnetic field 33.5 T corresponds to bcc Fe-Ni alloy (kamacite) and second with field 31.5 T to FeS (triolite). Meteorites with mentioned composition belong to the mineral group of chondrites. Comparing our parameters with results of measurements at the similar meteorites we can conclude that Kosice meteorite contains the same components. According all Moessbauer parameters we can also include this meteorite in the mineral group of chondrites. (authors)

  18. Solar wind radiation damage in lunar dust grains and the characteristics of the ancient solar wind

    International Nuclear Information System (INIS)

    Borg, J.; Chaumont, J.

    1980-01-01

    Current understanding of the exposure history of lunar dust grains to the ancient solar wind is reviewed, the work being based mostly on a Monte Carlo statistical code, describing the 'gardening' effects of the meteorite bombardment in the lunar regolith, and on analytical models, yielding the lifetimes of the grains against various types of destruction processes. Families of lunar dust grains are identified, and evidence is presented showing that lunar dust grains were not partially shielded from solar wind ions. Results of solar wind simulation experiments are used to interpret the thickness distribution of the amorphous coatings of solar wind radiation-damaged material observed on 1-micron lunar dust grains. It is argued that such distributions reflect the speed distribution of the ancient solar wind as averaged over periods of approximately 5000 years in duration, and that the ancient solar wind is less energetic than the present day solar wind

  19. Macs for dummies

    CERN Document Server

    Baig, Edward C

    2014-01-01

    Get the most out of your Mac with this comprehensive guide Macs For Dummies, 13th Edition is the ultimate guide to your Mac, fully updated to include information about the latest updates. The book walks you through troubleshooting, syncing mobile devices, integrating Windows, and more, so you can take advantage of everything Macs have to offer. Whether you're a new user, a recent convert, or you just want to get the most out of your Mac, this book puts all the information you need in one place. Discover what makes Macs superior computing machines. Learn the basics, from mastering the Dock and

  20. Asymmetric Early Crust-Building Magmatism on the Lunar Nearside Due to KREEP-Induced Melting Point Depression

    Science.gov (United States)

    Elardo, S. M.; Shearer, C. K.; McCuddin, F. M.

    2018-01-01

    The lunar magnesian-suite, or Mg-suite, is a series of ancient plutonic rocks from the lunar crust with ages and compositions indicating that they represent crust-building magmatism occurring immediately after the end of magma ocean crystallization. Samples of the Mg-suite were found at every Apollo landing site except 11 and ubiquitously have geochemical characteristics indicating the involvement of KREEP in their petrogenesis. This observation has led to the suggestion that the presence of the KREEP reservoir under the lunar nearside was responsible for this episode of crust building. The lack of any readily identifiable Mg-suite rocks in meteoritic regolith breccias sourced from outside the Procellarum KREEP Terrane (PKT) seemingly supports this interpretation.

  1. Radioactivity of the moon, planets, and meteorites

    Science.gov (United States)

    Surkou, Y. A.; Fedoseyev, G. A.

    1977-01-01

    Analytical data is summarized for the content of natural radioactive elements in meteorites, eruptive terrestrial rocks, and also in lunar samples returned by Apollo missions and the Luna series of automatic stations. The K-U systematics of samples analyzed in the laboratory are combined with data for orbital gamma-ray measurements for Mars (Mars 5) and with the results of direct gamma-ray measurements of the surface of Venus by the Venera 8 lander. Using information about the radioactivity of solar system bodies and evaluations of the content of K, U, and Th in the terrestrial planets, we examine certain aspects of the evolution of material in the protoplanetary gas-dust cloud and then in the planets of the solar system.

  2. Characterization and Distribution of Lunar Mare Basalt Types Using Remote Sensing Techniques. Ph.D. Thesis

    Science.gov (United States)

    Pieters, C.

    1977-01-01

    The types of basal to be found on the moon were identified using reflectance spectra from a variety of lunar mare surfaces and craters as well as geochemical interpretations of laboratory measurements of reflectance from lunar, terrestrial, and meteoritic samples. Findings indicate that major basaltic units are not represented in lunar sample collections. The existence of late stage high titanium basalts is confirmed. All maria contain lateral variations of compositionally heterogenous basalts; some are vertically inhomogenous with distinctly different subsurface composition. Some basalt types are spectrally gradational, suggesting minor variations in composition. Mineral components of unsampled units can be defined if spectra are obtained with sufficient spectral coverage (.3 to 2.5 micron m) and spatial resolution (approximating .5 km).

  3. Light element geochemistry and spallogenesis in lunar rocks

    International Nuclear Information System (INIS)

    Des Marais, D.J.

    1983-01-01

    The abundances and isotopic compositions of carbon, nitrogen and sulfur were measured in eleven lunar rocks. Samples were combusted sequentially at three temperatures to resolve terrestrial contamination from indigenous volatiles. Sulfur abundances in Apollo 16 highland rocks range from 73 to 1165 μg/g, whereas sulfur contents in Apollo 15 and 17 basalts range from 719 to 1455 μg/g and correlate with TiO 2 content. Lunar rocks as a group have a remarkably uniform sulfur isotopic composition, which may reflect the low oxygen fugacity of the basaltic magmas. Much of the range of reported delta 34 Ssub(CD) values is caused by systematic analytical discrepancies between laboratories. Lunar rocks very likely contain less than 0.1 μg/g of nitrogen. The measured spallogenic production rate, 4.1 x 10 -6 μg 15 N/g sample/m.y., agrees remarkably closely with previous estimates. An estimate which includes all available data is 3.7 x 10 -6 μg 15 N/g sample/m.y. Lunar basalts may contain no indigenous lunar carbon in excess of procedural blank levels. Highland rocks consistently release about 1 to 5 μg/g of carbon in excess of blank levels, but this carbon might either derive from ancient meteoritic debris or be a mineralogic product of terrestrial weathering. The average measured spallogenic 13 C production rate is 4.1 x 10 -6 μg 13 C/g sample/m.y. (author)

  4. Mac Security Bible

    CERN Document Server

    Kissell, Joe

    2010-01-01

    Your essential, no-holds-barred guide to Mac security threats and solutions. Myth number one: Macs are safer than PCs. Not really, says author Joe Kissell, named one of MacTech's "25 Most Influential People" in the Mac community for 2008. In this timely guide, he not only takes you beyond the myths, he also delves into the nitty-gritty of each potential threat, helping you weigh the pros and cons of the solutions you might choose. Learn to measure risk versus inconvenience, make informed decisions, and protect your Mac computers, your privacy, and your data with this essential guide.

  5. Mass extinctions and cosmic collisions - a lunar test

    International Nuclear Information System (INIS)

    Horz, F.

    1985-01-01

    The possibility has been considered that some or all major mass extinctions in the geologic record of earth are caused by the collision of massive, cosmic objects. Thus, it has been proposed that the unusual concentration of siderophile elements in strata at which the boundary between the Cretaceous (K) and Tertiary (T) geologic time periods has been placed must represent the remnants of a gigantic meteorite. However, a large 65-m.y.-old crater which could have been the result of the impact of this meteorite is not presently known on earth. One approach to evaluate the merits of the collisional hypothesis considered is based on the study of the probability of collision between a cosmic object of a suitable size and the earth. As moon and earth were subject to the same bombardment history and the preservation of craters on the moon is much better than on earth, a consideration of the lunar cratering record may provide crucial information. 32 references

  6. Review of the Sayh al Uhaymir (SaU 005, Plus Pairings, Martian Meteorite from Al Wusta, Oman

    Directory of Open Access Journals (Sweden)

    Arshad Ali

    2017-01-01

    Full Text Available Al Wusta is a desert area in the Sultanate of Oman which is famous due to the discovery of a number of Martian and Lunar meteorites since the start of the present millennium. According to the Meteoritical Bulletin database, 137 approved Martian meteorites have been found worldwide, including 17 from Oman (4 from Zufar, 13 from Al Wusta region. Interestingly 11 finds in the last 15 years have been of Sayh al Uhaymir (SaU 005 and its pairings. These finds (estimated mass = 11.2 kg are linked to 10 search expeditions carried out between November 26, 1999 and March 2, 2014 by the Swiss group from the University of Bern and several anonymous meteorite hunters. The bulk of these meteorites (~97% is in the possession of anonymous collectors, negatively affecting Oman’s natural heritage and denying further research opportunities, given their associated scientific value. SaU 005 and its pairings belong to the shergottite group of the Shergotty-Nakhla-Chassigny (SNC meteorites, originating from various depths within the Martian mantle. We discuss the recently published oxygen isotope data of bulk and mineral fractions of SaU 008 recovered during the very first expedition in 1999 in the context of other shergottites found in Oman. The bulk oxygen isotope data of SaU 008 and Dhofar 019, another Martian meteorite from Oman, show a narrow range in δ18O values. Their Δ17O values are remarkably close to identical and fall linearly on a Martian fractionation line above the terrestrial fractionation line (TFL by + 0.32‰, suggesting that Mars’ mantle is homogeneous in oxygen isotopes. Petrographic and mineralogical data of SaU 005 and other pairings published in the Meteoritical Bulletin are compiled, and it is noted that all the meteorites are identical and are likely paired. The story behind these rare extra-terrestrial specimens demands a local meteorite museum and preliminary testing laboratory at Sultan Qaboos University (SQU to protect this treasure

  7. iMac portable genius

    CERN Document Server

    Hart-Davis, Guy

    2010-01-01

    The most up-to-date coverage on the latest iMac advice, tools, and shortcuts Cool and useful tips, full-color screenshots, and savvy advice show you how to get the most out of your iMac. Fully updated to cover the iMac's latest features and capabilities, this guide is packed with indispensible information on iLife '09 and Mac OS X Snow Leopard, and shows you how to customize your iMac in a way that it will work best for you.Explores all the bells and whistles of the iMac, including the new Magic Mouse, iLife apps such as iPhoto and iMovie, and Mac OS X Snow LeopardShows yo

  8. MacBook for dummies

    CERN Document Server

    Chambers , Mark L

    2014-01-01

    Make friends with your MacBook the fun and easy way! Ultra-light, ultra-fast, and ultra-powerful, the MacBook is the coolest laptop in town, and longtime Mac guru Mark L. Chambers is just the guy to help you get to know your MacBook in no time. Take a closer look at the latest features, get the lowdown on OS X, unleash your creative forces with iLife, take care of business with the iWork applications, and sync it all with iCloud with the expert advice in this bestselling MacBook guide. Whether this is your first MacBook or your first laptop, period, you''ll learn to navigate the Mac desktop, c

  9. Asteroid/meteorite streams

    Science.gov (United States)

    Drummond, J.

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  10. Windows for Intel Macs

    CERN Document Server

    Ogasawara, Todd

    2008-01-01

    Even the most devoted Mac OS X user may need to use Windows XP, or may just be curious about XP and its applications. This Short Cut is a concise guide for OS X users who need to quickly get comfortable and become productive with Windows XP basics on their Macs. It covers: Security Networking ApplicationsMac users can easily install and use Windows thanks to Boot Camp and Parallels Desktop for Mac. Boot Camp lets an Intel-based Mac install and boot Windows XP on its own hard drive partition. Parallels Desktop for Mac uses virtualization technology to run Windows XP (or other operating systems

  11. Creation of High Resolution Terrain Models of Barringer Meteorite Crater (Meteor Crater) Using Photogrammetry and Terrestrial Laser Scanning Methods

    Science.gov (United States)

    Brown, Richard B.; Navard, Andrew R.; Holland, Donald E.; McKellip, Rodney D.; Brannon, David P.

    2010-01-01

    Barringer Meteorite Crater or Meteor Crater, AZ, has been a site of high interest for lunar and Mars analog crater and terrain studies since the early days of the Apollo-Saturn program. It continues to be a site of exceptional interest to lunar, Mars, and other planetary crater and impact analog studies because of its relatively young age (est. 50 thousand years) and well-preserved structure. High resolution (2 meter to 1 decimeter) digital terrain models of Meteor Crater in whole or in part were created at NASA Stennis Space Center to support several lunar surface analog modeling activities using photogrammetric and ground based laser scanning techniques. The dataset created by this activity provides new and highly accurate 3D models of the inside slope of the crater as well as the downslope rock distribution of the western ejecta field. The data are presented to the science community for possible use in furthering studies of Meteor Crater and impact craters in general as well as its current near term lunar exploration use in providing a beneficial test model for lunar surface analog modeling and surface operation studies.

  12. Metal/sulfide-silicate intergrowth textures in EL3 meteorites: Origin by impact melting on the EL parent body

    Science.gov (United States)

    van Niekerk, Deon; Keil, Klaus

    2011-10-01

    We document the petrographic setting and textures of Fe,Ni metal, the mineralogy of metallic assemblages, and the modal mineral abundances in the EL3 meteorites Asuka (A-) 881314, A-882067, Allan Hills 85119, Elephant Moraine (EET) 90299/EET 90992, LaPaz Icefield 03930, MacAlpine Hills (MAC) 02635, MAC 02837/MAC 02839, MAC 88136, Northwest Africa (NWA) 3132, Pecora Escarpment 91020, Queen Alexandra Range (QUE) 93351/QUE 94321, QUE 94594, and higher petrologic type ELs Dar al Gani 1031 (EL4), Sayh al Uhaymir 188 (EL4), MAC 02747 (EL4), QUE 94368 (EL4), and NWA 1222 (EL5). Large metal assemblages (often containing schreibersite and graphite) only occur outside chondrules and are usually intergrown with silicate minerals (euhedral to subhedral enstatite, silica, and feldspar). Sulfides (troilite, daubréelite, and keilite) are also sometimes intergrown with silicates. Numerous authors have shown that metal in enstatite chondrites that are interpreted to have been impact melted contains euhedral crystals of enstatite. We argue that the metal/sulfide-silicate intergrowths in the ELs we studied were also formed during impact melting and that metal in EL3s thus does not retain primitive (i.e., nebular) textures. Likewise, the EL4s are also impact-melt breccias. Modal abundances of metal in the EL3s and EL4s range from approximately 7 to 30 wt%. These abundances overlap or exceed those of EL6s, and this is consistent either with pre-existing heterogeneity in the parent body or with redistribution of metal during impact processes.

  13. iMac for dummies

    CERN Document Server

    Chambers, Mark L

    2014-01-01

    Do it all with your iMac and this bestselling For Dummies guide! You're still a little giddy from finally scoring your new iMac, and you can't wait to get started. Even if you're already in love with your iMac, it helps to have a little guidance to really get the most out of this ultimate all-in-one computer. This updated edition of iMac For Dummies is the ideal way to learn the iMac fundamentals from setting up and personalizing your machine to importing files, making FaceTime video calls, surfing the web, using your favorite programs and apps, and everything in between. Trusted Mac guru Mark

  14. Mac at Work

    CERN Document Server

    Sparks, David

    2011-01-01

    Bridge the gap between using a Mac at home and at the office. Now that you love your Mac at home, you want to use one at the office without missing a beat of productivity or professionalism. This unique guide shows you how.  You'll find best Mac business practices for handling word processing, spreadsheet and presentation creation, task and project management, and graphics. The book also explores topics such as hardware maintenance, how to synchronize with multiple computers, data backup, and communication with Windows networks.: Covers the nuts and bolts of using a Mac at work, including sync

  15. Analysis of 3gpp-MAC and two-key 3gpp-MAC

    DEFF Research Database (Denmark)

    Knudsen, Lars Ramkilde; Mitchell, C.J.

    2003-01-01

    Forgery and key-recovery attacks are described on the 3gpp-MAC scheme, proposed for inclusion in the 3gpp specification. Three main classes of attack are given, all of which operate whether or not truncation is applied to the MAC value. Attacks in the first class use a large number of 'chosen MAC...

  16. MacBook Teach Yourself VISUALLY

    CERN Document Server

    Miser, Brad

    2010-01-01

    Like the MacBook itself, Teach Yourself VISUALLY MacBook, Second Edition is designed to be visually appealing, while providing excellent functionality at the same time. By using this book, MacBook users will be empowered to do everyday tasks quickly and easily. From such basic steps as powering on or shutting down the MacBook, working on the Mac desktop with the Dashboard and its widgets to running Windows applications, Teach Yourself VISUALLY MacBook, Second Edition covers all the vital information and provides the help and support a reader needs—in many ways it's like having a Mac Genius at

  17. iMac pocket genius

    CERN Document Server

    Hart-Davis, Guy

    2010-01-01

    If you want to get the very most out of your iMac, put this savvy Portable Genius guide to work. Want to make the most of the new Magic Mouse and the latest iLife apps? Set up a wireless network using your iMac's AirPort card? Watch television on your iMac, or show iMac videos and movies on your television? You'll find cool and useful Genius tips, full-color screenshots, and pages of easy-to-access shortcuts and tools that will save you time and let you enjoy your iMac to the max.

  18. Enterprise Mac Administrator's Guide

    CERN Document Server

    Edge, Charles; Hunter, Beau

    2009-01-01

    Charles Edge, Zack Smith, and Beau Hunter provide detailed explanations of the technology required for large-scale Mac OS X deployments and show you how to integrate it with other operating systems and applications. Enterprise Mac Administrator's Guide addresses the growing size and spread of Mac OS X deployments in corporations and institutions worldwide. In some cases, this is due to the growth of traditional Mac environments, but for the most part it has to do with "switcher" campaigns, where Windows and/or Linux environments are migrating to Mac OS X. However, there is a steep cu

  19. Pulmonary and Systemic Immune Response to Chronic Lunar Dust Inhalation

    Science.gov (United States)

    Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence

    2014-01-01

    Background: Due to millennia of meteorite impact with virtually no erosive effects, the surface of the Moon is covered by a layer of ultra-fine, reactive Lunar dust. Very little is known regarding the toxicity of Lunar dust on human physiology. Given the size and electrostatic characteristics of Lunar dust, countermeasures to ensure non-exposure of astronauts will be difficult. To ensure astronaut safety during any future prolonged Lunar missions, it is necessary to establish the effect of chronic pulmonary Lunar dust exposure on all physiological systems. Methods: This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and system immune system parameters. Rats were exposed to 0, 20.8, or 60.8 mg/m3 of lunar dust (6h/d; 5d/wk) for up to 13 weeks. Sacrifices occurred after exposure durations of 1day, 7 days, 4 weeks and 13 weeks post-exposure, when both blood and lung lavage fluid were collected for analysis. Lavage and blood assays included leukocyte distribution by flow cytometry, electron/fluorescent microscopy, and cytokine concentration. Cytokine production profiles following mitogenic stimulation were performed on whole blood only. Results: Untreated lavage fluid was comprised primarily of pulmonary macrophages. Lunar dust inhalation resulted in an influx of neutrophils and lymphocytes. Although the percentage of lymphocytes increased, the T cell CD4:CD8 ratio was unchanged. Cytokine analysis of the lavage fluid showed increased levels of IL-1b and TNFa. These alterations generally persisted through the 13 week sampling. Blood analysis showed few systemic effects from the lunar dust inhalation. By week 4, the peripheral granulocyte percentage was elevated in the treated rats. Plasma cytokine levels were unchanged in all treated rats compared to controls. Peripheral blood analysis showed an increased granulocyte percentage and altered cytokine production profiles consisting of increased in IL-1b and IL-6, and decreased IL-2

  20. Rock sample brought to earth from the Apollo 12 lunar landing mission

    Science.gov (United States)

    1969-01-01

    A scientist's gloved hand holds one of the numerous rock samples brought back to Earth from the Apollo 12 lunar landing mission. This sample is a highly shattered basaltic rock with a thin black-glass coating on five of its six sides. Glass fills fractures and cements the rock together. The rock appears to have been shattered and thrown out by a meteorite impact explosion and coated with molten rock material before the rock fell to the surface.

  1. iMac for dummies

    CERN Document Server

    Chambers, Mark L

    2012-01-01

    The bestselling guide to the ultimate all-in-one computer—now updated and revised throughout! If you're looking for speed, performance, and power, the iMac is the ultimate all-in-one computer. From its superior performance, powerful operating system, and amazing applications, the iMac is one awesome machine, and the fun, friendly, and approachable style of iMac For Dummies is an ideal way to get started with the basics. You'll learn the fundamentals of the iMac including setting up and customizing your iMac and the software that comes with it, importing files from your old computer, send

  2. Macs For Dummies, Pocket Edition

    CERN Document Server

    Baig, Edward C

    2011-01-01

    The fun and easy way to make the most of your wonderful Mac. Simply Mac-nificent — all the cool things your Mac can do! This handy guide helps you figure out the nuts and bolts of your Mac. Navigate the Mac desktop, use the Safari Web browser to surf the Internet, e-mail photos to friends and family, create and print documents, rip audio CDs, and more. The fun begins right here!. Open the book and find: How to set up and configure your Mac; Tips for getting around on the Mac desktop; Steps for setting up an e-mail account and browsing the Internet; Details about the free programs that come wit

  3. Enterprise Mac administrators guide

    CERN Document Server

    Smith, William

    2015-01-01

    IT departments everywhere will be integrating Macs and Mac OS X into their IT infrastructure and this book will tell them how to do it. It will serve as an authoritative, useful and frequently referenced book on Mac OS X administration.

  4. Antarctic Meteorite Newsletter

    Science.gov (United States)

    Lindstrom, Marilyn

    2000-01-01

    This newsletter contains something for everyone! It lists classifications of about 440 meteorites mostly from the 1997 and 1998 ANSMET (Antarctic Search for Meteorites) seasons. It also gives descriptions of about 45 meteorites of special petrologic type. These include 1 iron, 17 chondrites (7 CC, 1 EC, 9 OC) and 27 achondrites (25 HED, UR). Most notable are an acapoloite (GRA98028) and an olivine diogenite (GRA98108).

  5. Mac OS X Forensics

    Science.gov (United States)

    Craiger, Philip; Burke, Paul

    This paper describes procedures for conducting forensic examinations of Apple Macs running Mac OS X. The target disk mode is used to create a forensic duplicate of a Mac hard drive and preview it. Procedures are discussed for recovering evidence from allocated space, unallocated space, slack space and virtual memory. Furthermore, procedures are described for recovering trace evidence from Mac OS X default email, web browser and instant messaging applications, as well as evidence pertaining to commands executed from a terminal.

  6. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Ruzicka, Alex M.; Haack, Henning; Chabot, Nancy L.

    2017-01-01

    By far most of the melted and differentiated planetesimals that have been sampled as meteorites are metal-rich iron meteorites or stony iron meteorites. The parent asteroids of these meteorites accreted early and differentiated shortly after the solar system formed, producing some of the oldest...... and interpretations for iron and stony iron meteorites (Plate 13.1). Such meteorites provide important constraints on the nature of metal-silicate separation and mixing in planetesimals undergoing partial to complete differentiation. They include iron meteorites that formed by the solidification of cores...... (fractionally crystallized irons), irons in which partly molten metal and silicates of diverse types were mixed together (silicate-bearing irons), stony irons in which partly molten metal and olivine from cores and mantles were mixed together (pallasites), and stony irons in which partly molten metal...

  7. Understanding the origin and evolution of water in the Moon through lunar sample studies.

    Science.gov (United States)

    Anand, Mahesh; Tartèse, Romain; Barnes, Jessica J

    2014-09-13

    A paradigm shift has recently occurred in our knowledge and understanding of water in the lunar interior. This has transpired principally through continued analysis of returned lunar samples using modern analytical instrumentation. While these recent studies have undoubtedly measured indigenous water in lunar samples they have also highlighted our current limitations and some future challenges that need to be overcome in order to fully understand the origin, distribution and evolution of water in the lunar interior. Another exciting recent development in the field of lunar science has been the unambiguous detection of water or water ice on the surface of the Moon through instruments flown on a number of orbiting spacecraft missions. Considered together, sample-based studies and those from orbit strongly suggest that the Moon is not an anhydrous planetary body, as previously believed. New observations and measurements support the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. Furthermore, an approach combining measurements of water abundance in lunar samples and its hydrogen isotopic composition has proved to be of vital importance to fingerprint and elucidate processes and source(s) involved in giving rise to the lunar water inventory. A number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar wind hydrogen with the lunar soil. Perhaps two of the most striking findings from these recent studies are the revelation that at least some portions of the lunar interior are as water-rich as some Mid-Ocean Ridge Basalt source regions on Earth and that the water in the Earth and the Moon probably share a common origin. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Meteorites as space probes

    International Nuclear Information System (INIS)

    Jaques, A.L.

    1982-01-01

    Meteorites are a major source of information on evolution of the solar system. The BMR-Hollmayer meteorite collection consists mainly of chondrites but also includes a carbonaceous chondrite and a ureilite from the achondrite group. The mineralogy and chemical composition of the meteorites have been studied

  9. Spinel-rich lithologies in the lunar highland crust: Linking lunar samples, crystallization experiments and remote sensing

    Science.gov (United States)

    Gross, J.; Treiman, A. H.

    2012-12-01

    The discovery of areas rich in (Mg,Fe)-Al spinel on the rims and central peaks of lunar impact basins (by the M3 mapping spectrometer on Chandrayaan-1) has revived the old puzzle of the origin of lunar spinel. (Mg,Fe)-Al spinel is rare but widespread in lunar highlands rocks, and thus might be an important component of the lunar crust [1-3]. However, the origin of this spinel is not clear. Lunar (Mg,Fe)-Al spinel could have formed (1) during 'normal' basalt petrogenesis at high pressure; (2) during low-pressure crystallization of melts rich in olivine and plagioclase components, e.g. impact-melted lunar troctolite; or (3) formed at low pressure during assimilation of anorthosite into picritic magma; thus, lunar spinel-rich areas represent old (pre-impact) intrusions of magma. In the absence of spinel-rich samples from the Moon, however, these ideas have been highly speculative. Here we describe a rock fragment from lunar meteorite ALHA 81005 that we recently reported [4] that not only contains spinel, but is the first spinel-rich lunar sample described. This fragment contains ~30% (Mg,Fe)Al spinel and is so fine grained that it reasonably could represent a larger rock body. However, the fragment is so rich in spinel that it could not have formed by melting a peridotitic mantle or a basaltic lunar crust. The clast's small grain size and its apparent disequilibrium between spinel and pyroxene suggest fairly rapid crystallization at low pressure. It could have formed as a spinel cumulate from an impact melt of troctolitic composition; or from a picritic magma that assimilated crustal anorthosite on its margins. The latter mechanism is preferred because it explains the petrographic and chemical features of our clast, and is consistent with the regional setting of the Moscoviense spinel deposit [4]. To better understand the origin and formation history(s) of spinel-rich rocks, we also performed liquidus/crystallization experiments at low-pressure as analogues for impact

  10. I-MAC: an incorporation MAC for wireless sensor networks

    Science.gov (United States)

    Zhao, Jumin; Li, Yikun; Li, Dengao; Lin, Xiaojie

    2017-11-01

    This paper proposes an innovative MAC protocol called I-MAC. Protocol for wireless sensor networks, which combines the advantages of collision tolerance and collision cancellation. The protocol increases the number of antenna in wireless sensor nodes. The purpose is to monitor the occurrence of packet collisions by increasing the number of antenna in real time. The built-in identity structure is used in the frame structure in order to help the sending node to identify the location of the receiving node after a data packet collision is detected. Packets can be recovered from where the conflict occurred. In this way, we can monitor the conflict for a fixed period of time. It can improve the channel utilisation through changing the transmission probability of collision nodes and solve the problem of hidden terminal through collision feedback mechanism. We have evaluated our protocol. Our results show that the throughput of I-MAC is 5 percentage points higher than that of carrier sense multiple access/collision notification. The network utilisation of I-MAC is more than 92%.

  11. Organic Molecules in Meteorites

    Science.gov (United States)

    Martins, Zita

    2015-08-01

    Carbonaceous meteorites are primitive samples from the asteroid belt, containing 3-5wt% organic carbon. The exogenous delivery of organic matter by carbonaceous meteorites may have contributed to the organic inventory of the early Earth. The majority (>70%) of the meteoritic organic material consist of insoluble organic matter (IOM) [1]. The remaining meteoritic organic material (meteorites contain soluble organic molecules with different abundances and distributions, which may reflect the extension of aqueous alteration or thermal metamorphism on the meteorite parent bodies. Extensive aqueous alteration on the meteorite parent body may result on 1) the decomposition of α-amino acids [5, 6]; 2) synthesis of β- and γ-amino acids [2, 6-9]; 3) higher relative abundances of alkylated polycyclic aromatic hydrocarbons (PAHs) [6, 10]; and 4) higher L-enantiomer excess (Lee) value of isovaline [6, 11, 12].The soluble organic content of carbonaceous meteorites may also have a contribution from Fischer-Tropsch/Haber-Bosch type gas-grain reactions after the meteorite parent body cooled to lower temperatures [13, 14].The analysis of the abundances and distribution of the organic molecules present in meteorites helps to determine the physical and chemical conditions of the early solar system, and the prebiotic organic compounds available on the early Earth.[1] Cody and Alexander (2005) GCA 69, 1085. [2] Cronin and Chang (1993) in: The Chemistry of Life’s Origin. pp. 209-258. [3] Martins and Sephton (2009) in: Amino acids, peptides and proteins in organic chemistry. pp. 1-42. [4] Martins (2011) Elements 7, 35. [5] Botta et al. (2007) MAPS 42, 81. [6] Martins et al. (2015) MAPS, in press. [7] Cooper and Cronin (1995) GCA 59, 1003. [8] Glavin et al. (2006) MAPS. 41, 889. [9] Glavin et al. (2011) MAPS 45, 1948. [10] Elsila et al. (2005) GCA 5, 1349. [11] Glavin and Dworkin (2009) PNAS 106, 5487. [12] Pizzarello et al. (2003) GCA 67, 1589. [13] Chan et al. (2012) MAPS. 47, 1502

  12. TreeMAC: Localized TDMA MAC protocol for real-time high-data-rate sensor networks

    Science.gov (United States)

    Song, W.-Z.; Huang, R.; Shirazi, B.; Husent, R.L.

    2009-01-01

    Earlier sensor network MAC protocols focus on energy conservation in low-duty cycle applications, while some recent applications involve real-time high-data-rate signals. This motivates us to design an innovative localized TDMA MAC protocol to achieve high throughput and low congestion in data collection sensor networks, besides energy conservation. TreeMAC divides a time cycle into frames and frame into slots. Parent determines children's frame assigmnent based on their relative bandwidth demand, and each node calculates its own slot assignment based on its hop-count to the sink. This innovative 2-dimensional frame-slot assignment algorithm has the following nice theory properties. Firstly, given any node, at any time slot, there is at most one active sender in its neighborhood (includ ing itself). Secondly, the packet scheduling with TreelMAC is bufferless, which therefore minimizes the probability of network congestion. Thirdly, the data throughput to gateway is at least 1/3 of the optimum assuming reliable links. Our experiments on a 24 node test bed demonstrate that TreeMAC protocol significantly improves network throughput and energy efficiency, by comparing to the TinyOS's default CSMA MAC protocol and a recent TDMA MAC protocol Funneling-MAC[8]. ?? 2009 IEEE.

  13. Meteorite falls in Africa

    Science.gov (United States)

    Khiri, Fouad; Ibhi, Abderrahmane; Saint-Gerant, Thierry; Medjkane, Mohand; Ouknine, Lahcen

    2017-10-01

    The study of meteorites provides insight into the earliest history of our solar system. From 1800, about the year meteorites were first recognized as objects falling from the sky, until December 2014, 158 observed meteorite falls were recorded in Africa. Their collected mass ranges from 1.4 g to 175 kg with the 1-10 kg cases predominant. The average rate of African falls is low with only one fall recovery per 1.35-year time interval (or 0.023 per year per million km2). This African collection is dominated by ordinary chondrites (78%) just like in the worldwide falls. The seventeen achondrites include three Martian meteorite falls (Nakhla of Egypt, Tissint of Morocco and Zagami of Nigeria). Observed Iron meteorite falls are relatively rare and represent only 5%. The falls' rate in Africa is variable in time and in space. The number of falls continues to grow since 1860, 80% of which were recovered during the period between 1910 and 2014. Most of these documented meteorite falls have been recovered from North-Western Africa, Eastern Africa and Southern Africa. They are concentrated in countries which have a large surface area and a large population with a uniform distribution. Other factors are also favorable for observing and collecting meteorite falls across the African territory, such as: a genuine meteorite education, a semi-arid to arid climate (clear sky throughout the year most of the time), croplands or sparse grasslands and possible access to the fall location with a low percentage of forest cover and dense road network.

  14. A Monte Carlo model for the exposure history of lunar dust grains in the ancient solar wind

    International Nuclear Information System (INIS)

    Borg, J.; Comstock, G.M.; Langevin, Y.; Maurette, M.; Jouffrey, B.; Jouret, C.

    1976-01-01

    The theoretical motion of the individual dust grains in the lunar regolith is analyzed by using a Monte Carlo statistical code where the variables are the mass and speed distribution of meteorites at the lunar surface and the geometrical shape of impact craters. From these computations the detailed irradiation history of the grains in the ancient solar wind is traced back, over a period of 4 billion years, as a function of the grain-size. Then by combining this irradiation scheme with the results of solar wind simulation experiments, the time and depth dependent accumulation of solar wind effects in the theoretical grains (solar wind maturation) is inferred. Finally, the validity of these predictions is tentatively checked by discussing a variety of physical and chemical solar wind effects which are registered in the surface layers of lunar dust grains. Therefore these studies give a tentative scenario for the 'maturation' of the lunar regolith with respect to solar wind effects, but they also reveal useful guidelines to deduce meaningful information from such effects. In particular, they suggest a 'lunar skin' sampling technique for extracting dust grains in lunar core tubes which could help in deciphering the past activity of the ancient solar wind over a time scale of several billion years. (Auth.)

  15. Gotcha! Macs lose their innocence

    CERN Multimedia

    Computer Security Team

    2012-01-01

    Still believe your Mac is secure because Microsoft PCs fall prey to viruses and worms but Macs don’t? Time to wake up! This year has seen the first major compromise of Macs worldwide*. How is yours doing?   The “Flashback” Trojan is affecting Apple’s own variant of Java and compromises Macs via so-called drive-by infections, i.e. when you visit an appropriately prepared (infected!) website - and this might not necessarily be a site with questionable contents, but could well be a popular, reputable one. Security Companies worldwide have been monitoring this particular Trojan for a while and have estimated that more than half a million Macs were compromised. Connected to a few central command and control servers, the compromised Macs were then supporting the malicious activity of the bad guys! Fortunately, the security companies have now been able to take over those command and control servers and stop their destructive drive. So, Mac users, face the f...

  16. EBSD analysis of the Shergottite Meteorites: New developments within the technique and their implication on what we know about the preferred orientation of Martian minerals

    Science.gov (United States)

    Stephen, N.; Benedix, G. K.; Bland, P.; Berlin, J.; Salge, T.; Goran, D.

    2011-12-01

    their constituent minerals and any existing preferred orientations. [1] Stolper E. and McSween, H.Y. Jnr (1979) Geochemica et Cosomochimica Acta, 43, 1475-1498 [2] McCoy, T.J. et al. (1992) Geochimica et Cosomochimica Acta, 56, 3571-3582 [3] N.R. Stephen et al. (2010) Abstract #5008 73rd Annual Meeting of the Meteoritical Society [4] N.R. Stephen et al. (2010) Abstract #2367 Lunar & Planetary Science Conference XLI [5] J. Berlin et al. (2011) Abstract #2723 Lunar & Planetary Science Conference XLII

  17. Irradiation and accretion of solids in space based on observations of lunar rocks and grains

    International Nuclear Information System (INIS)

    Lal, D.

    1977-01-01

    Clues to a wide range of questions relating to the origin and evolution of the solar system and dynamic physical and electromagnetic processes occurring concurrently and in the past in our galaxy have been provided by a study of the lunar samples. This information is deduced from a variety of complementary physical and chemical evidence. In this presentation greatest emphasis is laid on information based on effects arising from interactions of low energy cosmic rays with lunar surface materials. The present discussions concern the nature of experimental data to date and implications thereof to the charged particle environment of the Moon, ancient magnetic fields and the nature of time scales involved in the irradiation and accretion of solids in space, based on lunar regolith dynamics. It becomes clear that there does not yet exist any consensus on the absolute values of charged particle or the meteorite fluxes, and also about the details of the evolution of the lunar regolith. The complex history of evolution of lunar material is slowly being understood and it is hoped that a great deal of quantitative information will soon be available which will in turn allow discussion of evolution of solid bodies in the solar system. (author)

  18. Meteors, meteorites and cosmic dust

    International Nuclear Information System (INIS)

    Lebedinets, V.N.

    1987-01-01

    The problem of meteorite origin and meteorite composition is discussed. Nowadays, most scientists suppose that the giant Oort cloud consisting of ice comet nuclei is the sourse of the meteor matter. A principle unity of the matter of meteorites falling to the Earth and cosmic dust is noted as well as that of meteorite bodies evaporating in the atmosphere and bearing meteors and bodies

  19. Antarctic Meteorite Classification and Petrographic Database

    Science.gov (United States)

    Todd, Nancy S.; Satterwhite, C. E.; Righter, Kevin

    2011-01-01

    The Antarctic Meteorite collection, which is comprised of over 18,700 meteorites, is one of the largest collections of meteorites in the world. These meteorites have been collected since the late 1970's as part of a three-agency agreement between NASA, the National Science Foundation, and the Smithsonian Institution [1]. Samples collected each season are analyzed at NASA s Meteorite Lab and the Smithsonian Institution and results are published twice a year in the Antarctic Meteorite Newsletter, which has been in publication since 1978. Each newsletter lists the samples collected and processed and provides more in-depth details on selected samples of importance to the scientific community. Data about these meteorites is also published on the NASA Curation website [2] and made available through the Meteorite Classification Database allowing scientists to search by a variety of parameters

  20. Age of meteorites, the Moon, the Earth

    International Nuclear Information System (INIS)

    Ovchinnikova, G.V.; Levskij, L.K.

    1987-01-01

    Review of modern data on age determination of meteorites and lunar rocks and review of papers dedicted to calculations of the Earth age as well are given. Analysis of the age present values, obtained by different methods of isotopic dating has allowed to build up the global events following succession: ∼ 4.8x10 9 years ago - the beginning of dust component condensation within protosolar cloud; ∼ 4.55x10 9 year - the end of cosmic bodies accretion; (4.5-4.4)x10 9 years - differentiation of large planetray bodies (the Moon, the Mars, the Earth) with isolation of the bed type protocrust. Substance differentiation is not typical for solar system small bodies (asteroid-size bodies). Development of the magnetism of main composition (achondrites) on the surface of these bodies is their peculiarity. Both differentiation and basalt volcanism at early periods of cosmic bodies existance are initiated by exogenous factors. Duration of endogenous basalt volcanism correlates with planetary body size

  1. Meteorites, Ice, and Antarctica

    Science.gov (United States)

    Cassidy, William A.

    2003-08-01

    Bill Cassidy led meteorite recovery expeditions in the Antarctic for fifteen years and his searches have resulted in the collection of thousands of meteorite specimens from the ice. This personal account of his field experiences on the U.S. Antarctic Search for Meteorites Project reveals the influence the work has had on our understanding of the moon, Mars and the asteroid belt. Cassidy describes the hardships and dangers of fieldwork in a hostile environment, as well as the appreciation he developed for its beauty. William Cassidy is Emeritus Professor of Geology and Planetary Science at the University of Pittsburgh. He initiated the U.S. Antarctic Search for Meteorites (ANSMET) nroject and led meteorite recovery expeditions in Antarctica in1976. His name is found attached to a mineral (cassidyite), on the map of Antarctica (Cassidy Glacier), and in the Catalog of Asteroids (3382 Cassidy). Profiled in "American Men of Science," and "Who's Who in America," he is also a recipient of The Antarctic Service Medal from the United States and has published widely in Science, Meteoritics and Planetary Science, and The Journal of Geophysical Research.

  2. An Interdisciplinary Method for the Visualization of Novel High-Resolution Precision Photography and Micro-XCT Data Sets of NASA's Apollo Lunar Samples and Antarctic Meteorite Samples to Create Combined Research-Grade 3D Virtual Samples for the Benefit of Astromaterials Collections Conservation, Curation, Scientific Research and Education

    Science.gov (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Hanna, R. D.; Ketcham, R. A.

    2016-01-01

    New technologies make possible the advancement of documentation and visualization practices that can enhance conservation and curation protocols for NASA's Astromaterials Collections. With increasing demands for accessibility to updated comprehensive data, and with new sample return missions on the horizon, it is of primary importance to develop new standards for contemporary documentation and visualization methodologies. Our interdisciplinary team has expertise in the fields of heritage conservation practices, professional photography, photogrammetry, imaging science, application engineering, data curation, geoscience, and astromaterials curation. Our objective is to create virtual 3D reconstructions of Apollo Lunar and Antarctic Meteorite samples that are a fusion of two state-of-the-art data sets: the interior view of the sample by collecting Micro-XCT data and the exterior view of the sample by collecting high-resolution precision photography data. These new data provide researchers an information-rich visualization of both compositional and textural information prior to any physical sub-sampling. Since January 2013 we have developed a process that resulted in the successful creation of the first image-based 3D reconstruction of an Apollo Lunar Sample correlated to a 3D reconstruction of the same sample's Micro- XCT data, illustrating that this technique is both operationally possible and functionally beneficial. In May of 2016 we began a 3-year research period during which we aim to produce Virtual Astromaterials Samples for 60 high-priority Apollo Lunar and Antarctic Meteorite samples and serve them on NASA's Astromaterials Acquisition and Curation website. Our research demonstrates that research-grade Virtual Astromaterials Samples are beneficial in preserving for posterity a precise 3D reconstruction of the sample prior to sub-sampling, which greatly improves documentation practices, provides unique and novel visualization of the sample's interior and

  3. Stable Chlorine Isotopes and Elemental Chlorine by Thermal Ionization Mass Spectrometry and Ion Chromatography; Martian Meteorites, Carbonaceous Chondrites and Standard Rocks

    Science.gov (United States)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.

    2011-01-01

    Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.

  4. Survey on Cosmogenic 26Al in Lewis Cliff Meteorites

    Science.gov (United States)

    Welten, K. C.; Alderliesten, C.; Lindner, L.

    1992-07-01

    levels of 56 +- 7 and 60 +- 7 for H and L chondrites, respectively [3], range up to 800 ka with an average of about 290 ka. Altogether this may indicate that the Lewis Cliff blue-ice region is a relatively old meteorite stranding area. This is supported by preliminary conclusions based on ^36Cl, measured in 8 Lewis Cliff meteorites [4]. However, it is likely that some of our terrestrial ages have been overestimated due to (i) lower ^26Al saturation values for meteorites with preatmospheric radii less than 20 cm [3] and (ii) low exposure ages, resulting in initial ^26Al levels below 90-95% of the saturation level. These effects make individual terrestrial age determinations solely based on ^26Al content speculative as long as additional cosmogenic nuclide data are lacking. Dramatic changes in the overall picture are not expected, because (i) we have measured relatively large samples with an average recovered weight of about 500 g (one 11-kg sample excluded) and (ii) anomalously low exposure ages occur in about only 5% of the cases [5,6]. Possible correlations between terrestrial age and place of find will be discussed. UNUSUAL EXPOSURE HISTORIES: We excluded samples with extremely low NTL (financial support from the "Nederlandse Organisatie voor Wetenschappelijk Onderzoek" (NWO). References: 1. Komura K. et al. (1982) Mem. NIPR Spec. Issue 25, 178-187; 2. Evans J.C. and Reeves J.H. (1987) EPSL 82, 223-230; 3. Vogt S. (1990) LPI Tech. Rpt. 90-05, 112-118; 4. Nishizumi K. et al. (1991) Meteoritics 26 (abs.), 380; 5. Graf Th. and Marti K. (1990) Lunar Planet. Sci. XXI, 431-432; 6. Schultz L., Weber H.W. and Begemann F. (1991) GCA 55, 59-66; 7. Benoit P.H. et al. (1990) Ant. J. of the U.S. 25 (Rev.), 47-49.

  5. The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter.

    Science.gov (United States)

    Modali, Sita D; Zgurskaya, Helen I

    2011-08-01

    Escherichia coli MacAB-TolC is a tripartite macrolide efflux transporter driven by hydrolysis of ATP. In this complex, MacA is the periplasmic membrane fusion protein that stimulates the activity of MacB transporter and establishes the link with the outer membrane channel TolC. The molecular mechanism by which MacA stimulates MacB remains unknown. Here, we report that the periplasmic membrane proximal domain of MacA plays a critical role in functional MacA-MacB interactions and stimulation of MacB ATPase activity. Binding of MacA to MacB stabilizes the ATP-bound conformation of MacB, whereas interactions with both MacB and TolC affect the conformation of MacA. A single G353A substitution in the C-terminus of MacA inactivates MacAB-TolC function by changing the conformation of the membrane proximal domain of MacA and disrupting the proper assembly of the MacA-MacB complex. We propose that MacA acts in transport by promoting MacB transition into the closed ATP-bound conformation and in this respect, is similar to the periplasmic solute-binding proteins. © 2011 Blackwell Publishing Ltd.

  6. A Tale of Two Earths: Reconciling the Lunar and Terrestrial Hadean Records

    OpenAIRE

    Boehnke, Patrick

    2016-01-01

    Studying early Earth history is complicated by the fact that the rock record doesn’t extend past 4 Ga and our only record for the Hadean (>4 Ga) comes to us from detrital zircons from the Jack Hills in Western Australia. The Hadean zircon record extends back to almost 4.4 Ga and has revealed that the early Earth may have had liquid water, a felsic crust, plate boundary interactions, and possibly a biosphere. On the other hand, analyses of lunar and meteoritic samples are used to argue for a...

  7. Antarctic Martian Meteorites at Johnson Space Center

    Science.gov (United States)

    Funk, R. C.; Satterwhite, C. E.; Righter, K.; Harrington, R.

    2018-01-01

    This past year marked the 40th anniversary of the first Martian meteorite found in Antarctica by the ANSMET Antarctic Search for Meteorites) program, ALH 77005. Since then, an additional 14 Martian meteorites have been found by the ANSMET program making for a total of 15 Martian meteorites in the U. S. Antarctic meteorite collection at Johnson Space Center (JSC). Of the 15 meteorites, some have been paired so the 15 meteorites actually represent a total of approximately 9 separate samples. The first Martian meteorite found by ANSMET was ALH 77005 (482.500 g), a lherzolitic shergottite. When collected, this meteorite was split as a part of the joint expedition with the National Institute of Polar Research (NIPR) Japan. Originally classified as an "achondrite-unique", it was re-classified as a Martian lherzolitic shergottite in 1982. This meteorite has been allocated to 137 scientists for research and there are 180.934 g remaining at JSC. Two years later, one of the most significant Martian meteorites of the collection at JSC was found at Elephant Moraine, EET 79001 (7942.000 g), a shergottite. This meteorite is the largest in the Martian collection at JSC and was the largest stony meteorite sample collected during the 1979 season. In addition to its size, this meteorite is of particular interest because it contains a linear contact separating two different igneous lithologies, basaltic and olivine-phyric. EET 79001 has glass inclusions that contain noble gas and nitrogen compositions that are proportionally identical to the Martian atmosphere, as measured by the Viking spacecraft. This discovery helped scientists to identify where the "SNC" meteorite suite had originated, and that we actually possessed Martian samples. This meteorite has been allocated to 205 scientists for research and 5,298.435 g of sample is available.

  8. Magnetism in meteorites

    Science.gov (United States)

    Herndon, J. M.; Rowe, M. W.

    1974-01-01

    An overview is presented of magnetism in meteorites. A glossary of magnetism terminology followed by discussion of the various techniques used for magnetism studies in meteorites are included. The generalized results from use of these techniques by workers in the field are described. A brief critical analysis is offered.

  9. Organics In Meteorites

    Science.gov (United States)

    Chang, Sherwood

    1996-01-01

    The variety of classes of organic compounds that occur in carbonaceous meteorites suggests a rich pre-planetary chemistry with possible connections to interstellar, solar nebular and parent body processes. Structural diversity prevails within all classes examined in detail. Among amino acids for instance, all possible isomers are found up to species containing 4-6 carbon atoms, with abundances decreasing with increasing molecular weight. Such diversity seems limited to those carbonaceous meteorites which show evidence of having been exposed to liquid water; meteorites lacking such evidence also show much lower abundances and less structural diversity in their organic contents. This apparent dependency on water suggests a role for cometary ices in the chemical evolution of organic compounds on parent bodies. Measurements of the stable isotope compositions of C, H, N and S in classes of compounds and at the individual compound level show strong deviations from average chondritic values. These deviations are difficult to explain by solar system or parent body processes, and precedents for some of these isotopic anomalies exist in interstellar (e.g., high D/H ratios) and circumstellar chemistry. Therefore, presolar origins for much if not all of the meteoritic organic compounds (or their precursors) is a distinct possibility. In contrast, evidence of solar nebular origins is either lacking or suspect. Results from molecular and isotopic analyses of meteoritic organics, from laboratory simulations and from a model of interstellar grain reactions will be used to flesh out the hypothesis that this material originated with interstellar chemistry, was distributed within the early solar system as cometary ices, and was subsequently altered on meteorite parent bodies to yield the observed compounds.

  10. Power Saving MAC Protocols for WSNs and Optimization of S-MAC Protocol

    Directory of Open Access Journals (Sweden)

    Simarpreet Kaur

    2012-11-01

    Full Text Available Low power MAC protocols have received a lot of consideration in the last few years because of their influence on the lifetime of wireless sensor networks. Since, sensors typically operate on batteries, replacement of which is often difficult. A lot of work has been done to minimize the energy expenditure and prolong the sensor lifetime through energy efficient designs, across layers. Meanwhile, the sensor network should be able to maintain a certain throughput in order to fulfill the QoS requirements of the end user, and to ensure the constancy of the network. This paper introduces different types of MAC protocols used for WSNs and proposes S‐MAC, a Medium‐Access Control protocol designed for Wireless Sensor Networks. S‐MAC uses a few innovative techniques to reduce energy consumption and support selfconfiguration. A new protocol is suggested to improve the energy efficiency, latency and throughput of existing MAC protocol for WSNs. A modification of the protocol is then proposed to eliminate the need for some nodes to stay awake longer than the other nodes which improves the energy efficiency, latency and throughput and hence increases the life span of a wireless sensor network.

  11. Mycobacterium Avium Complex (MAC)

    Science.gov (United States)

    ... sweat, and saliva red-orange (may stain contact lenses); can interfere with birth control pills. Many drug interactions. CAN MAC BE PREVENTED? The bacteria that cause MAC are very common. It is ...

  12. Stable isotope genealogy of meteorites

    International Nuclear Information System (INIS)

    Pillinger, C.T.

    1988-01-01

    One of the oldest problems in meteoritics is that of taxonomically grouping samples. In recent years the use of isotopes, particularly oxygen isotopes has proved very successful in this respect. Other light-element systematics potentially can perform the same function. For example, nitrogen in iron meteorites, and nitrogen and carbon in ureilites and SNC meteorites. These measurements will serve to extend and augment existing classification schemes and provide clues to the nature of meteorite parent bodies. They can also aid in the recognition of the isotopic signatures relating to inaccessible regions of the Earth. (author)

  13. HYDROGEN CYANIDE IN THE MURCHISON METEORITE

    Energy Technology Data Exchange (ETDEWEB)

    Pizzarello, Sandra, E-mail: pizzar@asu.edu [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85018-1604 (United States)

    2012-08-01

    Carbonaceous chondrites are meteorites that may contain abundant organic materials, including soluble compounds as diverse as amino acids and hydrocarbons. We report here the finding of hydrogen cyanide in the Murchison meteorite in amounts {<=} 10 ppm. HCN was never searched for in meteorites and its detection in sizeable amount is surprising in view of the extensive water phase that is recorded by the petrology of this type of meteorites and could have exhausted their HCN content through multiple reactions. The finding adds to the inventory of simple volatile molecules found in both comets and meteorites.

  14. Mysterious iodine-overabundance in Antarctic meteorites

    Science.gov (United States)

    Dreibus, G.; Waenke, H.; Schultz, L.

    1986-01-01

    Halogen as well as other trace element concentrations in meteorite finds can be influenced by alteration processes on the Earth's surface. The discovery of Antarctic meteorites offered the opportunity to study meteorites which were kept in one of the most sterile environment of the Earth. Halogen determination in Antartic meteorites was compared with non-Antarctic meteorites. No correlation was found between iodine concentration and the weathering index, or terrestrial age. The halogen measurements indicate a contaminating phase rich in iodine and also containing chlorine. Possible sources for this contamination are discussed.

  15. Mysterious iodine-overabundance in Antarctic meteorites

    International Nuclear Information System (INIS)

    Dreibus, G.; Waenke, H.; Schultz, L.

    1986-01-01

    Halogen as well as other trace element concentrations in meteorite finds can be influenced by alteration processes on the Earth's surface. The discovery of Antarctic meteorites offered the opportunity to study meteorites which were kept in one of the most sterile environment of the Earth. Halogen determination in Antartic meteorites was compared with non-Antarctic meteorites. No correlation was found between iodine concentration and the weathering index, or terrestrial age. The halogen measurements indicate a contaminating phase rich in iodine and also containing chlorine. Possible sources for this contamination are discussed

  16. Assessing the shock state of the lunar highlands: Implications for the petrogenesis and chronology of crustal anorthosites.

    Science.gov (United States)

    Pernet-Fisher, J F; Joy, K H; Martin, D J P; Donaldson Hanna, K L

    2017-07-19

    Our understanding of the formation and evolution of the primary lunar crust is based on geochemical systematics from the lunar ferroan anorthosite (FAN) suite. Recently, much effort has been made to understand this suite's petrologic history to constrain the timing of crystallisation and to interpret FAN chemical diversity. We investigate the shock histories of lunar anorthosites by combining Optical Microscope (OM) 'cold' cathodoluminescence (CL)-imaging and Fourier Transform Infrared (FTIR) spectroscopy analyses. In the first combined study of its kind, this study demonstrates that over ~4.5 Ga of impact processing, plagioclase is on average weakly shocked (30 GPa; maskelynite) are uncommon. To investigate how plagioclase trace-element systematics are affected by moderate to weak shock (~5 to 30 GPa) we couple REE+Y abundances with FTIR analyses for FAN clasts from lunar meteorite Northwest Africa (NWA) 2995. We observe weak correlations between plagioclase shock state and some REE+Y systematics (e.g., La/Y and Sm/Nd ratios). This observation could prove significant to our understanding of how crystallisation ages are evaluated (e.g., plagioclase-whole rock Sm-Nd isochrons) and for what trace-elements can be used to differentiate between lunar lithologies and assess magma source compositional differences.

  17. Ancient sun: fossil record in the earth, moon and meteorites. Proceedings of the Conference, Boulder, CO, October 16-19, 1979

    International Nuclear Information System (INIS)

    Pepin, R.O.; Eddy, J.A.; Merrill, R.B.

    1980-01-01

    Papers are presented concerning theories of solar variability and their consequences for luminosity, particle emission and magnetic field changes within the past 4.5 billion years, and on the records of such solar behavior in lunar, meteoritic and terrestrial materials. Specific topics include the neutrino luminosity of the sun, the relation of sunspots to the terrestrial climate of the past 100 years, solar modulation of galactic cosmic rays, the historical record of solar activity, C-14 variations in terrestrial and marine reservoirs, and solar particle fluxes as indicated by track, thermoluminescence and solar wind measurements in lunar rocks. Attention is also given to the spin-down of the solar interior through circulation currents and fluid instabilities, grain surface exposure models in planetary regoliths, rare gases in the solar wind, nitrogen isotopic variations in the lunar regolith, the influence of solar UV radiation on climate, and the pre-main sequence evolution of the sun and evidence of the primordial solar wind in the electromagnetic induction heating of the asteroids and moon

  18. Moessbauer study of El-Bahrain meteorite

    International Nuclear Information System (INIS)

    Bahgat, A.A.; Ahmed, M.A.; Ramadan, T.M.

    2000-01-01

    A stone of brick-like shape, measuring roughly 25 x 12.5 x 10.5 cm 3 and weighing 14 kg was found in 1983, in the western desert of Egypt. The meteorite was named El-Bahrain meteorite and classified as L-chondrite. Principal constituents of El-Bahrain meteorite have been studied by means of Moessbauer spectroscopy. The chemical composition as obtained by the conventional wet analyses of L-chondritic meteorites showed that the meteorite contains 23,38% Fe and 1.23% Ni. While the analysis of the atomic absorption showed the presence of 27.03% as a total iron. The Moessbauer analysis of El-Bahrain meteorite showed that the iron constituent minerals were determined to be olivine, metallic iron-nickel alloys (kamacite, taenite and tetrataenite), ferrous sulfide (troilite) and weathering products such as maghemite and nanocrystalline hematite. The structure of meteoritic iron obtained by the Moessbauer analysis has been discussed on the basis of these constituents. (author)

  19. Cognitive MAC designs for OSA networks

    CERN Document Server

    Derakhshani, Mahsa

    2014-01-01

    This SpringerBrief presents recent advances in the cognitive MAC designs for opportunistic spectrum access (OSA) networks. It covers the basic MAC functionalities and MAC enhancements of IEEE 802.11. Later chapters discuss the existing MAC protocols for OSA and classify them based on characteristic features. The authors provide new research in adaptive carrier sensing-based MAC designs tailored for OSA, which optimize spectrum utilization and ensure a peaceful coexistence of licensed and unlicensed systems. Analytically devised via optimization and game-theoretic approaches, these adaptive M

  20. Direct detection of projectile relics from the end of the lunar basin-forming epoch.

    Science.gov (United States)

    Joy, Katherine H; Zolensky, Michael E; Nagashima, Kazuhide; Huss, Gary R; Ross, D Kent; McKay, David S; Kring, David A

    2012-06-15

    The lunar surface, a key proxy for the early Earth, contains relics of asteroids and comets that have pummeled terrestrial planetary surfaces. Surviving fragments of projectiles in the lunar regolith provide a direct measure of the types and thus the sources of exogenous material delivered to the Earth-Moon system. In ancient [>3.4 billion years ago (Ga)] regolith breccias from the Apollo 16 landing site, we located mineral and lithologic relics of magnesian chondrules from chondritic impactors. These ancient impactor fragments are not nearly as diverse as those found in younger (3.4 Ga to today) regolith breccias and soils from the Moon or that presently fall as meteorites to Earth. This suggests that primitive chondritic asteroids, originating from a similar source region, were common Earth-Moon-crossing impactors during the latter stages of the basin-forming epoch.

  1. Annual Occurrence of Meteorite-Dropping Fireballs

    Science.gov (United States)

    Konovalova, Natalia; Jopek, Tadeusz J.

    2016-07-01

    The event of Chelyabinsk meteorite has brought about change the earlier opinion about limits of the sizes of potentially dangerous asteroidal fragments that crossed the Earth's orbit and irrupted in the Earth's atmosphere making the brightest fireball. The observations of the fireballs by fireball networks allows to get the more precise data on atmospheric trajectories and coordinates of predicted landing place of the meteorite. For the reason to search the periods of fireball activity is built the annual distribution of the numbers of meteorites with the known fall dates and of the meteorite-dropping fireballs versus the solar longitude. The resulting profile of the annual activity of meteorites and meteorite-dropping fireballs shows several periods of increased activity in the course of the year. The analysis of the atmospheric trajectories and physical properties of sporadic meteorite-dropping fireballs observed in Tajikistan by instrumental methods in the summer‒autumn periods of increased fireballs activity has been made. As a result the structural strength, the bulk density and terminal mass of the studied fireballs that can survive in the Earth atmosphere and became meteorites was obtained. From the photographic IAU MDC_2003 meteor database and published sources based on the orbit proximity as determined by D-criterion of Southworth and Hawkins the fireballs that could be the members of group of meteorite-dropping fireballs, was found. Among the near Earth's objects (NEOs) the searching for parent bodies for meteorite-dropping fireballs was made and the evolution of orbits of these objects in the past on a long interval of time was investigated.

  2. The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter

    OpenAIRE

    Modali, Sita D.; Zgurskaya, Helen I.

    2011-01-01

    Escherichia coli MacAB-TolC is a tri-partite macrolide efflux transporter driven by hydrolysis of ATP. In this complex, MacA is the periplasmic membrane fusion protein that stimulates the activity of MacB transporter and establishes the link with the outer membrane channel TolC. The molecular mechanism by which MacA stimulates MacB remains unknown. Here, we report that the periplasmic membrane proximal domain of MacA plays a critical role in functional MacA-MacB interactions and stimulation o...

  3. Learn Excel 2011 for Mac

    CERN Document Server

    Hart-Davis, Guy

    2011-01-01

    Microsoft Excel 2011 for Mac OS X is a powerful application, but many of its most impressive features can be difficult to find. Learn Excel 2011 for Mac by Guy Hart-Davis is a practical, hands-on approach to learning all of the details of Excel 2011 in order to get work done efficiently on Mac OS X. From using formulas and functions to creating databases, from analyzing data to automating tasks, you'll learn everything you need to know to put this powerful application to use for a variety of tasks. What you'll learn * The secrets of the Excel for Mac interface! * How to create effective workbo

  4. Mac Programming for Absolute Beginners

    CERN Document Server

    Wang, Wallace

    2011-01-01

    Want to learn how to program on your Mac? Not sure where to begin? Best-selling author Wallace Wang will explain how to get started with Cocoa, Objective-C, and Xcode. Whether you are an experienced Windows coder moving to the Mac, or you are completely new to programming, you'll see how the basic design of a Mac OS X program works, how Objective-C differs from other languages you may have used, and how to use the Xcode development environment. Most importantly, you'll learn how to use elements of the Cocoa framework to create windows, store data, and respond to users in your own Mac programs.

  5. Switching to a Mac For Dummies

    CERN Document Server

    Reinhold, Arnold

    2007-01-01

    Thinking of making the switch from your PC to a Mac? Congratulations! You're in for a great, virus-free ride. And Switching to Mac For Dummies makes it smoother than you ever imagined. From buying the Mac that's right for you to transferring your files to breaking your old Windows habits and learning to do things the (much easier) Mac way, it makes the whole process practically effortless. Whether you've been using Windows XP, Vista, or even Linux, you'll find simple, straightforward ways to make your transition go smoothly. That will leave you plenty of time to get familiar with Mac'

  6. Enterprise Mac Managed Preferences

    CERN Document Server

    Marczak, Edward

    2010-01-01

    Many systems administrators on the Mac need a way to manage machine configuration after initial setup and deployment. Apple's Managed Preferences system (also known as MCX) is under-documented, often misunderstood, and sometimes outright unknown by sys admins. MCX is usually deployed in conjunction with an OS X server, but it can also be used in Windows environments or where no dedicated server exists at all. Enterprise Mac Managed Preferences is the definitive guide to Apple's Managed Client technology. With this book, you'll get the following: * An example-driven guide to Mac OS X Managed Pr

  7. Lunar recession encoded in tidal rhythmites: a selective overview with examples from Argentina

    Science.gov (United States)

    de Azarevich, Vanina L. López; Azarevich, Miguel B.

    2017-08-01

    The study of tides from the sedimentary record of tidal rhythmites, applying fast Fourier transform analysis, contributes to the understanding of the surficial evolution of our highly dynamic planet, and of the astronomical cycles that influenced the ancient tidal systems. This overview of lunar retreat rates, which includes examples from Argentina, displays a generalized pattern of nonlinear, progressively extended lunar cycles up to the present day. The lunar retreat calculated at different stages of the Earth's history identifies three time spans of extremely high recession rates, amounting to almost twice that of the present day: Archean-Paleoproterozoic (6.93 cm/year), Neoproterozoic I-Ediacaran (7.01 cm/year) and Ediacaran-early Cambrian (6.48 cm/year). Older comparable recession rates are difficult to recognize because of the lack of tidal rhythmic sequences. The maximum lunar retreat rate is registered after the Copernican meteor bombardment event on the Moon at 900 Ma, and the time span coincides with the continental dispersal of Rodinia. Every acceleration of the lunar retreat rate coincides with two main processes: (1) meteorite impacts on the Earth or Moon, and (2) reconfiguration of landmasses accompanied by earthquakes that generated changes in the rotational axis of the Earth, inundation surfaces, and glaciation/deglaciation processes. The simultaneous occurrence of such processes makes it difficult to distinguish the causes and effects of each individual process, but its conjunction would have promoted the destabilization of the Earth-Moon system in terms of moment of inertia that was transferred to the Moon rotation.

  8. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  9. Lunar and Planetary Science XXXVI, Part 4

    Science.gov (United States)

    2005-01-01

    Contents include the following: High-Resolution Electron Energy-Loss Spectroscopy (HREELS) Using a Monochromated TEM/STEM. Dynamical Evolution of Planets in Open Clusters. Experimental Petrology of the Basaltic Shergottite Yamato 980459: Implications for the Thermal Structure of the Martian Mantle. Cryogenic Reflectance Spectroscopy of Highly Hydrated Sulfur-bearing Salts. Implications for Core Formation of the Earth from High Pressure-Temperature Au Partitioning Experiments. Uranium-Thorium Cosmochronology. Protracted Core Differentiation in Asteroids from 182Hf-182W Systematics in the Eagle Station Pallasite. Maximizing Mission Science Return Through Use of Spacecraft Autonomy: Active Volcanism and the Autonomous Sciencecraft Experiment. Classification of Volcanic Eruptions on Io and Earth Using Low-Resolution Remote Sensing Data. Isotopic Mass Fractionation Laws and the Initial Solar System (sup26)Al/(sup27)Al Ratio. Catastrophic Disruption of Porous and Solid Ice Bodies (sup187)Re-(sup187)Os Isotope Disturbance in LaPaz Mare Basalt Meteorites. Comparative Petrology and Geochemistry of the LaPaz Mare Basalt Meteorites. A Comparison of the Structure and Bonding of Carbon in Apex Chert Kerogenous Material and Fischer-Tropsch-Type Carbons. Broad Spectrum Characterization of Returned Samples: Orientation Constraints of Small Samples on X-Ray and Other Spectroscopies. Apollo 14 High-Ti Picritic Glass: Oxidation/Reduction by Condensation of Alkali Metals. New Lunar Meteorites from Oman: Dhofar 925, 960 and 961. The First Six Months of Iapetus Observations by the Cassini ISS Camera. First Imaging Results from the Iapetus B/C Flyby of the Cassini Spacecraft. Radiative Transfer Calculations for the Atmosphere of Mars in the 200-900 nm Range. Geomorphologic Map of the Atlantis Basin, Terra Sirenum, Mars. The Meaning of Iron 60: A Nearby Supernova Injected Short-lived Radionuclides into Our Protoplanetary Disk.

  10. SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid.

    Science.gov (United States)

    Yang, Zhutian; Shi, Zhenguo; Jin, Chunlin

    2016-03-31

    The Cognitive Radio Sensor Network (CRSN) is considered as a viable solution to enhance various aspects of the electric power grid and to realize a smart grid. However, several challenges for CRSNs are generated due to the harsh wireless environment in a smart grid. As a result, throughput and reliability become critical issues. On the other hand, the spectrum aggregation technique is expected to play an important role in CRSNs in a smart grid. By using spectrum aggregation, the throughput of CRSNs can be improved efficiently, so as to address the unique challenges of CRSNs in a smart grid. In this regard, we proposed Spectrum Aggregation Cognitive Receiver-Based MAC (SACRB-MAC), which employs the spectrum aggregation technique to improve the throughput performance of CRSNs in a smart grid. Moreover, SACRB-MAC is a receiver-based MAC protocol, which can provide a good reliability performance. Analytical and simulation results demonstrate that SACRB-MAC is a promising solution for CRSNs in a smart grid.

  11. Diradicaloids in the insoluble organic matter from the Tagish Lake meteorite: Comparison with the Orgueil and Murchison meteorites

    Science.gov (United States)

    Binet, L.; Gourier, D.; Derenne, S.; Pizzarello, S.; Becker, L.

    2004-10-01

    The radicals in the insoluble organic matter (IOM) from the Tagish Lake meteorites were studied by electron paramagnetic resonance and compared to those existing in the Orgueil and Murchison meteorites. As in the Orgueil and Murchison meteorites, the radicals in the Tagish Lake meteorite are heterogeneously distributed and comprise a substantial amount (~42%) of species with a thermally acessible triplet state and with the same singlet-triplet gap, ?E ??0.1 eV, as in the Orgueil and Murchison meteorites. These species were identified as diradicaloid moieties. The existence of similar diradicaloid moieties in three different carbonaceous chondrites but not in terrestrial IOM strongly suggests that these moieties could be "fingerprints" of the extraterrestrial origin of meteoritic IOM and markers of its synthetic pathway before its inclusion into a parent body.

  12. Meteoritic basalts: the nakhlites, their parental magmas, cooling rates, and equivalents on Earth. Final technical report

    International Nuclear Information System (INIS)

    Treiman, A.H.

    1987-07-01

    Proposed one-bar phase equilibrium experiments, designed to determine the compositions of the nakhlites' parental magmas, are in progress. Proposed field studies on Earth, designed to find occurrences of rocks like the nakhlites, were extraordinarily successful. Other work supported in the past year included: attendance at the 1986 national meeting of the Geological Society of America; attendance at the 18th Lunar and Planetary Science Conference; completion and publication of a study of core formation in the SNC parent body; initiation of a study of the flux of SNC meteorites onto the Earth; and initiation of petrologic study of the Angra dos Reis achondrite

  13. Mac OS X Tiger for Unix Geeks

    CERN Document Server

    Jepson, Brian

    2005-01-01

    If you're one of the many Unix developers drawn to Mac OS X for its Unix core, you'll find yourself in surprisingly unfamiliar territory. Unix and Mac OS X are kissing cousins, but there are enough pitfalls and minefields in going from one to another that even a Unix guru can stumble, and most guides to Mac OS X are written for Mac aficionados. For a Unix developer, approaching Tiger from the Mac side is a bit like learning Russian by reading the Russian side of a Russian-English dictionary. Fortunately, O'Reilly has been the Unix authority for over 25 years, and in Mac OS X Tiger for Unix Gee

  14. Selenia: A habitability study for the development of a third generation lunar base

    Science.gov (United States)

    1991-01-01

    When Apollo astronauts landed on the Moon, the first generation of lunar bases was established. They consisted essentially of a lunar module and related hardware capable of housing two astronauts for not more than several days. Second generation lunar bases are being developed, and further infrastructure, such as space station, orbital transfer, and reusable lander vehicles will be necessary, as prolonged stay on the Moon is required for exploration, research, and construction for the establishment of a permanent human settlement there. Human life in these habitats could be sustained for months, dependent on a continual flow of life-support supplies from Earth. Third-generation lunar bases will come into being as self sufficiency of human settlements becomes feasible. Regeneration of water, oxygen production, and development of indigenous construction materials from lunar resources will be necessary. Greenhouses will grow food supplies in engineered biospheres. Assured protection from solar flares and cosmic radiation must be provided, as well as provision for survival under meteor showers, or the threat of meteorite impact. All these seem to be possible within the second decade of the next century. Thus, the builders of Selenia, the first of the third-generation lunar bases are born today. During the last two years students from the School of Architecture of the University of Puerto Rico have studied the problems that relate to habitability for prolonged stay in extraterrestrial space. An orbital personnel transport to Mars developed originally by the Aerospace Engineering Department of the University of Michigan was investigated and habitability criteria for evaluation of human space habitats were proposed. An important finding from that study was that the necessary rotational diameter of the vessel has to be on the order of two kilometers to ensure comfort for humans under the artificial gravity conditions necessary to maintain physiological well being of

  15. Detection of a meteorite 'stream' - Observations of a second meteorite fall from the orbit of the Innisfree chondrite

    Science.gov (United States)

    Halliday, I.

    1987-03-01

    The first observational evidence of multiple meteorite falls from the same orbit is adduced from the February 6, 1980 fall of a meteorite precisely 3 yr after the fall of the Innisfree meteorite. Due consideration of the detection probability for two related objects with the meteorite camera network in western Canada suggests that the Innisfree brecciated LL chondrite was a near-surface fragment from a parent object whose radius was of the order of several tens of meters. A meteorite mass of 1.8 kg is predicted for the new object, whose recovery in the vicinity of Ridgedale, Saskatchewan, is now sought for the sake of comparison with the Innisfree chondrite.

  16. Mac protocols for cyber-physical systems

    CERN Document Server

    Xia, Feng

    2015-01-01

    This book provides a literature review of various wireless MAC protocols and techniques for achieving real-time and reliable communications in the context of cyber-physical systems (CPS). The evaluation analysis of IEEE 802.15.4 for CPS therein will give insights into configuration and optimization of critical design parameters of MAC protocols. In addition, this book also presents the design and evaluation of an adaptive MAC protocol for medical CPS, which exemplifies how to facilitate real-time and reliable communications in CPS by exploiting IEEE 802.15.4 based MAC protocols. This book wil

  17. Curation of US Martian Meteorites Collected in Antarctica

    Science.gov (United States)

    Lindstrom, M.; Satterwhite, C.; Allton, J.; Stansbury, E.

    1998-01-01

    To date the ANSMET field team has collected five martian meteorites (see below) in Antarctica and returned them for curation at the Johnson Space Center (JSC) Meteorite Processing Laboratory (MPL). ne meteorites were collected with the clean procedures used by ANSMET in collecting all meteorites: They were handled with JSC-cleaned tools, packaged in clean bags, and shipped frozen to JSC. The five martian meteorites vary significantly in size (12-7942 g) and rock type (basalts, lherzolites, and orthopyroxenite). Detailed descriptions are provided in the Mars Meteorite compendium, which describes classification, curation and research results. A table gives the names, classifications and original and curatorial masses of the martian meteorites. The MPL and measures for contamination control are described.

  18. AeroMACS system characterization and demonstrations

    Science.gov (United States)

    Kerczewski, R. J.; Apaza, R. D.; Dimond, R. P.

    This The Aeronautical Mobile Airport Communications System (AeroMACS) is being developed to provide a new broadband wireless communications capability for safety critical communications in the airport surface domain, providing connectivity to aircraft and other ground vehicles as well as connections between other critical airport fixed assets. AeroMACS development has progressed from requirements definition through technology definition, prototype deployment and testing, and now into national and international standards development. The first prototype AeroMACS system has been deployed at the Cleveland Hopkins International Airport (CLE) and the adjacent NASA Glenn Research Center (GRC). During the past three years, extensive technical testing has taken place to characterize the performance of the AeroMACS prototype and provide technical support for the standards development process. The testing has characterized AeroMACS link and network performance over a variety of conditions for both fixed and mobile data transmission and has included basic system performance testing and fixed and mobile applications testing. This paper provides a summary of the AeroMACS performance testing and the status of standardization activities that the testing supports.

  19. MacBook All-in-One For Dummies

    CERN Document Server

    Chambers, Mark L

    2011-01-01

    Get comfortable and confident with your MacBook! Combining the fun-but-straightforward content of nine minibooks, this new edition of MacBook All-in-One For Dummies delivers helpful coverage of the rich features and essential tools you need to know to use the MacBook to its fullest potential. You'll learn an array of MacBook basics while veteran author Mark Chambers walks you through setting up your MacBook, running programs, finding files with Finder, searching with Spotlight, keeping track with Address Book, enjoying music with iTunes, creating cool multimedia projects with iLife, and more.

  20. Mac OS X Lion Server For Dummies

    CERN Document Server

    Rizzo, John

    2011-01-01

    The perfect guide to help administrators set up Apple's Mac OS X Lion Server With the overwhelming popularity of the iPhone and iPad, more Macs are appearing in corporate settings. The newest version of Mac Server is the ideal way to administer a Mac network. This friendly guide explains to both Windows and Mac administrators how to set up and configure the server, including services such as iCal Server, Podcast Producer, Wiki Server, Spotlight Server, iChat Server, File Sharing, Mail Services, and support for iPhone and iPad. It explains how to secure, administer, and troubleshoot the networ

  1. Lunar and Planetary Science XXXV: Astrobiology Stew: Pinch of Microbes, Smidgen of UV, Touch of Organics, and Dash of Meteorites

    Science.gov (United States)

    2004-01-01

    The session Astrobiology Stew: Pinch of Microbes, Smidgen of UV, Touch of Organics, and Dash of Meteorites includes the following topics: 1) Investigating the Impact of UV Radiation on High-Altitude Shallow Lake Habitats, Life Diversity, and Life Survival Strategies: Clues for Mars' Past Habitability Potential? 2) An Analysis of Potential Photosynthetic Life on Mars; 3) Radiation Inactivation of Bacterial spores on Mars; 4) Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates of Bacteria on Mars Landers; 5) Optical Detection of Organic Chemical Biosignatures at Hydrothermal Vents; 6) Signs of Life in Meridiani Planum-What Might Opportunity See (or Miss)? 7) Isolation of PUrines and Pyrimidines from the Murchison Meteorite Using Sublimation; and 8) Relative Amino Acid Composition of CM1 Carbonaceous Chondrites.

  2. Organic Chemistry of Meteorites

    Science.gov (United States)

    Chang, S.; Morrison, David (Technical Monitor)

    1994-01-01

    Studies of the molecular structures and C,N,H-isotopic compositions of organic matter in meteorites reveal a complex history beginning in the parent interstellar cloud which spawned the solar system. Incorporation of interstellar dust and gas in the protosolar nebula followed by further thermal and aqueous processing on primordial parent bodies of carbonaceous, meteorites have produced an inventory of diverse organic compounds including classes now utilized in biochemistry. This inventory represents one possible set of reactants for chemical models for the origin of living systems on the early Earth. Evidence bearing on the history of meteoritic organic matter from astronomical observations and laboratory investigations will be reviewed and future research directions discussed.

  3. Antarctic Meteorite Newsletter. Volume 20

    Science.gov (United States)

    Lindstrom, Marilyn M.; Satterwhite, Cecilia E.

    1997-01-01

    The availability of 116 new meteorites from the 1994-1996 collections is announced. There are 4 special chondrites, 2 carbonaceous chondrites, and 1 achondrite among the new meteorites. Also included is a redescription of Lodranite GRA95209.

  4. Contemporary Inuit Traditional Beliefs Concerning Meteorites

    Science.gov (United States)

    Mardon, A. A.; Mardon, E. G.; Williams, J. S.

    1992-07-01

    Inuit religious mythology and the importance of meteorites as "messages" from the Creator of all things is only now being recognized. Field investigations near Resolute, Cornwallis Island in the high Canadian Arctic in 1988 are the bases for this paper. Through interpreters, several elders of the local Inuit described in detail the Inuit belief, recognition, and wonder at the falling meteors & meteorites during the long Polar Night and Polar Day. Such events are passed on in the oral tradition from generation to generation by the elders and especially those elders who fulfill the shamanistic roles. The Inuit have come across rocks that they immediately recognize as not being "natural" and in the cases of a fall that was observed and the rock recovered the meteorite is kept either on the person or in some hidden niche known only to that person. In one story recounted a meteorite fell and was recovered at the birth of one very old elder and the belief was that if the rock was somehow damaged or taken from his possession he would die. Some indirect indication also was conveyed that the discovery and possession of meteorites allow shaman to have "supernatural" power. This belief in the supernatural power of meteorites can be seen historically in many societies, including Islam and the "black rock" (Kaaba) of Mecca. It should also be noted, however, that metallic meteorites were clearly once the major source of iron for Eskimo society as is indicated from the recovery of meteoritical iron arrow heads and harpoon heads from excavated pre-Viking contact sites. The one evident thing that became clear to the author is that the Inuit distinctly believe that these meteorites are religious objects of the highest order and it brings into question the current academic practice of sending meteorites south to research institutes. Any seeming conflict with the traditional use of meteoric iron is more apparent than real--the animals, the hunt, and the act of survival--all being

  5. Quantitative FT-IR Analysis for Chondritic Meteorites: Search for C_60 in Meteorites

    Directory of Open Access Journals (Sweden)

    Chunglee Kim

    1998-06-01

    Full Text Available Infrared absorption spectra of 9 bulk samples and 3 acid residues of meteorites were obtained in the mid-infrared region (4000 ~ 400 cm^(-1. From the known composition of meteorites studied, the possible absorption modes were investigated. Most bands of bulk samples occur in the region below 1200 cm^(-1 and they are due to metallic oxides and silicates. The spectra of each group can be distinguished by its own characteristic bands. Acid residues show very distinct features from their bulk samples, and absorption bands due to organic compounds are not evident in their spectra. Quantitative analyses for two carbonaceous (Allende CV3 and Murchison CM2 and one ordinary (Carraweena L3.9 chondrites were performed for the presence of fullerene (C_60 in the meteorites. We calculated the concentration of C_60 in the acid residues by curvefitting the spectra with Gaussian functions. The upper limit of C_60 concentration in these meteorites appears to be less than an order of a few hundred ppm.

  6. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon

    Science.gov (United States)

    Donaldson Hanna, K. L.; Greenhagen, B. T.; Patterson, W. R.; Pieters, C. M.; Mustard, J. F.; Bowles, N. E.; Paige, D. A.; Glotch, T. D.; Thompson, C.

    2017-02-01

    Currently, few thermal infrared measurements exist of fine particulate (samples (e.g. minerals, mineral mixtures, rocks, meteorites, and lunar soils) measured under simulated lunar conditions. Such measurements are fundamental for interpreting thermal infrared (TIR) observations by the Diviner Lunar Radiometer Experiment (Diviner) onboard NASA's Lunar Reconnaissance Orbiter as well as future TIR observations of the Moon and other airless bodies. In this work, we present thermal infrared emissivity measurements of a suite of well-characterized Apollo lunar soils and a fine particulate (sample as we systematically vary parameters that control the near-surface environment in our vacuum chamber (atmospheric pressure, incident solar-like radiation, and sample cup temperature). The atmospheric pressure is varied between ambient (1000 mbar) and vacuum (radiation is varied between 52 and 146 mW/cm2, and the sample cup temperature is varied between 325 and 405 K. Spectral changes are characterized as each parameter is varied, which highlight the sensitivity of thermal infrared emissivity spectra to the atmospheric pressure and the incident solar-like radiation. Finally spectral measurements of Apollo 15 and 16 bulk lunar soils are compared with Diviner thermal infrared observations of the Apollo 15 and 16 sampling sites. This comparison allows us to constrain the temperature and pressure conditions that best simulate the near-surface environment of the Moon for future laboratory measurements and to better interpret lunar surface compositions as observed by Diviner.

  7. Switching to the Mac The Missing Manual

    CERN Document Server

    Pogue, David

    2010-01-01

    Is Windows giving you pause? Ready to make the leap to the Mac instead? There has never been a better time to switch from Windows to Mac, and this incomparable guide will help you make a smooth transition. New York Times columnist and Missing Manuals creator David Pogue gets you past three challenges: transferring your stuff, assembling Mac programs so you can do what you did with Windows, and learning your way around Mac OS X. Learning to use a Mac is not a piece of cake, but once you do, the rewards are oh-so-much better. No viruses, worms, or spyware. No questionable firewalls, inefficien

  8. Antarctic Meteorite Newsletter. Volume 22

    Science.gov (United States)

    Satterwhite, Cecilia (Editor); Lindstrom, Marilyn (Editor)

    1999-01-01

    This Newsletter Contains Classifications of 143 New Meteorites from the 1997 ANSMET Collection. Descriptions are given for 6 meteorites;2 eucrites, and 4 ordinary chondrites. We don't expect much excitement from the rest of the 1997 collection. JSC has examined another 100 meteorites to send to the Smithsonian for classification and they appear to be more of the same LL5 shower. However, past experience tells us that there will be some treasures hidden in the remaining samples. Hope rings eternal, but we can't wait to see the 1998 collection described below.

  9. Macs all-in-one for dummies

    CERN Document Server

    Hutsko, Joe

    2014-01-01

    Your all-in-one guide to unleashing your Mac's full potential It's a Mac world out there. But if you haven't read the instruction manual, you may be neglecting some of your computer's coolest features. Turn to Macs All-in-One For Dummies' jam-packed guide to access the incredible tools within your computer. With this fully updated reference, you will learn how to use Launchpad and Mission Control; protect your Mac; back up and restore data with Time Machine; sync across devices in iCloud; import, organize, and share photos; direct in iMovie; compose in GarageBand; and so much more. The possi

  10. Mac protocols for wireless sensor network (wsn): a comparative study

    International Nuclear Information System (INIS)

    Arshad, J.; Akram, Q.; Saleem, Y.

    2014-01-01

    Data communication between nodes is carried out under Medium Access Control (MAC) protocol which is defined at data link layer. The MAC protocols are responsible to communicate and coordinate between nodes according to the defined standards in WSN (Wireless Sensor Networks). The design of a MAC protocol should also address the issues of energy efficiency and transmission efficiency. There are number of MAC protocols that exist in the literature proposed for WSN. In this paper, nine MAC protocols which includes S-MAC, T-MAC, Wise-MAC, Mu-MAC, Z-MAC, A-MAC, D-MAC, B-MAC and B-MAC+ for WSN have been explored, studied and analyzed. These nine protocols are classified in contention based and hybrid (combination of contention and schedule based) MAC protocols. The goal of this comparative study is to provide a basis for MAC protocols and to highlight different mechanisms used with respect to parameters for the evaluation of energy and transmission efficiency in WSN. This study also aims to give reader a better understanding of the concepts, processes and flow of information used in these MAC protocols for WSN. A comparison with respect to energy reservation scheme, idle listening avoidance, latency, fairness, data synchronization, and throughput maximization has been presented. It was analyzed that contention based MAC protocols are less energy efficient as compared to hybrid MAC protocols. From the analysis of contention based MAC protocols in term of energy consumption, it was being observed that protocols based on preamble sampling consume lesser energy than protocols based on static or dynamic sleep schedule. (author)

  11. Implications of a Caldera Origin of the Lunar Crater Copernicus

    Science.gov (United States)

    Green, J.

    2007-12-01

    The forthcoming renaissance in lunar exploration will focus on many objectives such as Copernicus. Copernicus appears to be a caldera for at least 8 reasons. If a caldera we see (1) transient activity (2) no overturned impact flap at the crater margins (3) internal sinuous leveed lava flow channels (4) a lava covered floor (5) terraces of different ages (6) multiple central volcanoes, one showing a directed volcanic blast (7) olivine-rich komatiitic lavas on central volcanoes and (8) magmatic inflation/deflation on caldera flanks localizing craterlets and extinct fumaroles in "loop" patterns. Regarding (6), directed volcanic blasts can remove a segment of the volcano wall as evidenced in terrestrial analogs at Mt. St. Helens and Bezymianny. Impact mechanisms to produce this feature in Copernicus are contrived. For (7) Clementine spectral data show a high olivine content of the central mountains on Copernicus which I interpret as forsteritic spinifex mineralization in komatiitic lavas and not as impact rebound of olivine-rich deep seated rocks. (8) MacDonald (1956) documented loop patterns on the flank of Halemaumau in Hawaii defining arcuate fractures localizing fumaroles and craterlets. Inflation/deflation of subjacent magma bodies are interpreted as the cause for these loops. Inflation/deflation mechanisms on caldera flanks are common around terrestrial calderas. "Loop" patterns on the flank of Copernicus localizing "gouge" craterlets have been interpreted as ballistic features resulting from the meteorite impact of this crater. Questioned is the logic of a linear N26E trending array of fragments within Copernicus to serve as a source of ballistic projectiles to form the loops localizing conjugate craterlets. The fused craterlet axes on the lunar loops do not point back to a presumed impact center in Copernicus. The axes are oriented parallel to a regional northwest (N35-60W) fracture zone. Implications for an endogenic origin of Copernicus would involve

  12. Meteorite Unit Models for Structural Properties

    Science.gov (United States)

    Agrawal, Parul; Carlozzi, Alexander A.; Karajeh, Zaid S.; Bryson, Kathryn L.

    2017-10-01

    To assess the threat posed by an asteroid entering Earth’s atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the asteroid material properties is needed to achieve this objective. At present, the meteorite material found on earth are the only objects from an entering asteroid that can be used as representative material and be tested inside a laboratory. Due to complex composition, it is challenging and expensive to obtain reliable material properties by means of laboratory test for a family of meteorites. In order to circumvent this challenge, meteorite unit models are developed to determine the effective material properties including Young’s modulus, compressive and tensile strengths and Poisson’s ratio, that in turn would help deduce the properties of asteroids. The meteorite unit model is a representative volume that accounts for diverse minerals, porosity, cracks and matrix composition.The Young’s Modulus and Poisson’s Ratio in the meteorite units are calculated by performing several hundreds of Monte Carlo simulations by randomly distributing the various phases inside these units. Once these values are obtained, cracks are introduced in these units. The size, orientation and distribution of cracks are derived by CT-scans and visual scans of various meteorites. Subsequently, simulations are performed to attain stress-strain relations, strength and effective modulus values in the presence of these cracks. The meteorite unit models are presented for H, L and LL ordinary chondrites, as well as for terrestrial basalt. In the case of the latter, data from the simulations is compared with experimental data to validate the methodology. These meteorite unit models will be subsequently used in fragmentation modeling of full scale asteroids.

  13. Meteoritics, Number 19

    Science.gov (United States)

    1964-06-01

    266, 1958. 131. Houziaux, L., Spectres d’absorption infra-rouge de quelques verres naturels entr 2 et 24 microns (Infrared Absorption Spectra of...Taking Pb20L’ 1), Given as a Function of Time. reteorites was made in a work by M. M. Shats (Ref. 10). M. M. Shats de - termined the uranium and lead...billion years. Table 6. Age, l09 Type of Data of Published Meteorite Years Meteorite Source, Investi- gator Kashin 3.00 Chondrite 1951 (Ref. 14), E.K

  14. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth...

  15. Mac OS X ja tietoturva

    OpenAIRE

    Herranen, Joni

    2011-01-01

    Tämän opinnäytetyön tavoitteena on luoda kattava kokonaiskuva Mac OS X -käyttöjärjestelmän sisäänrakennetuista tietoturvaratkaisuista ja selvittää miten tietoturvaratkaisut toteuttavat tietoturvan kolmea perustavoitetta eli luottamuksellisuutta, eheyttä ja saatavuutta. Työn kohderyhmäksi on valittu edistyneemmät tietokoneenkäyttäjät, joilla ei ole aikaisempaa Mac-kokemusta. Teoriaosuudessa syvennytään aluksi Apple-yhtiöön sekä Mac OS X -järjestelmän teknisiin ominaisuuksiin. Osuuden pääta...

  16. Learn Mac OS X Snow Leopard

    CERN Document Server

    Meyers, Scott

    2009-01-01

    You're smart and savvy, but also busy. This comprehensive guide to Apple's Mac OS X 10.6, Snow Leopard, gives you everything you need to know to live a happy, productive Mac life. Learn Mac OS X Snow Leopard will have you up and connected lickity split. With a minimum of overhead and a maximum of useful information, you'll cover a lot of ground in the time it takes other books to get you plugged in. If this isn't your first experience with Mac OS X, skip right to the "What's New in Snow Leopard" sections. You may also find yourself using this book as a quick refresher course or a way

  17. Thermoluminescence of meteorites and their orbits

    Science.gov (United States)

    Melcher, C. L.

    1981-01-01

    The thermoluminescence levels of 45 ordinary chondrites are measured in order to provide information on the orbital characteristics of the meteorites before impact. Glow curves of the photon emission response of powdered samples of the meteorites to temperatures up to 550 C in the natural state and following irradiation by a laboratory test dose of 110,000 rad were obtained as functions of terrestrial age and compared to those of samples of the Pribram, Lost City and Innisfree meteorites, for which accurate orbital data is available. The thermoluminescence levels in 40 out of 42 meteorites are found to be similar to those of the three control samples, indicating that the vast majority of ordinary chondrites that survive atmospheric entry have perihelia in the range 0.8-1 AU. Of the remaining two, Farmville is observed to exhibit an unusually large gradient in thermoluminescence levels with sample depth, which may be a result of a temperature gradient arising in a slowly rotating meteorite. Finally, the thermoluminescence measured in the Malakal meteorite is found to be two orders of magnitude lower than control samples, which is best explained by thermal draining by solar heating in an orbit with a perihelion distance of 0.5 to 0.6 AU.

  18. Thermoluminescence of meteorites and their orbits

    International Nuclear Information System (INIS)

    Melcher, C.L.

    1981-01-01

    The thermolunimescence (TL) levels of 45 ordinary chondrites were measured to obtain information about the meteorite orbits. The low-temperature TL reaches equilibrium while the meteorite is in space and reflects the temperature of the meteorite at perihelion. Samples of Pribram, Lost City, and Innisfree, whose orbits are accurately known, were used as control samples. The TL levels in 40 out of 42 meteorites are similar to the three control samples, indicating that the vast majority of ordinary chondrites that survive atmospheric entry have perihelia similar to three known orbits, i.e., in the range 0.8-1 AU. The effects of albedo and rotation are also considered. A simple model indicates that temperature gradients of 1-2 0 K/cm are possible in slowly rotating meteoroids and such a temperature gradient is consistent with the unusually large TL gradient measured in the Farmville meteorite. Since slow rotation rates are improbable, other possibilities are examined but no satisfactory explanation has been found. The TL level measured in the Malakal meteorite is two orders of magnitude lower than control samples and is best explained by thermal draining due to solar heating in an orbit with a small perihelion distance. The perihelion is estimated to be approx. 0.5-0.6 AU. (orig.)

  19. Cosmic-ray exposure records and origins of meteorites

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1985-01-01

    The cosmic-ray records of meteorites are used to infer much about their origins and recent histories. The methods used to interpret meteorites cosmic-ray records, especially identifying simple or complex exposure histories, often are inadequate. Spallogenic radionuclides, stable nuclides, and measurements of products that have location-sensitive production rates, such as the tracks of heavy cosmic-ray nuclei or neutron-capture nuclides, are very useful in accurately determining a meteorite's history. Samples from different, known locations of a meteorite help in studying the cosmic-ray record. Such extensive sets of meteorite measuremetns, plus theoretical modeling of complex histories, improves the ability to predict the production of cosmogenic nuclides in meteorites, to distinguish simple and complex exposure histories, and to better determine exposure ages

  20. Cosmic-ray exposure records and origins of meteorites

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1985-01-01

    The cosmic-ray records of meteorites can be used to infer much about their origins and recent histories. Some meteorites had simple cosmic-ray exposure histories, while others had complex exposure histories with their cosmogenic products made both before and after a collision in space. The methods used to interpret meteorites' cosmic-ray records, especially identifying simple or complex exposure histories, often are inadequate. Besides spallogenic radionuclides and stable nuclides, measurements of products that have location-sensitive production rates, such as the tracks of heavy cosmic-ray nuclei or neutron-capture nuclides, are very useful in accurately determining a meteorite's history. Samples from different, known locations of a meteorite help in studying the cosmic-ray record. Such extensive sets of meteorite measurements, plus theoretical modeling of complex histories, will improve our ability to predict the production of cosmogenic nuclides in meteorites, to distinguish simple and complex exposure histories, and to better determine exposure ages

  1. A Brief Survey of Media Access Control, Data Link Layer, and Protocol Technologies for Lunar Surface Communications

    Science.gov (United States)

    Wallett, Thomas M.

    2009-01-01

    This paper surveys and describes some of the existing media access control and data link layer technologies for possible application in lunar surface communications and the advanced wideband Direct Sequence Code Division Multiple Access (DSCDMA) conceptual systems utilizing phased-array technology that will evolve in the next decade. Time Domain Multiple Access (TDMA) and Code Division Multiple Access (CDMA) are standard Media Access Control (MAC) techniques that can be incorporated into lunar surface communications architectures. Another novel hybrid technique that is recently being developed for use with smart antenna technology combines the advantages of CDMA with those of TDMA. The relatively new and sundry wireless LAN data link layer protocols that are continually under development offer distinct advantages for lunar surface applications over the legacy protocols which are not wireless. Also several communication transport and routing protocols can be chosen with characteristics commensurate with smart antenna systems to provide spacecraft communications for links exhibiting high capacity on the surface of the Moon. The proper choices depend on the specific communication requirements.

  2. The Virtual Museum for Meteorites

    Science.gov (United States)

    Madiedo, J. M.

    2012-09-01

    Meteorites play a fundamental role in education and outreach, as these samples of extraterrestrial materials are very valuable tools to promote the public's interest in Astronomy and Planetary Sciences. Thus, for instance, meteorite exhibitions reveal the interest and fascination of students, educators and even researchers for these peculiar rocks and how these can provide information to explain many fundamental questions related to the origin and evolution of our Solar System. However, despite the efforts of private collectors, museums and other institutions to organize meteorite exhibitions, the reach of these is usually limited. But this issue can be addressed thanks to new technologies related to the Internet. In fact we can take advantage of HTML and related technologies to overcome local boundaries and open the possibility of offering these exhibitions for a global audience. With this aim a Virtual Museum for Meteorites has been created and a description of this web-based tool is given here.

  3. Laboratory Measurements of Optical and Physical Properties of Individual Lunar Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Hoover, R. B.

    2006-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, and transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The experimental results were obtained on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield

  4. Java and Mac OS X

    CERN Document Server

    Davis, T Gene

    2010-01-01

    Learn the guidelines of integrating Java with native Mac OS X applications with this Devloper Reference book. Java is used to create nearly every type of application that exists and is one of the most required skills of employers seeking computer programmers. Java code and its libraries can be integrated with Mac OS X features, and this book shows you how to do just that. You'll learn to write Java programs on OS X and you'll even discover how to integrate them with the Cocoa APIs.: Shows how Java programs can be integrated with any Mac OS X feature, such as NSView widgets or screen savers; Re

  5. Dust particles investigation for future Russian lunar missions.

    Science.gov (United States)

    Dolnikov, Gennady; Horanyi, Mihaly; Esposito, Francesca; Zakharov, Alexander; Popel, Sergey; Afonin, Valeri; Borisov, Nikolay; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Kuznetsov, Ilya; Lyash, Andrey; Vorobyova, Elena; Petrov, Oleg; Lisin, Evgeny

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On light side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution dust particle by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind, solar

  6. Development of high yielding Soybean variety MACS 450 by using Kalitur mutant-MACS 111

    International Nuclear Information System (INIS)

    Raut, V.M.; Taware, S.P.; Halvankar, G.B.; Varghese, Philips

    2000-01-01

    A mutant variety -MACS 111 developed by treating seeds of indigenous black seeded 'Kalitur' variety with gamma irradiation + Ethyleneimine was used in development of high yielding varieties. MACS 450 a promising high yielding variety was selected from Bragg x MACS 111 cross by pedigree selection method. This variety gave the highest average seed yield in station trials (3422 kg/ha), coordinated breeding trials (2361 kg/ha) and varieties cum plant population trial (2215 kg/ha). On the basis of its performance in these trials it was released for commercial cultivation in Southern India. On all India basis, it also recorded the highest seed yield of 4076 kg/ha and 3582 kg/ha in Front line Demonstrations conducted on the farmers' field during 1998 and 1999 respectively. (author)

  7. Structure from Motion Photogrammetry and Micro X-Ray Computed Tomography 3-D Reconstruction Data Fusion for Non-Destructive Conservation Documentation of Lunar Samples

    Science.gov (United States)

    Beaulieu, K. R.; Blumenfeld, E. H.; Liddle, D. A.; Oshel, E. R.; Evans, C. A.; Zeigler, R. A.; Righter, K.; Hanna, R. D.; Ketcham, R. A.

    2017-01-01

    Our team is developing a modern, cross-disciplinary approach to documentation and preservation of astromaterials, specifically lunar and meteorite samples stored at the Johnson Space Center (JSC) Lunar Sample Laboratory Facility. Apollo Lunar Sample 60639, collected as part of rake sample 60610 during the 3rd Extra-Vehicular Activity of the Apollo 16 mission in 1972, served as the first NASA-preserved lunar sample to be examined by our team in the development of a novel approach to internal and external sample visualization. Apollo Sample 60639 is classified as a breccia with a glass-coated side and pristine mare basalt and anorthosite clasts. The aim was to accurately register a 3-dimensional Micro X-Ray Computed Tomography (XCT)-derived internal composition data set and a Structure-From-Motion (SFM) Photogrammetry-derived high-fidelity, textured external polygonal model of Apollo Sample 60639. The developed process provided the means for accurate, comprehensive, non-destructive visualization of NASA's heritage lunar samples. The data products, to be ultimately served via an end-user web interface, will allow researchers and the public to interact with the unique heritage samples, providing a platform to "slice through" a photo-realistic rendering of a sample to analyze both its external visual and internal composition simultaneously.

  8. Moessbauer study of Slovak meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Lipka, J.; Sitek, J.; Dekan, J., E-mail: julius.dekan@stuba.sk; Degmova, J. [Slovak University of Technology, Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology (Slovakia); Porubcan, V. [Comenius University, Faculty of Mathematics and Physics (Slovakia)

    2013-04-15

    {sup 57}Fe Moessbauer spectroscopy was used as an analytical tool in the investigation of iron containing compounds of two meteorites (Rumanova and Kosice) out of total of six which had fallen on Slovak territory. In the magnetic fraction of the iron bearing compounds in the Rumanova meteorite, maghemite, troilite and Fe-Ni alloy were identified. In the non-magnetic fraction silicate phases were found, such as olivine and pyroxene. The paramagnetic component containing Fe{sup 3 + } ions corresponds probably to small superparamagnetic particles. The Kosice meteorite was found near the town of Kosice in February 2010. Its magnetic fraction consists of a Fe-Ni alloy with the Moessbauer parameters of the magnetic field corresponding to kamacite {alpha}-Fe(Ni, Co) and troilite. The non-magnetic part consists of Fe{sup 2 + } phases such as olivine and pyroxene and traces of a Fe{sup 3 + } phase. The main difference between these meteorites is their iron oxide content. These kinds of analyses can bring important knowledge about phases and compounds formed in extraterrestrial conditions, which have other features than their terrestrial analogues.

  9. A Tale of Two Earths: Reconciling the Lunar and Terrestrial Hadean Records

    Science.gov (United States)

    Boehnke, Patrick

    Studying early Earth history is complicated by the fact that the rock record doesn't extend past 4 Ga and our only record for the Hadean (>4 Ga) comes to us from detrital zircons from the Jack Hills in Western Australia. The Hadean zircon record extends back to almost 4.4 Ga and has revealed that the early Earth may have had liquid water, a felsic crust, plate boundary interactions, and possibly a biosphere. On the other hand, analyses of lunar and meteoritic samples are used to argue for a hellish Hadean Earth where frequent, large impactors repeatedly destroyed the crust. Indeed, these two models stand in direct contradiction. The focus of this thesis is to examine the evidence for these two models and ultimately propose a reconciliation based on a new interpretation of the chronology of the lunar samples used to constrain the impact history into the early Earth-Moon system. In order to improve the understanding of zircon crystallization in igneous settings, we undertook experimental studies of zircon saturation which were analyzed using a novel ion imaging approach by a secondary ion mass spectrometer. This study confirmed the original model for zircon saturation, that it is a function of only temperature, melt composition, and Zr content. Indeed, the primary implication for the early Earth from this work is that zircons are much more likely to crystallize in a felsic rather than mafic magma and therefore simply the existence of Hadean zircons suggests a high likelihood for felsic Hadean magmatism. The majority of the thesis focuses on the interpretation of 40 Ar/39Ar ages of lunar and meteorite samples, specifically with regards to impact histories derived from compilations of such ages. The primary complication with lunar and meteorite 40Ar/ 39Ar ages is that the vast majority show evidence for later disturbances due to diffusive loss of 40Ar. To try and extract meaningful thermal histories from these samples, we undertook investigations of samples from Apollo

  10. Asteroid 2008 TC3 Breakup and Meteorite Fractions

    Science.gov (United States)

    Goodrich, C.; Jenniskens, P.; Shaddad, M. H.; Zolensky, M. E.; Fioretti, A. M.

    2017-01-01

    The recovery of meteorites from the impact of asteroid 2008 TC3 in the Nubian Desert of Sudan on October 7, 2008, marked the first time meteorites were collected from an asteroid observed in space by astronomical techniques before impacting. Search teams from the University of Khartoum traced the location of the strewn field and collected about 660 meteorites in four expeditions to the fall region, all of which have known fall coordinates. Upon further study, the Almahata Sitta meteorites proved to be a mixed bag of mostly ureilites (course grained, fine grained, and sulfide-metal assemblages), enstatite chondrites (EL3-6, EH3, EH5, breccias) and ordinary chondrites (H5-6, L4-5). One bencubbinite-like carbonaceous chondrite was identified, as well as one unique Rumuruti-like chondrite and an Enstatite achondrite. New analysis: The analysed meteorites so far suggest a high 30-40 percent fraction of non-ureilites among the recovered samples, but that high fraction does not appear to be in agreement with the meteorites in the University of Khartoum (UoK) collection. Ureilites dominate the meteorites that were recovered by the Sudanese teams. To better understand the fraction of recovered materials that fell to Earth, a program has been initiated to type the meteorites in the UoK collection in defined search areas. At this meeting, we will present some preliminary results from that investigation.

  11. Take control the Mac OS X lexicon

    CERN Document Server

    Zardetto, Sharon

    2009-01-01

    This ebook explains a little bit of everything; in fact, it's The Mac OS X (and then some) Lexicon because it's never just you and your Mac. It's you and your Mac and the Web, and your email, and that article you just read that threw 17 new acronyms at you or assumed that you knew all sorts of networking terms. Or it's you and your Mac and Finder features you've never touched, such as burn folders, smart folders, or proxy icons, and that mysterious Services submenu. This book is a great guide for Macintosh users everywhere who have trouble keeping up with the latest jargon, fo

  12. MacA, a periplasmic membrane fusion protein of the macrolide transporter MacAB-TolC, binds lipopolysaccharide core specifically and with high affinity.

    Science.gov (United States)

    Lu, Shuo; Zgurskaya, Helen I

    2013-11-01

    The Escherichia coli MacAB-TolC transporter has been implicated in efflux of macrolide antibiotics and secretion of enterotoxin STII. In this study, we found that purified MacA, a periplasmic membrane fusion protein, contains one tightly bound rough core lipopolysaccharide (R-LPS) molecule per MacA molecule. R-LPS was bound specifically to MacA protein with affinity exceeding that of polymyxin B. Sequence analyses showed that MacA contains two high-density clusters of positively charged amino acid residues located in the cytoplasmic N-terminal domain and the periplasmic C-terminal domain. Substitutions in the C-terminal cluster reducing the positive-charge density completely abolished binding of R-LPS. At the same time, these substitutions significantly reduced the functionality of MacA in the protection of E. coli against macrolides in vivo and in the in vitro MacB ATPase stimulation assays. Taken together, our results suggest that R-LPS or a similar glycolipid is a physiological substrate of MacAB-TolC.

  13. Combining meteorites and missions to explore Mars.

    Science.gov (United States)

    McCoy, Timothy J; Corrigan, Catherine M; Herd, Christopher D K

    2011-11-29

    Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young ( 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.

  14. MacBook Pro Portable Genius

    CERN Document Server

    Miser, Brad

    2011-01-01

    Tips and techniques for forward-thinking MacBook Pro users Now that you have a MacBook Pro, you need just one more accessory, your very own copy of MacBook Pro Portable Genius, Third Edition. This handy, compact book lets you in on a wealth of tips and tricks, so you get the very most out of Apple's very popular notebook. Discover the latest on the most recent release of iLife, get the skinny on the new Intel Core i7 and i5 processors in the Pro, see how to go wireless in a smart way, and much more. The book is easy to navigate, doesn't skimp on the essentials, and helps you save time and avoi

  15. MacSelfService online tutorial

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Mac Self-Service is a functionality within the Mac Desktop Service built and maintained to empower CERN users by giving them easy access to applications and configurations through the Self-Service application. This tutorial (text attached to the event page) explains how to install Mac Self-Service and how to use it to install applications and printers. Content owner: Vincent Nicolas Bippus Presenter: Pedro Augusto de Freitas Batista Tell us what you think via e-learning.support at cern.ch More tutorials in the e-learning collection of the CERN Document Server (CDS) https://cds.cern.ch/collection/E-learning%20modules?ln=en All info about the CERN rapid e-learning project is linked from http://twiki.cern.ch/ELearning  

  16. Meteorite and meteoroid: New comprehensive definitions

    Science.gov (United States)

    Rubin, A.E.; Grossman, J.N.

    2010-01-01

    Meteorites have traditionally been defined as solid objects that have fallen to Earth from space. This definition, however, is no longer adequate. In recent decades, man-made objects have fallen to Earth from space, meteorites have been identified on the Moon and Mars, and small interplanetary objects have impacted orbiting spacecraft. Taking these facts and other potential complications into consideration, we offer new comprehensive definitions of the terms "meteorite,""meteoroid," and their smaller counterparts: A meteoroid is a 10-??m to 1-m-size natural solid object moving in interplanetary space. A micrometeoroid is a meteoroid 10 ??m to 2 mm in size. A meteorite is a natural, solid object larger than 10 ??m in size, derived from a celestial body, that was transported by natural means from the body on which it formed to a region outside the dominant gravitational influence of that body and that later collided with a natural or artificial body larger than itself (even if it is the same body from which it was launched). Weathering and other secondary processes do not affect an object's status as a meteorite as long as something recognizable remains of its original minerals or structure. An object loses its status as a meteorite if it is incorporated into a larger rock that becomes a meteorite itself. A micrometeorite is a meteorite between 10 ??m and 2 mm in size. Meteorite- "a solid substance or body falling from the high regions of the atmosphere" (Craig 1849); "[a] mass of stone and iron that ha[s] been directly observed to have fallen down to the Earth's surface" (translated from Cohen 1894); "[a] solid bod[y] which came to the earth from space" (Farrington 1915); "A mass of solid matter, too small to be considered an asteroid; either traveling through space as an unattached unit, or having landed on the earth and still retaining its identity" (Nininger 1933); "[a meteoroid] which has reached the surface of the Earth without being vaporized" (1958

  17. Shock melting and vaporization of lunar rocks and minerals.

    Science.gov (United States)

    Ahrens, T. J.; O'Keefe, J. D.

    1972-01-01

    The entropy associated with the thermodynamic states produced by hypervelocity meteoroid impacts at various velocities are calculated for a series of lunar rocks and minerals and compared with the entropy values required for melting and vaporization. Taking into account shock-induced phase changes in the silicates, we calculate that iron meteorites impacting at speeds varying from 4 to 6 km/sec will produce shock melting in quartz, plagioclase, olivine, and pyroxene. Although calculated with less certainty, impact speeds required for incipient vaporization vary from 7 to 11 km/sec for the range of minerals going from quartz to periclase for aluminum (silicate-like) projectiles. The impact velocities, which are required to induce melting in a soil, are calculated to be in the range of 3 to 4 km/sec, provided thermal equilibrium is achieved in the shock state.

  18. Life on Mars: Evidence from Martian Meteorites

    Science.gov (United States)

    McKay, David S.; Thomas-Keptra, Katie L.; Clemett, Simon J.; Gibson, Everett K., Jr.; Spencer, Lauren; Wentworth, Susan J.

    2009-01-01

    New data on martian meteorite 84001 as well as new experimental studies show that thermal or shock decomposition of carbonate, the leading alternative non-biologic explanation for the unusual nanophase magnetite found in this meteorite, cannot explain the chemistry of the actual martian magnetites. This leaves the biogenic explanation as the only remaining viable hypothesis for the origin of these unique magnetites. Additional data from two other martian meteorites show a suite of biomorphs which are nearly identical between meteorites recovered from two widely different terrestrial environments (Egyptian Nile bottomlands and Antarctic ice sheets). This similarity argues against terrestrial processes as the cause of these biomorphs and supports an origin on Mars for these features.

  19. Lunar Flashlight and Other Lunar Cubesats

    Science.gov (United States)

    Cohen, Barbara

    2017-01-01

    Water is a human-exploitable resource. Lunar Flashlight is a Cubesat mission to detect and map lunar surface ice in permanently-shadowed regions of the lunar south pole. EM-1 will carry 13 Cubesat-class missions to further smallsat science and exploration capabilities; much room to infuse LEO cubesat methodology, models, and technology. Exploring the value of concurrent measurements to measure dynamical processes of water sources and sinks.

  20. Modeling the Thermal Interactions of Meteorites Below the Antarctic Ice

    Science.gov (United States)

    Oldroyd, William Jared; Radebaugh, Jani; Stephens, Denise C.; Lorenz, Ralph; Harvey, Ralph; Karner, James

    2017-10-01

    Meteorites with high specific gravities, such as irons, appear to be underrepresented in Antarctic collections over the last 40 years. This underrepresentation is in comparison with observed meteorite falls, which are believed to represent the actual population of meteorites striking Earth. Meteorites on the Antarctic ice sheet absorb solar flux, possibly leading to downward tunneling into the ice, though observations of this in action are very limited. This descent is counteracted by ice sheet flow supporting the meteorites coupled with ablation near mountain margins, which helps to force meteorites towards the surface. Meteorites that both absorb adequate thermal energy and are sufficiently dense may instead reach a shallow equilibrium depth as downward melting overcomes upward forces during the Antarctic summer. Using a pyronometer, we have measured the incoming solar flux at multiple depths in two deep field sites in Antarctica, the Miller Range and Elephant Moraine. We compare these data with laboratory analogues and model the thermal and physical interactions between a variety of meteorites and their surroundings. Our Matlab code model will account for a wide range of parameters used to characterize meteorites in an Antarctic environment. We will present the results of our model along with depth estimates for several types of meteorites. The recovery of an additional population of heavy meteorites would increase our knowledge of the formation and composition of the solar system.

  1. MAC reduction of isoflurane by sufentanil.

    Science.gov (United States)

    Brunner, M D; Braithwaite, P; Jhaveri, R; McEwan, A I; Goodman, D K; Smith, L R; Glass, P S

    1994-01-01

    We have shown previously that a plasma fentanyl concentration of 1.67 ng ml-1 reduced the MAC of isoflurane by 50%. By comparing equal degrees of MAC reduction by sufentanil, we may determine the potency ratio of these opioids. Seventy-six patients were allocated randomly to receive predetermined infusions of sufentanil, and end-tidal concentrations of isoflurane in oxygen. Blood samples were obtained 10 min after the start of the infusion, and just before and after skin incision. Any purposeful movement by the patient was recorded. The MAC reduction of isoflurane produced by sufentanil was obtained using a logistic regression model. A sufentanil plasma concentration of 0.145 ng ml-1 (95% confidence limits 0.04, 0.26 ng ml-1) resulted in a 50% reduction in the MAC of isoflurane. At a plasma concentration greater than 0.5 ng ml-1, sufentanil exhibited a ceiling effect.

  2. Our Lunar Destiny: Creating a Lunar Economy

    Science.gov (United States)

    Rohwer, Christopher J.

    2000-01-01

    "Our Lunar Destiny: Creating a Lunar Economy" supports a vision of people moving freely and economically between the earth and the Moon in an expansive space and lunar economy. It makes the economic case for the creation of a lunar space economy and projects the business plan that will make the venture an economic success. In addition, this paper argues that this vision can be created and sustained only by private enterprise and the legal right of private property in space and on the Moon. Finally, this paper advocates the use of lunar land grants as the key to unleashing the needed capital and the economic power of private enterprise in the creation of a 21st century lunar space economy. It is clear that the history of our United States economic system proves the value of private property rights in the creation of any new economy. It also teaches us that the successful development of new frontiers-those that provide economic opportunity for freedom-loving people-are frontiers that encourage, respect and protect the possession of private property and the fruits of labor and industry. Any new 21st century space and lunar economy should therefore be founded on this same principle.

  3. Lunar CATALYST

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  4. The Okhansk Meteorite: Specifics of Composition, Structure, and Genesis

    Directory of Open Access Journals (Sweden)

    A.I. Bakhtin

    2016-12-01

    Full Text Available The Okhansk meteorite fell on August 18, 1887 near the village of Tabor, about 15 km away from the town of Okhansk in Perm province and weighed 186.5 kg (the total weight of collected fragments, according to P.I. Krotov, was more than 245 kg. The shock wave from the meteorite entry knocked down animals and riders on horses. Despite the fact that it was significantly stronger than that caused by the Chelyabinsk meteorite of 2013, all information about this meteorite has completely erased from people's memory. It has been shown that the meteorite is an ordinary olivine-bronzite chondrite. Its main silicate minerals are olivine, bronzite, plagioclase, and diopside. The main ore minerals are kamacite and troilite. The meteorite contains silicate glass in large amounts. The analysis of the composition and structure of the Okhansk meteorite has demonstrated that it was formed at the early stages of accretion of the melted substance of the protosolar nebula without undergoing endogenous, temperature, or pressure changes.

  5. Worlds beyond meteorite studies

    International Nuclear Information System (INIS)

    Lipschutz, M.E.

    1986-01-01

    Meteorites are of essential interest because they contain the oldest Solar System materials available for research and sample a wide range of parent bodies - exteriors and interiors - some primitive, some highly evolved. Meteorites carry decipherable records of certain solar and galactic effects and yield otherwise unobtainable data about the genesis, evolution, and composition of the Earth and other major planets, satellites, asteroids, and the Sun. Some contain inclusions tracing events from before the Solar System formed; others contain organic matter derived from giant molecular clouds in the interstellar medium. It is especially advantageous that meteorites occur on the Earth's surface, where the full spectrum of laboratory analytical techniques can be applied, ranging from the simplest to the most sophisticated. As the recently released report of the US National Commission on Space put it: If one picture is worth 10,000 words, then one sample is worth 10,000 pictures. Because of the interdisciplinary nature of meteorite studies - overlapping chemistry, physics, geology, and astronomy - no brief article can summarize the full scope of current research. After introducing some basic cosmochemical facts and approaches, this report will illustrate the nature of questions that cosmochemists ask and how they go about answering them. For reasons to be described, the author focuses on certain trace elements - especially Ag, Au, Bi, Cd, Co, Cs, In, Rb, Se, Te, Tl, and Zn - that are particularly responsive to relatively low temperature processes and that yield important genetic information

  6. Year 3 LUNAR Annual Report to the NASA Lunar Science Institute

    OpenAIRE

    Burns, Jack; Lazio, Joseph

    2012-01-01

    The Lunar University Network for Astrophysics Research (LUNAR) is a team of researchers and students at leading universities, NASA centers, and federal research laboratories undertaking investigations aimed at using the Moon as a platform for space science. LUNAR research includes Lunar Interior Physics & Gravitation using Lunar Laser Ranging (LLR), Low Frequency Cosmology and Astrophysics (LFCA), Planetary Science and the Lunar Ionosphere, Radio Heliophysics, and Exploration Science. The LUN...

  7. Office 2008 for Mac for dummies

    CERN Document Server

    LeVitus, Bob

    2013-01-01

    Office 2008 for Mac is here, with great new enhancements to all your favorite office productivity tools. Who better than "Dr. Mac, "Bob LeVitus, to show you how to load and use them all? From choosing the best version for your needs to managing your life with your online calendar, Office 2008 For Mac For Dummies covers what you need to know. It compares the Student/Teacher Edition, Standard Edition, and Professional Edition, then walks you through installing your preferred version and keeping it up to date. You'll find out all the things you can do with Word, Excel, PowerPoint, and Entourage,

  8. Elemental composition analysis of stony meteorites discovered in Phitsanulok, Thailand

    Science.gov (United States)

    Loylip, T.; Wannawichian, S.

    2017-09-01

    A meteorite is a fragment of pure stone, iron or the mixture of stony-iron. The falling of meteorites into Earth’s surface is part of Earth’s accretion process from dust and rocks in our solar system. When these fragments come close enough to the Earth to be attracted by its gravity, they may fall into the Earth. Following the detection of objects that fall from the sky onto a home in Phitsanulok in June 27, the meteorites were analyzed by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDS) instruments. The results from SEM/EDS analysis show that the meteorites are mainly composed of Fe-Ni and Fe-s. The meteorite is Achondrite, a class of meteorite which does not contain Chondrule. The meteorites in this work are thought to be part of a large asteroid.

  9. Indigenous Amino Acids in Iron Meteorites

    Science.gov (United States)

    Elsila, J. E.; Dworkin, J. P.; Glavin, D. P.; Johnson, N. M.

    2018-01-01

    Understanding the organic content of meteorites and the potential delivery of molecules relevant to the origin of life on Earth is an important area of study in astrobiology. There have been many studies of meteoritic organics, with much focus on amino acids as monomers of proteins and enzymes essential to terrestrial life. The majority of these studies have involved analysis of carbonaceous chondrites, primitive meteorites containing approx. 3-5 wt% carbon. Amino acids have been observed in varying abundances and distributions in representatives of all eight carbonaceous chondrite groups, as well as in ungrouped carbonaceous chondrites, ordinary and R chondrites, ureilites, and planetary achondrites [1 and references therein].

  10. Enantiomer Ratios of Meteoritic Sugar Derivatives

    Science.gov (United States)

    Cooper, George

    2012-01-01

    Carbonaceous meteorites contain a diverse suite of soluble organic compounds. Studies of these compounds reveal the Solar System's earliest organic chemistry. Among the classes of organic compounds found in meteorites are keto acids (pyruvic acid, etc.), hydroxy tricarboxylic acids (1), amino acids, amides, purines and pyrimidines. The Murchison and Murray meteorites are the most studied for soluble and insoluble organic compounds and organic carbon phases. The majority of (indigenous) meteoritic compounds are racemic, (i.e., their D/L enantiomer ratios are 50:50). However, some of the more unusual (non-protein) amino acids contain slightly more of one enantiomer (usually the L) than the other. This presentation focuses on the enantiomer analyses of three to six-carbon (3C to 6C) meteoritic sugar acids. The molecular and enantiomer analysis of corresponding sugar alcohols will also be discussed. Detailed analytical procedures for sugar-acid enantiomers have been described. Results of several meteorite analyses show that glyceric acid is consistently racemic (or nearly so) as expected of non-biological mechanisms of synthesis. Also racemic are 4-C deoxy sugar acids: 2-methyl glyceric acid; 2,4-dihydroxybutyric acid; 2,3-dihydroxybutyric acid (two diastereomers); and 3,4-dihydroxybutyric acid. However, a 4C acid, threonic acid, has never been observed as racemic, i.e., it possesses a large D excess. In several samples of Murchison and one of GRA 95229 (possibly the most pristine carbonaceous meteorite yet analyzed) threonic acid has nearly the same D enrichment. In Murchison, preliminary isotopic measurements of individual threonic acid enantiomers point towards extraterrestrial sources of the D enrichment. Enantiomer analyses of the 5C mono-sugar acids, ribonic, arabinonic, xylonic, and lyxonic also show large D excesses. It is worth noting that all four of these acids (all of the possible straight-chained 5C sugar acids) are present in meteorites, including the

  11. Chiral Biomarkers in Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  12. A Multi-Wavelength Grain-by-Grain Survey of Lunar Soils in Search of Rare Materials

    Science.gov (United States)

    Crites, S.; Lucey, P. G.; Viti, T.

    2014-12-01

    The Moon is unique among terrestrial planets for its lack of an atmosphere and global tectonic or volcanic processes. These factors and its position in the inner solar system mean that it is a potential repository of meteoritic material from all of the terrestrial planets. The National Research Council's 2007 report on the Scientific Context for the Exploration of the Moon highlighted this unique possibility and defined the search for rare materials including those from the early Earth as a key goal for future lunar exploration. Armstrong et al. (2002) estimated that Earth material could be present at the 7 ppm level in surface lunar regolith and emphasized that since a single gram of lunar fines contains over 10 million particles, the search for terran material in lunar soils should begin with the current stock of lunar samples. Joy et al. (2012) demonstrated that mineral and lithologic relics of impactors can survive and be recognized in lunar samples, and recent work by Burchell et al. (2014) suggests that fossil fragments from Earth could survive the extreme shocks associated with transport to the Moon. Following the concept laid out by Armstrong et al. (2002), we are conducting a survey of lunar soil samples using microscopic hyperspectral imaging spectroscopy across visible, near-infrared, and thermal infrared wavelengths to conduct a search for rare particles, including those that could be sourced from the early Earth. Our system currently consists of three microscopic imaging spectrometers with ~30 micron spatial resolution, permitting resolved imaging of individual grains. Fields of view of at least 1 cm and scan rates near 1 mm/sec permit rapid processing of relatively large quantities of sample. Existing spectrometers cover the 0.5 to 2.5 micron region, permitting detection and characterization of the common iron-bearing lunar minerals olivine and pyroxene, and the 8-14 micron region, which permits detection of other, rarer minerals of interest such as

  13. Aeronautical Mobile Airport Communications System (AeroMACS)

    Science.gov (United States)

    Budinger, James M.; Hall, Edward

    2011-01-01

    To help increase the capacity and efficiency of the nation s airports, a secure wideband wireless communications system is proposed for use on the airport surface. This paper provides an overview of the research and development process for the Aeronautical Mobile Airport Communications System (AeroMACS). AeroMACS is based on a specific commercial profile of the Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard known as Wireless Worldwide Interoperability for Microwave Access or WiMAX (WiMax Forum). The paper includes background on the need for global interoperability in air/ground data communications, describes potential AeroMACS applications, addresses allocated frequency spectrum constraints, summarizes the international standardization process, and provides findings and recommendations from the world s first AeroMACS prototype implemented in Cleveland, Ohio, USA.

  14. Historical Romanian meteorites: emendations of official catalogue records

    Directory of Open Access Journals (Sweden)

    Dana Lüttge-Pop

    2013-12-01

    Full Text Available With its more than 50,000 valid official and provisory meteorite entries, the online catalogue of The Meteoritical Society, i.e., the Meteoritical Bulletin Database (MBDB represents the most authorized and primary source of information in the field. Unfortunately, this official reference contains some erroneous geographical information in the case of five historical Romanian meteorites. For Zsadany, the current country information is “Hungary, Bekes county” instead of Romania, Timiş County. For Mezö-Madaras and Tauti, the county affiliations “Harghita” and respectively “Cluj” have to be corrected into Mureş and Arad, respectively. Geographical coordinates for Kakowa and Ohaba require minor corrections, only. The source of these errors resides in changes of names and administrative affiliations of the localities of the fall/find, while the formal nomenclature protocol requires the meteorite name in the original description to be preserved. The example of the historical Romanian meteorites illustrates the challenges that a researcher unfamiliar with a region faces when locating old specimens, in general. This requires knowledge of regional history and geography, and sometimes access to the original references - usually not written in English, or having a somehow limited circulation. Additionally, in the last two decades several new publications provided more detailed classification information on Sopot, Ohaba, Tauti and Mocs meteorites. Sopot was classified as H5, with shock stage S3. The studied Ohaba and Tauti samples also attested S3 shock stages. Variable shock stages (S3-5 were identified in Mocs samples, the most well-known Romanian meteorite. This new information should be added to the corresponding MBDB entries.

  15. Obtaining Magnetic Properties of Meteorites Using Magnetic Scanner

    Science.gov (United States)

    Kletetschka, G.; Nabelek, L.; Mazanec, M.; Simon, K.; Hruba, J.

    2015-12-01

    Magnetic images of Murchison meteorite's and Chelyabinsk meteorite's thin section have been obtained from magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses (Nabelek et al., 2015). Nabelek, L., Mazanec, M., Kdyr, S., and Kletetschka, G., 2015, Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section: Meteoritics & Planetary Science.

  16. McMAC: towards a MAC protocol with multi-constrained QoS provisioning for diverse traffic in Wireless Body Area Networks.

    Science.gov (United States)

    Monowar, Muhammad Mostafa; Hassan, Mohammad Mehedi; Bajaber, Fuad; Al-Hussein, Musaed; Alamri, Atif

    2012-11-12

    The emergence of heterogeneous applications with diverse requirements for resource-constrained Wireless Body Area Networks (WBANs) poses significant challenges for provisioning Quality of Service (QoS) with multi-constraints (delay and reliability) while preserving energy efficiency. To address such challenges, this paper proposes McMAC,a MAC protocol with multi-constrained QoS provisioning for diverse traffic classes in WBANs. McMAC classifies traffic based on their multi-constrained QoS demands and introduces a novel superframe structure based on the "transmit-whenever-appropriate"principle, which allows diverse periods for diverse traffic classes according to their respective QoS requirements. Furthermore, a novel emergency packet handling mechanism is proposedto ensure packet delivery with the least possible delay and the highest reliability. McMAC is also modeled analytically, and extensive simulations were performed to evaluate its performance. The results reveal that McMAC achieves the desired delay and reliability guarantee according to the requirements of a particular traffic class while achieving energy efficiency.

  17. Extraterrestrial Organic Compounds in Meteorites

    Science.gov (United States)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  18. A Mobile Automated Characterization System (MACS) for indoor floor characterization

    International Nuclear Information System (INIS)

    Richardson, B.S.; Haley, D.C.; Dudar, A.M.; Ward, C.R.

    1995-01-01

    The Savannah River Technology Center (SRTC) and Oak Ridge National Laboratory are developing an advanced Mobile Automated Characterization System (MACS) to characterize indoor contaminated floors. MACS is based upon Semi-Intelligent Mobile Observing Navigator (SIMON), an earlier floor characterization system developed at SRTC. MACS will feature enhanced navigation systems, operator interface, and an interface to simplify integration of additional sensors. The enhanced navigation system will provide the capability to survey large open areas much more accurately than is now possible with SIMON, which is better suited for hallways and corridors that provide the means for recalibrating position and heading. MACS operator interface is designed to facilitate MACS's use as a tool for health physicists, thus eliminating the need for additional training in the robot's control language. Initial implementation of MACS will use radiation detectors. Additional sensors, such as PCB sensors currently being developed, will be integrated on MACS in the future. Initial use of MACS will be focused toward obtaining comparative results with manual methods. Surveys will be conducted both manually and with MACS to compare relative costs and data quality. While clear cost benefits anticipated, data quality benefits should be even more significant

  19. Mac OS X for Unix Geeks (Leopard)

    CERN Document Server

    Rothman, Ernest E; Rosen, Rich

    2009-01-01

    If you've been lured to Mac OS X because of its Unix roots, this invaluable book serves as a bridge between Apple's Darwin OS and the more traditional Unix systems. The new edition offers a complete tour of Mac OS X's Unix shell for Leopard and Tiger, and helps you find the facilities that replace or correspond to standard Unix utilities. Learn how to compile code, link to libraries, and port Unix software to Mac OS X and much more with this concise guide.

  20. Tracing meteorite source regions through asteroid spectroscopy

    Science.gov (United States)

    Thomas, Cristina Ana

    By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs, in principle, gives the best representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source locations, we seek to gain insight into the original solar system formation locations for different meteorite classes. To forge the first link between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects. We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Using the Modified Gaussian Model (MGM) as a mathematical tool, we treat asteroid and meteorite spectra identically in the calculation of 1-micron and 2-micron geometric band centers and their band area ratios (BARs). Using these identical numerical parameters we quantitatively compare the spectral properties of S-, Sq-, Q- and V-type NEOs with the spectral properties of the meteorites in the H, L, LL and HED meteorite classes. For each NEO spectrum, we assign a set of probabilities for it being related to each of these meteorite classes. Our NEO- meteorite correlation probabilities are then convolved with NEO-source region probabilities to yield a final set of meteorite-source region correlations. An apparent (significant at the 2.1-sigma level) source region signature is found for the H chondrites to be preferentially delivered to the inner solar system through the 3:1 mean motion resonance. A 3:1 resonance H chondrite source region is consistent with the short cosmic ray exposure ages known for H chondrites. The spectroscopy of asteroids is subject to several sources of inherent error. The source region model used a variety of S-type spectra without

  1. Functional Implications of an Intermeshing Cogwheel-like Interaction between TolC and MacA in the Action of Macrolide-specific Efflux Pump MacAB-TolC*

    Science.gov (United States)

    Xu, Yongbin; Song, Saemee; Moeller, Arne; Kim, Nahee; Piao, Shunfu; Sim, Se-Hoon; Kang, Mooseok; Yu, Wookyung; Cho, Hyun-Soo; Chang, Iksoo; Lee, Kangseok; Ha, Nam-Chul

    2011-01-01

    Macrolide-specific efflux pump MacAB-TolC has been identified in diverse Gram-negative bacteria including Escherichia coli. The inner membrane transporter MacB requires the outer membrane factor TolC and the periplasmic adaptor protein MacA to form a functional tripartite complex. In this study, we used a chimeric protein containing the tip region of the TolC α-barrel to investigate the role of the TolC α-barrel tip region with regard to its interaction with MacA. The chimeric protein formed a stable complex with MacA, and the complex formation was abolished by substitution at the functionally essential residues located at the MacA α-helical tip region. Electron microscopic study delineated that this complex was made by tip-to-tip interaction between the tip regions of the α-barrels of TolC and MacA, which correlated well with the TolC and MacA complex calculated by molecular dynamics. Taken together, our results demonstrate that the MacA hexamer interacts with TolC in a tip-to-tip manner, and implies the manner by which MacA induces opening of the TolC channel. PMID:21325274

  2. Functional implications of an intermeshing cogwheel-like interaction between TolC and MacA in the action of macrolide-specific efflux pump MacAB-TolC.

    Science.gov (United States)

    Xu, Yongbin; Song, Saemee; Moeller, Arne; Kim, Nahee; Piao, Shunfu; Sim, Se-Hoon; Kang, Mooseok; Yu, Wookyung; Cho, Hyun-Soo; Chang, Iksoo; Lee, Kangseok; Ha, Nam-Chul

    2011-04-15

    Macrolide-specific efflux pump MacAB-TolC has been identified in diverse gram-negative bacteria including Escherichia coli. The inner membrane transporter MacB requires the outer membrane factor TolC and the periplasmic adaptor protein MacA to form a functional tripartite complex. In this study, we used a chimeric protein containing the tip region of the TolC α-barrel to investigate the role of the TolC α-barrel tip region with regard to its interaction with MacA. The chimeric protein formed a stable complex with MacA, and the complex formation was abolished by substitution at the functionally essential residues located at the MacA α-helical tip region. Electron microscopic study delineated that this complex was made by tip-to-tip interaction between the tip regions of the α-barrels of TolC and MacA, which correlated well with the TolC and MacA complex calculated by molecular dynamics. Taken together, our results demonstrate that the MacA hexamer interacts with TolC in a tip-to-tip manner, and implies the manner by which MacA induces opening of the TolC channel.

  3. Mac OS X Snow Leopard Server For Dummies

    CERN Document Server

    Rizzo, John

    2009-01-01

    Making Everything Easier!. Mac OS® X Snow Leopard Server for Dummies. Learn to::;. Set up and configure a Mac network with Snow Leopard Server;. Administer, secure, and troubleshoot the network;. Incorporate a Mac subnet into a Windows Active Directory® domain;. Take advantage of Unix® power and security. John Rizzo. Want to set up and administer a network even if you don't have an IT department? Read on!. Like everything Mac, Snow Leopard Server was designed to be easy to set up and use. Still, there are so many options and features that this book will save you heaps of time and effort. It wa

  4. McMAC: Towards a MAC Protocol with Multi-Constrained QoS Provisioning for Diverse Traffic in Wireless Body Area Networks

    OpenAIRE

    Monowar, Muhammad; Hassan, Mohammad; Bajaber, Fuad; Al-Hussein, Musaed; Alamri, Atif

    2012-01-01

    The emergence of heterogeneous applications with diverse requirements for resource-constrained Wireless Body Area Networks (WBANs) poses significant challenges for provisioning Quality of Service (QoS) with multi-constraints (delay and reliability) while preserving energy efficiency. To address such challenges, this paper proposes McMAC, a MAC protocol with multi-constrained QoS provisioning for diverse traffic classes in WBANs. McMAC classifies traffic based on their multi-constrained QoS de...

  5. Lunar Riometry

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Burns, J. O.; Kasper, J. C.

    2011-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent and its behavior over time, including modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the peak plasma density of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of nanometer- to micron-scale dust. The LUNAR consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  6. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories

    Science.gov (United States)

    Elsila, Jamie E.; Aponte, Jose C.; Blackmond, Donna G.; Burton, Aaron S.; Dworkin, Jason P.; Glavin, Daniel P.

    2016-01-01

    The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplied by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large -enantiomeric excesses of some extraterrestrial protein amino acids (up to 60) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work.

  7. iMac G3 Blueberry 350MHz

    CERN Multimedia

    2000-01-01

    The iMac G3 is an all-in-one personal computer, encompassing both the monitor and the computer in one package. It allowed to revitalize the Apple brand that was in decline and close to financial ruin. Originally released in striking bondi blue and later a range of other translucent plastic envelopes in bright colors. The iMac comes with a keyboard and mouse matching the color of the case. The iMac G3 was sold from 1998 to 2003 and has been updated many times.

  8. Una lectura interpretativa de Tras la virtud, de Alasdair MacIntyre - An Interpretive Reading of After Virtue, by Alasdair MacIntyre

    Directory of Open Access Journals (Sweden)

    Fernando Fernández-Llebrez

    2010-12-01

    Full Text Available This article centers on the thought of Alasdair MacIntyre, whose most prominente work, After Virtue, is considered a classic of political science. In contrast with other reviews, this article will examine After Virtue within the broader context of MacIntyre’s thinking and publications. An overview of MacIntyre’s literary corpus and the evolution of his thinking will shed light on the volume examined and trace certain ideas that are characteristic of this Scottish political philosopher. Matters that remained unsettled in After Virtue have become over time more defined in MacIntyre’s thinking, such as the influence exerted upon him by Thomas Aquinas.

  9. Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers

    Directory of Open Access Journals (Sweden)

    Alastair W. Tait

    2017-06-01

    Full Text Available Finding fresh, sterilized rocks provides ecologists with a clean slate to test ideas about first colonization and the evolution of soils de novo. Lava has been used previously in first colonizer studies due to the sterilizing heat required for its formation. However, fresh lava typically falls upon older volcanic successions of similar chemistry and modal mineral abundance. Given enough time, this results in the development of similar microbial communities in the newly erupted lava due to a lack of contrast between the new and old substrates. Meteorites, which are sterile when they fall to Earth, provide such contrast because their reduced and mafic chemistry commonly differs to the surfaces on which they land; thus allowing investigation of how community membership and structure respond to this new substrate over time. We conducted 16S rRNA gene analysis on meteorites and soil from the Nullarbor Plain, Australia. We found that the meteorites have low species richness and evenness compared to soil sampled from directly beneath each meteorite. Despite the meteorites being found kilometers apart, the community structure of each meteorite bore more similarity to those of other meteorites (of similar composition than to the community structure of the soil on which it resided. Meteorites were dominated by sequences that affiliated with the Actinobacteria with the major Operational Taxonomic Unit (OTU classified as Rubrobacter radiotolerans. Proteobacteria and Bacteroidetes were the next most abundant phyla. The soils were also dominated by Actinobacteria but to a lesser extent than the meteorites. We also found OTUs affiliated with iron/sulfur cycling organisms Geobacter spp. and Desulfovibrio spp. This is an important finding as meteorites contain abundant metal and sulfur for use as energy sources. These ecological findings demonstrate that the structure of the microbial community in these meteorites is controlled by the substrate, and will not

  10. George MacDonald's Estimate of Childhood

    Science.gov (United States)

    Pridmore, John

    2007-01-01

    The nineteenth-century fantasy writer George MacDonald believed that "it is better to be a child in a green field than a knight of many orders." In this paper, I shall explore the bearing of this high estimate of childhood on spiritual education. MacDonald explores the spirituality of the child in his essay "A Sketch of Individual Development" and…

  11. Mac OS X : Tiger edition the missing manual

    CERN Document Server

    Pogue, David

    2005-01-01

    You can set your watch to it: As soon as Apple comes out with another version of Mac OS X, David Pogue hits the streets with another meticulous Missing Manual to cover it with a wealth of detail. The new Mac OS X 10.4, better known as Tiger, is faster than its predecessors, but nothing's too fast for Pogue and Mac OS X: The Missing Manual. There are many reasons why this is the most popular computer book of all time. With its hallmark objectivity, the Tiger Edition thoroughly explores the latest features to grace the Mac OS. Which ones work well and which do not? What should you look for? Th

  12. Increased NMDA receptor inhibition at an increased Sevoflurane MAC

    Directory of Open Access Journals (Sweden)

    Brosnan Robert J

    2012-06-01

    Full Text Available Abstract Background Sevoflurane potently enhances glycine receptor currents and more modestly decreases NMDA receptor currents, each of which may contribute to immobility. This modest NMDA receptor antagonism by sevoflurane at a minimum alveolar concentration (MAC could be reciprocally related to large potentiation of other inhibitory ion channels. If so, then reduced glycine receptor potency should increase NMDA receptor antagonism by sevoflurane at MAC. Methods Indwelling lumbar subarachnoid catheters were surgically placed in 14 anesthetized rats. Rats were anesthetized with sevoflurane the next day, and a pre-infusion sevoflurane MAC was measured in duplicate using a tail clamp method. Artificial CSF (aCSF containing either 0 or 4 mg/mL strychnine was then infused intrathecally at 4 μL/min, and the post-infusion baseline sevoflurane MAC was measured. Finally, aCSF containing strychnine (either 0 or 4 mg/mL plus 0.4 mg/mL dizocilpine (MK-801 was administered intrathecally at 4 μL/min, and the post-dizocilpine sevoflurane MAC was measured. Results Pre-infusion sevoflurane MAC was 2.26%. Intrathecal aCSF alone did not affect MAC, but intrathecal strychnine significantly increased sevoflurane requirement. Addition of dizocilpine significantly decreased MAC in all rats, but this decrease was two times larger in rats without intrathecal strychnine compared to rats with intrathecal strychnine, a statistically significant (P  Conclusions Glycine receptor antagonism increases NMDA receptor antagonism by sevoflurane at MAC. The magnitude of anesthetic effects on a given ion channel may therefore depend on the magnitude of its effects on other receptors that modulate neuronal excitability.

  13. MACS as a tool for international inspections

    Energy Technology Data Exchange (ETDEWEB)

    Curtiss, J.A.; Indusi, J.P.

    1995-08-01

    The MACS/ACRS (Managed Access by Controlled Sensing/Access by Controlled Remote Sensing) system is a collection of communication devices, video capability, and distance-measuring equipment which can effectively substitute for the physical presence of a challenge inspector within a facility. The MACS design allows growth of the prototype, developed in response to the Chemical Weapons Convention (CWC), into a versatile device for inspection of sensitive nuclear facilities under other international arrangements, for example the proposed Fissile Material Cutoff Convention. A MACS/ACRS-type system in a standard, international-recognized configuration could resolve sensitive information and safety concerns through providing a means of achieving the goals of an inspection while excluding the inspector. We believe the technology used to develop MACS for the Defense Nuclear Agency, followed by ACRS for the Department of Energy, is universally adaptable for minimally-intrusive managed-access international inspections of sensitive sites.

  14. MACS as a tool for international inspections

    International Nuclear Information System (INIS)

    Curtiss, J.A.; Indusi, J.P.

    1995-01-01

    The MACS/ACRS (Managed Access by Controlled Sensing/Access by Controlled Remote Sensing) system is a collection of communication devices, video capability, and distance-measuring equipment which can effectively substitute for the physical presence of a challenge inspector within a facility. The MACS design allows growth of the prototype, developed in response to the Chemical Weapons Convention (CWC), into a versatile device for inspection of sensitive nuclear facilities under other international arrangements, for example the proposed Fissile Material Cutoff Convention. A MACS/ACRS-type system in a standard, international-recognized configuration could resolve sensitive information and safety concerns through providing a means of achieving the goals of an inspection while excluding the inspector. We believe the technology used to develop MACS for the Defense Nuclear Agency, followed by ACRS for the Department of Energy, is universally adaptable for minimally-intrusive managed-access international inspections of sensitive sites

  15. Classification of Meteorites and Micrometeorites

    Science.gov (United States)

    Maurette, Michel

    Archeologists only started to trace back successfully the advance of the Roman legions, trade patterns and the evolution of manufacturing techniques in Roman time, once they found an efficient scheme of classification for the fragments of amphora used to transport wine for the soldiers. Similarly, the classification of meteorites and micrometeorites is an essential step in the exploitation of these extraterrestrial debris. We recall that one of the main objectives of meteoriticists over the last 30 years was to find the most primitive objects of the solar system, which have been the least reprocessed since the formation of the early solar nebula, with the view to exploit them as reliable archivist of our distant past. This section outlines some of the methods used to classify meteorites and Antarctic micrometeorites. It also summarizes some of the key features of the surprisingly simple relationship between micrometeorites and a relatively rare group of stony meteorites, the hydrous carbonaceous CM-type chondrites, which was only confirmed recently after the study of the Concordia micrometeorites collected in central Antarctica in January 2002. A more technical discussion of this relationship presented in Sect. 25 will allow its extension to the smaller micrometeorites collected by NASA in the stratosphere. The book of Wasson (1985) is still one of the best monographs about meteorites.

  16. SNC meteorites: Clues to martian petrologic evolution

    International Nuclear Information System (INIS)

    McSween, H.Y. Jr.

    1985-01-01

    The shergottites, nakhlites, and Chassigny (SNC meteorites) are apparently cumulate mafic and ultramafic rocks that crystallized at shallow levels in the crust of their parent body. The mineralogy and chemistry of these meteorites are remarkably like equivalent terrestrial rocks, although their ratios of Fe/(Fe+Mg) and certain incompatible elements and their oxygen isotopic compositions are distinctive. All have crystallization ages of 1.3 b.y. or younger and formed from magmas produced by partial melting of previously fractionated source regions. Isotope systematics suggest that the SNC parent body had a complex and protracted thermal history spanning most of geologic time. Some meteorites have been severely shock metamorphosed, and all were ejected from their parent body at relatively recent times, possibly in several impact events. Late crystallization ages, complex petrogenesis, and possible evidence for a large gravitational field suggest that these meteorites are derived from a large planet. Trapped gases in shergottite shock melts have compositions similar to the composition measured in the Martian atmosphere. Ejection of Martian meteorites may have been accomplished by acceleration of near-surface spalls or other mechanisms not fully understood. If SNC meteorites are of Martian origin, they provide important information on planetary composition and evolution. The bulk composition and redox state of the Martian mantle, as constrained by shergottite phase equilibria, must be more earthlike than most current models. Planetary thermal models should benefit from data on the abundances of radioactive heat sources, the melting behavior of the mantle, and the timing of planetary differentiation

  17. A Mac Protocol Implementation for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jamila Bhar

    2015-01-01

    Full Text Available IEEE 802.15.4 is an important standard for Low Rate Wireless Personal Area Network (LRWPAN. The IEEE 802.15.4 presents a flexible MAC protocol that provides good efficiency for data transmission by adapting its parameters according to characteristics of different applications. In this research work, some restrictions of this standard are explained and an improvement of traffic efficiency by optimizing MAC layer is proposed. Implementation details for several blocks of communication system are carefully modeled. The protocol implementation is done using VHDL language. The analysis gives a full understanding of the behavior of the MAC protocol with regard to backoff delay, data loss probability, congestion probability, slot effectiveness, and traffic distribution for terminals. Two ideas are proposed and tested to improve efficiency of CSMA/CA mechanism for IEEE 802.15.4 MAC Layer. Primarily, we dynamically adjust the backoff exponent (BE according to queue level of each node. Secondly, we vary the number of consecutive clear channel assessment (CCA for packet transmission. We demonstrate also that slot compensation provided by the enhanced MAC protocol can greatly avoid unused slots. The results show the significant improvements expected by our approach among the IEEE 802.15.4 MAC standards. Synthesis results show also hardware performances of our proposed architecture.

  18. Cogenetic Rock Fragments from a Lunar Soil: Evidence of a Ferroan Noritic-Anorthosite Pluton on the Moon

    Science.gov (United States)

    Jolliff, B. L.; Haskin, L. A.

    1995-01-01

    peak at noritic anoilhosite. Characteristics of the samples and their geochemical trends imply an origin in a system that was large relative to the (unknown) size of the impact that produced the breccias of ferroan noritic-anorthosite composition that were excavated later by the formation of North Ray Crater, and they appear to be consistent with an origin of the suite within a perched plagioclase cumulate. If the Moon's crust formed by accumulation of plagioclase in a magma ocean, ferroan noritic anothosite, formed as an orthocumulate, is an alternative to extensive adcumulus formation of ferroan anorthosite (greater than 90 vol% plagiclase). This provides a relatively mafic ferroan anorthositic component (approximately 15 vol% mafics), which is required by mass-balance models of compositions of polymict lunar-crustal materials. The inferred bulk composition of the system of cumulus plagioclase and intercumulus melt is similar to that of ferroan regolith breccia MacAlpine Hills 88104/5, a lunar-highland meteorite, and may represent a common and widespread component of the Moon's early highland crust.

  19. Learn Office 2011 for Mac OS X

    CERN Document Server

    Hart-Davis, Guy

    2011-01-01

    Office for Mac remains the leading productivity suite for Mac, with Apple's iWork and the free OpenOffice.org trailing far behind. And now it's being updated with a cleaner interface and more compatibility with Exchange and SharePoint. Learn Office 2011 for Mac OS X offers a practical, hands-on approach to using Office 2011 applications to create and edit documents and get work done efficiently. You'll learn how to customize Office, design, create, and share documents, manipulate data in a spreadsheet, and create lively presentations. You'll also discover how to organize your email, contacts,

  20. Lunar Reconnaissance Orbiter Lunar Workshops for Educators

    Science.gov (United States)

    Jones, A. P.; Hsu, B. C.; Hessen, K.; Bleacher, L.

    2012-12-01

    The Lunar Workshops for Educators (LWEs) are a series of weeklong professional development workshops, accompanied by quarterly follow-up sessions, designed to educate and inspire grade 6-12 science teachers, sponsored by the Lunar Reconnaissance Orbiter (LRO). Participants learn about lunar science and exploration, gain tools to help address common student misconceptions about the Moon, find out about the latest research results from LRO scientists, work with data from LRO and other lunar missions, and learn how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks and through authentic research experiences. LWEs are held around the country, primarily in locations underserved with respect to NASA workshops. Where possible, workshops also include tours of science facilities or field trips intended to help participants better understand mission operations or geologic processes relevant to the Moon. Scientist and engineer involvement is a central tenant of the LWEs. LRO scientists and engineers, as well as scientists working on other lunar missions, present their research or activities to the workshop participants and answer questions about lunar science and exploration. This interaction with the scientists and engineers is consistently ranked by the LWE participants as one of the most interesting and inspiring components of the workshops. Evaluation results from the 2010 and 2011 workshops, as well as preliminary analysis of survey responses from 2012 participants, demonstrated an improved understanding of lunar science concepts among LWE participants in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and effectively share LRO data with students. Teachers reported increased confidence in helping students conduct research using lunar data, and learned about programs that would allow their students to make authentic

  1. Lunar cement

    Science.gov (United States)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  2. A Peltier-based freeze-thaw device for meteorite disaggregation

    Science.gov (United States)

    Ogliore, R. C.

    2018-02-01

    A Peltier-based freeze-thaw device for the disaggregation of meteorite or other rock samples is described. Meteorite samples are kept in six water-filled cavities inside a thin-walled Al block. This block is held between two Peltier coolers that are automatically cycled between cooling and warming. One cycle takes approximately 20 min. The device can run unattended for months, allowing for ˜10 000 freeze-thaw cycles that will disaggregate meteorites even with relatively low porosity. This device was used to disaggregate ordinary and carbonaceous chondrite regoltih breccia meteorites to search for micrometeoroid impact craters.

  3. Mössbauer study of Slovak meteorites

    Science.gov (United States)

    Lipka, J.; Sitek, J.; Dekan, J.; Degmová, J.; Porubčan, V.

    2013-04-01

    57Fe Mössbauer spectroscopy was used as an analytical tool in the investigation of iron containing compounds of two meteorites (Rumanová and Košice) out of total of six which had fallen on Slovak territory. In the magnetic fraction of the iron bearing compounds in the Rumanová meteorite, maghemite, troilite and Fe-Ni alloy were identified. In the non-magnetic fraction silicate phases were found, such as olivine and pyroxene. The paramagnetic component containing Fe3 + ions corresponds probably to small superparamagnetic particles. The Košice meteorite was found near the town of Košice in February 2010. Its magnetic fraction consists of a Fe-Ni alloy with the Mössbauer parameters of the magnetic field corresponding to kamacite α-Fe(Ni, Co) and troilite. The non-magnetic part consists of Fe2 + phases such as olivine and pyroxene and traces of a Fe3 + phase. The main difference between these meteorites is their iron oxide content. These kinds of analyses can bring important knowledge about phases and compounds formed in extraterrestrial conditions, which have other features than their terrestrial analogues.

  4. Analyses of Rumanová meteorite

    Science.gov (United States)

    Lipka, J.; Sitek, J.; Dekan, J.; Sedlačková, K.

    2014-04-01

    Mössbauer spectroscopy was used as an analytical tool in investigation of iron containing compounds of Rumanová meteorite found on Slovak territory and it was classified as chondrite H. The results showed that the Mössbauer spectra consist of magnetic and non-magnetic components related to different iron-bearing phases. In non-magnetic part, olivine, pyroxene, and traces of Fe3 + phases have been identified. The magnetically ordered part of the Rumanová meteorite spectrum consists of kamacite, troilite and the third additional component corresponds to hydroxides originating from weathering due to being long time on the Earth surface. The weathering products can be recognised mainly as maghemite, however traces of other weathering components as akagaenite, goethite and magnetite cannot be excluded. On the contrary to Rumanová, no weathering products have been found in the sample of Košice meteorite which fell on the territory of Slovakia in February 2010 and has been investigated a few months after the fall.

  5. Organic Chemistry of Carbonaceous Meteorites

    Science.gov (United States)

    Cronin, John R.

    2001-01-01

    Chiral and carbon-isotopic analyses of isovaline have been carried out on numerous samples of the Murchison and one sample of the Murray carbonaceous chondrite. The isovaline was found to be heterogeneous with regard to enantiomeric excess (ee) both between samples and within a single Murchison sample. L-Excesses ranging from 0 to 15% were observed. The isovaline delta(sup 13) C was found to be about +18%. No evidence was obtained suggesting terrestrial contamination in the more abundant L-enantiomer. A correlation was observed between isovaline (also alpha - aminoisobutyric acid) concentration and PCP content of five CM chondrites. It is suggested that isovaline, along with other meteoritic a-methyl amino acids with ee, are of presolar origin. The possible formation of ee in extraterrestrial amino acids by exposure to circularly polarized light or by magnetochiral photochemistry is discussed. Key words: Murchison meteorite, Murray meteorite, amino acids, isovaline, chirality, carbon isotopes, PCP.

  6. Connectivity-Based Reliable Multicast MAC Protocol for IEEE 802.11 Wireless LANs

    Directory of Open Access Journals (Sweden)

    Woo-Yong Choi

    2009-01-01

    Full Text Available We propose the efficient reliable multicast MAC protocol based on the connectivity information among the recipients. Enhancing the BMMM (Batch Mode Multicast MAC protocol, the reliable multicast MAC protocol significantly reduces the RAK (Request for ACK frame transmissions in a reasonable computational time and enhances the MAC performance. By the analytical performance analysis, the throughputs of the BMMM protocol and our proposed MAC protocol are derived. Numerical examples show that our proposed MAC protocol increases the reliable multicast MAC performance for IEEE 802.11 wireless LANs.

  7. Victor Bérard et la Macédoine

    Directory of Open Access Journals (Sweden)

    Ivan Savev

    2011-01-01

    Full Text Available Un helléniste convaincu, Victor Bérard, en vient, au début du XXe siècle à soutenir l’existence de « Macédoniens » et le slogan « la Macédoine aux Macédoniens”.Le Congrès de Berlin en 1878 avait laissé la Macédoine aux mains des Ottomans. La Grèce, la Serbie et la Bulgarie, parvenues à ses limites et prévoyant le retrait futur des Ottomans peaufinent les arguments linguistiques et historiques qui justifieront leurs revendications territoriales. Victor Bérard, un helléniste respecté et bon connaisseur de la région sud balkanique, effectue des enquêtes en Macédoine en 1896 et 1903 qu’il publie à Paris.Cette étude montre comment, dans le contexte de la propagande nationaliste des prétendants à la possession de la Macédoine, Victor Bérard en vient progressivement à affirmer qu’il existe une population autochtone, les Macédoniens. Il soutient leur programme pour la constitution d’une fédération ou confédération avec le slogan « la Macédoine aux Macédoniens » ce qui fait toute l’actualité de ses ouvrages.In 1878, the Congress of Berlin had left Macedonia in the hands of the Ottomans. Greece, Serbia and Bulgaria had reached its limits. Anticipating the Ottoman retreat, they polish language and historical arguments that will justify their territorial claims. Victor Bérard, a respected Hellenist and a good expert of the southern Balkans, is doing researches in Macedonia in 1896 and 1903. These will be later published in Paris.This study shows how, in the context of the nationalist propaganda build-up made by the candidates for the possession of Macedonia, Victor Bérard comes progressively to assert the existence of a native population: the Macedonians. He supports their program for the forming of a federation or confederation which slogan would be “Macedonia to Macedonians”. This makes his works very topical.

  8. Fused Bead Analysis of Diogenite Meteorites

    Science.gov (United States)

    Mittlefehldt, D.W.; Beck, B.W.; McSween, H.Y.; Lee, C.T. A.

    2009-01-01

    Bulk rock chemistry is an essential dataset in meteoritics and planetary science [1]. A common method used to obtain the bulk chemistry of meteorites is ICP-MS. While the accuracy, precision and low detection limits of this process are advantageous [2], the sample size used for analysis (approx.70 mg) can be a problem in a field where small and finite samples are the norm. Fused bead analysis is another bulk rock analytical technique that has been used in meteoritics [3]. This technique involves forming a glass bead from 10 mg of sample and measuring its chemistry using a defocused beam on a microprobe. Though the ICP-MS has lower detection limits than the microprobe, the fused bead method destroys a much smaller sample of the meteorite. Fused bead analysis was initially designed for samples with near-eutectic compositions and low viscosities. Melts generated of this type homogenize at relatively low temperatures and produce primary melts near the sample s bulk composition [3]. The application of fused bead analysis to samples with noneutectic melt compositions has not been validated. The purpose of this study is to test if fused bead analysis can accurately determine the bulk rock chemistry of non-eutectic melt composition meteorites. To determine this, we conduct two examinations of the fused bead. First, we compare ICP-MS and fused bead results of the same samples using statistical analysis. Secondly, we inspect the beads for the presence of crystals and chemical heterogeneity. The presence of either of these would indicate incomplete melting and quenching of the bead.

  9. How to re-discover lunar variation of precipitation

    Science.gov (United States)

    Hejkrlik, L.

    2003-04-01

    In the course of history of human civilization the observers of nature believed in lunar influence on weather. This plain belief changed into scientific knowledge after reasonable amount of reliable weather records had been collected and examined by statistical methods. In the 19th and 20th Centuries meteorologists tried to detect lunar component in weather data, often with varying success. In the early 1960s of the last century scientists in the USA and Australia almost simultaneously published papers demonstrating the existence of an significant and persistent synodical variation of heavy rainfall in two extensive datasets from distant parts of the world. In fact a pair of authors from Sydney, E. E. Adderley and E. G. Bowen postponed the publication of their results in fear they would not have met the right response in meteorological circles. During the next decade, however, the observed phenomenon of excessive precipitation recorded near the middle of the first and third weeks of the synodical month had been widely accepted and the proposed explanation related to meteoritic dust had even been referred to as the "Bowen hypothesis". The following years saw decline in the interest of the geophysical community in this matter. The reason might be that the effect was not observed in current precipitation series. An analysis of the daily rainfall at Prague-Clementinum in the years 1901-2002 was carried out by method similar to Bowen's. The method of superposition of epochs was applied on ever synodical sub-series during 78 sub-sequent 25-year periods. The resulting 3-dimensional picture indicates that the lunar signal, which resembled the original one until the 1930s changed significantly for the next 20 years. The important result of this analysis is that for 25-year periods which include the data since approx. 1970 is the effect even more pronounced and therefore more noticeable for people still denying its existence.

  10. Photometric Lunar Surface Reconstruction

    Science.gov (United States)

    Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.

    2013-01-01

    Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.

  11. Terrestrial and exposure histories of Antarctic meteorites

    International Nuclear Information System (INIS)

    Nishiizumi, K.

    1986-01-01

    Records of cosmogenic effects were studied in a large suite of Antarctic meteorites. The cosmogenic nuclide measurements together with cosmic ray track measurements on Antartic meteorites provide information such as exposure age, terrestrial age, size and depth in meteoroid or parent body, influx rate in the past, and pairing. The terrestrail age is the time period between the fall of the meteorite on the Earth and the present. To define terrestrial age, two or more nuclides with different half-lives and possibly noble gases are required. The cosmogenic radionuclides used are C-14, Kr-81, Cl-36, Al-26, Be-10, Mn-53, and K-40

  12. Terrestrial and exposure histories of Antarctic meteorites

    Science.gov (United States)

    Nishiizumi, K.

    1986-01-01

    Records of cosmogenic effects were studied in a large suite of Antarctic meteorites. The cosmogenic nuclide measurements together with cosmic ray track measurements on Antartic meteorites provide information such as exposure age, terrestrial age, size and depth in meteoroid or parent body, influx rate in the past, and pairing. The terrestrail age is the time period between the fall of the meteorite on the Earth and the present. To define terrestrial age, two or more nuclides with different half-lives and possibly noble gases are required. The cosmogenic radionuclides used are C-14, Kr-81, Cl-36, Al-26, Be-10, Mn-53, and K-40.

  13. Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Industrialization

    Science.gov (United States)

    Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Loucks, Mike; Carrico, John; Policastri, Daniel

    2017-01-01

    A new concept study was initiated to examine the architecture needed to gradually develop an economical, evolvable and sustainable lunar infrastructure using a public/private partnerships approach. This approach would establish partnership agreements between NASA and industry teams to develop a lunar infrastructure system that would be mutually beneficial. This approach would also require NASA and its industry partners to share costs in the development phase and then transfer operation of these infrastructure services back to its industry owners in the execution phase. These infrastructure services may include but are not limited to the following: lunar cargo transportation, power stations, communication towers and satellites, autonomous rover operations, landing pads and resource extraction operations. The public/private partnerships approach used in this study leveraged best practices from NASA's Commercial Orbital Transportation Services (COTS) program which introduced an innovative and economical approach for partnering with industry to develop commercial cargo services to the International Space Station. This program was planned together with the ISS Commercial Resupply Services (CRS) contracts which was responsible for initiating commercial cargo delivery services to the ISS for the first time. The public/private partnerships approach undertaken in the COTS program proved to be very successful in dramatically reducing development costs for these ISS cargo delivery services as well as substantially reducing operational costs. To continue on this successful path towards installing economical infrastructure services for LEO and beyond, this new study, named Lunar COTS (Commercial Operations and Transport Services), was conducted to examine extending the NASA COTS model to cis-lunar space and the lunar surface. The goals of the Lunar COTS concept are to: 1) develop and demonstrate affordable and commercial cis-lunar and surface capabilities, such as lunar cargo

  14. Experimental Study of Lunar and SNC Magmas

    Science.gov (United States)

    Rutherford, Malcolm J.

    1998-01-01

    The research described in this progress report involved the study of petrological, geochemical and volcanic processes that occur on the Moon and the SNC parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the role of volatiles in magmatic processes and on processes of magma evolution on these planets. The work on the lunar volcanic glasses has resulted in some exciting new discoveries over the years of this grant. We discovered small metal blebs initially in the Al5 green glass, and determined the significant importance of this metal in fixing the oxidation state of the parent magma (Fogel and Rutherford, 1995). More recently, we discovered a variety of metal blebs in the Al7 orange glass. Some of these Fe-Ni metal blebs were in the glass; others were in olivine phenocrysts. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption (Weitz et al., 1997) They also yield important information about the composition of the gas phase present, the gas which drove the lunar fire-fountaining. One of the more exciting and controversial findings in our research over the past year has been the possible fractionation of H from D during shock (experimental) of hornblende bearing samples (Minitti et al., 1997). This research is directed at explaining some of the low H2O and high D/H observed in hydrous phases in the SNC meteorites.

  15. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    Science.gov (United States)

    Wallace, William; Jeevarajan, A. S.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 microns in diameter) was found to produce several problems with mechanical equipment and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent from the lunar surface, much of the finer fraction of this dust began to float and was inhaled by the astronauts. The short visits tothe Moon during Apollo lessened exposure to the dust, but the plan for future lunar stays of up to six months demands that methods be developed to minimize the risk of dust inhalation. The guidelines for what constitutes "safe" exposure will guide the development of engineering controls aimed at preventing the presence of dust in the lunar habitat. This work has shown the effects of grinding on the activation level of lunar dust, the changes in dissolution properties of lunar simulant, and the production of cytokines by cellular systems. Grinding of lunar dust leads to the production of radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Additionally, ground lunar simulant has been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. These results provide evidence of the need for further studies on these materials prior to returning to the lunar surface.

  16. The Importance of Meteorite Collections to Sample Return Missions: Past, Present, and Future Considerations

    Science.gov (United States)

    Welzenbach, L. C.; McCoy, T. J.; Glavin, D. P.; Dworkin, J. P.; Abell, P. A.

    2012-01-01

    While much of the scientific community s current attention is drawn to sample return missions, it is the existing meteorite and cosmic dust collections that both provide the paradigms to be tested by these missions and the context for interpreting the results. Recent sample returns from the Stardust and Hayabusa missions provided us with new materials and insights about our Solar System history and processes. As an example, Stardust sampled CAIs among the population of cometary grains, requiring extensive and unexpected radial mixing in the early solar nebula. This finding would not have been possible, however, without extensive studies of meteoritic CAIs that established their high-temperature, inner Solar System formation. Samples returned by Stardust also revealed the first evidence of a cometary amino acid, a discovery that would not have been possible with current in situ flight instrument technology. The Hayabusa mission provided the final evidence linking ordinary chondrites and S asteroids, a hypothesis that developed from centuries of collection and laboratory and ground-based telescopic studies. In addition to these scientific findings, studies of existing meteorite collections have defined and refined the analytical techniques essential to studying returned samples. As an example, the fortuitous fall of the Allende CV3 and Murchison CM2 chondrites within months before the return of Apollo samples allowed testing of new state-of-the-art analytical facilities. The results of those studies not only prepared us to better study lunar materials, but unanticipated discoveries changed many of our concepts about the earliest history and processes of the solar nebula. This synergy between existing collections and future space exploration is certainly not limited to sample return missions. Laboratory studies confirmed the existence of meteorites from Mars and raised the provocative possibility of preservation of ancient microbial life. The laboratory studies in

  17. Lunar horticulture.

    Science.gov (United States)

    Walkinshaw, C. H.

    1971-01-01

    Discussion of the role that lunar horticulture may fulfill in helping establish the life support system of an earth-independent lunar colony. Such a system is expected to be a hybrid between systems which depend on lunar horticulture and those which depend upon the chemical reclamation of metabolic waste and its resynthesis into nutrients and water. The feasibility of this approach has been established at several laboratories. Plants grow well under reduced pressures and with oxygen concentrations of less than 1% of the total pressure. The carbon dioxide collected from the lunar base personnel should provide sufficient gas pressure (approx. 100 mm Hg) for growing the plants.

  18. Accuracy of the MacArthur competence assessment tool for clinical research (MacCAT-CR) for measuring children's competence to consent to clinical research.

    Science.gov (United States)

    Hein, Irma M; Troost, Pieter W; Lindeboom, Robert; Benninga, Marc A; Zwaan, C Michel; van Goudoever, Johannes B; Lindauer, Ramón J L

    2014-12-01

    An objective assessment of children's competence to consent to research participation is currently not possible. Age limits for asking children's consent vary considerably between countries, and, to our knowledge, the correlation between competence and children's age has never been systematically investigated. To test a standardized competence assessment instrument for children by modifying the MacArthur Competence Assessment Tool for Clinical Research (MacCAT-CR), to investigate its reliability and validity, and to examine the correlation of its assessment with age and estimate cutoff ages. This prospective study included children and adolescents aged 6 to 18 years in the inpatient and outpatient departments of allergology, gastroenterology, oncology, ophthalmology, and pulmonology from January 1, 2012, through January 1, 2014. Participants were eligible for clinical research studies, including observational studies and randomized clinical trials. Competence judgments by experts aware of the 4 relevant criteria-understanding, appreciation, reasoning, and choice-were used to establish the reference standard. The index test was the MacCAT-CR, which used a semistructured interview format. Interrater reliability, validity, and dimensionality of the MacCAT-CR and estimated cutoff ages for competence. Of 209 eligible patients, we included 161 (mean age, 10.6 years; 47.2% male). Good reproducibility of MacCAT-CR total and subscale scores was observed (intraclass correlation coefficient range, 0.68-0.92). We confirmed unidimensionality of the MacCAT-CR. By the reference standard, we judged 54 children (33.5%) to be incompetent; by the MacCAT-CR, 61 children (37.9%). Criterion-related validity of MacCAT-CR scores was supported by high overall accuracy in correctly classifying children as competent against the reference standard (area under the receiver operating characteristics curve, 0.78). Age was a good predictor of competence on the MacCAT-CR (area under the receiver

  19. Oral histories in meteoritics and planetary science—XXV: Vagn F. Buchwald

    Science.gov (United States)

    Sears, Derek W. G.

    2014-07-01

    Vagn Buchwald (Fig. 1) was born in Copenhagen where he attended school and college. Then after 18 months of military service, he assumed a position at the Technical University of Copenhagen. A few years later, he was presented with a piece of the Cape York meteorite, which led to an interest in iron meteorites. Through a campaign of informed searching, Vagn found the 20 ton Agpalilik meteorite (part of the Cape York shower) on 31st July 1963 and by September 1967 had arranged its transport to Copenhagen. After sorting and describing the Danish collection, which included application of the Fe-Ni-P phase diagram to iron meteorite mineralogy, Vagn was invited to sort and describe other iron meteorite collections. This led to a 7 yr project to write his monumental Handbook of Iron Meteorites. Vagn spent 3 yr in the United States and visited most of the world's museums, the visit to Berlin being especially important since the war had left their iron meteorites in bad condition and without labels. During a further decade or more of iron meteorite research, he documented natural and anthropomorphic alterations experienced by iron meteorites, discovered five new minerals (roaldite, carlsbergite, akaganeite, hibbingite, and arupite); had a mineral (buchwaldite, NaCaPO4) and asteroid (3209 Buchwald 1982 BL1) named after him; and led expeditions to Chile, Namibia, and South Africa in search of iron meteorites and information on them. Vagn then turned his attention to archeological metal artifacts. This work resulted in many papers and culminated in two major books on the subject published in 2005 and 2008, after his retirement in 1998. Vagn Buchwald has received numerous Scandinavian awards and honors, and served as president of the Meteoritical Society in 1981-1982.

  20. Power-Controlled MAC Protocols with Dynamic Neighbor Prediction for Ad hoc Networks

    Institute of Scientific and Technical Information of China (English)

    LI Meng; ZHANG Lin; XIAO Yong-kang; SHAN Xiu-ming

    2004-01-01

    Energy and bandwidth are the scarce resources in ad hoc networks because most of the mobile nodes are battery-supplied and share the exclusive wireless medium. Integrating the power control into MAC protocol is a promising technique to fully exploit these precious resources of ad hoc wireless networks. In this paper, a new intelligent power-controlled Medium Access Control (MAC) (iMAC) protocol with dynamic neighbor prediction is proposed. Through the elaborate design of the distributed transmit-receive strategy of mobile nodes, iMAC greatly outperforms the prevailing IEEE 802.11 MAC protocols in not only energy conservation but also network throughput. Using the Dynamic Neighbor Prediction (DNP), iMAC performs well in mobile scenes. To the best of our knowledge, iMAC is the first protocol that considers the performance deterioration of power-controlled MAC protocols in mobile scenes and then proposes a solution. Simulation results indicate that DNP is important and necessary for power-controlled MAC protocols in mobile ad hoc networks.

  1. What we know about Oslo meteorite from cosmogenic isotope analysis

    Science.gov (United States)

    Tymiński, Z.; Stolarz, M.; Kubalczak, T.; Zaręba, P.; Burski, M.; Bilet, M.; Miśta, E.; Tymińska, K.; Kołakowska, E.; Burakowska, A.; Żołądek, P.; Olech, A.; Wiśniewski, M.; Listkowska, A.; Saganowski, P.

    2015-10-01

    The fragments of an asteroid that had crashed over Norway were found in a few locations in Oslo at the beginning of March 2012. Later on some pieces of meteorite from the most South area were collected by the Meteoritical Section members of Comet and Meteor Workshop (PKiM) with the help of local meteoritical authorities. One meteorite fragment of 32g was used to measure cosmogenic radionuclides using non-destructive high-resolution gamma spectrometry technique. Five radioisotopes such as Al-26, Na-22, Mn-54, Co-57 and Co-60 were detected

  2. THE NITROGEN ISOTOPIC COMPOSITION OF METEORITIC HCN

    Energy Technology Data Exchange (ETDEWEB)

    Pizzarello, Sandra, E-mail: pizzar@asu.edu [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85018-1604 (United States)

    2014-12-01

    HCN is ubiquitous in extraterrestrial environments and is central to current theories on the origin of early solar system organic compounds such as amino acids. These compounds, observed in carbonaceous meteorites, were likely important in the origin and/or evolution of early life. As part of our attempts to understand the origin(s) of meteoritic CN{sup –}, we have analyzed the {sup 15}N/{sup 14}N isotopic composition of HCN gas released from water extracts of the Murchison meteorite and found its value to be near those of the terrestrial atmosphere. The findings, when evaluated viz-a-viz molecular abundances and isotopic data of meteoritic organic compounds, suggest that HCN formation could have occurred during the protracted water alteration processes known to have affected the mineralogy of many asteroidal bodies during their solar residence. This was an active synthetic stage, which likely involved simple gasses, organic molecules, their presolar precursors, as well as mineral catalysts and would have lead to the formation of molecules of differing isotopic composition, including some with solar values.

  3. Lunar transportation system

    Science.gov (United States)

    1993-07-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  4. Petrology of lunar rocks and implication to lunar evolution

    Science.gov (United States)

    Ridley, W. I.

    1976-01-01

    Recent advances in lunar petrology, based on studies of lunar rock samples available through the Apollo program, are reviewed. Samples of bedrock from both maria and terra have been collected where micrometeorite impact penetrated the regolith and brought bedrock to the surface, but no in situ cores have been taken. Lunar petrogenesis and lunar thermal history supported by studies of the rock sample are discussed and a tentative evolutionary scenario is constructed. Mare basalts, terra assemblages of breccias, soils, rocks, and regolith are subjected to elemental analysis, mineralogical analysis, trace content analysis, with studies of texture, ages and isotopic composition. Probable sources of mare basalts are indicated.

  5. AMSNEXRAD-Automated detection of meteorite strewnfields in doppler weather radar

    Science.gov (United States)

    Hankey, Michael; Fries, Marc; Matson, Rob; Fries, Jeff

    2017-09-01

    For several years meteorite recovery in the United States has been greatly enhanced by using Doppler weather radar images to determine possible fall zones for meteorites produced by witnessed fireballs. While most fireball events leave no record on the Doppler radar, some large fireballs do. Based on the successful recovery of 10 meteorite falls 'under the radar', and the discovery of radar on more than 10 historic falls, it is believed that meteoritic dust and or actual meteorites falling to the ground have been recorded on Doppler weather radar (Fries et al., 2014). Up until this point, the process of detecting the radar signatures associated with meteorite falls has been a manual one and dependent on prior accurate knowledge of the fall time and estimated ground track. This manual detection process is labor intensive and can take several hours per event. Recent technological developments by NOAA now help enable the automation of these tasks. This in combination with advancements by the American Meteor Society (Hankey et al., 2014) in the tracking and plotting of witnessed fireballs has opened the possibility for automatic detection of meteorites in NEXRAD Radar Archives. Here in the processes for fireball triangulation, search area determination, radar interfacing, data extraction, storage, search, detection and plotting are explained.

  6. Isotopic variations in primitive meteorites

    International Nuclear Information System (INIS)

    Clayton, R.N.; Chicago Univ., IL; Chicago Univ., IL

    1981-01-01

    The presence of large internal 16 O variability in ordinary chondrites greatly extends the range of meteorite types in which this phenomenon has been observed. These results may lead to identification of major gas and dust reservoirs in the cloud from which the Solar System formed. The demonstration that live 107 Pd was present in the differentiated parent bodies of some iron meteorites supports the million year time scale between a major nucleosynthetic event and Solar System formation, as implied by the presence of live 26 Al in carbonaceous chondrites. However, the variability of radiogenic 26 Mg abundances in these meteorites makes it clear that the data cannot be interpreted simply in terms of time variations. Models of nucleosynthesis for elements from calcium to the iron peak should be aided by the new observations of abundances of titanium isotopes. Progress has been made in establishing the carrier phases of isotopically anomalous xenon and krypton. The apparent location of anomalous xenon and 14 N-rich nitrogen in identical carriers supports the notion that nucleosynthetic anomalies in nitrogen are also present in Allende. (author)

  7. Rare stable isotopes in meteorites

    International Nuclear Information System (INIS)

    Wilson, G.C.

    1981-01-01

    Secondary Ion Mass Spectrometry (SIMS) using accelerators has been applied with success to cosmic ray exposure ages and terrestrial residence times of meteorites by measuring cosmogenic nuclides of Be, Cl, and I. It is proposed to complement this work with experiments on rare stable isotopes, in the hope of setting constraints on the processes of solar nebula/meteoritic formation. The relevant species can be classified as: a) daughter products of extinct nuclides (halflife less than or equal to 2 x 10 8 y) -chronology of the early solar system; b) products of high temperature astrophysical processes - different components incorporated into the solar nebula; and c) products of relatively low temperature processes, stellar winds and cosmic ray reactions - early solar system radiation history. The use of micron-scale primary ion beams will allow detailed sampling of phases within meteorites. Strategies of charge-state selection, molecular disintegration and detection should bring a new set of targets within analytical range. The developing accelerator field is compared to existing (keV energy) ion microprobes

  8. Multichannel MAC Layer In Mobile Ad—Hoc Network

    Science.gov (United States)

    Logesh, K.; Rao, Samba Siva

    2010-11-01

    This paper we presented the design objectives and technical challenges in Multichannel MAC protocols in Mobile Ad-hoc Network. In IEEE 802.11 a/b/g standards allow use of multiple channels, only a single channel is popularly used, due to the lack of efficient protocols that enable use of Multiple Channels. Even though complex environments in ad hoc networks require a combined control of physical (PHY) and medium access control (MAC) layers resources in order to optimize performance. And also we discuss the characteristics of cross-layer frame and give a multichannel MAC approach.

  9. Solar flare irradiation records in Antarctic meteorites

    International Nuclear Information System (INIS)

    Goswami, J.N.

    1981-01-01

    Observations of solar flare heavy nuclei tracks in eight Antartic meteorite samples are reported. Two of these were interior specimens from an L-3 chondrite which contained track-rich grains (olivine) indicating their exposure to solar flare irradiation before compaction of the meteorite. Preliminary noble gas data also indicate the presence of solar-type gases. (U.K.)

  10. QL-MAC : a Q-learning based MAC for wireless sensor networks

    NARCIS (Netherlands)

    Galzarano, S.; Liotta, A.; Fortino, G.; Aversa, R.; Kolodziej, J.; Zhang, J.; Amato, F.; Fortino, G.

    2013-01-01

    WSNs are becoming an increasingly attractive technology thanks to the significant benefits they can offer to a wide range of application domains. Extending the system lifetime while preserving good network performance is one of the main challenges in WSNs. In this paper, a novel MAC protocol

  11. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  12. Worldwide Weather Radar Imagery May Allow Substantial Increase in Meteorite Fall Recovery

    Science.gov (United States)

    Fries, Marc; Matson, Robert; Schaefer, Jacob; Fries, Jeffery; Hankey, Mike; Anderson, Lindsay

    2014-01-01

    Weather radar imagery is a valuable new technique for the rapid recovery of meteorite falls, to include falls which would not otherwise be recovered (e.g. Battle Mountain). Weather radar imagery reveals about one new meteorite fall per year (18 falls since 1998), using weather radars in the United States alone. However, an additional 75 other nations operate weather radar networks according to the UN World Meteorological Organization (WMO). If the imagery of those radars were analyzed, the current rate of meteorite falls could be improved considerably, to as much as 3.6 times the current recovery rate based on comparison of total radar areal coverage. Recently, the addition of weather radar imagery, seismometry and internet-based aggregation of eyewitness reports has improved the speed and accuracy of fresh meteorite fall recovery [e.g. 1,2]. This was demonstrated recently with the radar-enabled recovery of the Sutter's Mill fall [3]. Arguably, the meteorites recovered via these methods are of special scientific value as they are relatively unweathered, fresh falls. To illustrate this, a recent SAO/NASA ADS search using the keyword "meteorite" shows that all 50 of the top search results included at least one named meteorite recovered from a meteorite fall. This is true even though only 1260 named meteorite falls are recorded among the >49,000 individual falls recorded in the Meteoritical Society online database. The US NEXRAD system used thus far to locate meteorite falls covers most of the United States' surface area. Using a WMO map of the world's weather radars, we estimate that the total coverage of the other 75 national weather radar networks equals about 3.6x NEXRAD's coverage area. There are two findings to draw from this calculation: 1) For the past 16 years during which 18 falls are seen in US radar data, there should be an additional 65 meteorite falls recorded in worldwide radar imagery. Also: 2) if all of the world's radar data could be analyzed, the

  13. A Method for Estimating Meteorite Fall Mass from Weather Radar Data

    Science.gov (United States)

    Laird, C.; Fries, M.; Matson, R.

    2017-01-01

    Techniques such as weather RADAR, seismometers, and all-sky cameras allow new insights concerning the physics of meteorite fall dynamics and fragmentation during "dark flight", the period of time between the end of the meteor's luminous flight and the concluding impact on the Earth's surface. Understanding dark flight dynamics enables us to rapidly analyze the characteristics of new meteorite falls. This analysis will provide essential information to meteorite hunters to optimize recovery, increasing the frequency and total mass of scientifically important freshly-fallen meteorites available to the scientific community. We have developed a mathematical method to estimate meteorite fall mass using reflectivity data as recorded by National Oceanic and Atmospheric Administration (NOAA) Next Generation RADAR (NEXRAD) stations. This study analyzed eleven official and one unofficial meteorite falls in the United States and Canada to achieve this purpose.

  14. Lunar e-Library: A Research Tool Focused on the Lunar Environment

    Science.gov (United States)

    McMahan, Tracy A.; Shea, Charlotte A.; Finckenor, Miria; Ferguson, Dale

    2007-01-01

    As NASA plans and implements the Vision for Space Exploration, managers, engineers, and scientists need lunar environment information that is readily available and easily accessed. For this effort, lunar environment data was compiled from a variety of missions from Apollo to more recent remote sensing missions, such as Clementine. This valuable information comes not only in the form of measurements and images but also from the observations of astronauts who have visited the Moon and people who have designed spacecraft for lunar missions. To provide a research tool that makes the voluminous lunar data more accessible, the Space Environments and Effects (SEE) Program, managed at NASA's Marshall Space Flight Center (MSFC) in Huntsville, AL, organized the data into a DVD knowledgebase: the Lunar e-Library. This searchable collection of 1100 electronic (.PDF) documents and abstracts makes it easy to find critical technical data and lessons learned from past lunar missions and exploration studies. The SEE Program began distributing the Lunar e-Library DVD in 2006. This paper describes the Lunar e-Library development process (including a description of the databases and resources used to acquire the documents) and the contents of the DVD product, demonstrates its usefulness with focused searches, and provides information on how to obtain this free resource.

  15. McMAC: Towards a MAC Protocol with Multi-Constrained QoS Provisioning for Diverse Traffic in Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Mostafa Monowar

    2012-11-01

    Full Text Available The emergence of heterogeneous applications with diverse requirements forresource-constrained Wireless Body Area Networks (WBANs poses significant challengesfor provisioning Quality of Service (QoS with multi-constraints (delay and reliability whilepreserving energy efficiency. To address such challenges, this paper proposes McMAC,a MAC protocol with multi-constrained QoS provisioning for diverse traffic classes inWBANs. McMAC classifies traffic based on their multi-constrained QoS demands andintroduces a novel superframe structure based on the "transmit-whenever-appropriate"principle, which allows diverse periods for diverse traffic classes according to their respectiveQoS requirements. Furthermore, a novel emergency packet handling mechanism is proposedto ensure packet delivery with the least possible delay and the highest reliability. McMACis also modeled analytically, and extensive simulations were performed to evaluate itsperformance. The results reveal that McMAC achieves the desired delay and reliabilityguarantee according to the requirements of a particular traffic class while achieving energyefficiency.

  16. Physical properties of Martian meteorites: Porosity and density measurements

    Science.gov (United States)

    Coulson, Ian M.; Beech, Martin; Nie, Wenshuang

    Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet's surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. In comparison with the limited existing data for Martian meteorites we find fairly good agreement, although our porosity values typically lie at the low end of published values. Surprisingly, despite the increased data set, there is little by way of correlation between either porosity or density with parameters such as shock effect or terrestrial residency. Further data collection on additional meteorite samples is required before more definitive statements can be made concerning the validity of these observations.

  17. Library Signage: Applications for the Apple Macintosh and MacPaint.

    Science.gov (United States)

    Diskin, Jill A.; FitzGerald, Patricia

    1984-01-01

    Describes specific applications of the Macintosh computer at Carnegie-Mellon University Libraries, where MacPaint was used as a flexible, easy to use, and powerful tool to produce informational, instructional, and promotional signage. Profiles of system hardware and software, an evaluation of the computer program MacPaint, and MacPaint signage…

  18. Mineralogy of new Antarctic achondrites with affinity to Lodran and a model of their evolution in an asteroid

    Science.gov (United States)

    Takeda, Hiroshi; Mori, Hiroshi; Hiroi, Takahiro; Saito, Jun

    1994-01-01

    We studied five new Antartic achondrites, MacAlpine Hills (MAC) 88177, Yamato (Y)74357, Y75274, Y791491 and Elephant Moraine (EET)84302 by mineralogical techniques to gain a better understanding of the mineral assemblages of a group of meteorites with an affinity to Lodran (stony-iron meteorite) and their formation processes. This group is being called lodranites. These meteorites contain major coarse-grained orthopyroxene (Opx) and olivine as in Lodran and variable amounts of FeNi metal and troilite etc. MAC88177 has more augite and less FeNi than Lodran; Y74357 has more olivine and contains minor augite; Y791491 contains in addition plagioclase. EET84302 has an Acapulco-like chondritic mineral assembladge and is enriched in FeNi metal and plagioclase, but one part is enriched in Opx and chromite. The EET84302 and MAC88177 Opx crystals have dusty cores as in Acapulco. EET84302 and Y75274 are more Mg-rich than other members of the lodranite group, and Y74357 is intermediate. Since these meteorites all have coarse-grained textures, similar major mineral assemblages, variable amounts of augite, plagioclase, FeNi metal, chromite and olivine, we suggest that they are related and are linked to a parent body with modified chondritic compositions. The variability of the abundances of these minerals are in line with a proposed model of the surface mineral assemblages of the S asteroids. The mineral assemblages can best be explained by differing degrees of loss or movements of lower temperature partial melts and recrystallization, and reduction. A portion of EET84302 rich in metal and plagioclase may represent a type of component removed from the lodranite group meteorites. Y791058 and Caddo County, which were studied for comparison, are plagioclase-rich silicate inclusions in IAB iron meteorites and may have been derived by similar process but in a different body.

  19. Search for fullerenes in stone meteorites

    Science.gov (United States)

    Oester, M. Y.; Kuechl, D.; Sipiera, P. P.; Welch, C. J.

    1994-07-01

    The possibility of identifying fullerenes in stony meteorites became apparent from a paper given by Radicati de Brozolo. In this paper it was reported that fullerenes were present in the debris resulting from a collision between a micrometeoroid and an orbiting satellite. This fact generated sufficient curiosity to initiate a search for the presence of fullerenes in various stone meteorites. In the present study seven ordinary chondrites (al-Ghanim L6 (find), Dimmitt H4 (find), Lazbuddie LL5 (find), New Concord H5 (fall), Silverton H4 (find), Springlake L6 (find), and Umbarger L3/6 (find)). Four carbonaceous chondrites (ALH 83100 C2 (find), ALH 83108 C30 (find), Allende CV3 (fall), and Murchison CM2 (fall), and one achondrite (Monticello How (find)) were analyzed for the presence of fullerenes. The analytical procedure employed was as follows: 100 mg of meteorite was ground up with a mortar and pestle; 10 mL of toluene was then added and the mixture was refluxed for 90 min; this mixture was then filtered through a short column of silica; a 50 microliter sample was then analyzed by high pressure liquid chromatography (HPLC) using a Buckyclutcher I column with a mobile phase consisting of equal volumes of toluene and hexane at a flow rate of 1.00 mg per minute, with detection at 330 and 600 nm. Three of the meteorites, Allende, Murchison, and al-Ghanim, gave HPLC traces containing peaks with similar retention times to the HPLC trace of an authentic fullerene C60. However, further analysis using an HPLC instrument equipped with a diode-array detector failed to confirm any of the substances detected in the three meteorites as C60. Additional analyses will be conducted to identify what the HPLC traces actually represent.

  20. 45 CFR 674.4 - Restrictions on collection of meteorites in Antarctica.

    Science.gov (United States)

    2010-10-01

    ... Antarctica. 674.4 Section 674.4 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION ANTARCTIC METEORITES § 674.4 Restrictions on collection of meteorites in Antarctica. No person may collect meteorites in Antarctica for other than scientific research purposes. ...

  1. A recent meteorite shower in Antarctica with an unusual orbital history

    Science.gov (United States)

    Benoit, P. H.; Sears, D. W. G.

    1993-01-01

    The Antarctic meteorite collection has proved to be a source of many important discoveries, including a number of previously unknown or very rare meteorite types. A thermoluminescence (TL) survey of meteorite samples recovered by the 1988/89 European expedition and pre-1988 American expeditions to the Allan Hills Main blue ice field resulted in the discovery of 15 meteorites with very high TL levels (greater than 100 krad at 250 C in the glow curve). It is likely that these samples are fragments of a single meteoroid body which: (1) fell very recently and (2) experienced a decrease in orbital perihelia from greater than or equal to 1.1 AU to 1 AU within the last 10(exp 5) yr. Carbon-14 data for two of the samples confirm their young terrestrial age compared to most Antarctic meteorites. Studies of the cosmogenic isotopes in at least one non-Antarctic meteorite which also has very high natural TL, Jilin, indicate that the meteorite experienced a multi-stage irradiation history, the most recent stage being 0.4 Ma in duration following a major break-up of the object. These meteorites, and the few equivalent modern falls, are the only documented samples from bodies which were recently in Earth-approaching (Amor) orbits (i.e., with perihelion greater than 1.0 AU), as opposed to the Earth-crossing (Apollo) orbits which are the source of most other meteorites. Their rarity indicates that such rapid orbit changes are unusual for meteoroid bodies and may be the result of isolated, large break-up events.

  2. MacRuby Ruby and Cocoa on OS X

    CERN Document Server

    Aimonetti, Matt

    2011-01-01

    Want to build native Mac OS X applications with a sleek, developer-friendly alternative to Objective-C? MacRuby is an ideal choice. This in-depth guide shows you how Apple's implementation of Ruby gives you access to all the features available to Objective-C programmers. You'll get clear, detailed explanations of MacRuby, including quick programming techniques such as prototyping. Perfect for programmers at any level, this book is packed with code samples and complete project examples. If you use Ruby, you can tap your skills to take advantage of Interface Builder, Cocoa libraries, the Objec

  3. MacBook Pro portable genius

    CERN Document Server

    Gruman, Galen

    2013-01-01

    Learn the skills, tools and shortcuts you need in order to make the most of your MacBook Pro This easy-to-use, compact guide skips the fluff and gets right to the essentials so that you can maximize all the latest features of the MacBook Pro. Packed with savvy insights and tips on key tools and shortcuts, this handy book aims to help you increase your productivity and save you time and hassle. From desktop sharing and wireless networking to running Windows applications and more, this book shows you what you want to know. Includes the latest version of OS X, iCloud, FaceTime, and moreCovers al

  4. MacBook Pro Portable Genius

    CERN Document Server

    Miser, Brad

    2012-01-01

    Discover loads of tips and techniques for the newest MacBook Pro You're already ahead of the game with a MacBook Pro. Now you can get even more out the popular Apple notebook with the new edition of this handy, compact book. Crammed with savvy insights and tips on key tools and shortcuts, this book will help you increase your productivity and keep your Apple digital lifestyle on track. From desktop sharing and wireless networking to running Windows applications, this book avoids fluff, doesn't skimp on the essentials, saves you time and hassle, and shows you what you most want to know. Include

  5. Learning Unix for Mac OS X Tiger Unlock the Power of Unix

    CERN Document Server

    Taylor, Dave

    2005-01-01

    Thoroughly revised and updated for Mac OS X Tiger, this new edition introduces Mac users to the Terminal application and shows you how to navigate the command interface, explore hundreds of Unix applications that come with the Mac, and, most importantly, how to take advantage of both the Mac and Unix interfaces. If you want to master the command-line, this gentle guide to using Unix on Mac OS X Tiger is well worth its cover price

  6. The dimension added by 3D scanning and 3D printing of meteorites

    Science.gov (United States)

    de Vet, S. J.

    2016-01-01

    An overview for the 3D photodocumentation of meteorites is presented, focussing on two 3D scanning methods in relation to 3D printing. The 3D photodocumention of meteorites provides new ways for the digital preservation of culturally, historically or scientifically unique meteorites. It has the potential for becoming a new documentation standard of meteorites that can exist complementary to traditional photographic documentation. Notable applications include (i.) use of physical properties in dark flight-, strewn field-, or aerodynamic modelling; (ii.) collection research of meteorites curated by different museum collections, and (iii.) public dissemination of meteorite models as a resource for educational users. The possible applications provided by the additional dimension of 3D illustrate the benefits for the meteoritics community.

  7. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

    Science.gov (United States)

    Hoover, Richard B.

    2007-01-01

    Evidence for indigenous microfossils in carbonaceous meteorites suggests that the paradigm of the endogenous origin of life on Earth should be reconsidered. It is now widely accepted that comets and carbonaceous meteorites played an important role in the delivery of water, organics and life critical biogenic elements to the early Earth and facilitated the origin and evolution of the Earth's Biosphere. However; the detection of embedded microfossils and mats in carbonaceous meteorites implies that comets and meteorites may have played a direct role in the delivery of intact microorganisms and that the Biosphere may extend far into the Cosmos. Recent space observations have found the nuclei of comets to have very low albedos (approx.0.03) and. these jet-black surfaces become very hot (T approx. 400 K) near perihelion. This paper reviews recent observational data-on comets and suggests that liquid water pools could exist in cavities and fissures between the internal ices and rocks and the exterior carbonaceous crust. The presence of light and liquid water near the surface of the nucleus enhances the possibility that comets could harbor prokaryotic extremophiles (e.g., cyanobacteria) capable of growth over a wide range of temperatures. The hypothesis that comets are the parent bodies of the CI1 and the CM2 carbonaceous meteorites is advanced. Electron microscopy images will be presented showing forms interpreted as indigenous-microfossils embedded' in freshly. fractured interior surfaces of the Orgueil (CI1) and Murchison (CM2) meteorites. These forms are consistent in size and morphologies with known morphotypes of all five orders of Cyanobacteriaceae: Energy Dispersive X-ray Spectroscopy (EDS) elemental data shows that the meteoritic forms have anomalous C/O; C/N; and C/S as compared with modern extremophiles and cyanobacteria. These images and spectral data indicate that the clearly biogenic and embedded remains cannot be interpreted as recent biological

  8. Investigation of dust particles with future Russian lunar missions: achievements of further development of PmL instrument.

    Science.gov (United States)

    Kuznetsov, Ilya; Zakharov, Alexander; Afonin, Valeri; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Lyash, Andrey; Dolnikov, Gennady; Popel, Sergey; Lisin, Evgeny

    2016-07-01

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On the day side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution of dust particles by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind

  9. MAC layer security issues in wireless mesh networks

    Science.gov (United States)

    Reddy, K. Ganesh; Thilagam, P. Santhi

    2016-03-01

    Wireless Mesh Networks (WMNs) have emerged as a promising technology for a broad range of applications due to their self-organizing, self-configuring and self-healing capability, in addition to their low cost and easy maintenance. Securing WMNs is more challenging and complex issue due to their inherent characteristics such as shared wireless medium, multi-hop and inter-network communication, highly dynamic network topology and decentralized architecture. These vulnerable features expose the WMNs to several types of attacks in MAC layer. The existing MAC layer standards and implementations are inadequate to secure these features and fail to provide comprehensive security solutions to protect both backbone and client mesh. Hence, there is a need for developing efficient, scalable and integrated security solutions for WMNs. In this paper, we classify the MAC layer attacks and analyze the existing countermeasures. Based on attacks classification and countermeasures analysis, we derive the research directions to enhance the MAC layer security for WMNs.

  10. A Fair Cooperative MAC Protocol in IEEE 802.11 WLAN

    Directory of Open Access Journals (Sweden)

    Seyed Davoud Mousavi

    2018-05-01

    Full Text Available Cooperative communication techniques have recently enabled wireless technologies to overcome their challenges. The main objective of these techniques is to improve resource allocation. In this paper, we propose a new protocol in medium access control (MAC of the IEEE 802.11 standard. In our new protocol, which is called Fair Cooperative MAC (FC-MAC, every relay node participates in cooperation proportionally to its provided cooperation gain. This technique improves network resource allocation by exploiting the potential capacity of all relay candidates. Simulation results demonstrate that the FC-MAC protocol presents better performance in terms of throughput, fairness, and network lifetime.

  11. A complex of meteorite-forming bodies (the Innisfree - Ridgedale family).

    Science.gov (United States)

    Shestaka, I. S.

    1994-12-01

    For the first time a swarm of meteorite-forming bodies was identified. Yearly this swarm's orbit approaches the Earth's orbit in early February. This swarm contains the Innisfree and Ridgedale fireballs, 9 small meteoric swarms, several asteroids and 12 fireballs photographed by the cameras of the Prairie Network and Canadian Meteorite Observation and Discovery Project. The discovery of this complex, intensive bombardments of the Moon's surface recorded by means of seismographs left on the Moon, the analysis of the time distributions of meteorite falls on the Earth and other established facts confirm the existence of swarms of meteorite-forming bodies which are crossing the Earth's orbit.

  12. Douglas MacArthur- An Administrative Biography

    OpenAIRE

    Tehan III, William J.

    2002-01-01

    For more than a half century Douglas MacArthur was a servant of the United States. He is best remembered as a general and a soldier, especially for his leadership during World War II and the Korean War. MacArthur was also the Superintendent of West Point, Chief of Staff of the U.S. Army, Generalissimo ( Commander) of the Armed Forces and Military Advisor (Minister of Defense) to the President of the Commonwealth of the Philippines, and the Supreme Commander Allied Powers and the Military Gove...

  13. 57Fe Moessbauer Spectroscopy Studies of Meteorites: Implications for Weathering Rates, Meteorite Flux, and Early Solar System Processes

    International Nuclear Information System (INIS)

    Bland, P. A.; Berry, F. J.; Jull, A. J. T.; Smith, T. B.; Bevan, A. W. R.; Cadogan, J. M.; Sexton, A. S.; Franchi, L. A.; Pillinger, C. T.

    2002-01-01

    Ordinary chondrite finds, terrestrial age dated using 14 C analyses, from different meteorite accumulation sites, have been examined by Moessbauer spectroscopy to quantitatively determine terrestrial oxidation. We observe differences in weathering rates between sites, and also between different chondrite groups. A comparison of weathering over time, and its effect in 'eroding' meteorites, together with the number and mass distribution of meteorites in each region, enables us to derive estimates of the number of meteorite falls over a given mass per year. Studies of how the oxygen isotopic composition of samples varies with weathering indicate that incipient alteration may occur without a pronounced isotopic effect, possibly due to weathering of silicates to topotactically oriented smectite confined spaces where the water volume is limited. This finding has profound implications for the use of oxygen isotopes as a tool in understanding water-rock interaction. It also may reconcile previously contradictory data regarding the nebular or asteroidal location of pre-terrestrial aqueous alteration. Finally, Moessbauer spectroscopy is also found to be a useful tool in determining mineral abundance in carbonaceous chondrites, where a fine-grained matrix makes traditional approaches inapplicable. Again, the results have implications for the modification of chondritic materials in the early solar system.

  14. Turning the Big Mac Index into the Medical MAC Index | Wilson ...

    African Journals Online (AJOL)

    Objective: The purpose of this study was to create a global medical earnings index, called the Medical MAC Index, to enable a comparison of what medical specialists earn in the countries included in the study. Design: The study gathered data on the earnings of specialist anaesthetists employed in state hospitals with five ...

  15. The radiation age of meteorites; L'age des meteorites; Opredelenie vozrasta meteoritov s pomoshch'yu radiatsii; Edad de los meteoritos

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, K; Schmidlin, P [European Organisation for Nuclear Research, Geneva (Switzerland)

    1962-01-15

    Radioisotopes produced by cosmic radiation in meteorites while travelling through space can be used to trace the history of these meteorites. The radioisotopes and the accumulated daughter-elements in the meteorite must be determined in order to evaluate how long the meteorite was exposed to cosmic radiation. (It must be assumed for this calculation that the flux of the cosmic radiation is constant with time.) Most often gaseous isotopes have been used for these measurements as they can be easily separated from the meteoric substance. In the reported work tritium and argon have been mainly used. From the ratio H{sup 3}/He{sup 3}, radiation ages from a few millions to several hundred millions of years have been found. The recent measurements made at the European Organisation for Nuclear Research (CERN) agree in principle with results from other sources. The probable errors from diffusion-losses of gas and the influence of shielding in the pre-atmospheric meteorite are discussed in the paper. By taking into consideration the measured cross-section for tritium production in the elements which form the meteorite, the values of the cosmic-ray flux in outer space can be determined. (author) [French] Les radioisotopes produits par les rayonnements cosmiques dans les meteorites circulant dans l'espace peuvent servir a reconstituer l'histoire de ces corps. Il faut mesurer les radioisotopes et les produits de filiation accumules dans la meteorite pour evaluer le temps pendant lequel la meteorite a ete exposee aux rayonnements cosmiques. (On considere alors que le flux des rayonnements cosmiques ne varie pas dans le temps.) Pour ces mesures, on se fonde le plus souvent sur les isotopes gazeux parce qu'il est facile de les separer de la substance meteorique. Dans les recherches qui font l'objet du present memoire, il s'agissait surtout du tritium et de l'argon. En partant du rapport {sup 3}H/{sup 3}He, on a pu evaluer des ages allant de quelques millions a plusieurs centaines

  16. Expected Geochemical and Mineralogical Properties of Meteorites from Mercury: Inferences from Messenger Data

    Science.gov (United States)

    McCubbin, F. M.; McCoy, T. J.

    2016-01-01

    Meteorites from the Moon, Mars, and many types of asteroid bodies have been identified among our global inventory of meteorites, however samples of Mercury and Venus have not been identified. The absence of mercurian and venusian meteorites could be attributed to an inability to recognize them in our collections due to a paucity of geochemical information for Venus and Mercury. In the case of mercurian meteorites, this possibility is further supported by dynamical calculations that suggest mercurian meteorites should be present on Earth at a factor of 2-3 less than meteorites from Mars [1]. In the present study, we focus on the putative mineralogy of mercurian meteorites using data obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which has provided us with our first quantitative constraints on the geochemistry of planet Mercury. We have used the MESSENGER data to compile a list of mineralogical and geochemical characteristics that a meteorite from Mercury is likely to exhibit.

  17. Meteorite Fall Detection and Analysis via Weather Radar: Worldwide Potential for Citizen Science

    Science.gov (United States)

    Fries, M.; Bresky, C.; Laird, C.; Reddy, V.; Hankey, M.

    2017-12-01

    Meteorite falls can be detected using weather radars, facilitating rapid recovery of meteorites to minimize terrestrial alteration. Imagery from the US NEXRAD radar network reveals over two dozen meteorite falls where meteorites have been recovered, and about another dozen that remain unrecovered. Discovery of new meteorite falls is well suited to "citizen science" and similar outreach activities, as well as automation of computational components into internet-based search tools. Also, there are many more weather radars employed worldwide than those in the US NEXRAD system. Utilization of weather radars worldwide for meteorite recovery can not only expand citizen science opportunities but can also lead to significant improvement in the number of freshly-fallen meteorites available for research. We will discuss the methodologies behind locating and analyzing meteorite falls using weather radar, and how to make them available for citizen science efforts. An important example is the Aquarius Project, a Chicago-area consortium recently formed with the goal of recovering meteorites from Lake Michigan. This project has extensive student involvement geared toward development of actual hardware for recovering meteorites from the lake floor. Those meteorites were identified in weather radar imagery as they fell into the lake from a large meteor on 06 Feb 2017. Another example of public interaction is the meteor detection systems operated by the American Meteor Society (AMS). The AMS website has been developed to allow public reporting of meteors, effectively enabling citizen science to locate and describe significant meteor events worldwide.

  18. Design of an autonomous decentralized MAC protocol for wireless sensor networks

    NARCIS (Netherlands)

    van Hoesel, L.F.W.; Dal Pont, L.; Havinga, Paul J.M.

    In this document the design of a MAC protocol for wireless sensor networks is discussed. The autonomous decentralized TDMA based MAC protocol minimizes power consumtion by efficiency implementing unicast/omnicast, scheduled rendezvous times and wakeup calls. The MAC protocol is an ongoing research

  19. Age determination of meteorites using radioactive nuclides

    International Nuclear Information System (INIS)

    Tanimizu, Masaharu

    2002-01-01

    Recently, the precise isotope ratios of some refractory elements in meteorites have been reported using inductively coupled plasma mass spectrometry. The in situ decay of 182 Hf (T 1/2 =9 Myr), which was produced at the latest nucleosynthesis, is recognized in many meteorites as isotopic anomalies of its daughter isotope, 182 W. The degrees of relative 182 W isotopic deviation in extra-terrestrial and terrestrial silicate samples vary from +0.3% to ±0% related to the size of their parent bodies. One ready interpretation of its correlation is the difference in timing of metal-silicate separation in the parent bodies. Between the earth and meteorite parent bodies, the difference is calculated to be about four times of the half-life of 182 Hf, equivalent to 36 Myr. (author)

  20. Alistair William MacDonald.

    Science.gov (United States)

    Callegari, Angus

    2018-01-06

    A devoted family man and churchgoer, Alistair MacDonald was a meticulous vet with a great sense of humour. Having served in the RAF during the Second World War, he had plenty of stories to tell. British Veterinary Association.

  1. Lunar magnetism

    Science.gov (United States)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.

    1984-01-01

    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  2. Office for iPad and Mac for dummies

    CERN Document Server

    Weverka, Peter

    2015-01-01

    The easy way to work with Office on your iPad or Mac Are you a Mac user who isn't accustomed to working with Microsoft Office? Consider this friendly guide your go-to reference! Written in plain English and packed with easy-to-follow, step-by-step instructions, Office for iPad and Mac For Dummies walks you through every facet of Office, from installing the software and opening files to working with Word, Excel, PowerPoint, and Outlook-and beyond. Plus, you'll discover how to manage files, share content and collaborate online through social media, and find help when you need it. Two things a

  3. The Lunar Transit Telescope (LTT) - An early lunar-based science and engineering mission

    Science.gov (United States)

    Mcgraw, John T.

    1992-01-01

    The Sentinel, the soft-landed lunar telescope of the LTT project, is described. The Sentinel is a two-meter telescope with virtually no moving parts which accomplishes an imaging survey of the sky over almost five octaves of the electromagnetic spectrum from the ultraviolet into the infrared, with an angular resolution better than 0.1 arsec/pixel. The Sentinel will incorporate innovative techniques of interest for future lunar-based telescopes and will return significant engineering data which can be incorporated into future lunar missions. The discussion covers thermal mapping of the Sentinel, measurement of the cosmic ray flux, lunar dust, micrometeoroid flux, the lunar atmosphere, and lunar regolith stability and seismic activity.

  4. Burn Delay Analysis of the Lunar Orbit Insertion for Korea Pathfinder Lunar Orbiter

    Science.gov (United States)

    Bae, Jonghee; Song, Young-Joo; Kim, Young-Rok; Kim, Bangyeop

    2017-12-01

    The first Korea lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO), has been in development since 2016. After launch, the KPLO will execute several maneuvers to enter into the lunar mission orbit, and will then perform lunar science missions for one year. Among these maneuvers, the lunar orbit insertion (LOI) is the most critical maneuver because the KPLO will experience an extreme velocity change in the presence of the Moon’s gravitational pull. However, the lunar orbiter may have a delayed LOI burn during operation due to hardware limitations and telemetry delays. This delayed burn could occur in different captured lunar orbits; in the worst case, the KPLO could fly away from the Moon. Therefore, in this study, the burn delay for the first LOI maneuver is analyzed to successfully enter the desired lunar orbit. Numerical simulations are performed to evaluate the difference between the desired and delayed lunar orbits due to a burn delay in the LOI maneuver. Based on this analysis, critical factors in the LOI maneuver, the periselene altitude and orbit period, are significantly changed and an additional delta-V in the second LOI maneuver is required as the delay burn interval increases to 10 min from the planned maneuver epoch.

  5. A Full-Duplex MAC Tailored for 5G Wireless Networks

    Directory of Open Access Journals (Sweden)

    Lucas de Melo Guimarães

    2018-01-01

    Full Text Available The increasing demands for high-data rate traffic stimulated the development of the fifth-generation (5G mobile networks. The envisioned 5G network is expected to meet its challenge by devising means to further improve spectrum usage. Many alternatives to enhance spectrum usage are being researched, such as massive MIMO, operation in mmWave frequency, cognitive radio, and the employment of full-duplex antennas. Efficient utilization of the potential of any of these technologies faces a set of challenges related to medium access control (MAC schemes. This work focuses on MAC schemes tailored for full-duplex antennas, since they are expected to play a major role in the foreseeable 5G networks. In this context, this paper presents a MAC layer technique to improve total transmission time when full-duplex antennas are employed. Several evaluations in different scenarios are conducted to assess the proposed MAC scheme. Numerical results show that the proposed scheme provides gains up to 156% when compared to a state-of-the-art full-duplex antenna MAC protocol. Compared to traditional half-duplex antenna MAC protocols, the proposed scheme yields gain up to 412%.

  6. Wound Healing in Mac-1 Deficient Mice

    Science.gov (United States)

    2017-05-01

    Dentistry, University of Illinois at Chicago, Chicago, IL, USA. 2 Department of Defense Biotechnology High Performance Computing Software...study, we used a commercially available Mac-1 deficient strain to examine whether this deficit 5 extends to slightly smaller wounds and incisional...levels of Collagen I and Collagen III in wounds from the two strains of mice at any time point. Unwounded skin from both WT and Mac-1 -/- mice contained

  7. Electron Backscatter Diffraction (EBSD) Analysis and U-Pb Geochronology of the Oldest Lunar Zircon: Constraining Early Lunar Differentiation and Dating Impact-Related Deformation

    Science.gov (United States)

    Timms, Nick; Nemchin, Alexander; Grange, Marion; Reddy, Steve; Pidgeon, Bob; Geisler, Thorsten; Meyer, Chuck

    2009-01-01

    The evolution of the early moon was dominated by two processes (i) crystallization of the Lunar Magma Ocean (LMO) and differentiation of potassium-rare earth element-phosphorous-rich residual magma reservoir referred to as KREEP, and (ii) an intense meteorite bombardment referred to as lunar cataclysm . The exact timing of these processes is disputed, and resolution relies on collection and interpretation of precise age data. This study examines the microstructure and geochronology of zircon from lunar impact breccias collected during the Apollo 17 mission. A large zircon clast within lunar breccia 72215,195 shows sector zoning in optical microscopy, cathodoluminescence (CL) imaging and Raman mapping, and indicates that it was a relict fragment of a much larger magmatic grain. Sensitive high resolution ion microprobe (SHRIMP) U-Pb analysis of the zircon shows that U and Th concentration correlate with sector zoning, with darkest CL domains corresponding with high-U and Th (approx.150 and approx.100 ppm respectively), and the brightest-CL sectors containing approx.30-50 ppm U and approx.10-20 ppm Th. This indicates that variations in optical CL and Raman properties correspond to differential accumulation of alpha-radiation damage in each sector. Electron backscatter diffraction (EBSD) mapping shows that the quality of electron backscatter patterns (band contrast) varies with sector zoning, with the poorest quality patterns obtained from high-U and Th, dark-CL zones. EBSD mapping also reveals a deformation microstructure that is cryptic in optical, CL and Raman imaging. Two orthogonal sets of straight discrete and gradational low-angle boundaries accommodate approx.12 misorientation across the grain. The deformation bands are parallel to the crystallographic {a}-planes of the zircon, have misorientation axes parallel to the c-axis, and are geometrically consistent with formation by dislocation creep associated with {010} slip. The deformation bands are unlike curved

  8. Douglas MacArthur Upon Reflection

    National Research Council Canada - National Science Library

    Snitchler, Lowell

    1998-01-01

    .... This research recounts MacArthur's personality development from childhood, investigates his last military campaign, and, finally, applies the diagnosis of narcissistic personality disorder to the assembled data...

  9. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  10. Mammalian Synthetic Biology: Time for Big MACs.

    Science.gov (United States)

    Martella, Andrea; Pollard, Steven M; Dai, Junbiao; Cai, Yizhi

    2016-10-21

    The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-potentially up to chromosome scale-and the effective delivery of these large DNA payloads to the host cell. Random integration of large transgenes, encoding therapeutic proteins or genetic circuits into host chromosomes, has several drawbacks such as risks of insertional mutagenesis, lack of control over transgene copy-number and position-specific effects; these can compromise the intended functioning of genetic circuits. The development of a system orthogonal to the endogenous genome is therefore beneficial. Mammalian artificial chromosomes (MACs) are functional, add-on chromosomal elements, which behave as normal chromosomes-being replicating and portioned to daughter cells at each cell division. They are deployed as useful gene expression vectors as they remain independent from the host genome. MACs are maintained as a single-copy and can accommodate multiple gene expression cassettes of, in theory, unlimited DNA size (MACs up to 10 megabases have been constructed). MACs therefore enabled control over ectopic gene expression and represent an excellent platform to rapidly prototype and characterize novel synthetic gene circuits without recourse to engineering the host genome. This review describes the obstacles synthetic biologists face when working with mammalian systems and how the development of improved MACs can overcome these-particularly given the spectacular advances in DNA synthesis and assembly that are fuelling this research area.

  11. View of the Lunar Module 'Orion' and Lunar Roving Vehicle during first EVA

    Science.gov (United States)

    1972-01-01

    A view of the Lunar Module (LM) 'Orion' and Lunar Roving Vehicle (LRV), as photographed by Astronaut Charles M. Duke Jr., lunar module pilot, during the first Apollo 16 extravehicular activity (EVA-1) at the Descates landing site. Astronaut John W. Young, commander, can be seen directly behind the LRV. The lunar surface feature in the left background is Stone Mountain.

  12. Catalogue of meteorites from South America

    CERN Document Server

    Acevedo, Rogelio Daniel; García, Víctor Manuel

    2014-01-01

    The first Catalogue of Meteorites from South America includes new specimens never previously reported, while doubtful cases and pseudometeorites have been deliberately omitted.The falling of these objects is a random event, but the sites where old meteorites are found tend to be focused in certain areas, e.g. in the deflation surfaces in Chile's Atacama Desert, due to favorable climate conditions and ablation processes.Our Catalogue provides basic information on each specimen like its provenance and the place where it was discovered (in geographic co-ordinates and with illustrative maps), its

  13. Lunar Reconnaissance Orbiter Lunar Workshops for Educators, Year 1 Report

    Science.gov (United States)

    Jones, A. P.; Hsu, B. C.; Bleacher, L.; Shaner, A. J.; Dalton, H.

    2011-12-01

    This past summer, the Lunar Reconnaissance Orbiter (LRO) sponsored a series of weeklong professional development workshops designed to educate and inspire grade 6-12 science teachers: the Lunar Workshops for Educators. Participants learned about lunar science and exploration, gained tools to help address common student misconceptions about the Moon, heard some of the latest research results from LRO scientists, worked with LRO data, and learned how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks. Where possible, the workshops also included tours of science facilities or field trips intended to help the teachers better understand mission operations or geologic processes relevant to the Moon. The workshops were very successful. Participants demonstrated an improved understanding of lunar science concepts in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and productively share data from LRO with their students and provide them with authentic research experiences. Participant feedback on workshop surveys was also enthusiastically positive. 5 additional Lunar Workshops for Educators will be held around the country in the summer of 2012. For more information and to register, visit http://lunar.gsfc.nasa.gov/lwe/index.html.

  14. Florence Jessie Mac Williams

    Indian Academy of Sciences (India)

    CPMGIKAlBGE-340/2003-05. Resonance - January 2005. Licenced to post WPP No.6 RT Nagar Postoffice. Florence Jessie Mac Williams. (1917 - 1990). Registered with Registrar of Newspapers in India vide Regn. No. 66273/96. ISSN 0971-8044. Price per copy: Rs 40.

  15. Vehicle Health Management Communications Requirements for AeroMACS

    Science.gov (United States)

    Kerczewski, Robert J.; Clements, Donna J.; Apaza, Rafael D.

    2012-01-01

    As the development of standards for the aeronautical mobile airport communications system (AeroMACS) progresses, the process of identifying and quantifying appropriate uses for the system is progressing. In addition to defining important elements of AeroMACS standards, indentifying the systems uses impacts AeroMACS bandwidth requirements. Although an initial 59 MHz spectrum allocation for AeroMACS was established in 2007, the allocation may be inadequate; studies have indicated that 100 MHz or more of spectrum may be required to support airport surface communications. Hence additional spectrum allocations have been proposed. Vehicle health management (VHM) systems, which can produce large volumes of vehicle health data, were not considered in the original bandwidth requirements analyses, and are therefore of interest in supporting proposals for additional AeroMACS spectrum. VHM systems are an emerging development in air vehicle safety, and preliminary estimates of the amount of data that will be produced and transmitted off an aircraft, both in flight and on the ground, have been prepared based on estimates of data produced by on-board vehicle health sensors and initial concepts of data processing approaches. This allowed an initial estimate of VHM data transmission requirements for the airport surface. More recently, vehicle-level systems designed to process and analyze VHM data and draw conclusions on the current state of vehicle health have been undergoing testing and evaluation. These systems make use of vehicle system data that is mostly different from VHM data considered previously for airport surface transmission, and produce processed system outputs that will be also need to be archived, thus generating additional data load for AeroMACS. This paper provides an analysis of airport surface data transmission requirements resulting from the vehicle level reasoning systems, within the context of overall VHM data requirements.

  16. Enhanced Sleep Mode MAC Control for EPON

    DEFF Research Database (Denmark)

    Yan, Ying; Dittmann, Lars

    2011-01-01

    This paper introduces sleep mode operations for EPON. New MAC control functions are proposed to schedule sleep periods. Traffic profiles are considered to optimize energy efficiency and network performances. Simulation results are analyzed in OPNET modeler.......This paper introduces sleep mode operations for EPON. New MAC control functions are proposed to schedule sleep periods. Traffic profiles are considered to optimize energy efficiency and network performances. Simulation results are analyzed in OPNET modeler....

  17. Lunar-A

    Indian Academy of Sciences (India)

    penetrators will be transmitted to the earth station via the Lunar-A mother spacecraft orbiting at an altitude of about .... to save the power consumption of the Lunar-A penetrator .... and an origin-time versus tidal-phases correlation. (Toksoz et al ...

  18. Lunar Sample Compendium

    Science.gov (United States)

    Meyer, Charles

    2005-01-01

    The purpose of the Lunar Sample Compendium will be to inform scientists, astronauts and the public about the various lunar samples that have been returned from the Moon. This Compendium will be organized rock by rock in the manor of a catalog, but will not be as comprehensive, nor as complete, as the various lunar sample catalogs that are available. Likewise, this Compendium will not duplicate the various excellent books and reviews on the subject of lunar samples (Cadogen 1981, Heiken et al. 1991, Papike et al. 1998, Warren 2003, Eugster 2003). However, it is thought that an online Compendium, such as this, will prove useful to scientists proposing to study individual lunar samples and should help provide backup information for lunar sample displays. This Compendium will allow easy access to the scientific literature by briefly summarizing the significant findings of each rock along with the documentation of where the detailed scientific data are to be found. In general, discussion and interpretation of the results is left to the formal reviews found in the scientific literature. An advantage of this Compendium will be that it can be updated, expanded and corrected as need be.

  19. Lunar Circular Structure Classification from Chang 'e 2 High Resolution Lunar Images with Convolutional Neural Network

    Science.gov (United States)

    Zeng, X. G.; Liu, J. J.; Zuo, W.; Chen, W. L.; Liu, Y. X.

    2018-04-01

    Circular structures are widely distributed around the lunar surface. The most typical of them could be lunar impact crater, lunar dome, et.al. In this approach, we are trying to use the Convolutional Neural Network to classify the lunar circular structures from the lunar images.

  20. A Priority-Based Adaptive MAC Protocol for Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Sabin Bhandari

    2016-03-01

    Full Text Available In wireless body area networks (WBANs, various sensors and actuators are placed on/inside the human body and connected wirelessly. WBANs have specific requirements for healthcare and medical applications, hence, standard protocols like the IEEE 802.15.4 cannot fulfill all the requirements. Consequently, many medium access control (MAC protocols, mostly derived from the IEEE 802.15.4 superframe structure, have been studied. Nevertheless, they do not support a differentiated quality of service (QoS for the various forms of traffic coexisting in a WBAN. In particular, a QoS-aware MAC protocol is essential for WBANs operating in the unlicensed Industrial, Scientific, and Medical (ISM bands, because different wireless services like Bluetooth, WiFi, and Zigbee may coexist there and cause severe interference. In this paper, we propose a priority-based adaptive MAC (PA-MAC protocol for WBANs in unlicensed bands, which allocates time slots dynamically, based on the traffic priority. Further, multiple channels are effectively utilized to reduce access delays in a WBAN, in the presence of coexisting systems. Our performance evaluation results show that the proposed PA-MAC outperforms the IEEE 802.15.4 MAC and the conventional priority-based MAC in terms of the average transmission time, throughput, energy consumption, and data collision ratio.

  1. A Priority-Based Adaptive MAC Protocol for Wireless Body Area Networks.

    Science.gov (United States)

    Bhandari, Sabin; Moh, Sangman

    2016-03-18

    In wireless body area networks (WBANs), various sensors and actuators are placed on/inside the human body and connected wirelessly. WBANs have specific requirements for healthcare and medical applications, hence, standard protocols like the IEEE 802.15.4 cannot fulfill all the requirements. Consequently, many medium access control (MAC) protocols, mostly derived from the IEEE 802.15.4 superframe structure, have been studied. Nevertheless, they do not support a differentiated quality of service (QoS) for the various forms of traffic coexisting in a WBAN. In particular, a QoS-aware MAC protocol is essential for WBANs operating in the unlicensed Industrial, Scientific, and Medical (ISM) bands, because different wireless services like Bluetooth, WiFi, and Zigbee may coexist there and cause severe interference. In this paper, we propose a priority-based adaptive MAC (PA-MAC) protocol for WBANs in unlicensed bands, which allocates time slots dynamically, based on the traffic priority. Further, multiple channels are effectively utilized to reduce access delays in a WBAN, in the presence of coexisting systems. Our performance evaluation results show that the proposed PA-MAC outperforms the IEEE 802.15.4 MAC and the conventional priority-based MAC in terms of the average transmission time, throughput, energy consumption, and data collision ratio.

  2. MAC calorimeters and applications

    International Nuclear Information System (INIS)

    MAC Collaboration.

    1982-03-01

    The MAC detector at PEP features a large solid-angle electromagnetic/hadronic calorimeter system, augmented by magnetic charged-particle tracking, muon analysis and scintillator triggering. Its implementation in the context of electron-positron annihilation physics is described, with emphasis on the utilization of calorimetry

  3. Lunar neutron source function

    International Nuclear Information System (INIS)

    Kornblum, J.J.

    1974-01-01

    The search for a quantitative neutron source function for the lunar surface region is justified because it contributes to our understanding of the history of the lunar surface and of nuclear process occurring on the moon since its formation. A knowledge of the neutron source function and neutron flux distribution is important for the interpretation of many experimental measurements. This dissertation uses the available pertinent experimental measurements together with theoretical calculations to obtain an estimate of the lunar neutron source function below 15 MeV. Based upon reasonable assumptions a lunar neutron source function having adjustable parameters is assumed for neutrons below 15 MeV. The lunar neutron source function is composed of several components resulting from the action of cosmic rays with lunar material. A comparison with previous neutron calculations is made and significant differences are discussed. Application of the results to the problem of lunar soil histories is examined using the statistical model for soil development proposed by Fireman. The conclusion is drawn that the moon is losing mass

  4. Lunar Quest in Second Life, Lunar Exploration Island, Phase II

    Science.gov (United States)

    Ireton, F. M.; Day, B. H.; Mitchell, B.; Hsu, B. C.

    2010-12-01

    Linden Lab’s Second Life is a virtual 3D metaverse created by users. At any one time there may be 40,000-50,000 users on line. Users develop a persona and are seen on screen as a human figure or avatar. Avatars move through Second Life by walking, flying, or teleporting. Users form communities or groups of mutual interest such as music, computer graphics, and education. These groups communicate via e-mail, voice, and text within Second Life. Information on downloading the Second Life browser and joining can be found on the Second Life website: www.secondlife.com. This poster details Phase II in the development of Lunar Exploration Island (LEI) located in Second Life. Phase I LEI highlighted NASA’s LRO/LCROSS mission. Avatars enter LEI via teleportation arriving at a hall of flight housing interactive exhibits on the LRO/ LCROSS missions including full size models of the two spacecraft and launch vehicle. Storyboards with information about the missions interpret the exhibits while links to external websites provide further information on the mission, both spacecraft’s instrument suites, and related EPO. Other lunar related activities such as My Moon and NLSI EPO programs. A special exhibit was designed for International Observe the Moon Night activities with links to websites for further information. The sim includes several sites for meetings, a conference stage to host talks, and a screen for viewing NASATV coverage of mission and other televised events. In Phase II exhibits are updated to reflect on-going lunar exploration highlights, discoveries, and future missions. A new section of LEI has been developed to showcase NASA’s Lunar Quest program. A new exhibit hall with Lunar Quest information has been designed and is being populated with Lunar Quest information, spacecraft models (LADEE is in place) and kiosks. A two stage interactive demonstration illustrates lunar phases with static and 3-D stations. As NASA’s Lunar Quest program matures further

  5. Laser-powered lunar base

    International Nuclear Information System (INIS)

    Costen, R.; Humes, D.H.; Walker, G.H.; Williams, M.D.; Deyoung, R.J.

    1989-01-01

    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized

  6. Field Guide to Meteors and Meteorites

    CERN Document Server

    Norton, O. Richard

    2008-01-01

    Imagine the unique experience of being the very first person to hold a newly-found meteorite in your hand – a rock from space, older than Earth! "Weekend meteorite hunting" with magnets and metal detectors is becoming ever more popular as a pastime, but of course you can’t just walk around and pick up meteorites in the same way that you can pick up seashells on the beach. Those fragments that survived the intense heat of re-entry tend to disguise themselves as natural rocks over time, and it takes a trained eye – along with the information in this book – to recognize them. Just as amateur astronomers are familiar with the telescopes and accessories needed to study a celestial object, amateur meteoriticists have to use equipment ranging from simple hand lenses to microscopes to study a specimen, to identify its type and origins. Equipment and techniques are covered in detail here of course, along with a complete and fully illustrated guide to what you might find and where you might find it. In fact, th...

  7. Coordinated In Situ Analyses of Organic Nanoglobules in the Sutter's Mill Meteorite

    Science.gov (United States)

    Nakamura--Messenger, K.; Messenger, S.; Keller, L. P.; Clemett, S. J.; Nguyen, A. N.; Gibson, E. K.

    2013-01-01

    The Sutter s Mill meteorite is a newly fallen carbonaceous chondrite that was collected and curated quickly after its fall [1]. Preliminary petrographic and isotopic investigations suggest affinities to the CM2 carbonaceous chondrites. The primitive nature of this meteorite and its rapid recovery provide an opportunity to investigate primordial solar system organic matter in a unique new sample. Organic matter in primitive meteorites and chondritic porous interplanetary dust particles (CP IDPs) is commonly enriched in D/H and N-15/N-14 relative to terrestrial values [2-4]. These anomalies are ascribed to the partial preservation of presolar cold molecular cloud material [2]. Some meteorites and IDPs contain gm-size inclusions with extreme H and N isotopic anomalies [3-5], possibly due to preserved primordial organic grains. The abundance and isotopic composition of C in Sutter's Mill were found to be similar to the Tagish Lake meteorite [6]. In the Tagish Lake meteorite, the principle carriers of large H and N isotopic anomalies are sub-micron hollow organic spherules known as organic nanoglobules [7]. Organic nanoglobules are commonly distributed among primitive meteorites [8, 9] and cometary samples [10]. Here we report in-situ analyses of organic nano-globules in the Sutter's Mill meteorite using UV fluorescence imaging, Fourier-transform infrared spectroscopy (FTIR), scanning transmission electron microscopy (STEM), NanoSIMS, and ultrafast two-step laser mass spectrometry (ultra-L2MS).

  8. Lower-Cost, Relocatable Lunar Polar Lander and Lunar Surface Sample Return Probes

    Science.gov (United States)

    Amato, G. Michael; Garvin, James B.; Burt, I. Joseph; Karpati, Gabe

    2011-01-01

    Key science and exploration objectives of lunar robotic precursor missions can be achieved with the Lunar Explorer (LEx) low-cost, robotic surface mission concept described herein. Selected elements of the LEx concept can also be used to create a lunar surface sample return mission that we have called Boomerang

  9. Asteroids, meteorites, and comets

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    Asteroids, Comets, and Meteorites provides students, researchers, and general readers with the most up-to-date information on this fascinating field. From the days of the dinosaurs to our modern environment, this book explores all aspects of these cosmic invaders.

  10. MACS as a tool for international inspections

    International Nuclear Information System (INIS)

    Curtiss, J.A.; Indusi, J.P.

    1995-01-01

    General acceptance of the challenge provision in the Chemical Weapons Convention has the potential for influence in other arms control areas. While most applications of the challenge inspection may be straightforward, there may be instances where access to the site by inspectors may be problematic. The MACS system described in this paper was developed to respond to these situations. Inspection and verification may be difficult when a host is unwilling,for valid reasons, to permit physical access to a site. We proposed a system of remote sensors which may be used to demonstrate compliance with Chemical Weapons Convention (CWC) challenge inspections even ff the inspector is physically excluded from a sensitive site. The system is based upon alternative-means-of-access provisions of the CWC. The Defense Nuclear Agency (DNA) funded design and construction of a system prototype, designated as MACS for Managed Access by Controlled Sensing. Features of the MACS design allow growth of the prototype into a versatile device for international monitoring of production facilities and other sites. MACS consists of instrumentation and communication equipment allowing site personnel to conduct a facility tour and perform acceptable measurements, while physically excluding the inspector from the facility. MACS consists of a base station used by the inspector, and a mobile unit used within the facility and manipulated by the facility staff. The base station and the mobile unit are at sign ed by a communication system, currently realized as a fiber optic cable. The mobile unit is equipped with television cameras and remote-reading distance-measuring equipment (DME) for use in verifying locations and dimensions. Global Positioning System receivers on the mobile unit provide both precise location and dead reckoning, suitable for tracking the mobile unit's position while within a building when satellite signals are not available

  11. Mac OS X Snow Leopard for Power Users Advanced Capabilities and Techniques

    CERN Document Server

    Granneman, Scott

    2010-01-01

    Mac OS X Snow Leopard for Power Users: Advanced Capabilities and Techniques is for Mac OS X users who want to go beyond the obvious, the standard, and the easy. If want to dig deeper into Mac OS X and maximize your skills and productivity using the world's slickest and most elegant operating system, then this is the book for you. Written by Scott Granneman, an experienced teacher, developer, and consultant, Mac OS X for Power Users helps you push Mac OS X to the max, unveiling advanced techniques and options that you may have not known even existed. Create custom workflows and apps with Automa

  12. U-Pb studies of the Appley Bridge meteorite

    International Nuclear Information System (INIS)

    Gale, N.H.; Arden, J.W.; Hutchinson, R.

    1979-01-01

    The U and Pb concentration in samples from the interior of the 10.9 kg stone BM 1920, 40 (British Museum), the isotopic composition of lead, a lead-lead diagram for whole meteorite samples of Appley Bridge, and a U-Pb concordia diagram for whole meteorite samples of Appley Bridge from different measurements are treated. (HK) 891 HK/HK 892 MB [de

  13. An Anomalous Basaltic Meteorite from the Innermost Main Belt

    Czech Academy of Sciences Publication Activity Database

    Bland, P.A.; Spurný, Pavel; Towner, M.C.; Bevan, A.W.R.; Singleton, A.T.; Bottke jr., W.F.; Greenwood, R.C.; Chesley, S.R.; Shrbený, Lukáš; Borovička, Jiří; Ceplecha, Zdeněk; McClafferty, T.; Vaughan, D.; Benedix, G.K.; Deacon, G.; Howard, K.T.; Franchi, I.A.; Hough, R.M.

    2009-01-01

    Roč. 325, č. 5947 (2009), s. 1525-1527 ISSN 0036-8075 R&D Projects: GA ČR GA205/08/0411 Institutional research plan: CEZ:AV0Z10030501 Keywords : meteorites * meteorite fall Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 29.747, year: 2009

  14. Precision Lunar Laser Ranging For Lunar and Gravitational Science

    Science.gov (United States)

    Merkowitz, S. M.; Arnold, D.; Dabney, P. W.; Livas, J. C.; McGarry, J. F.; Neumann, G. A.; Zagwodzki, T. W.

    2008-01-01

    Laser ranging to retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Lunar missions over the past 39 years have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Significant advances in these areas will require placing modern retroreflectors and/or active laser ranging systems at new locations on the lunar surface. Ranging to new locations will enable better measurements of the lunar librations, aiding in our understanding of the interior structure of the moon. More precise range measurements will allow us to study effects that are too small to be observed by the current capabilities as well as enabling more stringent tests of Einstein's theory of General Relativity. Setting up retroreflectors was a key part of the Apollo missions so it is natural to ask if future lunar missions should include them as well. The Apollo retroreflectors are still being used today, and nearly 40 years of ranging data has been invaluable for scientific as well as other studies such as orbital dynamics. However, the available retroreflectors all lie within 26 degrees latitude of the equator, and the most useful ones within 24 degrees longitude of the sub-earth meridian. This clustering weakens their geometrical strength.

  15. Lunar electrostatic effects and protection

    International Nuclear Information System (INIS)

    Sun, Yongwei; Yuan, Qingyun; Xiong, Jiuliang

    2013-01-01

    The space environment and features on the moon surface are factors in strong electrostatic electrification. Static electricity will be produced in upon friction between lunar soil and detectors or astronauts on the lunar surface. Lunar electrostatic environment effects from lunar exploration equipment are very harmful. Lunar dust with electrostatic charge may enter the equipment or even cover the instruments. It can affect the normal performance of moon detectors. Owing to the huge environmental differences between the moon and the earth, the electrostatic protection technology on the earth can not be applied. In this paper, we review the electrostatic characteristics of lunar dust, its effects on aerospace equipment and moon static elimination technologies. It was concluded that the effect of charged lunar dust on detectors and astronauts should be completely researched as soon as possible.

  16. Macintosh Troubleshooting Pocket Guide for Mac OS

    CERN Document Server

    Lerner, David; Corporation, Tekserve

    2009-01-01

    The Macintosh Troubleshooting Pocket Guide covers the most common user hardware and software trouble. It's not just a book for Mac OS X (although it includes tips for OS X and Jaguar), it's for anyone who owns a Mac of any type-- there are software tips going back as far as OS 6. This slim guide distills the answers to the urgent questions that Tekserve's employee's answer every week into a handy guide that fits in your back pocket or alongside your keyboard.

  17. The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission

    Science.gov (United States)

    Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.

    2017-11-01

    The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.

  18. Noble gases in ten stone meteorites from Antarctica

    International Nuclear Information System (INIS)

    Weber, H.W.; Schultz, L.

    1980-01-01

    The concentrations and isotopic composition of noble gases have been determined in all ten stone meteorites recovered in Antarctica during 1976-1977 by a U.S.-Japanese expedition. From a comparison of spallogenic and radiogenic gas components it is concluded that the chondrites Mt. Baldr (a) and Mt. Baldr (b) belong to the same fall but that all other stone meteorites are individual finds. (orig.)

  19. Express delivery of fossil meteorites from the inner asteroid belt to Sweden

    Science.gov (United States)

    Nesvorný, David; Vokrouhlický, David; Bottke, William F.; Gladman, Brett; Häggström, Therese

    2007-06-01

    Our understanding of planet formation depends in fundamental ways on what we learn by analyzing the composition, mineralogy, and petrology of meteorites. Yet, it is difficult to deduce the compositional and thermal gradients that existed in the solar nebula from the meteoritic record because, in most cases, we do not know where meteorites with different chemical and isotopic signatures originated. Here we developed a model that tracks the orbits of meteoroid-sized objects as they evolve from the ν secular resonance to Earth-crossing orbits. We apply this model to determining the number of meteorites accreted on the Earth immediately after a collisional disruption of a D˜200-km-diameter inner-main-belt asteroid in the Flora family region. We show that this event could produce fossil chondrite meteorites found in an ≈470 Myr old marine limestone quarry in southern Sweden, the L-chondrite meteorites with shock ages ≈470 Myr falling on the Earth today, as well as asteroid-sized fragments in the Flora family. To explain the measured short cosmic-ray exposure ages of fossil meteorites our model requires that the meteoroid-sized fragments were launched at speeds >500 m s -1 and/or the collisional lifetimes of these objects were much shorter immediately after the breakup event than they are today.

  20. Neuschwanstein and Pribram: Two solitaire meteorites or members of a stream?

    Science.gov (United States)

    Oberst, J.; Spurny, P.; Heinlein, D.

    2003-04-01

    The fall of the Neuschwanstein enstatite chondrite EL6 at 20:20:17.7 UTC on April 6, 2002, in Southern Bavaria is well documented. Using photographic records obtained by the European Fireball Network (EN), the heliocentric orbit of the object before its collision with Earth could be determined [Spurny et al., Nature, submitted]. Surprisingly, its orbit is practically identical to that of another meteorite, which was photographed by the EN 43 years earlier: the Pribram H5-chondrite, which fell on April 7, 1959. The orbital elements are extremely similar indeed, as is indicated by a D-criterion of D=0.025. By analysis of the orbital elements of all available (approx. 200) ''meteorite candidates'', we estimate that the chances of finding two meteorites with orbital elements matching as well as in the case of Pribram and Neuschwanstein is 1:100,000. Therefore, we believe that the paired fall is not a coincidence and that the meteorites are members of a stream of objects. Considering Innisfree and Ridgedale, another paired fall, observed by the Canadian MORP (Meteorite Observation and Recovery Project), in 1977 and 1980 [Halliday, Icarus 69, 550-556, 1987], it appears that meteorite streams are not uncommon among Earth-approaching objects. On the basis of the observational efficiency of the EN, we estimate that the Pribram/Neuschwanstein meteorite stream contains approx. 10^9 members; all of them combined would form an asteroid with a minimum radius of 300m. From studies of cometary-type meteor streams it is known that these cometary stream members have separated from their parent body fairly recently. However, judging from the different classifications of the meteorites, and from their long cosmic exposure (Pribram has a cosmic ray age of 19 Million years) both, a common parent and a recent separation, are not very likely.

  1. Comparisons of PGA and INAA in the analyses of meteorite samples

    International Nuclear Information System (INIS)

    Wee Boon Siong; Ebihara, M.; Abdul Khalik Wood

    2010-01-01

    Prompt gamma-ray analysis (PGA) and instrumental neutron activation analysis (INAA) are suitable methods for multi-elemental determinations in various samples. These two methods are complementary because PGA is capable of analyzing most major and minor elements in rock samples whereas INAA is more superior in determining minor and trace elements. Both PGA and INAA are essential for the study of rare samples such as meteorites because of non-destructivity and relatively being free from contaminations. Samples for PGA can be reused for INAA, which help to reduce the sample usage. This project aims to utilize PGA and INAA techniques for comparative study and apply them to meteorites. In this study, 11 meteorite samples received from the Meteorite Working Group of NASA were analyzed. The Allende meteorite powder was included as quality control material. Results from PGA and INAA for Allende showed good agreement with literature values, signifying the reliabilities of these two methods. Elements Al, Ca, Mg, Mn, Na and Ti were determined by both methods and their results are compared. Comparison of PGA and INAA data using linear regression analysis showed correlations coefficients r 2 > 0.90 for Al, Ca, Mn and Ti, 0.85 for Mg, and 0.38 for Na. The PGA results for Na using 472 keV were less accurate due to the interference from the broad B peak. Therefore, Na results from INAA method are preferred. For other elements (Al, Ca, Mg, Mn and Ti), PGA and INAA results can be used as cross-reference for consistency. The PGA and INAA techniques have been applied to meteorite samples and results are comparable to literature values compiled from previously analyzed meteorites. In summary, both PGA and INAA methods give reasonably good agreement and are indispensable in the study of meteorites. (author)

  2. Directional Medium Access Control (MAC Protocols in Wireless Ad Hoc and Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    David Tung Chong Wong

    2015-06-01

    Full Text Available This survey paper presents the state-of-the-art directional medium access control (MAC protocols in wireless ad hoc and sensor networks (WAHSNs. The key benefits of directional antennas over omni-directional antennas are longer communication range, less multipath interference, more spatial reuse, more secure communications, higher throughput and reduced latency. However, directional antennas lead to single-/multi-channel directional hidden/exposed terminals, deafness and neighborhood, head-of-line blocking, and MAC-layer capture which need to be overcome. Addressing these problems and benefits for directional antennas to MAC protocols leads to many classes of directional MAC protocols in WAHSNs. These classes of directional MAC protocols presented in this survey paper include single-channel, multi-channel, cooperative and cognitive directional MACs. Single-channel directional MAC protocols can be classified as contention-based or non-contention-based or hybrid-based, while multi-channel directional MAC protocols commonly use a common control channel for control packets/tones and one or more data channels for directional data transmissions. Cooperative directional MAC protocols improve throughput in WAHSNs via directional multi-rate/single-relay/multiple-relay/two frequency channels/polarization, while cognitive directional MAC protocols leverage on conventional directional MAC protocols with new twists to address dynamic spectrum access. All of these directional MAC protocols are the pillars for the design of future directional MAC protocols in WAHSNs.

  3. The granulite suite: Impact melts and metamorphic breccias of the early lunar crust

    Science.gov (United States)

    Cushing, J. A.; Taylor, G. J.; Norman, M. D.; Keil, K.

    1993-03-01

    The granulite suite consists of two major types of rocks. One is coarse-grained and poikilitic with many euhedral crystals of olivine and plagioclase. These characteristics indicate crystallization from a melt; the poikilitic granulites are impact melt breccias. The other group is finer-grained and granoblastic, with numerous triple junctions; the granoblastic granulites are metamorphic rocks. Compositional groups identified by Lindstrom and Lindstrom contain both textural types. Two pyroxene thermometry indicates that both groups equilibrated at 1000 to 1150 C. Calculations suggest that the granoblastic group, which has an average grain size of about 80 microns, was annealed for less than 6 x 10 exp 4 y at 1000 C, and for less than 2500 y at 1150 C. Similar equilibration temperatures suggest that both groups were physically associated after impact events produced the poikilitic melts. Granulitic impactites hold important information about the pre-Nectarian bombardment history of the Moon, and the composition and thermal evolution of the early lunar crust. Granulitic impactites are widely considered to be an important rock type in the lunar crust, but how they formed is poorly understood. Metal compositions and elevated concentrations of meteoritic siderophile elements suggest that most lunar granulites are impact breccias. Their occurrence as clasts in approximately 3.9 Ga breccias, and Ar-(40-39) ages greater than or = 4.2 Ga for some granulites show that they represent a component of the lunar crust which formed prior to the Nectarian cataclysm. Petrographic characteristics of lunar granulites indicate at least two endmember textural variants which apparently formed in fundamentally different ways. One type has granoblastic textures consisting of equant, polygonal to rounded grains, and abundant triple junctions with small dispersions around 120 degrees indicating a close approach to textural equilibrium. As suggested by many authors, granoblastic granulites

  4. REE Partitioning in Lunar Minerals

    Science.gov (United States)

    Rapp, J. F.; Lapen, T. J.; Draper, D. S.

    2015-01-01

    Rare earth elements (REE) are an extremely useful tool in modeling lunar magmatic processes. Here we present the first experimentally derived plagioclase/melt partition coefficients in lunar compositions covering the entire suite of REE. Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. These features are taken as evidence of a large-scale differentiation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were subsequently derived. However, the extent of the Eu anomaly in lunar rocks is variable. Fagan and Neal [1] reported highly anorthitic plagioclase grains in lunar impact melt rock 60635,19 that displayed negative Eu anomalies as well as the more usual positive anomalies. Indeed some grains in the sample are reported to display both positive and negative anomalies. Judging from cathodoluminescence images, these anomalies do not appear to be associated with crystal overgrowths or zones.

  5. Lunar resource base

    Science.gov (United States)

    Pulley, John; Wise, Todd K.; Roy, Claude; Richter, Phil

    A lunar base that exploits local resources to enhance the productivity of a total SEI scenario is discussed. The goals were to emphasize lunar science and to land men on Mars in 2016 using significant amounts of lunar resources. It was assumed that propulsion was chemical and the surface power was non-nuclear. Three phases of the base build-up are outlined, the robotic emplacement of the first elements is detailed and a discussion of future options is included.

  6. Identification, testing, and analysis of a meteorite debris from jhelum, pakistan

    International Nuclear Information System (INIS)

    Kayani, S.

    2012-01-01

    In this research paper, X-ray diffraction (XRD) and X-ray fluorescence (XRF) spectrometry have been used to determine the mineralogical and elemental composition of a stone sample recovered from a location near village Lehri in district Jhelurn, Pakistan. The test data is compared with previous findings (as reported in literature and included in references) to identify this sample stone as part of a prehistoric meteorite ablation debris. Carbon content of a specimen of the meteorite debris has also been determined through combustion analysis. This carbon abundance has been compared with carbon wt% value of a certain type of meteorites to establ ish the origin and nature of the parent body of this particular meteorite debris. (author)

  7. The International Lunar Decade Declaration

    Science.gov (United States)

    Beldavs, V.; Foing, B.; Bland, D.; Crisafulli, J.

    2015-10-01

    The International Lunar Decade Declaration was discussed at the conference held November 9-13, 2014 in Hawaii "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space" - http://2014giantleap.aerospacehawaii.info/ and accepted by a core group that forms the International Lunar Decade Working Group (ILDWG) that is seeking to make the proposed global event and decade long process a reality. The Declaration will be updated from time to time by members of the ILDWreflecting new knowledge and fresh perspectives that bear on building a global consortium with a mission to progress from lunar exploration to the transformation of the Moon into a wealth gene rating platform for the expansion of humankind into the solar system. When key organizations have endorsed the idea and joined the effort the text of the Declaration will be considered final. An earlier International Lunar Decade proposal was issued at the 8th ICEUM Conference in 2006 in Beijing together with 13 specific initiatives for lunar exploration[1,2,3]. These initiatives have been largely implemented with coordination among the different space agencies involved provided by the International Lunar Exploration Working Group[2,3]. The Second International Lunar Decade from 2015 reflects current trends towards increasing involvement of commercial firms in space, particularly seeking opportunities beyond low Earth orbit. The central vision of the International Lunar Decade is to build the foundations for a sustainable space economy through international collaboration concurrently addressing Lunar exploration and building a shared knowledge base;Policy development that enables collabo rative research and development leading to lunar mining and industrial and commercial development;Infrastructure on the Moon and in cislunar space (communications, transport, energy systems, way-stations, other) that reduces costs, lowers risks and speeds up the time to profitable operations;Enabling technologies

  8. MacIntyre's Moral Theory and Moral Relativism

    OpenAIRE

    Ali Abedi Renani

    2017-01-01

    In this paper, I seek to explain the similarity and disparity between MacIntyre’s moral theory and moral relativism. I will argue that MacIntyre’s moral theory can escape the charge of moral relativism because both his earlier social and his later metaphysical approaches appeal to some criteria, the human telos or universal human qualities respectively. The notion of telos is wider than the notion of function which is defined in social contexts. If there is a context-transcending notion of te...

  9. The role of population in tracking meteorite falls in Africa

    Science.gov (United States)

    Khiri, F.; Ibhi, A.; Saint-Gerant, T.; Medjkane, M.; Ouknine, L.

    2016-01-01

    The 158 African meteorite falls recorded during the period 1801 to 2014, account for more than 12.3% of all meteorite falls known from the world. Their rate is variable in time and in space. The number of falls continues to grow since 1860. They are concentrated in countries which exhibit large population (mainly rural population) with an uniform distribution. Generally, the number of falls follows the increase of the population density (coefficient of correlation r = 0.98). The colonial phenomenon, the education of population in this field, the population lifestyle and the rural exodus, are also factors among others which could explain the variability of the recovery of meteorite falls in Africa. In this note, we try by a statistical study, to examine the role of the African population in tracking meteorite falls on this continent.

  10. Moessbauer spectroscopy of the Soledade meteorite

    International Nuclear Information System (INIS)

    Paduani, Clederson; Peres, Carlos Ariel Samudio

    2004-01-01

    Full text: Since the early studies of the microstructure and chemical composition of meteorites the formation of magnetic phases have attracted the attention of metallurgists. Mostly metallic specimens presented high contents of nickel and iron as major constituents, and thus the Fe-Ni alloys formed under such special conditions have been the subject of several investigations with a variety of experimental techniques. This is not an easy task considering the weathering process and the distribution of oxides in the metallic matrix, which in some cases varies in composition from one region to another. In this work we applied the Moessbauer spectroscopy to study the iron-bearing phases detected in the meteorite called Soledade. Although no one knows precisely who and when this specimen was found, it received the name of the locality from where it proceeded near the city of Passo Fundo in the state of Rio Grande do Sul in Brazil. The first studies indicate that this metallic meteorite is an octahedrite, with polycrystalline troilite, cohenite, schreibersite and rhabdites as major constituents. It consists of a solid block weighing 68 kg, with an irregular form measuring about 36x22x16 cm. (author)

  11. Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.

    2012-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at http://www.lpi.usra.edu/nlsi/education/.

  12. Lunar Prospector Orbit Determination Uncertainties Using the High Resolution Lunar Gravity Models

    Science.gov (United States)

    Carranza, Eric; Konopliv, Alex; Ryne, Mark

    1999-01-01

    The Lunar Prospector (LP) mission began on January 6, 1998, when the LP spacecraft was launched from Cape Canaveral, Florida. The objectives of the mission were to determine whether water ice exists at the lunar poles, generate a global compositional map of the lunar surface, detect lunar outgassing, and improve knowledge of the lunar magnetic and gravity fields. Orbit determination of LP performed at the Jet Propulsion Laboratory (JPL) is conducted as part of the principal science investigation of the lunar gravity field. This paper will describe the JPL effort in support of the LP Gravity Investigation. This support includes high precision orbit determination, gravity model validation, and data editing. A description of the mission and its trajectory will be provided first, followed by a discussion of the orbit determination estimation procedure and models. Accuracies will be examined in terms of orbit-to-orbit solution differences, as a function of oblateness model truncation, and inclination in the plane-of-sky. Long term predictions for several gravity fields will be compared to the reconstructed orbits to demonstrate the accuracy of the orbit determination and oblateness fields developed by the Principal Gravity Investigator.

  13. Design and FPGA implementation for MAC layer of Ethernet PON

    Science.gov (United States)

    Zhu, Zengxi; Lin, Rujian; Chen, Jian; Ye, Jiajun; Chen, Xinqiao

    2004-04-01

    Ethernet passive optical network (EPON), which represents the convergence of low-cost, high-bandwidth and supporting multiple services, appears to be one of the best candidates for the next-generation access network. The work of standardizing EPON as a solution for access network is still underway in the IEEE802.3ah Ethernet in the first mile (EFM) task force. The final release is expected in 2004. Up to now, there has been no standard application specific integrated circuit (ASIC) chip available which fulfills the functions of media access control (MAC) layer of EPON. The MAC layer in EPON system has many functions, such as point-to-point emulation (P2PE), Ethernet MAC functionality, multi-point control protocol (MPCP), network operation, administration and maintenance (OAM) and link security. To implement those functions mentioned above, an embedded real-time operating system (RTOS) and a flexible programmable logic device (PLD) with an embedded processor are used. The software and hardware functions in MAC layer are realized through programming embedded microprocessor and field programmable gate array(FPGA). Finally, some experimental results are given in this paper. The method stated here can provide a valuable reference for developing EPON MAC layer ASIC.

  14. A MAC Mode for Lightweight Block Ciphers

    DEFF Research Database (Denmark)

    Luykx, Atul; Preneel, Bart; Tischhauser, Elmar Wolfgang

    2016-01-01

    Lightweight cryptography strives to protect communication in constrained environments without sacrificing security. However, security often conflicts with efficiency, shown by the fact that many new lightweight block cipher designs have block sizes as low as 64 or 32 bits. Such low block sizes lead...... no effect on the security bound, allowing an order of magnitude more data to be processed per key. Furthermore, LightMAC is incredibly simple, has almost no overhead over the block cipher, and is parallelizable. As a result, LightMAC not only offers compact authentication for resource-constrained platforms...

  15. Walking Wheel Design for Lunar Rove-Rand and Its Application Simulation Based on Virtual Lunar Environment

    Directory of Open Access Journals (Sweden)

    Zhao Yibing

    2014-05-01

    Full Text Available The lunar rover design is the key problem of planet exploration. It is extraordinarily important for researchers to fully understand the lunar terrain and propose the reasonable lunar rover. In this paper, one new type of walking wheel modeled on impeller is presented based on vehicle terramechanics. The passive earth pressure of soil mechanics put forward by C. A. Coulomb is employed to obtain the wheel traction force. Some kinematics simulations are conducted for lunar rover model. Besides, this paper presents how to model lunar landing terrain containing typical statistic characteristic including craters and boulders; then, the second step is to construct basal lunar surface by using Brown Fractal Motion and the next is to add craters and boulders by means of known diameter algorithm and Random-create Diameter Algorithm. By means of importing 2D plain of lunar surface into UG, 3D parasolid is modeled and finally imported to ADAMS, which is available for lunar rover kinematics and dynamics simulation. Lastly, based on power spectrum curve of lunar terrain, the spectral characteristic of three different lunar terrain roughness is educed by using reverse engineering algorithm. Simulation results demonstrated the frequency of vibration mechanics properties of different roughness surfaces.

  16. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  17. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  18. Mr MacDonald's suitcase

    DEFF Research Database (Denmark)

    2017-01-01

    Undervisningsforløbet Mr. MacDonald’s suitcase beskriver læringsmålstyret undervisning i faget engelsk i 1. klasse, hvor der arbejdes med kompetenceområdet mundtlig kommunikation. Undervisningsforløbet er bygget op omkring en engelsk tøjdukke, der besøger klassen og fortæller små historier...

  19. Functional characterization of the copper transcription factor AfMac1 from Aspergillus fumigatus.

    Science.gov (United States)

    Park, Yong-Sung; Kim, Tae-Hyoung; Yun, Cheol-Won

    2017-07-03

    Although copper functions as a cofactor in many physiological processes, copper overload leads to harmful effects in living cells. Thus, copper homeostasis is tightly regulated. However, detailed copper metabolic pathways have not yet been identified in filamentous fungi. In this report, we investigated the copper transcription factor AfMac1 ( A spergillus f umigatus Mac1 homolog) and identified its regulatory mechanism in A. fumigatus AfMac1 has domains homologous to the DNA-binding and copper-binding domains of Mac1 from Saccharomyces cerevisiae , and AfMac1 efficiently complemented Mac1 in S. cerevisiae Expression of Afmac1 resulted in CTR1 up-regulation, and mutation of the DNA-binding domain of Afmac1 failed to activate CTR1 expression in S. cerevisiae The Afmac1 deletion strain of A. fumigatus failed to grow in copper-limited media, and its growth was restored by introducing ctrC We found that AfMac1 specifically bound to the promoter region of ctrC based on EMSA. The AfMac1-binding motif 5'-TGTGCTCA-3' was identified from the promoter region of ctrC , and the addition of mutant ctrC lacking the AfMac1-binding motif failed to up-regulate ctrC in A. fumigatus Furthermore, deletion of Afmac1 significantly reduced strain virulence and activated conidial killing activity by neutrophils and macrophages. Taken together, these results suggest that AfMac1 is a copper transcription factor that regulates cellular copper homeostasis in A. fumigatus . © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  20. Lunar imaging and ionospheric calibration for the Lunar Cherenkov technique

    NARCIS (Netherlands)

    McFadden, R.; Scholten, O.; Mevius, M.

    2013-01-01

    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the

  1. Traffic Adaptive MAC Protocols in Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Farhan Masud

    2017-01-01

    Full Text Available In Wireless Body Area Networks (WBANs, every healthcare application that is based on physical sensors is responsible for monitoring the vital signs data of patient. WBANs applications consist of heterogeneous and dynamic traffic loads. Routine patient’s observation is described as low-load traffic while an alarming situation that is unpredictable by nature is referred to as high-load traffic. This paper offers a thematic review of traffic adaptive Medium Access Control (MAC protocols in WBANs. First, we have categorized them based on their goals, methods, and metrics of evaluation. The Zigbee standard IEEE 802.15.4 and the baseline MAC IEEE 802.15.6 are also reviewed in terms of traffic adaptive approaches. Furthermore, a comparative analysis of the protocols is made and their performances are analyzed in terms of delay, packet delivery ratio (PDR, and energy consumption. The literature shows that no review work has been done on traffic adaptive MAC protocols in WBANs. This review work, therefore, could add enhancement to traffic adaptive MAC protocols and will stimulate a better way of solving the traffic adaptivity problem.

  2. The enrichment of the ISM: Evolved stars and meteorites

    Science.gov (United States)

    Jura, M.

    1995-01-01

    Small inclusions (diameters ranging from 0.001 microns to 10 microns) of isotopically anomalous material within meteorites were almost certainly produced in mass-losing stars. These solid particles preserved their individual identities as they passed through the interstellar medium and the pre-solar nebular. The relationship between studies of meteorites and mass-losing red giants is explored.

  3. Kickstarting a New Era of Lunar Industrialization via Campaign of Lunar COTS Missions

    Science.gov (United States)

    Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Pittman, Robert B.; Zapata, Edgar

    2016-01-01

    To support the goals of expanding our human presence and current economic sphere beyond LEO, a new plan was constructed for NASA to enter into partnerships with industry to foster and incentivize a new era of lunar industrialization. For NASA to finally be successful in achieving sustainable human exploration missions beyond LEO, lessons learned from our space history have shown that it is essential for current program planning to include affordable and economic development goals as well as address top national priorities to obtain much needed public support. In the last 58 years of NASA's existence, only Apollo's human exploration missions beyond LEO were successful since it was proclaimed to be a top national priority during the 1960's. However, the missions were not sustainable and ended abruptly in 1972 due to lack of funding and insufficient economic gain. Ever since Apollo, there have not been any human missions beyond LEO because none of the proposed program plans were economical or proclaimed a top national priority. The proposed plan outlines a new campaign of low-cost, commercial-enabled lunar COTS (Commercial Orbital Transfer Services) missions which is an update to the Lunar COTS plan previously described. The objectives of this new campaign of missions are to prospect for resources, determine the economic viability of extracting those resources and assess the value proposition of using these resources in future exploration architectures such as Mars. These missions would be accomplished in partnership with commercial industry using the wellproven COTS Program acquisition model. This model proved to be very beneficial to both NASA and its industry partners as NASA saved significantly in development and operational costs, as much as tenfold, while industry partners successfully expanded their market share and demonstrated substantial economic gain. Similar to COTS, the goals for this new initiative are 1) to develop and demonstrate cost-effective, cis-lunar

  4. Technicians work with Apollo 14 lunar sample material in Lunar Receiving Lab.

    Science.gov (United States)

    1971-01-01

    Glove handlers work with freshly opened Apollo 14 lunar sample material in modularized cabinets in the Lunar Receiving Laboratory at the Manned Spacecraft Center. The glove operator on the right starts to pour fine lunar material which he has just taken from a tote bag. This powdery sample was among the last to be revealed of the 90-odd pounds of material brought back to Earth by the Apollo 14 crewmen.

  5. Meteorite Falls Observed by the Desert Fireball Network: An Update

    Czech Academy of Sciences Publication Activity Database

    Bland, P.A.; Spurný, Pavel; Shrbený, Lukáš; Towner, M.C.; Bevan, A.W.R.; Borovička, Jiří; McClafferty, T.; Vaughan, D.

    2010-01-01

    Roč. 45, Supplement (2010), A16-A16 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /73./. 26.07.2010-30.07.2010, New York] Institutional research plan: CEZ:AV0Z10030501 Keywords : meteorite falls Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  6. Orbital studies of lunar magnetism

    Science.gov (United States)

    Mcleod, M. G.; Coleman, P. J., Jr.

    1982-01-01

    Limitations of present lunar magnetic maps are considered. Optimal processing of satellite derived magnetic anomaly data is also considered. Studies of coastal and core geomagnetism are discussed. Lunar remanent and induced lunar magnetization are included.

  7. Steven MacCall: Winner of LJ's 2010 Teaching Award

    Science.gov (United States)

    Berry, John N., III

    2010-01-01

    This article profiles Steven L. MacCall, winner of "Library Journal's" 2010 Teaching Award. An associate professor at the School of Library and Information Studies (SLIS) at the University of Alabama, Tuscaloosa, MacCall was nominated by Kathie Popadin, known as "Kpop" to the members of her cohort in the online MLIS program at SLIS. Sixteen of…

  8. Probing the use of spectroscopy to determine the meteoritic analogues of meteors

    Science.gov (United States)

    Drouard, A.; Vernazza, P.; Loehle, S.; Gattacceca, J.; Vaubaillon, J.; Zanda, B.; Birlan, M.; Bouley, S.; Colas, F.; Eberhart, M.; Hermann, T.; Jorda, L.; Marmo, C.; Meindl, A.; Oefele, R.; Zamkotsian, F.; Zander, F.

    2018-05-01

    Context. Determining the source regions of meteorites is one of the major goals of current research in planetary science. Whereas asteroid observations are currently unable to pinpoint the source regions of most meteorite classes, observations of meteors with camera networks and the subsequent recovery of the meteorite may help make progress on this question. The main caveat of such an approach, however, is that the recovery rate of meteorite falls is low (100) within a reasonable time frame (10-20 years), the optimal solution may be the spatial extension of existing fireball observation networks. The movie associated to this article is available at http://www.aanda.org

  9. Pre-Entry Size and Cosmic History of the Annama Meteorite

    Czech Academy of Sciences Publication Activity Database

    Kohout, Tomáš; Meier, M.M.M.; Maden, C.; Busemann, H.; Welten, K.C.; Laubenstein, M.; Caffee, M. W.; Gritsevich, M.; Grokhovsky, V.

    2016-01-01

    Roč. 51, SI Supplement 1 (2016), A380-A380 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /79./. 07.08.2016-12.08.2016, Berlin] Institutional support: RVO:67985831 Keywords : noble gases * cosmogenic radionuclides chondrite * meteorite * Annama Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  10. U-Pb systematics in iron meteorites: uniformity of primordial lead

    International Nuclear Information System (INIS)

    Goepel, C.; Manhes, G.; Allegre, C.J.

    1985-01-01

    Pb isotopic compositions and U-Pb abundances were determined in the metal phase of six iron meteorites: Canyon Diablo IA, Toluca IA, Odessa IA, Youndegin IA, Deport IA and Mundrabilla An. Prior to complete dissolution, samples were subjected to a series of leachings and partial dissolutions. Isotopic compositions and abundances of the etched Pb indicate a contamination by terrestrial Pb which is attributable to previous cutting of the meteorite. Pb isotopic compositions measured in the decontaminated samples are identical within 0.2% and essentially confirm the primordial Pb value defined by Tatsumoto et al. (1973). These data invalidate more radiogenic Pb isotopic compositions published for iron meteorites, which are the result of terrestrial Pb contamination introduced mainly by analytical procedure. Our results support the idea of a solar nebula which was isotopically homogeneous for Pb 4.55 Ga ago. The new upper limit for U-abundance in iron meteorites, 0.001 ppb, is in agreement with its expected thermodynamic solubility in the metal phase. (author)

  11. Studies on Al Kidirate and Kapoeta meteorites

    International Nuclear Information System (INIS)

    Gismelseed, A.M.; Khangi, F.; Ibrahim, A.; Yousif, A.A.; Worthing, M.A.; Rais, A.; Elzain, M.E.; Brooks, C.K.; Sutherland, H.H.

    1994-01-01

    Moessbauer spectroscopy (20-300 K), magnetic susceptibility measurements (77-350 K), scanning electron microscopy and X-ray diffraction experiments have been performed on two meteorite samples: one from an old fall (Kapoeta) and another from a very recent fall (Al Kidirate). The two specimens differ in their mineralogy. Chondrules appear to be absent in Kapoeta and it is probably a pyroxene-plagioclase achondrite with ferrohypersthene as the most abundant mineral. On the other hand, the Al Kidirate meteorite is an ordinary chondrite and the specimen consists of olivine, orthopyroxene, troilite and kamacite. The Moessbauer measurements confirm the above characterization, showing a paramagnetic doublet for the Kapoeta sample and at least two paramagnetic doublets and magnetic sextets for the Al Kidirate specimens. The former were assigned to Fe in pyroxene sites, while the latter was assigned to Fe in pyroxene, olivine, Fe-S and Fe-Ni alloys. The difference in the mineralogy of the two meteorites has also been reflected in the temperature-dependent magnetic susceptibility. The magnetization and the hyperfine interaction parameters will be discussed in relation to the mineralogy. (orig.)

  12. The Moon as a recorder of organic evolution in the early solar system: a lunar regolith analog study.

    Science.gov (United States)

    Matthewman, Richard; Court, Richard W; Crawford, Ian A; Jones, Adrian P; Joy, Katherine H; Sephton, Mark A

    2015-02-01

    The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter-containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable.

  13. Irradiation history of meteoritic inclusions

    DEFF Research Database (Denmark)

    Wielandt, Daniel Kim Peel

    Understanding the formation and earliest evolution of our solar system is a longstanding goal shared by cosmochemistry, astronomy and astrophysics. Meteorites play a key role in this pursuit, providing a ground truth against which all theories must be weighed. Chondritic meteorites are in essence...... extraterrestrial sediments that contain Calcium-Aluminium-rich Inclusions (CAIs) and chondrules that formed as individual objects during the earliest stages of solar system evolution. They later accreted together to form large bodies, after spending up to several million years in individual orbit around the proto...... of presolar and protosolar materials, as well as evidence for the former presence of over 10 extinct shortlived radionuclei of varying stability and provenance that play a key role in deciphering early solar system evolution. Some shortlived radionuclei, such as 60Fe (T½ 2.5 Myr), must have formed...

  14. Methods for determining the preatmospheric dimensions of meteorites

    Science.gov (United States)

    Ustinova, G. K.; Alekseev, V. A.; Lavrukhina, A. K.

    1988-10-01

    Methods are proposed for the determination of the preatmospheric size of a meteorite on the basis of data on its cosmogenic radionuclides. Optimal conditions for the application of each of these methods are presented together with the demonstration of their effectiveness. Estimates of relative dimensions determined by these methods are presented for the Harleton, St. Severin, Lost City, Peace River, Pribram, Dhajala, Innisfree, Bruderheim, Ehole, and Gorlovka chondrites and for the Iardymly, Boguslavka, Treysa, and Sikhote-Alin' iron meteorites.

  15. Outside-In Signal Transmission by Conformational Changes in Integrin Mac-11

    Science.gov (United States)

    Lefort, Craig T.; Hyun, Young-Min; Schultz, Joanne B.; Law, Foon-Yee; Waugh, Richard E.; Knauf, Philip A.; Kim, Minsoo

    2010-01-01

    Intracellular signals associated with or triggered by integrin ligation can control cell survival, differentiation, proliferation, and migration. Despite accumulating evidence that conformational changes regulate integrin affinity to its ligands, how integrin structure regulates signal transmission from the outside to the inside of the cell remains elusive. Using fluorescence resonance energy transfer, we addressed whether conformational changes in integrin Mac-1 are sufficient to transmit outside-in signals in human neutrophils. Mac-1 conformational activation induced by ligand occupancy or activating Ab binding, but not integrin clustering, triggered similar patterns of intracellular protein tyrosine phosphorylation, including Akt phosphorylation, and inhibited spontaneous neutrophil apoptosis, indicating that global conformational changes are critical for Mac-1-dependent outside-in signal transduction. In neutrophils and myeloid K562 cells, ligand ICAM-1 or activating Ab binding promoted switchblade-like extension of the Mac-1 extracellular domain and separation of the αM and β2 subunit cytoplasmic tails, two structural hallmarks of integrin activation. These data suggest the primacy of global conformational changes in the generation of Mac-1 outside-in signals. PMID:19864611

  16. Mac OS X for Astronomy

    Science.gov (United States)

    Pierfederici, F.; Pirzkal, N.; Hook, R. N.

    Mac OS X is the new Unix based version of the Macintosh operating system. It combines a high performance DisplayPDF user interface with a standard BSD UNIX subsystem and provides users with simultaneous access to a broad range of applications which were not previously available on a single system such as Microsoft Office and Adobe Photoshop, as well as legacy X11-based scientific tools and packages like IRAF, SuperMongo, MIDAS, etc. The combination of a modern GUI layered on top of a familiar UNIX environment paves the way for new, more flexible and powerful astronomical tools to be developed while assuring compatibility with already existing, older programs. In this paper, we outline the strengths of the Mac OS X platform in a scientific environment, astronomy in particular, and point to the numerous astronomical software packages available for this platform; most notably the Scisoft collection which we have compiled.

  17. Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2

    Science.gov (United States)

    1988-01-01

    The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.

  18. Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.

    2010-01-01

    The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.

  19. MacVEE - the intimate Macintosh-VME system

    International Nuclear Information System (INIS)

    Taylor, B.G.

    1986-01-01

    The marriage of a mass-produced personal computer with the versatile VMEbus and CAMAC systems creates a cost-effective solution to many laboratory small system requirements. This paper describes MacVEE (Microcomputer Applied to the Control of VME Electronic Equipment), a novel system in which an Apple Macintosh computer is equipped with a special interface which allows it direct memory-mapped access to single or multiple VME and CAMAC crates interconnected by a ribbon cable bus. The bus is driven by an electronics plinth called MacPlinth, which attaches to the computer and becomes an integral part of it. (Auth.)

  20. Lunar and Vesta Web Portals

    Science.gov (United States)

    Law, E.; JPL Luna Mapping; Modeling Project Team

    2015-06-01

    The Lunar Mapping and Modeling Project offers Lunar Mapping and Modeling Portal (http://lmmp.nasa.gov) and Vesta Trek Portal (http://vestatrek.jpl.nasa.gov) providing interactive visualization and analysis tools to enable users to access mapped Lunar and Vesta data products.

  1. Detection and rapid recovery of the Sutter's Mill meteorite fall as a model for future recoveries worldwide

    Science.gov (United States)

    Fries, Marc; Le Corre, Lucille; Hankey, Mike; Fries, Jeff; Matson, Robert; Schaefer, Jake; Reddy, Vishnu

    2014-11-01

    The Sutter's Mill C-type meteorite fall occurred on 22 April 2012 in and around the town of Coloma, California. The exact location of the meteorite fall was determined within hours of the event using a combination of eyewitness reports, weather radar imagery, and seismometry data. Recovery of the first meteorites occurred within 2 days and continued for months afterward. The recovery effort included local citizens, scientists, and meteorite hunters, and featured coordination efforts by local scientific institutions. Scientific analysis of the collected meteorites revealed characteristics that were available for study only because the rapid collection of samples had minimized terrestrial contamination/alteration. This combination of factors—rapid and accurate location of the event, participation in the meteorite search by the public, and coordinated scientific investigation of recovered samples—is a model that was widely beneficial and should be emulated in future meteorite falls. The tools necessary to recreate the Sutter's Mill recovery are available, but are currently underutilized in much of the world. Weather radar networks, scientific institutions with interest in meteoritics, and the interested public are available globally. Therefore, it is possible to repeat the Sutter's Mill recovery model for future meteorite falls around the world, each for relatively little cost with a dedicated researcher. Doing so will significantly increase the number of fresh meteorite falls available for study, provide meteorite material that can serve as the nuclei of new meteorite collections, and will improve the public visibility of meteoritics research.

  2. The Virtual Museum for Meteorites: an Online Tool for Researchers Educators and Students

    Science.gov (United States)

    Madiedo, J. M.

    2013-09-01

    The Virtual Museum for Meteorites (Figure 1) was created as a tool for students, educators and researchers [1, 2]. One of the aims of this online resource is to promote the interest in meteorites. Thus, the role of meteorites in education and outreach is fundamental, as these are very valuable tools to promote the public's interest in Astronomy and Planetary Sciences. Meteorite exhibitions reveal the fascination of students, educators and even researchers for these extraterrestrial rocks and how these can explain many key questions origin and evolution of our Solar System. However, despite the efforts related to the origin and evolution of our Solar System. However, despite the efforts of private collectors, museums and other institutions to organize meteorite exhibitions, the reach of these is usually limited. The Virtual Museum for Meteorites takes advantage of HTML and related technologies to overcome local boundaries and offer its contents for a global audience. A description of the recent developments performed in the framework of this virtual museum is given in this work.

  3. Cathodoluminescence and Raman Spectromicroscopy of Forsterite in Tagish Lake Meteorite: Implications for Astromineralogy

    Directory of Open Access Journals (Sweden)

    Arnold Gucsik

    2016-01-01

    Full Text Available The Tagish Lake meteorite is CI/CM2 chondrite, which fell by a fireball event in January 2000. This study emphasizes the cathodoluminescence (CL and Raman spectroscopical properties of the Tagish Lake meteorite in order to classify the meteoritic forsterite and its relation to the crystallization processes in a parent body. The CL-zoning of Tagish Lake meteorite records the thermal history of chondrules and terrestrial weathering. Only the unweathered olivine is forsterite, which is CL-active. The variation of luminescence in chondrules of Tagish Lake meteorite implies chemical inhomogeneity due to low-grade thermal metamorphism. The blue emission center in forsterite due to crystal lattice defect is proposed as being caused by rapid cooling during the primary crystallization and relatively low-temperature thermal metamorphism on the parent body of Tagish Lake meteorite. This is in a good agreement with the micro-Raman spectroscopical data. A combination of cathodoluminescence and micro-Raman spectroscopies shows some potentials in study of the asteroidal processes of parent bodies in solar system.

  4. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  5. The Lunar Magma Ocean (LMO) Paradigm Versus the Realities of Lunar Anorthosites

    Science.gov (United States)

    Treiman, A. H.; Gross, J.

    2018-05-01

    The paradigm of the Lunar Magma Ocean (LMO) is inconsistent with much chemical and compositional data on lunar anorthosites. The paradigm of serial anorthosite diapirism is more consistent, though not a panacea.

  6. On presolar meteoritic sulphides

    International Nuclear Information System (INIS)

    Clayton, D.D.; Ramadurai, S.

    1977-01-01

    It is stated that discoveries of isotopic anomalies in meteorites caused some workers to postulate nucleosynthetic inhomogeneities that were somehow carried into the early solar system. A picture was developed treating most anomalies as extinct radioactivities trapped in mineral condensations in the expanding sites of explosive nucleosynthesis, such as supernovae or novae. As evidence for this grows it becomes clear that not only isotopic but also mineralogical evidence of presolar grains is wanted, and also knowledge of what supernovae condensates are likely to survive. It is suggested here that a search should be made among sulphides in meteorites, searching especially for sulphides of Ti. The reasoning is that many sulphides, especially Ti sulphides, will not be expected in solar condensation sequences, but are expected to dominate certain key zones of supernovae expansion. Sulphur seems to have resulted primarily from the nuclear explosions of O and Si, and arguments leading to that conclusion are analysed. It is thought that the discussion could lead to important discoveries for nucleosynthesis and the origin of the solar system. (U.K.)

  7. A Propensity for n-omega-Amino Acids in Thermally-Altered Antarctic Meteorites

    Science.gov (United States)

    Burton, Aaron S.; Elsila, Jamie E.; Callahan, Michael P.; Martin, Mildred G.; Glavin, Daniel P.; Johnson, Natasha M.; Dworkin, Jason P.

    2012-01-01

    Carbonaceous meteorites are known to contain a wealth of indigenous organic molecules, including amino acids, which suggests that these meteorites could have been an important source of prebiotic organic material during the origins of life on Earth and possibly elsewhere. We report the detection of extraterrestrial amino acids in thermally-altered type 3 CV and CO carbonaceous chondrites and ureilites recovered from Antarctica. The amino acid concentrations of the thirteen Antarctic meteorites were generally less abundant than in more amino acid-rich CI, CM, and CR carbonaceous chondrites that experienced much lower temperature aqueous alteration on their parent bodies. In contrast to low-temperature aqueously-altered meteorites that show complete structural diversity in amino acids formed predominantly by Strecker-cyanohydrin synthesis, the thermally-altered meteorites studied here are dominated by small, straight-chain, amine terminal (n-omega-amino) amino acids that are not consistent with Strecker formation. The carbon isotopic ratios of two extraterrestrial n-omega-amino acids measured in one of the CV chondrites are consistent with C-13-depletions observed previously in hydrocarbons produced by Fischer-Tropsch type reactions. The predominance of n-omega-amino acid isomers in thermally-altered meteorites hints at cosmochemical mechanisms for the preferential formation and preservation of a small subset of the possible amino acids.

  8. C-MAC compared with direct laryngoscopy for intubation in patients with cervical spine immobilization: A manikin trial.

    Science.gov (United States)

    Smereka, Jacek; Ladny, Jerzy R; Naylor, Amanda; Ruetzler, Kurt; Szarpak, Lukasz

    2017-08-01

    The aim of this study was to compare C-MAC videolaryngoscopy with direct laryngoscopy for intubation in simulated cervical spine immobilization conditions. The study was designed as a prospective randomized crossover manikin trial. 70 paramedics with immobilization (Scenario A); manual inline cervical immobilization (Scenario B); cervical immobilization using cervical extraction collar (Scenario C). Scenario A: Nearly all participants performed successful intubations with both MAC and C-MAC on the first attempt (95.7% MAC vs. 100% C-MAC), with similar intubation times (16.5s MAC vs. 18s C-MAC). Scenario B: The results with C-MAC were significantly better than those with MAC (pimmobilization. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  10. Parent Body Influences on Amino Acids in the Tagish Lake Meteorite

    Science.gov (United States)

    Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.; Elsila, J. E.; Herd, C. D. K.

    2010-01-01

    The Tagish Lake meteorite is a primitive C2 carbonaceous chondrite with a mineralogy, oxygen isotope, and bulk chemical. However, in contrast to many CI and CM carbonaceous chondrites, the Tagish Lake meteorite was reported to have only trace levels of indigenous amino acids, with evidence for terrestrial L-amino acid contamination from the Tagish Lake meltwater. The lack of indigenous amino acids in Tagish Lake suggested that they were either destroyed during parent body alteration processes and/or the Tagish Lake meteorite originated on a chemically distinct parent body from CI and CM meteorites where formation of amino acids was less favorable. We recently measured the amino acid composition of three different lithologies (11h, 5b, and 11i) of pristine Tagish Lake meteorite fragments that represent a range of progressive aqueous alteration in order 11h amino acids found in hot-water extracts of the Tagish Lake fragments were determined by ultra performance liquid chromatography fluorescence detection and time of flight mass spectrometry coupled with OPA/NAC derivatization. Stable carbon isotope analyses of the most abundant amino acids in 11h were measured with gas chromatography coupled with quadrupole mass spectrometry and isotope ratio mass spectrometry.

  11. A MacWilliams Identity for Convolutional Codes : The General Case

    NARCIS (Netherlands)

    Gluesing-Luerssen, Heide; Schneider, Gert

    A MacWilliams Identity for convolutional codes will be established. It makes use of the weight adjacency matrices of the code and its dual, based on state space realizations (the controller canonical form) of the codes in question. The MacWilliams Identity applies to various notions of duality

  12. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    Science.gov (United States)

    Dai, Shun; Su, Yan; Xiao, Yuan; Feng, Jian-Qing; Xing, Shu-Guo; Ding, Chun-Yu

    2014-12-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.

  13. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    International Nuclear Information System (INIS)

    Dai Shun; Su Yan; Xiao Yuan; Feng Jian-Qing; Xing Shu-Guo; Ding Chun-Yu

    2014-01-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed

  14. Lunar Atmosphere Probe Station: A Proof-of-Concept Instrument Package for Monitoring the Lunar Atmosphere

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K. P.; Burns, J. O.; Farrell, W. M.; Giersch, L.; O'Dwyer, I. J.; Hicks, B. C.; Polisensky, E. J.; Hartman, J. M.; Nesnas, I.; Weiler, K.; Kasper, J. C.

    2013-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, *in situ*, the vertical extent of the lunar exosphere over time. We provide an update on a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report or commercial ventures. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Artist's impression of the Lunar Atmosphere Probe Station.

  15. What we have learned about Mars from SNC meteorites

    Science.gov (United States)

    Mcsween, Harry Y., Jr.

    1994-01-01

    The SNC meteorites are thought to be igneous martian rocks, based on their young crystallization ages and a close match between the composition of gases implanted in them during shock and the atmosphere of Mars. A related meteorite, ALH84001, may be older and thus may represent ancient martian crust. These petrologically diverse basalts and ultramafic rocks are mostly cumulates, but their parent magmas share geochemical and radiogenic isotopic characteristics that suggest they may have formed by remelting the same mantle source region at different times. Information and inferences about martian geology drawn from these samples include the following: Planetary differentiation occured early at approximately 4.5 GA, probably concurrently with accretion. The martian mantle contains different abundances of moderately volatile and siderophile elements and is more Fe-rich than that of the Earth, which has implications for its mineralogy, density, and origin. The estimated core composition has a S abundance near the threshold value for inner core solidification. The former presence of a core dynamo may be suggested by remanent magnetization in Shergottite-Nakhlite-Chassignite (SNC) meteorites, although these rocks may have been magnetized during shock. The mineralogy of martian surface units, inferred from reflectance spectra, matches that of basaltic shergottites, but SNC lithologies thought to have crystallized in the subsurface are not presently recognized. The rheological properties of martian magmas are more accurately derived form these metorites than from observations of martian flow morphology, although the sampled range of magma compositions islimited. Estimates of planetary water abundance and the amount of outgassed water based on these meteorites are contridictory but overlap estimates based on geological observations and atmospheric measurements. Stable isotope measurements indicate that the martian hydrosphere experienced only limited exchange with the

  16. Visibility of lunar surface features - Apollo 14 orbital observations and lunar landing.

    Science.gov (United States)

    Ziedman, K.

    1972-01-01

    Description of an in-flight visibility test conducted during the Apollo 14 mission for the purpose of validating and extending the mathematical visibility models used previously in the course of the Apollo program to examine the constraints on descent operations imposed by lunar visibility limitations. Following a background review of the effects on mission planning of the visibility limitations due to downsun lunar surface detail 'washout' and a discussion of the visibility prediction techniques previously used for studying lunar visibility problems, the visibility test rationale and procedures are defined and the test results presented. The results appear to confirm the validity of the visibility prediction techniques employed in lunar visibility problem studies. These results provide also a basis for improving the accuracy of the prediction techniques by appropriate modifications.

  17. Origins of mass-dependent and mass-independent Ca isotope variations in meteoritic components and meteorites

    Science.gov (United States)

    Bermingham, K. R.; Gussone, N.; Mezger, K.; Krause, J.

    2018-04-01

    The Ca isotope composition of meteorites and their components may vary due to mass-dependent and/or -independent isotope effects. In order to evaluate the origin of these effects, five amoeboid olivine aggregates (AOAs), three calcium aluminum inclusions (CAIs), five chondrules (C), a dark inclusion from Allende (CV3), two dark fragments from North West Africa 753 (NWA 753; R3.9), and a whole rock sample of Orgueil (CI1) were analyzed. This is the first coupled mass-dependent and -independent Ca isotope dataset to include AOAs, a dark inclusion, and dark fragments. Where sample masses permit, Ca isotope data are reported with corresponding petrographic analyses and rare earth element (REE) relative abundance patterns. The CAIs and AOAs are enriched in light Ca isotopes (δ44/40Ca -5.32 to +0.72, where δ44/40Ca is reported relative to SRM 915a). Samples CAI 5 and AOA 1 have anomalous Group II REE patterns. These REE and δ44/40Ca data suggest that the CAI 5 and AOA 1 compositions were set via kinetic isotope fractionation during condensation and evaporation. The remaining samples show mass-dependent Ca isotope variations which cluster between δ44/40Ca +0.53 and +1.59, some of which are coupled with unfractionated REE abundance patterns. These meteoritic components likely formed through the coaccretion of the evaporative residue and condensate following Group II CAI formation or their chemical and isotopic signatures were decoupled (e.g., via nebular or parent-body alteration). The whole rock sample of Orgueil has a δ44/40Ca +0.67 ± 0.18 which is in agreement with most published data. Parent-body alteration, terrestrial alteration, and variable sampling of Ca-rich meteoritic components can have an effect on δ44/40Ca compositions in whole rock meteorites. Samples AOA 1, CAI 5, C 2, and C 4 display mass-independent 48/44Ca anomalies (ε48/44Ca +6 to +12) which are resolved from the standard composition. Other samples measured for these effects (AOA 5, CAI 1, CAI 2

  18. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin

    2016-01-01

    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  19. Quicksilver Power Mac G4

    CERN Document Server

    2001-01-01

    A new generation with a reworked motherboard is launched on 2001 with however the same Graphite box. It also included a processor speed-bump, and brought the DVD-R "SuperDrive" to the mid-level model. The Quicksilver PowerMac was available in three configurations: The 733 MHz model, with 128 MB of RAM, a 40 GB hard drive, and a CD-RW drive, was 1,699 dollars, the 867 MHz configuration, with 128 MB of RAM, a 60 GB hard drive and a DVD-R drive, was 2,499 dollars, and the high-end dual-800 MHz model, with 256 MB of RAM, an 80 GB hard drive and a DVD-R drive, was 3,499 dollars. The 733 MHz model is the first personal computer to have a DVD burner, named SuperDrive at Apple. The design was updated on 2002 with 800 MHz, 933 MHz and dual 1 GHz configurations, becoming the first Mac to reach 1 GHz.

  20. Dolphin natures, human virtues: MacIntyre and ethical naturalism.

    Science.gov (United States)

    Glackin, Shane Nicholas

    2008-09-01

    Can biological facts explain human morality? Aristotelian 'virtue' ethics has traditionally assumed so. In recent years Alasdair MacIntyre has reintroduced a form of Aristotle's 'metaphysical biology' into his ethics. He argues that the ethological study of dependence and rationality in other species--dolphins in particular--sheds light on how those same traits in the typical lives of humans give rise to the moral virtues. However, some goal-oriented dolphin behaviour appears both dependent and rational in the precise manner which impresses MacIntyre, yet anything but ethically 'virtuous'. More damningly, dolphin ethologists consistently refuse to evaluate such behaviour in the manner MacIntyre claims is appropriate to moral judgement. In light of this, I argue that virtues--insofar as they name a biological or ethological category--do not name a morally significant one.

  1. Lunar Water Resource Demonstration

    Science.gov (United States)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  2. Lunar Regolith Particle Shape Analysis

    Science.gov (United States)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  3. LADEE LUNAR DUST EXPERIMENT

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive bundle includes data taken by the Lunar Dust Experiment (LDEX) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft....

  4. An assessment of the meteoritic contribution to the Martian soil

    International Nuclear Information System (INIS)

    Flynn, G.J.; McKay, D.S.

    1990-01-01

    The addition of meteoritic material to the Mars soils should perturb their chemical compositions, as has been detected for soils on the Moon and sediments on Earth. Using the measured mass influx at Earth and estimates of the Mars/Earth flux ratio, the authors estimate the continuous, planet-wide meteoritic mass influx on Mars to be between 2,700 and 59,000 t/yr. If distributed uniformly into a soil with a mean planetary production rate of 1 m/b.y., consistent with radar estimates of the soil depth overlaying a bouldered terrain in the Tharsis region, their estimated mass influx would produce a meteoritic concentration in the Mars soil ranging from 2 to 29% by mass. Analysis of the Viking X ray fluorescence data indicates that the Mars soil composition is inconsistent with typical basaltic rock fragments but can be fit by a mixture of 60% basaltic rock fragments and 40% meteoritic material. The meteoritic influx they calculate is sufficient to provide most or all of the material required by the Clark and Baird model. Particles in the mass range from 10 -7 to 10 -3 g, about 60-1,200 μm in diameter, contribute 80% of the total mass flux of meteoritic material in the 10 -13 to 10 6 g mass range at Earth. On Earth atmospheric entry all but the smallest particles (generally ≤ 50 μm in diameter) in the 10 -7 to 10 -3 g mass range are heated sufficiently to melt or vaporize. Mars, because of its lower escape velocity and larger atmospheric scale height, is a much more favorable site for unmelted survival of micrometeorites on atmospheric deceleration. They calculate that a significant fraction of particles throughout the 60-1,200 μm diameter range will survive Mars atmospheric entry unmelted

  5. Efficient MAC Protocol for Hybrid Wireless Network with Heterogeneous Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Md. Nasre Alam

    2016-01-01

    Full Text Available Although several Directional Medium Access Control (DMAC protocols have been designed for use with homogeneous networks, it can take a substantial amount of time to change sensor nodes that are equipped with an omnidirectional antenna for sensor nodes with a directional antenna. Thus, we require a novel MAC protocol for use with an intermediate wireless network that consists of heterogeneous sensor nodes equipped with either an omnidirectional antenna or a directional antenna. The MAC protocols that have been designed for use in homogeneous networks are not suitable for use in a hybrid network due to deaf, hidden, and exposed nodes. Therefore, we propose a MAC protocol that exploits the characteristics of a directional antenna and can also work efficiently with omnidirectional nodes in a hybrid network. In order to address the deaf, hidden, and exposed node problems, we define RTS/CTS for the neighbor (RTSN/CTSN and Neighbor Information (NIP packets. The performance of the proposed MAC protocol is evaluated through a numerical analysis using a Markov model. In addition, the analytical results of the MAC protocol are verified through an OPNET simulation.

  6. Inaugeral lecture - Meteorite impacts on Earth and on the Earth ...

    African Journals Online (AJOL)

    There is some controversial evidence for the theory that the first life on Earth itself may have been transported here on meteorites from Mars. The possibility of a major meteorite impact on Earth in the near future emphasizes the dramatic nature of these recent discoveries, which are having deep impacts in the Earth sciences ...

  7. Interference Analysis Status and Plans for Aeronautical Mobile Airport Communications System (AeroMACS)

    Science.gov (United States)

    Kerczewski, Robert J.; Wilson, Jeffrey D.

    2010-01-01

    Interference issues related to the operation of an aeronautical mobile airport communications system (AeroMACS) in the C-Band (specifically 5091-5150 MHz) is being investigated. The issue of primary interest is co-channel interference from AeroMACS into mobile-satellite system (MSS) feeder uplinks. The effort is focusing on establishing practical limits on AeroMACS transmissions from airports so that the threshold of interference into MSS is not exceeded. The analyses are being performed with the software package Visualyse Professional, developed by Transfinite Systems Limited. Results with omni-directional antennas and plans to extend the models to represent AeroMACS more accurately will be presented. These models should enable realistic analyses of emerging AeroMACS designs to be developed from NASA Test Bed, RTCA 223, and European results.

  8. Mac OS X Snow Leopard pocket guide

    CERN Document Server

    Seiblod, Chris

    2009-01-01

    Whether you're new to the Mac or a longtime user, this handy book is the quickest way to get up to speed on Snow Leopard. Packed with concise information in an easy-to-read format, Mac OS X Snow Leopard Pocket Guide covers what you need to know and is an ideal resource for problem-solving on the fly. This book goes right to the heart of Snow Leopard, with details on system preferences, built-in applications, and utilities. You'll also find configuration tips, keyboard shortcuts, guides for troubleshooting, lots of step-by-step instructions, and more. Learn about new features and changes s

  9. Rust Contamination from Water Leaks in the Cosmic Dust Lab and Lunar and Meteorite Thin Sections Labs at Johnson Space Center

    Science.gov (United States)

    Kent, J. J.; Berger, E. L.; Fries, M. D.; Bastien, R.; McCubbin, F. M.; Pace, L.; Righter, K.; Sutter, B.; Zeigler, R. A.; Zolensky, M.

    2017-01-01

    On the early morning of September 15th, 2016, on the first floor of Building 31 at NASA-Johnson Space Center, the hose from a water chiller ruptured and began spraying water onto the floor. The water had been circulating though old metal pipes, and the leaked water contained rust-colored particulates. The water flooded much of the western wing of the building's ground floor before the leak was stopped, and it left behind a residue of rust across the floor, most notably in the Apollo and Meteorite Thin Section Labs and Sample Preparation Lab. No samples were damaged in the event, and the affected facilities are in the process of remediation. At the beginning of 2016, a separate leak occurred in the Cosmic Dust Lab, located in the same building. In that lab, a water leak occurred at the bottom of the sink used to clean the lab's tools and containers with ultra-pure water. Over years of use, the ultra-pure water eroded the metal sink piping and leaked water onto the inside of the lab's flow bench. This water also left behind a film of rusty material. The material was cleaned up and the metal piping was replaced with PVC pipe and sealed with Teflon plumber's tape. Samples of the rust detritus were collected from both incidents. These samples were imaged and analyzed to determine their chemical and mineralogical compositions. The purpose of these analyses is to document the nature of the detritus for future reference in the unlikely event that these materials occur as contaminants in the Cosmic Dust samples or Apollo or Meteorite thin sections.

  10. Design and Construction of Manned Lunar Base

    Science.gov (United States)

    Li, Zhijie

    2016-07-01

    Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under

  11. The Prevailing Catalytic Role of Meteorites in Formamide Prebiotic Processes

    Directory of Open Access Journals (Sweden)

    Raffaele Saladino

    2018-02-01

    Full Text Available Meteorites are consensually considered to be involved in the origin of life on this Planet for several functions and at different levels: (i as providers of impact energy during their passage through the atmosphere; (ii as agents of geodynamics, intended both as starters of the Earth’s tectonics and as activators of local hydrothermal systems upon their fall; (iii as sources of organic materials, at varying levels of limited complexity; and (iv as catalysts. The consensus about the relevance of these functions differs. We focus on the catalytic activities of the various types of meteorites in reactions relevant for prebiotic chemistry. Formamide was selected as the chemical precursor and various sources of energy were analyzed. The results show that all the meteorites and all the different energy sources tested actively afford complex mixtures of biologically-relevant compounds, indicating the robustness of the formamide-based prebiotic chemistry involved. Although in some cases the yields of products are quite small, the diversity of the detected compounds of biochemical significance underlines the prebiotic importance of meteorite-catalyzed condensation of formamide.

  12. The Prevailing Catalytic Role of Meteorites in Formamide Prebiotic Processes.

    Science.gov (United States)

    Saladino, Raffaele; Botta, Lorenzo; Di Mauro, Ernesto

    2018-02-22

    Meteorites are consensually considered to be involved in the origin of life on this Planet for several functions and at different levels: (i) as providers of impact energy during their passage through the atmosphere; (ii) as agents of geodynamics, intended both as starters of the Earth's tectonics and as activators of local hydrothermal systems upon their fall; (iii) as sources of organic materials, at varying levels of limited complexity; and (iv) as catalysts. The consensus about the relevance of these functions differs. We focus on the catalytic activities of the various types of meteorites in reactions relevant for prebiotic chemistry. Formamide was selected as the chemical precursor and various sources of energy were analyzed. The results show that all the meteorites and all the different energy sources tested actively afford complex mixtures of biologically-relevant compounds, indicating the robustness of the formamide-based prebiotic chemistry involved. Although in some cases the yields of products are quite small, the diversity of the detected compounds of biochemical significance underlines the prebiotic importance of meteorite-catalyzed condensation of formamide.

  13. Influence of the Choice of Lunar Gravity Model on Orbit Determination for Lunar Orbiters

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2018-01-01

    Full Text Available We examine the influence of the lunar gravity model on the orbit determination (OD of a lunar orbiter operating in a 100 km high, lunar polar orbit. Doppler and sequential range measurements by three Deep Space Network antennas and one Korea Deep Space Antenna were used. For measurement simulation and OD analysis, STK11 and ODTK6 were utilized. GLGM2, LP100K, LP150Q, GRAIL420A, and GRAIL660B were used for investigation of lunar gravity model selection effect. OD results were assessed by position and velocity uncertainties with error covariance and an external orbit comparison using simulated true orbit. The effect of the lunar gravity models on the long-term OD, degree and order level, measurement-acquisition condition, and lunar altitude was investigated. For efficiency verification, computational times for the five lunar gravity models were compared. Results showed that significant improvements to OD accuracy are observed by applying a GRAIL-based model; however, applying a full order and degree gravity modeling is not always the best strategy, owing to the computational burden. Consequently, we consider that OD using GRAIL660B with 70 × 70 degree and order is the most efficient strategy for mission preanalysis. This study provides useful guideline for KPLO OD analysis during nominal mission operation.

  14. Microfossils, biomolecules and biominerals in carbonaceous meteorites: implications to the origin of life

    Science.gov (United States)

    Hoover, Richard B.

    2012-11-01

    Environmental and Field Emission Scanning Electron Microscopy (ESEM and FESEM) investigations have shown that a wide variety of carbonaceous meteorites contain the remains of large filaments embedded within freshly fractured interior surfaces of the meteorite rock matrix. The filaments occur singly or in dense assemblages and mats and are often encased within carbon-rich, electron transparent sheaths. Electron Dispersive X-ray Spectroscopy (EDS) spot analysis and 2D X-Ray maps indicate the filaments rarely have detectable nitrogen levels and exhibit elemental compositions consistent with that interpretation that of the meteorite rock matrix. Many of the meteorite filaments are exceptionally well-preserved and show evidence of cells, cell-wall constrictions and specialized cells and processes for reproduction, nitrogen fixation, attachment and motility. Morphological and morphometric analyses permit many of the filaments to be associated with morphotypes of known genera and species of known filamentous trichomic prokaryotes (cyanobacteria and sulfur bacteria). The presence in carbonaceous meteorites of diagenetic breakdown products of chlorophyll (pristane and phytane) along with indigenous and extraterrestrial chiral protein amino acids, nucleobases and other life-critical biomolecules provides strong support to the hypothesis that these filaments represent the remains of cyanobacteria and other microorganisms that grew on the meteorite parent body. The absence of other life-critical biomolecules in the meteorites and the lack of detectable levels of nitrogen indicate the filaments died long ago and can not possibly represent modern microbial contaminants that entered the stones after they arrived on Earth. This paper presents new evidence for microfossils, biomolecules and biominerals in carbonaceous meteorites and considers the implications to some of the major hypotheses for the Origin of Life.

  15. The fall of a meteorite at Aegos Potami in 467/6 BC

    Science.gov (United States)

    Theodossiou, E. Th; Niarchos, P. G.; Manimanis, V. N.; Orchiston, W.

    2002-12-01

    Cosmic catastrophes have been associated from time to time with the fall of celestial objects to Earth. From the writings of ancient Greek authors we know that during the second year of the 78th Olympiad, that is the year corresponding to 467/6 BC, a very large meteorite fell at Aegos Potami, in the Gallipoli Peninsula (in Eastern Thrace). This event was predicted by Anaxagoras, and the meteorite was worshipped by the Cherronesites until at least the first Century AD. The fall of the Aegos Potami Meteorite was not associated with any cosmic catastrophe, but it was believed to have foretold the terminal defeat of the Athenians by the Spartans in 405 BC near Aegos Potami, which brought to an end the Peloponnesian War in favour of Sparta. In addition, according to the Latin author Pliny the Elder, during the first century AD the inhabitants of Avydus in Asia Minor worshipped another meteorite that was displayed in the city's sports centre, The fall of this meteorite is also said to have been predicted by Anaxagoras.

  16. Prospective Ukrainian lunar orbiter mission

    Science.gov (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  17. The Lunar Source Disk: Old Lunar Datasets on a New CD-ROM

    Science.gov (United States)

    Hiesinger, H.

    1998-01-01

    A compilation of previously published datasets on CD-ROM is presented. This Lunar Source Disk is intended to be a first step in the improvement/expansion of the Lunar Consortium Disk, in order to create an "image-cube"-like data pool that can be easily accessed and might be useful for a variety of future lunar investigations. All datasets were transformed to a standard map projection that allows direct comparison of different types of information on a pixel-by pixel basis. Lunar observations have a long history and have been important to mankind for centuries, notably since the work of Plutarch and Galileo. As a consequence of centuries of lunar investigations, knowledge of the characteristics and properties of the Moon has accumulated over time. However, a side effect of this accumulation is that it has become more and more complicated for scientists to review all the datasets obtained through different techniques, to interpret them properly, to recognize their weaknesses and strengths in detail, and to combine them synoptically in geologic interpretations. Such synoptic geologic interpretations are crucial for the study of planetary bodies through remote-sensing data in order to avoid misinterpretation. In addition, many of the modem datasets, derived from Earth-based telescopes as well as from spacecraft missions, are acquired at different geometric and radiometric conditions. These differences make it challenging to compare or combine datasets directly or to extract information from different datasets on a pixel-by-pixel basis. Also, as there is no convention for the presentation of lunar datasets, different authors choose different map projections, depending on the location of the investigated areas and their personal interests. Insufficient or incomplete information on the map parameters used by different authors further complicates the reprojection of these datasets to a standard geometry. The goal of our efforts was to transfer previously published lunar

  18. Mechanical properties of lunar regolith and lunar soil simulant

    Science.gov (United States)

    Perkins, Steven W.

    1989-01-01

    Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.

  19. Mineralogical and chemical properties of the lunar regolith

    Science.gov (United States)

    Mckay, David S.; Ming, Douglas W.

    1989-01-01

    The composition of lunar regolith and its attendant properties are discussed. Tables are provided listing lunar minerals, the abundance of plagioclase feldspar, pyroxene, olivine, and ilmenite in lunar materials, typical compositions of common lunar minerals, and cumulative grain-size distribution for a large number of lunar soils. Also provided are charts on the chemistry of breccias, the chemistry of lunar glass, and the comparative chemistry of surface soils for the Apollo sites. Lunar agglutinates, constructional particles made of lithic, mineral, and glass fragments welded together by a glassy matrix containing extremely fine-grained metallic iron and formed by micrometeoric impacts at the lunar surface, are discussed. Crystalline, igneous rock fragments, breccias, and lunar glass are examined. Volatiles implanted in lunar materials and regolith maturity are also addressed.

  20. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter.

    Science.gov (United States)

    Mazarico, Erwan; Barker, Michael K; Neumann, Gregory A; Zuber, Maria T; Smith, David E

    2014-04-16

    The Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter spacecraft collected more than 5 billion measurements in the nominal 50 km orbit over ∼10,000 orbits. The data precision, geodetic accuracy, and spatial distribution enable two-dimensional crossovers to be used to infer relative radial position corrections between tracks to better than ∼1 m. We use nearly 500,000 altimetric crossovers to separate remaining high-frequency spacecraft trajectory errors from the periodic radial surface tidal deformation. The unusual sampling of the lunar body tide from polar lunar orbit limits the size of the typical differential signal expected at ground track intersections to ∼10 cm. Nevertheless, we reliably detect the topographic tidal signal and estimate the associated Love number h 2 to be 0.0371 ± 0.0033, which is consistent with but lower than recent results from lunar laser ranging. Altimetric data are used to create radial constraints on the tidal deformationThe body tide amplitude is estimated from the crossover dataThe estimated Love number is consistent with previous estimates but more precise.

  1. Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli; Torrence, Mark H.; Barker, Michael K.; Oberst, Juergen; Duxbury, Thomas C.; Mao, Dandan; Barnouin, Olivier S.; Jha, Kopal; Rowlands, David D.; Goossens, Sander; Baker, David; Bauer, Sven; Gläser, Philipp; Lemelin, Myriam; Rosenburg, Margaret; Sori, Michael M.; Whitten, Jennifer; Mcclanahan, Timothy

    2017-02-01

    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.

  2. Summary of the Results from the Lunar Orbiter Laser Altimeter after Seven Years in Lunar Orbit

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli; hide

    2016-01-01

    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.

  3. Man-Made Debris In and From Lunar Orbit

    Science.gov (United States)

    Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    During 1966-1976, as part of the first phase of lunar exploration, 29 manned and robotic missions placed more than 40 objects into lunar orbit. Whereas several vehicles later successfully landed on the Moon and/or returned to Earth, others were either abandoned in orbit or intentionally sent to their destruction on the lunar surface. The former now constitute a small population of lunar orbital debris; the latter, including four Lunar Orbiters and four Lunar Module ascent stages, have contributed to nearly 50 lunar sites of man's refuse. Other lunar satellites are known or suspected of having fallen from orbit. Unlike Earth satellite orbital decays and deorbits, lunar satellites impact the lunar surface unscathed by atmospheric burning or melting. Fragmentations of lunar satellites, which would produce clouds of numerous orbital debris, have not yet been detected. The return to lunar orbit in the 1990's by the Hagoromo, Hiten, Clementine, and Lunar Prospector spacecraft and plans for increased lunar exploration early in the 21st century, raise questions of how best to minimize and to dispose of lunar orbital debris. Some of the lessons learned from more than 40 years of Earth orbit exploitation can be applied to the lunar orbital environment. For the near-term, perhaps the most important of these is postmission passivation. Unique solutions, e.g., lunar equatorial dumps, may also prove attractive. However, as with Earth satellites, debris mitigation measures are most effectively adopted early in the concept and design phase, and prevention is less costly than remediation.

  4. Variability in Abundances of Meteorites in the Ordovician

    Science.gov (United States)

    Heck, P. R.; Schmitz, B.; Kita, N.

    2017-12-01

    The knowledge of the flux of extraterrestrial material throughout Earth's history is of great interest to reconstruct the collisional evolution of the asteroid belt. Here, we present a review of our investigations of the nature of the meteorite flux to Earth in the Ordovician, one of the best-studied time periods for extraterrestrial matter in the geological record [1]. We base our studies on compositions of extraterrestrial chromite and chrome-spinel extracted by acid dissolution from condensed marine limestone from Sweden and Russia [1-3]. By analyzing major and minor elements with EDS and WDS, and three oxygen isotopes with SIMS we classify the recovered meteoritic materials. Today, the L and H chondrites dominate the meteorite and coarse micrometeorite flux. Together with the rarer LL chondrites they have a type abundance of 80%. In the Ordovician it was very different: starting from 466 Ma ago 99% of the flux was comprised of L chondrites [2]. This was a result of the collisional breakup of the parent asteroid. This event occurred close to an orbital resonance in the asteroid belt and showered Earth with >100x more L chondritic material than today during more than 1 Ma. Although the flux is much lower at present, L chondrites are still the dominant type of meteorites that fall today. Before the asteroid breakup event 467 Ma ago the three groups of ordinary chondrites had about similar abundances. Surprisingly, they were possibly surpassed in abundance by achondrites, materials from partially and fully differentiated asteroids [3]. These achondrites include HED meteorites, which are presumably fragments released during the formation of the Rheasilvia impact structure 1 Ga ago on asteroid 4 Vesta. The enhanced abundance of LL chondrites is possibly a result of the Flora asteroid family forming event at 1 Ga ago. The higher abundance of primitive achondrites was likely due to smaller asteroid family forming events that have not been identified yet but that did

  5. Comet and meteorite traditions of Aboriginal Australians

    Science.gov (United States)

    Hamacher, Duane W.

    2014-06-01

    This research contributes to the disciplines of cultural astronomy (the academic study of how past and present cultures understand and utilise celestial objects and phenomena) and geomythology (the study of geological events and the formation of geological features described in oral traditions). Of the hundreds of distinct Aboriginal cultures of Australia, many have oral traditions rich in descriptions and explanations of comets, meteors, meteorites, airbursts, impact events, and impact craters. These views generally attribute these phenomena to spirits, death, and bad omens. There are also many traditions that describe the formation of meteorite craters as well as impact events that are not known to Western science.

  6. The Meteorite Fall in Carancas, Lake Titicaca Region, Southern Peru: First Results

    Science.gov (United States)

    Núñez Del Prado, H.; Macharé, J.; Macedo, L.; Chirif, H.; Pari, W.; Ramirez-Cardona, M.; Aranda, A.; Greenwood, R. C.; Franchi, I. A.; Canepa, C.; Bernhardt, H.-J.; Plascencia, L.

    2008-03-01

    The meteorite fall that occurred on September 15, 2007, in the Carancas community is a rare case where it is possible to study both impact phenomenology and meteorite characteristics, including accurate time framework.

  7. Dependence of AeroMACS Interference on Airport Radiation Pattern Characteristics

    Science.gov (United States)

    Wilson, Jeffrey D.

    2012-01-01

    AeroMACS (Aeronautical Mobile Airport Communications System), which is based upon the IEEE 802.16e mobile wireless standard, is expected to be implemented in the 5091 to 5150 MHz frequency band. As this band is also occupied by Mobile Satellite Service (MSS) feeder uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference are under analysis in order to enable the definition of standards that assure that such interference will be avoided. In this study, the cumulative interference power distribution at low earth orbit from AeroMACS transmitters at the 497 major airports in the contiguous United States was simulated with the Visualyse Professional software. The dependence of the interference power on the number of antenna beams per airport, gain patterns, and beam direction orientations was simulated. As a function of these parameters, the simulation results are presented in terms of the limitations on transmitter power required to maintain the cumulative interference power under the established threshold.

  8. A petrogenetic model of the relationships among achondritic meteorites

    Science.gov (United States)

    Stolper, E.; Hays, J. F.; Mcsween, H. Y., Jr.

    1979-01-01

    Petrological evidence is used to support the hypothesis that although the magma source regions and parent bodies of basaltic achondrite, shergottite, nakhlite, and chassignite meteorites are clearly distinct, they may be simply related. It is proposed that the peridotites which on partial melting generated the parent magmas of the shergottite meteorites differed from those which gave rise to eucritic magmas by being enriched in a component rich in alkalis and other volatiles. Similarly, the source regions of the parent magmas of the nakhlite and chassignite meteorites differed from those on the shergottite parent body by being still richer in this volatile-rich component. These regions could have been related by processes such as mixture of variable amounts of volatile-rich and volatile-poor components in planetary or nebular settings, or alternatively by variable varying degrees of volatile loss from volatile-rich materials.

  9. Lunar Navigation Architecture Design Considerations

    Science.gov (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  10. A MacWilliams Identity for Convolutional Codes: The General Case

    OpenAIRE

    Gluesing-Luerssen, Heide; Schneider, Gert

    2008-01-01

    A MacWilliams Identity for convolutional codes will be established. It makes use of the weight adjacency matrices of the code and its dual, based on state space realizations (the controller canonical form) of the codes in question. The MacWilliams Identity applies to various notions of duality appearing in the literature on convolutional coding theory.

  11. Evaluation of video transmission of MAC protocols in wireless sensor network

    Science.gov (United States)

    Maulidin, Mahmuddin, M.; Kamaruddin, L. M.; Elsaikh, Mohamed

    2016-08-01

    Wireless Sensor Network (WSN) is a wireless network which consists of sensor nodes scattered in a particular area which are used to monitor physical or environment condition. Each node in WSN is also scattered in sensor field, so an appropriate scheme of MAC protocol should have to develop communication link for data transferring. Video transmission is one of the important applications for the future that can be transmitted with low aspect in side of cost and also power consumption. In this paper, comparison of five different MAC WSN protocol for video transmission namely IEEE 802.11 standard, IEEE 802.15.4 standard, CSMA/CA, Berkeley-MAC, and Lightweight-MAC protocol are studied. Simulation experiment has been conducted in OMNeT++ with INET network simulator software to evaluate the performance. Obtained results indicate that IEEE 802.11 works better than other protocol in term of packet delivery, throughput, and latency.

  12. Meteorite Falls Observed in U.S. Weather Radar Data in 2015 and 2016 (To Date)

    Science.gov (United States)

    Fries, Marc; Fries, Jeffrey; Hankey, Mike; Matson, Robert

    2016-01-01

    To date, over twenty meteorite falls have been located in the weather radar imagery of the National Oceanic and Atmospheric Administration (NOAA)'s NEXRAD radar network. We present here the most prominent events recorded since the last Meteoritical Society meeting, covering most of 2015 and early 2016. Meteorite Falls: The following events produced evidence of falling meteorites in radar imagery and resulted in meteorites recovered at the fall site. Creston, CA (24 Oct 2015 0531 UTC): This event generated 218 eyewitness reports submitted to the American Meteor Society (AMS) and is recorded as event #2635 for 2015 on the AMS website. Witnesses reported a bright fireball with fragmentation terminating near the city of Creston, CA, north of Los Angeles. Sonic booms and electrophonic noise were reported in the vicinity of the event. Weather radar imagery records signatures consistent with falling meteorites in data from the KMUX, KVTX, KHNX and KVBX. The Meteoritical Society records the Creston fall as an L6 meteorite with a total recovered mass of 688g. Osceola, FL (24 Jan 2016 1527 UTC): This daytime fireball generated 134 eyewitness reports on AMS report number 266 for 2016, with one credible sonic boom report. The fireball traveled roughly NE to SW with a terminus location north of Lake City, FL in sparsely populated, forested countryside. Radar imagery shows distinct and prominent evidence of a significant meteorite fall with radar signatures seen in data from the KJAX and KVAX radars. Searchers at the fall site found that recoveries were restricted to road sites by the difficult terrain, and yet several meteorites were recovered. Evidence indicates that this was a relatively large meteorite fall where most of the meteorites are unrecoverable due to terrain. Osceola is an L6 meteorite with 991 g total mass recovered to date. Mount Blanco, TX (18 Feb 2016 0343 UTC): This event produced only 39 eyewitness reports and is recorded as AMS event #635 for 2016. No

  13. Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites

    Science.gov (United States)

    Cooper, George; Rios, Andro C.

    2016-06-01

    Biological polymers such as nucleic acids and proteins are constructed of only one—the d or l—of the two possible nonsuperimposable mirror images (enantiomers) of selected organic compounds. However, before the advent of life, it is generally assumed that chemical reactions produced 50:50 (racemic) mixtures of enantiomers, as evidenced by common abiotic laboratory syntheses. Carbonaceous meteorites contain clues to prebiotic chemistry because they preserve a record of some of the Solar System’s earliest (˜4.5 Gy) chemical and physical processes. In multiple carbonaceous meteorites, we show that both rare and common sugar monoacids (aldonic acids) contain significant excesses of the d enantiomer, whereas other (comparable) sugar acids and sugar alcohols are racemic. Although the proposed origins of such excesses are still tentative, the findings imply that meteoritic compounds and/or the processes that operated on meteoritic precursors may have played an ancient role in the enantiomer composition of life’s carbohydrate-related biopolymers.

  14. Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites.

    Science.gov (United States)

    Cooper, George; Rios, Andro C

    2016-06-14

    Biological polymers such as nucleic acids and proteins are constructed of only one-the d or l-of the two possible nonsuperimposable mirror images (enantiomers) of selected organic compounds. However, before the advent of life, it is generally assumed that chemical reactions produced 50:50 (racemic) mixtures of enantiomers, as evidenced by common abiotic laboratory syntheses. Carbonaceous meteorites contain clues to prebiotic chemistry because they preserve a record of some of the Solar System's earliest (∼4.5 Gy) chemical and physical processes. In multiple carbonaceous meteorites, we show that both rare and common sugar monoacids (aldonic acids) contain significant excesses of the d enantiomer, whereas other (comparable) sugar acids and sugar alcohols are racemic. Although the proposed origins of such excesses are still tentative, the findings imply that meteoritic compounds and/or the processes that operated on meteoritic precursors may have played an ancient role in the enantiomer composition of life's carbohydrate-related biopolymers.

  15. Radioisotope studies of the farmville meteorite using γγ-coincidence spectrometry.

    Science.gov (United States)

    Howard, Chris; Ferm, Megan; Cesaratto, John; Daigle, Stephen; Iliadis, Christian

    2014-12-01

    Radionuclides are cosmogenically produced in meteorites before they fall to the surface of the Earth. Measurement of the radioactive decay of such nuclides provides a wealth of information on the irradiation conditions of the meteorite fragment, the intensity of cosmic rays in the inner solar system, and the magnetic activity of the Sun. We report here on the detection of (26)Al using a sophisticated spectrometer consisting of a HPGe detector and a NaI(Tl) annulus. It is shown that modern γ-ray spectrometers represent an interesting alternative to other detection techniques. Data are obtained for a fragment of the Farmville meteorite and compared to results from Geant4 simulations. In particular, we report on optimizing the detection sensitivity by using suitable coincidence gates for deposited energy and event multiplicity. We measured an (26)Al activity of 48.5±3.5dpm/kg for the Farmville meteorite, in agreement with previously reported values for other H chondrites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Laboratory spectroscopy of meteorite samples at UV-vis-NIR wavelengths: Analysis and discrimination by principal components analysis

    Science.gov (United States)

    Penttilä, Antti; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2018-02-01

    Meteorite samples are measured with the University of Helsinki integrating-sphere UV-vis-NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measurements are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to improve the link between asteroid spectral observations and meteorite spectral measurements.

  17. Lunar regolith stratigraphy analysis based on the simulation of lunar penetrating radar signals

    Science.gov (United States)

    Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng

    2017-11-01

    The thickness of lunar regolith is an important index of evaluating the quantity of lunar resources such as 3He and relative geologic ages. Lunar penetrating radar (LPR) experiment of Chang'E-3 mission provided an opportunity of in situ lunar subsurface structure measurement in the northern mare imbrium area. However, prior work on analyzing LPR data obtained quite different conclusions of lunar regolith structure mainly because of the missing of clear interface reflectors in radar image. In this paper, we utilized finite-difference time-domain (FDTD) method and three models of regolith structures with different rock density, number of layers, shapes of interfaces, and etc. to simulate the LPR signals for the interpretation of radar image. The simulation results demonstrate that the scattering signals caused by numerous buried rocks in the regolith can mask the horizontal reflectors, and the die-out of radar echo does not indicate the bottom of lunar regolith layer and data processing such as migration method could recover some of the subsurface information but also result in fake signals. Based on analysis of simulation results, we conclude that LPR results uncover the subsurface layered structure containing the rework zone with multiple ejecta blankets of small crater, the ejecta blanket of Chang'E-3 crater, and the transition zone and estimate the thickness of the detected layer is about 3.25 m.

  18. Multi-state autonomous drilling for lunar exploration

    Directory of Open Access Journals (Sweden)

    Chen Chongbin

    2016-10-01

    Full Text Available Due to the lack of information of subsurface lunar regolith stratification which varies along depth, the drilling device may encounter lunar soil and lunar rock randomly in the drilling process. To meet the load safety requirements of unmanned sampling mission under limited orbital resources, the control strategy of autonomous drilling should adapt to the indeterminable lunar environments. Based on the analysis of two types of typical drilling media (i.e., lunar soil and lunar rock, this paper proposes a multi-state control strategy for autonomous lunar drilling. To represent the working circumstances in the lunar subsurface and reduce the complexity of the control algorithm, lunar drilling process was categorized into three drilling states: the interface detection, initiation of drilling parameters for recognition and drilling medium recognition. Support vector machine (SVM and continuous wavelet transform were employed for the online recognition of drilling media and interface, respectively. Finite state machine was utilized to control the transition among different drilling states. To verify the effectiveness of the multi-state control strategy, drilling experiments were implemented with multi-layered drilling media constructed by lunar soil simulant and lunar rock simulant. The results reveal that the multi-state control method is capable of detecting drilling state variation and adjusting drilling parameters timely under vibration interferences. The multi-state control method provides a feasible reference for the control of extraterrestrial autonomous drilling.

  19. Critical Robotic Lunar Missions

    Science.gov (United States)

    Plescia, J. B.

    2018-04-01

    Perhaps the most critical missions to understanding lunar history are in situ dating and network missions. These would constrain the volcanic and thermal history and interior structure. These data would better constrain lunar evolution models.

  20. Apollo Missions to the Lunar Surface

    Science.gov (United States)

    Graff, Paige V.

    2018-01-01

    Six Apollo missions to the Moon, from 1969-1972, enabled astronauts to collect and bring lunar rocks and materials from the lunar surface to Earth. Apollo lunar samples are curated by NASA Astromaterials at the NASA Johnson Space Center in Houston, TX. Samples continue to be studied and provide clues about our early Solar System. Learn more and view collected samples at: https://curator.jsc.nasa.gov/lunar.

  1. Eliminating the Heart from the Curcumin Molecule: Monocarbonyl Curcumin Mimics (MACs

    Directory of Open Access Journals (Sweden)

    Dinesh Shetty

    2014-12-01

    Full Text Available Curcumin is a natural product with several thousand years of heritage. Its traditional Asian application to human ailments has been subjected in recent decades to worldwide pharmacological, biochemical and clinical investigations. Curcumin’s Achilles heel lies in its poor aqueous solubility and rapid degradation at pH ~ 7.4. Researchers have sought to unlock curcumin’s assets by chemical manipulation. One class of molecules under scrutiny are the monocarbonyl analogs of curcumin (MACs. A thousand plus such agents have been created and tested primarily against cancer and inflammation. The outcome is clear. In vitro, MACs furnish a 10–20 fold potency gain vs. curcumin for numerous cancer cell lines and cellular proteins. Similarly, MACs have successfully demonstrated better pharmacokinetic (PK profiles in mice and greater tumor regression in cancer xenografts in vivo than curcumin. The compounds reveal limited toxicity as measured by murine weight gain and histopathological assessment. To our knowledge, MAC members have not yet been monitored in larger animals or humans. However, Phase 1 clinical trials are certainly on the horizon. The present review focuses on the large and evolving body of work in cancer and inflammation, but also covers MAC structural diversity and early discovery for treatment of bacteria, tuberculosis, Alzheimer’s disease and malaria.

  2. Eliminating the Heart from the Curcumin Molecule: Monocarbonyl Curcumin Mimics (MACs)

    Science.gov (United States)

    Shetty, Dinesh; Kim, Yong Joon; Shim, Hyunsuk; Snyder, James P.

    2015-01-01

    Curcumin is a natural product with several thousand years of heritage. Its traditional Asian application to human ailments has been subjected in recent decades to worldwide pharmacological, biochemical and clinical investigations. Curcumin’s Achilles heel lies in its poor aqueous solubility and rapid degradation at pH ~ 7.4. Researchers have sought to unlock curcumin’s assets by chemical manipulation. One class of molecules under scrutiny are the monocarbonyl analogs of curcumin (MACs). A thousand plus such agents have been created and tested primarily against cancer and inflammation. The outcome is clear. In vitro, MACs furnish a 10–20 fold potency gain vs. curcumin for numerous cancer cell lines and cellular proteins. Similarly, MACs have successfully demonstrated better pharmacokinetic (PK) profiles in mice and greater tumor regression in cancer xenografts in vivo than curcumin. The compounds reveal limited toxicity as measured by murine weight gain and histopathological assessment. To our knowledge, MAC members have not yet been monitored in larger animals or humans. However, Phase 1 clinical trials are certainly on the horizon. The present review focuses on the large and evolving body of work in cancer and inflammation, but also covers MAC structural diversity and early discovery for treatment of bacteria, tuberculosis, Alzheimer’s disease and malaria. PMID:25547726

  3. Lunar and Planetary Science XXXV: Astrobiology

    Science.gov (United States)

    2004-01-01

    The session "Astrobiology" included the following reports:The Role of Cometary and Meteoritic Delivery in the Origin and Evolution of Life: Biogeological Evidences Revisited; Hopane Biomarkers Traced from Bedrock to Recent Sediments and Ice at the Haughton Impact Structure, Devon Island: Implications for the Search for Biomarkers on Mars; and Survival of Organic Matter After High Temperature Events (Meteorite Impacts, Igneous Intrusions).

  4. Optimal Lunar Landing Trajectory Design for Hybrid Engine

    Directory of Open Access Journals (Sweden)

    Dong-Hyun Cho

    2015-01-01

    Full Text Available The lunar landing stage is usually divided into two parts: deorbit burn and powered descent phases. The optimal lunar landing problem is likely to be transformed to the trajectory design problem on the powered descent phase by using continuous thrusters. The optimal lunar landing trajectories in general have variety in shape, and the lunar lander frequently increases its altitude at the initial time to obtain enough time to reduce the horizontal velocity. Due to the increment in the altitude, the lunar lander requires more fuel for lunar landing missions. In this work, a hybrid engine for the lunar landing mission is introduced, and an optimal lunar landing strategy for the hybrid engine is suggested. For this approach, it is assumed that the lunar lander retrofired the impulsive thruster to reduce the horizontal velocity rapidly at the initiated time on the powered descent phase. Then, the lunar lander reduced the total velocity and altitude for the lunar landing by using the continuous thruster. In contradistinction to other formal optimal lunar landing problems, the initial horizontal velocity and mass are not fixed at the start time. The initial free optimal control theory is applied, and the optimal initial value and lunar landing trajectory are obtained by simulation studies.

  5. Lunar Exploration Missions Since 2006

    Science.gov (United States)

    Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.

    2017-01-01

    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.

  6. Meteorites, Bolides and Comets: A Tale of Inconsistency

    Science.gov (United States)

    Jakes, P.; Padevet, V.

    1992-07-01

    -Tuttle, and Leo Minorids to 1739 Zanotti. Geminids were related to asteroid 3200 Phaeton, considered to be an "extinct comet." Spurny [9], using ablation coefficient and penetration depth criteria, found that Geminids (frequently) and Taurids (rarely) contain bolides of types I and II. This may indicate that meteoric showers from "comets" on AAA orbits contain some portion of "rocky" material comparable to chondrites. These observations revive Opik's (1963) idea that comets may be captured in the asteroid belt on AAA orbits and may contain (and supply) chondritic meteorites to the Earth [10]. If the relationship among large solid particles "native to the asteroid belt" and those from the outer solar system can be established, they can be scaled and applied to IDPs. We have studied the records of 292 bolides (Prairie and European networks) with measured terminal velocities. We attempt to use the terminal velocity, calculated density, estimated terminal mass, and mechanical strength to correlate features with the meteorite features. We compare the meteorite fall frequency [11] with the bolide features. Two extreme hypotheses (Table 1) are examined: (A) bolides of types IIIa and IIIb do not have equivalents among the meteorites and (B) all four bolide types have meteoritic equivalents, and only IDPs do not produce bolides (fireballs). If the entry parameters of meteoroids are similar, bodies with lower density should reach terminal velocity at higher altitudes than those with higher density. If it is assumed that fragmentation is the same for dense (I and II) and less dense bodies (IIIa and IIIb), the calculated terminal altitudes show that among the bolides exist materials with lower densities than those of recovered meteorites and that model A of the correlation between meteorite falls and bolide observations is likely [12]. If, however, the less dense bodies were more easily fragmented than denser bodies, the correlation is better for hypothesis B. Table 1, which in the hard

  7. Visualization of integrin Mac-1 in vivo.

    Science.gov (United States)

    Lim, Kihong; Hyun, Young-Min; Lambert-Emo, Kris; Topham, David J; Kim, Minsoo

    2015-11-01

    β2 integrins play critical roles in migration of immune cells and in the interaction with other cells, pathogens, and the extracellular matrix. Among the β2 integrins, Mac-1 (Macrophage antigen-1), composed of CD11b and CD18, is mainly expressed in innate immune cells and plays a major role in cell migration and trafficking. In order to image Mac-1-expressing cells both in live cells and mouse, we generated a knock-in (KI) mouse strain expressing CD11b conjugated with monomeric yellow fluorescent protein (mYFP). Expression of CD11b-mYFP protein was confirmed by Western blot and silver staining of CD11b-immunoprecipitates and total cell lysates from the mouse splenocytes. Mac-1-mediated functions of the KI neutrophils were comparable with those in WT cells. The fluorescence intensity of CD11b-mYFP was sufficient to image CD11b expressing cells in live mice using intravital two-photon microscopy. In vitro, dynamic changes in the intracellular localization of CD11b molecules could be measured by epifluorescent microscopy. Finally, CD11b-expressing immune cells from tissue were easily detected by flow cytometry without anti-CD11b antibody staining. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The ESA Lunar Lander and the search for Lunar Volatiles

    Science.gov (United States)

    Morse, A. D.; Barber, S. J.; Pillinger, J. M.; Sheridan, S.; Wright, I. P.; Gibson, E. K.; Merrifield, J. A.; Waltham, N. R.; Waugh, L. J.; Pillinger, C. T.

    2011-10-01

    Following the Apollo era the moon was considered a volatile poor body. Samples collected from the Apollo missions contained only ppm levels of water formed by the interaction of the solar wind with the lunar regolith [1]. However more recent orbiter observations have indicated that water may exist as water ice in cold polar regions buried within craters at concentrations of a few wt. % [2]. Infrared images from M3 on Chandrayaan-1 have been interpreted as showing the presence of hydrated surface minerals with the ongoing hydroxyl/water process feeding cold polar traps. This has been supported by observation of ephemeral features termed "space dew" [3]. Meanwhile laboratory studies indicate that water could be present in appreciable quantities in lunar rocks [4] and could also have a cometary source [5]. The presence of sufficient quantities of volatiles could provide a resource which would simplify logistics for long term lunar missions. The European Space Agency (ESA's Directorate of Human Spaceflight and Operations) have provisionally scheduled a robotic mission to demonstrate key technologies to enable later human exploration. Planned for launch in 2018, the primary aim is for precise automated landing, with hazard avoidance, in zones which are almost constantly illuminated (e.g. at the edge of the Shackleton crater at the lunar south pole). These regions would enable the solar powered Lander to survive for long periods > 6 months, but require accurate navigation to within 200m. Although landing in an illuminated area, these regions are close to permanently shadowed volatile rich regions and the analysis of volatiles is a major science objective of the mission. The straw man payload includes provision for a Lunar Volatile and Resources Analysis Package (LVRAP). The authors have been commissioned by ESA to conduct an evaluation of possible technologies to be included in L-VRAP which can be included within the Lander payload. Scientific aims are to demonstrate the

  9. MAC Version 3.2, MBA Version 1.3 acceptance test summary report

    International Nuclear Information System (INIS)

    Russell, V.K.

    1994-01-01

    The K Basins Materials Accounting (MAC) and Materials Balance (MBA) programs had the Paradox Conversion to 4.0 ATP run to check out the systems. This report describes the results of the test and provides the signoff sheets associated with the testing. The test primarily concentrated on verifying that MAC and MBA software would run properly in the Paradox 4.0 environment. Changes in the MAC and MBA programs were basically limited to superficial items needed to accommodate the enhanced method of execution

  10. Magnetic properties of tetrataenite-rich meteorites. Pt. 2

    International Nuclear Information System (INIS)

    Nagata, T.; Funaki, M.; Danon, J.

    1985-01-01

    Magnetic hysteresis and thermomagnetic characteristics of St. Severin (LL 6 ), Appley Bridge (LL 6 ) and Tuxtuac (LL 5 ) chondrites, which contain tetrataenite in their metallic components, are measured and analyzed in comparison with another tetrataenite-rich chondrite, Yamato 74160. The magnetic properties of tetrataenite-rich meteorites are characterized by (a) high magnetic coercive force (H sub(C)) which amounts to 520 Oe for St. Severin and 160 Oe for Appley Bridge, (b) essential flatness up to about 500 0 C and then a sharp irreversible drop down to Curie point of the first-run heating thermomagnetic curve. Both characteristic features are broken down to the ordinary features of disordered taenite by a breakdown of tetrataenite structure at elevated temperatures beyond the order-disorder transition temperature. The natural remanent magnetization (NRM) of tetrataenite-rich meteorites is extremely stable against AF-demagnetization and other magnetic disturbances because of the high magnetic coercivity of tetrataenite. The breakdown processes of ordered tetrataenite structure by heat treatments are experimentally pursued for the purpose of research of a possible formation process of tetrataenite phase in meteorites. (Author) [pt

  11. Paradox applications integration ATP's for MAC and mass balance programs

    International Nuclear Information System (INIS)

    Russell, V.K.; Mullaney, J.E.

    1994-01-01

    The K Basins Materials Accounting (MAC) and Material Balance (MBA) database system were set up to run under one common applications program. This Acceptance Test Plan (ATP) describes how the code was to be tested to verify its correctness. The scope of the tests is minimal, since both MAC and MBA have already been tested in detail as stand-alone programs

  12. What is a lunar standstill III?

    Directory of Open Access Journals (Sweden)

    Lionel Duke Sims

    2016-12-01

    Full Text Available Prehistoric monument alignments on lunar standstills are currently understood for horizon range, perturbation event, crossover event, eclipse prediction, solstice full Moon and the solarisation of the dark Moon. The first five models are found to fail the criteria of archaeoastronomy field methods. The final model of lunar-solar conflation draws upon all the observed components of lunar standstills – solarised reverse phased sidereal Moons culminating in solstice dark Moons in a roughly nine-year alternating cycle between major and minor standstills. This lunar-solar conflation model is a syncretic overlay upon an antecedent Palaeolithic template for lunar scheduled rituals and amenable to transformation.

  13. Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects

    Science.gov (United States)

    Markowski, A.; Quitté, G.; Halliday, A. N.; Kleine, T.

    2006-02-01

    High-precision W isotopic compositions are presented for 35 iron meteorites from 7 magmatic groups (IC, IIAB, IID, IIIAB, IIIF, IVA, and IVB) and 3 non-magmatic groups (IAB, IIICD, and IIE). Small but resolvable isotopic variations are present both within and between iron meteorite groups. Variations in the 182W/ 184W ratio reflect either time intervals of metal-silicate differentiation, or result from the burnout of W isotopes caused by a prolonged exposure to galactic cosmic rays. Calculated apparent time spans for some groups of magmatic iron meteorites correspond to 8.5 ± 2.1 My (IID), 5.1 ± 2.3 My (IIAB), and 5.3 ± 1.3 My (IVB). These time intervals are significantly longer than those predicated from models of planetesimal accretion. It is shown that cosmogenic effects can account for a large part of the W isotopic variation. No simple relationship exists with exposure ages, compromising any reliable method of correction. After allowance for maximum possible cosmogenic effects, it is found that there is no evidence that any of the magmatic iron meteorites studied here have initial W isotopic compositions that differ from those of Allende CAIs [ ɛ182W = - 3.47 ± 0.20; [T. Kleine, K. Mezger, H. Palme, E. Scherer and C. Münker, Early core formation in asteroids and late accretion of chondrite parent bodies: evidence from 182Hf- 182W in CAIs, metal-rich chondrites and iron meteorites, Geochim. Cosmochim. Acta (in press)]. Cosmogenic corrections cannot yet be made with sufficient accuracy to obtain highly precise ages for iron meteorites. Some of the corrected ages nevertheless require extremely early metal-silicate segregation no later than 1 My after formation of CAIs. Therefore, magmatic iron meteorites appear to provide the best examples yet identified of material derived from the first planetesimals that grew by runaway growth, as modelled in dynamic simulations. Non-magmatic iron meteorites have a more radiogenic W isotopic composition than magmatic

  14. Experimental Evaluation of Simulation Abstractions for Wireless Sensor Network MAC Protocols

    Directory of Open Access Journals (Sweden)

    G. P. Halkes

    2010-01-01

    Full Text Available The evaluation of MAC protocols for Wireless Sensor Networks (WSNs is often performed through simulation. These simulations necessarily abstract away from reality in many ways. However, the impact of these abstractions on the results of the simulations has received only limited attention. Moreover, many studies on the accuracy of simulation have studied either the physical layer and per link effects or routing protocol effects. To the best of our knowledge, no other work has focused on the study of the simulation abstractions with respect to MAC protocol performance. In this paper, we present the results of an experimental study of two often used abstractions in the simulation of WSN MAC protocols. We show that a simple SNR-based reception model can provide quite accurate results for metrics commonly used to evaluate MAC protocols. Furthermore, we provide an analysis of what the main sources of deviation are and thereby how the simulations can be improved to provide even better results.

  15. MAC-layer protocol for TCP fairness in Wireless Mesh Networks

    KAUST Repository

    Nawab, Faisal

    2012-08-01

    In this paper we study the interactions of TCP and IEEE 802.11 MAC in Wireless Mesh Networks (WMNs). We use a Markov chain to capture the behavior of TCP sessions, particularly the impact on network throughput performance due to the effect of queue utilization and packet relaying. A closed form solution is derived to numerically determine the throughput. Based on the developed model, we propose a distributed MAC protocol to alleviate the unfairness problem in WMNs. Our protocol uses the age of packet as a priority metric for packet scheduling. Simulation is conducted to validate our model and to illustrate the fairness characteristics of our proposed MAC protocol. We conclude that we can achieve fairness with only little impact on network capacity.

  16. Detomidine reduces isoflurane anesthetic requirement (MAC) in horses.

    Science.gov (United States)

    Steffey, Eugene P; Pascoe, Peter J

    2002-10-01

    To quantitate the dose- and time-related magnitude of the anesthetic sparing effect of, and selected physiological responses to detomidine during isoflurane anesthesia in horses. Randomized cross-over study. Three, healthy, young adult horses weighing 485 ± 14 kg. Horses were anesthetized on two occasions to determine the minimum alveolar concentration (MAC) of isoflurane in O 2 and then to measure the anesthetic sparing effect (time-related MAC reduction) following IV detomidine (0.03 and 0.06 mg kg -1 ). Selected common measures of cardiopulmonary function, blood glucose and urinary output were also recorded. Isoflurane MAC was 1.44 ± 0.07% (mean ± SEM). This was reduced by 42.8 ± 5.4% and 44.8 ± 3.0% at 83 ± 23 and 125 ± 36 minutes, respectively, following 0.03 and 0.06 mg kg -1 , detomidine. The MAC reduction was detomidine dose- and time-dependent. There was a tendency for mild cardiovascular and respiratory depression, especially following the higher detomidine dose. Detomidine increased both blood glucose and urine flow; the magnitude of these changes was time- and dose-dependent CONCLUSIONS: Detomidine reduces anesthetic requirement for isoflurane and increases blood glucose concentration and urine flow in horses. These changes were dose- and time-related. The results imply potent anesthetic sparing actions by detomidine. The detomidine-related increased urine flow should be considered in designing anesthetic protocols for individual horses. Copyright © 2002 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  17. Scaling analysis of meteorite shower mass distributions

    DEFF Research Database (Denmark)

    Oddershede, Lene; Meibom, A.; Bohr, Jakob

    1998-01-01

    Meteorite showers are the remains of extraterrestrial objects which are captivated by the gravitational field of the Earth. We have analyzed the mass distribution of fragments from 16 meteorite showers for scaling. The distributions exhibit distinct scaling behavior over several orders of magnetude......; the observed scaling exponents vary from shower to shower. Half of the analyzed showers show a single scaling region while the orther half show multiple scaling regimes. Such an analysis can provide knowledge about the fragmentation process and about the original meteoroid. We also suggest to compare...... the observed scaling exponents to exponents observed in laboratory experiments and discuss the possibility that one can derive insight into the original shapes of the meteoroids....

  18. NASA Lunar Base Wireless System Propagation Analysis

    Science.gov (United States)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  19. Organic Matter Responses to Radiation under Lunar Conditions

    Science.gov (United States)

    Matthewman, Richard; Crawford, Ian A.; Jones, Adrian P.; Joy, Katherine H.

    2016-01-01

    Abstract Large bodies, such as the Moon, that have remained relatively unaltered for long periods of time have the potential to preserve a record of organic chemical processes from early in the history of the Solar System. A record of volatiles and impactors may be preserved in buried lunar regolith layers that have been capped by protective lava flows. Of particular interest is the possible preservation of prebiotic organic materials delivered by ejected fragments of other bodies, including those originating from the surface of early Earth. Lava flow layers would shield the underlying regolith and any carbon-bearing materials within them from most of the effects of space weathering, but the encapsulated organic materials would still be subject to irradiation before they were buried by regolith formation and capped with lava. We have performed a study to simulate the effects of solar radiation on a variety of organic materials mixed with lunar and meteorite analog substrates. A fluence of ∼3 × 1013 protons cm−2 at 4–13 MeV, intended to be representative of solar energetic particles, has little detectable effect on low-molecular-weight (≤C30) hydrocarbon structures that can be used to indicate biological activity (biomarkers) or the high-molecular-weight hydrocarbon polymer poly(styrene-co-divinylbenzene), and has little apparent effect on a selection of amino acids (≤C9). Inevitably, more lengthy durations of exposure to solar energetic particles may have more deleterious effects, and rapid burial and encapsulation will always be more favorable to organic preservation. Our data indicate that biomarker compounds that may be used to infer biological activity on their parent planet can be relatively resistant to the effects of radiation and may have a high preservation potential in paleoregolith layers on the Moon. Key Words: Radiation—Moon—Regolith—Amino acids—Biomarkers. Astrobiology 16, 900–912. PMID:27870583

  20. An Interview with Peter MacDonald.

    Science.gov (United States)

    American Indian Journal, 1979

    1979-01-01

    Peter MacDonald, Chairman of the Navajo Nation, the largest tribe in the United States speaks to such issues as energy development/management, oil companies, Navajo-Hopi relocation legislation, traditionalism, and the role of the Council of Energy Resource Tribes. (RTS)

  1. Biomarkers and Microfossils in the Murchison, Rainbow, and Tagish Lake meteorites

    Science.gov (United States)

    Hoover, Richard B.; Jerman, Gregory A.; Rozanov, Alexei Y.; Davies, Paul C.

    2003-02-01

    During the past six years, we have conducted extensive scanning electron and optical microscopy investigations and x-ray analysis to determine the morphology, life cycle processes, and elemental distributions in living and fossil cyanobacteria, bacteria, archaea, fungi, and algae sampled from terrestrial environments relevant to Astrobiology. Biominerals, pseudomorphs and microfossils have been studied for diverse microbial groups in various states of preservation in many types of rocks (e.g., oil shales, graphites, shungites, bauxites, limestones, pyrites, phosphorites, and hydrothermal vent chimneys). Results of these studies have been applied to the search for biosignatures in carbonaceous chondrites, stony, and nickel iron meteorites. We review important biomarkers found in terrestrial rocks and meteorites and present additional evidence for the existence of indigenous bacterial microfossils in-situ in freshly fractured surfaces of the Murchison, Rainbow and Tagish Lake carbonaceous meteorites. We provide secondary and backscatter electron images and spectral data obtained with Field Emission and Environmental Scanning Electron Microscopes of biominerals and microfossils. We discuss techniques for discriminating indigenous microfossils from recent terrestrial contaminants. Images are provided of framboidal magnetites in oil shales and meteorites and images and 2D x-ray maps are shown of bacterial microfossils embedded in the mineral matrix of the Murchison, Rainbow and Tagish Lake Carbonaceous Meteorites. These microfossils exhibit characteristics that preclude their interpretation as post-arrival contaminants and we interpret them as indigenous biogenic remains.

  2. Academic aspects of lunar water resources and their relevance to lunar protolife.

    Science.gov (United States)

    Green, Jack

    2011-01-01

    Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 10(9) metric tons. Various exogenic and endogenic sources of this water have been proposed. This paper focuses on endogenic water sources by fumaroles and hot springs in shadowed polar craters. A survey of theoretical and morphological details supports a volcanic model. Release of water and other constituents by defluidization over geological time was intensified in the Hadean Eon (c.a. 4600 to 4000 My). Intensification factors include higher heat flow by now-extinct radionuclides, tidal flexing and higher core temperatures. Lesser gravity would promote deeper bubble nucleation in lunar magmas, slower rise rates of gases and enhanced subsidence of lunar caldera floors. Hadean volcanism would likely have been more intense and regional in nature as opposed to suture-controlled location of calderas in Phanerozoic Benioff-style subduction environments. Seventy-seven morphological, remote sensing and return sample features were categorized into five categories ranging from a volcano-tectonic origin only to impact origin only. Scores for the most logical scenario were 69 to eight in favor of lunar volcanism. Ingredients in the Cabeus plume analysis showed many volcanic fluids and their derivatives plus a large amount of mercury. Mercury-rich fumaroles are well documented on Earth and are virtually absent in cometary gases and solids. There are no mercury anomalies in terrestrial impact craters. Volcanic fluids and their derivatives in lunar shadow can theoretically evolve into protolife. Energy for this evolution can be provided by vent flow charging intensified in the lunar Hadean and by charge separation on freezing fumarolic fluids in shadow. Fischer-Tropsch reactions on hydrothermal clays can yield lipids, polycyclic aromatic hydrocarbons and amino acids. Soluble

  3. De Magnete et Meteorite: Cosmically Motivated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, LH; Pinkerton, FE; Bordeaux, N; Mubarok, A; Poirier, E; Goldstein, JI; Skomski, R; Barmak, K

    2014-01-01

    Meteorites, likely the oldest source of magnetic material known to mankind, are attracting renewed interest in the science and engineering community. Worldwide focus is on tetrataenite, a uniaxial ferromagnetic compound with the tetragonal L1(0) crystal structure comprised of nominally equiatomic Fe-Ni that is found naturally in meteorites subjected to extraordinarily slow cooling rates, as low as 0.3 K per million years. Here, the favorable permanent magnetic properties of bulk tetrataenite derived from the meteorite NWA 6259 are quantified. The measured magnetization approaches that of Nd-Fe-B (1.42 T) and is coupled with substantial anisotropy (1.0-1.3 MJ/m(3)) that implies the prospect for realization of technologically useful coercivity. A highly robust temperature dependence of the technical magnetic properties at an elevated temperature (20-200 degrees C) is confirmed, with a measured temperature coefficient of coercivity of -0.005%/ K, over one hundred times smaller than that of Nd-Fe-B in the same temperature range. These results quantify the extrinsic magnetic behavior of chemically ordered tetrataenite and are technologically and industrially significant in the current context of global supply chain limitations of rare-earth metals required for present-day high-performance permanent magnets that enable operation of a myriad of advanced devices and machines.

  4. Teaching a Classic for All Ages: Fairy Tales and Stories of George MacDonald.

    Science.gov (United States)

    Sadler, Glenn Edward

    1995-01-01

    Discusses the life and writings of George MacDonald (1824-1905). Suggests that the most striking feature of MacDonald's children's books is his sensitivity toward spiritual values and the power of change within the lives of his characters. Appends a list of questions to stimulate student response to MacDonald's writings. (RS)

  5. Are hamburgers harmless? : the Big Mac Index in the twenty-first century

    OpenAIRE

    Soo, Kwok Tong

    2016-01-01

    We make use of The Economist’s Big Mac Index (BMI) to investigate the Law of One Price (LOP) and whether the BMI can be used to predict future exchange rate and price changes. Deviations from Big Mac parity decay quickly, in approximately 1 year. The BMI is a better predictor of relative price changes than of exchange rate changes, and performs best when predicting a depreciation of a currency relative to the US dollar. Convergence to Big Mac parity occurs more rapidly for currencies with som...

  6. Lunar domes properties and formation processes

    CERN Document Server

    Lena, Raffaello; Phillips, Jim; Chiocchetta, Maria Teresa

    2013-01-01

    Lunar domes are structures of volcanic origin which are usually difficult to observe due to their low heights. The Lunar Domes Handbook is a reference work on these elusive features. It provides a collection of images for a large number of lunar domes, including telescopic images acquired with advanced but still moderately intricate amateur equipment as well as recent orbital spacecraft images. Different methods for determining the morphometric properties of lunar domes (diameter, height, flank slope, edifice volume) from image data or orbital topographic data are discussed. Additionally, multispectral and hyperspectral image data are examined, providing insights into the composition of the dome material. Several classification schemes for lunar domes are described, including an approach based on the determined morphometric quantities and spectral analyses. Furthermore, the book provides a description of geophysical models of lunar domes, which yield information about the properties of the lava from which the...

  7. GENETIC FINGERPRINTING OF MYCOBACTERIUM AVIUM COMPLEX (MAC) ORGANISMS ISOLATED FROM HOSPITAL PATIENTS AND THE ENVIRONMENT

    Science.gov (United States)

    A particularly pathogenic group of mycobacteria belong to the Mycobacterium avium complex (MAC), which includes M. avium and M. intracellulare. MAC organisms cause disease in children, the elderly, and immuno-compromised individuals. A critical step in preventing MAC infections...

  8. The Organic Content of the Tagish Lake Meteorite

    Science.gov (United States)

    Pizzarello, Sandra; Huang, Yongsong; Becker, Luann; Poreda, Robert J.; Nieman, Ronald A.; Cooper, George; Williams, Michael

    2001-01-01

    The Tagish Lake meteorite felt last year on a frozen take in Canada and may provide the most pristine material of its kind. Analyses have now shown this carbonaceous chondrite to contain a suite of soluble organic compounds (approximately 100 parts per million) that includes mono- and dicarboxylic acids, dicarboximides, pyridine carboxylic acids, a sulfonic acid, and both aliphatic and aromatic hydrocarbons. The insoluble carbon exhibits exclusive aromatic character, deuterium enrichment, and fullerenes containing 'planetary' helium and argon. The findings provide insight into an outcome of early solar chemical evolution that differs from any seen so far in meteorites.

  9. The Orgueil meteorite: 150 years of history

    Science.gov (United States)

    Gounelle, Matthieu; Zolensky, Michael E.

    2014-10-01

    The goal of this paper is to summarize 150 yr of history of a very special meteorite. The Orgueil meteorite fell near Montauban in southwestern France on May 14, 1864. The bolide, which was the size of the full Moon, was seen across Western France, and almost immediately made the news in local and Parisian newspapers. Within a few weeks of the fall, a great diversity of analyses were performed under the authority of Gabriel Auguste Daubrée, geology professor at the Paris Museum, and published in the Comptes Rendus de l'Académie des Sciences. The skilled scientists reported the presence of iron sulfides, hydrated silicates, and carbonates in Orgueil. They also characterized ammonium salts which are now gone, and observed sulfates being remobilized at the surface of the stone. They identified the high water and carbon contents, and noted similarities with the Alais meteorite, which had fallen in 1806, 300 km away. While Daubrée and his colleagues noted the similarity of the Orgueil organic matter with some terrestrial humus, they were cautious not to make a direct link with living organisms. One century later, Nagy and Claus were less prudent and announced the discovery of "organized" elements in some samples of Orgueil. Their observations were quickly discredited by Edward Anders and others who also discovered that some pollen grains were intentionally placed into the rock back in the 1860s. Orgueil is now one of the most studied meteorites, indeed one of the most studied rocks of any kind. Not only does it contain a large diversity of carbon-rich compounds, which help address the question of organo-synthesis in the early solar system but its chemical composition is also close to that of the Sun's photosphere and serves as a cosmic reference. Secondary minerals, which make up 99% of the volume of Orgueil, were probably formed during hydrothermal alteration on the parent-body within the first few million years of the solar system; their study is essential to our

  10. MacIntyre, Managerialism and Universities

    Science.gov (United States)

    Stolz, Steven A.

    2017-01-01

    MacIntyre's earlier work and concern with social science enquiry not only exposes its limits, but also provides an insight into how its knowledge claims have been put to ideological use. He maintains that the institutional embodiment of these ideological ideas is the bureaucratic manager who has had a negative role to play in social structures…

  11. The cali meteorite fell: A new H/L ordinary chondrite

    Science.gov (United States)

    Rodriguez, J.M.T.; Llorca, J.; Rubin, A.E.; Grossman, J.N.; Sears, D.W.G.; Naranjo, M.; Bretzius, S.; Tapia, M.; Sepulveda, M.H.G.

    2009-01-01

    The fall of the Cali meteorite took place on 6 July 2007 at 16 h 32 ?? 1 min local time (21 h 32 ?? 1 min UTC). A daylight fireball was witnessed by hundreds of people in the Cauca Valley in Colombia from which 10 meteorite samples with a total mass of 478 g were recovered near 3??24.3'N, 76??30.6'W. The fireball trajectory and radiant have been reconstructed with moderate accuracy. From the computed radiant and from considering various plausible velocities, we obtained a range of orbital solutions that suggest that the Cali progenitor meteoroid probably originated in the main asteroid belt. Based on petrography, mineral chemistry, magnetic susceptibility, fhermoluminescence, and bulk chemistry, the Cali meteorite is classified as an H/L4 ordinary chondrite breccia.

  12. Searching for Lunar Horizon Glow With the Lunar Orbiter Laser Altimeter (LOLA)

    Science.gov (United States)

    Barker, M. K.; Mazarico, E. M.; McClanahan, T. P.; Sun, X.; Smith, D. E.; Neumann, G. A.; Zuber, M. T.; Head, J. W., III

    2017-12-01

    The dust environment of the Moon is sensitive to the interplanetary meteoroid population and dust transport processes near the lunar surface, and this affects many aspects of lunar surface science and planetary exploration. The interplanetary meteoroid population poses a significant risk to spacecraft, yet it remains one of the more uncertain constituents of the space environment. Observed and hypothesized lunar dust transport mechanisms have included impact-generated dust plumes, electrostatic levitation, and dynamic lofting. Many details of the impactor flux and impact ejection process are poorly understood, a fact highlighted by recent discrepant estimates of the regolith mixing rate. Apollo-era observations of lunar horizon glow (LHG) were interpreted as sunlight forward-scattered by exospheric dust grains levitating in the top meter above the surface or lofted to tens of kilometers in altitude. However, recent studies have placed limits on the dust density orders of magnitude less than what was originally inferred, raising new questions on the time variability of the dust environment. Motivated by the need to better understand dust transport processes and the meteoroid population, the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) is conducting a campaign to search for LHG with the LOLA Laser Ranging (LR) system. Advantages of this LOLA LHG search include: (1) the LOLA-LR telescope can observe arbitrarily close to the Sun at any time during the year without damaging itself or the other instruments, (2) a long temporal baseline with observations both during and outside of meteor streams, which will improve the chances of detecting LHG, and (3) a focus on altitudes methodology, and preliminary results.

  13. Cosmogenic Radionuclides in Antarctic Meteorites: Preliminary Results on Terrestrial Ages and Temporal Phenomena

    Science.gov (United States)

    Michlovich, E.; Vogt, S.; Wolf, S. F.; Elmore, D.; Lipschutz, M. E.

    1993-07-01

    Since 1969, more than 15,000 meteorites have been recovered from various sites in Antarctica. Differences have been reported between the Antarctic populations and the population of non-Antarctic meteorites in volatile trace- element content, thermoluminescence properties, physical size, and relative distribution of meteorite type [1]. Lipschutz and Samuels [2] developed a method based upon multivariate linear and logistic regression that they applied to interpret trace-element content in Antarctic and non-Antarctic meteorites, showing that the two populations can be chemically distinguished. Since Antarctic meteorites have, on the whole, much longer terrestrial ages than non-Antarctic falls, such differences have been used to support the notion that the flux of meteorites sampled by the Earth has changed in the recent past. A subsequent study [3] showed a statistically significant difference in trace-element content between meteorites from Victoria Land and those found in Queen Maud Land, two groups that seem to have different terrestrial age distributions. Changes in meteorite flux patterns on the order of 60 yr are indicated from a study of Cluster 1 vs. non-Cluster 1 falls [4]. Rapid fluctuations would almost certainly require the existence of co-orbital meteoroid streams, an idea that has been criticized by some [5] on dynamical grounds. To quantify the discussion of a temporal dependence of meteorite flux patterns, and to continue systematic study of Antarctic meteorites, we have measured the contents of the cosmogenic radionuclides ^10Be and ^26Al in the bulk phase, and ^36Cl in the metal phase, of 40 Antarctic specimens that are from the same suite of samples analyzed in the trace-element studies and that were chosen to minimize any chances of paired meteorites. The means and standard deviations of ^10Be and ^26Al activities are 16.4 +/- 3.5 and 48 +/- 8 dpm/kg respectively. Correction for cosmic ray exposure [6,7] and terrestrial ages allows us to estimate

  14. Model for GCR-particle fluxes in stony meteorites and production rates of cosmogenic nuclides

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1984-01-01

    A model is presented for the differential fluxes of galactic-cosmic-ray (GCR) particles with energies above 1 MeV inside any spherical stony meteorite as a function of the meteorite's radius and the sample's depth. This model is based on the Reedy-Arnold equations for the energy-dependent fluxes of GCR particles in the moon and is an extension of flux parameters that were derived for several meteorites of various sizes. This flux is used to calculate the production rates of many cosmogenic nuclides as a function of radius and depth. The peak production rates for most nuclides made by the reactions of energetic GCR particles occur near the centers of meteorites with radii of 40 to 70 g cm -2 . Although the model has some limitations, it reproduces well the basic trends for the depth-dependent production of cosmogenic nuclides in stony meteorites of various radii. These production profiles agree fairly well with measurements of cosmogenic nuclides in meteorites. Some of these production profiles are different than those calculated by others. The chemical dependence of the production rates for several nuclides varies with size and depth. 25 references, 8 figures

  15. Meteoritic Input of Amino Acids and Nucleobases: Methodology and Implications for the Origins of Life

    Science.gov (United States)

    Burton, Aaron S.; Stern, Jennifer C.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 40 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origin(s) of life on Earth were aided by extraterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial review focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally, we will address the future of meteorite research, including asteroid sample return mIssIons.

  16. Millisecond timing on PCs and Macs.

    Science.gov (United States)

    MacInnes, W J; Taylor, T L

    2001-05-01

    A real-time, object-oriented solution for displaying stimuli on Windows 95/98, MacOS and Linux platforms is presented. The program, written in C++, utilizes a special-purpose window class (GLWindow), OpenGL, and 32-bit graphics acceleration; it avoids display timing uncertainty by substituting the new window class for the default window code for each system. We report the outcome of tests for real-time capability across PC and Mac platforms running a variety of operating systems. The test program, which can be used as a shell for programming real-time experiments and testing specific processors, is available at http://www.cs.dal.ca/~macinnwj. We propose to provide researchers with a sense of the usefulness of our program, highlight the ability of many multitasking environments to achieve real time, as well as caution users about systems that may not achieve real time, even under optimal conditions.

  17. MAP, MAC, and vortex-rings configurations in the Weinberg-Salam model

    Science.gov (United States)

    Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming

    2015-11-01

    We report on the presence of new axially symmetric monopoles, antimonopoles and vortex-rings solutions of the SU(2)×U(1) Weinberg-Salam model of electromagnetic and weak interactions. When the ϕ-winding number n = 1, and 2, the configurations are monopole-antimonopole pair (MAP) and monopole-antimonopole chain (MAC) with poles of alternating sign magnetic charge arranged along the z-axis. Vortex-rings start to appear from the MAP and MAC configurations when the winding number n = 3. The MAP configurations possess zero net magnetic charge whereas the MAC configurations possess net magnetic charge of 4 πn / e. In the MAP configurations, the monopole-antimonopole pair is bounded by the Z0 field flux string and there is an electromagnetic current loop encircling it. The monopole and antimonopole possess magnetic charges ± 4πn/e sin2θW respectively. In the MAC configurations there is no string connecting the monopole and the adjacent antimonopole and they possess magnetic charges ± 4 πn/e respectively. The MAC configurations possess infinite total energy and zero magnetic dipole moment whereas the MAP configurations which are actually sphalerons possess finite total energy and magnetic dipole moment. The configurations were investigated for varying values of Higgs self-coupling constant 0 ≤ λ ≤ 40 at Weinberg angle θW = π/4.

  18. On possible parent bodies of Innisfree, Lost City and Prgibram meteorites.

    Science.gov (United States)

    Rozaev, A. E.

    1994-12-01

    Minor planets 1981 ET3 and Seleucus are possible parent bodies of Innisfree and Lost City meteorites, asteroid Mithra is the most probable source of Prgibram meteorite. The conclusions are based on the Southworth - Hawkins criterion with taking into account of the motion constants (Tisserand coefficient, etc.) and minimal distances between orbits at present time.

  19. Behavioral Modeling of WSN MAC Layer Security Attacks: A Sequential UML Approach

    DEFF Research Database (Denmark)

    Pawar, Pranav M.; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2012-01-01

    is the vulnerability to security attacks/threats. The performance and behavior of a WSN are vastly affected by such attacks. In order to be able to better address the vulnerabilities of WSNs in terms of security, it is important to understand the behavior of the attacks. This paper addresses the behavioral modeling...... of medium access control (MAC) security attacks in WSNs. The MAC layer is responsible for energy consumption, delay and channel utilization of the network and attacks on this layer can introduce significant degradation of the individual sensor nodes due to energy drain and in performance due to delays....... The behavioral modeling of attacks will be beneficial for designing efficient and secure MAC layer protocols. The security attacks are modeled using a sequential diagram approach of Unified Modeling Language (UML). Further, a new attack definition, specific to hybrid MAC mechanisms, is proposed....

  20. Spectral analysis of meteorites ablated in a wind tunnel

    Science.gov (United States)

    Drouard, A.; Vernazza, P.; Loehle, S.; Gattacceca, J.; Zander, T.; Eberhart, M.; Meindl, A.; Oefele, R.; Vaubaillon, J.; Colas, F.

    2017-09-01

    Recently and for the very first time, experiments simulating vaporization of a meteorite sample were performed in a wind tunnel near Stuttgart with the specific aim to record emission spectra of the vaporized material. Using a high enthalpy air plasma flow for modeling an equivalent air friction of an entry speed of about 10 km/s, three meteorite types (H, CM and HED) and two meteoritical analogues (basalt and argillite) were ablated and high resolution spectra were recorded simultaneously. After the identification of all atomic lines, we per- formed a detailed study of our spectra using two approaches: (i) by direct comparison of multiplet in- tensities between the samples and (ii) by computation of a synthetic spectrum to constrain some physical parameters (temperature, elemental abundance). Finally, we compared our results to the elemental composition of our samples and we determined how much compositional information can be retrieved for a given meteor using visible sectroscopy.

  1. Lunar surface engineering properties experiment definition

    Science.gov (United States)

    Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.

    1971-01-01

    Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.

  2. AMMONIA IN THE EARLY SOLAR SYSTEM: AN ACCOUNT FROM CARBONACEOUS METEORITES

    International Nuclear Information System (INIS)

    Pizzarello, S.; Williams, L. B.

    2012-01-01

    This study presents a survey of abundance distribution and isotopic composition of the ammonia found incorporated in the kerogen-like insoluble material of selected carbonaceous chondrite meteorites; the ammonia was released upon hydrothermal treatment at 300°C and 100 MPa. With the exception of Allende, a metamorphosed and highly altered stone, all the insoluble organic materials (IOM) of the meteorites analyzed released significant amounts of ammonia, which varied from over 4 μg mg –1 for the Orgueil IOM to 0.5 μg mg –1 for that of Tagish Lake; the IOM of the pristine Antarctica find GRA95229 remains the most rich in freeable ammonia with 10 μg mg –1 . While the amounts of IOM bound ammonia do not appear to vary between meteorites with a recognizable trend, a possible consequence of long terrestrial exposure of some of the stones, we found that the δ 15 N composition of the ammonia-carrying materials is clearly distinctive of meteorite types and may reflect a preservation of the original 15 N distribution of pre- and proto-solar materials.

  3. Ammonia in the Early Solar System: An Account from Carbonaceous Meteorites

    Science.gov (United States)

    Pizzarello, S.; Williams, L. B.

    2012-04-01

    This study presents a survey of abundance distribution and isotopic composition of the ammonia found incorporated in the kerogen-like insoluble material of selected carbonaceous chondrite meteorites; the ammonia was released upon hydrothermal treatment at 300°C and 100 MPa. With the exception of Allende, a metamorphosed and highly altered stone, all the insoluble organic materials (IOM) of the meteorites analyzed released significant amounts of ammonia, which varied from over 4 μg mg-1 for the Orgueil IOM to 0.5 μg mg-1 for that of Tagish Lake; the IOM of the pristine Antarctica find GRA95229 remains the most rich in freeable ammonia with 10 μg mg-1. While the amounts of IOM bound ammonia do not appear to vary between meteorites with a recognizable trend, a possible consequence of long terrestrial exposure of some of the stones, we found that the δ15N composition of the ammonia-carrying materials is clearly distinctive of meteorite types and may reflect a preservation of the original 15N distribution of pre- and proto-solar materials.

  4. Nanoindenting the Chelyabinsk Meteorite to Learn about Impact Deflection Effects in asteroids

    Energy Technology Data Exchange (ETDEWEB)

    Moyano-Cambero, Carles E.; Trigo-Rodríguez, Josep M.; Martínez-Jiménez, Marina; Lloro, Ivan [Institute of Space Sciences (IEEC-CSIC), Meteorites, Minor Bodies and Planetary Sciences Group, Campus UAB Bellaterra, c/Can Magrans s/n, 08193 Cerdanyola del Vallès (Barcelona) (Spain); Pellicer, Eva [Departament de Física, Universitat Autónoma de Barcelona, E-08193 Bellaterra (Spain); Williams, Iwan P. [School of Physics and Astronomy, Queen Mary, University of London, 317 Mile End Road, E1 4NS London (United Kingdom); Blum, Jürgen [Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, D-38106 Braunschweig (Germany); Michel, Patrick [Lagrange Laboratory, University of Nice, CNRS, Côte d’Azur Observatory (France); Küppers, Michael [European Space Agency, European Space Astronomy Centre, P.O. Box 78, Villanueva de la Cañada E-28691 (Spain); Sort, Jordi, E-mail: moyano@ice.csic.es, E-mail: trigo@ice.csic.es [Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Física, Universitat Autónoma de Barcelona, E-08193 Bellaterra (Spain)

    2017-02-01

    The Chelyabinsk meteorite is a highly shocked, low porosity, ordinary chondrite, probably similar to S- or Q-type asteroids. Therefore, nanoindentation experiments on this meteorite allow us to obtain key data to understand the physical properties of near-Earth asteroids. Tests at different length scales provide information about the local mechanical properties of the minerals forming this meteorite: reduced Young’s modulus, hardness, elastic recovery, and fracture toughness. Those tests are also useful to understand the potential to deflect threatening asteroids using a kinetic projectile. We found that the differences in mechanical properties between regions of the meteorite, which increase or reduce the efficiency of impacts, are not a result of compositional differences. A low mean particle size, attributed to repetitive shock, can increase hardness, while low porosity promotes a higher momentum multiplication. Momentum multiplication is the ratio between the change in momentum of a target due to an impact, and the momentum of the projectile, and therefore, higher values imply more efficient impacts. In the Chelyabinsk meteorite, the properties of the light-colored lithology materials facilitate obtaining higher momentum multiplication values, compared to the other regions described for this meteorite. Also, we found a low value of fracture toughness in the shock-melt veins of Chelyabinsk, which would promote the ejection of material after an impact and therefore increase the momentum multiplication. These results are relevant to the growing interest in missions to test asteroid deflection, such as the recent collaboration between the European Space Agency and NASA, known as the Asteroid Impact and Deflection Assessment mission.

  5. Nanoindenting the Chelyabinsk Meteorite to Learn about Impact Deflection Effects in asteroids

    International Nuclear Information System (INIS)

    Moyano-Cambero, Carles E.; Trigo-Rodríguez, Josep M.; Martínez-Jiménez, Marina; Lloro, Ivan; Pellicer, Eva; Williams, Iwan P.; Blum, Jürgen; Michel, Patrick; Küppers, Michael; Sort, Jordi

    2017-01-01

    The Chelyabinsk meteorite is a highly shocked, low porosity, ordinary chondrite, probably similar to S- or Q-type asteroids. Therefore, nanoindentation experiments on this meteorite allow us to obtain key data to understand the physical properties of near-Earth asteroids. Tests at different length scales provide information about the local mechanical properties of the minerals forming this meteorite: reduced Young’s modulus, hardness, elastic recovery, and fracture toughness. Those tests are also useful to understand the potential to deflect threatening asteroids using a kinetic projectile. We found that the differences in mechanical properties between regions of the meteorite, which increase or reduce the efficiency of impacts, are not a result of compositional differences. A low mean particle size, attributed to repetitive shock, can increase hardness, while low porosity promotes a higher momentum multiplication. Momentum multiplication is the ratio between the change in momentum of a target due to an impact, and the momentum of the projectile, and therefore, higher values imply more efficient impacts. In the Chelyabinsk meteorite, the properties of the light-colored lithology materials facilitate obtaining higher momentum multiplication values, compared to the other regions described for this meteorite. Also, we found a low value of fracture toughness in the shock-melt veins of Chelyabinsk, which would promote the ejection of material after an impact and therefore increase the momentum multiplication. These results are relevant to the growing interest in missions to test asteroid deflection, such as the recent collaboration between the European Space Agency and NASA, known as the Asteroid Impact and Deflection Assessment mission.

  6. After MacIntyre : Kaasaegsest vooruseetikast / Meego Remmel

    Index Scriptorium Estoniae

    Remmel, Meego

    2006-01-01

    Alasdair MacIntyre panus 20. sajandi eetikasse. Tema käsitlus vooruseetikast ja vooruseetilisest perspektiivist, mida on võimalik näha komplekselt, vaadeldes voorust, praktikat, narratiivi ja traditsiooni mõisteid

  7. Windowsista Mac-maailmaan

    OpenAIRE

    Sirkiä, Noora-Maria

    2010-01-01

    Nykyään yhä useampi harkitsee erilaisista syistä käyttöjärjestelmän vaihtamista tutusta Windowsista johonkin muuhun käyttöjärjestelmään. Applen Macintosh-tietokoneiden mukana tuleva Mac OS X -käyttöjärjestelmä on hyvä vaihtoehto Windowsille. Ihmiset siirtyvät siihen mm. tietoturvaseikkojen, luotettavuuden, ohjelmiston sekä Applen koneiden ja käyttöjärjestelmän ulkomuodon takia. Microsoftin tuotteista ei myöskään tarvitse luopua kokonaan, sillä monista tutuista Microsoftin ohjelmista (esim. Mi...

  8. Educating the Public about Meteorites and Impacts through Virtual Field Trips and Classroom Experience Boxes

    Science.gov (United States)

    Ashcraft, Teresa; Hines, R.; Minitti, M.; Taylor, W.; Morris, M. A.; Wadhwa, M.

    2014-01-01

    With specimens representing over 2,000 individual meteorites, the Center for Meteorite Studies (CMS) at Arizona State University (ASU) is home to the world's largest university-based meteorite collection. As part of our mission to provide educational opportunities that expand awareness and understanding of the science of meteoritics, CMS continues to develop new ways to engage the public in meteorite and space science, including the opening of a new Meteorite Gallery, and expansion of online resources through upgrades to the CMS website, meteorites.asu.edu. In 2008, CMS was the recipient of a philanthropic grant to improve online education tools and develop loanable modules for educators. These modules focus on the origin of meteorites, and contain actual meteorite specimens, media resources, a user guide, and lesson plans, as well as a series of engaging activities that utilize hands-on materials geared to help students develop logical thinking, analytical skills, and proficiency in STEM disciplines. In 2010, in partnership with the ASU NASA Astrobiology Institute team, CMS obtained a NASA EPOESS grant to develop Virtual Field Trips (VFTs) complemented by loanable “Experience Boxes” containing lesson plans, media, and hands-on objects related to the VFT sites. One VFT-Box pair focuses on the record of the oldest multicellular organisms on Earth. The second VFT-Box pair focuses on the Upheaval Dome (UD) structure, a meteorite impact crater in Utah’s Canyonlands National Park. UD is widely accepted as the deeply eroded remnant of a ~5 kilometer impact crater (e.g. Kriens et al., 1999). The alternate hypothesis that the Dome was formed by the upwelling of salt from a deposit underlying the region (e.g. Jackson et al., 1998) makes UD an ideal site to learn not only about specific scientific principles present in the Next Generation Science Standards, but also the process of scientific inquiry. The VFTs are located on an interactive website dedicated to VFTs, vft

  9. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Boyce, J. W.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Magna, T.; Ni, P.; Tartese, R.; hide

    2017-01-01

    The chapter will begin with an introduction that defines magmatic volatiles (e.g., H, F, Cl, S) versus geochemical volatiles (e.g., K, Rb, Zn). We will discuss our approach of understanding both types of volatiles in lunar samples and lay the ground work for how we will determine the overall volatile budget of the Moon. We will then discuss the importance of endogenous volatiles in shaping the "Newer Views of the Moon", specifically how endogenous volatiles feed forward into processes such as the origin of the Moon, magmatic differentiation, volcanism, and secondary processes during surface and crustal interactions. After the introduction, we will include a re-view/synthesis on the current state of 1) apatite compositions (volatile abundances and isotopic compositions); 2) nominally anhydrous mineral phases (moderately to highly volatile); 3) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar pyroclastic glass beads; 4) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar basalts; 5) volatile (moderately to highly volatile) abundances in and isotopic compositions of melt inclusions; and finally 6) experimental constraints on mineral-melt partitioning of moderately to highly volatile elements under lunar conditions. We anticipate that each section will summarize results since 2007 and focus on new results published since the 2015 Am Min review paper on lunar volatiles [9]. The next section will discuss how to use sample abundances of volatiles to understand the source region and potential caveats in estimating source abundances of volatiles. The following section will include our best estimates of volatile abundances and isotopic compositions (where permitted by available data) for each volatile element of interest in a number of important lunar reservoirs, including the crust, mantle, KREEP, and bulk Moon. The final section of the chapter will focus upon future work, outstanding questions

  10. Hydrogen Distribution in the Lunar Polar Regions

    Science.gov (United States)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Bakhtin, B. N.; Bodnarik, J. G.; Boynton, W. V.; Chin, G.; Evans, L. G.; Harshmann, K.; Fedosov, F.; hide

    2016-01-01

    We present a method of conversion of the lunar neutron counting rate measured by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument collimated neutron detectors, to water equivalent hydrogen (WEH) in the top approximately 1 m layer of lunar regolith. Polar maps of the Moon’s inferred hydrogen abundance are presented and discussed.

  11. A hybrid path-oriented code assignment CDMA-based MAC protocol for underwater acoustic sensor networks.

    Science.gov (United States)

    Chen, Huifang; Fan, Guangyu; Xie, Lei; Cui, Jun-Hong

    2013-11-04

    Due to the characteristics of underwater acoustic channel, media access control (MAC) protocols designed for underwater acoustic sensor networks (UWASNs) are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA) CDMA MAC (POCA-CDMA-MAC), is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA) or receiver-oriented code assignment (ROCA). Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols.

  12. A Hybrid Path-Oriented Code Assignment CDMA-Based MAC Protocol for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Huifang Chen

    2013-11-01

    Full Text Available Due to the characteristics of underwater acoustic channel, media access control (MAC protocols designed for underwater acoustic sensor networks (UWASNs are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA CDMA MAC (POCA-CDMA-MAC, is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA or receiver-oriented code assignment (ROCA. Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols.

  13. Reliable Multicast MAC Protocol for IEEE 802.11 Wireless LANs with Extended Service Range

    Science.gov (United States)

    Choi, Woo-Yong

    2011-11-01

    In this paper, we propose the efficient reliable multicast MAC protocol by which the AP (Access Point) can transmit reliably its multicast data frames to the recipients in the AP's one-hop or two-hop transmission range. The AP uses the STAs (Stations) that are directly associated with itself as the relays for the data delivery to the remote recipients that cannot be reached directly from itself. Based on the connectivity information among the recipients, the reliable multicast MAC protocol optimizes the number of the RAK (Request for ACK) frame transmissions in a reasonable computational time. Numerical examples show that our proposed MAC protocol significantly enhances the MAC performance compared with the BMMM (Batch Mode Multicast MAC) protocol that is extended to support the recipients that are in the AP's one-hop or two-hop transmission range in IEEE 802.11 wireless LANs.

  14. Erosive Wear Characterization of Materials for Lunar Construction

    Science.gov (United States)

    Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III

    2012-01-01

    NASA s Apollo missions revealed that exhaust from the retrorockets of landing spacecraft may act to significantly accelerate lunar dust on the surface of the Moon. A recent study by Immer et al. (C. Immer, P.T. Metzger, P.E. Hintze, A. Nick, and R. Horan, Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III, Icarus, Vol. 211, pp. 1089-1102, 2011) investigated coupons returned to Earth from the Surveyor III lunar probe which were subjected to lunar dust impingement by the Apollo 12 Lunar Module landing. Their study revealed that even with indirect impingement, the spacecraft sustained erosive damage from the fast-moving lunar dust particles. In this work, results are presented from a series of erosive wear experiments performed on 6061 Aluminum using the JSC-1AF lunar dust simulant. Optical profilometry was used to investigate the surface after the erosion process. It was found that even short durations of lunar dust simulant impacting at low velocities produced substantial changes in the surface.

  15. Respiratory Toxicity of Lunar Highland Dust

    Science.gov (United States)

    James, John T.; Lam, Chiu-wing; Wallace, William T.

    2009-01-01

    Lunar dust exposures occurred during the Apollo missions while the crew was on the lunar surface and especially when microgravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes and in some cases respiratory symptoms were elicited. NASA s vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust need to be assessed. NASA has performed this assessment with a series of in vitro and in vivo tests on authentic lunar dust. Our approach is to "calibrate" the intrinsic toxicity of lunar dust by comparison to a nontoxic dust (TiO2) and a highly toxic dust (quartz) using intratrachael instillation of the dusts in mice. A battery of indices of toxicity is assessed at various time points after the instillations. Cultures of selected cells are exposed to test dusts to assess the adverse effects on the cells. Finally, chemical systems are used to assess the nature of the reactivity of various dusts and to determine the persistence of reactivity under various environmental conditions that are relevant to a space habitat. Similar systems are used to assess the dissolution of the dust. From these studies we will be able to set a defensible inhalation exposure standard for aged dust and predict whether we need a separate standard for reactive dust. Presently-available data suggest that aged lunar highland dust is slightly toxic, that it can adversely affect cultured cells, and that the surface reactivity induced by grinding the dust persists for a few hours after activation.

  16. Mapping of MAC Address with Moving WiFi Scanner

    Directory of Open Access Journals (Sweden)

    Arief Hidayat

    2017-10-01

    Full Text Available Recently, Wifi is one of the most useful technologies that can be used for detecting and counting MAC Address. This paper described using of WiFi scanner which carried out seven times circulated the bus. The method used WiFi and GPS are to counting MAC address as raw data from the pedestrian smartphone, bus passenger or WiFi devices near from the bus as long as the bus going around the route. There are seven processes to make map WiFi data.

  17. Lunar phases and crisis center telephone calls.

    Science.gov (United States)

    Wilson, J E; Tobacyk, J J

    1990-02-01

    The lunar hypothesis, that is, the notion that lunar phases can directly affect human behavior, was tested by time-series analysis of 4,575 crisis center telephone calls (all calls recorded for a 6-month interval). As expected, the lunar hypothesis was not supported. The 28-day lunar cycle accounted for less than 1% of the variance of the frequency of crisis center calls. Also, as hypothesized from an attribution theory framework, crisis center workers reported significantly greater belief in lunar effects than a non-crisis-center-worker comparison group.

  18. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective

    Directory of Open Access Journals (Sweden)

    Nicholas P. Greene

    2018-05-01

    Full Text Available The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking.

  19. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective

    Science.gov (United States)

    Greene, Nicholas P.; Kaplan, Elise; Crow, Allister; Koronakis, Vassilis

    2018-01-01

    The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking. PMID:29892271

  20. The evolution of meteorites and planets from a hot nebula

    Directory of Open Access Journals (Sweden)

    Donald H. Tarling

    2015-06-01

    Full Text Available Meteorites have a hot origin as planetary materials derive from a supernova, similar to SN1987A, and were acquired by a nearby nova, the Sun. The supernova plasmas became zoned around the nova, mainly by their electromagnetic properties. Carbon and carbide dusts condensed first, followed, within the Inner Planetary Zone, by Ca–Mg–Al oxides and then by iron and nickel metal droplets. In the inner Asteroid Belt, the metals aggregated into clumps as they solidified but over a much longer time in the Inner Zone. ‘Soft’ collisions formed larger (<∼20 km objects in the Asteroid Belt; in the Inner Zone these aggregated forming proto-planetary cores during inwards orbital migration. In the Asteroid Belt, glassy olivines condensed, followed more open lattice minerals growing grew primarily by diffusion. Brittle silicate crystals were comminuted and only aggregated into the carbonaceous meteorites when water–ices formed. The inner planets differentiated by at least 4.4 Ga. Jupiter and the outer planets grew on asteroidal bodies thrown out into freezing water vapours and only formed by 4.1 Ga, resulting in the Late Heavy Bombardment, initially by meteoritic materials and later supplemented by ices from, and beyond, the Asteroid Belt. Critical factors are the properties of very high temperature supernova plasmas, the duration of the molten iron phase in the inner zone. Evidence usually quoted for a cold origin derives from late stage processes in hot meteorite evolution. While highly speculative, it is shown that meteorites and planets can be formed by known processes as supernova plasmas cool.