Sample records for mac88105 lunar meteorite

  1. Exposure histories of lunar meteorites: ALHA81005, MAC88104, MAC88105, and Y791197

    Energy Technology Data Exchange (ETDEWEB)

    Nishiizumi, K.; Arnold, J.R. (Univ. of California, San Diego, (United States)); Klein, J.; Fink, D.; Middleton, R. (Univ. of Pennsylvania, Philadelphia (United States)); Kubik, P.W.; Sharma, P.; Elmore, D. (Univ. of Rochester, NY (United States)); Reedy, R.C. (Los Alamos National Lab., NM (United States))


    The cosmogenic radionuclides {sup 41}Ca, {sup 36}Cl, {sup 26}Al, and {sup 10}Be in the Allan Hills 81005, MacAlpine Hills 88104, MacAlpine Hills 88105,and Yamato 791197 meteorites were measured by accelerator mass spectrometry (AMS). {sup 53}Mn in Allan Hills 81005 and Yamato 791197 was measured by activation. These four lunar meteorites experienced similar histories. They were ejected from near the surface of the Moon ranging in depth down to 400 g/cm{sup 2} and had very short transition times (less than 0.1 Ma) from the Moon to the Earth. A comparison of the cosmogenic nuclide concentrations in MacAlpine Hills 88104 and MacAlpine Hills 88105 clearly indicates that they are a pair from the same fall.

  2. An unusual clast in lunar meteorite MacAlpine Hills 88105: A unique lunar sample or projectile debris? (United States)

    Joy, K. H.; Crawford, I. A.; Huss, G. R.; Nagashima, K.; Taylor, G. J.


    Lunar meteorite MacAlpine Hills (MAC) 88105 is a well-studied feldspathic regolith breccia dominated by rock and mineral fragments from the lunar highlands. Thin section MAC 88105,159 contains a small rock fragment, 400 × 350 μm in size, which is compositionally anomalous compared with other MAC 88105 lithic components. The clast is composed of olivine and plagioclase with minor pyroxene and interstitial devitrified glass component. It is magnesian, akin to samples in the lunar High Mg-Suite, and also alkali-rich, akin to samples in the lunar High Alkali Suite. It could represent a small fragment of late-stage interstitial melt from an Mg-Suite parent lithology. However, olivine and pyroxene in the clast have Fe/Mn ratios and minor element concentrations that are different from known types of lunar lithologies. As Fe/Mn ratios are notably indicative of planetary origin, the clast could either (1) have a unique lunar magmatic source, or (2) have a nonlunar origin (i.e., consist of achondritic meteorite debris that survived delivery to the lunar surface). Both hypotheses are considered and discussed.

  3. The natural thermoluminescence of meteorites. III - Lunar and basaltic meteorites (United States)

    Sears, Derek W. G.; Benoit, Paul H.; Sears, Hazel; Batchelor, J. D.; Symes, Steve


    Natural thermoluminescence (TL) data were obtained to investigate recent thermal and radiation histories of the lunar meteorite MacAlpine Hills 88104/5 and 65 eucrites, howardites, diogenites, and mesosiderites. All these meteorites have low levels of natural TL compared to chondrites, which is primarily because they display anomalous fading. Some meteorites have especially low natural TL which must reflect heating within the last 100,000-1,000,000 y. The parameters for TL decay were determined assuming plausible values for cosmic ray dose rate and that the natural TL of MAC88104/5 was totally drained by ejection from the moon. The obtained parameters for TL decay suggest that the moon-earth transit times for MAC88104 and MAC88105 were 2,000 and 1,800 y, respectively, compared with 19,000 and 2,500 y for Y791197 and ALHA81005, respectively.

  4. Lunar Meteorite QUE 93069: History Derived from Cosmic-Ray-Produced and Trapped Noble Gases (United States)

    Thalmann, Ch.; Eugster, O.


    We obtained lunar meteorite QUE 93069,7 (0.304 g) from the NASA/MWG for the determination of its noble gas isotopic abundances and exposure history. The data relevant for the discussion of the exposure history and trapped noble gases are given in Tables 1 and 2. Exposure history: The duration of Moon-Earth transfer was determined by Nishiizumi et al. [1]. Based on 10Be these authors obtained 1.9 +/- 0.4 Ma for a 4 pi model (all radionuclides produced in 4 pi space) and MAC 88105 and ALHA 81005). QUE 93069 shows the longest exposure to cosmic rays (1100 +/- 400 Ma) of all lunar meteorites if we compare the T38 values. Based on 21Nec we obtain 420 +/- 60 Ma. Typically for lunar surface material the T21 are lower than those based on 38Arc, 83Krc, and 126Xec due to 21Ne loss. This effect is also observed for MAC 88105 and ALHA 81005. Characteristics of the trapped noble gases: The long lunar surface residence time and the shallow shielding depth are consistent with the very large amounts of trapped solar wind particles (20Ne and 36Ar, Table 1) for QUE 93069. The concentration of trapped 36Ar is quite similar to that of Y-791197: Takaoka [3] and Ostertag et al. [4] obtained 33900 and 36600 x 10-8 cm3 STP/g, respectively. The trapped ratio 40Ar/36Ar, an antiquity indicator for lunar soil, yields information on the time when the breccia was compacted from regolith material [5]. For QUE 93069 we obtain (40Ar/36Ar)trapped = 1.9 +/- 0.1 indicating exposure of the breccia material on the lunar surface about 600 Ma ago. Conclusions: Based on 38Arc the lunar surface exposure to cosmic rays for QUE 93069 lasted about 1100 +/- 400 Ma, similar to Y-791197, about twice as long as for ALHA 81005, and about seven times longer than for MAC 88104/5. The trapped 40Ar/36Ar ratio of 1.9 +/- 0.1 suggests that exposure to solar particles occured around 600 Ma ago. Since relatively large amounts of solar wind particles were accumulated, it is reasonable to assume that most cosmogenic noble

  5. Lunar Meteorites: A Global Geochemical Dataset (United States)

    Zeigler, R. A.; Joy, K. H.; Arai, T.; Gross, J.; Korotev, R. L.; McCubbin, F. M.


    To date, the world's meteorite collections contain over 260 lunar meteorite stones representing at least 120 different lunar meteorites. Additionally, there are 20-30 as yet unnamed stones currently in the process of being classified. Collectively these lunar meteorites likely represent 40-50 distinct sampling locations from random locations on the Moon. Although the exact provenance of each individual lunar meteorite is unknown, collectively the lunar meteorites represent the best global average of the lunar crust. The Apollo sites are all within or near the Procellarum KREEP Terrane (PKT), thus lithologies from the PKT are overrepresented in the Apollo sample suite. Nearly all of the lithologies present in the Apollo sample suite are found within the lunar meteorites (high-Ti basalts are a notable exception), and the lunar meteorites contain several lithologies not present in the Apollo sample suite (e.g., magnesian anorthosite). This chapter will not be a sample-by-sample summary of each individual lunar meteorite. Rather, the chapter will summarize the different types of lunar meteorites and their relative abundances, comparing and contrasting the lunar meteorite sample suite with the Apollo sample suite. This chapter will act as one of the introductory chapters to the volume, introducing lunar samples in general and setting the stage for more detailed discussions in later more specialized chapters. The chapter will begin with a description of how lunar meteorites are ejected from the Moon, how deep samples are being excavated from, what the likely pairing relationships are among the lunar meteorite samples, and how the lunar meteorites can help to constrain the impactor flux in the inner solar system. There will be a discussion of the biases inherent to the lunar meteorite sample suite in terms of underrepresented lithologies or regions of the Moon, and an examination of the contamination and limitations of lunar meteorites due to terrestrial weathering. The

  6. Martian "microfossils" in lunar meteorites? (United States)

    Sears, D W; Kral, T A


    One of the five lines of evidence used by McKay et al. (1996) for relic life in the Martian meteorite Allan Hills (ALH) 84001 was the presence of objects thought to be microfossils. These ovoid and elongated forms are similar to structures found in terrestrial rocks and described as "nanobacteria" (Folk, 1993; McBride et al., 1994). Using the same procedures and apparatus as McKay et al. (1996), we have found structures on internal fracture surfaces of lunar meteorites that cannot be distinguished from the objects described on similar surfaces in ALH 84001. The lunar surface is currently a sterile environment and probably always has been. However, the lunar and Martian meteorites share a common terrestrial history, which includes many thousands of years of exposure to Antarctic weathering. Although we do not know the origin of these ovoid and elongated forms, we suggest that their presence on lunar meteorites indicates that the objects described by McKay et al. (1996) are not of Martian biological origin.

  7. NASA Lunar and Meteorite Sample Disk Program (United States)

    Foxworth, Suzanne


    The Lunar and Meteorite Sample Disk Program is designed for K-12 classroom educators who work in K-12 schools, museums, libraries, or planetariums. Educators have to be certified to borrow the Lunar and Meteorite Sample Disks by attending a NASA Certification Workshop provided by a NASA Authorized Sample Disk Certifier.

  8. Mineralogical studies of lunar meteorites and their lunar analogs (United States)

    Takeda, H.; Mori, H.; Miyamoto, M.; Ishii, T.


    The minerology and textural properties of three lunar meteorites (Yamato 791197, ALH81005, and Yamato 82192) were analyzed and compared with lunar surface rock samples. The chemical composition and textures of pyroxene and the occurrance of glass matrices were specifically addressed. The study of glass in the lunar meteorites suggests that the glass was not produced by a meteorite impact which excavated the mass into orbit towards the Earth. The glass had been devitrified on the lunar surface before the excavation, and new glass was not produced by the last impact.

  9. Lunar and Meteorite Sample Disk for Educators (United States)

    Foxworth, Suzanne; Luckey, M.; McInturff, B.; Allen, J.; Kascak, A.


    NASA Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation and distribution of samples for research, education and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core and regolith samples, from the lunar surface. JSC also curates meteorites collected from a US cooperative effort among NASA, the National Science Foundation (NSF) and the Smithsonian Institution that funds expeditions to Antarctica. The meteorites that are collected include rocks from Moon, Mars, and many asteroids including Vesta. The sample disks for educational use include these different samples. Active relevant learning has always been important to teachers and the Lunar and Meteorite Sample Disk Program provides this active style of learning for students and the general public. The Lunar and Meteorite Sample Disks permit students to conduct investigations comparable to actual scientists. The Lunar Sample Disk contains 6 samples; Basalt, Breccia, Highland Regolith, Anorthosite, Mare Regolith and Orange Soil. The Meteorite Sample Disk contains 6 samples; Chondrite L3, Chondrite H5, Carbonaceous Chondrite, Basaltic Achondrite, Iron and Stony-Iron. Teachers are given different activities that adhere to their standards with the disks. During a Sample Disk Certification Workshop, teachers participate in the activities as students gain insight into the history, formation and geologic processes of the moon, asteroids and meteorites.

  10. Lunar and martian meteorite delivery services (United States)

    Warren, Paul H.


    Launch mechanisms for lunar and martian meteorites have been investigated, by integrating physical modeling constraints, geochemical cosmic-ray exposure (CRE) constraints, and petrologic constraints. The potential source region for lunar meteorites is remarkably small compared to the final crater volume. CRE constraints indicate that most launches start at depths of less than or equal to 3.2 m, and cratering theory implies derivation of suitably accelerated objects from a subvolume with diameter only about 0.3 x the final crater diameter. The shallow depth provenance is probably related to shock-wave interference, enhanced by the lunar regolith's extremely low compressional wave velocity. CRE constraints alone imply that four to five separate launch events are represented among the eight well-studied lunar meteorites. Most of the lunar meteorites are regolith breccias, which tend to show only limited compositional diversity within any kilometer-scale region of the Moon. Several others are polymict breccias, which also show relatively subdued compositional diversity, compared to igneous rocks. The observed diversity among these samples in terms of abundances of mare basalt and KREEP, and in Mg/(Mg + Fe) ratio, implies that among eight well-studied lunar meteorites only two potential source craters pairings are plausible: between Asuka-881757 + Y-793169 (most probable) and between Y-793274 + EET875721. Altogether, these eight lunar meteorites apparently represent at least six separate source craters, including three in the past 10(exp 5) years and five in the past 10(exp 6) years. CRE constraints imply that SNC meteorites are launched from systematically greater than lunar meteorites. SNCs are also systematically bigger, and all nine well-studied SNCs are uncommonly young (by martian standards) mafic igneous rocks. Comparison between Viking and Apollo results reveals that rocks the size of common meteorites are remarkably scarce in the martian regolith, probably due

  11. Lunar and martian meteorite delivery services (United States)

    Warren, Paul H.


    Launch mechanisms for lunar and martian meteorites have been investigated, by integrating physical modeling constraints, geochemical cosmic-ray exposure (CRE) constraints, and petrologic constraints. The potential source region for lunar meteorites is remarkably small compared to the final crater volume. CRE constraints indicate that most launches start at depths of less than or equal to 3.2 m, and cratering theory implies derivation of suitably accelerated objects from a subvolume with diameter only about 0.3 x the final crater diameter. The shallow depth provenance is probably related to shock-wave interference, enhanced by the lunar regolith's extremely low compressional wave velocity. CRE constraints alone imply that four to five separate launch events are represented among the eight well-studied lunar meteorites. Most of the lunar meteorites are regolith breccias, which tend to show only limited compositional diversity within any kilometer-scale region of the Moon. Several others are polymict breccias, which also show relatively subdued compositional diversity, compared to igneous rocks. The observed diversity among these samples in terms of abundances of mare basalt and KREEP, and in Mg/(Mg + Fe) ratio, implies that among eight well-studied lunar meteorites only two potential source craters pairings are plausible: between Asuka-881757 + Y-793169 (most probable) and between Y-793274 + EET875721. Altogether, these eight lunar meteorites apparently represent at least six separate source craters, including three in the past 105 years and five in the past 106 years. CRE constraints imply that SNC meteorites are launched from systematically greater than lunar meteorites. SNCs are also systematically bigger, and all nine well-studied SNCs are uncommonly young (by martian standards) mafic igneous rocks. Comparison between Viking and Apollo results reveals that rocks the size of common meteorites are remarkably scarce in the martian regolith, probably due to pervasive

  12. Petrography and Geochemistry of Lunar Meteorite Miller Range 13317 (United States)

    Zeigler, R. A.; Korotev, R. L.


    Miller Range (MIL) 13317 is a 32-g lunar meteorite collected during the 2013-2014 ANSMET (Antarctic Search for Meteorites) field season. It was initially described as having 25% black fusion crust covering a light- to dark-grey matrix, with numerous clasts ranging in size up to 1 cm; it was tenta-tively classified as a lunar anorthositic breccia. Here we present the petrography and geochemistry of MIL 13317, and examine possible pairing relationships with previously described lunar meteorites.

  13. Comparison of lunar rocks and meteorites: Implications to histories of the moon and parent meteorite bodies (United States)

    Prinz, M.; Fodor, R. V.; Keil, K.


    There are many similarities between lunar samples and stone meteorites. Lunar samples, especially from the highlands, indicate that they have been affected by complex and repeated impact processes. Similar complex and repeated impact processes have also been operative on the achondritic and chondritic meteorites. Similarities between lunar and meteoritic rocks are discussed as follows: (1) Monomict and polymict breccias occur in lunar rocks, as well as in achondritic and chondritic meteorites, having resulted from complex and repeated impact processes; (2) Chondrules are present in lunar meteorites, as well as in a few achondritic and most chondritic meteorites. They apparently crystallized spontaneously from molten highly supercooled droplets which may have formed from impact melts or, perhaps, volcanic processes (as well as from the solar nebula, in the case of meteoritic chondrites); (3) Lithic fragments vary from little modified (relative to the apparent original texture) to partly or completely melted and recrystallized lithic fragments. Their detailed study allows conclusions to be drawn about their parent rock types and their origin, thereby gaining insight into preimpact histories of lunar and meteoritic breccias. There is evidence that cumulate rocks were involved in the early history of both moon and parent meteorite bodies.

  14. Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface. (United States)

    Ohtani, E; Ozawa, S; Miyahara, M; Ito, Y; Mikouchi, T; Kimura, M; Arai, T; Sato, K; Hiraga, K


    Microcrystals of coesite and stishovite were discovered as inclusions in amorphous silica grains in shocked melt pockets of a lunar meteorite Asuka-881757 by micro-Raman spectrometry, scanning electron microscopy, electron back-scatter diffraction, and transmission electron microscopy. These high-pressure polymorphs of SiO(2) in amorphous silica indicate that the meteorite experienced an equilibrium shock-pressure of at least 8-30 GPa. Secondary quartz grains are also observed in separate amorphous silica grains in the meteorite. The estimated age reported by the (39)Ar/(40)Ar chronology indicates that the source basalt of this meteorite was impacted at 3,800 Ma ago, time of lunar cataclysm; i.e., the heavy bombardment in the lunar surface. Observation of coesite and stishovite formed in the lunar breccias suggests that high-pressure impact metamorphism and formation of high-pressure minerals are common phenomena in brecciated lunar surface altered by the heavy meteoritic bombardment.

  15. Lunar and Meteorite Thin Sections for Undergraduate and Graduate Studies (United States)

    Allen, J.; Galindo, C.; Luckey, M.; Reustle, J.; Todd, N.; Allen, C.


    The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core samples, pebbles, sand and dust from the lunar surface. JSC also curates meteorites collected on US expeditions to Antarctica including rocks from Moon, Mars, and many asteroids including Vesta. Studies of rock and soil samples from the Moon and meteorites continue to yield useful information about the early history of the Moon, the Earth, and the inner solar system.

  16. Discovery of seifertite in a shocked lunar meteorite. (United States)

    Miyahara, Masaaki; Kaneko, Shohei; Ohtani, Eiji; Sakai, Takeshi; Nagase, Toshiro; Kayama, Masahiro; Nishido, Hirotsugu; Hirao, Naohisa


    Many craters and thick regoliths of the moon imply that it has experienced heavy meteorite bombardments. Although the existence of a high-pressure polymorph is a stark evidence for a dynamic event, few high-pressure polymorphs are found in a lunar sample. α-PbO₂-type silica (seifertite) is an ultrahigh-pressure polymorph of silica, and is found only in a heavily shocked Martian meteorite. Here we show evidence for seifertite in a shocked lunar meteorite, Northwest Africa 4734. Cristobalite transforms to seifertite by high-pressure and -temperature condition induced by a dynamic event. Considering radio-isotopic ages determined previously, the dynamic event formed seifertite on the moon, accompanying the complete resetting of radio-isotopic ages, is ~2.7 Ga ago. Our finding allows us to infer that such intense planetary collisions occurred on the moon until at least ~2.7 Ga ago.

  17. Connecting Lunar Meteorites to Source Terrains on the Moon (United States)

    Jolliff, B. L.; Carpenter, P. K.; Korotev, R. L.; North-Valencia, S. N.; Wittmann, A.; Zeigler, R. A.


    The number of named stones found on Earth that have proven to be meteorites from the Moon is approx. 180 so far. Since the Moon has been mapped globally in composition and mineralogy from orbit, it has become possible to speculate broadly on the region of origin on the basis of distinctive compositional characteristics of some of the lunar meteorites. In particular, Lunar Prospector in 1998 [1,2] mapped Fe and Th at 0.5 degree/pixel and major elements at 5 degree/pixel using gamma ray spectroscopy. Also, various multispectral datasets have been used to derive FeO and TiO2 concentrations at 100 m/pixel spatial resolution or better using UV-VIS spectral features [e.g., 3]. Using these data, several lunar meteorite bulk compositions can be related to regions of the Moon that share their distinctive compositional characteristics. We then use EPMA to characterize the petrographic characteristics, including lithic clast components of the meteorites, which typically are breccias. In this way, we can extend knowledge of the Moon's crust to regions beyond the Apollo and Luna sample-return sites, including sites on the lunar farside. Feldspathic Regolith Breccias. One of the most distinctive general characteristics of many lunar meteorites is that they have highly feldspathic compositions (Al2O3 approx. 28% wt.%, FeO <5 wt.%, Th <1 ppm). These compositions are significant because they are similar to a vast region of the Moon's farside highlands, the Feldspathic Highlands Terrane, which are characterized by low Fe and Th in remotely sensed data [4]. The meteorites provide a perspective on the lithologic makeup of this part of the Moon, specifically, how anorthositic is the surface and what, if any, are the mafic lithic components? These meteorites are mostly regolith breccias dominated by anorthositic lithic clasts and feldspathic glasses, but they do also contain a variety of more mafic clasts. On the basis of textures, we infer these clasts to have formed by large impacts

  18. Pairing Relationships Among Feldspathic Lunar Meteorites from Miller Range, Antarctica (United States)

    Zeigler, Ryan A.; Korotev, R. L.; Jolliff, B. L.


    The Miller Range ice fields have been amongst the most prolific for lunar meteorites that ANSMET has searched [1-3]. Six different stones have been recovered during the 2005, 2007, and 2009 field seasons: MIL 05035 (142 g), MIL 07006 (1.4 g), MIL 090034 (196 g), MIL 090036 (245 g), MIL 090070 (137 g), and MIL 090075 (144 g). Of these, the five stones collected during the 2007 and 2009 seasons are feldspathic breccias. Previous work on the Miller Range feldspathic lunar meteorites (FLMs) has suggested that they are not all paired with each other [4-5]. Here we examine the pairing relationships among the Miller Range FLMs using petrography in concert with traceand major-element compositions.

  19. Solar flares, the lunar surface, and gas rich meteorites (United States)

    Barber, D. J.; Cowsik, R.; Hutcheon, I. D.; Price, P. B.; Rajan, R. S.


    Investigations on the Fe-group nuclei track density vs depth in lunar rocks and Surveyor 3 TV camera filter glass were critically examined considering more factors than previously. The analysis gives a firmer basis to the observation of the preferential leakage of low energy Fe nuclei from the accelerating region of the sun. The track density gradients in lunar rock 12022 and filter glass are used to determine the lunar erosion rate of 3 angstroms/yr. Track gradients are less steep than predicted from energy spectrum observed in the Surveyor glass, perhaps due to sputtering. High densities of etchable tracks were found at all depths down to 60 cm in fines from Apollo cores and also in thin sections of the Pesjanoe, Pantar, and Fayetteville gas-rich meteorites. It is felt unlikely that suprathermal heavy ions were responsible for the high track densities.

  20. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model. (United States)

    Russell, Sara S; Joy, Katherine H; Jeffries, Teresa E; Consolmagno, Guy J; Kearsley, Anton


    The lunar magma ocean model is a well-established theory of the early evolution of the Moon. By this model, the Moon was initially largely molten and the anorthositic crust that now covers much of the lunar surface directly crystallized from this enormous magma source. We are undertaking a study of the geochemical characteristics of anorthosites from lunar meteorites to test this model. Rare earth and other element abundances have been measured in situ in relict anorthosite clasts from two feldspathic lunar meteorites: Dhofar 908 and Dhofar 081. The rare earth elements were present in abundances of approximately 0.1 to approximately 10× chondritic (CI) abundance. Every plagioclase exhibited a positive Eu-anomaly, with Eu abundances of up to approximately 20×CI. Calculations of the melt in equilibrium with anorthite show that it apparently crystallized from a magma that was unfractionated with respect to rare earth elements and ranged in abundance from 8 to 80×CI. Comparisons of our data with other lunar meteorites and Apollo samples suggest that there is notable heterogeneity in the trace element abundances of lunar anorthosites, suggesting these samples did not all crystallize from a common magma source. Compositional and isotopic data from other authors also suggest that lunar anorthosites are chemically heterogeneous and have a wide range of ages. These observations may support other models of crust formation on the Moon or suggest that there are complexities in the lunar magma ocean scenario to allow for multiple generations of anorthosite formation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Lunar and Meteorite Sample Education Disk Program — Space Rocks for Classrooms, Museums, Science Centers, and Libraries (United States)

    Allen, J.; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.


    NASA’s Lunar and Meteorite Sample Education Disk Program has Lucite disks containing Apollo lunar samples and meteorite samples that are available for trained educators to borrow for use in classrooms, museums, science center, and libraries.

  2. Lunar Meteorites: What They Tell us About the Spatial and Temporal Distribution of Mare Basalts (United States)

    Basilevsky, A. T.; Neukum, G.; Nyquist, L.


    Here we analyze the chronology and statistical distribution of lunar meteorites with emphasis on the spatial and temporal distribution of lunar mare basalts. The data are mostly from the Lunar Meteorite Compendium ( antmet/ lmc/contents.cfm cited hereafter as Compendium) compiled by Kevin Righter, NASA Johnson Space Center, and from the associated literature. The Compendium was last modified on May 12, 2008.

  3. Petrography and mineralogy of new lunar meteorite MIL090036

    Institute of Scientific and Technical Information of China (English)

    XIE Lanfang; CHEN Hongyi; MIAO Bingkui; XIA Zhipeng; YAO Jie


    MIL090036 is a previously unknown meteorite (a feldspathic lunar breccia) that was discovered in Antarctica. The detailed petrography and mineralogy of this meteorite forms the subject of this paper. It has a typical clastic texture that consists of various types of rock debris (e.g. anorthosite, gabbroic anorthosite, gabbro, regolith breccia, troctolite, microporphyritic crystalline impact melt and compound clasts), mineral crystal fragments (e.g. pyroxenes, plagioclase, olivine and ilmenite) and feldspathic glass clasts. The ifne-grained recrystallized minerals and mineral clasts are cemented together in a glassy groundmass. The anorthite content of plagioclase in the gabbro (An81-83) and anorthosite (An88-93) both have relatively low calcium content compared to those from other breccias (An90-98). The pyroxene composition (Fs12-35 Wo3-44 En22-79) in the rock debris, crystal mineral clasts and anorthositic glass clasts are relatively iron-deifcient compared to those from gabbro debris with melt glass (Fs37-65 Wo10-29 En21-49) and groundmass (Fs18-69 Wo3-45 En14-50). In contrast, the pyroxene grains in the gabbroic anorthosite display a narrow compositional range (Fs24-27 Wo7-14 En59-69). Olivine grains in mineral fragments and the groundmass have a wider compositional range (Fo57-79) than those in the rock debris (Fo67-77). The Fe/Mn ratio in olivine is in the range of 47 to 83 (average 76) and 76 to 112 (average 73) in pyroxenes, and hence classify within the lunar ifeld. The characteristics of texture, mineral assemblage and compositions suggest that MIL090036 possibly originated from a region beyond that of the Apollo and Luna samples. Further study of MIL090036 is therefore likely to lead to a better understanding of the geological processes on the Moon and the chemical composition of the lunar crust.

  4. Lunar meteoritic gardening rate derived from in situ LADEE/LDEX measurements (United States)

    Szalay, Jamey R.; Horányi, Mihály


    The Lunar Atmosphere and Dust Environment Explorer (LADEE) orbited the Moon for approximately 6 months, taking data with the Lunar Dust Experiment (LDEX). LDEX was uniquely equipped to characterize the current rate of lunar impact gardening as it measured the very particles taking part in this process. By deriving an average lunar dust density distribution, we calculate the rate at which exospheric dust rains back down onto the lunar surface. Near the equatorial plane, we find that approximately 40 μm/Myr of lunar regolith, with a cumulative size distribution index of 2.7, is redistributed due to meteoritic bombardment, a process which occurs predominantly on the lunar apex hemisphere.

  5. Transition element distribution in stony meteorites and in terrestrial and lunar rocks. (United States)

    Mason, B.; Jarosewich, E.; Nelen, J.


    Discussion of the distribution of the transition elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) among the individual minerals of stony meteorites, and comparison with data on comparable lunar and terrestrial minerals. As an example of meteorite distribution patterns, data on the Modoc meteorite are presented. For the lunar rocks, microprobe data are used, along with published information from other investigators. For comparison with terrestrial igneous rocks, Skaergaard intrusion rocks are used. They present some striking analogies in mineralogy and petrology with the lunar igneous rocks and are thus peculiarly suitable for this cross comparison.

  6. Lunar Meteorites and Implications for Compositional Remote Sensing of the Lunar Surface (United States)

    Korotev, R. L.


    Lunar meteorites (LMs) are rocks found on Earth that were ejected from the Moon by impact of an asteroidal meteoroid. Three factors make the LMs important to remote-sensing studies: (1) Most are breccias composed of regolith or fragmental material; (2) all are rocks that resided (or breccias composed of material that resided) in the upper few meters of the Moon prior to launch and (3) most apparently come from areas distant from the Apollo sites. How Many Lunar Locations? At this writing (June 1999), there are 18 known lunar meteorite specimens. When unambiguous cases of terrestrial pairing are considered, the number of actual LMs reduces to 13. (Terrestrial pairing is when a single piece of lunar rock entered Earth's atmosphere, but multiple fragments were produced because the meteoroid broke apart on entry, upon hitting the ground or ice, or while being transported through the ice.) We have no reason to believe that LMs preferentially derive from any specific region(s) of the Moon; i.e., we believe that they are samples from random locations. However, we do not know how many different locations are represented by the LMs; mathematically, it could be as few as 1 or as many as 13. The actual maximum is al. estimate a mare to highland ratio of 54:46 for QUE 94281 and 62:38 for Y 793274; this difference is well within the range observed for soils collected only centimeters apart (in cores) at interface site like Apollo 15 and 17 [11]. Although the two meteorites were found on opposite sides of Antarctica, they are probably launch-paired. The strongest evidence is that the pyroclastic glass spherules that occur in both are of two compositional groups and the two groups are essentially the same in both meteorites. Yamato 791197 is nominally a feldspathic lunar meteorite (below), but among FLMs, it probably contains the highest abundance of clasts and glasses of mare derivation. As a consequence, its composition is at the high-Fe, low-Mg end of the range for FLMs and is

  7. Lunar Meteorites Sayh Al Uhaymir 449 and Dhofar 925, 960, and 961: Windows into South Pole (United States)

    Ziegler, Ryan A.; Jolliff, B. L.; Korotev, R. L.


    In 2003, three lunar meteorites were collected in close proximity to each other in the Dhofar region of Oman: Dhofar 925 (49 g), Dhofar 960 (35 g), and Dhofar 961 (22 g). In 2006, lunar meteorite Sayh al Uhaymir (SaU) 449 (16.5 g) was found about 100 km to the NE. Despite significant differences in the bulk composition of Dhofar 961 relative to Dhofar 925/960 and SaU 449 (which are identical to each other), these four meteorites are postulated to be paired based on their find locations, bulk composition, and detailed petrographic analysis. Hereafter, they will collectively be referred to as the Dhofar 961 clan. Comparison of meteorite and component bulk compositions to Lunar Prospector 5-degree gamma-ray data suggest the most likely provenance of this meteorite group is within the South Pole-Aitken Basin. As the oldest, largest, and deepest recognizable basin on the Moon, the composition of the material within the SPA basin is of particular importance to lunar science. Here we review and expand upon the geochemistry and petrography of the Dhofar 961 clan and assess the likelihood that these meteorites come from within the SPA basin based on their bulk compositions and the compositions and characteristics of the major lithologic components found within the breccia.

  8. In Situ Chemical Characterization of Mineral Phases in Lunar Granulite Meteorite Northwest Africa 5744 (United States)

    Kent, J. J.; Brandon, A. D.; Lapen, T. J.; Peslier, A. H.; Irving, A. J.; Coleff, D. M.


    Northwest Africa (NWA) 5744 meteorite is a granulitic and troctolitic lunar breccia which may represent nearly pristine lunar crust (Fig. 1). NWA 5744 is unusually magnesian compared to other lunar breccias, with bulk [Mg/(Mg+Fe)] 0.79 [1, 2]. Inspection shows impactor content is likely to be very minor, with low Ni content and a lack of metal grains. Some terrestrial contamination is present, evidenced by calcite within cracks. NWA 5744 has notably low concentrations of incompatible trace elements (ITEs) [2]. The goal of this study is to attempt to classify this lunar granulite through analyses of in situ phases.

  9. Lunar and Planetary Science XXXV: Meteorites to and from the Moon and Mars: My Planet or Yours? (United States)


    The titles in this section include: 1) Meteorites from Mars - Constraints from Numerical Modeling; 2) Iron Oxidation Products in Martian Ordinary Chondrite Finds as Possible Indicators of Liquid Water Exposure at Mars Exploration Rover Landings Sites; 3) Meteorites on Mars; 4) Sulfide Stability of Planetary Basalts; 5) Exposure and Terrestrial Histories of New Lunar and Martian Meteorites.

  10. Noble Gases in the Lunar Meteorites Calcalong Creek and QUE 93069 (United States)

    Swindle, T. D.; Burkland, M. K.; Grier, J. A.


    Although the world's collections contain comparable numbers of martian and lunar meteorites (about 10 each), their ejection histories seem to be quite different [1]. We have sampled no more than four martian craters, but almost every one of the lunar meteorites apparently represents a separate cratering event. Furthermore, most lunar meteorites were apparently ejected from the top meter of the surface, unlike any of the martian meteorites. We have measured noble gases in two bulk samples of the lunar meteorite QUE93069 and three of Calcalong Creek, ranging in size from 7 to 15 mg. Averaged results are given in Table 1. Both meteorites contain solar-wind-implanted noble gas. QUE 93069, which is a mature anorthositic regolith breccia [2], contains amounts comparable to the most gas-rich lunar meteorites. The relatively low 40Ar/36Ar ratios of both meteorites suggest surface exposures no more than 2.5 Ga ago [3]. Calcalong Creek has readily observable spallogenic gas. The 131Xe/126Xe ratio of 4.8+/-0.3 corresponds to an average shielding depth of slightly more than 40 gm/cm^2 [4]. In common with many lunar breccias, Calcalong Creek has been exposed to cosmic rays for several hundred Ma (calculations based on [4] and [5]). The 3He apparent exposure age is much shorter, suggesting diffusive loss of He. To determine the detailed exposure history, it is necessary to have measurements of cosmogenic radionuclides. Our samples were too small to measure 81Kr, but [6] have measured 10Be, 26Al and 36Cl. Their data are consistent with either extended exposure at MAC 88104/5 [1], but the chemical differences between the two make it highly unlikely that they come from the same event. It is difficult to determine the amount of spallogenic gas in QUE 93069 because of the huge solar wind signature. However, a few isotopes that are normally dominated by spallation (3He, 21Ne, 80Kr and 126Xe) are enhanced by >1 sigma over solar wind values, although in every case the spallogenic gas is

  11. Late Bombardment of the Lunar Highlands Recorded in MIL 090034, MIL 090036 and MIL 090070 Lunar Meteorites (United States)

    Park, J.; Nyquist, L. E.; Shih, C.-Y.; Herzog, G. F.; Yamaguchi, A.; Shirai, N.; Ebihara, M.; Lindsay, F. N.; Delaney, J.; Turrin, B.; Swisher, C., III


    The Kaguya mission detected small but widespread outcrops of nearly pure ferroan anorthosite in and around large impact basins on the Moon. Along with certain lunar rocks, highly feldspathic lunar meteorites such as MIL 090034 (M34), 090036 (M36), and 090070 (M70) may provide samples of this material. We have measured the Ar-40/Ar-39 release patterns and cosmogenic Ar-38 concentrations of several small (<200 microg) samples separated from M34,36, and 70. From petrographic observations concluded that "some of the clasts and grains experienced generations of modifications," a conclusion that we examine in light of our data.

  12. Feldspathic Meteorites MIL 090034 and 090070: Late Additions to the Lunar Crust (United States)

    Nyquist, L. E.; Shirai, N.; Yamaguchi, A.; Shih, C.-Y.; Park, J.; Ebihara, M.


    Our studies of the Miller Range lunar meteorites MIL 090034, 090036, and 090070 show them to be a diverse suite of rocks from the lunar highlands hereafter referred to as MIL 34, MIL 36, and MIL 70, resp. MIL34 and MIL70, the focus of this work, are crystalline melt breccias. Plagioclase compositions in both peak sharply around An96-97. Mg numbers of olivine vary from 58-65 with a few higher values. MIL36 is a regolith breccia. MIL 34 and MIL 70 have some of the highest Al2O3 abundances of lunar highland meteorites, indicating that they have among the largest modal abundances of plagioclase for lunar meteorites. They have lower Sc and Cr abundances than nearly all lunar highland meteorites except Dho 081, Dho 489 and Dho 733. MIL34 and MIL70 also have similar cosmic ray exposure (CRE) ages of approximately 1-2 Ma indicating they are launch paired. (MIL36 has a larger CRE age approximately greater than 70 Ma). Park et al. found a variation in Ar-Ar ages among subsamples of MIL 34 and MIL70, but preferred ages of 3500+/-110 Ma for the "Dark" phase of MIL 34 anorthite and 3520+/-30 Ma for the "Light" phase of MIL70. Bouvier et al. reported a Pb-Pb age of 3894+/-39 Ma for a feldspathic clast of MIL 34 and a similar age for a melt lithology. Here we reexamine the Rb-Sr and Sm-Nd isotopic data, which show complexities qualitatively consistent with those of the Ar-Ar and Pb-Pb data. The Sm-Nd data in particular suggest that the feldspathic compositions of MIL 34 and MIL 70 formed during initial lunar geochemical differentiation, and REE modeling suggests a relatively late-stage formation.

  13. Measurements of I-129 in meteorites and lunar rock by tandem accelerator mass spectrometry (United States)

    Nizhiizumi, K.; Arnold, J. R.; Elmore, D.; Gove, H. E.; Honda, M.


    Precise measurements of the half-life of I-129 in three different meteorites and one lunar surface rock are reported. The meteorite source of I-129 was produced by cosmic ray secondary neutron reactions on Te, while the source in lunar materials in spallation on barium and rare earth elements. The Abee, Allende, and Dhajala meteorites were examined, together with the lunar rock 14310. Details of the process used to extract the iodine are provided. The Abee and Allende samples exhibited a production of 0.5 atom/min per gm of Te from the (n,2n) reaction and 0.05 atom/min/gm for the (n,gamma) reaction. The I-129 is concluded to be a viable tool for long-lived cosmogenic nuclide studies. Further work to extend the data to include the constancy of the cosmic ray flux, the meteorite bombardment history, and the cosmic exposure age dating by means of the I-129 and Xe-129 method is indicated.

  14. Elephant Moraine 87521 - The first lunar meteorite composed of predominantly mare material (United States)

    Warren, Paul H.; Kallemeyn, Gregory W.


    This paper presents the results of trace-element analyses and detailed petrography obtained for the Elephant Moraine 87521 meteorite (EET87521) found recently in Antarctica. Its high values found for the Fe/Mn ratio and the bulk-Co content indicate that the EET87521 is not, as was originally classified, a eucrite. Moreover, its low Ga/Al and Na/Ca ratios exclude the possibility that it is an SNC meteorite. These and other characteristics (e.g., a very low Ti content) of the EET87521 suggest its affinity with very-low-Ti high-alumina varieties of lunar mare basalt.

  15. Radioactivities in returned lunar materials and in meteorites (United States)

    Fireman, E. L.


    Carbon 14 terrestial ages were determined with low level minicomputers and accelerator mass spectrometry on 1 Yamato and 18 Allan Hills and nearby sited meteorites. Techniques for an accelerator mass spectrometer which make C(14) measurements on small samples were developed. Also Be(10) concentrations were measured in Byrd core and Allan Hills ice samples.

  16. On the origins of trapped helium, neon and argon isotopic variations in meteorites. I - Gas-rich meteorites, lunar soil and breccia. II - Carbonaceous meteorites. (United States)

    Black, D. C.


    Data are presented from stepwise heating experiments and total extractions on five meteorites: Kapoeta, Fayetteville, Holman Island, Cee Vee, and Pultusk. These data reveal the presence of four isotopically distinct trapped neon components. A comparison of trapped neon with trapped helium and argon in bulk analyses indicates the existence of correlated helium, neon and argon isotopic structures. Component B is attributed primarily to direct implantation of rare gas ions by the present day solar wind. Component C is identified with directly implanted low energy (1-10 Mev/n) solar flare rare gases. Component D is associated with rare gas ions implanted in meteoritic material by the primitive, pre-main sequence, solar wind. A fourth component, observed only in Kapoeta and the lunar fines and breccia, is tentatively attributed to parent body 'atmospheric' ions implanted in surface material by a solar wind induced electric field.

  17. Meteoritic influence on sodium and potassium abundance in the lunar exosphere measured by LADEE (United States)

    Szalay, Jamey R.; Horányi, Mihály; Colaprete, Anthony; Sarantos, Menelaos


    The Lunar Atmosphere and Dust Environment Explorer (LADEE) orbited the Moon for approximately 6 months, taking data with the Lunar Dust Experiment (LDEX), Ultraviolet-Visible Spectrometer (UVS), and Neutral Mass Spectrometer (NMS). Here we compare coincident LDEX measurements of meteoritic influx to exospheric column densities of Na and K derived by UVS. We report a strong correlation of exospheric potassium and meteoroid ejecta during the Geminids meteoroid shower, exhibiting a much stronger response than sodium. With the exception of the Geminids, we find a weak correlation between the sporadic meteoroid influx as measured by LDEX and exospheric density as measured by UVS.

  18. U-Pb Dating of Zircons and Phosphates in Lunar Meteorites, Acapulcoites and Angrites (United States)

    Zhou, Q.; Zeigler, R. A.; Yin, Q. Z.; Korotev, R. L.; Joliff, B. L.; Amelin, Y.; Marti, K.; Wu, F. Y.; Li, X. H.; Li, Q. L.; Lin, Y. T.; Liu, Y.; Tang, G. Q.


    Zircon U-Pb geochronology has made a great contribution to the timing of magmatism in the early Solar System [1-3]. Ca phosphates are another group of common accessory minerals in meteorites with great potential for U-Pb geochronology. Compared to zircons, the lower closure temperatures of the U-Pb system for apatite and merrillite (the most common phosphates in achondrites) makes them susceptible to resetting during thermal metamorphism. The different closure temperatures of the U-Pb system for zircon and apatite provide us an opportunity to discover the evolutionary history of meteoritic parent bodies, such as the crystallization ages of magmatism, as well as later impact events and thermal metamorphism. We have developed techniques using the Cameca IMS-1280 ion microprobe to date both zircon and phosphate grains in meteorites. Here we report U-Pb dating results for zircons and phosphates from lunar meteorites Dhofar 1442 and SaU 169. To test and verify the reliability of the newly developed phosphate dating technique, two additional meteorites, Acapulco, obtained from Acapulco consortium, and angrite NWA 4590 were also selected for this study as both have precisely known phosphate U-Pb ages by TIMS [4,5]. Both meteorites are from very fast cooled parent bodies with no sign of resetting [4,5], satisfying a necessity for precise dating.

  19. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries (United States)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.


    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the

  20. Thermal and irradiation history of lunar meteorite Dhofar 280 (United States)

    Korochantseva, Ekaterina V.; Buikin, Alexei I.; Hopp, Jens; Lorenz, Cyrill A.; Korochantsev, Alexander V.; Ott, Ulrich; Trieloff, Mario


    Dhofar 280 recorded a complex history on the Moon revealed by high-resolution 40Ar-39Ar dating. Thermal resetting occurred less than 1 Ga ago, and the rock was exposed to several impact events before and afterwards. The cosmic ray exposure (CRE) age spectrum indicates a 400 ± 40 Ma CRE on the lunar surface. A unique feature of this lunar sample is a partial loss of cosmogenic 38Ar, resulting in a (low-temperature) CRE age plateau of about 1 Ma. This was likely caused by the same recent impact event that reset the (low-temperature) 40Ar-39Ar age spectrum and preceded the short transit phase to Earth of ≤1 Ma. Dhofar 280 may be derived from KREEP-rich lunar frontside terrains, possibly associated with the Copernicus crater or with a recent impact event on the deposits of the South Pole-Aitken basin. Although Dhofar 280 is paired with Dhofar 081, their irradiation and thermal histories on the Moon were different. An important trapped Ar component in Dhofar 280 is "orphan" Ar with a low 40Ar/36Ar ratio. It is apparently a mixture of two components, one endmember with 40Ar/36Ar = 17.5 ± 0.2 and a second less well-constrained endmember with 40Ar/36Ar ≤10. The presence of two endmembers of trapped Ar, their compositions, and the breccia ages seem to be incompatible with a previously suggested correlation between age or antiquity and the (40Ar/36Ar)trapped ratio (Eugster et al. 2001; Joy et al. 2011a). Alternatively, "orphan" Ar of this impact melt breccia may have an impact origin.

  1. Exposure Histories of Lunar Meteorites Northwest Africa 032 and DHOFAR 081

    Energy Technology Data Exchange (ETDEWEB)

    Nishiizumi, K.; Caffee, M.


    Recent additions to the list of lunar meteorites include Northwest Africa (NWA) 032 and Dhofar 081. NWA 032 is an unbrecciated basalt, found in Morocco; Dhofar 081 is a fragmented feldspathic breccia, found in Oman. Our goal is the determination of the cosmic ray exposure history of these objects. Most lunar meteorites have complex cosmic ray exposure histories, having been exposed both at some depth on the lunar surface (2{pi} irradiation) before their ejection and as small bodies in space (4{pi} irradiation) during transport from the Moon to the Earth. These exposures were then followed by residence on the Earth's surface, the terrestrial residence time. Unraveling the complex history of these objects requires the measurement of at least four cosmogenic nuclides. The specific goals of these measurements are to constrain the depth of the sample at the time of ejection from the Moon, the transit time from the time of ejection to the time of capture by the Earth, and the residence time on the Earth's surface. These exposure durations in conjunction with the sample depth on the Moon can then be used to model impact and ejection mechanisms. To investigate the complex exposure histories of lunar meteorites, we measured cosmogenic nuclides, {sup 36}Cl (half-life = 3.01 x 10{sup 5} yr), {sup 26}Al (7.05 x 10{sup 5} yr), and {sup 10}Be (1.5 x 10{sup 6} yr) in NWA 032 and Dhofar 081. The measurements of {sup 41}Ca (1.04 x 10{sup 5} yr) are in progress.

  2. Mineralogy and petrogenesis of lunar magnesian granulitic meteorite Northwest Africa 5744 (United States)

    Kent, Jeremy J.; Brandon, Alan D.; Joy, Katherine H.; Peslier, Anne H.; Lapen, Thomas J.; Irving, Anthony J.; Coleff, Daniel M.


    Lunar meteorite Northwest Africa (NWA) 5744 is a granulitic breccia with an anorthositic troctolite composition that may represent a distinct crustal lithology not previously described. This meteorite is the namesake and first-discovered stone of its pairing group. Bulk rock major element abundances show the greatest affinity to Mg-suite rocks, yet trace element abundances are more consistent with those of ferroan anorthosites. The relatively low abundances of incompatible trace elements (including K, P, Th, U, and rare earth elements) in NWA 5744 could indicate derivation from a highlands crustal lithology or mixture of lithologies that are distinct from the Procellarum KREEP terrane on the lunar nearside. Impact-related thermal and shock metamorphism of NWA 5744 was intense enough to recrystallize mafic minerals in the matrix, but not intense enough to chemically equilibrate the constituent minerals. Thus, we infer that NWA 5744 was likely metamorphosed near the lunar surface, either as a lithic component within an impact melt sheet or from impact-induced shock.

  3. Crystallization of pyroxenes in lunar KREEP basalt 15386 and meteoritic basalts (United States)

    Takeda, H.; Ishii, T.; Miyamoto, M.; Duke, M. B.


    Single crystal X-ray diffraction studies and electron microprobe analyses of pyroxenes from the meteorites Pasamonte, Yamato 74450 and Yamato 74159 and in lunar KREEP basalt 15386 show similarities of pyroxene crystallization history. They each began crystallization with magnesian pyroxene (pigeonite in the meteorites, orthopyroxene in 15386) followed by strong zonation toward iron-rich and calcium-rich compositions. These data appear to be understandable in terms of dynamic crystallization experiments on liquids of similar composition to the meteorites. In contrast, pyroxene compositions in the meteorites Juvinas, Sioux County and Nuevo Laredo lie along an apparent tie line between calcium-poor and calcium-rich end members with no iron-enrichment trend. In Sioux County and Juvinas, the primary pyroxene is calcium-poor, with exsolved augite. In Nuevo Laredo, pigeonite and augite occur as separate grains with exsolution of augite in the pigeonite. The development of prominent exsolution lamellae is consistent with a long thermal annealing after the primary crystallization event, which may also explain the absence of iron/magnesium zonation in the pigeonites.

  4. Ar-40-Ar-39 Age of an Impact-Melt Lithology in Lunar Meteorite Dhofar 961 (United States)

    Cohen, Barbara; Frasl, Barbara; Jolliff, Brad; Korotev, Randy; Zeigler, Ryan


    The Dhofar 961 lunar meteorite was found in 2003 in Oman. It is texturally paired with Dhofar 925 and Dhofar 960 (though Dhofar 961 is more mafic and richer in incompatible elements). Several lines of reasoning point to the South Pole-Aitken Basin (SPA) basin as a plausible source (Figure 2): Mafic character of the melt-breccia lithic clasts consistent the interior of SPA, rules out feldspathic highlands. Compositional differences from Apollo impact-melt groups point to a provenance that is separated and perhaps far distant from the Procellarum KREEP Terrane SPA "hot spots" where Th concentrations reach 5 ppm and it has a broad "background" of about 2 ppm, similar to lithic clasts in Dhofar 961 subsamples If true, impact-melt lithologies in this meteorite may be unaffected by the Imbrium-forming event that is pervasively found in our Apollo sample collection, and instead record the early impact history of the Moon.

  5. A Review of Lunar Meteorite Impact-Melt Clast Compositions and Ages (United States)

    Cohen, Barbara A.


    One of the important outstanding goals of lunar science is understanding the bombardment history of the Moon and calibrating the impact flux curve for extrapolation to the Earth and other terrestrial planets. Obtaining a sample from a carefully-characterized interior melt sheet or ring massif is a reliable way to tell a single crater's age. A different but complementary approach is to use extensive laboratory characterization (microscopic, geochemical, isotopic) of float samples to understand the integrated impact history of a region. Both approaches have their merits and limitations. In essence, the latter is the approach we have used to understand the impact history of the Feldspathic Highland Terrain (FHT) as told by lunar feldspathic meteorites.

  6. Galactic cosmic-ray-produced thermoluminescence profiles in meteorites, lunar samples and a terrestrial analog

    Energy Technology Data Exchange (ETDEWEB)

    Benoit, P.H. [Arkansas Univ., Fayetteville, AR (United States). Dept. of Chemistry and Biochemistry; Yongheng Chen [Chinese Academy of Sciences, Wushan, Guangzhou, GD (China). Inst. of New Geological Technology


    The long-term radiation shielding properties of common extraterrestrial materials are poorly known, although these materials are the most likely structural elements on airless worlds such as the Moon. We report on radiation dose profiles in meteorites and lunar soil cores using specific minerals as naturally-occurring ``dosimeters``. We find that radiation profiles are fairly flat in typical meteoroid bodies (< 85 cm radius) and drop by only about 40% through about 2.5 m of lunar soil. These profiles are produced by primary galactic cosmic rays and the secondary proton cascade but with a significant contribution by secondary neutrons at depths of about 2 m (300 g/cm{sup 2}). (author).

  7. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) with Raman Imaging Applied to Lunar Meteorites. (United States)

    Smith, Joseph P; Smith, Frank C; Booksh, Karl S


    Lunar meteorites provide a more random sampling of the surface of the Moon than do the returned lunar samples, and they provide valuable information to help estimate the chemical composition of the lunar crust, the lunar mantle, and the bulk Moon. As of July 2014, ∼96 lunar meteorites had been documented and ten of these are unbrecciated mare basalts. Using Raman imaging with multivariate curve resolution-alternating least squares (MCR-ALS), we investigated portions of polished thin sections of paired, unbrecciated, mare-basalt lunar meteorites that had been collected from the LaPaz Icefield (LAP) of Antarctica-LAP 02205 and LAP 04841. Polarized light microscopy displays that both meteorites are heterogeneous and consist of polydispersed sized and shaped particles of varying chemical composition. For two distinct probed areas within each meteorite, the individual chemical species and associated chemical maps were elucidated using MCR-ALS applied to Raman hyperspectral images. For LAP 02205, spatially and spectrally resolved clinopyroxene, ilmenite, substrate-adhesive epoxy, and diamond polish were observed within the probed areas. Similarly, for LAP 04841, spatially resolved chemical images with corresponding resolved Raman spectra of clinopyroxene, troilite, a high-temperature polymorph of anorthite, substrate-adhesive epoxy, and diamond polish were generated. In both LAP 02205 and LAP 04841, substrate-adhesive epoxy and diamond polish were more readily observed within fractures/veinlet features. Spectrally diverse clinopyroxenes were resolved in LAP 04841. Factors that allow these resolved clinopyroxenes to be differentiated include crystal orientation, spatially distinct chemical zoning of pyroxene crystals, and/or chemical and molecular composition. The minerals identified using this analytical methodology-clinopyroxene, anorthite, ilmenite, and troilite-are consistent with the results of previous studies of the two meteorites using electron microprobe

  8. Visible and near-infrared spectral survey of lunar meteorites recovered by the National Institute of Polar Research (United States)

    Hiroi, T.; Kaiden, H.; Yamaguchi, A.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.


    Lunar meteorite chip samples recovered by the National Institute of Polar Research (NIPR) have been studied by a UV-visible-near-infrared spectrometer, targeting small areas of about 3 × 2 mm in size. Rock types and approximate mineral compositions of studied meteorites have been identified or obtained through this spectral survey with no sample preparation required. A linear deconvolution method was used to derive end-member mineral spectra from spectra of multiple clasts whenever possible. In addition, the modified Gaussian model was used in an attempt of deriving their major pyroxene compositions. This study demonstrates that a visible-near-infrared spectrometer on a lunar rover would be useful for identifying these kinds of unaltered (non-space-weathered) lunar rocks. In order to prepare for such a future mission, further studies which utilize a smaller spot size are desired for improving the accuracy of identifying the clasts and mineral phases of the rocks.

  9. Lunar highland meteorite Dhofar 026 and Apollo sample 15418: Two strongly shocked, partially melted, granulitic breccias (United States)

    Cohen, B. A.; James, O.B.; Taylor, L.A.; Nazarov, M.A.; Barsukova, L.D.


    Studies of lunar meteorite Dhofar 026, and comparison to Apollo sample 15418, indicate that Dhofar 026 is a strongly shocked granulitic breccia (or a fragmental breccia consisting almost entirely of granulitic breccia clasts) that experienced considerable post-shock heating, probably as a result of diffusion of heat into the rock from an external, hotter source. The shock converted plagioclase to maskelynite, indicating that the shock pressure was between 30 and 45 GPa. The post-shock heating raised the rock's temperature to about 1200 ??C; as a result, the maskelynite devitrified, and extensive partial melting took place. The melting was concentrated in pyroxene-rich areas; all pyroxene melted. As the rock cooled, the partial melts crystallized with fine-grained, subophitic-poikilitic textures. Sample 15418 is a strongly shocked granulitic breccia that had a similar history, but evidence for this history is better preserved than in Dhofar 026. The fact that Dhofar 026 was previously interpreted as an impact melt breccia underscores the importance of detailed petrographic study in interpretation of lunar rocks that have complex textures. The name "impact melt" has, in past studies, been applied only to rocks in which the melt fraction formed by shock-induced total fusion. Recently, however, this name has also been applied to rocks containing melt formed by heating of the rocks by conductive heat transfer, assuming that impact is the ultimate source of the heat. We urge that the name "impact melt" be restricted to rocks in which the bulk of the melt formed by shock-induced fusion to avoid confusion engendered by applying the same name to rocks melted by different processes. ?? Meteoritical Society, 2004.

  10. Constraints on the Composition and Evolution of the Lunar Crust from Meteorite NWA 3163 (United States)

    McLeod, C. L.; Brandon, A. D.; Fernandes, V. A.; Peslier, A. H.; Lapen, T. J.; Irving, A. J.


    The lunar meteorite NWA 3163 (paired with NWA 4881, 4483) is a ferroan, feldspathic granulitic breccia characterized by pigeonite, augite, olivine, maskelynite and accessory Tichromite, ilmenite and troilite. Bulk rock geochemical signatures indicate the lack of a KREEP- derived component (Eu/Eu* = 3.47), consistent with previously studied lunar granulites and anorthosites. Bulk rock chondrite-normalized signatures are however distinct from the anorthosites and granulites sampled by Apollo missions and are relatively REE-depleted. In-situ analyses of maskelynite reveal little variation in anorthite content (average An% is 96.9 +/- 1.6, 2 sigma). Olivine is relatively ferroan and exhibits very little variation in forsterite content with mean Fo% of 57.7 +/- 2.0 (2 sigma). The majority of pyroxene is low-Ca pigeonite (En57Fs33Wo10). Augite (En46Fs21Wo33) is less common, comprising approximately 10% of analyzed pyroxene. Two pyroxene thermometry on co-existing orthopyroxene and augite yield an equilibrium temperature of 1070C which is in reasonable agreement with temperatures of 1096C estimated from pigeonite compositions. Rb-Sr isotopic systematics of separated fractions yield an average measured Sr-87/Sr-87 of 0.699282+/-0.000007 (2 sigma). Sr model ages are calculated using a modern day Sr-87/Sr-86 Basaltic Achondrite Best Initial (BABI) value of 0.70475, from an initial BABI value Sr-87/Sr-86 of 0.69891 and a corresponding Rb-87/Sr-97 of 0.08716. The Sr model Thermomechanical analysis (TMA) age, which represents the time of separation of a melt from a source reservoir having chondritic evolution, is 4.56+/-0.1 Ga. A Sr model T(sub RD) age, which is a Rb depletion age and assumes no contribution from Rb in the sample in the calculation, yields 4.34+/-0.1 Ga (i.e. a minimum age). The Ar-Ar dating of paired meteorite NWA 4881 reveals an age of c. 2 Ga, likely representing the last thermal event this meteorite experienced. An older Ar-40/Ar-39 age of c. 3.5 Ga may

  11. A model for meteoritic and lunar 40Ar/39Ar age spectra: Addressing the conundrum of multi-activation energies (United States)

    Boehnke, P.; Harrison, T. Mark; Heizler, M. T.; Warren, P. H.


    Results of whole-rock 40Ar/39Ar step-heating analyses of extra-terrestrial materials have been used to constrain the timing of impacts in the inner solar system, solidification of the lunar magma ocean, and development of planetary magnetic fields. Despite the importance of understanding these events, the samples we have in hand are non-ideal due to mixed provenance, isotopic disturbances from potentially multiple heating episodes, and laboratory artifacts such as nuclear recoil. Although models to quantitatively assess multi-domain, diffusive 40Ar* loss have long been applied to terrestrial samples, their use on extra-terrestrial materials has been limited. Here we introduce a multi-activation energy, multi-diffusion domain model and apply it to 40Ar/39Ar temperature-cycling, step-heating data for meteoritic and lunar samples. We show that age spectra of extra-terrestrial materials, the Jilin chondrite (K-4) and Apollo 16 lunar breccia (67514 , 43), yielding seemingly non-ideal behavior commonly interpreted as either laboratory artifacts or localized shock heating of pyroxene, are meaningful and can be understood in context of the presence of multi-diffusion domains containing multiple activation energies. Internally consistent results from both the meteoritic and lunar samples reveal high-temperature/short duration thermal episodes we interpret as due to moderate shock heating.

  12. Solar cosmic ray produced neon in lunar soils and their implication for gas-rich meteorite studies (United States)

    Nautiyal, C. M.; Rao, M. N.


    Characteristic neon isotopic ratios, produced due to solar cosmic ray spallation (SCR) in lunar soils, are useful in deciphering and estimating the relative contributions of SCR and GCR spallation. To delineate these features, etched mineral grains from mature and immature lunar soils (14148 and 61221 respectively) were analyzed using mass spectrometry. The SF-Ne composition deduced in this work agrees with that obtained from earlier etched lunar pyroxene studies. The data points for mature soil 14148 define a line which significantly deviates from the 61221 tie line. This deviation is attributed to the presence of SCR spallation component. In this context, neon isotopic compositions (step-wise heating) in Pantar and Leighton dark portions were studied and compared with that of Fayetteville. The meteorite data points deviate significantly from the tie line joining SF-Ne and GCR (pyroxene) end points. This deviation is attributed to SCR-spallation in gas-rich chondrites.

  13. Osmium isotope and highly siderophile element constraints on ages and nature of meteoritic components in ancient lunar impact rocks (United States)

    Fischer-Gödde, Mario; Becker, Harry


    The concentrations of highly siderophile elements (HSE: Re, Os, Ir, Ru, Pt, Rh, Pd, Au) and 187Os/188Os isotope compositions have been determined for 67 subsamples of six lunar impact rocks from the Apollo 14, 16 and 17 landing sites, and the lunar meteorite Dar al Gani (DaG) 400 using inductively coupled plasma mass spectrometry (ICP-MS) and negative thermal ionization mass spectrometry (N-TIMS). We report the first Re-Os isochron age on a lunar impact melt rock. 187Re-187Os isotope systematics for Apollo 16 sample 67935 define an isochron age of 4.21 ± 0.13 Ga (MSWD = 1.5), which is interpreted to reflect localized partitioning processes between solid metal-liquid metal as this rock melted. The new age adds further constraints on the significance of pre-4.0 Ga basin forming impacts on the Moon and possible mixing of ancient impactor compositions in lunar impact rocks. Linear correlations displayed by subsamples of a given impact rock in plots of HSE versus Ir concentrations are explained by dilution processes through essentially HSE-free anorthositic lunar crustal target rocks or binary mixing between a high HSE meteoritic end-member and a low HSE end-member composition. Slope-derived HSE ratios and 187Os/188Os of the meteoritic component in granulitic impactites 67915, 67955 and 79215 are similar to slightly volatile element depleted carbonaceous chondrites. Suprachondritic ratios of Ru/Ir, Pt/Ir, Rh/Ir, and Pd/Ir for Apollo 14 impact melt rock 14310 are similar to ratios observed for other Apollo 14 samples and Apollo 17 poikilitic impact melt rocks. Apollo 16 poikilitic and subophitic impact melt rocks 60315 and 67935 show slightly subchondritic Os/Ir and suprachondritic ratios of 187Os/188Os, Ru/Ir, Pt/Ir, Rh/Ir, Pd/Ir and Au/Ir. Their strongly fractionated HSE compositions are similar to some members of the IVA iron meteorite group and provide further evidence for an iron meteorite impactor component in Apollo 16 impact melt rocks. The range of chondritic

  14. Petrology and geochemistry of feldspathic impact-melt breccia Abar al' Uj 012, the first lunar meteorite from Saudi Arabia (United States)

    Mészáros, Marianna; Hofmann, Beda A.; Lanari, Pierre; Korotev, Randy L.; Gnos, Edwin; Greber, Nicolas D.; Leya, Ingo; Greenwood, Richard C.; Jull, A. J. Timothy; Al-Wagdani, Khalid; Mahjoub, Ayman; Al-Solami, Abdulaziz A.; Habibullah, Siddiq N.


    Abar al' Uj (AaU) 012 is a clast-rich, vesicular impact-melt (IM) breccia, composed of lithic and mineral clasts set in a very fine-grained and well-crystallized matrix. It is a typical feldspathic lunar meteorite, most likely originating from the lunar farside. Bulk composition (31.0 wt% Al2O3, 3.85 wt% FeO) is close to the mean of feldspathic lunar meteorites and Apollo FAN-suite rocks. The low concentration of incompatible trace elements (0.39 ppm Th, 0.13 ppm U) reflects the absence of a significant KREEP component. Plagioclase is highly anorthitic with a mean of An96.9Ab3.0Or0.1. Bulk rock Mg# is 63 and molar FeO/MnO is 76. The terrestrial age of the meteorite is 33.4 ± 5.2 kyr. AaU 012 contains a 1.4 × 1.5 mm2 exotic clast different from the lithic clast population which is dominated by clasts of anorthosite breccias. Bulk composition and presence of relatively large vesicles indicate that the clast was most probably formed by an impact into a precursor having nonmare igneous origin most likely related to the rare alkali-suite rocks. The IM clast is mainly composed of clinopyroxenes, contains a significant amount of cristobalite (9.0 vol%), and has a microcrystalline mesostasis. Although the clast shows similarities in texture and modal mineral abundances with some Apollo pigeonite basalts, it has lower FeO and higher SiO2 than any mare basalt. It also has higher FeO and lower Al2O3 than rocks from the FAN- or Mg-suite. Its lower Mg# (59) compared to Mg-suite rocks also excludes a relationship with these types of lunar material.

  15. Cosmic-ray exposure histories of the lunar meteorites AaU 012 and Shişr 166 (United States)

    Mészáros, Marianna; Leya, Ingo; Hofmann, Beda A.


    We measured the concentrations and isotopic compositions of the stable isotopes of He, Ne, Ar, Kr, and Xe in the two lunar impact-melt breccias Abar al' Uj (AaU) 012 and Shişr 166 to obtain information on their cosmic-ray exposure histories and possible launch pairing; the latter was suggested because of their similar chemical composition. AaU 012 has higher gas concentrations than Shişr 166 and clearly contains implanted solar wind gases, indicating a shallow to moderate shielding for this meteorite in the lunar regolith. The maximum shielding depth of AaU 012 was most likely ≤310 g cm-2 and its lunar regolith residence time was ≥420 ± 70 Ma. Our results indicate that in Shişr 166 the trapped component is a mixture of air and solar wind. The low concentration of cosmogenic and solar wind gases indicate substantial diffusive gas loss and a shielding depth of exposure history on the Moon does not exclude the possibility that the two meteorites were ejected by a single, large impact event.

  16. Laser-Ablation ICP-MS Analyses of Meteoritic Metal Grains in Lunar Impact-Melt Breccias (United States)

    Korotev, R. L.; Jolliff, B. L.; Campbell, A. J.; Humayun, M.


    Lunar impact-melt breccias contain metal grains from the meteorites that formed the breccias. Because the breccias contain clastic material that may derive from older breccias, metal grains from earlier impacts may be present, too. The large subset of moderately mafic (8 - 12% FeO), KREEP-rich ("LKFM") melt breccias is particularly important because: (1) these are the melt breccias most likely to have been produced in basin-forming impacts, (2) it is from these breccias that many of the approx. 3.9 Gyr ages that are so common in lunar samples derive, (3) the breccias contain large proportions of FeNi metal, more than 1% in some types of Apollo 16 breccias, and (4) the metal potentially provides information about the impactors causing the apparent cataclysm at 3.9 Gyr.

  17. Laser-Ablation ICP-MS Analyses of Meteoritic Metal Grains in Lunar Impact-Melt Breccias (United States)

    Korotev, R. L.; Jolliff, B. L.; Campbell, A. J.; Humayun, M.


    Lunar impact-melt breccias contain metal grains from the meteorites that formed the breccias. Because the breccias contain clastic material that may derive from older breccias, metal grains from earlier impacts may be present, too. The large subset of moderately mafic (8 - 12% FeO), KREEP-rich ("LKFM") melt breccias is particularly important because: (1) these are the melt breccias most likely to have been produced in basin-forming impacts, (2) it is from these breccias that many of the approx. 3.9 Gyr ages that are so common in lunar samples derive, (3) the breccias contain large proportions of FeNi metal, more than 1% in some types of Apollo 16 breccias, and (4) the metal potentially provides information about the impactors causing the apparent cataclysm at 3.9 Gyr.

  18. Micro-elemental analysis of some Transylvanian meteorites and lunar samples

    Energy Technology Data Exchange (ETDEWEB)

    Vasilescu, Angela [Department of Applied Nuclear Physics, Horia Hulubei National Institute of Nuclear Physics and Engineering, POB MG-6, Bucharest, 077125 Magurele (Romania)], E-mail:; Constantinescu, B.; Bugoi, Roxana [Department of Applied Nuclear Physics, Horia Hulubei National Institute of Nuclear Physics and Engineering, POB MG-6, Bucharest, 077125 Magurele (Romania); Ceccato, D. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Padova (Italy); Grambole, D.; Herrmann, F. [Ionenstrahlzentrum Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany)


    Micro-PIXE investigations on some Transylvanian chondritic meteorite fragments and on small Moon soil pieces from the LUNA-16 mission were performed at the Legnaro and Rossendorf proton microprobes. The most exciting finding of the study was the presence of Pt grains in the Moci meteorite. The results are compared to previously published data.

  19. Gamma-emissions of some meteorites and terrestrial rocks. Evaluation of lunar soil radioactivity; Emissions gamma de quelques meteorites et roches terrestres. Evaluation de la radioactivite du sol lunaire

    Energy Technology Data Exchange (ETDEWEB)

    Nordemann, D. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)


    The gamma-emissions of some terrestrial rocks and of the following meteorites: Bogou, Eagle-Station, Granes, and Dosso were studied by quantitative low background gamma spectrometry. These measurements and their interpretation lead to the evaluation of the possible gamma-emissions of several models of lunar soils. (author) [French] Les emissions gamma des meteorites Bogou, Eagle-Station, Granes et Dosso et de quelques roches terrestres ont ete etudiees par spectrometrie gamma quantitative a faible mouvement propre. Ces mesures et leur interpretation permettent d'evaluer les principales contributions des emissions gamma du sol lunaire pour des modeles de compositions possibles variees. (auteur)

  20. Photomosaics of the cathodoluminescence of 60 sections of meteorites and lunar samples (United States)

    Akridge, D.G.; Akridge, J.M.C.; Batchelor, J.D.; Benoit, P.H.; Brewer, J.; DeHart, J.M.; Keck, B.D.; Jie, L.; Meier, A.; Penrose, M.; Schneider, D.M.; Sears, D.W.G.; Symes, S.J.K.; Yanhong, Z.


    Cathodoluminescence (CL) petrography provides a means of observing petrographic and compositional properties of geological samples not readily observable by other techniques. We report the low-magnification CL images of 60 sections of extraterrestrial materials. The images we report include ordinary chondrites (including type 3 ordinary chondrites and gas-rich regolith breccias), enstatite chondrites, CO chondrites and a CM chondrite, eucrites and a howardite, lunar highland regolith breccias, and lunar soils. The CL images show how primitive materials respond to parent body metamorphism, how the metamorphic history of EL chondrites differs from that of EH chondrites, how dark matrix and light clasts of regolith breccias relate to each other, how metamorphism affects eucrites, the texture of lunar regolith breccias and the distribution of crystallized lunar spherules ("lunar chondrules"), and how regolith working affects the mineral properties of lunar soils. More particularly, we argue that such images are a rich source of new information on the nature and history of these materials and that our efforts to date are a small fraction of what can be done. Copyright 2004 by the American Geophysical Union.

  1. Lunar formation. Dating the Moon-forming impact event with asteroidal meteorites. (United States)

    Bottke, W F; Vokrouhlický, D; Marchi, S; Swindle, T; Scott, E R D; Weirich, J R; Levison, H


    The inner solar system's biggest and most recent known collision was the Moon-forming giant impact between a large protoplanet and proto-Earth. Not only did it create a disk near Earth that formed the Moon, it also ejected several percent of an Earth mass out of the Earth-Moon system. Here, we argue that numerous kilometer-sized ejecta fragments from that event struck main-belt asteroids at velocities exceeding 10 kilometers per second, enough to heat and degas target rock. Such impacts produce ~1000 times more highly heated material by volume than do typical main belt collisions at ~5 kilometers per second. By modeling their temporal evolution, and fitting the results to ancient impact heating signatures in stony meteorites, we infer that the Moon formed ~4.47 billion years ago, which is in agreement with previous estimates. Copyright © 2015, American Association for the Advancement of Science.

  2. Effects of lunar soil, Zagami meteorite, and ocean ridge basalt on the excretion of itoic acid, a siderophore, and coproporphyrin by Bacillus subtilis (United States)

    Ito, T.


    Samples of lunar soil (10084,151), Zagami meteorite, postulated to be ejected from Mars, and ocean ridge basalt, the most abundant volcanic rock on earth, all completely inhibited the excretion of itoic acid and of coproporphyrin by Bacillus subtilis, a common airborne bacterium. Since such inhibition has been known to occur only under iron rich growth conditions(the excretion of these compounds occurs under iron deficient growth conditions), the result indicated that the organism was capable of extracting iron quite readily from these materials. A sample of synthetic ilmenite completely failed to inhibit the excretion of coproporphyrin, and inhibited the excretion of itoic acid only slightly. The result suggested that much of the iron extracted by the organism must have come from iron sources other than ilmenite,such as pyroxenes and olivines,in these natural materials tested.

  3. Research-Grade 3D Virtual Astromaterials Samples: Novel Visualization of NASA's Apollo Lunar Samples and Antarctic Meteorite Samples to Benefit Curation, Research, and Education (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K. R.; Zeigler, R. A.; Righter, K.; Hanna, R. D.; Ketcham, R. A.


    NASA's vast and growing collections of astromaterials are both scientifically and culturally significant, requiring unique preservation strategies that need to be recurrently updated to contemporary technological capabilities and increasing accessibility demands. New technologies have made it possible to advance documentation and visualization practices that can enhance conservation and curation protocols for NASA's Astromaterials Collections. Our interdisciplinary team has developed a method to create 3D Virtual Astromaterials Samples (VAS) of the existing collections of Apollo Lunar Samples and Antarctic Meteorites. Research-grade 3D VAS will virtually put these samples in the hands of researchers and educators worldwide, increasing accessibility and visibility of these significant collections. With new sample return missions on the horizon, it is of primary importance to develop advanced curation standards for documentation and visualization methodologies.

  4. The Meteoritical Bulletin, No. 103 (United States)

    Ruzicka, Alex; Grossman, Jeffrey; Bouvier, Audrey; Agee, Carl B.


    Meteoritical Bulletin 103 contains 2582 meteorites including 10 falls (Ardón, Demsa, Jinju, Križevci, Kuresoi, Novato, Tinajdad, Tirhert, Vicência, Wolcott), with 2174 ordinary chondrites, 130 HED achondrites, 113 carbonaceous chondrites, 41 ureilites, 27 lunar meteorites, 24 enstatite chondrites, 21 iron meteorites, 15 primitive achondrites, 11 mesosiderites, 10 Martian meteorites, 6 Rumuruti chondrites, 5 ungrouped achondrites, 2 enstatite achondrites, 1 relict meteorite, 1 pallasite, and 1 angrite, and with 1511 from Antarctica, 588 from Africa, 361 from Asia, 86 from South America, 28 from North America, and 6 from Europe. Note: 1 meteorite from Russia was counted as European. The complete contents of this bulletin (244 pages) are available on line. Information about approved meteorites can be obtained from the Meteoritical Bulletin Database (MBD) available on line at

  5. 3.1 Ga crystallization age for magnesian and ferroan gabbro lithologies in the Northwest Africa 773 clan of lunar meteorites (United States)

    Shaulis, B. J.; Righter, M.; Lapen, T. J.; Jolliff, B. L.; Irving, A. J.


    The Northwest Africa (NWA) 773 clan of meteorites is a group of paired and/or petrogenetically related stones that contain at least six different lithologies: magnesian gabbro, ferroan gabbro, anorthositic gabbro, olivine phyric basalt, regolith breccia, and polymict breccia. Uranium-lead dates of baddeleyite in the magnesian gabbro, ferroan gabbro, and components within breccia lithologies of paired lunar meteorites NWA 773, NWA 3170, NWA 6950, and NWA 7007 indicate a chronologic link among the meteorites and their components. A total of 50 baddeleyite grains were analyzed and yielded weighted average 207Pb-206Pb dates of 3119.4 ± 9.4 (n = 27), 3108 ± 20 (n = 13), and 3113 ± 15 (n = 10) Ma for the magnesian gabbro, ferroan gabbro, and polymict breccia lithologies, respectively. A weighted average date of 3115.6 ± 6.8 Ma (n = 47/50) was calculated from the baddeleyite dates for all lithologies. A single large zircon grain found in a lithic clast in the polymict breccia of NWA 773 yielded a U-Pb concordia date of 3953 ± 18 Ma, indicating a much more ancient source for some of the components within the breccia. A U-Pb concordia date of apatite and merrillite grains from the magnesian gabbro and polymict breccia lithologies in NWA 773 is 3112 ± 33 Ma, identical to the baddeleyite dates. Magnesian and ferroan gabbros, as well as the dated baddeleyite and Ca-phosphate-bearing detritus in the breccia lithologies, formed during the same igneous event at about 3115 Ma. These data also strengthen proposed petrogenetic connections between magnesian and ferroan gabbro lithologies, which represent some of the youngest igneous rocks known from the Moon.

  6. SIMS Pb/Pb dating of Zr-rich minerals in lunar meteorites Miller Range 05035 and LaPaz Icefield 02224:Implications for the petrogenesis of mare basalt

    Institute of Scientific and Technical Information of China (English)

    HSU; WeiBiao


    Miller Range (MIL) 05035 and LaPaz Icefield (LAP) 02224 are unbrecciated lunar basalt meteorites. In this report, we studied their petrography and mineralogy and made in situ uranogenic Pb/Pb dating of Zr-rich minerals. Petrography and mineralogy of these two lunar meteorites are consistent with previous investigations. The zirconolite Pb/Pb age of MIL 05035 is 3851±8 Ma (2σ), in excellent agreement with previous reports. This age suggests that MIL 05035 could be paired with Asuka 881757, a low-Ti mare basalt meteorite. The magmatic event related to MIL 05035 was probably due to the late heavy impact bom- bardment on the moon around 3.9 Ga. One baddeleyite grain in LAP 02224 shows a large variation of Pb/Pb age, from 3109±29 to 3547±21 Ma (2σ), much older than the whole-rock age of the same meteorite (~3.02±0.03 Ga). The other baddeleyite grain in LAP 02224 has an age of 3005±17 Ma (2σ). The result indicates that the minimum crystallization age of LAP 02224 is ~3.55 Ga and the younger ages could reflect late thermal disturbance on U-Pb system.

  7. Laser induced breakdown spectroscopy on meteorites

    Energy Technology Data Exchange (ETDEWEB)

    De Giacomo, A. [Department of Chemistry, University of Bari (Italy); MIP-CNR sec Bari (Italy)], E-mail:; Dell' Aglio, M.; De Pascale, O. [MIP-CNR sec Bari (Italy); Longo, S.; Capitelli, M. [Department of Chemistry, University of Bari (Italy); MIP-CNR sec Bari (Italy)


    The classification of meteorites when geological analysis is unfeasible is generally made by the spectral line emission ratio of some characteristic elements. Indeed when a meteorite impacts Earth's atmosphere, hot plasma is generated, as a consequence of the braking effect of air, with the consequent ablation of the falling body. Usually, by the plasma emission spectrum, the meteorite composition is determined, assuming the Boltzmann equilibrium. The plasma generated during Laser Induced Breakdown Spectroscopy (LIBS) experiment shows similar characteristics and allows one to verify the mentioned method with higher accuracy. On the other hand the study of Laser Induced Breakdown Spectroscopy on meteorite can be useful for both improving meteorite classification methods and developing on-flight techniques for asteroid investigation. In this paper certified meteorites belonging to different typologies have been investigated by LIBS: Dofhar 461 (lunar meteorite), Chondrite L6 (stony meteorite), Dofhar 019 (Mars meteorite) and Sikhote Alin (irony meteorite)


    Institute of Scientific and Technical Information of China (English)

    缪秉魁; 陈宏毅; 夏志鹏; 姚杰; 谢兰芳; 倪文俊; 张川统


    月球陨石是遭受小行星撞击从月球飞溅出来并陨落到地球上的岩石,是研究月球物质成分和演化历史的重要对象。自1979年发现和确认了第一块月球陨石( ALHA 81005)之后,至今已收集到165块月球陨石。虽然Apollo计划和Luna计划采集了382 kg月球样品,但由于飞船登陆采样位置有限,月球陨石对了解月球的物质组成和演化历史提供了重要的样品补充。除了少量具有结晶结构的岩石类型以外,大部分月球陨石为碎屑岩,这些碎屑岩主要有三类:高地斜长质角砾岩、月海玄武质角砾岩和高地斜长质-月海玄武质混合角砾岩。根据岩性分析,尤其是岩屑,月球陨石中存在斜长岩、玄武岩、辉长岩、橄长岩、苏长岩、克里普( KREEP)岩。在月球陨石中逐渐发现了不少克里普岩组分,其中SaU169中VHK的富KREEP成分代表了月球中可能存在的原始富KREEP岩浆源,这为探索月球中克里普岩成因提供了重要信息。据研究,现已发现了6对溅射成对月球陨石,同时,还发现了9个可能的月球陨石来源区域。后成合晶现象的发现对月球表面冲击变质作用研究具有重要的意义。此外,月球陨石同位素年龄和稀有气体成分研究不但获得了月球岩石结晶和月壳形成过程的信息,同时也获得了月球表面的冲击变质历史信息。%Lunar meteorites are rock samples from the Moon that have experienced a shock event resulting from impact by an asteroid that results in the ejection of the rock from the Moon ’ s surface and its landing on Earth .Since the first lunar meteorite ( ALHA 81005) was discovered and identified in 1979, a total of 165 lunar meteorites have been found.Additionally, the Apollo and Luna projects returned 382 kg of lunar samples; however, according to the collection sites are limited , lunar meteorites still provide important supplementary information on

  9. Foundations of Forensic Meteoritics (United States)

    Treiman, A. H.


    It may be useful to know if a meteorite was found at the site where it fell. For instance, the polymict ureilites North Haig and Nilpena were found 1100 km apart, yet are petrologically identical [1]. Could this distance represent transport from a single strewn field, or does it represent distinct fall sites? A meteorite may contain sufficient clues to suggest some characteristics of its fall site. If these inferences are inconsistent with the find site, one may infer that the meteorite has been transported. It will likely be impossible to determine the exact fall site of a transported meteorite. Data relevant to a meteorite's fall site may be intrinsic to the meteorite, or acquired at the site. For instance, an intrinsic property is terrestrial residence age (from abundances of cosmogenic radioisotopes and their decay products); a meteorite's terrestrial residence age must be the same or less than that of the surface on which it fell. After falling, a meteorite may acquire characteristic telltales of terrestrial geological, geochemical, and biological processes. These telltale clues may include products of chemical weathering, adhering geological materials, biological organisms living (or once living) on the meteorite, and biological materials adhering to (but never living on) the meteorite. The effects of chemical weathering, present in all but the freshest finds, range from slight rusting to extensive decomposition and veining The ages of weathering materials and veins, as with terrestrial residence ages above, must be less than the age of the fall surface. The mineralogy and chemistry, elemental and isotopic, of weathering materials will differ according to the mineralogy and composition of the meteorite, and the mineralogy, geochemistry, hydrology, and climate of the fall site. Weathering materials may also vary as climate changes and may vary among the microenvironments associated with a meteorite on the Earth's surface. Geological materials (rock, sediment

  10. Monte Carlo simulation of GCR neutron capture production of cosmogenic nuclides in stony meteorites and lunar surface (United States)

    KolláR, D.; Michel, R.; Masarik, J.


    A purely physical model based on a Monte Carlo simulation of galactic cosmic ray (GCR) particle interaction with meteoroids is used to investigate neutron interactions down to thermal energies. Experimental and/or evaluated excitation functions are used to calculate neutron capture production rates as a function of the size of the meteoroid and the depth below its surface. Presented are the depth profiles of cosmogenic radionuclides 36Cl, 41Ca, 60Co, 59Ni, and 129I for meteoroid radii from 10 cm up to 500 cm and a 2π irradiation. Effects of bulk chemical composition on n-capture processes are studied and discussed for various chondritic and lunar compositions. The mean GCR particle flux over the last 300 ka was determined from the comparison of simulations with measured 41Ca activities in the Apollo 15 drill core. The determined value significantly differs from that obtained using equivalent models of spallation residue production.

  11. Dust Mitigation for the Lunar Surface Project (United States)

    National Aeronautics and Space Administration — The lunar surface is, to a large extent, covered with a dust layer several meters thick. Known as lunar regolith, it has been produced by meteorite impacts since the...

  12. The Meteoritical Bulletin, no. 85, 2001 September (United States)

    Grossman, J.N.; Zipfel, J.


    Meteoritical Bulletin No. 85 lists information for 1376 newly classified meteorites, comprising 658 from Antarctica, 409 from Africa, 265 from Asia (262 of which are from Oman), 31 from North America, 7 from South America, 3 from Australia, and 3 from Europe. Information is provided for 11 falls (Dergaon, Dunbogan, Gujba, Independence, Itqiy, Mora??vka, Oued el Hadjar, Sayama, Sologne, Valera, and Worden). Noteworthy non-Antarctic specimens include 5 martian meteorites (Dar al Gani 876, Northwest Africa 480 and 817, and Sayh al Uhaymir 051 and 094); 6 lunar meteorites (Dhofar 081, 280, and 287, and Northwest Africa 479, 482, and 773); an ungrouped enstatite-rich meteorite (Itqiy); a Bencubbin-like meteorite (Gujba); 9 iron meteorites; and a wide variety of other interesting stony meteorites, including CH, CK, CM, CO, CR, CV, R, enstatite, and unequilibrated ordinary chondrites, primitive achondrites, HED achondrites, and ureilites.

  13. Bench Crater Meteorite: Hydrated Asteroidal Material Delivered to the Moon (United States)

    Joy, K. H.; Messenger, S.; Zolensky, M. E.; Frank, D. R.; Kring, D. A.


    D/H measurements from the lunar regolith agglutinates [8] indicate mixing between a low D/H solar implanted component and additional higher D/H sources (e.g., meteoritic/ cometary/volcanic gases). We have determined the range and average D/H ratio of Bench Crater meteorite, which is the first direct D/H analysis of meteoritic material delivered to the lunar surface. This result provides an important ground truth for future investigations of lunar water resources by missions to the Moon.

  14. The Meteoritical Bulletin, No. 82, 1998 July (United States)

    Grossman, J.N.


    Meteoritical Bulletin No. 82 lists information for 974 new meteorites, including 521 finds from Antarctica, 401 finds from the Sahara, 21 finds from the Nullarbor region of Australia, and 7 falls (Ban Rong Du, Burnwell, Fermo, Jalanash, Juancheng, Monahans (1998), and Silao). Many rare types of meteorites are reported: counting pairing groups as one, these include one CR chondrite, two CK chondrites, two CO chondrites, four CV chondrites, one CH chondrite or Bencubbin-like, six C2 (unclassified) chondrites, two EH chondrites, two EL chondrites, three R chondrites, thirty unequilibrated ordinary chondrites, one ungrouped chondrite, three eucrites, six howardites, one diogenite, eleven ureilites, nine iron meteorites, one mesosiderite, two brachinites, one lodranite, one winonaite, and two lunar meteorites (Dar al Gani 400 and EET 96008). All italicized abbreviations refer to addresses tabulated at the end of this document. ?? Meteoritical Society, 1998.

  15. The Meteoritical Bulletin, No. 96, September 2009 (United States)

    Weisberg, M.K.; Smith, C.; Benedix, G.; Herd, C.D.K.; Righter, K.; Haack, H.; Yamaguchi, A.; Chennaoui, Aoudjehane H.; Grossman, J.N.


    The Meteoritical Bulletin No. 96 contains a total of 1590 newly approved meteorite names with their relevant data. These include 12 from specific locations within Africa, 76 from northwest Africa, 9 from the Americas, 13 from Asia, 1 from Australia, 2 from Europe, 950 from Antarctica recovered by the Chinese Antarctic Research Expedition (CHINARE), and 527 from the American Antarctic program (ANSMET). Among these meteorites are 4 falls, Almahata Sitta (Sudan), Sulagiri (India), Ash Creek (United States), and Maribo (Denmark). Almahata Sitta is an anomalous ureilite and is debris from asteroid 2008 TC3 and Maribo is a CM2 chondrite. Other highlights include a lunar meteorite, a CM1 chondrite, and an anomalous IVA iron. ?? The Meteoritical Society, 2009.

  16. Rust Contamination from Water Leaks in the Cosmic Dust Lab and Lunar and Meteorite Thin Sections Labs at Johnson Space Center (United States)

    Kent, J. J.; Berger, E. L.; Fries, M. D.; Bastien, R.; McCubbin, F. M.; Pace, L.; Righter, K.; Sutter, B.; Zeigler, R. A.; Zolensky, M.


    On the early morning of September 15th, 2016, on the first floor of Building 31 at NASA-Johnson Space Center, the hose from a water chiller ruptured and began spraying water onto the floor. The water had been circulating though old metal pipes, and the leaked water contained rust-colored particulates. The water flooded much of the western wing of the building's ground floor before the leak was stopped, and it left behind a residue of rust across the floor, most notably in the Apollo and Meteorite Thin Section Labs and Sample Preparation Lab. No samples were damaged in the event, and the affected facilities are in the process of remediation. At the beginning of 2016, a separate leak occurred in the Cosmic Dust Lab, located in the same building. In that lab, a water leak occurred at the bottom of the sink used to clean the lab's tools and containers with ultra-pure water. Over years of use, the ultra-pure water eroded the metal sink piping and leaked water onto the inside of the lab's flow bench. This water also left behind a film of rusty material. The material was cleaned up and the metal piping was replaced with PVC pipe and sealed with Teflon plumber's tape. Samples of the rust detritus were collected from both incidents. These samples were imaged and analyzed to determine their chemical and mineralogical compositions. The purpose of these analyses is to document the nature of the detritus for future reference in the unlikely event that these materials occur as contaminants in the Cosmic Dust samples or Apollo or Meteorite thin sections.

  17. Lunar meteorites:witnesses of the composition and evolution of the Moon

    Institute of Scientific and Technical Information of China (English)

    MIAO Bingkui; CHEN Hongyi; XIA Zhipeng; YAO Jie; XIE Lanfang; NI Wenjun; ZHANG Chuantong


    Lunar meteorites are fragments of the Moon that escaped the gravity of the Moon following high-energy impacts by asteroids, subsequently fell to Earth. An inventory of 165 lunar meteorites has been developed since the discovery and identiifcation of the ifrst lunar meteorite, ALHA 81005, in 1979. Although the Apollo samples are much heavier in mass than lunar meteorites, the meteorites are still an important sample supplement for scientiifc research on the composition and history of the Moon. Apart from a small amount of unbrecciated crystalline rocks, the majority of lunar meteorites are breccias that can be classiifed into three groups:highland feldspathic breccia, mare basaltic breccia, and mingled(including lfedspathic and basaltic clasts) breccia. The petrography of lunar rocks suggests that there are a series of rock types of anorthosite, basalt, gabbro, troctolite, norite and KREEP in the Moon. Although KREEP is rare in lunar rocks, KREEP components have been found in the increasing number of lunar meteorites. KREEP provides important information on lunar magmatic evolution, e.g., the VHK KREEP clasts in SaU 169 may represent the pristine lunar magma (urKREEP). Six launching pairs of lunar meteorites have been proposed now, along with ten possible lunar launching sites. In addition, symplectite is often found in lunar basalts, which is a signiifcant record of shock metamorphism on the lunar surface. Furthermore, isotopic ages and noble gases not only provide information on crystallization processes in lunar rocks and the formation of lunar crust, but also provide insight into shock events on the lunar surface.

  18. Identification of new meteorite, Mihonoseki (L), from broken fragments in Japan (United States)

    Miura, Y.; Noma, Y.


    New meteorite of Mihonoseki fallen in Shimane-ken was identified by fine broken pieces by using an energy-dispersive scanning electron microprobe analyzer. It shows fusion-crust (i.e. Fe-Si melt), meteoritic minerals (kamacite, taenite, troilite, amorphous plagioclase etc.) and chrondrule with clear glassy rim. Mineralogical, and petrological data of several fine grains suggest that broken fragments of Mihonoseki are L3/4 chondritic meteorite which is the first identification in a Japanese fallen meteorite. The prompt identification method of meteorite-fragments will be applied to the next lunar, Martian and asteroid explorations, as well as meteorite falls on the terrestrial surface.

  19. The Meteoritical Bulletin, No. 81, 1997 July (United States)

    Grossman, J.N.


    Meteoritical Bulletin, No. 81 lists 181 new meteorites. Noteworthy among these are a new lunar meteorite (Dar al Gani 262), four observed falls (Dong Ujimqin Qi, Galkiv, Mount Tazerzait, and Piplia Kalan), four irons (Albion, Great Sand Sea 003, Hot Springs, and Mont Dieu), two mesosiderites (Dong Ujimqin Qi and Lamont), an acapulcoite (FRO 95029), a eucrite (Piplia Kalan), two probably-paired ureilites (Dar al Gani 164 and 165), an R chondrite (Hammadah al Hamra 119), an ungrouped type-3 chondrite (Hammadah al Hamra 180), a highly unequilibrated ordinary chondrite (Wells, LL3.3), and a variety of carbonaceous and unequilibrated ordinary chondrites from Libya and Antarctica. All italicized abbreviations refer to addresses listed in the appendix. ?? Meteoritical Society, 1997.


    Institute of Scientific and Technical Information of China (English)

    谢兰芳; 缪秉魁; 陈宏毅; 夏志鹏; 姚杰


    MIL090036是一块在南极新发现的月球陨石,属于斜长岩质月球角砾岩。本文对这块陨石开展详细的岩石学、矿物学特征观察与研究。 MIL090036月球陨石具有典型的碎屑结构。碎屑包括岩屑、矿屑和玻屑。岩屑类型有斜长岩岩屑、辉长质斜长岩岩屑、辉长岩岩屑、风化角砾岩岩屑、橄长岩岩屑、微斑熔融角砾岩岩屑、复合角砾岩岩屑等;矿屑有辉石、斜长石、橄榄石、钛铁矿等;玻屑主要为长石质。基质由玻璃质、重结晶的细粒矿物和矿屑胶结组成。辉长岩岩屑中的斜长石( An81-83)和斜长岩中的斜长石( An88-93)较其他碎屑中的斜长石( An90-98)贫钙。岩屑、矿屑和长石质玻屑中的辉石相对贫铁( Fs 12-35 Wo3-44 En22-79),而含玻璃质的辉长岩岩屑中的辉石( Fs37-65 Wo10-29 En21-49)与基质中的辉石( Fs18-69 Wo3-45 En14-50)相对富铁。辉长岩质斜长岩中辉石成分变化范围最小( Fs24-27 Wo7-14 En59-69)。矿屑橄榄石和分布于基质中的橄榄石铁镁含量(Fo57-79)相对岩屑中的橄榄石(Fo67-77)变化范围大。橄榄石Fe/Mn比值为47-83(平均76)、辉石Fe/Mn比值为76-112(平均73),都与月球橄榄石和月球辉石一致。岩石结构、矿物模式组合和化学成分等特征表明MIL090036是来自Apollo和Luna采样范围外的样品。对MIL090036的矿物学、岩石学和化学成分的进一步研究将丰富我们对月表物质组成和演化的认识。%MIL090036 is a newly found meteorite that belongs to a feldspathic lunar breccia .The detailed petrography and mineralogy of this meteorite are investigated in this paper .It has a typical breccia texture that consists of lithic , mineral and glass clasts .The rock types of the lithic clasts are anorthosite , gabbroic anorthosite , gabbro , regolith breccia, troctolite, microporphyritic crystalline impact melt , and compound clasts

  1. Effective radium-226 concentration in meteorites (United States)

    Girault, Frédéric; Perrier, Frédéric; Moreira, Manuel; Zanda, Brigitte; Rochette, Pierre; Teitler, Yoram


    The analysis of noble gases in meteorites provides constraints on the early solar system and the pre-solar nebula. This requires a better characterization and understanding of the capture, production, and release of noble gases in meteorites. The knowledge of transfer properties of noble gases for each individual meteorite could benefit from using radon-222, radioactive daughter of radium-226. The radon-222 emanating power is commonly quantified by the effective radium-226 concentration (ECRa), the product of the bulk radium-226 concentration and of the emanation coefficient E, which represents the probability of one decaying radium-226 to inject one radon-222 into the free porous network. Owing to a non-destructive, high-sensitivity accumulation method based on long photomultiplier counting sessions, we are now able to measure ECRa of meteorite samples, which usually have mass smaller than 15 g and ECRa rocks, but comparable with those from Archean rocks (mean of ca. 0.18 Bq kg-1), an end-member of terrestrial rocks. Using uranium concentration from the literature, E is inferred from ECRa for all the meteorite samples. Values of E for meteorites (mean 40 ± 4%) are higher than E values for Archean rocks and reported values for lunar and Martian soils. Exceptionally large E values likely suggest that the 238U-226Ra pair would not be at equilibrium in most meteorites and that uranium and/or radium are most likely not uniformly distributed. ECRa of meteorites is correlated with E and seems to mainly reflect the gas permeability of the meteorite, which could be one important property, preserved in the meteorite, of its parent body, characterizing its history in space, possibly modified by alteration, shock metamorphism, and eventually weathering on Earth. Larger radon emanation values are associated with larger concentrations of the heaviest noble gases (argon, krypton, xenon), and larger 20Ne/22Ne and 36Ar/38Ar ratios, suggesting Earth's atmosphere contamination or

  2. An Interdisciplinary Method for the Visualization of Novel High-Resolution Precision Photography and Micro-XCT Data Sets of NASA's Apollo Lunar Samples and Antarctic Meteorite Samples to Create Combined Research-Grade 3D Virtual Samples for the Benefit of Astromaterials Collections Conservation, Curation, Scientific Research and Education (United States)

    Blumenfeld, E. H.; Evans, C. A.; Zeigler, R. A.; Righter, K.; Beaulieu, K. R.; Oshel, E. R.; Liddle, D. A.; Hanna, R.; Ketcham, R. A.; Todd, N. S.


    New technologies make possible the advancement of documentation and visualization practices that can enhance conservation and curation protocols for NASA's Astromaterials Collections. With increasing demands for accessibility to updated comprehensive data, and with new sample return missions on the horizon, it is of primary importance to develop new standards for contemporary documentation and visualization methodologies. Our interdisciplinary team has expertise in the fields of heritage conservation practices, professional photography, photogrammetry, imaging science, application engineering, data curation, geoscience, and astromaterials curation. Our objective is to create virtual 3D reconstructions of Apollo Lunar and Antarctic Meteorite samples that are a fusion of two state-of-the-art data sets: the interior view of the sample by collecting Micro-XCT data and the exterior view of the sample by collecting high-resolution precision photography data. These new data provide researchers an information-rich visualization of both compositional and textural information prior to any physical sub-sampling. Since January 2013 we have developed a process that resulted in the successful creation of the first image-based 3D reconstruction of an Apollo Lunar Sample correlated to a 3D reconstruction of the same sample's Micro-XCT data, illustrating that this technique is both operationally possible and functionally beneficial. In May of 2016 we began a 3-year research period during which we aim to produce Virtual Astromaterials Samples for 60 high-priority Apollo Lunar and Antarctic Meteorite samples and serve them on NASA's Astromaterials Acquisition and Curation website. Our research demonstrates that research-grade Virtual Astromaterials Samples are beneficial in preserving for posterity a precise 3D reconstruction of the sample prior to sub-sampling, which greatly improves documentation practices, provides unique and novel visualization of the sample's interior and

  3. An Interdisciplinary Method for the Visualization of Novel High-Resolution Precision Photography and Micro-XCT Data Sets of NASA's Apollo Lunar Samples and Antarctic Meteorite Samples to Create Combined Research-Grade 3D Virtual Samples for the Benefit of Astromaterials Collections Conservation, Curation, Scientific Research and Education (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Hanna, R. D.; Ketcham, R. A.


    New technologies make possible the advancement of documentation and visualization practices that can enhance conservation and curation protocols for NASA's Astromaterials Collections. With increasing demands for accessibility to updated comprehensive data, and with new sample return missions on the horizon, it is of primary importance to develop new standards for contemporary documentation and visualization methodologies. Our interdisciplinary team has expertise in the fields of heritage conservation practices, professional photography, photogrammetry, imaging science, application engineering, data curation, geoscience, and astromaterials curation. Our objective is to create virtual 3D reconstructions of Apollo Lunar and Antarctic Meteorite samples that are a fusion of two state-of-the-art data sets: the interior view of the sample by collecting Micro-XCT data and the exterior view of the sample by collecting high-resolution precision photography data. These new data provide researchers an information-rich visualization of both compositional and textural information prior to any physical sub-sampling. Since January 2013 we have developed a process that resulted in the successful creation of the first image-based 3D reconstruction of an Apollo Lunar Sample correlated to a 3D reconstruction of the same sample's Micro- XCT data, illustrating that this technique is both operationally possible and functionally beneficial. In May of 2016 we began a 3-year research period during which we aim to produce Virtual Astromaterials Samples for 60 high-priority Apollo Lunar and Antarctic Meteorite samples and serve them on NASA's Astromaterials Acquisition and Curation website. Our research demonstrates that research-grade Virtual Astromaterials Samples are beneficial in preserving for posterity a precise 3D reconstruction of the sample prior to sub-sampling, which greatly improves documentation practices, provides unique and novel visualization of the sample's interior and

  4. Discovery and characterization of lunar materials: An incomplete process (United States)

    Vaniman, D.


    Our knowledge of lunar materials is based on (1) sample collections (by the Apollo and Lunar missions, supplemented by Antarctic lunar meteorites); and (2) remote sensing (Earth-based or by spacecraft). The characterization of lunar materials is limited by the small number of sampled sites and the incomplete remote-sensing database (geochemical data collected from orbit cover 20 percent of the lunar surface). There is much about lunar surface materials that remains to be discovered. Listed are some features suspected form present knowledge: (1) Polar Materials; (2) Farside Materials; (3) Crater-Floor Materials; (4) Crater-Wall and Central Peak Materials; (5) Volcanic Shield and Dome Materials; (6) Transient-Event Materials; and (7) Meteoritic and Cometary Materials; This short list of likely discoveries isn't exhaustive. We know much about a few spots on the Moon, but little about the full range of lunar materials.

  5. Nineteenth lunar and planetary science conference. Press abstracts

    Energy Technology Data Exchange (ETDEWEB)


    Topics addressed include: origin of the moon; mineralogy of rocks; CO2 well gases; ureilites; antarctic meteorites; Al-26 decay in a Semarkona chondrule; meteorite impacts on early earth; crystal structure and density of helium; Murchison carbonaceous chondrite composition; greenhouse effect and dinosaurs; Simud-Tiu outflow system of Mars; and lunar radar images.

  6. Lunar science: An overview

    Indian Academy of Sciences (India)

    Stuart Ross Taylor


    Before spacecraft exploration,facts about the Moon were restricted to information about the lunar orbit,angular momentum and density.Speculations about composition and origin were unconstrained.Naked eye and telescope observations revealed two major terrains,the old heavily cratered highlands and the younger mostly circular,lightly cratered maria.The lunar highlands were thought to be composed of granite or covered with volcanic ash-flows.The maria were thought to be sediments,or were full of dust,and possibly only a few million years old.A few perceptive observers such as Ralph Baldwin (Baldwin 1949)concluded that the maria were filled with volcanic lavas, but the absence of terrestrial-type central volcanoes like Hawaii was a puzzle. The large circular craters were particularly difficult to interpret.Some thought,even after the Apollo flights,that they were some analogue to terrestrial caldera (e.g.,Green 1971),formed by explosive volcanic activity and that the central peaks were volcanoes.The fact that the craters were mostly circular was difficult to accommodate if they were due to meteorite impact,as meteorites would hit the Moon at all angles.The rilles were taken by many as de finitive evidence that there was or had been,running water on the lunar surface.Others such as Carl Sagan thought that organic compounds were likely present (see Taylor 1975,p.111,note 139).

  7. Principles of meteoritics

    CERN Document Server

    Krinov, E L


    Principles of Meteoritics examines the significance of meteorites in relation to cosmogony and to the origin of the planetary system. The book discusses the science of meteoritics and the sources of meteorites. Scientists study the morphology of meteorites to determine their motion in the atmosphere. The scope of such study includes all forms of meteorites, the circumstances of their fall to earth, their motion in the atmosphere, and their orbits in space. Meteoric bodies vary in sizes; in calculating their motion in interplanetary space, astronomers apply the laws of Kepler. In the region of

  8. Chinese scientists report a meteorite from the far side of the Moon

    Institute of Scientific and Technical Information of China (English)


    @@ Studies by astronomers from the CAS Purple Mountain Observatory (PMO) have offered solid evidence that Sayh al Uhaymir 300 (SaU 300), a lunar meteorite discovered in 2004 from the Oman desert, was originated from the far side of the Moon, the lunar hemisphere that is permanently turned away from the Earth.

  9. Lunar Analog (United States)

    Cromwell, Ronita L.


    In this viewgraph presentation, a ground-based lunar analog is developed for the return of manned space flight to the Moon. The contents include: 1) Digital Astronaut; 2) Bed Design; 3) Lunar Analog Feasibility Study; 4) Preliminary Data; 5) Pre-pilot Study; 6) Selection of Stockings; 7) Lunar Analog Pilot Study; 8) Bed Design for Lunar Analog Pilot.

  10. Mars regolith versus SNC meteorites: Evidence for abundant crustal carbonates (United States)

    Warren, Paul H.


    Viking XRF analyses are compared with those for terrestrial and lunar basalt samples, and eucritic meteorites (of possible Mars origin). The comparison indicates depletion of Ca relative to Si in the Mars regolith. It is suggested that carbonate formation during a warmer, wetter epoch early in Mars' history could have been responsible.

  11. Radioactivities in returned lunar materials (United States)

    Fireman, E. L.


    Results from a carbon-14 study in size fractions of lunar soil are reported. The 10 to 30 micrometers and 74 to 124 micrometers size fraction results were supplemented by 30 to 37 micrometers results that are given in this report. The gases from the less than 10 micrometers fraction were extracted and purified and carbon-14 counting is now in progress. Meteorites were also studied using carbon-14, with emphasis directed to those recently discovered in the Antarctic.

  12. Understanding the Reactivity of Lunar Dust for Future Lunar Missions (United States)

    Wallace, William; Taylor, L. A.; Jeevarajan, Antony


    During the Apollo missions, dust was found to cause numerous problems for various instruments and systems. Additionally, the dust may have caused momentary health issues for some of the astronauts. Therefore, the plan to resume robotic and manned missions to the Moon in the next decade has led to a renewed interest in the properties of lunar dust, ranging from geological to chemical to toxicological. An important property to understand is the reactivity of the dust particles. Due to the lack of an atmosphere on the Moon, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. On the Moon, these species can be maintained for millennia without oxygen or water vapor present to satisfy the broken bonds. Unfortunately, the Apollo dust samples that were returned to Earth were inadvertently exposed to the atmosphere, causing them to lose their reactive characteristics. In order to aid in the preparation of mitigation techniques prior to returning to the Moon, we measured the ability of lunar dust, lunar dust simulant, and quartz samples to produce hydroxyl radicals in solution[1]. As a first approximation of meteorite impacts on the lunar surface, we ground samples using a mortar and pestle. Our initial studies showed that all three test materials (lunar dust (62241), lunar dust simulant (JSC-1Avf), and quartz) produced hydroxyl radicals after grinding and mixing with water. However, the radical production of the ground lunar dust was approximately 10-fold and 3-fold greater than quartz and JSC-1 Avf, respectively. These reactivity differences between the different samples did not correlate with differences in specific surface area. The increased reactivity produced for the quartz by grinding was attributed to the presence of silicon- or oxygen-based radicals on the surface, as had been seen previously[2]. These radicals may also

  13. Apollo 17 Astronaut Harrison Schmitt Collects Lunar Rock Samples (United States)


    In this Apollo 17 onboard photo, Lunar Module pilot Harrison H. Schmitt collects rock samples from a huge boulder near the Valley of Tourus-Littrow on the lunar surface. The seventh and last manned lunar landing and return to Earth mission, the Apollo 17, carrying a crew of three astronauts: Schmitt; Mission Commander Eugene A. Cernan; and Command Module pilot Ronald E. Evans, lifted off on December 7, 1972 from the Kennedy Space Flight Center (KSC). Scientific objectives of the Apollo 17 mission included geological surveying and sampling of materials and surface features in a preselected area of the Taurus-Littrow region, deploying and activating surface experiments, and conducting in-flight experiments and photographic tasks during lunar orbit and transearth coast (TEC). These objectives included: Deployed experiments such as the Apollo lunar surface experiment package (ALSEP) with a Heat Flow experiment, Lunar seismic profiling (LSP), Lunar surface gravimeter (LSG), Lunar atmospheric composition experiment (LACE) and Lunar ejecta and meteorites (LEAM). The mission also included Lunar Sampling and Lunar orbital experiments. Biomedical experiments included the Biostack II Experiment and the BIOCORE experiment. The mission marked the longest Apollo mission, 504 hours, and the longest lunar surface stay time, 75 hours, which allowed the astronauts to conduct an extensive geological investigation. They collected 257 pounds (117 kilograms) of lunar samples with the use of the Marshall Space Flight Center designed Lunar Roving Vehicle (LRV). The mission ended on December 19, 1972

  14. High-pressure minerals in shocked meteorites (United States)

    Tomioka, Naotaka; Miyahara, Masaaki


    Heavily shocked meteorites contain various types of high-pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high-pressure minerals are micron to submicron sized and occur within and in the vicinity of shock-induced melt veins and melt pockets in chondrites and lunar, howardite-eucrite-diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid-state high-pressure transformation of the host-rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to 25 GPa. Textural, crystallographic, and chemical characteristics of high-pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high-pressure minerals in shocked meteorites that have been reported over the past 50 years.

  15. Timescales of shock processes in chondritic and martian meteorites. (United States)

    Beck, P; Gillet, Ph; El Goresy, A; Mostefaoui, S


    The accretion of the terrestrial planets from asteroid collisions and the delivery to the Earth of martian and lunar meteorites has been modelled extensively. Meteorites that have experienced shock waves from such collisions can potentially be used to reveal the accretion process at different stages of evolution within the Solar System. Here we have determined the peak pressure experienced and the duration of impact in a chondrite and a martian meteorite, and have combined the data with impact scaling laws to infer the sizes of the impactors and the associated craters on the meteorite parent bodies. The duration of shock events is inferred from trace element distributions between coexisting high-pressure minerals in the shear melt veins of the meteorites. The shock duration and the associated sizes of the impactor are found to be much greater in the chondrite (approximately 1 s and 5 km, respectively) than in the martian meteorite (approximately 10 ms and 100 m). The latter result compares well with numerical modelling studies of cratering on Mars, and we suggest that martian meteorites with similar, recent ejection ages (10(5) to 10(7) years ago) may have originated from the same few square kilometres on Mars.

  16. Meteorite transport—Revisited (United States)

    Wisdom, Jack


    Meteorites are delivered from the asteroid belt by way of chaotic zones (Wisdom 1985a). The dominant sources are believed to be the chaotic zones associated with the ν6 secular resonance, the 3:1 mean motion resonance, and the 5:2 mean motion resonance. Though the meteorite transport process has been previously studied, those studies have limitations. Here I reassess the meteorite transport process with fewer limitations. Prior studies have not been able to reproduce the afternoon excess (the fact that approximately twice as many meteorites fall in the afternoon as in the morning) and suggested that the afternoon excess is an observational artifact; here it is shown that the afternoon excess is in fact consistent with the transport of meteorites by way of chaotic zones in the asteroid belt. By studying models with and without the inner planets it is found that the inner planets significantly speed up the transport of meteorites.

  17. Antarctic Meteorite Newsletter, Volume 31, No. 1 (United States)

    Satterwhite, Cecilia (Editor); Righter, Kevin (Editor)


    This newsletter reports 418 new meteorites from the 2004 and 2006 ANSMET seasons from the Cumulus Hills (CMS), LaPaz Ice Field (LAP), Graves Nunataks (GRA), Grosvenor Mountains (GRO), Larkman Nunatak (LAR), MacAlpine Hills (MAC), Miller Range (MIL), Roberts Massif (RBT), and Scott Glacier (SCO). These new samples include one iron, 1 eucrite, 1 mesosiderite, 6 CK chondrites (2 with pairing), 2 CV3 chondrites, 1 CM1, 7 CM2 (4 with pairing), 3 CR2 (2 with pairing), and one each of a type 3 L and H chondrites. The CK6 chondrites (LAR 06869, 06872, 06873) are unusual in that they have no discernable chondrules, extremely fine-grained texture, and are full of veins. This newsletter represents a break from recent newsletters in which we have announced many unusual and popular samples, including new lunar and martian meteorites, an unusual achondrite (GRA 06128 and 06129 the topic of a special session at this years LPSC).

  18. Meteorites from Mars (United States)

    Grady, M.; Murdin, P.


    The SNC METEORITES, named after the initials of the first discovered members (Shergotty, Nakhla and Chassigny), are a group of stony meteorites that are thought to come from Mars, rather than the asteroid belt. They are all igneous rocks (i.e. formed by crystallizing from molten material) and are distinguished from other meteorites by their ages, which are as low as 165 million years old. A young...

  19. Magnetism in meteorites (United States)

    Herndon, J. M.; Rowe, M. W.


    An overview is presented of magnetism in meteorites. A glossary of magnetism terminology followed by discussion of the various techniques used for magnetism studies in meteorites are included. The generalized results from use of these techniques by workers in the field are described. A brief critical analysis is offered.

  20. Lunar horticulture. (United States)

    Walkinshaw, C. H.


    Discussion of the role that lunar horticulture may fulfill in helping establish the life support system of an earth-independent lunar colony. Such a system is expected to be a hybrid between systems which depend on lunar horticulture and those which depend upon the chemical reclamation of metabolic waste and its resynthesis into nutrients and water. The feasibility of this approach has been established at several laboratories. Plants grow well under reduced pressures and with oxygen concentrations of less than 1% of the total pressure. The carbon dioxide collected from the lunar base personnel should provide sufficient gas pressure (approx. 100 mm Hg) for growing the plants.

  1. Pulmonary Inflammatory Responses to Acute Meteorite Dust Exposures - to Acute Meteorite Dust Exposures - Exploration (United States)

    Harrington, A. D.; McCubbin, F. M.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.


    New initiatives to begin lunar and martian colonization within the next few decades are illustrative of the resurgence of interest in space travel. One of NASA's major concerns with extended human space exploration is the inadvertent and repeated exposure to unknown dust. This highly interdisciplinary study evaluates both the geochemical reactivity (e.g. iron solubility and acellular reactive oxygen species (ROS) generation) and the relative toxicity (e.g. in vitro and in vivo pulmonary inflammation) of six meteorite samples representing either basalt or regolith breccia on the surface of the Moon, Mars, and Asteroid 4Vesta. Terrestrial mid-ocean ridge basalt (MORB) is also used for comparison. The MORB demonstrated higher geochemical reactivity than most of the meteorite samples but caused the lowest acute pulmonary inflammation (API). Notably, the two martian meteorites generated some of the highest API but only the basaltic sample is significantly reactive geochemically. Furthermore, while there is a correlation between a meteorite's soluble iron content and its ability to generate acellular ROS, there is no direct correlation between a particle's ability to generate ROS acellularly and its ability to generate API. However, assorted in vivo API markers did demonstrate strong positive correlations with increasing bulk Fenton metal content. In summary, this comprehensive dataset allows for not only the toxicological evaluation of astromaterials but also clarifies important correlations between geochemistry and health.

  2. The shape of meteorites


    Hiroichi, Hasegawa


    The shape of meteorites is described by axial ratio (b/a), where a and b are the longest and the intermediate axial lengths of meteorite, respectively. Used samples are the Yamato meteorites recovered in 1973-1975. Distribution of (b/a) and the average value of 0.730 of 930 chondrites except carbonaceous ones are obtained. The results are similar to those of basalt fragments in laboratory impact experiment. Five chondrite showers are also analyzed. Their mass spectra are well represented by ...

  3. Lunar cement (United States)

    Agosto, William N.


    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  4. Finding and Collecting Meteorites (United States)

    Grady, M.; Murdin, P.


    METEORITES fall at random over the Earth's surface, at a rate of around 1000 per year for samples weighing 10-100 kg (10-20 cm across) and 10 000 per year for samples weighing between 10-100 g. Many of these specimens fall in the ocean and are lost. Those that fall unobserved in temperate or wet regions rapidly weather and break down over a timescale of ˜100-200 yr. In contrast, meteorites that fa...

  5. Meteorite Seymchan structure (United States)

    Hontsova, S. S.; Petrova, E. V.; Muftahetdinova, R. F.; Chulanova, V. N.; Grokhovsky, V. I.


    The meteorite Seymchan specimen was studied using optical microscopy and scanning electron microscopy. Olivine grains have roundish shapes, which was formed during matter cooling. Different features of the metal structure such as plessite structure and Neimann bands were observed. The oxide edges were observed in the boundaries between phases. The oxides were formed in the terrestrial conditions. The boundary regions between metal and olivine in the meteorite contain grains of troilite, schreibersite, and chromite.

  6. Lunar magnetism (United States)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.


    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  7. Meteorites in meteorites - Evidence for mixing among the asteroids (United States)

    Wilkening, L. L.


    Inclusions of one type of meteorite enclosed in another have been found in several gas-rich meteorites, unequilibrated chondrites and mesosiderites. The inclusions in all but one case are chondritic; a majority are mineralogically and isotopically similar to carbonaceous chondrites. These meteorite mixtures most probably resulted from collisions among asteroids.

  8. Kinetic Damage from Meteorites (United States)

    Cooke, W.; Brown, P.; Matney, M.


    Comparing the natural meteorite flux at the Earth's surface to that of space debris, re-entering debris is 2 orders of magnitude less of a kinetic hazard at all but the very largest (and therefore rarest) sizes compared to natural impactors. Debris re-entries over several metric tonnes are roughly as frequent as natural impactors, but the survival fraction is expected to be much higher. Kinetic hazards from meteorites are very small, with only one recorded (indirect) injury reported. We expect fatalities to be even more rare, on the order of one person killed per several millennia. That several reports exist of small fragments/sand hitting people during meteorite falls is consistent with our prediction that this should occur every decade or so.

  9. Organic Chemistry of Meteorites (United States)

    Chang, S.; Morrison, David (Technical Monitor)


    Studies of the molecular structures and C,N,H-isotopic compositions of organic matter in meteorites reveal a complex history beginning in the parent interstellar cloud which spawned the solar system. Incorporation of interstellar dust and gas in the protosolar nebula followed by further thermal and aqueous processing on primordial parent bodies of carbonaceous, meteorites have produced an inventory of diverse organic compounds including classes now utilized in biochemistry. This inventory represents one possible set of reactants for chemical models for the origin of living systems on the early Earth. Evidence bearing on the history of meteoritic organic matter from astronomical observations and laboratory investigations will be reviewed and future research directions discussed.

  10. Piezomagnetization of meteorites




    The piezo-remanent magnetization (PRM) of Mt. Baldr b (H5-6) and ALH-769 (L6) chondrites and Yamato-74013 diogenite is experimentally demonstrated. J_γ^∥(H_+P_+P_0H_0) of these stony meteorites is approximately proportional to an applied magnetic field, H, when P is kept constant. There is a possibility that the natural remanent magnetization of the two chondrites is due to an acquisition of PRM in a weak magnetic field. Dependence of magnetic susceptibility of a stony meteorite upon applied ...

  11. The Microstructure of Lunar Micrometeorite Impact Craters (United States)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.


    The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.

  12. A Comparison of Anorthositic Lunar Lithologies: Variation on the FAN Theme (United States)

    Nyquist, L. E.; Shih, C-Y.; Yamaguchi, A.; Mittlefehldt, D. W.; Peng, Z. X.; Park, J.; Herzog, G. F.; Shirai, N.


    Certain anorthositic rocks that are rare in the returned lunar samples have been identified among lunar meteorites. The variety of anorthosites in the Apollo collection also is more varied than is widely recognized. James eta. identified three lithologies in a composite clast o ferroan anorthosite (FAN)-suite rocks in lunar breccia 64435. They further divided all FANs into four subgroups: anorthositic ferroan (AF), mafic magnesian (MM), mafic ferroan (MF), and anorthositic sodic (AS, absent in the 64435 clast). Here we report Sm-Nd isotopic studies of the lithologies present in the 64435 composite clast and compare the new data to our previous data for lunar anorthosites incuding lunar anorthositic meteorites. Mineralogy-petrography, in situ trace element studies, Sr-isotope studies, and Ar-Ar chronology are included, but only the Nd-isotopic studies are currently complete.

  13. Distribution of Amino Acids in Lunar Regolith (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.


    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  14. Lunar and Planetary Science Conference, 14th, Houston, TX, March 14-18, 1983, Proceedings. Part 1 (United States)

    Boynton, W. V. (Editor); Schubert, G. (Editor)


    Various topics in the areas of planetary composition and differentiation, planetary surfaces and interiors, lunar rocks, lunar regoliths, and meteorites and tektites are discussed and some experimental studies are presented. Individual subjects addressed include: Stillwater anorthosites, origin of palimpsests and anomalous pit craters on Ganymede and Callisto, the chemistry of the Apollo 11 Highland component, and many others.

  15. Radioactivity of the moon, planets, and meteorites (United States)

    Surkou, Y. A.; Fedoseyev, G. A.


    Analytical data is summarized for the content of natural radioactive elements in meteorites, eruptive terrestrial rocks, and also in lunar samples returned by Apollo missions and the Luna series of automatic stations. The K-U systematics of samples analyzed in the laboratory are combined with data for orbital gamma-ray measurements for Mars (Mars 5) and with the results of direct gamma-ray measurements of the surface of Venus by the Venera 8 lander. Using information about the radioactivity of solar system bodies and evaluations of the content of K, U, and Th in the terrestrial planets, we examine certain aspects of the evolution of material in the protoplanetary gas-dust cloud and then in the planets of the solar system.

  16. Microfossils in Carbonaceous Meteorites (United States)

    Hoover, Richard B.


    Microfossils of large filamentous trichomic prokaryotes have been detected during in-situ investigations of carbonaceous meteorites. This research has been carried out using the Field Emission Scanning Electron Microscope (FESEM) to examine freshly fractured interior surfaces of the meteorites. The images obtained reveal that many of these remains are embedded in the meteorite rock matrix. Energy Dispersive X-Ray Spectroscopy (EDS) studies establish that the filamentous microstructures have elemental compositions consistent with the meteorite matrix, but are often encased within carbon-rich electron transparent sheath-like structures infilled with magnesium sulfate. This is consistent with the taphonomic modes of fossilization of cyanobacteria and sulphur bacteria, since the life habits and processes of these microorganisms frequently result in distinctive chemical biosignatures associated with the properties of their cell-walls, trichomes, and the extracellular polymeric substances (EPS) of the sheath. In this paper the evidence for biogenicity presented includes detailed morphological and morphometric data consistent with known characteristics of uniseriate and multiseriate cyanobacteria. Evidence for indigeneity includes the embedded nature of the fossils and elemental compositions inconsistent with modern biocontaminants.

  17. Asteroids, meteorites, and comets

    CERN Document Server

    Elkins-Tanton, Linda T


    Asteroids, Comets, and Meteorites provides students, researchers, and general readers with the most up-to-date information on this fascinating field. From the days of the dinosaurs to our modern environment, this book explores all aspects of these cosmic invaders.

  18. Chiral Biomarkers in Meteorites (United States)

    Hoover, Richard B.


    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  19. Lunar laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.; Duke, M.B.


    An international research laboratory can be established on the Moon in the early years of the 21st Century. It can be built using the transportation system now envisioned by NASA, which includes a space station for Earth orbital logistics and orbital transfer vehicles for Earth-Moon transportation. A scientific laboratory on the Moon would permit extended surface and subsurface geological exploration; long-duration experiments defining the lunar environment and its modification by surface activity; new classes of observations in astronomy; space plasma and fundamental physics experiments; and lunar resource development. The discovery of a lunar source for propellants may reduce the cost of constructing large permanent facilities in space and enhance other space programs such as Mars exploration. 29 refs.

  20. Lunar Beagle and Lunar Astrobiology (United States)

    Gibson, Everett K.; Pillinger, Colin T.; Waugh, Lester J.


    The study of the elements and molecules of astrobiological interest on the Moon can be made with the Gas Analysis Package (GAP) and associated instruments developed for the Beagle 2 Mars Express Payload. The permanently shadowed polar regions of the Moon may offer a unique location for the "cold-trapping" of the light elements (i.e. H, C, N, O, etc.) and their simple compounds. Studies of the returned lunar samples have shown that lunar materials have undergone irradiation with the solar wind and adsorb volatiles from possible cometary and micrometeoroid impacts. The Beagle 2's analytical instrument package including the sample processing facility and the GAP mass spectrometer can provide vital isotopic information that can distinguish whether the lunar volatiles are indigenous to the moon, solar wind derived, cometary in origin or from meteoroids impacting on the Moon. As future Lunar Landers are being considered, the suite of instruments developed for the Mars Beagle 2 lander can be consider as the baseline for any lunar volatile or resource instrument package.

  1. Proceedings of the 39th Lunar and Planetary Science Conference (United States)


    Sessions with oral presentations include: A SPECIAL SESSION: MESSENGER at Mercury, Mars: Pingos, Polygons, and Other Puzzles, Solar Wind and Genesis: Measurements and Interpretation, Asteroids, Comets, and Small Bodies, Mars: Ice On the Ground and In the Ground, SPECIAL SESSION: Results from Kaguya (SELENE) Mission to the Moon, Outer Planet Satellites: Not Titan, Not Enceladus, SPECIAL SESSION: Lunar Science: Past, Present, and Future, Mars: North Pole, South Pole - Structure and Evolution, Refractory Inclusions, Impact Events: Modeling, Experiments, and Observations, Mars Sedimentary Processes from Victoria Crater to the Columbia Hills, Formation and Alteration of Carbonaceous Chondrites, New Achondrite GRA 06128/GRA 06129 - Origins Unknown, The Science Behind Lunar Missions, Mars Volcanics and Tectonics, From Dust to Planets (Planetary Formation and Planetesimals):When, Where, and Kaboom! Astrobiology: Biosignatures, Impacts, Habitability, Excavating a Comet, Mars Interior Dynamics to Exterior Impacts, Achondrites, Lunar Remote Sensing, Mars Aeolian Processes and Gully Formation Mechanisms, Solar Nebula Shake and Bake: Mixing and Isotopes, Lunar Geophysics, Meteorites from Mars: Shergottite and Nakhlite Invasion, Mars Fluvial Geomorphology, Chondrules and Chondrule Formation, Lunar Samples: Chronology, Geochemistry, and Petrology, Enceladus, Venus: Resurfacing and Topography (with Pancakes!), Overview of the Lunar Reconnaissance Orbiter Mission, Mars Sulfates, Phyllosilicates, and Their Aqueous Sources, Ordinary and Enstatite Chondrites, Impact Calibration and Effects, Comparative Planetology, Analogs: Environments and Materials, Mars: The Orbital View of Sediments and Aqueous Mineralogy, Planetary Differentiation, Titan, Presolar Grains: Still More Isotopes Out of This World, Poster sessions include: Education and Public Outreach Programs, Early Solar System and Planet Formation, Solar Wind and Genesis, Asteroids, Comets, and Small Bodies, Carbonaceous

  2. Organic matter in meteorites. (United States)

    Llorca, Jordi


    Some primitive meteorites are carbon-rich objects containing a variety of organic molecules that constitute a valuable record of organic chemical evolution in the universe prior to the appearance of microorganisms. Families of compounds include hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids, amino acids, amines, amides, heterocycles, phosphonic acids, sulfonic acids, sugar-related compounds and poorly defined high-molecular weight macromolecules. A variety of environments are required in order to explain this organic inventory, including interstellar processes, gas-grain reactions operating in the solar nebula, and hydrothermal alteration of parent bodies. Most likely, substantial amounts of such organic materials were delivered to the Earth via a late accretion, thereby providing organic compounds important for the emergence of life itself, or that served as a feedstock for further chemical evolution. This review discusses the organic content of primitive meteorites and their relevance to the build up of biomolecules.

  3. Meteoritics, Number 19 (United States)


    composition of the light elements indicates the absence of dif- ferent classes of processes of melting, segregation, hydrothermal pro- cesses, and...Wien, Verh., 1888, 164. 40. Janoschek, R., Das Alter der Moldavitschotterc in Mahren (The Age of the Moldavite Fragments in Moravia). Akad. Wiss. Wien...quartz porphyries and diorite porphyries . The time of the fall of the meteorite can be determined only ap- proximately. It is associated with the post

  4. Hydrogen in Martian Meteorites (United States)

    Peslier, A. H.; Hervig, R.; Irving, T.


    Most volatile studies of Mars have targeted its surface via spacecraft and rover data, and have evidenced surficial water in polar caps and the atmosphere, in the presence of river channels, and in the detection of water bearing minerals. The other focus of Martian volatile studies has been on Martian meteorites which are all from its crust. Most of these studies are on hydrous phases like apatite, a late-stage phase, i.e. crystallizing near the end of the differentiation sequence of Martian basalts and cumulates. Moreover, calculating the water content of the magma a phosphate crystallized from is not always possible, and yet is an essential step to estimate how much water was present in a parent magma and its source. Water, however, is primarily dissolved in the interiors of differentiated planets as hydrogen in lattice defects of nominally anhydrous minerals (olivine, pyroxene, feldspar) of the crust and mantle. This hydrogen has tremendous influence, even in trace quantities, on a planet's formation, geodynamics, cooling history and the origin of its volcanism and atmosphere as well as its potential for life. Studies of hydrogen in nominally anhydrous phases of Martian meteorites are rare. Measuring water contents and hydrogen isotopes in well-characterized nominally anhydrous minerals of Martian meteorites is the goal of our study. Our work aims at deciphering what influences the distribution and origin of hydrogen in Martian minerals, such as source, differentiation, degassing and shock.

  5. Meteorites from Cluj-Napoca (United States)

    Radu, Gelu; Pop, Dana


    The article represents an interview of the journalist Gelu Radu with the director of the Meteorites Museum from the Geological Faculty of the Cluj-Napoca University (Romania) Dana Pop concerning the History, Collection and Actual state of an unique in Romania Meteorites Museum, founded in 1882 after the fall of the Mociu Meteorit (Cluj County) on 3 february 1882. One discusses about the collection of the Museum and the policy of changes with other similar museums throughout the world.

  6. Lunar and Planetary Science Conference, 18th, Houston, TX, Mar. 16-20, 1987, Proceedings (United States)

    Ryder, Graham (Editor)


    Papers on lunar and planetary science are presented, including petrogenesis and chemistry of lunar samples, geology and petrogenesis of the Apollo 15 landing site, lunar geology and applications, cratering records and cratering effects, differentiated meteorites, chondritic meteorites and asteroids, extraterrestrial grains, Venus, Mars, and icy satellites. The importance of lunar granite and KREEP in very high potassium basalt petrogenesis, indentifying parent plutonic rocks from lunar breccia and soil fragments, glasses in ancient and young Apollo 16 regolith breccias, the formation of the Imbrium basin, the chemistry and petrology of the Apennine Front, lunar mare ridges, studies of Rima Mozart, electromagnetic energy applications in lunar resource mining and construction, detecting a periodic signal in the terrestrial cratering record, and a search for water on the moon, are among the topics discussed. Other topics include the bidirectional reflectance properties of Fe-Ni meteorites, the nature and origin of C-rich ordinary chondrites and chondritic clasts, the dehydration kinetics of shocked serpentine, characteristics of Greenland Fe/Ni cosmic grains, electron microscopy of a hydrated interplanetary dust particle, trapping Ne, Ar, Kr, and Xe in Si2O3 smokes, gossans on Mars, and a model of the porous structure of icy satellites.

  7. Iron Meteorites and Upwelling in Antarctica (United States)

    Gourlay, B. S.; Behr, E.; Mardon, A.; Behr, E.


    In Antarctica, a meteorite stranding zone, stone meteorites are more common than iron. Dr. Evatt's team suggests that the heat conductivity of iron may be opposing the upwelling effects so iron meteorites sink under the ice unlike the stone ones.

  8. Prospecting for lunar resources (United States)

    Taylor, G.; Martel, L.

    Large space settlements on the Moon (thousands of people) will require use of indigenous resources to build and maintain the infrastructure and generate products for export. Prospecting for these resources is a crucial step in human migration to space and needs to begin before settlement and the establishment of industrial complexes. We are devising a multi-faceted approach to prospect for resources. A central part of this work is developing the methodology for prospecting the Moon and other planetary bodies. This involves a number of investigations: (1) It is essential to analyze the economics of planetary ore deposits. Ore deposits are planetary materials that we can mine, process, and deliver to customers at a profit. The planetary context tosses in some interesting twists to this definition. (2) We are also making a comprehensive theoretical assessment of potential lunar ore deposits. Our understanding of the compositions, geological histories, and geological processes on the Moon will lead to significant differences in how we assess wh a t types of ores could be present. For example, the bone-dry nature of the Moon (except at the poles) eliminates all ore deposits associated with hydrothermal fluids. (3) We intend to search for resources using existing data for the Moon. Thus, prospecting can begin immediately. We have a wealth of remote sensing data for the Moon. We also have a good sampling of the Moon by the Apollo and Luna missions, and from lunar meteorites. We can target specific types of deposits already identified (e.g. lunar pyroclastic deposits) and look for other geological settings that might have produced ores and other materials of economic value. Another approach we will take is to examine all data available to look for anomalies. Examples are unusual spectral properties, large disagreements between independent techniques that measure the same property, unusual elemental ratios, or simply exceptional properties such as elemental abundances much

  9. Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust? (United States)

    Rapp, Jennifer F.; Draper, David S.


    New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization

  10. Amino and fatty acids in carbonaceous meteorites (United States)

    Kvenvolden, K. A.


    Analyses of two carbonaceous meteorites have provided much of the latest evidence which seems to support Oparin's theory on the origin of life. The meteorites involved are the Murray meteorite, which fell in 1950, and the Murchison meteorite, which fell in 1969. The amino acids in the two meteorites are similar in composition. Eight of the twenty amino acids found belong to amino acids present in proteins. A number of monocarboxylic and dicarboxylic fatty acids were also found in the meteorites.

  11. Synthesis of Seifertite and its Applications to Shocked Meteorites (United States)

    Page, M. E.; Ohtani, E.; Suzuki, A.; Asahara, Y.; Saxena, S.


    Seifertite is a high pressure polymorph of silica and a post-stishovite phase. The stable phase is observed at very high pressures around the core-mantle boundary, generally above 100 GPa. Despite this, the mineral is increasingly found in shocked meteorites, both Martian (1) (Sharp et al., 1999), and lunar (2) (Miyahara et al., 2013). It appears, then, that the occurrence of seifertite may indicate intensive shock events on Mars and the Moon. In direct contrast to this, recent high pressure studies have shown metastable formation of seifertite from cristobalite, a high-temperature and low-pressure polymorph of silica, at high pressures of only 30 GPa (3) (Dubrovinski et al., 2001) or less (4) (Kubo et al., 2012). Thus, the formation conditions of seifertite in meteorites are not well catalogued. Knowing this, experiments on the reaction kinetics of formation of seifertite from cristobalite are investigated. Synthesis experiments at 20 GPa and 600 C and 900 C were carried out for various heating duration using the Kawai type mutianvil apparatus. Formation of seifertite from cristobalite was observed, and seifertite was quenchable and recovered to ambient conditions. Present results suggest that the existence of seifertite does not indicate an intensive shock pressure above 100 GPa. Rather, it is as low as 20 GPa around 600 C. We intend to report a more detailed study on reaction kinetics of seifertite from cristobalite at high pressures and temperatures, and will discuss new constraints on the impact conditions of some Martian and lunar meteorites from which seifertite was reported. (1) Sharp, T. G. et al. A Post-Stishovite SiO2 Polymorph in the Meteorite Shergotty: Implications for Impact Events, Science, 284, 1511 (1999) (2) Miyahara, M. et al. Discovery of Seifertite in a Shocked Lunar Meteorite, Nat Commun, 4, 1737 (2013) (3) Dubrovinsky, L. S. et al. Pressure-induced Transformations of Cristobalite, Chem Phys Lett, 333, 264 (2001) (4) Kubo, T. et al. Formation

  12. Oral histories in meteoritics and planetary science—XVI: Donald D. Bogard (United States)

    Sears, Derek W. G.


    Donald D. Bogard (Don, Fig. 1) became interested in meteorites after seeing the Fayetteville meteorite in an undergraduate astronomy class at the University of Arkansas. During his graduate studies with Paul Kuroda at Arkansas, Don helped discover the Xe decay products of 244Pu. After a postdoctoral period at Caltech, where he learned much from Jerry Wasserburg, Peter Eberhardt, Don Burnett, and Sam Epstein, Don became one of a number of young Ph.D. scientists hired by NASA's Manned Spacecraft Center to set up the Lunar Receiving Laboratory (LRL) and to perform a preliminary examination of Apollo samples. In collaboration with Oliver Schaeffer (SUNY), Joseph Zähringer (Max Planck, Heidelberg), and Raymond Davis (Brookhaven National Laboratory), he built a gas analysis laboratory at JSC, and the noble gas portion of this laboratory remained operational until he retired in 2010. At NASA, Don worked on the lunar regolith, performed pioneering work on cosmic ray produced noble gas isotopes and Ar-Ar dating, the latter for important insights into the thermal and shock history of meteorites and lunar samples. During this work, he discovered that the trapped gases in SNC meteorites were very similar to those of the Martian atmosphere and thus established their Martian origin. Among Don's many administrative accomplishments are helping to establish the Antarctic meteorite and cosmic dust processing programs at JSC and serving as a NASA-HQ discipline scientist, where he advanced peer review and helped create new programs. Don is a recipient of NASA's Scientific Achievement and Exceptional Service Medals and the Meteoritical Society's Leonard Medal.

  13. 35 seasons of US antarctic meteorites (1976-2010) a pictorial guide to the collection

    CERN Document Server

    Righter, Kevin; McCoy, Timothy; Harvey, Ralph; Harvey, Ralph


    The US Antarctic meteorite collection exists due to a cooperative program involving the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the Smithsonian Institution.  Since 1976, meteorites have been collected by a NSF-funded field team, shipped for curation, characterization, distribution, and storage at NASA, and classified and stored for long term at the Smithsonian.  It is the largest collection in the world with many significant samples including lunar, martian, many interesting chondrites and achondrites, and even several unusual one-of-

  14. Chondrule-like particles provide evidence of early Archean meteorite impacts, South Africa and western Australia (United States)

    Lowe, D. R.; Byerly, G. R.


    The evolution of the Earth and the Earth crust was studied. Two layers, that contain abundant unusual spherical particles which closely resemble chondroules were identified. Chondrules occur on small quantities in lunar soil, however, they are rare in terrestrial settings. Some chondrules in meteorites were formed on the surfaces of planet sized bodies during impact events. Similar chondrule like objects are extremely rare in the younger geologic record and these abundances are unknown in ancient deposits, except in meteorites. It is suggested that a part of the Earth's terminal bombardment history, and conditions favoring chondrule formation existed on the early Earth.

  15. Lunar and Planetary Science Conference, 13th, Houston, TX, March 15-19, 1982, Proceedings. Part 1 (United States)

    Boynton, W. V.; Ahrens, T. J.

    The present conference on planetary and lunar science considers theoretical models for the composition of the Venus crust, the lunar crust, the prediction of phase relationships in planetary mantles, the volumetric analysis of complex lunar craters, grazing impacts on Mars, the determination of lunar structure by means of electrical conductivity and seismic experiments, results of studies on the Apollo 16 site rocks, as well as Apollo 14, 15 and 17 lunar glasses and regoliths, and carbon components and isotopic compositions of chondritic meteorites. Also discussed are iron meteorites, interplanetary dust and tektites, and such theoretical and experimental issues as refractory condensates and chondrules from solar furnace experiments, molecular synthesis through the irradiation of silicates, and the adsorption of excess fission Xe.

  16. Meteorite Magazine: Promoting Science, Discovery, And Education (United States)

    Lebofsky, Larry A.; Lebofsky, N. R.; Sears, H.; Sears, D.


    In late 2005, Larry and Nancy Lebofsky and Derek and Hazel Sears took over the editing and publishing of Meteorite magazine. We saw a great educational potential for the magazine. With a circulation over 600, the magazine reaches a broad readership: meteorite scientists, hunters, collectors, and enthusiasts. Unlike the professional journal of the Meteoritical Society, Meteoritics and Planetary Sciences, the articles in Meteorite range from scientific articles, reports from meteorite shows, and how to preserve meteorites to stories about searching for meteorites around the world. Meteorites are of interest to people. Asteroids, meteoroids, meteors, and meteorites are in many states' science standards. Yet, how many museums have meteorite collections with staff who know little about them? How many amateur astronomers, when seeing meteors or meteor showers, can explain how asteroids, comets, meteors, and meteorites are related and what they tell us about the formation of our Solar System? How many meteorite collectors are knowledgeable about how these objects are related to each other? How do we reach the broader community? Unlike the hundreds of amateur and school astronomy clubs, there are no meteorite clubs. While one can point out the wonders of the night sky and what can be seen through a telescope at star parties, there is no such thing as school meteorite hunting parties. The meteorite and planetary sciences communities working together can bring the excitement of meteorites and the science behind these fascinating objects to teachers, students, and museum and planetarium staff. We will present ideas for accomplishing this.

  17. Lunar Mare Basalts as Analogues for Martian Volcanic Compositions: Evidence from Visible, Near-IR, and Thermal Emission Spectroscopy (United States)

    Graff, T. G.; Morris, R. V.; Christensen, P. R.


    The lunar mare basalts potentially provide a unique sample suite for understanding the nature of basalts on the martian surface. Our current knowledge of the mineralogical and chemical composition of the basaltic material on Mars comes from studies of the basaltic martian meteorites and from orbital and surface remote sensing observations. Petrographic observations of basaltic martian meteorites (e.g., Shergotty, Zagami, and EETA79001) show that the dominant phases are pyroxene (primarily pigeonite and augite), maskelynite (a diaplectic glass formed from plagioclase by shock), and olivine [1,2]. Pigeonite, a low calcium pyroxene, is generally not found in abundance in terrestrial basalts, but does often occur on the Moon [3]. Lunar samples thus provide a means to examine a variety of pigeonite-rich basalts that also have bulk elemental compositions (particularly low-Ti Apollo 15 mare basalts) that are comparable to basaltic SNC meteorites [4,5]. Furthermore, lunar basalts may be mineralogically better suited as analogues of the martian surface basalts than the basaltic martian meteorites because the plagioclase feldspar in the basaltic Martian meteorites, but not in the lunar surface basalts, is largely present as maskelynite [1,2]. Analysis of lunar mare basalts my also lead to additional endmember spectra for spectral libraries. This is particularly important analysis of martian thermal emission spectra, because the spectral library apparently contains a single pigeonite spectrum derived from a synthetic sample [6].

  18. Oxygen Isotopes in Meteorites (United States)

    Clayton, R. N.


    Oxygen isotope abundance variations in meteorites are very useful in elucidating chemical and physical processes that occurred during the formation of the solar system (Clayton, 1993). On Earth, the mean abundances of the three stable isotopes are 16O: 99.76%, 17O: 0.039%, and 18O: 0.202%. It is conventional to express variations in abundances of the isotopes in terms of isotopic ratios, relative to an arbitrary standard, called SMOW (for standard mean ocean water), as follows:The isotopic composition of any sample can then be represented by one point on a "three-isotope plot," a graph of δ17O versus δ18O. It will be seen that such plots are invaluable in interpreting meteoritic data. Figure 1 shows schematically the effect of various processes on an initial composition at the center of the diagram. Almost all terrestrial materials lie along a "fractionation" trend; most meteoritic materials lie near a line of "16O addition" (or subtraction). (4K)Figure 1. Schematic representation of various isotopic processes shown on an oxygen three-isotope plot. Almost all terrestrial materials plot along a line of "fractionation"; most primitive meteoritic materials plot near a line of "16O addition." The three isotopes of oxygen are produced by nucleosynthesis in stars, but by different nuclear processes in different stellar environments. The principal isotope, 16O, is a primary isotope (capable of being produced from hydrogen and helium alone), formed in massive stars (>10 solar masses), and ejected by supernova explosions. The two rare isotopes are secondary nuclei (produced in stars from nuclei formed in an earlier generation of stars), with 17O coming primarily from low- and intermediate-mass stars (shielding in the UV photodissociation of CO (van Dishoeck and Black, 1988). This process results from the large differences in abundance between C16O, on the one hand, and C17O and C18O on the other. Photolysis of CO occurs by absorption of stellar UV radiation in the

  19. Study of Meteoritic Inclusion

    DEFF Research Database (Denmark)

    Olsen, Mia Bjørg Stolberg

    . The manuscripts presented in this thesis have provided critical insights into the origin and distribution of short-lived radioisotopes as well as the formation and transport history of chondrules and, by extension, the precursor material to asteroidal and planetary bodies. The proposal of 26Al heterogeneity...... and the observation of a reduced initial abundance of 26Al in the accretion regions of chondrules and asteroidal bodies impacts our understanding of the accretion timescales of protoplanets in a significant way. Combining high-precision isotope measurements of multiple systems on individual meteoritic inclusions...

  20. Stardust in meteorites. (United States)

    Davis, Andrew M


    Primitive meteorites, interplanetary dust particles, and comets contain dust grains that formed around stars that lived their lives before the solar system formed. These remarkable objects have been intensively studied since their discovery a little over twenty years ago and they provide samples of other stars that can be studied in the laboratory in exquisite detail with modern analytical tools. The properties of stardust grains are used to constrain models of nucleosynthesis in red giant stars and supernovae, the dominant sources of dust grains that are recycled into the interstellar medium by stars.

  1. The SNC Meteorites (United States)

    Varela, M. E.


    The SNC (Shergotty-Nakhla-Chassigny) group, are achondritic meteorites. Of all SNC meteorites recognized up to date, shergottites are the most abundant group. The petrographic study of Shergotty began several years ago when Tschermak, (1872) identified this rock as an extraterrestrial basalt. Oxygen isotopes in SNC meteorites indicate that these rocks are from a single planetary body (Clayton and Mayeda, 1983). Because the abundance patterns of rare gases trapped in glasses from shock melts (e.g., Pepin, 1985) turned out to be very similar to the Martian atmosphere (as analyzed by the Viking landers, Owen, 1976), the SNC meteorites are believed to originate from Mars (e.g. McSween, 1994). Possibly, they were ejected from the Martian surface either in a giant impact or in several impact events (Meyer 2006). Although there is a broad consensus for nakhlites and chassignites being -1.3Ga old, the age of the shergottites is a matter of ongoing debates. Different lines of evidences indicate that these rocks are young (180Ma and 330-475Ma), or very old (> 4Ga). However, the young age in shergottites could be the result of a resetting of these chronometers by either strong impacts or fluid percolation on these rocks (Bouvier et al., 2005-2009). Thus, it is important to check the presence of secondary processes, such as re-equilibration or pressure-induce metamorphism (El Goresy et al., 2013) that can produce major changes in compositions and obscure the primary information. A useful tool, that is used to reconstruct the condition prevailing during the formation of early phases or the secondary processes to which the rock was exposed, is the study of glass-bearing inclusions hosted by different mineral phases. I will discuss the identification of extreme compositional variations in many of these inclusions (Varela et al. 2007-2013) that constrain the assumption that these objects are the result of closed-system crystallization. The question then arises whether these

  2. Dynamical consequences of meteorite impacts on the moon (United States)

    Peale, S. J.


    The magnitudes of the excitation of free precession of the lunar spin axis about the position defined by Cassini's laws, free libration in longitude, and free wobble are determined as a function of meteorite angular momentum relative to the lunar center of mass and the position of impact on the lunar surface. Angular-momentum conservation suffices for the estimates of precession and libration excitation, but a cratering model for the ejecta distribution is necessary for the estimate of the wobble excitation. The simultaneous excitation of free wobble is always associated with the excitation of precession, and the angular amplitude is at least comparable to, but may exceed, that of the induced precession by a factor of 3 or 4. It is possible to excite a free libration in longitude with no first-order excitation of free wobble, but generally, all three free motions are excited simultaneously. The induced libration will nearly always have the largest amplitude. For crater sizes scaled as powers of impact energy, impacts leaving craters as small as a few kilometers in diameter can excite free motions which will ultimately be observable by the lunar laser-ranging experiment.

  3. Hypervelocity Impact Experiments in the Laboratory Relating to Lunar Astrobiology (United States)

    Burchell, M. J.; Parnell, J.; Bowden, S. A.; Crawford, I. A.


    The results of a set of laboratory impact experiments (speeds in the range 1-5 km s-1) are reviewed. They are discussed in the context of terrestrial impact ejecta impacting the Moon and hence lunar astrobiology through using the Moon to learn about the history of life on Earth. A review of recent results indicates that survival of quite complex organic molecules can be expected in terrestrial meteorites impacting the lunar surface, but they may have undergone selective thermal processing both during ejection from the Earth and during lunar impact. Depending on the conditions of the lunar impact (speed, angle of impact etc.) the shock pressures generated can cause significant but not complete sterilisation of any microbial load on a meteorite (e.g. at a few GPa 1-0.1% of the microbial load can survive, but at 20 GPa this falls to typically 0.01-0.001%). For more sophisticated biological products such as seeds (trapped in rocks) the lunar impact speeds generate shock pressures that disrupt the seeds (experiments show this occurs at approximately 1 GPa or semi-equivalently 1 km s-1). Overall, the delivery of terrestrial material of astrobiological interest to the Moon is supported by these experiments, although its long term survival on the Moon is a separate issue not discussed here.

  4. Evidence and implications of shock metamorphism in lunar samples. (United States)

    Short, N M


    Lunar microbreccias and loose regolith materials contain abundant evidence of shock metamorphism related to crater-forming meteorite impacts. Diagnostic shock effects include (i) planar features in a silica phase and feldspars, and lamellae in clinopyroxene, (ii) thetomorphic feldspar glass, (iii) heterogeneous glasses of rock and mineral composition, (iv) distinctive recrystallization textures, and (v) characteristic changes in crystal structure as indicated by x-ray diffraction analysis and measurements of refractive index. The microbreccias are produced from regolith materials (ejected fromz craters) by shock lithification. Some feldsparrich fragments may represent ejecta introduced from nonlocal sources, such as the lunar highlands.

  5. Meteors and meteorites spectra (United States)

    Koukal, J.; Srba, J.; Gorková, S.; Lenža, L.; Ferus, M.; Civiš, S.; Knížek, A.; Kubelík, P.; Kaiserová, T.; Váňa, P.


    The main goal of our meteor spectroscopy project is to better understand the physical and chemical properties of meteoroids. Astrometric and spectral observations of real meteors are obtained via spectroscopic CCD video systems. Processed meteor data are inserted to the EDMOND database (European viDeo MeteOr Network Database) together with spectral information. The fully analyzed atmospheric trajectory, orbit and also spectra of a Leonid meteor/meteoroid captured in November 2015 are presented as an example. At the same time, our target is the systematization of spectroscopic emission lines for the comparative analysis of meteor spectra. Meteoroid plasma was simulated in a laboratory by laser ablation of meteorites samples using an (ArF) excimer laser and the LIDB (Laser Induced Dielectric Breakdown) in a low pressure atmosphere and various gases. The induced plasma emissions were simultaneously observed with the Echelle Spectrograph and the same CCD video spectral camera as used for real meteor registration. Measurements and analysis results for few selected meteorite samples are presented and discussed.

  6. Presolar Diamond in Meteorites

    CERN Document Server

    Amari, Sachiko


    Presolar diamond, the carrier of the isotopically anomalous Xe component Xe-HL, was the first mineral type of presolar dust that was isolated from meteorites. The excesses in the light, p-process only isotopes 124Xe and 126Xe, and in the heavy, r-process only isotopes 134Xe and 136Xe relative to the solar ratios indicate that Xe-HL was produced in supernovae: they are the only stellar source where these two processes are believed to take place. Although these processes occur in supernovae, their physical conditions and timeframes are completely different. Yet the excesses are always correlated in diamond separates from meteorites. Furthermore, the p-process 124Xe/126Xe inferred from Xe-L and the r-process 134Xe/136Xe from Xe-H do not agree with the p-process and r-process ratios derived from the solar system abundance, and the inferred p-process ratio does not agree with those predicted from stellar models. The 'rapid separation scenario', where the separation of Xe and its radiogenic precursors Te and I take...

  7. Lunar sulfur (United States)

    Kuck, David L.

    Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.

  8. Modulation of solar flare particles and track density profiles in gas-rich meteorite grains (United States)

    Lee, M. A.


    A solution is presented to the problem concerning the time-averaged solar flare particle flux as a function of kinetic energy and distance from the sun for a given particle injection spectrum at the sun within the framework of standard diffusion-convection-adiabatic deceleration theory with the diffusion coefficient independent of distance from the sun. Results of the calculations which give best agreement with observations at 1 AU are presented and discussed, with particular reference to their implications for gas-rich meteorites. Normalization at the orbit of earth is achieved via observed track density versus depth profiles in lunar vug crystals. It is shown that if gas-rich meteorite grains were irradiated in the asteroid belt and if source and modulation parameters have changed little since irradiation, the track density should be 'harder' than the lunar vug profile by about 0.2-0.3 in the index. Quantitative estimation of solar flare particle exposure ages is discussed.

  9. Solar flare neon and solar cosmic ray fluxes in the past using gas-rich meteorites (United States)

    Nautiyal, C. M.; Rao, M. N.


    Methods were developed earlier to deduce the composition of solar flare neon and to determine the solar cosmic ray proton fluxes in the past using etched lunar samples and at present, these techniques are extended to gas rich meteorites. By considering high temperature Ne data points for Pantar, Fayetteville and other gas rich meteorites and by applying the three component Ne-decomposition methods, the solar cosmic ray and galactic cosmic ray produced spallation Ne components from the trapped SF-Ne was resolved. Using appropiate SCR and GCR production rates, in the case of Pantar, for example, a GCR exposure age of 2 m.y. was estimated for Pantar-Dark while Pantar-Light yielded a GCR age of approx. 3 m.y. However the SCR exposure age of Pantar-Dark is two orders of magnitude higher than the average surface exposure ages of lunar soils. The possibility of higher proton fluxes in the past is discussed.

  10. On the survivability and detectability of terrestrial meteorites on the moon. (United States)

    Crawford, Ian A; Baldwin, Emily C; Taylor, Emma A; Bailey, Jeremy A; Tsembelis, Kostas


    Materials blasted into space from the surface of early Earth may preserve a unique record of our planet's early surface environment. Armstrong et al. (2002) pointed out that such materials, in the form of terrestrial meteorites, may exist on the Moon and be of considerable astrobiological interest if biomarkers from early Earth are preserved within them. Here, we report results obtained via the AUTODYN hydrocode to calculate the peak pressures within terrestrial meteorites on the lunar surface to assess their likelihood of surviving the impact. Our results confirm the order-of-magnitude estimates of Armstrong et al. (2002) that substantial survivability is to be expected, especially in the case of relatively low velocity (ca. 2.5 km/s) or oblique (lunar exploration.

  11. An Adulterated Martian Meteorite (United States)

    Taylor, G. J.


    Martian meteorite, Elephant Moraine EETA79001, is composed of two distinct rock types. Scientists have thought that both formed from magmas, hence are igneous rocks and contain important information about the interior of Mars, the nature of lava flows on its surface, and the timing of igneous events on Mars. All that is now open to question, as a group of investigators at Lockheed Martin Space Operations and the Johnson Space Center led by David Mittlefehldt (Lockheed) has shown that one of the rock types making up EETA79001, designated lithology A, is almost certainly a melted mixture of other rocks. Mittlefehldt and coworkers suggest that formation by impact melting is the most likely explanation for the chemical and mineralogical features seen in the rock. If confirmed by other investigations, this may change the way we view the igneous evolution of Mars.

  12. Study of Meteoritic Inclusion

    DEFF Research Database (Denmark)

    Olsen, Mia Bjørg Stolberg

    There is no question more fundamental than understanding our origins, in other words, understanding our place in the cosmos. This question is particularly timely, as results in the field of exoplanet research have established with confidence that about half of the stars in the galaxy are orbited...... as astronomical observation of starforming regions and exoplanets provide a framework for understanding star-formation processes and the evolution of planetary systems, but offer no direct insight into the earliest solar system. This necessary and complementary information can be obtained through the study...... of meteorite samples that date back to the birth of the solar system. In this thesis, we have taken advantage of novel methods for the high-precision analysis of various radiogenic and stable isotope systems by plasma source and thermal ionization mass spectrometry (ICPMS and TIMS) as well as by secondary...

  13. Cosmogenic nuclides in meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Merchel, Silke; Akhmadaliev, Shavkat; Rugel, Georg [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Cartwright, Julia A.; Ott, Ulrich [MPI fuer Chemie, Mainz (Germany); Faestermann, Thomas; Fimiani, Leticia; Korschinek, Gunther; Ludwig, Peter [TU Muenchen, Garching (Germany)


    After successful installation of the Dresden Accelerator Mass Spectrometry (DREAMS) facility, determinations of the lighter radionuclides {sup 10}Be, {sup 26}Al, and {sup 41}Ca are now easily attainable in Germany. Accompanied by data for the heavier radionuclides (i.e. {sup 53}Mn and {sup 60}Fe) that can be measured at the 14 MV tandem at Munich and stable nuclides such as {sup 21,22}Ne and {sup 38}Ar from noble gas mass spectrometry at MPI Mainz, complete and unique exposure histories of extraterrestrial material can be reconstructed. For example, recent analyses of the 100{sup th} Martian meteorite Ksar Ghilane 002 and four samples from the nickel-rich ataxite Gebel Kamil show interesting features revealing amazing stories.

  14. Osmium isotopes and highly siderophile elements in lunar glasses (United States)

    Horan, M.; Walker, R.; Shearer, C.; Papike, J.


    The absolute and relative abundances of the highly siderophile elements (HSE) present in planetary mantles are primarily controlled by silicate-metal partitioning during core-mantle differentiation and by later planetary accretion. Constraints on HSE distributions in the lunar mantle will provide insights to the formation and late accretionary history of not only the Moon, but also Earth. Because no samples of the lunar mantle have been collected, the only materials presently available for constraining mantle abundances are lunar volcanic rocks. The Apollo 15 green and Apollo 17 orange glasses are spherules derived from fire-fountain eruptions of mare basalts. These glasses are more primitive than the mare basalts, and probably were derived by the melting of cumulate assemblages from the lunar magma ocean in the deep interior (> 400 km). Despite our limited understanding of mantle-melt partitioning of the HSE, even for terrestrial systems, these glasses provide the best hope for constraining the HSE composition of the lunar interior. We report Os isotopic composition data and Re, Os, Ir, Ru, Pt and Pd isotope dilution concentration data for green glass (15426,164) and orange glass (74001,1217). Absolute and relative abundances of HSE are variable. The green glass has elemental ratios of the HSE and an Os isotopic composition within the range defined by chondritic meteorites, suggesting that the HSE were dominated by a meteoritic contaminant. This sample probably provides little information about the lunar interior, but may help constrain the types of meteorites impacting the lunar surface. Two size fractions (180-325 mesh and 75-180 mesh) of the orange glass were analyzed. HSE patterns for both size fractions are fractionated, having higher chondrite-normalized abundances of Pt and Pd, compared with Os and Ir. The supra-chondritic 187Os/188Os ratio (0.1339) of the finer fraction indicates modestly fractionated Re/Os relative to chondritic. The coarser size fraction

  15. The Lunar Regolith as a Recorder of Cosmic History (United States)

    Cooper, Bonnie; McKay, D.; Riofrio, L.


    The Moon can be considered a giant tape recorder containing the history of the solar system and Universe. The lunar regolith (soil) has recorded the early history of the Moon, Earth, the solar system and Universe. A major goal of future lunar exploration should be to find and play back existing fragments of that tape . By reading the lunar tape, we can uncover a record of planetary bombardment, as well as solar and stellar variability. The Moon can tell us much about our place in the Universe. The lunar regolith has likely recorded the original meteoritic bombardment of Earth and Moon, a violent cataclysm that may have peaked around 4 Gyr, and the less intense bombardment occurring since that time. This impact history is preserved on the Moon as regolith layers, ejecta layers, impact melt rocks, and ancient impact breccias. The impact history of the Earth and Moon possibly had profound effects on the origin and development of life. Decrease in meteor bombardment allowed life to develop on Earth. Life may have developed first on another body, such as Mars, then arrived via meteorite on Earth. The solar system may have experienced bursts of severe radiation from the Sun, other stars, or from unknown sources. The lunar regolith has recorded this radiation history in the form of implanted solar wind, solar flare materials and radiation damage. Lunar soil can be found sandwiched between layers of basalt or pyroclastic deposits. This filling constitutes a buried time capsule that is likely to contain well-preserved ancient regolith. Study of such samples will show us how the solar system has evolved and changed over time. The lunar tape recorder can provide detailed information on specific portions of solar and stellar variability. Data from the Moon also offers clues as to whether so-called fundamental constants have changed over time.

  16. Proceedings of the 40th Lunar and Planetary Science Conference (United States)


    The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology

  17. Proceedings of the 40th Lunar and Planetary Science Conference (United States)


    The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology

  18. Lunar Orbiter Photo Gallery (United States)

    National Aeronautics and Space Administration — The Lunar Orbiter Photo Gallery is an extensive collection of over 2,600 high- and moderate-resolution photographs produced by all five of the Lunar Orbiter...

  19. Lunar Sample Compendium (United States)

    National Aeronautics and Space Administration — The purpose of the Lunar Sample Compendium is to inform scientists, astronauts and the public about the various lunar samples that have been returned from the Moon....

  20. Lunar Sample Atlas (United States)

    National Aeronautics and Space Administration — The Lunar Sample Atlas provides pictures of the Apollo samples taken in the Lunar Sample Laboratory, full-color views of the samples in microscopic thin-sections,...

  1. Lunar Surface Navigation Project (United States)

    National Aeronautics and Space Administration — To support extended lunar operations, precision localization and route mapping is required for planetary EVA, manned rovers and lunar surface mobility units. A...

  2. Lunar Sample Display Locations (United States)

    National Aeronautics and Space Administration — NASA provides a number of lunar samples for display at museums, planetariums, and scientific expositions around the world. Lunar displays are open to the public....

  3. Proceedings of the 38th Lunar and Planetary Science Conference (United States)


    The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects

  4. Lunar electrical conductivity (United States)

    Leavy, D.; Madden, T.


    It is pointed out that the lunar magnetometer experiment has made important contributions to studies of the lunar interior. Numerical inversions of the lunar electromagnetic response have been carried out, taking into account a void region behind the moon. The amplitude of the transfer function of an eight-layer model is considered along with a model of the temperature distribution inside the moon and the amplitude of the transfer function of a semiconductor lunar model.

  5. The geologic classification of the meteorites (United States)

    Elston, Donald Parker


    aggregates of grains, and as large subround to round, finely granular accretional chondrules. Evidence in Murray indicates that component 3 silicates precipitated abruptly and at low pressures, possibly from a high temperature gas, in an environment that contained dispersed component 1 and 2 materials. All component 3 aggregates in Murray contain component 1 material, most commonly as flakes, and locally as tiny granules and larger spherules, some of which are hollow and some of which were broken prior to their mechanical incorporation in accretionary chondrules. Accretion may have occurred as ices associated with dispersed water-bearing component 1 materials temporarily melted during the precipitation of component 3 silicates, and then abruptly refroze to form an icy cementing material. Group 1 materials may be cometary, and group 2 materials may be asteroidal. Schematic models are proposed. Evidence is reviewed for the lunar origin of the pyroxeneplagioclase achondrites. On the basis of natural remanent magnetism, it is suggested that the very scarce diopside-olivine achondrites may be samples from Mars. A classification of the meteorite breccias, including the calcium-poor and calcium-rich mesosiderites, and irons that contain silicate fragments, is proposed. A fragmentation history of the meteorites is outlined on the basis of evidence in the polymict breccias, and from gas retention ages in stones and exposure ages in irons. Cometal impacts appear to have caused the initial fragmentation, stud possibly the perturbation of orbits, of two inferred asteroidal bodies (enstatite and bronzite), one and possibly both events occurring before 2000 m.y. ago. Several impacts apparently occurred on the inferred hypersthene body in the interval 1000 to 2000 m.y. ago. Major breakups of the three bodies apparently occurred as the result of interasteroidal collisions at about 900 m.y. ago, and 600 to 700 m.y. ago. The breakups were followed by a number of fr

  6. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries (United States)

    Allen, J. S.


    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  7. Disturbance of isotope systematics in meteorites during shock and thermal metamorphism and implications for shergottite chronology

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, A M; Borg, L E; Asmerom, Y


    Shock and thermal metamorphism of meteorites from differentiated bodies such as the Moon and Mars have the potential to disturb chronometric information contained in these meteorites. In order to understand the impact-related mechanisms and extent of disturbance to isochrons, we undertook experiments to shock and heat samples of 10017, a 3.6 billion year old lunar basalt. One sub-sample was shocked to 55 GPa, a second subsample was heated to 1000 C for one week, and a third sub-sample was maintained as a control sample. Of the isotope systems analyzed, the Sm-Nd system was the least disturbed by shock or heat, followed by the Rb-Sr system. Ages represented by the {sup 238}U-{sup 206}Pb isotope system were degraded by shock and destroyed with heating. In no case did either shock or heating alone result in rotated or reset isochrons that represent a spurious age. In some cases the true crystallization age of the sample was preserved, and in other cases age information was degraded or destroyed. Although our results show that neither shock nor thermal metamorphism alone can account for the discordant ages represented by different isotope systems in martian meteorites, we postulate that shock metamorphism may render a meteorite more susceptible than unshocked material to subsequent disturbance during impact-related heating or aqueous alteration on Mars or Earth. The combination of these processes may result in the disparate chronometric information preserved in some meteorites.

  8. Racemization of Meteoritic Amino Acids (United States)

    Cohen, Barbara A.; Chyba, Christopher F.


    Meteorites may have contributed amino acids to the prebiotic Earth, affecting the global ratio of right-handed to left-handed (D/L) molecules. We calculate D/L ratios for seven biological, α-hydrogen, protein amino acids over a variety of plausible parent body thermal histories, based on meteorite evidence and asteroid modeling. We show that amino acids in meteorites do not necessarily undergo complete racemization by the time they are recovered on Earth. If the mechanism of amino acid formation imposes some enantiomeric preference on the amino acids, a chiral signature can be retained through the entire history of the meteorite. Original enantiomeric excesses in meteorites such as Murchison, which have undergone apparently short and cool alteration scenarios, should have persisted to the present time. Of the seven amino acids for which relevant data are available, we expect glutamic acid, isoleucine, and valine, respectively, to be the most likely to retain an initial enantiomeric excess, and phenylalanine, aspartic acid, and alanine the least. Were the D/L ratio initially identical in each amino acid, final D/L ratios could be used to constrain the initial ratio and the thermal history experienced by the whole suite.

  9. The Evolution and Development of the Lunar Regolith and Implications for Lunar Surface Operations and Construction (United States)

    McKay, David


    The lunar regolith consists of about 90% submillimeter particles traditionally termed lunar soil. The remainder consists of larger particles ranging up to boulder size rocks. At the lower size end, soil particles in the 10s of nanometer sizes are present in all soil samples. Lunar regolith overlies bedrock which consists of either lava flows in mare regions or impact-produced megaregolith in highland regions. Lunar regolith has been produced over billions of years by a combination of breaking and communition of bedrock by meteorite bombardment coupled with a variety of complex space weathering processes including solar wind implantation, solar flare and cosmic ray bombardment with attendant radiation damage, melting, vaporization, and vapor condensation driven by impact, and gardening and turnover of the resultant soil. Lunar regolith is poorly sorted compared to most terrestrial soils, and has interesting engineering properties including strong grain adhesion, over-compacted soil density, an abundance of agglutinates with sharp corners, and a variety of properties related to soil maturity. The NASA program has supported a variety of engineering test research projects, the production of bricks by solar or microwave sintering, the production of concrete, the in situ sintering and glazing of regolith by microwave, and the extraction of useful resources such as oxygen, hydrogen, iron, aluminum, silicon and other products. Future requirements for a lunar surface base or outpost will include construction of protective berms, construction of paved roadways, construction of shelters, movement and emplacement of regolith for radiation shielding and thermal control, and extraction of useful products. One early need is for light weight but powerful digging, trenching, and regolith-moving equipment.

  10. Irradiation history of meteoritic inclusions

    DEFF Research Database (Denmark)

    Wielandt, Daniel Kim Peel

    -sun. To the scientists that study them, they represent a rich archive of the dynamic processes that lead to the formation of our sol r system and eventually the planetary system that we observe today. Although meteorites and their components have been studied for several hundred years, the recent decades of mass......Understanding the formation and earliest evolution of our solar system is a longstanding goal shared by cosmochemistry, astronomy and astrophysics. Meteorites play a key role in this pursuit, providing a ground truth against which all theories must be weighed. Chondritic meteorites are in essence...... extraterrestrial sediments that contain Calcium-Aluminium-rich Inclusions (CAIs) and chondrules that formed as individual objects during the earliest stages of solar system evolution. They later accreted together to form large bodies, after spending up to several million years in individual orbit around the proto...

  11. Organic Chemistry of Carbonaceous Meteorites (United States)

    Cronin, John R.


    Chiral and carbon-isotopic analyses of isovaline have been carried out on numerous samples of the Murchison and one sample of the Murray carbonaceous chondrite. The isovaline was found to be heterogeneous with regard to enantiomeric excess (ee) both between samples and within a single Murchison sample. L-Excesses ranging from 0 to 15% were observed. The isovaline delta(sup 13) C was found to be about +18%. No evidence was obtained suggesting terrestrial contamination in the more abundant L-enantiomer. A correlation was observed between isovaline (also alpha - aminoisobutyric acid) concentration and PCP content of five CM chondrites. It is suggested that isovaline, along with other meteoritic a-methyl amino acids with ee, are of presolar origin. The possible formation of ee in extraterrestrial amino acids by exposure to circularly polarized light or by magnetochiral photochemistry is discussed. Key words: Murchison meteorite, Murray meteorite, amino acids, isovaline, chirality, carbon isotopes, PCP.

  12. The Meteorite of Belogradchik [In Bulgarian

    Directory of Open Access Journals (Sweden)

    B.V. Toshev


    Full Text Available The paper reveals the history of the meteorite of Belogradchik (1874, samples of which have been presented in many meteorite collections in all over the world except Bulgaria. The meteorite, often named 'Virba', was studied and described by Daubree (1874 and Meunier (1893.

  13. U-Pb Ages of Lunar Apatites (United States)

    Vaughan, J.; Nemchin, A. A.; Pidgeon, R. T.; Meyer, Charles


    Apatite is one of the minerals that is rarely utilized in U-Pb geochronology, compared to some other U-rich accessory phases. Relatively low U concentration, commonly high proportion of common Pb and low closure temperature of U-Pb system of apatite inhibit its application as geochronological tool when other minerals such as zircon are widely available. However, zircon appear to be restricted to certain type of lunar rocks, carrying so called KREEP signature, whereas apatite (and whitlockite) is a common accessory mineral in the lunar samples. Therefore, utilizing apatite for lunar chronology may increase the pool of rocks that are available for U-Pb dating. The low stability of U-Pb systematics of apatite may also result in the resetting of the system during meteoritic bombardment, in which case apatite may provide an additional tool for the study of the impact history of the Moon. In order to investigate these possibilities, we have analysed apatites and zircons from two breccia samples collected during the Apollo 14 mission. Both samples were collected within the Fra Mauro formation, which is interpreted as a material ejected during the impact that formed the Imbrium Basin.

  14. Toxicity of lunar dust

    CERN Document Server

    Linnarsson, Dag; Fubini, Bice; Gerde, Per; Karlsson, Lars L; Loftus, David J; Prisk, G Kim; Staufer, Urs; Tranfield, Erin M; van Westrenen, Wim


    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of substantial research efforts, lunar dust properties, and therefore lunar dust toxicity may differ substantially. In this contribution, past and ongoing work on dust toxicity is reviewed, and major knowledge gaps that prevent an accurate assessment of lunar dust toxicity are identified. Finally, a range of studies using ground-based, low-gravity, and in situ measurements is recommended to address the identified knowledge gaps. Because none of the curated lunar samples exist in a pristine state that preserves the surface reactive chemical aspects thought to be present on the lunar surface, studies using this material carry with them considerable uncertainty in terms of fidelity. As a consequence, in situ data on lunar dust...

  15. Lunar and Planetary Science Conference, 11th, Houston, TX, March 17-21, 1980, Proceedings. Volume 1 - Igneous processes and remote sensing (United States)

    Merrill, R. B.


    Topics discussed include basaltic studies, planetary differentiation (e.g., lunar highland rocks), and remote sensing studies of chemical composition, mineralogic composition, and physical surface properties. Particular attention is given to the petrology and chemistry of basaltic fragments from the Apollo 11 soil; a model of early lunar differentiation; rocks of the early lunar crust; refractory and moderately volatile element abundances in the earth, moon, and meteorites; the effects of overlapping optical absorption bands of pyroxene and glass on the reflectance spectra of lunar soils; and the characterization of Martian surface materials from earth-based radar.

  16. Meteorite classiifcation for building the Chinese Antarctic Meteorite Depository-Introduction of the classiifcation of 500 Grove Mountains meteorites

    Institute of Scientific and Technical Information of China (English)

    XIA Zhipeng; ZHANG Jie; MIAO Bingkui; OU Ronglin; XIE Lanfang; YANG Rui; JING Yuan


    Meteorites provide an important window into the origins and evolution of the solar system. Since the first four meteorites were recovered in Grove Mountains, Antarctica, in 1998, a further total of 12665 meteorites have been collected over seven polar seasons in the Grove Mountains. All of these meteorites are owned and managed by the Chinese Antarctic Meteorite Depository (CAMD) at the Polar Research Institute of China (PRIC). In recent years, another 500 Antarctic meteorites have been classiifed and characterized based on mineralogy and petrology. In this work we examine four samples that have been identiifed as terrestrial, and a further 496 samples that have been conifrmed as meteorites. These meteorites are further divided into different types:488 ordinary chondrites, one eucrite, one ureilite, one CM2 carbonaceous chondrite, one EH4 enstatite chondrite, one mesosiderite and three iron meteorites. The classiifcation of meteorites not only provides an abundance of fundamental scientiifc data, but is also signiifcant for introducing meteorites and related scientiifc knowledge to the public, particularly via the website of Chinese Resource-sharing Platform of Polar Samples for scientiifc research and education.

  17. Two years of the Javorje meteorite investigations

    Directory of Open Access Journals (Sweden)

    Miloš Miler


    Full Text Available Meteorite Javorje is a IIIAB medium octahedrite iron meteorite with 7.83 wt% Ni content. It was found inNovember 2009 near village Javorje in the Poljane Valley. With nearly five kilograms it represents the largest andheaviest meteorite found so far in the territory of Slovenia. The purpose of this paper is to present general characteristicsof meteorite Javorje to the slovenian geological community. This paper reviews results of already publishedresearch of this meteorite and provides some newer findings and details about major, accessory and secondaryminerals, and also its cooling rate.

  18. Mysterious iodine-overabundance in Antarctic meteorites (United States)

    Dreibus, G.; Waenke, H.; Schultz, L.


    Halogen as well as other trace element concentrations in meteorite finds can be influenced by alteration processes on the Earth's surface. The discovery of Antarctic meteorites offered the opportunity to study meteorites which were kept in one of the most sterile environment of the Earth. Halogen determination in Antartic meteorites was compared with non-Antarctic meteorites. No correlation was found between iodine concentration and the weathering index, or terrestrial age. The halogen measurements indicate a contaminating phase rich in iodine and also containing chlorine. Possible sources for this contamination are discussed.

  19. Compositional and Geochronological Constraints on the Lunar Cataclysm from Planetary Samples (United States)

    Cohen, Barbara A.


    Radiometric dating and compositional clustering of lunar impact-melt rocks form the backbone of the lunar cataclysm hypothesis. Precise age determinations of Apollo and Luna impact-melt rocks define the classic formulation of the cataclysm: a large number of samples 3.9 Ga old, a steep decline after 3.9 Ga, and few impact rocks older than 4.0 Ga. Lunar meteorites more randomly sample the lunar surface, but impact-melt clasts in these rocks show the same apparent age cutoff at 4.0 Ga (though their ages extend approx.500 Myr later). Neither do impact-formed glass spherules and fragments, formed by impacts of all sizes throughout lunar history, predate 4.0 Ga. Geological associations between compositional groups of impact-melt rocks and specific impact basins imply that five large basins formed on the Moon within 200 Myr but a counter-argument postulates they are all products of the Imbrium basin-forming impact; it is not yet proven whether groups of impact melt that are resolvable from each other in age and in trace-element composition represent multiple impacts. The 3.9 Ga age peak and subsequent steep decline are not well mirrored in meteorite data. Radiometric ages in ordinary chondrites and HED meteorites peak around 3.9 Ga but ages older and younger than 3.9 Ga are common. Among Martian meteorites, there is a single impact-related age: ALH 84001 was shocked at 3.92 Ga. Differences in relative impact velocity, impact-melt production, and sampling rate could explain differences between the meteorite and lunar records. One way to anchor the early end of the lunar flux is to directly sample the impact-melt sheet of a large lunar basin distant from Imbrium, such as the South Pole-Aitken basin, where melt rocks probably still resides on the basin floor and could be directly sampled by a human or robotic mission.

  20. Antarctic Meteorite Classification and Petrographic Database Enhancements (United States)

    Todd, N. S.; Satterwhite, C. E.; Righter, K.


    The Antarctic Meteorite collection, which is comprised of over 18,700 meteorites, is one of the largest collections of meteorites in the world. These meteorites have been collected since the late 1970 s as part of a three-agency agreement between NASA, the National Science Foundation, and the Smithsonian Institution [1]. Samples collected each season are analyzed at NASA s Meteorite Lab and the Smithsonian Institution and results are published twice a year in the Antarctic Meteorite Newsletter, which has been in publication since 1978. Each newsletter lists the samples collected and processed and provides more in-depth details on selected samples of importance to the scientific community. Data about these meteorites is also published on the NASA Curation website [2] and made available through the Meteorite Classification Database allowing scientists to search by a variety of parameters. This paper describes enhancements that have been made to the database and to the data and photo acquisition process to provide the meteorite community with faster access to meteorite data concurrent with the publication of the Antarctic Meteorite Newsletter twice a year.

  1. Complex magmatic processes on Mars - Inferences from the SNC meteorites (United States)

    Longhi, J.


    Published data on the elemental and isotopic abundances in the shergottites-nakhlites-Chassigny (SNC) meteorites, considered to be of Martian origin, are compared with those for eucritic, lunar, and terrestrial basalt samples, with a focus on their implications for magmatic processes in the parent bodies. The major elements, the REEs and isotopes, and the other lithophile incompatible elements (such as high-field-strength elements, HFSEs) are discussed separately, and it is concluded that Mars had a magmatic history significantly different from that of the other bodies. The Martian pattern of HFSE and REE anomalies suggests extraction of carbonatic melts and remelting of the depleted source material, while the Nd isotopic constraints on the melting of Nakhla indicate very high fractionation of REEs, requiring exceedingly efficient porous flow down to depths of over 350 km.

  2. Meteorites - A petrologic-chemical synthesis (United States)

    Dodd, Robert T.

    In this book, an attempt has been made to summarize current knowledge and understanding about meteorites in a manner comprehensible to both professional scientists and university students. Attention is given to the flux of meteoritic material, major meteorite types, sources of meteorites, the recovery of meteorites, meteorite nomenclature, and literature. The chemistry and classification of the chondrites is considered along with details regarding carbonaceous chondrites, ordinary chondrites, the enstatite chondrite-achondrite association, and questions regarding time and process in the evolution of chondrites. The eucrite association is discussed, taking into account eucrites, diogenites, howardites, mesosiderites, the radiometric ages of eucrites and their associates, and the chemical evolution of the eucrite association. Differentiated meteorites are considered along with source objects, and parent bodies.

  3. Lunar Meteoroid Impacts and How to Observe Them

    CERN Document Server

    Cudnik, Brian


    We all know that the pock marked face of the Moon looks the way it does because it was hit by meteors. But not many people know that this is still happening today. While the era of major impacts is over, lunar meteorites still cause flashes and puffs of gas, vaporized rock, and dust that we can observe. The Moon itself has a fascinating history. It is now thought to have been formed after a Mars-sized object collided with Earth and stripped off a portion of its mass. This debris took shape within a few hundred years and was originally much closer to our planet. The craters on its surface were largely formed by intense meteorite and asteroid bombardment between 4.6 billion and 3.8 billion years ago. In this comprehensive book, Brian Cudnik, one of the first people to observe a meteorite impact on the Moon in real time, shows how both amateur and practical astronomers can look for these ‘lunar transient phenomena,’ or LTPs. He explains in detail the processes that formed the craters and impact marks we see ...

  4. Moessbauer study of Slovak meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Lipka, J.; Sitek, J.; Dekan, J., E-mail:; Degmova, J. [Slovak University of Technology, Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology (Slovakia); Porubcan, V. [Comenius University, Faculty of Mathematics and Physics (Slovakia)


    {sup 57}Fe Moessbauer spectroscopy was used as an analytical tool in the investigation of iron containing compounds of two meteorites (Rumanova and Kosice) out of total of six which had fallen on Slovak territory. In the magnetic fraction of the iron bearing compounds in the Rumanova meteorite, maghemite, troilite and Fe-Ni alloy were identified. In the non-magnetic fraction silicate phases were found, such as olivine and pyroxene. The paramagnetic component containing Fe{sup 3 + } ions corresponds probably to small superparamagnetic particles. The Kosice meteorite was found near the town of Kosice in February 2010. Its magnetic fraction consists of a Fe-Ni alloy with the Moessbauer parameters of the magnetic field corresponding to kamacite {alpha}-Fe(Ni, Co) and troilite. The non-magnetic part consists of Fe{sup 2 + } phases such as olivine and pyroxene and traces of a Fe{sup 3 + } phase. The main difference between these meteorites is their iron oxide content. These kinds of analyses can bring important knowledge about phases and compounds formed in extraterrestrial conditions, which have other features than their terrestrial analogues.

  5. Lunar Module 5 mated with Spacecraft Lunar Module Adapter (SLA) (United States)


    Interior view of the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building showing Lunar Module 5 mated to its Spacecraft Lunar Module Adapter (SLA). LM-5 is scheduled to be flown on the Apollo 11 lunar landing mission.

  6. Highly Siderophile and Chalcophile Elements in Lunar Impact Rocks: Constraints on the Composition of Late Accreted Material (United States)

    Gleißner, P.; Becker, H.


    HSE, Te, Se and S composition of ancient lunar impactites reveal the late accretion of chondrite-like material along with differentiated core metal. HSE patterns are consistent with parent body P/S ratios higher than most magmatic iron meteorites.

  7. A geochemical assessment of possible lunar ore formation (United States)

    Haskin, Larry A.; Colson, Russell O.; Vaniman, David

    The Moon apparently formed without appreciable water or other relatively volatile materials. Interior concentrations of water or other volatile substances appear to be extremely low. On Earth, water is important to the genesis of nearly all types of ores. Thus, some have reasoned that only abundant elements would occur in ore concentrations. The definition and recognition of ores on the Moon challenge the imaginations and the terrestrial perceptions of ore bodies. Lunar ores included solar-wind soaked soils, which contain abundant but dilute H, C, N, and noble gases (including He-3). Oxygen must be mined; soils contain approximately 45 percent (wt). Mainstream processes of rock formation concentrated Si, Mg, Al, Fe, and Ca, and possibly Ti and Cr. The highland surface contains approximately 70 percent (wt) feldspar (mainly CaAl2Si2O8), which can be separated from some highland soils. Small fragments of dunite were collected; dunite may occur in walls and central peaks of some craters. Theoretical extensions of observations of lunar samples suggest that the Moon may have produced ores of trace elements. Some small fragments have trace-element concentrations 104 times higher than the lunar average, indicating that effective geochemical separations occurred; processes included fractional crystallization, silicate immiscibility, vaporization and condensation, and sulfide metamorphism. Operations of these processes acting on indigenous materials and on meteoritic material in the regolith could have produced ores. Infalling carbonaceous meteorites and comets have added water and hydrocarbons that may have been cold-trapped. Vesicles in basalts, pyroclastic beads, and reported transient events suggest gag emission from the lunar interior; such gas might concentrate and transport rare elements. Large impacts may disperse ores or produce them through deposition of heat at depth and by vaporization and subsequent condensation. The main problem in assessing lunar resources is

  8. Lunar Network Tracking Architecture for Lunar Flight


    Robinson, Shane B.; Geller, David


    A trade study was conducted with the objective of comparing and contrasting the radiometric navigation performance provided by various architectures of lunar-based navigations assets. Architectures considered consist of a compliment of two beacons located on the lunar surface, and two orbiting beacons that provide range and range-rate measurements to the user. Configurations of these assets include both coplanar and linked constellations of frozen elliptic orbiters and halo orbiters. Each arc...

  9. Experimental Study of Lunar and SNC Magmas (United States)

    Rutherford, Malcolm J.


    The research described in this progress report involved the study of petrological, geochemical, and volcanic processes that occur on the Moon and the SNC meteorite parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the types of magmas (magma compositions) present, the role of volatiles in magmatic processes, and on processes of magma evolution on these planets. We are also interested in how these processes and magma types varied over time.In earlier work on the A15 green and A17 orange lunar glasses, we discovered a variety of metal blebs. Some of these Fe-Ni metal blebs occur in the glass; others (in A17) were found in olivine phenocrysts that we find make up about 2 vol 96 of the orange glass magma. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption . They also yield important information about the composition of the gas phase present, the gas that drove the lunar fire-fountaining. During the tenure of this grant, we have continued to work on the remaining questions regarding the origin and evolution of the gas phase in lunar basaltic magmas, what they indicate about the lunar interior, and how the gas affects volcanic eruptions. Work on Martian magmas petrogenesis questions during the tenure of this grant has resulted in advances in our methods of evaluating magmatic oxidation state variations in Mars and some new insights into the compositional variations that existed in the SNC magmas over time . Additionally, Minitti has continued to work on the problem of possible shock effects on the abundance and distribution of water in Mars minerals.

  10. Lunar based massdriver applications (United States)

    Ehresmann, Manfred; Gabrielli, Roland Atonius; Herdrich, Georg; Laufer, René


    The results of a lunar massdriver mission and system analysis are discussed and show a strong case for a permanent lunar settlement with a site near the lunar equator. A modular massdriver concept is introduced, which uses multiple acceleration modules to be able to launch large masses into a trajectory that is able to reach Earth. An orbital mechanics analysis concludes that the launch site will be in the Oceanus Procellarum a flat, Titanium rich lunar mare area. It is further shown that the bulk of massdriver components can be manufactured by collecting lunar minerals, which are broken down into its constituting elements. The mass to orbit transfer rates of massdriver case study are significant and can vary between 1.8 kt and 3.3 megatons per year depending on the available power. Thus a lunar massdriver would act as a catalyst for any space based activities and a game changer for the scale of feasible space projects.

  11. Experimental study of lunar and SNC (Mars) magmas (United States)

    Rutherford, Malcolm J.


    The overall objectives of this research were to evaluate the role of C-O-S-Cl degassing processes in explaining vesiculation, oxidation state and fire-fountaining of lunar magmas by analysis of individual lunar glass spherules, and by experimental determination of equilibrium abundances and diffusion rates of C, S and Cl melt species in lunar glass compositions; and to determine possible primitive SNC magma compositions and the mineralogy of the mantle from which they were derived, and to evaluate P, T, XH2O etc. conditions at which they crystallize to form the SNC meteorites. After funding for one year, a project on the A15 volcanic green glass has been completed to the point of writing a first manuscript. Carbon-oxygen species C-O and CO2 are below detection limits (20 ppm) in these glasses, but there is up to 500 ppm S with concentrations both increasing and decreasing toward the spherule margins. Calculations and modeling indicate that C species could have been present in the volcanic gases, however. In a second project, experiments with low PH2O have resulted in refined estimates of the early intercumulus melt composition in the Chassigny meteorite which is generally accepted as a sample from Mars.

  12. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin


    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  13. Parameters and structure of lunar regolith in Chang'E-3 landing area from lunar penetrating radar (LPR) data (United States)

    Dong, Zehua; Fang, Guangyou; Ji, Yicai; Gao, Yunze; Wu, Chao; Zhang, Xiaojuan


    Chang'E-3 (CE-3) landed in the northwest Mare Imbrium, a region that has not been explored before. Yutu rover that released by CE-3 lander carried the first lunar surface penetrating radar (LPR) for exploring lunar regolith thickness and subsurface shallow geological structures. In this paper, based on the LPR data and the Panoramic Camera (PC) data, we first calculate the lunar surface regolith parameters in CE-3 landing area including its permittivity, density, conductivity and FeO + TiO2 content. LPR data provides a higher spatial resolution and more accuracy for the lunar regolith parameters comparing to other remote sensing techniques, such as orbit radar sounder and microwave sensing or earth-based powerful radar. We also derived the regolith thickness and its weathered rate with much better accuracy in the landing area. The results indicate that the regolith growth rate is much faster than previous estimation, the regolith parameters are not uniform even in such a small study area and the thickness and growth rate of lunar regolith here are different from other areas in Mare Imbrium. We infer that the main reason should be geological deformation that caused by multiple impacts of meteorites in different sizes.

  14. Moessbauer study of the Jilin and Xinyang meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuchang [North Carolina Univ., Asheville, NC (United States). Moessbauer Effect Data Center; Stevens, J.G. [North Carolina Univ., Asheville, NC (United States). Moessbauer Effect Data Center; Li Yushu [FEA Management, Inc., Grand Blanc, MI (United States); Li Zhaolin [Dept. of Geology, Zhongshan Univ., Guanzhou (China)


    The Xinyang and Jilin meteorites were investigated using Moessbauer spectroscopy. In addition to troilites and silicates, the Jilin meteorite contains taenite and kamacite, while the Xinyang meteorite contains kamacite only. The Moessbauer data of these two meteorites confirm them as ordinary H chondrites. The Moessbauer parameters can be interpreted by a model based on the cooling history of these meteorites. (orig.)



  16. Oral Histories in Meteoritics and Planetary Science—XIX: Klaus Keil (United States)

    Sears, Derek W. G.


    Abstract- Klaus Keil (Fig. 1) grew up in Jena and became interested in meteorites as a student of Fritz Heide. His research for his Dr. rer. nat. became known to Hans Suess who--with some difficulty--arranged for him to move to La Jolla, via Mainz, 6 months before the borders of East Germany were closed. In La Jolla, Klaus became familiar with the electron microprobe, which has remained a central tool in his research and, with Kurt Fredriksson, he confirmed the existence of Urey and Craig's chemical H and L chondrite groups, and added a third group, the LL chondrites. Klaus then moved to NASA Ames where he established a microprobe laboratory, published his definitive paper on enstatite chondrites, and led in the development of the Si(Li) detector and the EDS method of analysis. After 5 years at Ames, Klaus became director of the Institute of Meteoritics at the University of New Mexico where he built up one of the leading meteorite research groups while working on a wide variety of projects, including chondrite groups, chondrules, differentiated meteorites, lunar samples, and Hawai'ian basalts. The basalt studies led to a love of Hawai'i and a move to the University of Hawai'i in 1990, where he has continued a wide variety of meteorite projects, notably the role of volcanism on asteroids. Klaus Keil has received honorary doctorates from Friedrich-Schiller University, Jena, and the University of New Mexico, Albuquerque. He was President of the Meteoritical Society in 1969-1970 and was awarded the Leonard Medal in 1988.1 Klaus Keil at the University of Hawai'i at Manoa, 2007.

  17. Looking forward to the present. [abiogenesis theory illuminated by lunar amino acids (United States)

    Fox, S. W.


    The present understanding of the origin of life based on Oparin's (1924) conception of life as a manifestation of matter in a special stage of its development is outlined. The results of chemical analyses of lunar samples are discussed, and their implications regarding chemical reactions beginning with carbonaceous dust are considered. Amino acids isolated from lunar samples taken from different sites show a high degree of similarity, in agreement with the hypothesis that carbon compounds, including amino acid precursors, were implanted on the lunar surface by components of the solar wind. The amino acid precursors are most likely a cyanide compound. Overlapping amino acid/carbon ratios from lunar samples and samples of meteorites suggest a common cosmochemical state of carbon in the solar system.

  18. Equilibration in the Aftermath of the Lunar-Forming Giant Impact

    CERN Document Server

    Pahlevan, Kaveh; 10.1016/j.epsl.2007.07.055


    Simulations of the moon-forming impact suggest that most of the lunar material derives from the impactor rather than the Earth. Measurements of lunar samples, however, reveal an oxygen isotope composition that is indistinguishable from terrestrial samples, and clearly distinct from meteorites coming from Mars and Vesta. Here we explore the possibility that the silicate Earth and impactor were compositionally distinct with respect to oxygen isotopes, and that the terrestrial magma ocean and lunar-forming material underwent turbulent mixing and equilibration in the energetic aftermath of the giant impact. This mixing may arise in the molten disk epoch between the impact and lunar accretion, lasting perhaps 10^2-10^3 yr. The implications of this idea for the geochemistry of the Moon, the origin of water on Earth, and constraints on the giant impact are discussed.

  19. New Insights in Preservation of Meteorites in Hot Deserts: The Oldest Hot Desert Meteorite Collection. (United States)

    Hutzler, A.; Rochette, P.; Bourlès, D.; Gattacceca, J.; Merchel, S.; Jull, A. J. T.; Valenzuela, M.


    Terrestrial ages of a subset of a chilean meteorite collection have been determined with cosmogenic nuclides. We show here that provided the environnement is favorable enough, hot desert meteorites can survive over a million year.

  20. Organic compounds in carbonaceous meteorites. (United States)

    Sephton, Mark A


    The carbonaceous chondrite meteorites are fragments of asteroids that have remained relatively unprocessed since the formation of the solar system 4.6 billion years ago. These carbon-rich objects contain a variety of extraterrestrial organic molecules that constitute a record of chemical evolution prior to the origin of life. Compound classes include aliphatic hydrocarbons, aromatic hydrocarbons, amino acids, carboxylic acids, sulfonic acids, phosphonic acids, alcohols, aldehydes, ketones, sugars, amines, amides, nitrogen heterocycles, sulfur heterocycles and a relatively abundant high molecular weight macromolecular material. Structural and stable isotopic characteristics suggest that a number of environments may have contributed to the organic inventory, including interstellar space, the solar nebula and the asteroidal meteorite parent body. This review covers work published between 1950 and the present day and cites 193 references.

  1. Electrical conductivity of chondritic meteorites (United States)

    Duba, AL; Didwall, E. M.; Burke, G. J.; Sonett, C. P.


    The electrical conductivity of samples of the Murchison and Allende carbonaceous chondrites is 4 to 6 orders of magnitude greater than rock forming minerals such as olivine for temperatures up to 700 C. The remarkably high electrical conductivity of these meteorites is attributed to carbon at the grain boundaries. Much of this carbon is produced by pyrolyzation of hydrocarbons at temperatures in excess of 150 C. As the temperature increases, light hydrocarbons are driven off and a carbon-rich residue or char migrates to the grain boundaries enhancing electrical conductivity. Assuming that carbon was present at the grain boundaries in the material which comprised the meteorite parent bodies, the electrical heating of such bodies was calculated as a function of body size and solar distance during a hypothetical T-Tauri phase of the sun. Input conductivity data for the meteorite parent body were the present carbonaceous chondrite values for temperatures up to 840 C and the electrical conductivity values for olivine above 840 C.

  2. LEW 88516: A Meteorite Compositionally Close to the "Martian Mantle" (United States)

    Dreibus, G.; Jochum, K. H.; Palme, H.; Spettel, B.; Wlotzka, F.; Wanke, H.


    Several samples from a total of 250 mg of the recently discovered Antarctic shergottite LEW 88516 were analysed for major and trace elements by neutron activation techniques, SSMS, and a carbon-sulfur analyser. Results are presented in Table 1, together with data on ALHA 77005 (Wanke et al., 1976). This and earlier results (Boynton et al., 1992; Lindstrom et al.,1992) show the close compositional similarity of Lew 88516 to ALHA 77005. A major difference between the two shergottites is the much lower iodine content of the ALHA 77005 meteorite. The absence of similar variations in Br and Cl confirms earlier suggestions of an Antarctic source for the I excess. In a Mg/Si vs. Al/Si diagram (Fig. 1) the LEW 88516 meteorite plots at the intersection of a Shergotty parent (SPB) body fractionation trend and a line connecting enstatite chondrites and CM chondrites. The position of LEW 88516 and also of ALHA 77005 in the vicinity of ordinary chondrites is indicative of their relatively primitive composition. Lithophile trace elements show some enhancement of Sc and V over heavy REE and depletion of light REE, suggesting either a residual character for the two meteorites or assimilation of a cumulate phase during their formation. Comparatively high Ni and Co also reflect the more mafic character of the two meteorites. The present analysis and the earlier data on ALHA 77005 unambiguously demonstrate the presence of Ir in an abundance range typical for the terrestrial upper mantle. A similar Ir level was found in Chassigny, but the more fractionated Shergotty has 100 times lower Ir contents. The presence of Ir in the martian mantle samples may be the result of sulfide-silicate equilibration. The sulfides in Lew 88516 are small pyrrhotite grains (5-30 micron, 52 atom% S) and occur often together with ilmenite, at grain boundaries of the major silicate minerals. Sulfides contain an average of 1.8% Ni. However, the major fraction of Ni must reside in oxides and/or silicates as the

  3. The lunar cart (United States)

    Miller, G. C.


    Expanded experiment-carrying capability, to be used between the Apollo 11 capability and the lunar roving vehicle capability, was defined for the lunar surface crewmen. Methods used on earth to satisfy similar requirements were studied. A two-wheeled cart was built and tested to expected mission requirements and environments. The vehicle was used successfully on Apollo 14.

  4. A lunar venture (United States)

    Lee, Joo Ahn; Trinh, Lu X.


    As the Earth's space station is in its final stages of design, the dream of a permanent manned space facility is now a reality. Despite this monumental achievement, however, man's quest to extend human habitation further out into space is far from being realized. The next logical step in space exploration must be the construction of a permanent lunar base. This lunar infrastucture can, in turn, be used as a staging ground for further exploration of the remote regions of the solar system. As outlined by the National Aeronautics and Space Administration, the lunar base program consists of three exploratory and implementation phases. In response to the technological and facility requirements of Phase 1 and 2 of this program, the Aerospace Vehicle Design Program of the University of Virgina (UVA) is proud to present a preliminary design for such a lunar infrastructure. This study is a comprehensive evaluation of the mission requirements as well as the design criteria for space vehicles and facilities. The UVA Lunar Venture is a dual system that consists of a lunar space station and a fleet of lunar landers/transporters. With such a design, it is demonstrated that all initial exploratory and construction requirements for the lunar base can be efficiently satisfied. Additionally, the need for such a dual system is justified both from a logistic and economic standpoint.

  5. Lunar and Planetary Science Conference, 21st, Houston, TX, Mar. 12-16, 1990, Proceedings (United States)

    Ryder, Graham (Editor); Sharpton, Virgil L. (Editor)


    The present conference on lunar and planetary science discusses the geology and geophysics of Venus; the lunar highlands and regolith; magmatic processes of the moon and meteorites; remote sensing of the moon and Mars; chondrites, cosmic dust, and comets; ammonia-water mixtures; and the evolution of volcanism, tectonics, and volatiles on Mars. Attention is given to volcanism on Venus, pristine moon rocks, the search for Crisium Basin ejecta, Apollo 14 glasses, lunar anorthosites, the sources of mineral fragments in impact melts 15445 and 15455, and argon adsorption in the lunar atmosphere. Also discussed are high-pressure experiments on magnesian eucrite compositions, the early results of thermal diffusion in metal-sulfide liquids, preliminary results of imaging spectroscopy of the Humorum Basin region of the moon, high-resolution UV-visible spectroscopy of lunar red spots, and a radar-echo model for Mars. Other topics addressed include nitrogen isotopic signatures in the Acapulco Meteorite, tridymite and maghemite formation in an Fe-SiO smoke, and the enigma of mottled terrain on Mars.

  6. The Ozernoye meteorite: New data on mineralogy (United States)

    Erokhin, Yu. V.; Koroteev, V. A.; Khiller, V. V.; Burlakov, E. V.; Ivanov, K. S.; Kleimenov, D. A.


    New data on the mineral composition of the Ozernoye meteorite, found in the Kurgan region in 1983, are presented. It has been found that that the meteorite's matter is composed of olivine (chrysolite), orthopyroxene (bronzite), clinopyroxene (augite), maskelynite, chromite, ilmenite, metals Fe and Ni (kamasite, taenite), sulfides (troilite, pentlandite), chlorapatite, and merrillite. Augite, taenite, pentlandite, and merrillite were identified in the Ozernoye meteorite for the first time. The chemical compositions are given for all these minerals. The meteorite itself is an ordinary chondrite stone belonging to petrological type L5.

  7. Lunar Balance and Locomotion (United States)

    Paloski, William H.


    Balance control and locomotor patterns were altered in Apollo crewmembers on the lunar surface, owing, presumably, to a combination of sensory-motor adaptation during transit and lunar surface operations, decreased environmental affordances associated with the reduced gravity, and restricted joint mobility as well as altered center-of-gravity caused by the EVA pressure suits. Dr. Paloski will discuss these factors, as well as the potential human and mission impacts of falls and malcoordination during planned lunar sortie and outpost missions. Learning objectives: What are the potential impacts of postural instabilities on the lunar surface? CME question: What factors affect balance control and gait stability on the moon? Answer: Sensory-motor adaptation to the lunar environment, reduced mechanical and visual affordances, and altered biomechanics caused by the EVA suit.

  8. Origin of inert gases in 'rusty rock' 66095. [lunar contamination hypothesis (United States)

    Heymann, D.; Huebner, W.


    The amount of trapped inert gases present in rock 66095, as well as the elemental and isotopic composition of these gases can be explained by 'contamination' of this rock - on the lunar surface - with as little as 0.2% of fines. There is no compelling evidence that these gases come from the impact of a comet or a carbonaceous meteorite on the moon, or that they represent genuine primordial lunar gas. The Ne-21 radiation age of 66095 is 1.1 plus or minus 0.5 m.y., which strongly suggests that this rock was excavated by the South Ray Crater event.

  9. Nature of the Martian surface as inferred from the particle-size distribution of lunar-surface material. (United States)

    Mason, C. C.


    Analysis of lunar particle size distribution data indicates that the surface material is composed of two populations. One population is caused by comminution from the impact of the larger-sized meteorites, while the other population is caused by the melting of fine material by the impact of smaller-sized meteorites. The results are referred to Mars, and it is shown that the Martian atmosphere would vaporize the smaller incoming meteorites and retard the incoming meteorites of intermediate and large size, causing comminution and stirring of the particulate layer. The combination of comminution and stirring would result in fine material being sorted out by the prevailing circulation of the Martian atmosphere and the material being transported to regions where it could be deposited. As a result, the Martian surface in regions of prevailing upward circulation is probably covered by either a rubble layer or by desert pavement; regions of prevailing downward circulation are probably covered by sand dunes.

  10. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties (United States)

    Jeevarajan, A.S.; Wallace, W.T.


    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 m in diameter) was found to produce several problems with astronaut s suits and helmets, mechanical seals and equipment, and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent of the lunar module from the lunar surface to rendezvous with the command module, much of the major portions of the contaminating soil and dust began to float, irritating the astronaut s eyes and being inhaled into their lungs. Our goal has been to understand some of the properties of lunar dust that could lead to possible hazards for humans. Due to the lack of an atmosphere, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. In order to understand the possible toxic effects of the reactive dust, it is necessary to reactivate the dust, as samples returned during the Apollo missions were exposed to the atmosphere of the Earth. We have used grinding and UV exposure to mimic some of the processes occurring on the Moon. The level of activation has been monitored using two methods: fluorescence spectroscopy and electron paramagnetic resonance spectroscopy (EPR). These techniques allow the monitoring of hydroxyl radical production in solution. We have found that grinding of lunar dust produces 2-3 times the concentration of hydroxyl radicals as lunar simulant and 10 times that of quartz. Exposure

  11. Copernicus: Lunar surface mapper (United States)

    Redd, Frank J.; Anderson, Shaun D.


    The Utah State University (USU) 1991-92 Space Systems Design Team has designed a Lunar Surface Mapper (LSM) to parallel the development of the NASA Office of Exploration lunar initiatives. USU students named the LSM 'Copernicus' after the 16th century Polish astronomer, for whom the large lunar crater on the face of the moon was also named. The top level requirements for the Copernicus LSM are to produce a digital map of the lunar surface with an overall resolution of 12 meters (39.4 ft). It will also identify specified local surface features/areas to be mapped at higher resolutions by follow-on missions. The mapping operation will be conducted from a 300 km (186 mi) lunar-polar orbit. Although the entire surface should be mapped within six months, the spacecraft design lifetime will exceed one year with sufficient propellant planned for orbit maintenance in the anomalous lunar gravity field. The Copernicus LSM is a small satellite capable of reaching lunar orbit following launch on a Conestoga launch vehicle which is capable of placing 410 kg (900 lb) into translunar orbit. Upon orbital insertion, the spacecraft will weigh approximately 233 kg (513 lb). This rather severe mass constraint has insured attention to component/subsystem size and mass, and prevented 'requirements creep.' Transmission of data will be via line-of-sight to an earth-based receiving system.

  12. The Lunar Regolith (United States)

    Noble, Sarah


    A thick layer of regolith, fragmental and unconsolidated rock material, covers the entire lunar surface. This layer is the result of the continuous impact of meteoroids large and small and the steady bombardment of charged particles from the sun and stars. The regolith is generally about 4-5 m thick in mare regions and 10-15 m in highland areas (McKay et al., 1991) and contains all sizes of material from large boulders to sub-micron dust particles. Below the regolith is a region of large blocks of material, large-scale ejecta and brecciated bedrock, often referred to as the "megaregolith". Lunar soil is a term often used interchangeably with regolith, however, soil is defined as the subcentimeter fraction of the regolith (in practice though, soil generally refers to the submillimeter fraction of the regolith). Lunar dust has been defined in many ways by different researchers, but generally refers to only the very finest fractions of the soil, less than approx.10 or 20 microns. Lunar soil can be a misleading term, as lunar "soil" bears little in common with terrestrial soils. Lunar soil contains no organic matter and is not formed through biologic or chemical means as terrestrial soils are, but strictly through mechanical comminution from meteoroids and interaction with the solar wind and other energetic particles. Lunar soils are also not exposed to the wind and water that shapes the Earth. As a consequence, in contrast to terrestrial soils, lunar soils are not sorted in any way, by size, shape, or chemistry. Finally, without wind and water to wear down the edges, lunar soil grains tend to be sharp with fresh fractured surfaces.

  13. Catalogue of meteorites in Dutch collections

    NARCIS (Netherlands)

    Calsteren, van P.W.C.


    This catalogue contains information on the meteorite collections presently on display or on storage in The Netherlands. It is organized in three separate listings. The first and shortest listing gives the meteorite names grouped according to their classification. The second listing is the main body

  14. Scaling analysis of meteorite shower mass distributions

    DEFF Research Database (Denmark)

    Oddershede, Lene; Meibom, A.; Bohr, Jakob


    Meteorite showers are the remains of extraterrestrial objects which are captivated by the gravitational field of the Earth. We have analyzed the mass distribution of fragments from 16 meteorite showers for scaling. The distributions exhibit distinct scaling behavior over several orders of magnetude...

  15. Comet and Meteorite Traditions of Aboriginal Australians

    CERN Document Server

    Hamacher, Duane W


    Of the hundreds of distinct Aboriginal cultures of Australia, many have oral traditions rich in descriptions and explanations of comets, meteors, meteorites, airbursts, impact events, and impact craters. These views generally attribute these phenomena to spirits, death, and bad omens. There are also many traditions that describe the formation of meteorite craters as well as impact events that are not known to Western science.

  16. Catalogue of meteorites in Dutch collections

    NARCIS (Netherlands)

    Calsteren, van P.W.C.


    This catalogue contains information on the meteorite collections presently on display or on storage in The Netherlands. It is organized in three separate listings. The first and shortest listing gives the meteorite names grouped according to their classification. The second listing is the main body

  17. Carbon-14 activities in recently fallen meteorites and Antarctic meteorites (United States)

    Jull, A. J. T.; Donahue, D. J.; Linick, T. W.


    This paper reports C-14 measurements in meteorites using an extraction method which employs RF melting of samples as small as 0.1 g. A study of extraction of cosmic-ray-produced C-14 in samples of Bruderheim gave C-14 levels between 38 and 60 dpm/kg for samples which had been preheated in air between 250 and 700 C, with a mean value of 46.8 + or - 1.4 dpm/kg. A range of values between 35 and 59 dpm/kg was found for other falls of saturated meteorites preheated to 500 C. The preheating step is shown to be effective in removing terrestrial carbon contamination. A series of samples previously dated by Kr-81 as having ages of 120-310 kyr gave C-14 levels of between less than 0.16 and 0.37 + or - 0.10 dpm/kg. These levels are consistent with levels of in situ production by cosmic rays at the earth's surface.

  18. Investigations on five iron meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Bonazzi, A. [Parma Univ. (Italy). Istituto di Mineralogia; Jiang, K. [Ist. di Scienze Fisiche, Univ. of Parma (Italy); Ortalli, I. [Ist. di Scienze Fisiche, Univ. of Parma (Italy); Pedrazzi, G. [Ist. di Scienze Fisiche, Univ. of Parma (Italy); Zhang, X. [Ist. di Scienze Fisiche, Univ. of Parma (Italy)


    In the present paper, we report an analysis of five iron meteorites belonging to the private collection of the mineralogy museum of the University of Parma (Italy). The collection is made up of eighteen samples, collected over two centuries. Up to now, they have never been studied by spectroscopical techniques and their classification was estimated on the basis of morphological inspection. Electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), and Moessbauer spectroscopy (MS) have been used to analyse the samples. (orig.)

  19. SNC meteorites - Evidence against an asteroidal origin (United States)

    Ashwal, L. D.; Warner, J. L.; Wood, C. A.


    About 1.3 billion years ago, on one or more distant planetary bodies, silicate melts formed and produced cumulate rocks which eventually made their way to earth. Nine of these rocks have been recovered. Three distinct groups are involved, including shergottites, nakhlites, and chassignites (abbreviated as SNC). The young crystallization ages and other chemical features of SNC meteorites have prompted several workers to suggest that the specimens may be samples of igneous rock, ejected from the surface of Mars during an impact event. Others have rejected the Martian origin of SNC meteorites in favor of a more traditional asteroidal parent body. The present investigation shows that the petrologic, geochemical, and isotopic evidence is inconsistent with an asteroidal origin for SNC meteorites. It is found that the characteristics of SNC meteorites argue convincingly against their origin in a planetary object as small as the largest asteroid. That these meteorites may be fragments of the Martian surface still remains the most likely possibility.

  20. Re-Evaluation of Ar-39 - Ar-40 Ages for Apollo Lunar Rocks 15415 and 60015 (United States)

    Park, J.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Shih, C.-Y.


    We re-analyzed 39Ar-40Ar ages of Apollo lunar highland samples 15415 and 60015, two ferroan anorthosites analyzed previously in the 1970 s, with a more detailed approach and with revised decay constants. From these samples we carefully prepared 100-200 mesh mineral separates for analysis at the Noble Gas Laboratory at NASA-Johnson Space Center. The Ar-39-Ar-40 age spectra for 15415 yielded an age of 3851 +/- 38 Ma with 33-99% of Ar39 release, roughly in agreement with previously reported Ar-Ar ages. For 60015, we obtained an age of 3584 +/- 152 Ma in 23-98% of Ar39 release, also in agreement with previously reported Ar-Ar ages of approximately 3.5 Ga. Highland anorthosites like these are believed by many to be the original crust of the moon, formed by plagioclase floatation atop a magma ocean, however the Ar-Ar ages of 15415 and 60015 are considerably younger than lunar crust formation. By contrast, recently recovered lunar anorthosites such as Dhofar 489, Dhofar 908, and Yamato 86032 yield older Ar-Ar ages, up to 4.35 Ga, much closer to time of formation of the lunar crust. It follows that the Ar-Ar ages of the Apollo samples must have been reset by secondary heating, and that this heating affected highland anorthosites at both the Apollo 15 and Apollo 16 landing sites but did not affect lunar highland meteorites. One obvious consideration is that while the Apollo samples were collected from the near side of the moon, these lunar meteorites are thought to have originated from the lunar far side

  1. Seismic detectability of meteorite impacts on Europa (United States)

    Tsuji, Daisuke; Teanby, Nicholas


    Europa, the second of Jupiter's Galilean satellites, has an icy outer shell, beneath which there is probably liquid water in contact with a rocky core. Europa, may thus provide an example of a sub-surface habitable environment so is an attractive object for future lander missions. In fact, the Jupiter Icy Moon Explorer (JUICE) mission has been selected for the L1 launch slot of ESA's Cosmic Vision science programme with the aim of launching in 2022 to explore Jupiter and its potentially habitable icy moons. One of the best ways to probe icy moon interiors in any future mission will be with a seismic investigation. Previously, the Apollo seismic experiment, installed by astronauts, enhanced our knowledge of the lunar interior. For a recent mission, NASA's 2016 InSight Mars lander aims to obtain seismic data and will deploy a seismometer directly onto Mars' surface. Motivated by these works, in this study we show how many meteorite impacts will be detected using a single seismic station on Europa, which will be useful for planning the next generation of outer solar system missions. To this end, we derive: (1) the current small impact flux on Europa from Jupiter impact rate models; (2) a crater diameter versus impactor energy scaling relation for ice by merging previous experiments and simulations; (3) scaling relations for seismic signals as a function of distance from an impact site for a given crater size based on analogue explosive data obtained on Earth's icy surfaces. Finally, resultant amplitudes are compared to the noise level of a likely seismic instrument (based on the NASA InSight mission seismometers) and the number of detectable impacts are estimated. As a result, 0.5-3.0 local/regional small impacts (i.e., direct P-waves through the ice crust) are expected to be detected per year, while global-scale impact events (i.e., PKP-waves refracted through the mantle) are rare and unlikely to be detected by a short duration mission. We note that our results are

  2. Annual Occurrence of Meteorite-Dropping Fireballs (United States)

    Konovalova, Natalia; Jopek, Tadeusz J.


    The event of Chelyabinsk meteorite has brought about change the earlier opinion about limits of the sizes of potentially dangerous asteroidal fragments that crossed the Earth's orbit and irrupted in the Earth's atmosphere making the brightest fireball. The observations of the fireballs by fireball networks allows to get the more precise data on atmospheric trajectories and coordinates of predicted landing place of the meteorite. For the reason to search the periods of fireball activity is built the annual distribution of the numbers of meteorites with the known fall dates and of the meteorite-dropping fireballs versus the solar longitude. The resulting profile of the annual activity of meteorites and meteorite-dropping fireballs shows several periods of increased activity in the course of the year. The analysis of the atmospheric trajectories and physical properties of sporadic meteorite-dropping fireballs observed in Tajikistan by instrumental methods in the summer‒autumn periods of increased fireballs activity has been made. As a result the structural strength, the bulk density and terminal mass of the studied fireballs that can survive in the Earth atmosphere and became meteorites was obtained. From the photographic IAU MDC_2003 meteor database and published sources based on the orbit proximity as determined by D-criterion of Southworth and Hawkins the fireballs that could be the members of group of meteorite-dropping fireballs, was found. Among the near Earth's objects (NEOs) the searching for parent bodies for meteorite-dropping fireballs was made and the evolution of orbits of these objects in the past on a long interval of time was investigated.

  3. Building Strategic Capabilities for Sustained Lunar Exploration (United States)

    Landgraf, M.; Hufenbach, B.; Houdou, B.


    We discuss a lunar exploration architecture that addresses the strategic objective of providing access to the lunar surface. This access enables the most exciting part of the lunar exploration: building a sustained infrastructure on the lunar surface.

  4. Lunar Health Monitor Project (United States)

    National Aeronautics and Space Administration — During the Phase II Lunar Health Monitor program, Orbital Research will develop a second generation wearable sensor suite for astronaut physiologic monitoring. The...

  5. Lunar Map Catalog (United States)

    National Aeronautics and Space Administration — The Lunar Map Catalog includes various maps of the moon's surface, including Apollo landing sites; earthside, farside, and polar charts; photography index maps; zone...

  6. Lunar Excavator Validation Project (United States)

    National Aeronautics and Space Administration — Energid Technologies proposes to create a tool for simulation-based verification of lunar excavator designs. Energid will combine the best of 1) automatic control...

  7. Lunar Reconnaissance Orbiter (United States)

    Morgan, T.; Chin, G.


    NASA's Lunar Reconnaissance Orbiter (LRO) plans to launch in October 2008 with a companion secondary impactor mission, LCROSS, as the inaugural missions for the Exploration System Mission Directorate. LRO is a pathfinder whose objective is to obtain the needed information to prepare for eventual human return to the Moon. LRO will undertake at least one baseline year of operation with additional extended mission phase sponsored by NASA's Science Mission Directorate. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions; Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources; Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration; Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits; Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only

  8. Stardust silicates from primitive meteorites. (United States)

    Nagashima, Kazuhide; Krot, Alexander N; Yurimoto, Hisayoshi


    Primitive chondritic meteorites contain material (presolar grains), at the level of a few parts per million, that predates the formation of our Solar System. Astronomical observations and the chemical composition of the Sun both suggest that silicates must have been the dominant solids in the protoplanetary disk from which the planets of the Solar System formed, but no presolar silicates have been identified in chondrites. Here we report the in situ discovery of presolar silicate grains 0.1-1 microm in size in the matrices of two primitive carbonaceous chondrites. These grains are highly enriched in 17O (delta17O(SMOW) > 100-400 per thousand ), but have solar silicon isotopic compositions within analytical uncertainties, suggesting an origin in an oxygen-rich red giant or an asymptotic giant branch star. The estimated abundance of these presolar silicates (3-30 parts per million) is higher than reported for other types of presolar grains in meteorites, consistent with their ubiquity in the early Solar System, but is about two orders of magnitude lower than their abundance in anhydrous interplanetary dust particles. This result is best explained by the destruction of silicates during high-temperature processing in the solar nebula.

  9. Lunar cinder cones. (United States)

    McGetchin, T R; Head, J W


    Data on terrestrial eruptions of pyroclastic material and ballistic considerations suggest that in the lunar environment (vacuum and reduced gravity) low-rimmed pyroclastic rings are formed rather than the high-rimmed cinder cones so abundant on the earth. Dark blanketing deposits in the Taurus-Littrow region (Apollo 17 landing area) are interpreted as being at least partly composed of lunar counterparts of terrestrial cinder cones.

  10. Meteorites. Earth Science Curriculum Project Pamphlet Series PS-10. (United States)

    Moore, Carleton B.

    Discussed are meteors from an historical and astronomical viewpoint; then presented is the chemical makeup of iron meteorites, stony meteorites, and stony-iron meteorites. Age determination, moon craters, and tektites are also treated. The interested observer learns how to identify meteorites and to describe how they fall. (Author/RE)

  11. More Words about the Meteorite of Belogradchik [In Bulgarian

    Directory of Open Access Journals (Sweden)

    B.V. Toshev


    Full Text Available Recently a paper about the meteorite of Belogradchik has been published (Тошев, 2010а. Additional information about the meteorite of 1874 is given in the present article. Here the description of the meteorite is after Flight (1887. Safvet pasha is the official who decided to donate the meteorite in Paris.

  12. Lunar preform manufacturing (United States)

    Leong, Gregory N.; Nease, Sandra; Lager, Vicky; Yaghjian, Raffy; Waller, Chris

    A design for a machine to produce hollow, continuous fiber-reinforced composite rods of lunar glass and a liquid crystalline matrix using the pultrusion process is presented. The glass fiber will be produced from the lunar surface, with the machine and matrix being transported to the moon. The process is adaptable to the low gravity and near-vacuum environment of the moon through the use of a thermoplastic matrix in fiber form as it enters the pultrusion process. With a power consumption of 5 kW, the proposed machine will run unmanned continuously in fourteen-day cycles, matching the length of lunar days. A number of dies could be included that would allow the machine to produce rods of varying diameter, I-beams, angles, and other structural members. These members could then be used for construction on the lunar surface or transported for use in orbit. The benefits of this proposal are in the savings in weight of the cargo each lunar mission would carry. The supply of glass on the moon is effectively endless, so enough rods would have to be produced to justify its transportation, operation, and capital cost. This should not be difficult as weight on lunar mission is at a premium.

  13. Combining meteorites and missions to explore Mars. (United States)

    McCoy, Timothy J; Corrigan, Catherine M; Herd, Christopher D K


    Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young ( 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.

  14. Meteorites (United States)

    Zanda, Brigitte; Rotaru, Monica; Hewins, Translated by Roger


    1. The harder they fall C. Perron; 2. Stones fallen from the sky U. Marvin; 3. Impact craters P. Thomas; 4. Cretaceous Park R. Rocchia, E. Robin and H. Leroux; 5. Like no rock on Earth B. Zanda, M. Christophe Michel Lévy, M. Bourot Denise and C. Caillet Komorowski; 6. Little planets D. Benest; 7. The Sound and the Fury J.-P. Bibring; 8. Signed carbon F. Robert, M. Festou and F. Raulin; 9. A stormy nebula R. Hewins; 10. The age of the solar system G. Manhès; 11. Galactic fossils E. Zinner; 12. Leafing through the past two centuries... P. Pellas; Glossary; Acknowledgements; Illustration credits.

  15. Terrestrial and exposure histories of Antarctic meteorites (United States)

    Nishiizumi, K.


    Records of cosmogenic effects were studied in a large suite of Antarctic meteorites. The cosmogenic nuclide measurements together with cosmic ray track measurements on Antartic meteorites provide information such as exposure age, terrestrial age, size and depth in meteoroid or parent body, influx rate in the past, and pairing. The terrestrail age is the time period between the fall of the meteorite on the Earth and the present. To define terrestrial age, two or more nuclides with different half-lives and possibly noble gases are required. The cosmogenic radionuclides used are C-14, Kr-81, Cl-36, Al-26, Be-10, Mn-53, and K-40.

  16. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.


    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...

  17. Meteorites from recent amor-type orbits (United States)

    Benoit, P. H.; Sears, D. W. G.


    We report here the discovery of a recent meteorite shower in Antarctica, the members of which have very high natural thermoluminescence levels. It is apparent from these data that the shower has been on Earth only a short time (approximately 1000 years) and the meteorite probably came to Earth through rapid (less than 10 exp 5 years) evolution from an orbit with perihelion greater than 1.1 AU, similar to Amor asteroids. Only a very small number of meteorites, including a few modern falls, appear to have had similar orbital histories.

  18. Moessbauer spectroscopy of the SNC meteorite Zagami (United States)

    Agerkvist, D. P.; Vistisen, L.


    We have performed Mossbauer spectroscopy on two different pieces of the meteorite Zagami belonging to the group of SNC meteorites. In one of the samples we found a substantial amount of olivine inter grown with one kind of pyroxene, and also another kind of pyroxene very similar to the pyroxene in the other sample we examined. Both samples showed less than 1 percent of Fe(3+) in the silicate phase. The group of SNC meteorites called shergottites, to which Zagami belongs, are achondrites whose texture, mineralogy and composition resembles those of terrestrial diabases. The results from the investigation are presented.

  19. Lunar base habitat designs: Characterizing the environment, and selecting habitat designs for future trade-offs (United States)

    Ganapathi, Gani B.; Ferrall, Joseph; Seshan, P. K.


    A survey of distinct conceptual lunar habitat designs covering the pre- and post-Apollo era is presented. The impact of the significant lunar environmental challenges such as temperature, atmosphere, radiation, soil properties, meteorites, and seismic activity on the habitat design parameters are outlined. Over twenty habitat designs were identified and classified according to mission type, crew size; total duration of stay, modularity, environmental protection measures, and emplacement. Simple selection criteria of (1) post-Apollo design, (2) uniqueness of the habitat design, (3) level of thoroughness in design layout, (4) habitat dimensions are provided, and (5) materials of construction for the habitat shell are specified, are used to select five habitats for future trade studies. Habitat emplacement scenarios are created to examine the possible impact of emplacement of the habitat in different locations, such as lunar poles vs. equatorial, above ground vs. below ground, etc.

  20. Zirconium and hafnium in meteorites (United States)

    Ehmann, W. D.; Chyi, L. L.


    The abundances of zirconium and hafnium have been determined in nine stony meteorites by a new, precise neutron-activation technique. The Zr/Hf abundance ratios for the chondrites vary in a rather narrow range, consistent with previously published observations from our group. Replicate analyses of new, carefully selected clean interior samples of the Cl chondrite Orgueil yield mean zirconium and hafnium abundances of 5.2 and 0.10 ppm, respectively. These abundances are lower than we reported earlier for two Cl chondrite samples which we now suspect may have suffered contamination. The new Cl zirconium and hafnium abundances are in closer agreement with predictions based on theories of nucleosynthesis than the earlier data.

  1. Activation analysis of meteorites. 3

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, H.; Honda, M.; Sato, H. [Nihon Univ., College of Humanities and Sciences, Tokyo (Japan); Ebihara, M.; Oura, Y.; Setoguchi, M. [Tokyo Metropolitan Univ., Faculty of Science, Tokyo (Japan)


    A long-lived cosmogenic nuclide, {sup 53}Mn in extra-terrestrial materials has been determined in the DR-1 hole of the JRR-3M reactor, applying the well-thermalized neutron flux. The neutron flux intensities are variable with the depths whereas the fast thermal ratios are not quite variable. By this method, {sup 53}Mn contents in iron meteorites and metal phases in general could be routinely determined in many samples. The chemical separation method has been modified and a convenient short circuit method has been proposed to shorten the process. The short method is to count the activities of {sup 54}Mn just after the irradiation without further purification of manganese. (author)

  2. Lunar Materials Handling System Project (United States)

    National Aeronautics and Space Administration — The Lunar Materials Handling System (LMHS) is a method for transfer of lunar soil into and out of process equipment in support of in situ resource utilization...

  3. Lunar Materials Handling System Project (United States)

    National Aeronautics and Space Administration — The Lunar Materials Handling System (LMHS) is a method for transfer of bulk materials and products into and out of process equipment in support of lunar and Mars in...

  4. Lunar Sulfur Capture System Project (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to recover sulfur compounds from lunar soil using sorbents derived primarily from in-situ resources....

  5. Lunar Sulfur Capture System Project (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to capture greater than 90 percent of sulfur gases evolved during thermal treatment of lunar soils....

  6. Lunar Alignments - Identification and Analysis (United States)

    González-García, A. César

    Lunar alignments are difficult to establish given the apparent lack of written accounts clearly pointing toward lunar alignments for individual temples. While some individual cases are reviewed and highlighted, the weight of the proof must fall on statistical sampling. Some definitions for the lunar alignments are provided in order to clarify the targets, and thus, some new tools are provided to try to test the lunar hypothesis in several cases, especially in megalithic astronomy.

  7. Lunar Exploration Orbiter (LEO) (United States)

    Jaumann, R.; Spohn, T.; Hiesinger, H.; Jessberger, E. K.; Neukum, G.; Oberst, J.; Helbert, J.; Christensen, U.; Keller, H. U.; Mall, U.; Böhnhardt, H.; Hartogh, P.; Glassmeier, K.-H.; Auster, H.-U.; Moreira, A.; Werner, M.; Pätzold, M.; Palme, H.; Wimmer-Schweingruber, R.; Mandea, M.; Lesur, V.; Häusler, B.; Hördt, A.; Eichentopf, K.; Hauber, E.; Hoffmann, H.; Köhler, U.; Kührt, E.; Michaelis, H.; Pauer, M.; Sohl, F.; Denk, T.; van Gasselt, S.


    The Moon is an integral part of the Earth-Moon system, it is a witness to more than 4.5 b. y. of solar system history, and it is the only planetary body except Earth for which we have samples from known locations. The Moon is our closest companion and can easily be reached from Earth at any time, even with a relatively modest financial budget. Consequently, the Moon was the first logical step in the exploration of our solar system before we pursued more distant targets such as Mars and beyond. The vast amount of knowledge gained from the Apollo and other lunar missions of the late 1960's and early 1970's demonstrates how valuable the Moon is for the understanding of our planetary system. Even today, the Moon remains an extremely interesting target scientifically and technologically, as ever since, new data have helped to address some of our questions about the Earth-Moon system, many questions remained. Therefore, returning to the Moon is the critical stepping-stone to further exploring our immediate planetary neighborhood. In this concept study, we present scientific and technological arguments for a national German lunar mission, the Lunar Explorations Orbiter (LEO). Numerous space-faring nations have realized and identified the unique opportunities related to lunar exploration and have planned missions to the Moon within the next few years. Among these missions, LEO will be unique, because it will globally explore the Moon in unprecedented spatial and spectral resolution. LEO will significantly improve our understanding of the lunar surface composition, surface ages, mineralogy, physical properties, interior, thermal history, gravity field, regolith structure, and magnetic field. The Lunar Explorations Orbiter will carry an entire suite of innovative, complementary technologies, including high-resolution camera systems, several spectrometers that cover previously unexplored parts of the electromagnetic spectrum over a broad range of wavelengths, microwave and

  8. Creation of High Resolution Terrain Models of Barringer Meteorite Crater (Meteor Crater) Using Photogrammetry and Terrestrial Laser Scanning Methods (United States)

    Brown, Richard B.; Navard, Andrew R.; Holland, Donald E.; McKellip, Rodney D.; Brannon, David P.


    Barringer Meteorite Crater or Meteor Crater, AZ, has been a site of high interest for lunar and Mars analog crater and terrain studies since the early days of the Apollo-Saturn program. It continues to be a site of exceptional interest to lunar, Mars, and other planetary crater and impact analog studies because of its relatively young age (est. 50 thousand years) and well-preserved structure. High resolution (2 meter to 1 decimeter) digital terrain models of Meteor Crater in whole or in part were created at NASA Stennis Space Center to support several lunar surface analog modeling activities using photogrammetric and ground based laser scanning techniques. The dataset created by this activity provides new and highly accurate 3D models of the inside slope of the crater as well as the downslope rock distribution of the western ejecta field. The data are presented to the science community for possible use in furthering studies of Meteor Crater and impact craters in general as well as its current near term lunar exploration use in providing a beneficial test model for lunar surface analog modeling and surface operation studies.

  9. A lunar transportation system (United States)


    Due to large amounts of oxygen required for space travel, a method of mining, transporting, and storing this oxygen in space would facilitate further space exploration. The following project deals specifically with the methods for transporting liquid oxygen from the lunar surface to the Lunar Orbit (LO) space station, and then to the Lower Earth Orbit (LEO) space station. Two vehicles were designed for operation between the LEO and LO space stations. The first of these vehicles is an aerobraked design vehicle. The Aerobrake Orbital Transfer Vehicle (OTV) is capable of transporting 5000 lbm of payload to LO while returning to LEO with 60,000 lbm of liquid oxygen, and thus meet mission requirements. The second vehicle can deliver 18,000 lbm of payload to LO and is capable of bringing 60,000 lbm of liquid oxygen back to LEO. A lunar landing vehicle was also designed for operation between LO and the established moon base. The use of an electromagnetic railgun as a method for launching the lunar lander was also investigated. The feasibility of the railgun is doubtful at this time. A system of spheres was also designed for proper storing and transporting of the liquid oxygen. The system assumes a safe means for transferring the liquid oxygen from tank to tank is operational. A sophisticated life support system was developed for both the OTV and the lunar lander. This system focuses on such factors as the vehicle environment, waste management, water requirements, food requirements, and oxygen requirements.

  10. Lunar Resources: A Review

    CERN Document Server

    Crawford, Ian A


    There is growing interest in the possibility that the resource base of the Solar System might in future be used to supplement the economic resources of our own planet. As the Earth's closest celestial neighbour, the Moon is sure to feature prominently in these developments. In this paper I review what is currently known about economically exploitable resources on the Moon, while also stressing the need for continued lunar exploration. I find that, although it is difficult to identify any single lunar resource that will be sufficiently valuable to drive a lunar resource extraction industry on its own (notwithstanding claims sometimes made for the 3He isotope, which I find to be exaggerated), the Moon nevertheless does possess abundant raw materials that are of potential economic interest. These are relevant to a hierarchy of future applications, beginning with the use of lunar materials to facilitate human activities on the Moon itself, and progressing to the use of lunar resources to underpin a future industr...

  11. Formation of Lunar Swirls

    CERN Document Server

    Bamford, R A; Cruz, F; Kellett, B J; Fonseca, R A; Silva, L O; Trines, R M G M; Halekas, J S; Kramer, G; Harnett, E; Cairns, R A; Bingham, R


    In this paper we show a plausible mechanism that could lead to the formation of the Dark Lanes in Lunar Swirls, and the electromagnetic shielding of the lunar surface that results in the preservation of the white colour of the lunar regolith. We present the results of a fully self-consistent 2 and 3 dimensional particle-in-cell simulations of mini-magnetospheres that form above the lunar surface and show that they are consistent with the formation of `lunar swirls' such as the archetypal formation Reiner Gamma. The simulations show how the microphysics of the deflection/shielding of plasma operates from a kinetic-scale cavity, and show that this interaction leads to a footprint with sharp features that could be the mechanism behind the generation of `dark lanes'. The physics of mini-magnetospheres is described and shown to be controlled by space-charge fields arising due to the magnetized electrons and unmagnetized ions. A comparison between model and observation is shown for a number of key plasma parameters...

  12. Russian meteorite Bronze Age (rock record)

    CERN Document Server

    Vodolazhskaya, Larisa


    This paper presents the results of a study of petroglyphs found in the quartzite grotto near the Skelnovsky small village in the Northern Black Sea in the South of Russia. The aim of the study was the analysis and interpretation of the Early Bronze Age petroglyphs using archaeoastronomical methods. The article presents a comparative analysis of Skelnovsky grotto ancient images and contemporary eyewitness accounts of the Sikhote-Alin meteorite fall and meteorite shower. Some petroglyphs were interpreted by us using ethnographic and folklore material. In this study, the magnetic declination for the geographical coordinates Skelnovsky farm was calculated, and the projection of the whole picture Skelnovskih petroglyphs on the topographical map of the area was built. The proposed location of the meteorite fall was determined with this projection. It is confirmed by satellite pictures, on which are the distinguishable terrain features, typical for the meteorite fall, are visible including the possible impact crater...

  13. Consortium Study of the Chelyabinsk Meteorite (United States)

    Righter, K.; Fries, M. D.; Gibson, E. K.; Harrington, R.; Keller, L. P.; McCoy, T. J.; Morris, R. V.; Nagao, K.; Nakamura-Messenger, K.; Niles, P.; Nyquist, L.; Park, J.; Peng, Z. X.; Shih, C.-Y.; Simon, J. I.; Zeigler, R. A.


    On February 15, 2013 approximately 17 m asteroid hit Earth, causing shock waves and air blasts over a portion of Russia. A significant amount of material has been recovered from this meteorite fall, officially named Chelyabinsk.

  14. Two Shatter-Coned NWA Meteorites (United States)

    McHone, J. F.; Shoemaker, C.; Killgore, M.; Killgore, K.


    Shatter cones are found in target rocks at more than 70 terrestrial impact sites and are regarded as reliable field criteria for meteoroid impact events. Shatter cones are now seen in chondritic meteorites and indicate early collision events.

  15. Third International Conference on Large Meteorite Impacts (United States)


    The Third International Conference on Large Meteorite Impacts (formerly Large Meteorite Impacts and Planetary Evolution) was held August 5-7, 2003, at the Kloesterle, Noerdlingen. The conference addressed a wide range of topics relating to planetary impacts and their effects on planetary crusts, climate, life on Earth, rocks, and rock-forming minerals. This CD-ROM contains the preface, table of contents, program, abstracts and indexes.

  16. Noble Gases in the Chelyabinsk Meteorites (United States)

    Haba, Makiko K.; Sumino, Hirochika; Nagao, Keisuke; Mikouchi, Takashi; Komatsu, Mutsumi; Zolensky, Michael E.


    The Chelyabinsk meteorite fell in Russia on February 15, 2013 and was classified as LL5 chondrite. The diameter before it entered the atmosphere has been estimated to be about 20 m [1]. Up to now, numerous fragments weighing much greater than 100 kg in total have been collected. In this study, all noble gases were measured for 13 fragments to investigate the exposure history of the Chelyabinsk meteorite and the thermal history of its parent asteroid.

  17. A lunar polar expedition (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas


    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  18. Chinese Lunar Calendar

    Institute of Scientific and Technical Information of China (English)



    @@ Background and Concept The Chinese animal signs2 are a 12-year cycle used for dating the years. They represent a cyclical concept of time, rather than the Western linear concept of time. The Chinese Lunar Calendar is based on the cycles of the moon, and is constructed in a different fashion than the Western solar calendar3. In the Chinese calendar, the beginning of the year falls somewhere between late January and early February. The Chinese have adopted the Western calendar since 1911,but the lunar calendar is still used for festive occasions such as the Chinese New Year. Many Chinese calendars will print both the solar dates and the Chinese lunar dates.

  19. Lunar Sample Compendium (United States)

    Meyer, C.


    The Lunar Sample Compendium is a succinct summary of what has been learned from the study of Apollo and Luna samples of the Moon. Basic information is compiled, sample-by-sample, in the form of an advanced catalog in order to provide a basic description of each sample. Information presented is carefully attributed to the original source publication, thus the Compendium also serves as a ready access to the now vast scientific literature pertaining to lunar smples. The Lunar Sample Compendium is a work in progress (and may always be). Future plans include: adding sections on additional samples, adding new thin section photomicrographs, replacing the faded photographs with newly digitized photos from the original negatives, attempting to correct the age data using modern decay constants, adding references to each section, and adding an internal search engine.

  20. The organic inventory of primitive meteorites (United States)

    Martins, Zita

    Carbonaceous meteorites are primitive samples that provide crucial information about the solar system genesis and evolution. This class of meteorites has also a rich organic inventory, which may have contributed the first prebiotic building blocks of life to the early Earth. We have studied the soluble organic inventory of several CR and CM meteorites, using high performance liquid chromatography with UV fluorescence detection (HPLC-FD), gas chromatography-mass spectrometry (GC-MS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our target organic molecules include amino acids, nucleobases and polycyclic aromatic hydrocarbons (PAHs), among others. CR chondrites contain the highest amino acids concentration ever detected in a meteorite. The degree of aqueous alteration amongst this class of meteorites seems to be responsible for the amino acid distribution. Pioneering compound-specific carbon isotope measurements of nucleobases present in carbonaceous chondrites show that these compounds have a non-terrestrial origin. This suggests that components of the ge-netic code may have had a crucial role in life's origin. Investigating the abundances, distribution and isotopic composition of organic molecules in primitive meteorites significantly improves our knowledge of the chemistry of the early solar system, and the resources available for the first living organisms on Earth.

  1. Update on terrestrial ages of Antarctic meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Welten, K C; Nishiizumi, K; Caffee, M W


    Terrestrial ages of Antarctic meteorites are one of the few parameters that will help us to understand the meteorite concentration mechanism on blue-ice fields. Traditionally, terrestrial ages were determined on the basis of {sup 36}Cl in the metal phase, which has an uncertainty of about 70 ky. For young meteorites (< 40 ky), the terrestrial age is usually and most accurately determined using {sup 14}C in the stone phase. In recent years two methods have been developed which are independent of shielding effects, the {sup 10}Be-{sup 36}Cl/{sup 10}Be method and the {sup 41}Ca/{sup 36}Cl method. These methods have reduced the typical uncertainties in terrestrial ages by a factor of 2, to about 30 ky. The {sup 10}Be-{sup 36}Cl/{sup 10}Be method is quite dependent on the exposure age, which is unknown for most Antarctic meteorites. The authors therefore also attempt to use the relation between {sup 26}Al and {sup 36}Cl/{sup 26}Al to derive a terrestrial age less dependent on the exposure age. The authors have measured the concentrations of cosmogenic {sup 10}Be, {sup 26}Al and {sup 36}Cl in the metal phase of {approximately} 70 Antarctic meteorites, from more than 10 different ice-fields, including many new ones. They then discuss the trends in terrestrial ages of meteorites from different ice-fields.

  2. Keto-acids in Carbonaceous Meteorites (United States)

    Cooper, G.; Chang, P. M.; Dugas, A.; Byrd, A.; Chang, P. M.; Washington, N.


    The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry and are generally used as references for organic compounds in extraterrestrial material. Among the classes of organic compounds found in these meteorites are amino acids, carboxylic acids, hydroxy acids, purines, and pyrimidines. Such compounds, important in contemporary biochemistry, are thought to have been delivered to the early Earth in asteroids and comets and may have played a role in early life and/or the origin of life. Absent among (today's) critically important biological compounds reported in carbonaceous meteorites are keto acids, i.e., pyruvic acid, acetoacetic acid, and higher homologs. These compounds are key intermediates in such critical processes as glycolysis and the citric acid cycle. In this study several individual meteoritic keto acids were identified by gas chromatography-mass spectrometry (GC-MS) (see figure below). All compounds were identified as their trimethylsilyl (TMS), isopropyl ester (ISP), and tert-butyldimethylsilyl (tBDMS) derivatives. In general, the compounds follow the abiotic synthesis pattern of other known meteorite classes of organic compounds [1,2]: a general decrease in abundance with increasing carbon number within a class of compounds and many, if not all, possible isomers present at a given carbon number. The majority of the shown compounds was positively identified by comparison of their mass spectra to commercially available standards or synthesized standards.

  3. Iron and Stony-iron Meteorites (United States)

    Haack, H.; McCoy, T. J.


    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich sampling of the deep interiors of differentiated asteroids.Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar to that continuing on Earth - although on much smaller length- and timescales - with melting of the metal and silicates, differentiation into core, mantle, and crust, and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth and other terrestrial planets. This fact has been recognized since the work of Chladni (1794), who argued that stony-iron meteorites must have originated in outer space and fallen during fireballs and that they provide our closest analogue to the material that comprises our own planet's core. This chapter deals with our current knowledge of these meteorites. How did they form? What can they tell us about the early evolution of the solar system and its solid bodies? How closely do they resemble the materials from planetary interiors? What do we know and don't we know?Iron and stony-iron meteorites constitute ˜6% of meteorite falls (Grady, 2000). Despite their scarcity among falls, iron meteorites are our only samples of ˜75 of the ˜135 asteroids from which meteorites originate ( Keil et al., 1994; Scott, 1979; Meibom and Clark, 1999; see also Chapter 1.05), suggesting that both differentiated asteroids and the geologic processes that produced them were common.Despite the highly evolved nature of iron and stony-iron meteorites, their chemistry provides important

  4. Projectile remnants in central peaks of lunar impact craters (United States)

    Yue, Z.; Johnson, B. C.; Minton, D. A.; Melosh, H. J.; di, K.; Hu, W.; Liu, Y.


    The projectiles responsible for the formation of large impact craters are often assumed to melt or vaporize during the impact, so that only geochemical traces or small fragments remain in the final crater. In high-speed oblique impacts, some projectile material may survive, but this material is scattered far down-range from the impact site. Unusual minerals, such as magnesium-rich spinel and olivine, observed in the central peaks of many lunar craters are therefore attributed to the excavation of layers below the lunar surface. Yet these minerals are abundant in many asteroids, meteorites and chondrules. Here we use a numerical model to simulate the formation of impact craters and to trace the fate of the projectile material. We find that for vertical impact velocities below about 12kms-1, the projectile may both survive the impact and be swept back into the central peak of the final crater as it collapses, although it would be fragmented and strongly deformed. We conclude that some unusual minerals observed in the central peaks of many lunar impact craters could be exogenic in origin and may not be indigenous to the Moon.

  5. Production rates of cosmogenic nuclei on the lunar surface (United States)

    Dong, Tie-Kuang; Yun, Su-Jun; Ma, Tao; Chang, Jin; Dong, Wu-Dong; Zhang, Xiao-Ping; Li, Guo-Long; Ren, Zhong-Zhou


    A physical model for Geant4-based simulation of the galactic cosmic ray (GCR) particles' interaction with the lunar surface matter has been developed to investigate the production rates of cosmogenic nuclei. In this model the GCRs, mainly very high energy protons and α particles, bombard the surface of the Moon and produce many secondary particles, such as protons and neutrons. The energies of protons and neutrons at different depths are recorded and saved as ROOT files, and the analytical expressions for the differential proton and neutron fluxes are obtained through the best-fit procedure using ROOT software. To test the validity of this model, we calculate the production rates of the long-lived nuclei 10Be and 26Al in the Apollo 15 long drill core by combining the above differential fluxes and the newly evaluated spallation reaction cross sections. Our numerical results show that the theoretical production rates agree quite well with the measured data, which means that this model works well. Therefore, it can be expected that this model can be used to investigate the cosmogenic nuclei in future lunar samples returned by the Chinese lunar exploration program and can be extended to study other objects, such as meteorites and the Earth's atmosphere.

  6. Classification of stony meteorites and chondrules – the case of meteorite Jesenice

    Directory of Open Access Journals (Sweden)

    Bojan Ambrožič


    Full Text Available In the first part of the paper there is a description about genesis of meteorites, in particularly about stony meteorites– chondrites, since meteorite Jesenice is an ordinary L chondrite. Chondrules represent main part of the mass ofchondritic meteorites. For this reason the second part of the paper talks about morphology, texture, mineralogy andchemical properties of chondrules. Main theories about chondrule formation and other distinctive textures found inchondrites are also presented. The paper also presents a review across different meteorite classifications. Meteoriteclassifications differ depending on the geochemical and mineralogical properties of meteorites. In this paper are alsoused some new Slovenian terms correlated with the science of meteorites and mineral materials. Classification ofmeteorite Jesenice is based on its macroscopic and microscopic characteristics. We classified meteorite Jesenice onthe basis of shock metamorphosis, grade of weathering, petrological properties and chemical composition of olivine.We found out that meteorite Jesenice is weakly shocked weakly weathered undifferentiated low total iron ordinarychondrite. Our results are in agreement with findings of Bischoff and his colleagues.

  7. Contemporary Inuit Traditional Beliefs Concerning Meteorites (United States)

    Mardon, A. A.; Mardon, E. G.; Williams, J. S.


    Inuit religious mythology and the importance of meteorites as "messages" from the Creator of all things is only now being recognized. Field investigations near Resolute, Cornwallis Island in the high Canadian Arctic in 1988 are the bases for this paper. Through interpreters, several elders of the local Inuit described in detail the Inuit belief, recognition, and wonder at the falling meteors & meteorites during the long Polar Night and Polar Day. Such events are passed on in the oral tradition from generation to generation by the elders and especially those elders who fulfill the shamanistic roles. The Inuit have come across rocks that they immediately recognize as not being "natural" and in the cases of a fall that was observed and the rock recovered the meteorite is kept either on the person or in some hidden niche known only to that person. In one story recounted a meteorite fell and was recovered at the birth of one very old elder and the belief was that if the rock was somehow damaged or taken from his possession he would die. Some indirect indication also was conveyed that the discovery and possession of meteorites allow shaman to have "supernatural" power. This belief in the supernatural power of meteorites can be seen historically in many societies, including Islam and the "black rock" (Kaaba) of Mecca. It should also be noted, however, that metallic meteorites were clearly once the major source of iron for Eskimo society as is indicated from the recovery of meteoritical iron arrow heads and harpoon heads from excavated pre-Viking contact sites. The one evident thing that became clear to the author is that the Inuit distinctly believe that these meteorites are religious objects of the highest order and it brings into question the current academic practice of sending meteorites south to research institutes. Any seeming conflict with the traditional use of meteoric iron is more apparent than real--the animals, the hunt, and the act of survival--all being

  8. Origin and age of the earliest Martian crust from meteorite NWA 7533. (United States)

    Humayun, M; Nemchin, A; Zanda, B; Hewins, R H; Grange, M; Kennedy, A; Lorand, J-P; Göpel, C; Fieni, C; Pont, S; Deldicque, D


    The ancient cratered terrain of the southern highlands of Mars is thought to hold clues to the planet's early differentiation, but until now no meteoritic regolith breccias have been recovered from Mars. Here we show that the meteorite Northwest Africa (NWA) 7533 (paired with meteorite NWA 7034) is a polymict breccia consisting of a fine-grained interclast matrix containing clasts of igneous-textured rocks and fine-grained clast-laden impact melt rocks. High abundances of meteoritic siderophiles (for example nickel and iridium) found throughout the rock reach a level in the fine-grained portions equivalent to 5 per cent CI chondritic input, which is comparable to the highest levels found in lunar breccias. Furthermore, analyses of three leucocratic monzonite clasts show a correlation between nickel, iridium and magnesium consistent with differentiation from impact melts. Compositionally, all the fine-grained material is alkalic basalt, chemically identical (except for sulphur, chlorine and zinc) to soils from Gusev crater. Thus, we propose that NWA 7533 is a Martian regolith breccia. It contains zircons for which we measured an age of 4,428 ± 25 million years, which were later disturbed 1,712 ± 85 million years ago. This evidence for early crustal differentiation implies that the Martian crust, and its volatile inventory, formed in about the first 100 million years of Martian history, coeval with earliest crust formation on the Moon and the Earth. In addition, incompatible element abundances in clast-laden impact melt rocks and interclast matrix provide a geochemical estimate of the average thickness of the Martian crust (50 kilometres) comparable to that estimated geophysically.

  9. Magnetic susceptibility, magnetization, magnetic moment and characterization of Carancas meteorite

    CERN Document Server

    Rosales, Domingo


    On September, 15th, 2007, in the community of Carancas (Puno, Peru) a stony meteorite formed a crater explosive type with a mean diameter of 13.5 m. some samples meteorite fragments were collected. The petrologic analysis performed corresponds to a meteorite ordinary chondrite H 4-5. In this paper we have analyzed the magnetic properties of a meteorite fragment with a proton magnetometer. Also in order to have a complete characterization of the Carancas meteorite and its crater, from several papers, articles and reports, we have made a compilation of the most important characteristics and properties of this meteorite.

  10. Ferromanganese – an excellent imitation of metallic meteorite

    Directory of Open Access Journals (Sweden)

    Zoran Milić


    Full Text Available Since the 100 anniversary of the fall of an iron meteorite in the Soča Valley (meteorite Avče, fell in 1908 theinterest in meteorites has increased substantialy in Slovenia. The number of presumed meteorite finds increasedaccordingly. Among the numerous swaps, different slag and iron minerals prevail. This paper presents a new materialwhich can be mistanken for iron meteorite, a ferromanganese alloy, which was found in the vicinity of Kropa.The vast majority of morphological characteristics and some physical properties of this alloy are very similar toiron nickel meteorite.

  11. Sm-Nd and Rb-Sr Isotopic Studies of Meteorite Kalahari 009: An Old VLT Mare Basalt (United States)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Bischoff, A.


    Lunar meteorite Kalahari 009 is a fragmental basaltic breccia contain ing various very-low-Ti (VLT) mare basalt clasts embedded in a fine-g rained matrix of similar composition. This meteorite and lunar meteorite Kalahari 008, an anorthositic breccia, were suggested to be paired mainly due to the presence of similar fayalitic olivines in fragment s found in both meteorites. Thus, Kalahari 009 probably represents a VLT basalt that came from a locality near a mare-highland boundary r egion of the Moon, as compared to the typical VLT mare basalt samples collected at Mare Crisium during the Luna-24 mission. The concordant Sm-Nd and Ar-Ar ages of such a VLT basalt (24170) suggest that the extrusion of VLT basalts at Mare Crisium occurred 3.30 +/- 0.05 Ga ag o. Previous age results for Kalahari 009 range from approximately 4.2 Ga by its Lu-Hf isochron age to 1.70?0.04 Ga of its Ar-Ar plateau ag e. However, recent in-situ U-Pb dating of phosphates in Kalahari 009 defined an old crystallization age of 4.35+/- 0.15 Ga. The authors su ggested that Kalahari 009 represents a cryptomaria basalt. In this r eport, we present Sm-Nd and Rb-Sr isotopic results for Kalahari 009, discuss the relationship of its age and isotopic characteristics to t hose of other L-24 VLT mare basalts and other probable cryptomaria ba salts represented by Apollo 14 aluminous mare basalts, and discuss it s petrogenesis.

  12. The Sooner Lunar Schooner: Lunar engineering education (United States)

    Miller, D. P.; Hougen, D. F.; Shirley, D.


    The Sooner Lunar Schooner is a multi-disciplinary ongoing project at the University of Oklahoma to plan, design, prototype, cost and (when funds become available) build/contract and fly a robotic mission to the Moon. The goal of the flight will be to explore a small section of the Moon; conduct a materials analysis of the materials left there by an Apollo mission thirty years earlier; and to perform a selenographic survey of areas that were too distant or considered too dangerous to be done by the Apollo crew. The goal of the Sooner Lunar Schooner Project is to improve the science and engineering educations of the hundreds of undergraduate and graduate students working on the project. The participants, while primarily from engineering and physics, will also include representatives from business, art, journalism, law and education. This project ties together numerous existing research programs at the University, and provides a framework for the creation of many new research proposals. The authors were excited and motivated by the Apollo missions to the Moon. When we asked what we could do to similarly motivate students we realized that nothing is as exciting as going to the Moon. The students seem to agree.

  13. Osmium isotope and highly siderophile element systematics of the lunar crust (United States)

    Day, James M. D.; Walker, Richard J.; James, Odette B.; Puchtel, Igor S.


    Coupled 187Os/ 188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ± 0.3 pg g - 1 Os, 1.5 ± 0.6 pg g - 1 Ir, 6.8 ± 2.7 pg g - 1 Ru, 16 ± 15 pg g - 1 Pt, 33 ± 30 pg g - 1 Pd and 0.29 ± 0.10 pg g - 1 Re (˜ 0.00002 × CI) and Re/Os ratios that were modestly elevated ( 187Re/ 188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (˜ 0.00007 × CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios ( D-values) must be ≤ 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are

  14. Osmium isotope and highly siderophile element systematics of the lunar crust (United States)

    Day, J.M.D.; Walker, R.J.; James, O.B.; Puchtel, I.S.


    Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ?? 0.3 pg g- 1 Os, 1.5 ?? 0.6 pg g- 1 Ir, 6.8 ?? 2.7 pg g- 1 Ru, 16 ?? 15 pg g- 1 Pt, 33 ?? 30 pg g- 1 Pd and 0.29 ?? 0.10 pg g- 1 Re (??? 0.00002 ?? CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (??? 0.00007 ?? CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios (D-values) must be ??? 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat

  15. The SNC Meteorites Are From Mars (United States)

    Treiman, Allan H.; Gleason, James D.; Bogard, Donald D.


    The thirteen SNC meteorites are all igneous rocks, either basalts or basaltic cumulates. They are inferred to be from Mars, based on direct comparison with martian materials and on consistency with inferences about Mars. Most telling is that the SNC meteorites contain traces of gas which is very similar in elemental and isotopic compositions to the modem Martian atmosphere as measured by Viking. The martian atmosphere appears to be unique in the solar system, so its presence in the SNCs is accepted as virtually unequivocal proof that they formed on Mars. Independent of this link, the SNC meteorites must be from a planet with a significant atmosphere because they contain several abundant gas components, some of which carry large isotopic fractionations characteristic of atmospheric processing. The chemical compositions of the SNC meteorites are also consistent with data from in situ analyses of martian soils and rocks, and are quite different from compositions of other meteorites, rocks from the Earth, and rocks from the Moon. The range of formation ages for the SNC meteorites, 4.5 Ga to 0. 18 Ga, is consistent with the varied ages of the Martian surface (based on its cratering record) and inconsistent with surface ages on any other solar system body. The extreme chemical fractionations in the SNC meteorites suggest complex internal processes on a large planet, which is inconsistent with an asteroidal origin. Some SNCs were altered by aqueous solutions at greater than 0.7 Ga, consistent with the recent presence of liquid groundwater in Mars inferred independently from the geology of its surface. There seems little likelihood that the SNCs are not from Mars. If they were from another planetary body, it would have to be substantially identical to Mars as it now is understood.

  16. Lunar magma transport phenomena (United States)

    Spera, Frank J.


    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  17. Lunar Phases Planisphere (United States)

    Shawl, Stephen J.


    This paper describes a lunar phases planisphere with which a user can answer questions about the rising and setting times of the Moon as well as questions about where the Moon will be at a given phase and time. The article contains figures that can be photocopied to make the planisphere. (Contains 2 figures.)

  18. Lunar troilite: Crystallography (United States)

    Evans, H.T.


    Fine, euhedral crystals of troilite from lunar sample 10050 show a hexagonal habit consistent with the high-temperature NiAs-type structure. Complete three-dimensional counter intensity data have been measured and used to confirm and refine Bertaut's proposed low-temperature crystal structure.

  19. On Applications of Selenodesy to Lunar Detection

    Institute of Scientific and Technical Information of China (English)

    WEI Erhu; LIU Jingnan


    According to the history of lunar detection, the relationship between selenodesy and lunar detection is reviewed , and the focus of the lunar detection and the lunar detection plan of China are summarized. The key techniques of selenodesy are presented, and the applications of selenodesy to the lunar detection are discussed.

  20. Amino acids in the Martian meteorite Nakhla. (United States)

    Glavin, D P; Bada, J L; Brinton, K L; McDonald, G D


    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  1. Rare meteorites common in the Ordovician period (United States)

    Heck, Philipp R.; Schmitz, Birger; Bottke, William F.; Rout, Surya S.; Kita, Noriko T.; Cronholm, Anders; Defouilloy, Céline; Dronov, Andrei; Terfelt, Fredrik


    Most meteorites that fall today are H and L type ordinary chondrites, yet the main belt asteroids best positioned to deliver meteorites are LL chondrites 1,2 . This suggests that the current meteorite flux is dominated by fragments from recent asteroid breakup events 3,4 and therefore is not representative over longer (100-Myr) timescales. Here we present the first reconstruction of the composition of the background meteorite flux to Earth on such timescales. From limestone that formed about one million years before the breakup of the L-chondrite parent body 466 Myr ago, we have recovered relict minerals from coarse micrometeorites. By elemental and oxygen-isotopic analyses, we show that before 466 Myr ago, achondrites from different asteroidal sources had similar or higher abundances than ordinary chondrites. The primitive achondrites, such as lodranites and acapulcoites, together with related ungrouped achondrites, made up ~15-34% of the flux compared with only ~0.45% today. Another group of abundant achondrites may be linked to a 500-km cratering event on (4) Vesta that filled the inner main belt with basaltic fragments a billion years ago 5 . Our data show that the meteorite flux has varied over geological time as asteroid disruptions create new fragment populations that then slowly fade away from collisional and dynamical evolution. The current flux favours disruption events that are larger, younger and/or highly efficient at delivering material to Earth.

  2. Meteorite Linked to Rock at Meridiani (United States)


    This meteorite, a basalt lava rock nearly indistinguishable from many Earth rocks, provided the first strong proof that meteorites could come from Mars. Originally weighing nearly 8 kilograms (17.6 pounds), it was collected in 1979 in the Elephant Moraine area of Antarctica. The side of the cube at the lower left in this image measures 1 centimeter (0.4 inches). This picture shows a sawn face of this fine-grained gray rock. (The vertical stripes are saw marks.) The black patches in the rock are melted rock, or glass, formed when a large meteorite hit Mars near the rock. The meteorite impact probably threw this rock, dubbed 'EETA79001,' off Mars and toward Antarctica on Earth. The black glass contains traces of martian atmosphere gases. The Mars Exploration Rover Opportunity has discovered that a rock dubbed 'Bounce' at Meridiani Planum has a very similar mineral composition to this meteorite and likely shares common origins. Bounce itself is thought to have originated outside the area surrounding Opportunity's landing site; an impact or collision likely threw the rock away from its primary home.

  3. The International Lunar Decade Declaration (United States)

    Beldavs, V.; Foing, B.; Bland, D.; Crisafulli, J.


    The International Lunar Decade Declaration was discussed at the conference held November 9-13, 2014 in Hawaii "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space" - and accepted by a core group that forms the International Lunar Decade Working Group (ILDWG) that is seeking to make the proposed global event and decade long process a reality. The Declaration will be updated from time to time by members of the ILDWreflecting new knowledge and fresh perspectives that bear on building a global consortium with a mission to progress from lunar exploration to the transformation of the Moon into a wealth gene rating platform for the expansion of humankind into the solar system. When key organizations have endorsed the idea and joined the effort the text of the Declaration will be considered final. An earlier International Lunar Decade proposal was issued at the 8th ICEUM Conference in 2006 in Beijing together with 13 specific initiatives for lunar exploration[1,2,3]. These initiatives have been largely implemented with coordination among the different space agencies involved provided by the International Lunar Exploration Working Group[2,3]. The Second International Lunar Decade from 2015 reflects current trends towards increasing involvement of commercial firms in space, particularly seeking opportunities beyond low Earth orbit. The central vision of the International Lunar Decade is to build the foundations for a sustainable space economy through international collaboration concurrently addressing Lunar exploration and building a shared knowledge base;Policy development that enables collabo rative research and development leading to lunar mining and industrial and commercial development;Infrastructure on the Moon and in cislunar space (communications, transport, energy systems, way-stations, other) that reduces costs, lowers risks and speeds up the time to profitable operations;Enabling technologies

  4. Lunar Imaging and Ionospheric Calibration for the Lunar Cherenkov Technique

    CERN Document Server

    McFadden, Rebecca; Mevius, Maaijke


    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the ionosphere is an important experimental concern as it reduces the pulse amplitude and subsequent chances of detection. We are continuing to investigate a new method to calibrate the dispersive effect of the ionosphere on lunar Cherenkov pulses via Faraday rotation measurements of the Moon's polarised emission combined with geomagnetic field models. We also extend this work to include radio imaging of the Lunar surface, which provides information on the physical and chemical properties of the lunar surface that may affect experimental strategies for the lunar Cherenkov technique.

  5. The Microbiological Contamination of Meteorites: A Null Hypothesis (United States)

    Steele, A.; Toporski, J. K. W.; Westall, F. W.; Thomas-Keprta, K.; Gibson, E. K.; Avci, R.; Whitby, C.; McKay, D. S.; Griffin, C.


    Using 4 different techniques we have studied 9 meteorites including the Martian meteorites ALH84001 and Nakhla for terrestrial contamination in all 9 we have found evidence of terrestrial microorganisms.

  6. Hyperfine Interactions in Iron Meteorites: Comparative Study by Moessbauer Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M. I., E-mail: [Ural State Technical University - UPI, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Milder, O. B. [Ural State Technical University - UPI, Faculty of Experimental Physics (Russian Federation); Grokhovsky, V. I. [Ural State Technical University - UPI, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Semionkin, V. A. [Ural State Technical University - UPI, Faculty of Experimental Physics (Russian Federation)


    The iron meteorites Sikhote-Alin, Bilibino, Chinga and Dronino with different Ni concentration and terrestrial age were studied by Moessbauer spectroscopy. Different Moessbauer hyperfine parameters were determined for studied meteorites and possible Fe-Ni phases were supposed.

  7. Candidate Source Regions for SNC Meteorites on Mars (United States)

    Ody, A.; Poulet, F.; Quantin, C.; Cannon, K. M.; Mustard, J. F.; Bibring, J.-P.


    We compare NIR spectra of various SNC meteorites with NIR OMEGA spectra in order to constrain the types of geological settings in which martian meteorite analogue rocks could have formed, as well as their apparent age and their representativeness.

  8. Impact cratering as a major process in planet formation: Projectile identification of meteorite craters (United States)

    Schmidt, G.; Kratz, K.


    Martian crust). To date, about 20 iron meteorites and about 20 chondrites have been identified as projectiles of the 176 known impact craters on Earth. The projectiles for the other 136 impact craters are still unknown. Recently, non-magmatic irons (i.e., irons with unfractionated trace element patterns) have been suggested as projectiles for Rochechouart and Sääksjärvi impact craters (Tagle et al. 2009), in contradiction to previous studies (Janssens et al 1977; Schmidt et al. 1997). Melt rocks from many impact craters on Earth (e.g., Rochechouart, Sääksjärvi, Dellen, Mien, Boltysh) are depleted in Os relatively to Ir and Ru. Subchondritic Os/Ir (about 3 times lower than Os/Ir in the metal phase of non-magmatic irons), fractionated Ru/Ir and Rh/Os ratios are strong arguments to conclude that about 50% of the currently identified iron projectiles from terrestrial impact craters are related to magmatic irons. References: Janssens et al. (1977) Journal of Geophysical Research 82, 750-758; Kleine et al. (2009) Geochimica et Cosmochimica Acta (GCA) 73, 5150-5188; Schmidt et al. (1997) GCA 61, 2977-2987; Schmidt (2009) Workshop on Planet Formation and Evolution, Tübingen; Schmidt and Kratz (2004) Lunar and Planetary Institute Contribution, 9017; Tagle et al. (2009) GCA 73, 4891-4906.

  9. Chelyabinsk meteorite explains unusual spectral properties of Baptistina Asteroid Family


    Reddy, Vishnu; Sanchez, Juan; Bottke, William; Cloutis, Ed; Izawa, Matt; O'Brien, Dave; Mann, Paul; Cuddy, Matt; Corre, Lucille Le; Gaffey, Michael; Fujihara, Gary


    We investigated the spectral and compositional properties of Chelyabinsk meteorite to identify its possible parent body in the main asteroid belt. Our analysis shows that the meteorite contains two spectrally distinct but compositionally indistinguishable components of LL5 chondrite and shock blackened/impact melt material. Our X-ray diffraction analysis confirms that the two lithologies of the Chelyabinsk meteorite are extremely similar in modal mineralogy. The meteorite is compositionally s...

  10. Grove Mountains meteorite recovery and relevant data distribution service (United States)

    Zhou, Chunxia; Ai, Songtao; Chen, Nengcheng; Wang, Zemin; E, Dongchen


    Meteorites are extremely valuable in providing clues about the origin, evolution, and composition of the Sun, the Moon, the Earth, other planets, and asteroids. Since the first discovery of a meteorite in Antarctica, more and more meteorite concentrations on bare ice stranding sites were discovered. Antarctica is identified as a prolific source of extraterrestrial materials. The Grove Mountains area, covered by ice, snow, and nunataks, is located in the Antarctic inland area. It is about 380 km away from the Chinese Zhongshan Antarctic Research Station in East Antarctica. Since 1998, 11,452 meteorites have been collected from the Grove Mountains by the Chinese National Antarctic Research Expedition (CHINARE). It is confirmed that the Grove Mountains area is a productive search area for meteorites in Antarctica. More and more meteorite recoveries led to the recognition that unique mechanisms relating to meteorite concentrations exist in Antarctica. Besides meteorite field collections, the extraction of blue ice based on satellite images, meteorite concentration mechanisms, and meteorite data distribution service are discussed in this paper. Wide distribution of blue ice indicates the enrichment of meteorites. Based on the different spectrum characteristics and coherence of snow, blue ice, and bare rocks, blue ice areas are extracted from optical images and coherence maps. According to meteorite field collections and optical images, moraines are also identified as meteorite concentration sites in the Grove Mountains area. The meteorite concentration theories should be further analyzed by taking into account ice-flow dynamics, mountains' blocking effect, katabatic wind and ice ablation, and others. Moreover, in order to strengthen the visualization and network sharing of the valuable meteorite data, desktop software based on ArcObjects and web software based on ArcIMS are developed within this study. The desktop software also enables further analysis of the meteorite

  11. Lunar Solar Power System and Lunar Exploration (United States)

    Criswell, D. R.


    Five of the six billion people on Earth produce less than 2,500 per year per person of Gross World Product (GWP). GWP growth is severely limited by the high cost, low availability and reliability, environmental damages, and political uncertainties of conventional fossil, nuclear, and terrestrial renewable power systems. In 2000 the World Energy Council challenged all decision makers to enable the equivalent of 6.7 kWt per person of thermal power within two generations. This implies 67 TWt, or approx.20 to 30 TWe, of sustainable electric power by 2050. Twenty-five power systems were reviewed to select which could: (1) sustainably provide 20 TWe to consumers; (2) profitably sell electricity for less than 0.01 per kWe-h; (3) be environmentally neutral, even nurturing; and (4) use understood technologies. The analyses indicated that only the Lunar Solar Power (LSP) System could meet these requirements within the 21st Century.

  12. LEW88516 and SNC meteorites (United States)

    Chen, J. H.; Wasserburg, G. J.


    We report on the isotopic composition of Pb and the concentration of Pb, U, and Th in a sample of LEW88516 (LEW). LEW was a 13-g stone recovered from Antarctica and was classified as a new member of the Shergottite group. This work was undertaken with the hope that LEW might yield new information to elucidate further the origin and evolution of Shergottites and other SNC meteorites. We have previously studied U-Th-Pb in other Shergottites, namely Shergotty, Zagami, EETA79001, and ALHA77005, as well as Nakhla. The results indicate that the initial leads of these Shergottites were well defined, were distinct from each other, and have high Pb-204/Pb-206 (from 0.0652 to 0.0739). These leads evolved in different reservoirs over most of solar system history in a low U-238/Pb-204(micro) is approximately equal to 5 environment. The U-Th-Pb isotopic systems are quite regular, which unambiguously indicates an event of U-Th-Pb fractionation at approximately 200 m.y. The details of the data arrays are complex. The young age is in general agreement with some of the ages obtained by other methods, but precise concordance between the different methods is not established. The new results on LEW are remarkably similar to those of ALHA77005 and support the other observations based on the mineralogy, petrology, and bulk composition. The clear distinction between the Shergottites and Nakhla is confirmed. We consider that the Shergottites and possibly all the SNC's were derived from an impact on the regolith of a differentiated terrestrial type planetary body (Mars?) with a high content of volatiles as compared to the earth.

  13. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples (United States)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.


    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  14. Amino Acids in the Martian Meteorite Nakhla (United States)

    Glavin, Daniel P.; Bada, Jeffrey L.; Brinton, Karen L. F.; McDonald, Gene D.


    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, β -alanine, and γ -amino-n-butyric acid (γ -ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  15. Meteorites: messengers from the early solar system. (United States)

    Hofmann, Beda A


    Meteorites are fragments from solar system bodies, dominantly asteroids. A small fraction is derived from the Moon and from Mars. These rocks tell a rich history of the early solar system and range from solids little changed since the earliest phases of solid matter condensation in the solar nebula (chondrites) to material representing asteroidal metamorphism and melting, impact processes on the Moon and even aqueous alteration near the surface of Mars. Meteorites are very rare. Currently many meteorites result from searches in Antarctica and the hot deserts of North Africa and Arabia. The present high find rate likely represents a unique short-term event, asking for a careful management of this scarce scientific resource.

  16. The source crater of martian shergottite meteorites. (United States)

    Werner, Stephanie C; Ody, Anouck; Poulet, François


    Absolute ages for planetary surfaces are often inferred by crater densities and only indirectly constrained by the ages of meteorites. We show that the meteorites classified as shergottites. Shergottites and this crater are linked by their coinciding meteorite ejection ages and the crater formation age and by mineralogical constraints. Because Mojave formed on 4.3 billion-year-old terrain, the original crystallization ages of shergottites are old, as inferred by Pb-Pb isotope ratios, and the much-quoted shergottite ages of <600 million years are due to resetting. Thus, the cratering-based age determination method for Mars is now calibrated in situ, and it shifts the absolute age of the oldest terrains on Mars backward by 200 million years.

  17. Age determination of meteorites using radioactive nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Tanimizu, Masaharu [Tokyo Institute of Technology, Graduate School of Science and Engineering, Department of Earth and Planetary Sciences, Tokyo (Japan)


    Recently, the precise isotope ratios of some refractory elements in meteorites have been reported using inductively coupled plasma mass spectrometry. The in situ decay of {sup 182}Hf (T{sub 1/2}=9 Myr), which was produced at the latest nucleosynthesis, is recognized in many meteorites as isotopic anomalies of its daughter isotope, {sup 182}W. The degrees of relative {sup 182}W isotopic deviation in extra-terrestrial and terrestrial silicate samples vary from +0.3% to {+-}0% related to the size of their parent bodies. One ready interpretation of its correlation is the difference in timing of metal-silicate separation in the parent bodies. Between the earth and meteorite parent bodies, the difference is calculated to be about four times of the half-life of {sup 182}Hf, equivalent to 36 Myr. (author)

  18. Amino Acid Degradation after Meteoritic Impact Simulation (United States)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.


    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  19. Catalogue of meteorites from South America

    CERN Document Server

    Acevedo, Rogelio Daniel; García, Víctor Manuel


    The first Catalogue of Meteorites from South America includes new specimens never previously reported, while doubtful cases and pseudometeorites have been deliberately omitted.The falling of these objects is a random event, but the sites where old meteorites are found tend to be focused in certain areas, e.g. in the deflation surfaces in Chile's Atacama Desert, due to favorable climate conditions and ablation processes.Our Catalogue provides basic information on each specimen like its provenance and the place where it was discovered (in geographic co-ordinates and with illustrative maps), its

  20. Panspermia: Evidence from Astronomy to Meteorites (United States)

    Wickramasinghe, N. C.; Wallis, J.; Wallis, D. H.

    The theory of cometary panspermia is reviewed in relation to evidence from astronomy, biology, and recent studies of meteorites. The spectroscopic signatures in interstellar material within our galaxy and in external galaxies that have been known for many years most plausibly represent evidence for the detritus of life existing on a cosmic scale. Such spectral features discovered in galaxies of high redshift points to life arising at a very early stage in the history of the Universe. Evidence of fossils of microscopic life forms in meteorites that have been discussed over several decades, and augmented recently with new data, reaffirms the case for cometary panspermia.

  1. Fossil Diatoms in a New Carbonaceous Meteorite (United States)

    Wickramasinghe, N. C.; Wallis, J.; Wallis, D. H.; Samaranayake, Anil


    We report the discovery for the first time of diatom frustules in a carbonaceous meteorite that fell in the North Central Province of Sri Lanka on 29 December 2012. Contamination is excluded by the circumstance that the elemental abundances within the structures match closely with those of the surrounding matrix. There is also evidence of structures morphologically similar to red rain cells that may have contributed to the episode of red rain that followed within days of the meteorite fall. The new data on "fossil" diatoms provide strong evidence to support the theory of cometary panspermia.

  2. Microfossils of Cyanobacteria in Carbonaceous Meteorites (United States)

    Hoover, Richard B.


    During the past decade, Environmental and Field Emission Scanning Electron Microscopes have been used at the NASA/Marshall Space Flight Center to investigate freshly fractured interior surfaces of a large number of different types of meteorites. Large, complex, microfossils with clearly recognizable biological affinities have been found embedded in several carbonaceous meteorites. Similar forms were notably absent in all stony and nickel-iron meteorites investigated. The forms encountered are consistent in size and morphology with morphotypes of known genera of Cyanobacteria and microorganisms that are typically encountered in associated benthic prokaryotic mats. Even though many coccoidal and isodiametric filamentous cyanobacteria have a strong morphological convergence with some other spherical and filamentous bacteria and algae, many genera of heteropolar cyanobacteria have distinctive apical and basal regions and cellular differentiation that makes it possible to unambiguously recognize the forms based entirely upon cellular dimensions, filament size and distinctive morphological characteristics. For almost two centuries, these morphological characteristics have historically provided the basis for the systematics and taxonomy of cyanobacteria. This paper presents ESEM and FESEM images of embedded filaments and thick mats found in-situ in the Murchison CM2 and Orgueil cn carbonaceous meteorites. Comparative images are also provided for known genera and species of cyanobacteria and other microbial extremophiles. Energy Dispersive X-ray Spectroscopy (EDS) studies indicate that the meteorite filaments typically exhibit dramatic chemical differentiation with distinctive difference between the possible microfossil and the meteorite matrix in the immediate proximity. Chemical differentiation is also observed within these microstructures with many of the permineralized filaments enveloped within electron transparent carbonaceous sheaths. Elemental distributions of

  3. Extraterrestrial nucleobases in the Murchison meteorite

    CERN Document Server

    Martins, Zita; Fogel, Marilyn L; Sephton, Mark A; Glavin, Daniel P; Watson, Jonathan S; Dworkin, Jason P; Schwartz, Alan W; Ehrenfreund, Pascale


    Carbon-rich meteorites, carbonaceous chondrites, contain many biologically relevant organic molecules and delivered prebiotic material to the young Earth. We present compound-specific carbon isotope data indicating that measured purine and pyrimidine compounds are indigenous components of the Murchison meteorite. Carbon isotope ratios for uracil and xanthine of delta13C=+44.5per mil and +37.7per mil, respectively, indicate a non-terrestrial origin for these compounds. These new results demonstrate that organic compounds, which are components of the genetic code in modern biochemistry, were already present in the early solar system and may have played a key role in life's origin.

  4. Meteorites from Phobos and Deimos at Earth? (United States)

    Wiegert, P.; Galiazzo, M. A.


    We examine the conditions under which material from the martian moons Phobos and Deimos could reach our planet in the form of meteorites. We find that the necessary ejection speeds from these moons (900 and 600 m/s for Phobos and Deimos respectively) are much smaller than from Mars' surface (5000 m/s). These speeds are below typical impact speeds for asteroids and comets (10-40 km/s) at Mars' orbit, and we conclude that delivery of meteorites from Phobos and Deimos to the Earth can occur.

  5. Meteorite Fractures and Scaling for Atmospheric Entry (United States)

    Bryson, Kathryn L.; Ostrowski, Daniel R.


    We are attempting to understand the behavior of asteroids entering the atmosphere in order to help quantify the impact hazard. The strength of meteorites plays a critical role in determining the outcome of their impact events. Our objective is to scale fracture parameters in meteorites to their parent body.In this study over a thousand meteorite fragments in the Natural History Museums of Vienna and London (mostly hand-sized, some 40 or 50 cm across) were examined and fracture patterns in selected fragments were imaged. We identified six kinds of fracturing behavior. The density and length of the observed fractures were measured in hand specimens and thin sections. We assume that fracturing follows the Weibull distribution, where fractures are assumed to be randomly distributed through the target and the likelihood of encountering a fracture increases with distance. The images collected of the six fracture behaviors provide a two-dimensional view of the fractures. A relationship exists between the distributions of measured trace length and actual fracture size, where the slope of a log-log plot of trace length vs fracture density is proportional to α, the shape parameter. The value for α is unclear and a large range in α has been determined from light curve data. α can be used to scale strengths from the meteorite to the larger parent body.The majority of the meteorite fractures imaged displayed no particular sensitivity to meteorite texture. A value of α of 0.185 has been determined for a chondrite with a fracture pattern that shows no sensitivity to meteorite texture and has no point of origin. This study will continue to examine additional meteorites with similar fracture patterns along with the other 5 patterns to see if there is a correlation between fracture pattern and α. This may explain the variations in α determined from fireball data. Values of α will be used in models created by the Asteroid Threat Assessment Project to try to determine the

  6. Overview of Mars: SNC meteorite results (United States)

    Waenke, H.


    The SNC meteorites according to their oxygen isotope ratios and various trace element ratios form a distinct group of 8 achondrites. Their young crystallization ages and fractionated REE pattern which exclude an asteroidal origin, were the first observations to point towards Mars as their parent body. In spite of the many arguments for Mars as the parent body of the SNC meteorites there does not exist a generally accepted model for the ejecting process and other dynamical problems involved. In this discussion it is, however, assumed that Mars is the SNC parent body. The chemical composition of Mars is examined.

  7. Martian parent craters for the SNC meteorites (United States)

    Mouginis-Mark, P. J.; Mccoy, T. J.; Taylor, G. J.; Keil, K.


    Information on the petrology and ages of the SNC meteorites, together with geological data derived from Viking Orbiter images, are used to identify 25 candidate impact craters in the Tharsis region of Mars that could possibly be the source craters for these meteorites. The craters chosen as candidate source craters had diameters greater than 10 km, morphologies indicative of young craters, and satisfied both the petrological criteria of the SNCs and the proposed 1.3 Ga crystallization ages. On the basis of the constraints implied by the identification of the candidate source craters, interpretations of the absolute chronology of Mars are proposed.

  8. Lunar Health Monitor (LHM) (United States)

    Lisy, Frederick J.


    Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.

  9. Lunar hand tools (United States)

    Bentz, Karl F.; Coleman, Robert D.; Dubnik, Kathy; Marshall, William S.; Mcentee, Amy; Na, Sae H.; Patton, Scott G.; West, Michael C.


    Tools useful for operations and maintenance tasks on the lunar surface were determined and designed. Primary constraints are the lunar environment, the astronaut's space suit and the strength limits of the astronaut on the moon. A multipurpose rotary motion tool and a collapsible tool carrier were designed. For the rotary tool, a brushless motor and controls were specified, a material for the housing was chosen, bearings and lubrication were recommended and a planetary reduction gear attachment was designed. The tool carrier was designed primarily for ease of access to the tools and fasteners. A material was selected and structural analysis was performed on the carrier. Recommendations were made about the limitations of human performance and about possible attachments to the torque driver.

  10. The Lunar Sample Compendium (United States)

    Meyer, Charles


    The Lunar Sample Compendium is a succinct summary of the data obtained from 40 years of study of Apollo and Luna samples of the Moon. Basic petrographic, chemical and age information is compiled, sample-by-sample, in the form of an advanced catalog in order to provide a basic description of each sample. The LSC can be found online using Google. The initial allocation of lunar samples was done sparingly, because it was realized that scientific techniques would improve over the years and new questions would be formulated. The LSC is important because it enables scientists to select samples within the context of the work that has already been done and facilitates better review of proposed allocations. It also provides back up material for public displays, captures information found only in abstracts, grey literature and curatorial databases and serves as a ready access to the now-vast scientific literature.

  11. The Lunar Sample Compendium (United States)

    Meyer, Charles


    The Lunar Sample Compendium is a succinct summary of the data obtained from 40 years of study of Apollo and Luna samples of the Moon. Basic petrographic, chemical and age information is compiled, sample-by-sample, in the form of an advanced catalog in order to provide a basic description of each sample. The LSC can be found online using Google. The initial allocation of lunar samples was done sparingly, because it was realized that scientific techniques would improve over the years and new questions would be formulated. The LSC is important because it enables scientists to select samples within the context of the work that has already been done and facilitates better review of proposed allocations. It also provides back up material for public displays, captures information found only in abstracts, grey literature and curatorial databases and serves as a ready access to the now-vast scientific literature.

  12. Lunar base initiative 1992 (United States)

    Koelle, H. H.

    The return to the Moon is no longer a question of yes or no, but a question of when and how. The first landing of a human being on the lunar surface in 1969 was a purely national effort of the U.S.A. Building a lunar base and operating it in the next century is rather a task for all nations of this planet, even if one nation could do it alone. However, there are several alternatives to carry out such a program and these will and should be debated during the next years on an urgent basis. To do this, one has to take into account not only the historical accomplishments and the present trends of cooperation in space programs, but also recent geopolitical developments as well as the frame of reference established by international law. The case for an International Lunar Base (ILB) has been presented to the International Academy of Astronautics on 11 October 1987 by the IAA Ad Hoc Committee "Return-to-the-Moon". This draft of a position paper was subsequently published in Acta Astronautica Vol. 17, No. 5, (pp. 463-489) with the request of public debate particularly by the members of the Academy. Some 80 Academicians responded to this invitation by the President of the Academy and voiced their opinions on the questions and issues raised by this draft of a position paper. This led to a refinement of the arguments and assumptions made and it is now possible to prepare an improved position paper proposing concrete steps which may lead to an ILB. An issue of this proportion must start with a discussion of goals and objectives to be arranged in some kind of a ranked order. It also has to take note of the limitations existing at any time by the availability of suitable space transportation systems. These will determine the acquisition date and rate of growth of a lunar base. The logistics system will also greatly influence the base characteristics and layout. The availability of heavy lift launch vehicles would simplify the task and allow to concentrate the construction

  13. Lunar and Planetary Science XXXVI, Part 22 (United States)


    The Lunar and Planetary Science XXXVI, Part 22 is presented. The topics include: 1) Pressure Histories from Thin and Thick Shock-induced Melt Veins in Meteorites; 2) Nano-structured Minerals as Signature of Microbial Activity; 3) The Insoluble Carbonaceous Material of CM Chondrites as Possible Source of Discrete Organics During the Asteroidal Aqueous Phase; 4) Discovery of Abundant Presolar Silicates in Subgroups of Antarctic Micrometeorites; 5) Characteristics of a Seismometer for the LUNAR-A Penetrator; 6) Heating Experiments of the HaH 262 Eucrite and Implication for the Metamorphic History of Highly Metamorphosed Eucrites; 7) Measurements of Ejecta Velocity Distribution by a High-Speed Video Camera; 8) Petrological Comparison of Mongolian Jalanash Ureilite and Twelve Antarctic Ureilites; 9) Metallographic Cooling Rate of IVA Irons Revisited; 10) Inhomogeneous Temperature Distribution in Chondrules in Shock-Wave Heating Model; 11) Subsurface Weathering of Rocks and Soils at Gusev Crater; 12) Extinct Radioactivities in the Early Solar System and the Mean Age of the Galaxy; 13) Correlation of Rock Spectra with Quantitative Morphologic Indices: Evidence for a Single Rock Type at the Mars Pathfinder Landing Site; 14) Silicon Isotopic Ratios of Presolar Grains from Supernovae; 15) Current Status and Readiness on In-Situ Exploration of Asteroid Surface by MINERVA Rover in Hayabusa Mission; 16) Long Formation Period of Single CAI: Combination of O and Mg Isotope Distribution; 17) Supra-Canonical Initial 26Al/27Al Indicate a 105 Year Residence Time for CAIs in the Solar Proto-Planetary Disk; 18) Evolution of Mercury's Obliquity; 19) First Results from the Huygens Surface Science Package; 20) Polyhedral Serpentine Grains in CM Chondrites; 21) Mountainous Units in the Martian Gusev Highland Region: Volcanic, Tectonic, or Impact Related? 22) Petrography of Lunar Meteorite MET 01210, A New Basaltic Regolith Breccia; 23) Earth-Moon Impacts at 300 Ma and 500 Ma Ago; 24

  14. A geotechnical characterization of lunar soils and lunar soil simulants (United States)

    Graf, John Carl

    Many of the essential materials needed for the construction of a lunar base can be produced from the resources found on the lunar surface. Processing natural resources on the moon into useful products will reduce the need, and the cost, to bring everything from earth. The lunar regolith has been intensely studied with respect to understanding the formation of the moon and the earth, but as a construction material, the regolith is poorly characterized and poorly understood. To better understand how to 'work' with the lunar regolith, four loosely related research projects were conducted. Two projects relate to characterizing and understanding the geotechnical properties of regolith, two projects relate to manipulating and processing granular materials in the lunar environment. The shapes of lunar soil grains are characterized using fractals - results directly and quantitatively describe the rugged reentrant nature of the large scale structure and the relatively smooth surface texture of lunar soil grains. The nature of lunar soil cohesion is considered using tensile strength measurements of lunar soil simulant. It is likely that mechanical interlocking of irregular grains is the primary cause of lunar soil cohesion. This mechanism is highly sensitive to grain shape, but relatively insensitive to particle packing density. A series of experiments are conducted to try to understand how granular particles might sort by size in a vacuum. Even in a vacuum, fine particle subjected to shear strain segregate by a mechanism called the random fluctuating sieve The random fluctuating sieve also controls particle motion that determines the structure of wind-blown sand ripples. Hybrid microwave heating was used to sinter large structural bricks from lunar soil stimulant. While heating was prone to thermal runaway, microwave heating holds great promise as a simple, direct method of making sintered structural bricks.

  15. Religion and Lunar Exploration (United States)

    Pop, V.

    1969: The Eagle lands on the Moon. A moment that would not only mark the highest scientific achievement of all times, but would also have significant religious impli- cations. While the island of Bali lodges a protest at the United Nations against the US for desecrating a sacred place, Hopi Indians celebrate the fulfilment of an ancient prophecy that would reveal the "truth of the Sacred Ways". The plaque fastened to the Eagle - "We Came in Peace for All Mankind" would have contained the words "under God" as directed by the US president, if not for an assistant administrator at NASA that did not want to offend any religion. In the same time, Buzz Aldrin takes the Holy Communion on the Moon, and a Bible is left there by another Apollo mission - not long after the crew of Apollo 8 reads a passage from Genesis while circling the Moon. 1998: Navajo Indians lodge a protest with NASA for placing human ashes aboard the Lunar Prospector, as the Moon is a sacred place in their religion. Past, present and fu- ture exploration of the Moon has significant religious and spiritual implications that, while not widely known, are nonetheless important. Is lunar exploration a divine duty, or a sacrilege? This article will feature and thoroughly analyse the examples quoted above, as well as other facts, as for instance the plans of establishing lunar cemeteries - welcomed by some religions, and opposed by others.

  16. Meteoritic Microfossils In Eltanin Impact Deposits (United States)

    Kyte, F. T.; Wollenburg, J.; Gersonde, R.; Kuhn, G.


    Introduction: We report the unique occurrence of microfossils composed largely of meteoritic ejecta particles from the late Pliocene (2.5 Ma) Eltanin impact event. These deposits are unique, recording the only known km- sized asteroid impact into a deep-ocean (5 km) basin. First discovered as in Ir anomaly in sediment cores that were collected in 1965, the deposits contain mm-sized shock-melted asteroidal material, unmelted meteorite fragments (named the Eltanin meteorite), and trace impact spherules. Two oceanographic expeditions by the FS Polarstern in 1995 and 2001 explored 80,000 square km of the impact region, mapping the distribution of meteoritic ejecta, disturbance of seafloor sediments by the impact, and collected 20 new cores with impact deposits in the vicinity of the Freeden Seamounts (57.3S, 90.5W). Analyses of sediment cores show that the impact disrupted sediments on the ocean floor, redepositing them as a chaotic jumble of sediment fragments overlain by a sequence of laminated sands, silts and clays deposited from the water column. Overprinted on this is a pulse of meteoritic ejecta, likely transported ballistically, then settled through the water column. At some localities, meteoritic ejecta was as much as 5 to 50 kg per square meter. This is the most meteorite-rich locality known on Earth. Results: Two cores were taken in a basin near the top of the Freeden Seamounts at a water depth of 2.7 km. Sediments in this shallow basin are compositionally different than those at all other sites as they contain abundant calcareous microfossils. In deeper water sites (4 to 5 km depth), higher pressures and CO2 concentrations cause dissolution of calcite and sediments contain siliceous (opal) microfossils or are barren. An exception to this is a few sites in the immediate vicinity of the seamounts that contain calcareous sediments that flowed off the seamounts after being disturbed by the impact. At the top of the seamounts, sediments with meteoritic ejecta

  17. Meteorites from Grove Mountains, Antarctica:An overview

    Institute of Scientific and Technical Information of China (English)

    王道德; 林杨挺


    Thirty-two meteorites were collected in Grove Mountains area, Antarctica,by the 15th and 16th Chinese Antarctic Research Expeditions (CHINARE). Petrography and mineral chemistry of these meteorites are reviewed, among which there are one Martian lherzolite, one eucrite, one ungrouped iron meteorite, and six unequilibrated and twenty-three equilibrated ordinary chondrites. An equilibrated ordinary chondrite GRV 98004 (H5) has an unusually low cosmic-ray exposure age. Meteorite concentrating processes in Grove Mountains area are discussed. In addition, future studies on Grove Mountains (GRV) meteorites are proposed.

  18. Lunar radiation environment (United States)

    Schwadron, Nathan; Spence, Harlan; Wilson, Jody

    One of the goals of the CRaTER investigation is to characterize the radiation environment near the Moon in order to enable exploration. The state-of-the-art understanding developed thus far during the LRO mission is documented in a special issue of the Spaceweather Journal entitled “Space Weather: Building the observational foundation to deduce biological effects of space radiation” (Schwadron et al., 2013a). This recently published CRaTER work probes deeper into the physics of the radiation environment at the Moon. It motivates and provides the scientific basis for new investigations in the next phase of the LRO mission. The effects of Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) range from chemical modification of the regolith, the generation of a radiation albedo that is increasingly illuminating chemical properties of the regolith, causing charging of the regolith and hazards to human explorers and robotic missions. Low-lunar orbit provides a platform for measuring SEP anisotropy over timescales of 2 hours both parallel and perpendicular to the ecliptic plane, and so far we have observed more than 18 SEP events with time-variable anisotropies during the LRO mission. Albedo proton maps of the Moon from CRaTER indicate that the flux of lunar albedo protons is correlated with elemental abundances at the lunar surface. The yield of albedo protons from the maria is 1% higher than the yield from the highlands, and there are localized peaks with even higher contrast (that may be co-located with peaks in trace elemental abundances as measured by the Lunar Prospector Gamma Ray Spectrometer). The Moon’s radiation environment both charges and affects the chemistry in the Moon’s polar regions, particularly in PSRs. This makes these regions a prime target for new CRaTER observations, since CRaTER measures GCRs and SEPs that penetrate the regolith down to 10s of cm. Thus, we review emerging discoveries from LRO/CRaTER’s remarkable exploration of

  19. Lunar imaging and ionospheric calibration for the Lunar Cherenkov technique

    NARCIS (Netherlands)

    McFadden, R.; Scholten, O.; Mevius, M.


    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the iono

  20. Lunar Dust Mitigation Technology Development (United States)

    Hyatt, Mark J.; Deluane, Paul B.


    NASA s plans for implementing the Vision for Space Exploration include returning to the moon as a stepping stone for further exploration of Mars, and beyond. Dust on the lunar surface has a ubiquitous presence which must be explicitly addressed during upcoming human lunar exploration missions. While the operational challenges attributable to dust during the Apollo missions did not prove critical, the comparatively long duration of impending missions presents a different challenge. Near term plans to revisit the moon places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it s potentially harmful effects on exploration systems. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA s Exploration Technology Development Program. This work is presented within the context of the Constellation Program s Integrated Lunar Dust Management Strategy. The Lunar Dust Mitigation Technology Development project has been implemented within the ETDP. Project scope and plans will be presented, along with a a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware. This paper further outlines the scientific basis for lunar dust behavior, it s characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost.

  1. [Presentation of the Lunar Precursor Robotics Program (United States)

    Lavoie, Anthony R.


    The Lunar Precursor Robotics Program (LPRP) is the host program for the Exploration Systems Mission Directorate's (ESMD) lunar robotic precursor missions to the Moon. The program includes two missions, the Lunar Reconnaissance Orbiter (LRO), and the Lunar CRater Observation and Sensing Satellite (LCROSS). Both missions will provide the required lunar information to support development and operations of those systems required for Human lunar return. LPRP is developing a lunar mapping plan, Called the Lunar Mapping and Modeling Project, to create the capability to archive and present all data from LRO, LCROSS, historical lunar missions, and international lunar missions for future mission planning and operations. LPRP is also developing its educational and public outreach activities for the Vision for Space Exploration's first missions. LPRP is working closely with the Science Mission Directorate as their lunar activities come into focus.

  2. Chemical fractionation of siderophile elements in impactites from Australian meteorite craters (United States)

    Attrep, A., Jr.; Orth, C. J.; Quintana, L. R.; Shoemaker, C. S.; Shoemaker, E. M.; Taylor, S. R.


    The abundance pattern of siderophile elements in terrestrial and lunar impact melt rocks was used extensively to infer the nature of the impacting projectiles. An implicit assumption made is that the siderophile abundance ratios of the projectiles are approximately preserved during mixing of the projectile constituents with the impact melts. As this mixture occurs during flow of strongly shocked materials at high temperatures, however there are grounds for suspecting that the underlying assumption is not always valid. In particular, fractionation of the melted and partly vaporized material of the projectile might be expected because of differences in volatility, solubility in silicate melts, and other characteristics of the constituent elements. Impactites from craters with associated meteorites offer special opportunities to test the assumptions on which projectile identifications are based and to study chemical fractionation that occurred during the impact process.


    Energy Technology Data Exchange (ETDEWEB)

    Pizzarello, Sandra, E-mail: [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85018-1604 (United States)


    HCN is ubiquitous in extraterrestrial environments and is central to current theories on the origin of early solar system organic compounds such as amino acids. These compounds, observed in carbonaceous meteorites, were likely important in the origin and/or evolution of early life. As part of our attempts to understand the origin(s) of meteoritic CN{sup –}, we have analyzed the {sup 15}N/{sup 14}N isotopic composition of HCN gas released from water extracts of the Murchison meteorite and found its value to be near those of the terrestrial atmosphere. The findings, when evaluated viz-a-viz molecular abundances and isotopic data of meteoritic organic compounds, suggest that HCN formation could have occurred during the protracted water alteration processes known to have affected the mineralogy of many asteroidal bodies during their solar residence. This was an active synthetic stage, which likely involved simple gasses, organic molecules, their presolar precursors, as well as mineral catalysts and would have lead to the formation of molecules of differing isotopic composition, including some with solar values.


    DEFF Research Database (Denmark)

    Thrane, Kristine; Connelly, James Norman; Bizzarro, Martin


    After considerable controversy regarding the (176)Lu decay constant (lambda(176)Lu), there is now widespread agreement that (1.867 +/- 0.008) x 10(-11) yr(-1) as confirmed by various terrestrial objects and a 4557 Myr meteorite is correct. This leaves the (176)Hf excesses that are correlated with...

  5. The Germanium Dichotomy in Martian Meteorites (United States)

    Humayun, M.; Yang, S.; Righter, K.; Zanda, B.; Hewins, R. H.


    Germanium is a moderately volatile and siderophile element that follows silicon in its compatibility during partial melting of planetary mantles. Despite its obvious usefulness in planetary geochemistry germanium is not analyzed routinely, with there being only three prior studies reporting germanium abundances in Martian meteorites. The broad range (1-3 ppm) observed in Martian igneous rocks is in stark contrast to the narrow range of germanium observed in terrestrial basalts (1.5 plus or minus 0.1 ppm). The germanium data from these studies indicates that nakhlites contain 2-3 ppm germanium, while shergottites contain approximately 1 ppm germanium, a dichotomy with important implications for core formation models. There have been no reliable germanium abundances on chassignites. The ancient meteoritic breccia, NWA 7533 (and paired meteorites) contains numerous clasts, some pristine and some impact melt rocks, that are being studied individually. Because germanium is depleted in the Martian crust relative to chondritic impactors, it has proven useful as an indicator of meteoritic contamination of impact melt clasts in NWA 7533. The germanium/silicon ratio can be applied to minerals that might not partition nickel and iridium, like feldspars. We report germanium in minerals from the 3 known chassignites, 2 nakhlites and 5 shergottites by LAICP- MS using a method optimized for precise germanium analysis.

  6. Indigenous amino acids in primitive CR meteorites

    CERN Document Server

    Martins, Z; Orzechowska, G E; Fogel, M L; Ehrenfreund, P


    CR meteorites are among the most primitive meteorites. In this paper, we report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. EET92042, GRA95229 and GRO95577 were analyzed for their amino acid content using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatographymass spectrometry (GC-MS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations ranging from 180 parts-per-million (ppm) to 249 ppm. GRO95577, however, is depleted in amino acids. The most abundant amino acids present in the EET92042 and GRA95229 meteorites are the alpha-amino acids glycine, isovaline, alpha-aminoisobutyric acid (alpha-AIB), and alanine, with delta13C values ranging from +31.6per mil to +50.5per mil. The carbon isotope results together with racemic enantiomeric ratios determined for most amino acids strongly i...

  7. Origin of igneous meteorites and differentiated asteroids (United States)

    Scott, E.; Goldstein, J.; Asphaug, E.; Bottke, W.; Moskovitz, N.; Keil, K.


    Introduction: Igneously formed meteorites and asteroids provide major challenges to our understanding of the formation and evolution of the asteroid belt. The numbers and types of differentiated meteorites and non-chondritic asteroids appear to be incompatible with an origin by fragmentation of numerous Vesta-like bodies by hypervelocity impacts in the asteroid belt over 4 Gyr. We lack asteroids and achondrites from the olivine-rich mantles of the parent bodies of the 12 groups of iron meteorites and the ˜70 ungrouped irons, the 2 groups of pallasites and the 4--6 ungrouped pallasites. We lack mantle and core samples from the parent asteroids of the basaltic achondrites that do not come from Vesta, viz., angrites and the ungrouped eucrites like NWA 011 and Ibitira. How could core samples have been extracted from numerous differentiated bodies when Vesta's basaltic crust was preserved? Where is the missing Psyche family of differentiated asteroids including the complementary mantle and crustal asteroids [1]? Why are meteorites derived from far more differentiated parent bodies than chondritic parent bodies even though C and S class chondritic asteroids dominate the asteroid belt? New paradigm. Our studies of meteorites, impact modeling, and dynamical studies suggest a new paradigm in which differentiated asteroids accreted at 1--2 au less than 2 Myr after CAI formation [2]. They were rapidly melted by 26Al and disrupted by hit-and-run impacts [3] while still molten or semi-molten when planetary embryos were accreting. Metallic Fe-Ni bodies derived from core material cooled rapidly with little or no silicate insulation less than 4 Myr after CAI formation [4]. Fragments of differentiated planetesimals were subsequently tossed into the asteroid belt. Meteorite evidence for early disruption of differentiated asteroids. If iron meteorites were samples of Fe-Ni cores of bodies that cooled slowly inside silicate mantles over ˜50--100 Myr, irons from each core would have

  8. Meteorite and meteoroid: New comprehensive definitions (United States)

    Rubin, A.E.; Grossman, J.N.


    Meteorites have traditionally been defined as solid objects that have fallen to Earth from space. This definition, however, is no longer adequate. In recent decades, man-made objects have fallen to Earth from space, meteorites have been identified on the Moon and Mars, and small interplanetary objects have impacted orbiting spacecraft. Taking these facts and other potential complications into consideration, we offer new comprehensive definitions of the terms "meteorite,""meteoroid," and their smaller counterparts: A meteoroid is a 10-??m to 1-m-size natural solid object moving in interplanetary space. A micrometeoroid is a meteoroid 10 ??m to 2 mm in size. A meteorite is a natural, solid object larger than 10 ??m in size, derived from a celestial body, that was transported by natural means from the body on which it formed to a region outside the dominant gravitational influence of that body and that later collided with a natural or artificial body larger than itself (even if it is the same body from which it was launched). Weathering and other secondary processes do not affect an object's status as a meteorite as long as something recognizable remains of its original minerals or structure. An object loses its status as a meteorite if it is incorporated into a larger rock that becomes a meteorite itself. A micrometeorite is a meteorite between 10 ??m and 2 mm in size. Meteorite- "a solid substance or body falling from the high regions of the atmosphere" (Craig 1849); "[a] mass of stone and iron that ha[s] been directly observed to have fallen down to the Earth's surface" (translated from Cohen 1894); "[a] solid bod[y] which came to the earth from space" (Farrington 1915); "A mass of solid matter, too small to be considered an asteroid; either traveling through space as an unattached unit, or having landed on the earth and still retaining its identity" (Nininger 1933); "[a meteoroid] which has reached the surface of the Earth without being vaporized" (1958

  9. Re-analysis of previous laboratory phase curves: 2. Connections between opposition effect morphology and spectral features of stony meteorites (United States)

    Déau, Estelle; Spilker, Linda J.; Flandes, Alberto


    We investigate connections between the opposition phase curves and the spectra from ultraviolet to near infrared wavelengths of stony meteorites. We use two datasets: the reflectance dataset of Capaccioni et al. ([1990] Icarus, 83, 325), which consists of optical phase curves (from 2° to 45°) of 17 stony meteorites (three carbonaceous chondrites, 11 ordinary chondrites, and three achondrites), and the spectral dataset from the RELAB database consisting of near-ultraviolet to near-infrared spectra of the same meteorites. We re-analyzed the first dataset and fit it with two morphological models to derive the amplitude A, the angular width HWHM of the surge and the slope S of the linear part. Our re-analysis confirms that stony meteorites have a non-monotonic behavior of the surge amplitude with albedo, which is also observed in planetary surfaces (Déau et al. [2013] Icarus, 226, 1465), laboratory samples (Nelson et al. [2004] Proc. Lunar Sci. Conf., 35, p. 1089) and asteroids (Belskaya and Shevchenko [2000] Icarus, 147, 94). We find a very strong correlation between the opposition effect morphological parameters and the slope of the spectra between 0.75 μm and 0.95 μm. In particular, we found that meteorites with a positive amplitude-albedo correlation have a positive spectral slope between 0.75 μm and 0.95 μm, while meteorites with a negative amplitude-albedo correlation have a negative spectral slope between 0.75 μm and 0.95 μm. We have ruled out the role of the meteorite samples' macro-properties (grain size, porosity and macroscopic roughness) in the correlations found because these properties were constant during the preparation of the samples. If this hypothesis is correct, this implies that other properties like the composition or the micro-properties (grain inclusions, grain shape or microscopic roughness) could have a preponderant role in the non-monotonic behavior of the surge morphology with albedo at small and moderate phase angles. Further

  10. Apollo 15-Lunar Module Falcon (United States)


    This is a photo of the Apollo 15 Lunar Module, Falcon, on the lunar surface. Apollo 15 launched from Kennedy Space Center (KSC) on July 26, 1971 via a Saturn V launch vehicle. Aboard was a crew of three astronauts including David R. Scott, Mission Commander; James B. Irwin, Lunar Module Pilot; and Alfred M. Worden, Command Module Pilot. The first mission designed to explore the Moon over longer periods, greater ranges and with more instruments for the collection of scientific data than on previous missions, the mission included the introduction of a $40,000,000 lunar roving vehicle (LRV) that reached a top speed of 16 kph (10 mph) across the Moon's surface. The successful Apollo 15 lunar landing mission was the first in a series of three advanced missions planned for the Apollo program. The primary scientific objectives were to observe the lunar surface, survey and sample material and surface features in a preselected area of the Hadley-Apennine region, setup and activation of surface experiments and conduct in-flight experiments and photographic tasks from lunar orbit. Apollo 15 televised the first lunar liftoff and recorded a walk in deep space by Alfred Worden. Both the Saturn V rocket and the LRV were developed at the Marshall Space Flight Center.

  11. Chiral Biomarkers and Microfossils in Carbonaceous Meteorites (United States)

    Hoover, Richard B.


    Homochirality of the biomolecules (D-sugars of DNA and RNA and L-amino acids of proteins) is a fundamental property of all life on Earth. Abiotic mechanisms yield racemic mixtures (D/L=1) of chiral molecules and after the death of an organism, the enantiopure chiral biomolecules slowly racemize. Several independent investigators have now established that the amino acids present in CI1 and CM2 carbonaceous meteorites have a moderate to strong excess of the L-enantiomer. Stable isotope data have established that these amino acids are both indigenous and extraterrestrial. Carbonaceous meteorites also contain many other strong chemical biomarkers including purines and pyrimidines (nitrogen heterocycles of nucleic acids); pristine and phytane (components of the chlorophyll pigment) and morphological biomarkers (microfossils of filamentous cyanobacteria). Energy dispersive X-ray Spectroscopy (EDS) analysis reveals that nitrogen is below the detectability level in most of the meteorite filaments as well as in Cambrian Trilobites and filaments of 2.7 Gya Archaean cyanobacteria from Karelia. The deficiency of nitrogen in the filaments and the total absence of sugars, of twelve of the life-critical protein amino acids, and two of the nucleobases of DNA and RNA provide clear and convincing evidence that these filaments are not modern biological contaminants. This paper reviews the chiral, chemical biomarkers morphological biomarkers and microfossils in carbonaceous meteorites. This paper reviews chiral and morphological biomarkers and discusses the missing nitrogen, sugars, protein amino acids, and nucleobases as ?bio-discriminators? that exclude modern biological contaminants as a possible explanation for the permineralized cyanobacterial filaments found in the meteorites.

  12. Chiral biomarkers and microfossils in carbonaceous meteorites (United States)

    Hoover, Richard B.


    Homochirality of the biomolecules (D-sugars of DNA and RNA and L-amino acids of proteins) is a fundamental property of all life on Earth. Abiotic mechanisms yield racemic mixtures (D/L=1) of chiral molecules and after the death of an organism, the enantiopure chiral biomolecules slowly racemize. Several independent investigators have now established that the amino acids present in CI1 and CM2 carbonaceous meteorites have a moderate to strong excess of the L-enantiomer. Stable isotope data have established that these amino acids are both indigenous and extraterrestrial. Carbonaceous meteorites also contain many other strong chemical biomarkers including purines and pyrimidines (nitrogen heterocycles of nucleic acids); pristine and phytane (components of the chlorophyll pigment) and morphological biomarkers (microfossils of filamentous cyanobacteria). Energy dispersive X-ray Spectroscopy (EDS) analysis reveals that nitrogen is below the detectability level in most of the meteorite filaments as well as in Cambrian Trilobites and filaments of 2.7 Gya Archaean cyanobacteria from Karelia. The deficiency of nitrogen in the filaments and the total absence of sugars, of twelve of the life-critical protein amino acids, and two of the nucleobases of DNA and RNA provide clear and convincing evidence that these filaments are not modern biological contaminants. This paper reviews the chiral, chemical biomarkers morphological biomarkers and microfossils in carbonaceous meteorites. This paper reviews chiral and morphological biomarkers and discusses the missing nitrogen, sugars, protein amino acids, and nucleobases as "bio-discriminators" that exclude modern biological contaminants as a possible explanation for the permineralized cyanobacterial filaments found in the meteorites.

  13. The 10Be contents of SNC meteorites (United States)

    Pal, D. K.; Tuniz, C.; Moniot, R. K.; Savin, W.; Vajda, S.; Kruse, T.; Herzog, G. F.


    Several authors have explored the possibility that the Shergottites, Nakhlites, and Chassigny (SNC) came from Mars. The spallogenic gas contents of the SNC meteorites have been used to: constrain the sizes of the SNC's during the last few million years; to establish groupings independent of the geochemical ones; and to estimate the likelihood of certain entries in the catalog of all conceivable passages from Mars to Earth. The particular shielding dependence of Be-10 makes the isotope a good probe of the irradiation conditions experienced by the SNC meteorites. The Be-10 contents of nine members of the group were measured using the technique of accelerator mass spectrometry. The Be-10 contents of Nakhla, Governador Valadares, Chassigny, and probably Lafayette, about 20 dpm/kg, exceed the values expected from irradiation of the surface of a large body. The Be-10 data therfore do not support scenario III of Bogard et al., one in which most of the Be-10 in the SNC meteorites would have formed on the Martian surface; they resemble rather the Be-10 contents found in many ordinary chondrites subjected to 4 Pi exposures. The uncertainties of the Be-10 contents lead to appreciable errors in the Be-10 ages, t(1) = -1/lambda ln(1 Be-10/Be-10). Nonetheless, the Be-10 ages are consistent with the Ne-21 ages calculated assuming conventional, small-body production rates and short terrestrial ages for the finds. It is believed that this concordance strengthens the case for at least 3 different irradiation ages for the SNC meteorites. Given the similar half-thicknesses of the Be-10 and Ne-21 production rates, the ratios of the Be-10 and Ne-21 contents do not appear consistent with common ages for any of the groups. In view of the general agreement between the Be-10 and Ne-21 ages it does not seem useful at this time to construct multiple-stage irradiation histories for the SNC meteorites.

  14. Dust particles investigation for future Russian lunar missions. (United States)

    Dolnikov, Gennady; Horanyi, Mihaly; Esposito, Francesca; Zakharov, Alexander; Popel, Sergey; Afonin, Valeri; Borisov, Nikolay; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Kuznetsov, Ilya; Lyash, Andrey; Vorobyova, Elena; Petrov, Oleg; Lisin, Evgeny

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On light side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution dust particle by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind, solar

  15. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase (United States)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; Shih, C.-Y.


    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  16. Electrostatic Characterization of Lunar Dust (United States)


    To ensure the safety and success of future lunar exploration missions, it is important to measure the toxicity of the lunar dust and its electrostatic properties. The electrostatic properties of lunar dust govern its behavior, from how the dust is deposited in an astronaut s lungs to how it contaminates equipment surfaces. NASA has identified the threat caused by lunar dust as one of the top two problems that need to be solved before returning to the Moon. To understand the electrostatic nature of lunar dust, NASA must answer the following questions: (1) how much charge can accumulate on the dust? (2) how long will the charge remain? and (3) can the dust be removed? These questions can be answered by measuring the electrostatic properties of the dust: its volume resistivity, charge decay, charge-to-mass ratio or chargeability, and dielectric properties.

  17. Lunar Regolith Particle Shape Analysis (United States)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer


    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  18. The Age of the Moon As Told By Dynamics and Asteroidal Meteorites (United States)

    Bottke, W. F.; Marchi, S.; Vokrouhlicky, D.


    velocity ejecta from the GI should have made numerous small craters on D > 100 km diameter asteroids in the main belt. If this heated material was ever delivered to Earth in the form of meteorites, it would produce an abundance of Ar-Ar ages at these times. Overall, we estimate the volume of material heated to high temperatures on main belt asteroids was at least several times that made by Late Heavy Bombardment projectiles between 3.5-4.1 Ga. Next, we tried to place these putative Ar-Ar events from the GI in time by examining the record of ancient Ar-Ar ages for various stony meteorite classes (i.e., H, L, LL, HED, EH, EL, EM, R, and AL; Bogard 2011; Chem. Erde). We found that (i) numerous ages can be found across all meteorite classes between 4.45-4.53 Ga and (ii) almost none can be found between ~4.1-4.4 Ga. We infer that the GI took place in interval (i) and not at 4.36 Ga as suggested by Borg et al. (2011); if it had, we would see numerous Ar-Ar ages there. We speculate that the source of the lunar magmatic events recorded at ~4.36 Ga may instead have been triggered by a massive impact event, possibly the formation of South Pole-Aitken basin, as postulated by Borg et al. (2011). Interestingly, this age agrees with the 4.33-4.39 Ga age derived for SPA by Morbidelli et al. (2012; EPSL) using their new lunar chronology and new measurements of the spatial density of craters found on SPA.

  19. Planetary and meteoritic Mg/Si and d30Si variations inherited from solar nebula chemistry

    CERN Document Server

    Dauphas, Nicolas; Burkhardt, Christoph; Kobayashi, Hiroshi; Kurosawa, Kosuke


    The bulk chemical compositions of planets are uncertain, even for major elements such as Mg and Si. This is due to the fact that the samples available for study all originate from relatively shallow depths. Comparison of the stable isotope compositions of planets and meteorites can help overcome this limitation. Specifically, the non-chondritic Si isotope composition of the Earth's mantle was interpreted to reflect the presence of Si in the core, which can also explain its low density relative to pure Fe-Ni alloy. However, we have found that angrite meteorites display a heavy Si isotope composition similar to the lunar and terrestrial mantles. Because core formation in the angrite parent-body (APB) occurred under oxidizing conditions at relatively low pressure and temperature, significant incorporation of Si in the core is ruled out as an explanation for this heavy Si isotope signature. Instead, we show that equilibrium isotopic fractionation between gaseous SiO and solid forsterite at 1370 K in the solar neb...

  20. Lunar Commercial Mining Logistics (United States)

    Kistler, Walter P.; Citron, Bob; Taylor, Thomas C.


    Innovative commercial logistics is required for supporting lunar resource recovery operations and assisting larger consortiums in lunar mining, base operations, camp consumables and the future commercial sales of propellant over the next 50 years. To assist in lowering overall development costs, ``reuse'' innovation is suggested in reusing modified LTS in-space hardware for use on the moon's surface, developing product lines for recovered gases, regolith construction materials, surface logistics services, and other services as they evolve, (Kistler, Citron and Taylor, 2005) Surface logistics architecture is designed to have sustainable growth over 50 years, financed by private sector partners and capable of cargo transportation in both directions in support of lunar development and resource recovery development. The author's perspective on the importance of logistics is based on five years experience at remote sites on Earth, where remote base supply chain logistics didn't always work, (Taylor, 1975a). The planning and control of the flow of goods and materials to and from the moon's surface may be the most complicated logistics challenges yet to be attempted. Affordability is tied to the innovation and ingenuity used to keep the transportation and surface operations costs as low as practical. Eleven innovations are proposed and discussed by an entrepreneurial commercial space startup team that has had success in introducing commercial space innovation and reducing the cost of space operations in the past. This logistics architecture offers NASA and other exploring nations a commercial alternative for non-essential cargo. Five transportation technologies and eleven surface innovations create the logistics transportation system discussed.

  1. Lunar Influences On Climate (United States)

    Camuffo, Dario

    Popular beliefs on the effects of the Moon on the weather probably go back to when ancient civilisations followed a lunar calendar, and the Moon went from being a purely temporal reference to becoming a causal reference. The incoming heat flow on the Earth may vary slightly after solar activity. to and generate considerable effects. The light reflected from the Moon has also been hypothesised as a cause, but the associated energy is too small. The anomalistic period of the Moon (i.e., 27.5 days) coincides substantially with that of the sunspots found on the 17-18th parallel of the heliocentric latitude. Climatic modulation which lasts for around 27.5 days should be related to solar activity, which supplies energy with an amount of two orders of magnitude greater than the lunar-reflected energy. Another mechanism responsible for climatic variations is the redistribution of heat on the Earth. The Moon with the tides induces movement of the water masses of the oceans and with this there is a transport of heat. Semidiurnal lunar tides have been identified, although with modest impact, in the atmospheric pressure, the wind field and the precipitation. On a monthly time scale, variation of daily precipitation data shows that gravitational tides do indeed affect heavy rainfalls more than mean precipitation values. On the longer time scale, several authors have identified the 18.6-yr nutation cycle, which is clearly visible in several data analyses, but often it cannot be easily distinguished from the 19.9 Saturn-Jupiter cycle and the quasi-regular 22-yr double sunspot cycle which at times may be dominant. In the time scale of centuries, covering a number of periods with minimum solar activity, an analysis of meteorological data has demonstrated that only the Spörer Minimum (A.D. 1416-1534) was characterised by climatic anomalies., whereas the other periods had no singularities, or else the weak climate forcing was covered or masked by other factors, leaving the question

  2. NASA Lunar Impact Monitoring (United States)

    Suggs, Robert M.; Moser, D. E.


    The MSFC lunar impact monitoring program began in 2006 in support of environment definition for the Constellation (return to Moon) program. Work continued by the Meteoroid Environment Office after Constellation cancellation. Over 330 impacts have been recorded. A paper published in Icarus reported on the first 5 years of observations and 126 calibrated flashes. Icarus:; ArXiv: A NASA Technical Memorandum on flash locations is in press

  3. Lunar architecture and urbanism (United States)

    Sherwood, Brent


    Human civilization and architecture have defined each other for over 5000 years on Earth. Even in the novel environment of space, persistent issues of human urbanism will eclipse, within a historically short time, the technical challenges of space settlement that dominate our current view. By adding modern topics in space engineering, planetology, life support, human factors, material invention, and conservation to their already renaissance array of expertise, urban designers can responsibly apply ancient, proven standards to the exciting new opportunities afforded by space. Inescapable facts about the Moon set real boundaries within which tenable lunar urbanism and its component architecture must eventually develop.

  4. Precambrian Lunar Volcanic Protolife

    Directory of Open Access Journals (Sweden)

    Jack Green


    Full Text Available Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated.

  5. Lunar Module Illustration (United States)


    This concept is a cutaway illustration of the Lunar Module (LM) with detailed callouts. The LM was a two part spacecraft. Its lower or descent stage had the landing gear, engines, and fuel needed for the landing. When the LM blasted off the Moon, the descent stage served as the launching pad for its companion ascent stage, which was also home for the two astronauts on the surface of the Moon. The LM was full of gear with which to communicate, navigate, and rendezvous. It also had its own propulsion system, and an engine to lift it off the Moon and send it on a course toward the orbiting Command Module.

  6. Sintering and hot pressing of Fra Mauro composition glass and the lithification of lunar breccias. (United States)

    Simonds, C. H.


    It is proposed that Apollo 14 type breccias lithify by sintering of particles of matrix glass under stress-free conditions. Meteorite impacts generate the heat necessary for sintering. Compacted angular particles of glass with the composition of an Apollo 14 rock were sintered experimentally. Loose clods of sub 37 micron grains form in several days at 700 C. Synthetic rocks, which texturally resemble the breccias, were produced at 795 C and above in 7.5 hours. Glass devitrified with increasing temperature. At 850 C, devitrification prevents much further densification of the synthetic breccias after 2 hours. Experiments compressing glass at 500 bars at 600 C produced dense vitreous masses which did not resemble lunar breccias. Confining pressure does not play a major role in lithifying the breccias. It is concluded that Apollo 14 type lunar breccias form at shallow depths at 800 C+ in a period of minutes to days.

  7. Identifying meteorite source regions through near-Earth object spectroscopy (United States)

    Thomas, Cristina A.; Binzel, Richard P.


    By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs, in principle, gives important representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source locations, we seek to gain insight into the original Solar System formation locations for different meteorite classes. To forge possible links between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects. We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Using the Modified Gaussian Model (MGM) as a mathematical tool, we treat asteroid and meteorite spectra identically in the calculation of 1-μm and 2-μm Geometric Band Centers and their Band Area Ratios (BARs). Using these identical numerical parameters we quantitatively compare the spectral properties of S-, Sq-, Q- and V-type NEOs with the spectral properties of the meteorites in four classes: H, L, LL and HED. For each NEO spectrum, we assign a set of probabilities for it being related to each of these four meteorite classes. Our NEO-meteorite correlation probabilities are then convolved with NEO-source region probabilities to yield a final set of meteorite-source region correlations. While the ν6 resonance dominates the delivery for all four meteorite classes, an excess (significant at the 2.1-sigma level) source region signature is found for the H chondrites through the 3:1 mean motion resonance. This results suggest an H chondrite source with a higher than average delivery preference through the 3:1 resonance. A 3:1 resonance H chondrite source region is consistent with the short cosmic ray exposure ages known for H chondrites.

  8. Analysis of Chiral Carboxylic Acids in Meteorites (United States)

    Burton, A. S.; Elsila, J. E.; Hein, J. E.; Aponte, J. C.; Parker, E. T.; Glavin, D. P.; Dworkin, J. P.


    Homochirality of amino acids in proteins and sugars in DNA and RNA is a critical feature of life on Earth. In the absence of a chiral driving force, however, reactions leading to the synthesis of amino acids and sugars result in racemic mixtures. It is currently unknown whether homochirality was necessary for the origins of life or if it was a product of early life. The observation of enantiomeric excesses of certain amino acids of extraterrestrial origins in meteorites provides evidence to support the hypothesis that there was a mechanism for the preferential synthesis or destruction of a particular amino acid enantiomer [e.g., 1-3]. The cause of the observed chiral excesses is un-clear, although at least in the case of the amino acid isovaline, the degree of aqueous alteration that occurred on the meteorite parent body is correlated to the isovaline L-enantiomeric excess [3, 4]. This suggests that chiral symmetry is broken and/or amplified within the meteorite parent bodies. Besides amino acids, there have been only a few reports of other meteoritic compounds found in enantiomeric excess: sugars and sugar acids [5, 6] and the hydroxy acid lactic acid [7]. Determining whether or not additional types of molecules in meteorites are also present in enantiomeric excesses of extraterrestrial information will provide insights into mechanisms for breaking chiral symmetry. Though the previous measurements (e.g., enantiomeric composition of lactic acid [7], and chiral carboxylic acids [8]) were made by gas chromatography-mass spectrometry, the potential for increased sensitivity of liquid chromatography-mass spectrometry (LC-MS) analyses is important because for many meteorite samples, only small sample masses are available for study. Furthermore, at least in the case of amino acids, many of the largest amino acid enantiomeric excesses were observed in samples that contained lower abundances (tens of ppb) of a given amino acid enantiomer. In the present work, we describe

  9. Establishing lunar resource viability (United States)

    Carpenter, J.; Fisackerly, R.; Houdou, B.


    Recent research has highlighted the potential of lunar resources as an important element of space exploration but their viability has not been demonstrated. Establishing whether or not they can be considered in future plans is a multidisciplinary effort, requiring scientific expertise and delivering scientific results. To this end various space agencies and private entities are looking to lunar resources, extracted and processed in situ, as a potentially game changing element in future space architectures, with the potential to increase scale and reduce cost. However, before any decisions can be made on the inclusion of resources in exploration roadmaps or future scenarios some big questions need to be answered about the viability of different resource deposits and the processes for extraction and utilisation. The missions and measurements that will be required to answer these questions, and which are being prepared by agencies and others, can only be performed through the engagement and support of the science community. In answering questions about resources, data and knowledge will be generated that is of fundamental scientific importance. In supporting resource prospecting missions the science community will de facto generate new scientific knowledge. Science enables exploration and exploration enables science.

  10. Lunar Base Sitting (United States)

    Staehle, Robert L.; Burke, James D.; Snyder, Gerald C.; Dowling, Richard; Spudis, Paul D.


    Speculation with regard to a permanent lunar base has been with us since Robert Goddard was working on the first liquid-fueled rockets in the 1920's. With the infusion of data from the Apollo Moon flights, a once speculative area of space exploration has become an exciting possibility. A Moon base is not only a very real possibility, but is probably a critical element in the continuation of our piloted space program. This article, originally drafted by World Space Foundation volunteers in conjuction with various academic and research groups, examines some of the strategies involved in selecting an appropriate site for such a lunar base. Site selection involves a number of complex variables, including raw materials for possible rocket propellant generation, hot an cold cycles, view of the sky (for astronomical considerations, among others), geological makeup of the region, and more. This article summarizes the key base siting considerations and suggests some alternatives. Availability of specific resources, including energy and certain minerals, is critical to success.

  11. Pressurized Lunar Rover (PLR) (United States)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; McClure, Kerry; Zeinali, Mazyar; Bhardwaj, Manoj; Bulsara, Vatsal; Kokan, David; Shariff, Shaun; Svarverud, Eric

    The objective of this project was to design a manned pressurized lunar rover (PLR) for long-range transportation and for exploration of the lunar surface. The vehicle must be capable of operating on a 14-day mission, traveling within a radius of 500 km during a lunar day or within a 50-km radius during a lunar night. The vehicle must accommodate a nominal crew of four, support two 28-hour EVA's, and in case of emergency, support a crew of six when near the lunar base. A nominal speed of ten km/hr and capability of towing a trailer with a mass of two mt are required. Two preliminary designs have been developed by two independent student teams. The PLR 1 design proposes a seven meter long cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, lighting, robotic arms, tools, and equipment for exploratory experiments. The rover uses a simple mobility system with six wheels on the main vehicle and two on the trailer. The nonpressurized trailer contains a modular radioisotope thermoelectric generator (RTG) supplying 6.5 kW continuous power. A secondary energy storage for short-term peak power needs is provided by a bank of lithium-sulfur dioxide batteries. The life support system is partly a regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center allowing the center to be used as a safe haven during solar flares. The PLR 1 has a total mass of 6197 kg. It has a top speed of 18 km/hr and is capable of towing three metric tons, in addition to the RTG trailer. The PLR 2 configuration consists of two four-meter diameter, cylindrical hulls which are passively connected by a flexible passageway, resulting in the overall vehicle length of 11 m. The vehicle is driven by eight independently suspended wheels. The dual-cylinder concept allows articulated as well as double

  12. Lunar and Planetary Science XXXVI, Part 19 (United States)


    The topics include: 1) The abundances of Iron-60 in Pyroxene Chondrules from Unequilibrated Ordinary Chondrites; 2) LL-Ordinary Chondrite Impact on the Moon: Results from the 3.9 Ga Impact Melt at the Landing Site of Appolo 17; 3) Evaluation of Chemical Methods for Projectile Identification in Terrestrial and Lunar Impactites; 4) Impact Cratering Experiments in Microgravity Environment; 5) New Achondrites with High-Calcium Pyroxene and Its implication for Igneous Differentiation of Asteroids; 6) Climate History of the Polar Regions of Mars Deduced form Geologic Mapping Results; 7) The crater Production Function for Mars: A-2 Cumulative Power-Law Slope for Pristine Craters Greater than 5 km in Diameter Based on Crater Distribution for Northern Plains Materials; 8) High Resolution Al-26 Chronology: Resolved Time Interval Between Rim and Interior of a Highly Fractionated Compact Type a CAI from Efremovka; 9) Assessing Aqueous Alteration on Mars Using Global Distributions of K and Th; 10) FeNi Metal Grains in LaPaz Mare Basalt Meteorites and Appolo 12 Basalts; 11) Unique Properties of Lunar Soil for In Situ Resource Utilization on the Moon; 12) U-Pb Systematics of Phosphates in Nakhlites; 13) Measurements of Sound Speed in Granular Materials Simulated Regolith; 14) The Effects of Oxygen, Sulphur and Silicon on the Dihedral Angles Between Fe-rich Liquid Metal and Olivine, Ringwoodite and Silicate Perovskite: Implications for Planetary Core Formation; 15) Seismic Shaking Removal of Craters 0.2-0.5 km in Diameter on Asteroid 433 Eros; 16) Focused Ion Beam Microscoopy of ALH84001 Carbonate Disks; 17) Simulating Micro-Gravity in the Laboratory; 18) Mars Atmospheric Sample Return Instrument Development; 19) Combined Remote LIBS and Raman Spectroscopy Measurements; 20) Unusual Radar Backscatter Properties Along the Northern Rim of Imbrium Basin; 21) The Mars Express/NASAS Project at JPL; 22) The Geology of the Viking 2 Lander Site Revisited; 23) An Impact Genesis for Loki

  13. Analogy of meteorite impacts in laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Tara; Bussoli, Marco; Dezulian, R [Dipartimento di Fisica ' G. Occhialini' , Universita degli studi Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Villa, A [Dipartimento di Biotecnologie e Bioscienze, Universita degli studi Milano-Bicocca, Piazza della Scienza, 20126 Milano (Italy); Krousky, E [PALS, Prague (Czech Republic); Aliverdiev, A A [Institute of Physics DSC of Russian Academy of Sciences, 377003, Yaragskogo Street, 94, Makhachkala (Russian Federation); Kubkowska, M; Wolowski, J, E-mail: [Institute of Plasma Physics and Laser Microfusion, Hery 23 STR 01-497, Warsaw (Poland)


    In this work, we report on the possibility of using laser-generated craters to investigate planetary events such as meteorite impact craters. Experiments using a 0.44 {mu}m/350 ps wavelength laser beam on aluminum foil targets are performed. We obtain simple and complex craters similar in contour to those formed due to meteorite impacts on the terrestrial surface. Our preliminary results show that the central peak of complex craters seems to be higher because of the turbulence beneath the crater floor. Results obtained using a two-dimensional radiation hydrodynamic code, MULTI, show that the laser ablation surface modifies and rises. This could be one of several factors explaining the central peak existence.

  14. Moessbauer spectroscopy and scanning electron microscopy of the Murchison meteorite (United States)

    Brown, Christopher L.; Oliver, Frederick W.; Hammond, Ernest C., Jr.


    Meteorites provide a wealth of information about the solar system's formation, since they have similar building blocks as the Earth's crust but have been virtually unaltered since their formation. Some stony meteorites contain minerals and silicate inclusions, called chondrules, in the matrix. Utilizing Moessbauer spectroscopy, we identified minerals in the Murchison meteorite, a carbonaceous chondritic meteorite, by the gamma ray resonance lines observed. Absorption patterns of the spectra were found due to the minerals olivine and phyllosilicate. We used a scanning electron microscope to describe the structure of the chondrules in the Murchison meteorite. The chondrules were found to be deformed due to weathering of the meteorite. Diameters varied in size from 0.2 to 0.5 mm. Further enhancement of the microscopic imagery using a digital image processor was used to describe the physical characteristics of the inclusions.

  15. Hardness of kamacite and shock histories of 119 meteorites. (United States)

    Jain, A. V.; Gordon, R. B.; Lipschutz, M. E.


    Use of metallographic and X-ray diffraction techniques to study the shock histories of 119 iron and stony-iron meteorites, and measurement of the hardness of kamacite in these specimens and in artificially shocked-unannealed and annealed meteorite specimens. Shock increases kamacite hardness, but complications introduced by other physical and chemical properties of meteorites limit its utility as a shock indicator. About 50% of the meteorites studied show evidence for preterrestrial shock loading to pressures of greater than or equal to 130 kb, and 40% have not been shocked to such high pressures. The remaining meteorites have been heat-altered in such a way that their shock histories cannot be determined explicitly. These results, together with those obtained previously, indicate that the plurality, if not the majority, of all iron and stony-iron meteorites sampled by the earth were shocked to pressures of greater than or equal to 130 kb during preterrestrial collisions between asteroidal-sized objects.

  16. The Lunar Volatiles Orbiter: A Discovery Class Lunar Water Mission (United States)

    Lucey, P. G.; Sun, X.; Petro, N.; Farrell, W.; Abshire, J. B.; Mazarico, E.; Neumann, G. A.; Green, R.; Thompson, D. E.; Greenberger, R.; Hurley, D.; McClanahan, T. P.; Smith, D. E.; Zuber, M. T.


    The Lunar Volatiles Orbiter is a Discovery Class mission concept aimed at characterizing the nature and mobility of water on the Moon. Its instruments include a laser spectrometer, an infrared hyperspectral imager, and a neutral mass spectrometer.

  17. Implications of Lunar Prospector Data for Lunar Geophysics (United States)

    Zuber, Maria


    Research is sumamrized in the following areas: The Asymmetric Thermal Evolution of the Moon; Magma Transport Process on the Moon;The Composition and Origin of the Deep Lunar Crust;The Redistribution of Thorium on the Moon's Surface.

  18. Phosphates and Carbon in Martian Meteorites (United States)

    Mojzsis, Stephen J.


    This paper proposes tests for exobiological examination of samples prior to obtaining martian rocks of known provenance via future sample-return missions. If we assume that all of the secondary minerals in martian meteorite ET79001 were indeed cogenetic and originate from Mars, we list conclusions that can be drawn that are of exobiological interest. This work serves as a preamble for the subsequent work listed below.

  19. Seismic detection of meteorite impacts on Mars


    Teanby, N.A.; Wookey, J.


    Abstract Meteorite impacts provide a potentially important seismic source for probing Mars? interior. It has recently been shown that new craters can be detected from orbit using high resolution imaging, which means the location of any impact-related seismic event could be accurately determined thus improving the constraints that could be placed on internal structure using a single seismic station. This is not true of other seismic sources on Mars such as sub-surface faulting, whic...

  20. Large Meteorite Impacts and Planetary Evolution (United States)


    The present volume of abstracts of conference papers discusses topics associated with the role of meteorite impacts on the Earth, the moon, and Titan. Particular attention is given to the description of the impact damage and the description of the actual craters. Attention is also given to the Sudbury structure, and the Chicxulub crater. Mineralogical, geophysical, petrographic, seismic and image data are described and discussed.

  1. Acritarchs in carbonaceous meteorites and terrestrial rocks (United States)

    Rozanov, Alexei Y.; Hoover, Richard B.


    Acritarchs are a group of organic-walled, acid-resistant microfossils of uncertain or unknown origin. Some are thought to represent the cysts or resting stages of unicellular protists (possibly dinoflagellates), chrysophytes (green algae) or other planktonic eukaryotic algae. Acritarchs are found throughout the geologic column extending back as far at 3.2 Ga. The presence of large sphaeromorphs in the Archaean provides evidence that the eukaryotic lineage extends much farther back in time than previously thought possible. Acritarchs are abundant in the Paleoproterozoic shales (1.9-1.6 Ga) of the former Soviet Union and they have been extensively used for the investigation of Proterozoic and Paleozoic biostratigraphy and paleoenvironmental parameters. Scanning Electron Microscope studies have revealed the fossilized remains of organic-walled microfossils of unknown origin and exhibiting characteristics of acritarchs in a variety of carbonaceous meteorites. In many cases, these remains are black or brown in color and have Carbon/Oxygen ratios suggesting they have been diagenetically converted into kerogen. It is not feasible that the fossilized remains of organicwalled microfossils such as acritarchs represent biological contaminant that invaded and became embedded in the rock matrix of carbonaceous meteorites within the short time periods of their residence on Earth. Consequently, these groups of microfossils are considered to provide an additional line for the existence of indigenous extraterrestrial microbial remains in meteorites. This paper presents a brief review of acritarchs in terrestrial rocks and provides images of a number of similar morphotypes of uncertain origin found in freshly fractured samples of carbonaceous meteorites.

  2. Nature of Reduced Carbon in Martian Meteorites (United States)

    Gibson, Everett K., Jr.; McKay, D. S.; Thomas-Keprta, K. L.; Clemett, S. J.; White, L. M.


    Martian meteorites provide important information on the nature of reduced carbon components present on Mars throughout its history. The first in situ analyses for carbon on the surface of Mars by the Viking landers yielded disappointing results. With the recognition of Martian meteorites on Earth, investigations have shown carbon-bearing phases exist on Mars. Studies have yielded presence of reduced carbon, carbonates and inferred graphitic carbon phases. Samples ranging in age from the first approximately 4 Ga of Mars history [e.g. ALH84001] to nakhlites with a crystallization age of 1.3 Ga [e.g. Nakhla] with aqueous alteration processes occurring 0.5-0.7 Ga after crystallizaton. Shergottites demonstrate formation ages around 165-500 Ma with younger aqueous alterations events. Only a limited number of the Martian meteorites do not show evidence of significance terrestrial alterations. Selected areas within ALH84001, Nakhla, Yamato 000593 and possibly Tissint are suitable for study of their indigenous reduced carbon bearing phases. Nakhla possesses discrete, well-defined carbonaceous phases present within iddingsite alteration zones. Based upon both isotopic measurements and analysis of Nakhla's organic phases the presence of pre-terrestrial organics is now recognized. The reduced carbon-bearing phases appear to have been deposited during preterrestrial aqueous alteration events that produced clays. In addition, the microcrystalline layers of Nakhla's iddingsite have discrete units of salt crystals suggestive of evaporation processes. While we can only speculate on the origin of these unique carbonaceous structures, we note that the significance of such observations is that it may allow us to understand the role of Martian carbon as seen in the Martian meteorites with obvious implications for astrobiology and the pre-biotic evolution of Mars. In any case, our observations strongly suggest that reduced organic carbon exists as micrometer- size, discrete structures

  3. A meteorite crater on Mt. Ararat?

    CERN Document Server

    Gurzadyan, V G


    We briefly report on a crater on the western slope of Mt.Ararat . It is located in an area closed to foreigners at an altitude around 2100m with geographic coordinates 39\\deg 47' 30"N, 44\\deg 14' 40"E. The diameter of the crater is around 60-70m, the depth is up to 15m. The origin of the crater, either of meteorite impact or volcanic, including the evaluation of its age, will need detailed studies.

  4. Naming Lunar Mare Basalts: Quo Vadimus Redux (United States)

    Ryder, G.


    unintelligible and devoid of information even to the intelligent, educated non-expert. Classifications have functions. A major one must be communication; i.e., a name for a mare basalt provides a common understanding of what the basalt is. For the small number of suites currently available, the present labels (though inefficient and insufficient) may work; with continued recognition of more basalts, Antarctic meteorite samples, orbiter data, sample returns, and lunar base studies, labels will become increasingly inefficient. Clementine and Prospector data have made mapping of mare basalts a much more visible activity than it was, and increasingly common ground among sample petrologists and remote sensers has emerged. To establish a usable classification, there must be some criteria for relationships. Petrologists need to decide what the most significant characters are, and how these can be translated into a classification. The common distinction on the basis of Ti (the major element with the greatest variation) may or may not be appropriate. It remains to be established whether the use of Ti is of fundamental value both in relating basalts to each other and in communication, or merely an historical accident or response to its variance. Additional information contained in original

  5. Lunar resources: possibilities for utilization (United States)

    Shevchenko, Vladislav

    Introduction: With the current advanced orbiters sent to the Moon by the United States, Europe, Japan, China, and India, we are opening a new era of lunar studies. The International Academy of Aeronautics (IAA) has begun a study on opportunities and challenges of developing and using space mineral resources (SRM). This study will be the first international interdisciplinary assessment of the technology, economics and legal aspects of using space mineral resources for the benefit of humanity. The IAA has approved a broad outline of areas that the study will cover including type, location and extent of space mineral resources on the Moon, asteroids and others. It will be studied current technical state of the art in the identification, recovery and use of SRM in space and on the Earth that identifies all required technical processes and systems, and that makes recommendations for specific technology developments that should be addressed near term at the system and subsystem level to make possible prospecting, mineral extraction, beneficiation, transport, delivery and use of SMR. Particular attention will be dedicated to study the transportation and retrieval options available for SRM. Lunar polar volatile: ROSCOSMOS places a high priority on studying lunar polar volatiles, and has outlined a few goals related to the study of such volatiles. Over the course of several years, NASA’s Lunar Reconnaissance Orbiter scanned the Moon’s South Pole using its Lunar Exploration Neutron Detector (LEND - IKI Russia) to measure how much hydrogen is trapped within the lunar soil. Areas exhibiting suppressed neutron activity indicate where hydrogen atoms are concentrated most, strongly suggesting the presence of water molecules. Current survey of the Moon’s polar regions integrated geospatial data for topography, temperature, and hydrogen abundances from Lunar Reconnaissance Orbiter, Chandrayaan-1, and Lunar Prospector to identify several landing sites near both the North and

  6. De Magnete et Meteorite: Cosmically Motivated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, LH; Pinkerton, FE; Bordeaux, N; Mubarok, A; Poirier, E; Goldstein, JI; Skomski, R; Barmak, K


    Meteorites, likely the oldest source of magnetic material known to mankind, are attracting renewed interest in the science and engineering community. Worldwide focus is on tetrataenite, a uniaxial ferromagnetic compound with the tetragonal L1(0) crystal structure comprised of nominally equiatomic Fe-Ni that is found naturally in meteorites subjected to extraordinarily slow cooling rates, as low as 0.3 K per million years. Here, the favorable permanent magnetic properties of bulk tetrataenite derived from the meteorite NWA 6259 are quantified. The measured magnetization approaches that of Nd-Fe-B (1.42 T) and is coupled with substantial anisotropy (1.0-1.3 MJ/m(3)) that implies the prospect for realization of technologically useful coercivity. A highly robust temperature dependence of the technical magnetic properties at an elevated temperature (20-200 degrees C) is confirmed, with a measured temperature coefficient of coercivity of -0.005%/ K, over one hundred times smaller than that of Nd-Fe-B in the same temperature range. These results quantify the extrinsic magnetic behavior of chemically ordered tetrataenite and are technologically and industrially significant in the current context of global supply chain limitations of rare-earth metals required for present-day high-performance permanent magnets that enable operation of a myriad of advanced devices and machines.

  7. Characterisation of presumed meteorite from Trbovlje

    Directory of Open Access Journals (Sweden)

    Miloš Miler


    Full Text Available The main objective of this study was to identify and characterise a specimen of presumed meteorite, supposedly found in 1947 while crushing gangue material from an open-pit coal mining site in Trbovlje. The presumed meteorite was characterised according to its physical properties, chemical and mineral composition using EDSanalysis. Based on macroscopic characteristics and physical properties, such as external features, magnetism and density, and reaction with diluted HCl, it was established that the specimen is not a meteorite but a concretion that contains calcite. SEM/EDS analysis showed that the studied material was compositionally homogeneous. It consists predominantly of calcite, gypsum and iron sulphide. The prevailing mineral is calcite, which forms irregular grains.Iron sulphide occurs as pyrite (or marcasite, which forms thin coatings rimming calcite grains, while gypsum formsthin transitional layers between calcite grains and pyrite or marcasite crusts as a result of reaction between ironsulphide oxidation products and calcite. The matrix between grains mostly consists of very fine-grained mixture of iron sulphide, calcite, gypsum and iron sulphide oxidation products, however, fields of pure gypsum were also found between some grains. According to the composition of the concretion, it can be assumed that the specimen isa pyrite- and/or marcasite- carbonate concretion, perhaps coal ball, which most probably formed by mineralisation within peat in the early stage of coal genesis in the Trbovlje formation.

  8. Field Guide to Meteors and Meteorites

    CERN Document Server

    Norton, O. Richard


    Imagine the unique experience of being the very first person to hold a newly-found meteorite in your hand – a rock from space, older than Earth! "Weekend meteorite hunting" with magnets and metal detectors is becoming ever more popular as a pastime, but of course you can’t just walk around and pick up meteorites in the same way that you can pick up seashells on the beach. Those fragments that survived the intense heat of re-entry tend to disguise themselves as natural rocks over time, and it takes a trained eye – along with the information in this book – to recognize them. Just as amateur astronomers are familiar with the telescopes and accessories needed to study a celestial object, amateur meteoriticists have to use equipment ranging from simple hand lenses to microscopes to study a specimen, to identify its type and origins. Equipment and techniques are covered in detail here of course, along with a complete and fully illustrated guide to what you might find and where you might find it. In fact, th...

  9. Disaggregating meteorites by automated freeze thaw. (United States)

    Charles, Christopher R J


    An automated freeze-thaw (AFT) instrument for disaggregating meteorites is described. Meteorite samples are immersed in 18.2 MΩ water and hermetically sealed in a clean 30 ml Teflon vial. This vial and its contents are dipped between baths of liquid nitrogen and hot water over a number of cycles by a dual-stepper motor system controlled by LabView. Uniform and periodic intervals of freezing and thawing induce multiple expansions and contractions, such that cracks propagate along natural flaws in the meteorite for a sufficient number of AFT cycles. For the CR2 chondrite NWA801, the boundaries between different phases (i.e., silicates, metal, matrix) became progressively weaker and allowed for an efficient recovery of 500 individual chondrules and chondrule fragments spanning 0.2-4.7 mm diameters after 243 AFT cycles over 103.3 h. Further FT experiments on a basalt analog showed that the time required for freezing and thawing the same number of cycles can be reduced by a factor of ∼4. © 2011 American Institute of Physics

  10. Chemical evolution and meteorites: an update. (United States)

    Pizzarello, Sandra


    Carbonaceous chondrites are a primitive group of meteorites, which contain abundant organic material and provide a unique natural record of prebiotic chemical evolution. This material comprises a varied suite of soluble organic compounds that are similar, sometimes identical, to those found in the biosphere, such as amino acids, carboxylic acids, and sugar derivatives. Some amino acids of this suite also show L-enantiomeric excesses, and suggest the possibility they may have contributed to terrestrial homochirality by direct input of meteoritic material to the early Earth. This optical activity appears to be limited to the subgroup of alpha-methyl amino acids which, although not common in the extant biosphere, would have been well suited to provide the early earth with both enantiomeric excesses and means for their amplification by subsequent chemical evolution. We can also envision this exogenous delivery of carbonaceous material by meteorites and comets as having coincided with the endogenous formation of prebiotic precursors and influenced their evolution by complementary reactions or catalysis.

  11. Studies on Al Kidirate and Kapoeta meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Gismelseed, A.M. [Sudan Atomic Energy Commission, Khartoum (Sudan); Khangi, F. [Sudan Atomic Energy Commission, Khartoum (Sudan); Ibrahim, A. [Sudan Atomic Energy Commission, Khartoum (Sudan); Yousif, A.A. [Coll. of Science, Sultan Qaboos Univ., Alkhoud (Oman); Worthing, M.A. [Coll. of Science, Sultan Qaboos Univ., Alkhoud (Oman); Rais, A. [Coll. of Science, Sultan Qaboos Univ., Alkhoud (Oman); Elzain, M.E. [Coll. of Science, Sultan Qaboos Univ., Alkhoud (Oman); Brooks, C.K. [Coll. of Science, Sultan Qaboos Univ., Alkhoud (Oman); Sutherland, H.H. [Coll. of Science, Sultan Qaboos Univ., Alkhoud (Oman)


    Moessbauer spectroscopy (20-300 K), magnetic susceptibility measurements (77-350 K), scanning electron microscopy and X-ray diffraction experiments have been performed on two meteorite samples: one from an old fall (Kapoeta) and another from a very recent fall (Al Kidirate). The two specimens differ in their mineralogy. Chondrules appear to be absent in Kapoeta and it is probably a pyroxene-plagioclase achondrite with ferrohypersthene as the most abundant mineral. On the other hand, the Al Kidirate meteorite is an ordinary chondrite and the specimen consists of olivine, orthopyroxene, troilite and kamacite. The Moessbauer measurements confirm the above characterization, showing a paramagnetic doublet for the Kapoeta sample and at least two paramagnetic doublets and magnetic sextets for the Al Kidirate specimens. The former were assigned to Fe in pyroxene sites, while the latter was assigned to Fe in pyroxene, olivine, Fe-S and Fe-Ni alloys. The difference in the mineralogy of the two meteorites has also been reflected in the temperature-dependent magnetic susceptibility. The magnetization and the hyperfine interaction parameters will be discussed in relation to the mineralogy. (orig.)

  12. Chemical Evolution and Meteorites: An Update (United States)

    Pizzarello, Sandra


    Carbonaceous chondrites are a primitive group of meteorites, which contain abundant organic material and provide a unique natural record of prebiotic chemical evolution. This material comprises a varied suite of soluble organic compounds that are similar, sometimes identical, to those found in the biosphere, such as amino acids, carboxylic acids, and sugar derivatives. Some amino acids of this suite also show L-enantiomeric excesses, and suggest the possibility they may have contributed to terrestrial homochirality by direct input of meteoritic material to the early Earth. This optical activity appears to be limited to the subgroup of α-methyl amino acids which, although not common in the extant biosphere, would have been well suited to provide the early earth with both enantiomeric excesses and means for their amplification by subsequent chemical evolution. We can also envision this exogenous delivery of carbonaceous material by meteorites and comets as having coincided with the endogenous formation of prebiotic precursors and influenced their evolution by complementary reactions or catalysis.

  13. Space Rocks: A Series of Papers on Meteorites and Asteroids


    Hooper, Nina Louise


    The subject of this work is the compositions of asteroids and meteorites. Studies of the composition of small Solar System bodies are fundamental to theories of planet formation. Meteorites, samples available for analysis in the lab, help constrain the timeline and conditions in the early Solar System. Asteroid reflectance spectra help define the links between asteroids and meteorites. Studies of the spectral types and sizes of asteroids test dynamical models. These studie...

  14. Probability of meteorite immpact in Sweden since year 2000


    Wrige, Cecilia


    This Thesis investigates the number of possible meteorite impacts in Sweden since the year 2000. Sweden did not until recently have any photographic monitoring of incoming meteorites, thus a search through media reporting observations from the public has been performed. A theoretical approximation, based on an established extra-terrestrial mass ux, gives the number of 210 possible meteorite impacts for this time period. All of these could have been reballs, but by subtracting the daylight hou...

  15. Preliminary Results on Magnetic Mineralogy and Elemental Composition of Meteorites from Geological Museum of Kazan University (United States)

    Kuzina, D. M.; Nurgaliev, D. K.; Gareev, B. I.; Batalin, G. A.; Silantev, V. V.


    Thermomagnetic analysis (magnetic mineralogy) and Micro X-ray Fluorescence analysis (mapping) were made for collection of meteorites. As a result we have elements distribution on surface of meteorites and Fe-Ni presence in meteorites.

  16. The Kaidun Meteorite: Where Did It Come From? (United States)

    Ivanov, Andrei; Zolensky, Michael


    The Kaidun meteorite, which fell on 3.12.1980 at lat. 15 deg N, long. 48.3 deg E, holds a special place in the world meteorite collection. Kaidun is characterized by an unprecedentedly wide variety of meteorite material in its makeup. The high degree of variability in this meteorite s material is evidenced by the richness of its mineral composition - nearly 60 minerals and mineral phases have been identified in Kaidun, including several never before found in nature, such as florenskiite FeTiP, the first known phosphide of a lithophilic element.

  17. Oxygen isotope variation in stony-iron meteorites. (United States)

    Greenwood, R C; Franchi, I A; Jambon, A; Barrat, J A; Burbine, T H


    Asteroidal material, delivered to Earth as meteorites, preserves a record of the earliest stages of planetary formation. High-precision oxygen isotope analyses for the two major groups of stony-iron meteorites (main-group pallasites and mesosiderites) demonstrate that each group is from a distinct asteroidal source. Mesosiderites are isotopically identical to the howardite-eucrite-diogenite clan and, like them, are probably derived from the asteroid 4 Vesta. Main-group pallasites represent intermixed core-mantle material from a single disrupted asteroid and have no known equivalents among the basaltic meteorites. The stony-iron meteorites demonstrate that intense asteroidal deformation accompanied planetary accretion in the early Solar System.

  18. Lunar Soil Particle Separator Project (United States)

    National Aeronautics and Space Administration — The Lunar Soil Particle Separator (LSPS) is an innovative method to beneficiate soil prior to in-situ resource utilization (ISRU). The LSPS improves ISRU oxygen...

  19. Lunar Organic Waste Reformer Project (United States)

    National Aeronautics and Space Administration — The Lunar Organic Waste Reformer (LOWR) utilizes high temperature steam reformation to convert all plastic, paper, and human waste materials into useful gases. In...

  20. Google Moon Lunar Mapping Data (United States)

    National Aeronautics and Space Administration — A collection of lunar maps and charts. This tool is an exciting new way to explore the story of the Apollo missions, still the only time mankind has set foot on...

  1. The enigma of lunar magnetism (United States)

    Hood, L. L.


    Current understandings of the nature and probable origin of lunar magnetism are surveyed. Results of examinations of returned lunar samples are discussed which reveal the main carrier of the observed natural remanent magnetization to be iron, occasionally alloyed with nickel and cobalt, but do not distinguish between thermoremanent and shock remanent origins, and surface magnetometer data is presented, which indicates small-scale magnetic fields with a wide range of field intensities implying localized, near-surface sources. A detailed examination is presented of orbital magnetometer and charged particle data concerning the geologic nature and origin of magnetic anomaly sources and the directional properties of the magnetization, which exhibit a random distribution except for a depletion in the north-south direction. A lunar magnetization survey with global coverage provided by a polar orbiting satellite is suggested as a means of placing stronger constraints on the origin of lunar crustal magnetization.

  2. Lunar Soil Particle Separator Project (United States)

    National Aeronautics and Space Administration — The Lunar Soil Particle Separator (LSPS) is an innovative method to beneficiate soil prior to in-situ resource utilization (ISRU). The LSPS can improve ISRU oxygen...

  3. Lunar Organic Waste Reformer Project (United States)

    National Aeronautics and Space Administration — The Lunar Organic Waste Reformer (LOWR) utilizes high temperature steam reformation to convert all plastic, paper, and human waste materials into useful gases. In...

  4. Lunar Probe Reaches Deep Space

    Institute of Scientific and Technical Information of China (English)


    @@ China's second lunar probe, Chang'e-2, has reached an orbit 1.5 million kilometers from Earth for an additional mission of deep space exploration, the State Administration for Science, Technology and Industry for National Defense announced.

  5. Lunar Core Drive Tubes Summary (United States)

    National Aeronautics and Space Administration — Contains a brief summary and high resolution imagery from various lunar rock and core drive tubes collected from the Apollo and Luna missions to the moon.

  6. The Orgueil meteorite: 150 years of history (United States)

    Gounelle, Matthieu; Zolensky, Michael E.


    The goal of this paper is to summarize 150 yr of history of a very special meteorite. The Orgueil meteorite fell near Montauban in southwestern France on May 14, 1864. The bolide, which was the size of the full Moon, was seen across Western France, and almost immediately made the news in local and Parisian newspapers. Within a few weeks of the fall, a great diversity of analyses were performed under the authority of Gabriel Auguste Daubrée, geology professor at the Paris Museum, and published in the Comptes Rendus de l'Académie des Sciences. The skilled scientists reported the presence of iron sulfides, hydrated silicates, and carbonates in Orgueil. They also characterized ammonium salts which are now gone, and observed sulfates being remobilized at the surface of the stone. They identified the high water and carbon contents, and noted similarities with the Alais meteorite, which had fallen in 1806, 300 km away. While Daubrée and his colleagues noted the similarity of the Orgueil organic matter with some terrestrial humus, they were cautious not to make a direct link with living organisms. One century later, Nagy and Claus were less prudent and announced the discovery of "organized" elements in some samples of Orgueil. Their observations were quickly discredited by Edward Anders and others who also discovered that some pollen grains were intentionally placed into the rock back in the 1860s. Orgueil is now one of the most studied meteorites, indeed one of the most studied rocks of any kind. Not only does it contain a large diversity of carbon-rich compounds, which help address the question of organo-synthesis in the early solar system but its chemical composition is also close to that of the Sun's photosphere and serves as a cosmic reference. Secondary minerals, which make up 99% of the volume of Orgueil, were probably formed during hydrothermal alteration on the parent-body within the first few million years of the solar system; their study is essential to our

  7. Samarium-neodymium evolution of meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Prinzhofer, A.; Papanastassiou, D.A.; Wasserburg, G.J. (California Inst. of Tech., Pasadena (United States))


    The authors have obtained Sm-Nd data on two differentiated meteorites, Ibitira, a eucrite with distinct basaltic texture and with evidence of crystallization; and Morristown, a group 3A mesosiderite; as well as on Acapulco, an unclassified meteorite with chondritic chemical composition and a highly recrystallized texture. They have demonstrated the presence of in situ decay of short-lived {sup 146}Sm in these meteorites with initial abundance of {sup 146}Sm/{sup 144}Sm from 0.009 to 0.007 for the different meteorites. Precisely defined {sup 147}Sm-{sup 143}Nd internal isochrons were obtained yielding ages of 4.60 {+-} 0.03 AE for Acapulco, 4.47 {+-} 0.02 AE for Morristown, and 4.46 {+-} 0.02 AE for Ibitira. The corresponding initial {sup 143}Nd/{sup 144}Nd values obtained were 0.2 {+-} 0.9, 2.1 {+-} 0.7, and 1.6 {+-} 0.8 {var epsilon}u (epsilon units). Detailed consideration of the coupled {sup 147}Sm-{sup 143}Nd and {sup 146}Sm-{sup 142}Nd systematics and of the elevated initial {sup 143}Nd/{sup 144}Nd values indicates the presence of inconsistencies in the data for the two Sm-Nd parent-daughter pairs in spiteof the precise isochrons. The authors present a model which provides an interpretation of the paired Sm-Nd systematics in terms of an impulsive disturbance. The results indicate that three meteorites studied are relatively ancient objects, formed within the first 50 to 100 m.y. of the solar system, by planetary differentiation and impact processes, and were subjected to late metamorphism. The time of late metamorphism is substantially younger than 4.4 AE and possibly as recent as {approximately}3.9 AE. This metamorphism has resulted in partial, very limited reequilibration between plagioclase and phosphate, resulting in the observed shifts in initial {sup 143}Nd/{sup 144}Nd, Sm-Nd model ages, and the {sup 142}Nd/{sup 144}Nd abundances, but preserving the major temporal structures of early original formation and later disturbances.

  8. Early lunar magnetism (United States)

    Banerjee, S. K.; Mellema, J. P.


    A new method (Shaw, 1974) for investigating paleointensity (the ancient magnetic field) was applied to three subsamples of a single, 1-m homogeneous clast from a recrystallized boulder of lunar breccia. Several dating methods established 4 billion years as the age of boulder assembly. Results indicate that the strength of the ambient magnetic field at the Taurus-Littrow region of the moon was about 0.4 oersted at 4 billion years ago. Values as high as 1.2 oersted have been reported (Collison et al., 1973). The required fields are approximately 10,000 times greater than present interplanetary or solar flare fields. It is suggested that this large field could have arisen from a pre-main sequence T-Tauri sun.

  9. Electrochemistry of lunar rocks (United States)

    Lindstrom, D. J.; Haskin, L. A.


    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  10. The lunar dynamo. (United States)

    Weiss, Benjamin P; Tikoo, Sonia M


    The inductive generation of magnetic fields in fluid planetary interiors is known as the dynamo process. Although the Moon today has no global magnetic field, it has been known since the Apollo era that the lunar rocks and crust are magnetized. Until recently, it was unclear whether this magnetization was the product of a core dynamo or fields generated externally to the Moon. New laboratory and spacecraft measurements strongly indicate that much of this magnetization is the product of an ancient core dynamo. The dynamo field persisted from at least 4.25 to 3.56 billion years ago (Ga), with an intensity reaching that of the present Earth. The field then declined by at least an order of magnitude by ∼3.3 Ga. The mechanisms for sustaining such an intense and long-lived dynamo are uncertain but may include mechanical stirring by the mantle and core crystallization.

  11. Asteroids and meteorites - Origin of stony-iron meteorites at mantle-core boundaries (United States)

    Greenberg, R.; Chapman, C. R.


    Stony-iron meteorites formed at the core/mantle interfaces of small asteroidal parents. The mesosiderites formed when the thick crust of a largely molten parent body (100-200 km in diameter) foundered and sank through the mantle to the core. Pallasites formed in smaller parent bodies (50-100 km) in which olivine crystals from the partially molten mantle sank to the core/mantle interface and rafted there. Subsequent collisions stripped away the rocky mantles of both kinds of parent bodies, exposing the stony-iron surfaces of their cores to direct impacts, which continue to knock off meteorite fragments.

  12. Lunar Navigation Architecture Design Considerations (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael


    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  13. Borrow the Moon: The STFC Lunar Samples and Meteorites Loan Scheme (United States)

    Swift, Nick


    The Apollo missions brought back 382kg of Moon rock. The financial cost of getting these rocks was historically eye-watering so, understandably, NASA is choosy about who gets to play with them. Many go to scientists for laboratory investigation, but some have been set aside for loan to schools and the public. Luckily, the UK was allowed some,…

  14. Altair Lunar Lander Development Status: Enabling Human Lunar Exploration (United States)

    Laurini, Kathleen C.; Connolly, John F.


    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  15. Altair Lunar Lander Development Status: Enabling Human Lunar Exploration (United States)

    Laurini, Kathleen C.; Connolly, John F.


    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  16. Mechanical properties of several Fe-Ni meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Mulford, Roberta N [Los Alamos National Laboratory; El - Dasher, Bassem [LLNL


    The strength and elastic constants of meteorites are of increasing interest as predictions of meteorite impacts on earth come within the realm of possibility. In addition, meteorite impacts on extraterrestrial bodies provide an excellent sampling tool for evaluation of planetary compositions and properties. Fe-Ni meteorites provide a well-defined group of materials of fairly uniform composition. Iron-nickel meteorites exhibit a unique lamellar microstructure, a Widmanstatten structure, consisting of small regions with steep-iron-nickel composition gradients. This microstructure is found in the Fe-Ni system only in meteorites, and is believed to arise as a result of slow cooling in a planetary core or other large mass. Meteorites with compositions consisting of between 5 and 17% nickel in iron are termed 'octahedrite,' and further characterized according to the width of the Ni-poor kamacite bands; 'fine,' (0.2-0.5 mm) 'medium,' (0.5-1.3 mm) and 'coarse,' (1.5-3.3 mm). Many meteorites have inclusions and structures indicating that the material has been shocked at some point early in its evolution. Several Iron-nickel meteorites have been examined using Vickers and spherical indentation, x-ray fluorescence, and EBSD. Direct observation of mechanical properties in these highly structured materials provides a valuable supplement to bulk measurements, which frequently exhibit large variation in dynamic properties, even within a single sample. Previous studies of the mechanical properties of a typical iron-nickel meteorite, a Diablo Canyon specimen, indicated that the strength of the composite was higher by almost an order of magnitude than values obtained from laboratory-prepared specimens. Additional meteorite specimens have been examined to establish a range of error on the previously measured yield, to determine the extent to which deformation upon re-entry contributes to yield, and to establish the degree to which the strength

  17. Constraints on formation and evolution of the lunar crust from feldspathic granulitic breccias NWA 3163 and 4881 (United States)

    McLeod, Claire L.; Brandon, Alan D.; Fernandes, Vera A.; Peslier, Anne H.; Fritz, Jörg; Lapen, Thomas; Shafer, John T.; Butcher, Alan R.; Irving, Anthony J.


    Lunar granulitic meteorites provide new constraints on the composition and evolution of the lunar crust as they are potentially derived from outside the Apollo and Luna landing sites. Northwest Africa (NWA) 3163, the focus of this study, and its paired stones NWA 4881 and NWA 4483, are shocked granulitic noritic anorthosites. They are petrographically and compositionally distinct from the Apollo granulites and noritic anorthosites. Northwest Africa 3163 is REE-depleted by an order of magnitude compared to Apollo granulites and is one of the most trace element depleted lunar samples studied to date. New in-situ mineral compositional data and Rb-Sr, Ar-Ar isotopic systematics are used to evaluate the petrogenetic history of NWA 3163 (and its paired stones) within the context of early lunar evolution and the bulk composition of the lunar highlands crust. The NWA 3163 protolith was the likely product of reworked lunar crust with a previous history of heavy REE depletion. The bulk feldspathic and pyroxene-rich fragments have 87Sr/86Sr that are indistinguishable and average 0.699282 ± 0.000007 (2σ). A calculated source model Sr TRD age of 4.340 ± 0.057 Ga is consistent with (1) the recently determined young FAS (Ferroan Anorthosite) age of 4.360 ± 0.003 Ga for FAS 60025, (2) 142Nd model ages for the closure of the Sm-Nd system for the mantle source reservoirs of the Apollo mare basalts (4.355-4.314 Ga) and (3) a prominent age peak in the Apollo lunar zircon record (c. 4.345 Ga). These ages are ∼100 Myr younger than predicted timescales for complete LMO crystallization (∼10 Myrs after Moon formation, Elkins-Tanton et al., 2011). This supports a later, major event during lunar evolution associated with crustal reworking due to magma ocean cumulate overturn, serial magmatism, or a large impact event leading to localized or global crustal melting and/or exhumation. The Ar-Ar isotopic systematics on aliquots of paired stone NWA 4881 are consistent with an impact event

  18. Bubble Growth in Lunar Basalts (United States)

    Zhang, Y.


    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  19. The Violent Early Solar System, as Told by Lunar Sample Geochronology (United States)

    Cohen, B. A.


    One of the legacies of the samples collected by the Apollo and Luna missions is the link forged between radiometric ages of rocks and relative ages according to stratigraphic relationships and impact crater size-frequency distributions. Our current understanding of the history of the inner solar system is based on the relative chronology of individual planets, tied to the absolute geochronology of the Moon via these important samples. Sample ages have enabled us to infer that impact-melt breccias from Apollo 14 and 15 record the formation of the Imbrium Basin, those from the highland massifs at Apollo 17 record the age of Serenitatis, those from the KREEP-poor Apollo 16 site record the age of Nectaris, and materials from Luna 24 record the age of Crisium. Ejecta from smaller and younger craters Copernicus and Tycho were sampled at Apollo 12 and 17, respectively, and local craters such as Cone at Apollo 14, and North Ray and South Ray at Apollo 16 were also sampled and ages determined for those events. Much of what we understand about the lunar impact flux is based on these ages. Samples from these nearside locations reveal a preponderance of impact-disturbed or recrystallized ages between 3.75 and 3.95 billion years. Argon and lead loss (and correlated disturbances in the Rb-Sr system) have been attributed to metamorphism of the lunar crust by an enormous number of impacts in a brief pulse of time, called the Lunar Cataclysm or Late Heavy Bombardment. Subsequent high-precision geochronometric analyses of Apollo samples and lunar highlands meteorites show a wider range of ages, but very few older than 4 Ga. The paucity of ancient impact melt rocks has been interpreted to mean that either that most impact basins formed at this time, or that ejecta from the large, near-side, young basins dominates the Apollo samples. The impact history of the Moon has significant implications because the lunar bombardment history mirrors that of the Earth. During the cataclysm, 80% of

  20. Lunar Quest in Second Life, Lunar Exploration Island, Phase II (United States)

    Ireton, F. M.; Day, B. H.; Mitchell, B.; Hsu, B. C.


    Linden Lab’s Second Life is a virtual 3D metaverse created by users. At any one time there may be 40,000-50,000 users on line. Users develop a persona and are seen on screen as a human figure or avatar. Avatars move through Second Life by walking, flying, or teleporting. Users form communities or groups of mutual interest such as music, computer graphics, and education. These groups communicate via e-mail, voice, and text within Second Life. Information on downloading the Second Life browser and joining can be found on the Second Life website: This poster details Phase II in the development of Lunar Exploration Island (LEI) located in Second Life. Phase I LEI highlighted NASA’s LRO/LCROSS mission. Avatars enter LEI via teleportation arriving at a hall of flight housing interactive exhibits on the LRO/ LCROSS missions including full size models of the two spacecraft and launch vehicle. Storyboards with information about the missions interpret the exhibits while links to external websites provide further information on the mission, both spacecraft’s instrument suites, and related EPO. Other lunar related activities such as My Moon and NLSI EPO programs. A special exhibit was designed for International Observe the Moon Night activities with links to websites for further information. The sim includes several sites for meetings, a conference stage to host talks, and a screen for viewing NASATV coverage of mission and other televised events. In Phase II exhibits are updated to reflect on-going lunar exploration highlights, discoveries, and future missions. A new section of LEI has been developed to showcase NASA’s Lunar Quest program. A new exhibit hall with Lunar Quest information has been designed and is being populated with Lunar Quest information, spacecraft models (LADEE is in place) and kiosks. A two stage interactive demonstration illustrates lunar phases with static and 3-D stations. As NASA’s Lunar Quest program matures further

  1. Incremental laser space weathering of Allende reveals non-lunar like space weathering effects (United States)

    Gillis-Davis, Jeffrey J.; Lucey, Paul G.; Bradley, John P.; Ishii, Hope A.; Kaluna, Heather M.; Misra, Anumpam; Connolly, Harold C.


    We report findings from a series of laser-simulated space weathering experiments on Allende, a CV3 carbonaceous chondrite. The purpose of these experiments is to understand how spectra of anhydrous C-complex asteroids might vary as a function of micrometeorite bombardment. Four 0.5-gram aliquots of powdered, unpacked Allende meteorite were incrementally laser weathered with 30 mJ pulses while under vacuum. Radiative transfer modeling of the spectra and Scanning Transmission Electron Microscope (STEM) analyses of the samples show lunar-like similarities and differences in response to laser-simulated space weathering. For instance, laser weathered Allende exhibited lunar-like spectral changes. The overall spectra from visible to near infrared (Vis-NIR) redden and darken, and characteristic absorption bands weaken as a function of laser exposure. Unlike lunar weathering, however, the continuum slope between 450-550 nm does not vary monotonically with laser irradiation. Initially, spectra in this region redden with laser irradiation; then, the visible continua become less red and eventually spectrally bluer. STEM analyses of less mature samples confirm submicroscopic iron metal (SMFe) and micron sized sulfides. More mature samples reveal increased dispersal of Fe-Ni sulfides by the laser, which we infer to be the cause for the non-lunar-like changes in spectral behavior. Spectra of laser weathered Allende are a reasonable match to T- or possibly K-type asteroids; though the spectral match with a parent body is not exact. The key take away is, laser weathered Allende looks spectrally different (i.e., darker, and redder or bluer depending on the wavelength region) than its unweathered spectrum. Consequently, connecting meteorites to asteroids using unweathered spectra of meteorites would result in a different parent body than one matched on the basis of weathered spectra. Further, spectra for these laser weathering experiments may provide an explanation for

  2. Carbonaceous Meteorites Contain a Wide Range of Extraterrestrial Nucleobases (United States)

    Callahan, Michael P.; Smith, Karen E.; Cleaves, H. James, II; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.


    All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nuc1eobases in meteorites has been debated for over 50 y. So far, the few nuc1eobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography-mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs; purine, 2,6-diminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analoge were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.

  3. Atom-Probe Measurements of Meteoritic Nanodiamonds and Terrestrial Standards (United States)

    Lewis, J. B.; Isheim, D.; Floss, C.; Daulton, T. L.; Seidman, D. N.; Heck, P. R.; Davis, A. M.; Pellin, M. J.; Savina, M. R.; Hiller, J.; Mane, A.; Elam, J. W.; Stephan, T.


    We present new data from the novel application of atom-probe tomography to the study of nanodiamonds from the meteorite Allende. The mean meteoritic ^12C/^13C peak ratio is higher than that of our standards, but there are instrumental artifacts.

  4. Chemical analysis of organic molecules in carbonaceous meteorites

    NARCIS (Netherlands)

    Torrao Pinto Martins, Zita Carla


    Meteorites are extraterrestrial objects that survive the passage through the Earth’s atmosphere and impact the Earth's surface. They can be divided into several classes, the carbonaceous chondrites being one of them. Carbonaceous chondrites are the oldest and best preserved meteorites and contain a

  5. Asteroid 2008 TC3 Breakup and Meteorite Fractions (United States)

    Goodrich, C.; Jenniskens, P.; Shaddad, M. H.; Zolensky, M. E.; Fioretti, A. M.


    The recovery of meteorites from the impact of asteroid 2008 TC3 in the Nubian Desert of Sudan on October 7, 2008, marked the first time meteorites were collected from an asteroid observed in space by astronomical techniques before impacting. Search teams from the University of Khartoum traced the location of the strewn field and collected about 660 meteorites in four expeditions to the fall region, all of which have known fall coordinates. Upon further study, the Almahata Sitta meteorites proved to be a mixed bag of mostly ureilites (course grained, fine grained, and sulfide-metal assemblages), enstatite chondrites (EL3-6, EH3, EH5, breccias) and ordinary chondrites (H5-6, L4-5). One bencubbinite-like carbonaceous chondrite was identified, as well as one unique Rumuruti-like chondrite and an Enstatite achondrite. New analysis: The analysed meteorites so far suggest a high 30-40 percent fraction of non-ureilites among the recovered samples, but that high fraction does not appear to be in agreement with the meteorites in the University of Khartoum (UoK) collection. Ureilites dominate the meteorites that were recovered by the Sudanese teams. To better understand the fraction of recovered materials that fell to Earth, a program has been initiated to type the meteorites in the UoK collection in defined search areas. At this meeting, we will present some preliminary results from that investigation.

  6. Chemical analysis of organic molecules in carbonaceous meteorites

    NARCIS (Netherlands)

    Torrao Pinto Martins, Zita Carla


    Meteorites are extraterrestrial objects that survive the passage through the Earth’s atmosphere and impact the Earth's surface. They can be divided into several classes, the carbonaceous chondrites being one of them. Carbonaceous chondrites are the oldest and best preserved meteorites and contain a

  7. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. (United States)

    Callahan, Michael P; Smith, Karen E; Cleaves, H James; Ruzicka, Josef; Stern, Jennifer C; Glavin, Daniel P; House, Christopher H; Dworkin, Jason P


    All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nucleobases in meteorites has been debated for over 50 y. So far, the few nucleobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography-mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs: purine, 2,6-diaminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analogs were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.

  8. A New Old Meteorite Find from Claromeco, Argentina (United States)

    Acevedo, R. D.; Subías, I.


    Two reddish brown meteoritic stones of 13 kg each were found in 1963 leaning against a windmill in a farm at argentine pampas (38º 48" 16"" S, 60º 07" 23"" W), but they are the focus of attention just now. This meteorite could be classified as a LL ordinary chondrite.

  9. Gold in meteorites and in the earth's crust (United States)

    Jones, Robert Sprague


    The reported gold contents of meteorites range from 0.0003 to 8.74 parts per million. Gold is siderophilic, and the greatest amounts in meteorites are in the iron phases. Estimates ,of the gold content of the earth's crust are in the range of 0.001 to 0.006 parts per million.

  10. On isotopic analyses of Mihonoseki and other meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Shima, Masako [National Science Museum, Tokyo (Japan)


    In the last December, since a meteorite penetrated a house in Mihonoseki-machi, Yatsuka-gun, Simane-ken, Japan, many people aware how meteorites are important for the study of space science. First, the results of the isotopic studies on meteorites obtained so far are summarized. The Mihonoseki meteorite is valuable only because it has the possibility of detecting short life cosmogenic radioactive nuclides as its fall was informed shortly after the fall, though it is a normal chondrite without special feature. A part of the obtained {gamma} ray spectrograph of the Mihonoseki was compared visually with that of the Tahara meteorite which fell one and a half years ago, the Hashima meteorite which fell about 80 years ago and terrestrial rocks. The preliminary data are given together with the data of the chondrites that fell in Japan in the last 10 years. As for the Mihonoseki meteorite, 15 cosmic ray-produced radioactive nuclides with the half life from 2.44 days to 7.2 x 10{sup 5} years were measured. Also the isotopic ratio of rare gas elements was determined, and from these data, it is concluded that the Mihonoseki meteorite has been exposed to cosmic ray for a long age, and it was not subjected to heavy shock effect. (K.I.).

  11. The estimate on lunar figure (United States)

    Gao, B. X.


    In 1799 Laplace had discovered that the lunar three principal momentum are not in equilibrium with the Moon's current orbital and rotational state.Some authors suggested that the Moon may carry a fossil figure. Before more 3 billion years the liquid Moon was closer to the Earth and revolved faster.Then the Moon migrated outwards and revolved slow down. During the early part of this migration, the Moon was continually subjected to tidal and rotational stretching and formed into an ellipsoid. Then the Moon cooled and solidified quickly. Eventually, the solid Moon's lithosphere was stable, so that we may see the very early lunar figure. In this paper, by using the lunar libration parameters and the spherical-harmonic gravity coefficient, the length of three radii a, b, c of the ellipsoid and the Moon's figure as an equilibrium tidal have been calculated. Then three conclusions can be obtained; (1) In the beginning the Moon may be very close to the Earth, before about 3 billion years the moon may cooled and solidified, and the present Moon are in the fossil figure. (2) In the third section of this paper, we demonstrate that the tidal deformation of liquid Moon was 1.934 times then the equilibrium tide. So that if to calculating the true lunar figure by using the lunar spherical-harmonic gravity coefficients, the effects of Liquid Love number hf = 1.934must be considered. (3) According to the difference between a, b, and c, the lunar distance (1.7455×108m) and spin period 3.652day can be calculated. So that the lunar orbits period was 8.34day. Hence the Moon was locked closely into a resonance orbit in the ratio 2:1 when the Moon froze.

  12. Nanodiamonds in meteorites: properties and astrophysical context

    Directory of Open Access Journals (Sweden)

    U. Ott


    Full Text Available Purpose: This contribution provides an overview on properties and origin of nanodiamonds in primitive meteorites. Nanodiamond are a type of stardust, i.e. “pre-solar” grains that formed in the outflows or ejecta of stars.Design/methodology/approach: We summarize previously obtained results and include our results dealing with recoil loss from nanoparticles during radioactive decay of trace elements within them.Findings: Nanodiamonds in primitive meteorites have a mean size of ~2.6 nm and an abundance reaching up to ~0.15 % by weight. They contain trace noble gases, notably xenon, with an unusual isotopic composition. The latter is reminiscent of the p- and r-processes of nucleosynthesis that are thought to occur during supernova explosions. Our new results show that recoil loss during β decay of implanted 22Na does not exceed what is expected from energy distribution and range-energy relations in matter. While a CVD origin for the diamonds appears likely (but is not assured, the noble gases were probably introduced by ion implantation.Research limitations/implications: The isotopic pattern of Xe contained in nanodiamonds indicates some unconventional types of element synthesis in stars or modification by secondary processes. Recoil loss from nanometer-sized grains during decay of unstable precursor nuclides has been suggested as an explanation, but our experiments do not support this idea.Originality/value: Other processes must be invoked for explanation of the isotopically unusual xenon trapped in meteoritic nanodiamonds. Ion implantation experiments suggest of “trapped” cosmic ray 3He for deriving an age for the diamonds.

  13. Petrology, geochemistry, and age of low-Ti mare-basalt meteorite Northeast Africa 003-A: A possible member of the Apollo 15 mare basaltic suite (United States)

    Haloda, Jakub; Týcová, Patricie; Korotev, Randy L.; Fernandes, Vera A.; Burgess, Ray; Thöni, Martin; Jelenc, Monika; Jakeš, Petr; Gabzdyl, Pavel; Košler, Jan


    Northeast Africa 003 (NEA 003) is a lunar meteorite found as a two paired stones (6 and 118 g) in Libya, 2000 and 2001. The main portion (˜75 vol%) of the 118 g meteorite, used for this study, (NEA 003-A) consists of mare-basalt and a smaller adjacent portion (˜25 vol%) is a basaltic breccia (NEA 003-B). NEA 003-A has a coarse-grained magmatic texture consisting mainly of olivine, pyroxene and plagioclase. The late-stage mineral association is composed mainly of elongated plagioclase, ilmenite, troilite, fayalite, Si-K-rich glass, apatite, and a rare SiO 2 phase. Other accessory minerals include ulvöspinel, chromite, and trace Fe-Ni metal. Olivine and pyroxene contain shock-induced fractures, and plagioclase is completely converted into maskelynite. The Fe/Mn values of the whole rock, olivines and pyroxenes, and the bulk-rock oxygen isotopic composition provide evidence for the lunar origin of NEA 003-A meteorite. This is further supported by the presence of Fe-Ni metal and the anhydrous mineral association. NEA 003-A is geochemically and petrographically distinct from previously described mare-basalt meteorites and is not paired with any of them. The petrography and major element composition of NEA 003-A is similar to the composition of low-Ti olivine mare basalts from Apollo 12 and olivine-normative basalts from Apollo 15. The NEA 003-A meteorite shows obvious geochemical similarities in trace elements contents with Apollo 15 olivine-normative basalts and could represent a yet unknown geochemically primitive member of the olivine-normative basalt series. The meteorite is depleted in rare earth elements (REE) and incompatible trace elements indicating a primitive character of the parental magma. The bulk-rock chemical composition demonstrates that the parent melt of NEA 003-A was not contaminated with KREEP components as a result of magma mixing or assimilation processes. Results of crystallization modelling and low minimum cooling rate estimates (˜0.07

  14. Discovering Research Value in Small Meteorite Craters (United States)

    Cassidy, W. A.


    The Campo del Cielo meteorite crater field in Argentina contains at least 20 small meteorite craters, but a recent review of the field data and a remote sensing study suggest there may be many more. The fall occurred about 4000 y ago into a uniform loessy soil, and the craters are well enough preserved so that some of their parameters of impact can be determined by excavation. The craters were formed by multi-ton fragments of a type IA meteoroid with abundant silicate inclusions. Relative to the horizontal, the angle of infall was around 10 degrees. Reflecting the low angle of infall, the crater field is elongated with apparent dimensions of 3 x 18.5 km. The largest craters are near the center of this ellipse. This suggests that when the parent meteoroid broke apart the resulting fragments diverged from the original trajectory in inverse relation to their masses and did not undergo size sorting due to atmospheric deceleration. The major axis of the crater field as we know it extends along N58 degrees E, but the azimuths of infall determined by excavation of Craters 9 and 10 are N84 degrees E and N77 degrees E, respectively, suggesting that the major axis of the crater field is not yet well determined. This is supported by the elongation of magnetic anomalies over 4 other craters, all of which trend significantly more easterly than the major axis of the crater field. The 3 or 4 largest craters appear to be explosion craters and the others are shock-wave excavations extended by penetration funnels with multi-ton masses preserved within them. There are two ways in which field research on the Campo del Cielo craterfield is found to be useful. (1)This occurrence of a swarm of projectiles impacting at known angles and similar velocities into a uniform target material provides an excellent field site at which to test the applicability of various existing studies directed toward the interpretation of impact craters on planetary surfaces other than the earth. Given certain

  15. Martian surface paleotemperatures from thermochronology of meteorites. (United States)

    Shuster, David L; Weiss, Benjamin P


    The temporal evolution of past martian surface temperatures is poorly known. We used thermochronology and published noble gas and petrographic data to constrain the temperature histories of the nakhlites and martian meteorite ALH84001. We found that the nakhlites have not been heated to more than 350 degrees C since they formed. Our calculations also suggest that for most of the past 4 billion years, ambient near-surface temperatures on Mars are unlikely to have been much higher than the present cold (<0 degrees C) state.

  16. Lunar Surface Solar Electric Power System Project (United States)

    National Aeronautics and Space Administration — We propose a concentrated photovoltaic electric power system for lunar operations called C-Lite Lunar. The novel technology produces a near-term solar array system...

  17. Lunar Rover Drivetrain Development to TRL-6 (United States)

    Visscher, P.; Edmundson, P.; Ghafoor, N.; Jones, H.; Kleinhenz, J.; Picard, M.


    The LRPDP and SPRP rovers are designed to provide high mobility and robustness in a lunar working environment and are compatible with various lunar surface activities. TRL-6 testing is scheduled for late 2015 on the rover drivetrain components.

  18. Dust Mitigation for the Lunar Surface Project (United States)

    National Aeronautics and Space Administration — The lunar surface is to a large extent covered with a dust layer several meters thick. Known as lunar regolith, it poses a hazard in the form of dust clouds being...

  19. Year 3 LUNAR Annual Report to the NASA Lunar Science Institute

    CERN Document Server

    Burns, Jack


    The Lunar University Network for Astrophysics Research (LUNAR) is a team of researchers and students at leading universities, NASA centers, and federal research laboratories undertaking investigations aimed at using the Moon as a platform for space science. LUNAR research includes Lunar Interior Physics & Gravitation using Lunar Laser Ranging (LLR), Low Frequency Cosmology and Astrophysics (LFCA), Planetary Science and the Lunar Ionosphere, Radio Heliophysics, and Exploration Science. The LUNAR team is exploring technologies that are likely to have a dual purpose, serving both exploration and science. There is a certain degree of commonality in much of LUNAR's research. Specifically, the technology development for a lunar radio telescope involves elements from LFCA, Heliophysics, Exploration Science, and Planetary Science; similarly the drilling technology developed for LLR applies broadly to both Exploration and Lunar Science.

  20. Iron meteorites can support the growth of acidophilic chemolithoautotrophic microorganisms. (United States)

    González-Toril, Elena; Martínez-Frías, Jesús; Gómez Gómez, José María; Rull, Fernando; Amils, Ricardo


    Chemolithoautotrophy based on reduced inorganic minerals is considered a primitive energy transduction system. Evidence that a high number of meteorites crashed into the planet during the early period of Earth history led us to test the ability of iron-oxidizing bacteria to grow using iron meteorites as their source of energy. Here we report the growth of two acidophilic iron-oxidizing bacteria, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans, on a piece of the Toluca meteorite as the only source of energy. The alteration of the surface of the exposed piece of meteorite, the solubilization of its oxidized metal constituents, mainly ferric iron, and the formation of goethite precipitates all clearly indicate that iron-meteorite-based chemolithotrophic metabolism is viable.

  1. Sensitivity of Lunar Resource Economic Model to Lunar Ice Concentration (United States)

    Blair, Brad; Diaz, Javier


    Lunar Prospector mission data indicates sufficient concentration of hydrogen (presumed to be in the form of water ice) to form the basis for lunar in-situ mining activities to provide a source of propellant for near-Earth and solar system transport missions. A model being developed by JPL, Colorado School of Mines, and CSP, Inc. generates the necessary conditions under which a commercial enterprise could earn a sufficient rate of return to develop and operate a LEO propellant service for government and commercial customers. A combination of Lunar-derived propellants, L-1 staging, and orbital fuel depots could make commercial LEO/GEO development, inter-planetary missions and the human exploration and development of space more energy, cost, and mass efficient.

  2. Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat (United States)

    Cohen, B. A.; Hayne, P. O.; Banazadeh, P.; Baker, J. D.; Staehle, R. L.; Paine, C..; Paige, D. A.


    Water ice and other volatiles may be located in the Moon's polar regions, with sufficient quantities for in situ extraction and utilization by future human and robotic missions. Evidence from orbiting spacecraft and the LCROSS impactor suggests the presence of surface and/or nearsurface volatiles, including water ice. These deposits are of interest to human exploration to understand their potential for use by astronauts. Understanding the composition, quantity, distribution, and form of water/H species and other volatiles associated with lunar cold traps is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits could also reveal important information about the delivery of water to the Earth- Moon system, so are of scientific interest. The scientific exploration of the lunar polar regions was one of the key recommendations of the Planetary Science Decadal Survey. In order to address NASA's SKGs, the Advanced Exploration Systems (AES) program selected three lowcost 6-U CubeSat missions for launch as secondary payloads on the first test flight (EM1) of the Space Launch System (SLS) scheduled for 2017. The Lunar Flashlight mission was selected as one of these missions, specifically to address the SKG associated with lunar volatiles. Development of the Lunar Flashlight CubeSat concept leverages JPL's Interplanetary Nano- Spacecraft Pathfinder In Relevant Environment (INSPIRE) mission, MSFC's intimate knowledge of the Space Launch System and EM-1 mission, small business development of solar sail and electric propulsion hardware, and JPL experience with specialized miniature sensors. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and its physical state, and map its concentration at the kilometer scale within the permanently shadowed regions of the lunar south pole. After being ejected in cislunar space by SLS, Lunar Flashlight deploys its solar panels and solar sail and maneuvers

  3. NASA Lunar Robotics for Science and Exploration (United States)

    Cohen, Barbara A.; Lavoie, Anthony R.; Gilbert, Paul A.; Horack, John M.


    This slide presentation reviews the robotic missions that NASA and the international partnership are undertaking to investigate the moon to support science and exploration objectives. These missions include the Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation and Sensing Satellite (LCROSS), Gravity Recovery and Interior Laboratory (GRAIL), Moon Mineralogy Mapper (MMM), Lunar Atmosphere, Dust and Environment Explorer (LADEE), and the International Lunar Network (ILN). The goals and instrumentation of these missions are reviewed.

  4. There's gold in them thar' lunar highlands (United States)

    Stephenson, David G.

    Lunar exploration intended to find lunar resources and future sources of terrestrial electrical power is addressed focusing on economic possibilities, lunar minerals, and estimated production of precious metals. It is noted that mining the moon for He-3 will be a massive undertaking, and if it ever takes place, every effort will have to be made to extract valuable materials from the very large throughput of lunar soil.

  5. Lunar base construction requirements (United States)

    Jolly, Steve; Helleckson, Brent


    The following viewgraph presentation is a review of the Lunar Base Constructibility Study carried out in the spring and summer of 1990. The objective of the study was to develop a method for evaluating the constructibility of Phase A proposals to build facilities on orbit or on extraterrestrial surfaces. Space construction was broadly defined as all forms of assembly, disassembly, connection, disconnection, deployment, stowage, excavation, emplacement, activation, test, transportation, etc., required to create facilities in orbit and on the surfaces of other celestial bodies. It was discovered that decisions made in the face of stated and unstated assumptions early in the design process (commonly called Phase A) can lock in non-optimal construction methods. Often, in order to construct the design, alterations must be made to the design during much later phases of the project. Such 'fixes' can be very difficult, expensive, or perhaps impossible. Assessing constructibility should thus be a part of the iterative design process, starting with the Phase A studies and continuing through production. This study assumes that there exists a minimum set of key construction requirements (i.e., questions whose answers form the set of discriminators) that must be implied or specified in order to assess the constructibility of the design. This set of construction requirements constitutes a 'constructibility filter' which then becomes part of the iterative design process. Five inherently different, dichotomous design reference missions were used in the extraction of these requirements to assure the depth and breath of the list.

  6. Lunar recession encoded in tidal rhythmites: a selective overview with examples from Argentina (United States)

    de Azarevich, Vanina L. López; Azarevich, Miguel B.


    The study of tides from the sedimentary record of tidal rhythmites, applying fast Fourier transform analysis, contributes to the understanding of the surficial evolution of our highly dynamic planet, and of the astronomical cycles that influenced the ancient tidal systems. This overview of lunar retreat rates, which includes examples from Argentina, displays a generalized pattern of nonlinear, progressively extended lunar cycles up to the present day. The lunar retreat calculated at different stages of the Earth's history identifies three time spans of extremely high recession rates, amounting to almost twice that of the present day: Archean-Paleoproterozoic (6.93 cm/year), Neoproterozoic I-Ediacaran (7.01 cm/year) and Ediacaran-early Cambrian (6.48 cm/year). Older comparable recession rates are difficult to recognize because of the lack of tidal rhythmic sequences. The maximum lunar retreat rate is registered after the Copernican meteor bombardment event on the Moon at 900 Ma, and the time span coincides with the continental dispersal of Rodinia. Every acceleration of the lunar retreat rate coincides with two main processes: (1) meteorite impacts on the Earth or Moon, and (2) reconfiguration of landmasses accompanied by earthquakes that generated changes in the rotational axis of the Earth, inundation surfaces, and glaciation/deglaciation processes. The simultaneous occurrence of such processes makes it difficult to distinguish the causes and effects of each individual process, but its conjunction would have promoted the destabilization of the Earth-Moon system in terms of moment of inertia that was transferred to the Moon rotation.

  7. The Violent Early Solar System, as Told by Lunar Sample Geochronology (United States)

    Cohen, Barbara


    One of the legacies of the samples collected by the Apollo and Luna missions is the link forged between radiometric ages of rocks and relative ages according to stratigraphic relationships and impact crater size-frequency distributions. Our current understanding of the history of the inner solar system is based on the relative chronology of individual planets, tied to the absolute geochronology of the Moon via these important samples. Samples from these nearside locations reveal a preponderance of impact-disturbed or recrystallized ages between 3.75 and 3.95 billion years. Argon and lead loss (and correlated disturbances in the Rb-Sr system) have been attributed to metamorphism of the lunar crust by an enormous number of impacts in a brief pulse of time, called the Lunar Cataclysm or Late Heavy Bombardment. Subsequent high-precision geochronometric analyses of Apollo samples and lunar highlands meteorites show a wider range of ages, but very few older than 4 Ga. The paucity of ancient impact melt rocks has been interpreted to mean that either that most impact basins formed at this time, or that ejecta from the large, near-side, young basins dominates the Apollo samples. Selenochronology is getting more complicated: new results question meaning of sample ages, crater counts, crater production functions, and the solar system itself. Improved geological mapping of lunar geologic units and boundaries using multiple remote sensing datasets. High-resolution image-based crater counting of discrete geologic units and relating them to location. Improved understanding of the regolith thickness and its global variation (GRAIL). Tying the sampling of impact-melt rocks to the lunar impact flux. Using improved techniques (magnetic fields, diffusion studies, isotopic analysis) on existing samples. New sample return from benchmark craters, particularly SPA, which appears in 2013 Decadal Survey.

  8. Lunar Dust Contamination Effects on Lunar Base Thermal Control Systems (United States)

    Keller, John R.; Ewert, Michael K.


    Many studies have been conducted to develop a thermal control system that can operate under the extreme thermal environments found on the lunar surface. While these proposed heat rejection systems use different methods to reject heat, each system contains a similar component, a thermal radiator system. These studies have always considered pristine thermal control system components and have overlooked the possible deleterious effects of lunar dust contamination. Since lunar dust has a high emissivity and absorptivity (greater than 0.9) and is opaque, dust accumulation on a surface should radically alter its optical properties and therefore alter its thermal response compared to ideal conditions. In addition, the non-specular nature of the dust particles will alter the performance of systems that employ specular surfaces to enhance heat rejection. To date, few studies have examined the effect of dust deposition on the normal control system components. These studies only focused on a single heat rejection or photovoltaic system. These studies did show that lunar dust accumulations alter the optical properties of any lunar base hardware, which in turn affects component temperatures, and heat rejection. Therefore, a new study was conducted to determine the effect of lunar dust contamination on heat rejection systems. For this study, a previously developed dust deposition model was incorporated into the Thermal Synthesizer System (TSS) model. This modeling scheme incorporates the original method of predicting dust accumulation due to vehicle landings by assuming that the thin dust layer can be treated as a semitransparent surface slightly above and in thermal contact with the pristine surface. The results of this study showed that even small amounts of dust deposits can radically alter the performance of the heat rejection systems. Furthermore. this study indicates that heat rejection systems be either located far from any landing sites or be protected from dust

  9. Basic radio interferometry for future lunar missions

    NARCIS (Netherlands)

    Aminaei, Amin; Klein Wolt, Marc; Chen, Linjie; Bronzwaer, Thomas; Pourshaghaghi, Hamid Reza; Bentum, Mark J.; Falcke, Heino


    In light of presently considered lunar missions, we investigate the feasibility of the basic radio interferometry (RIF) for lunar missions. We discuss the deployment of two-element radio interferometer on the Moon surface. With the first antenna element is envisaged to be placed on the lunar lander,

  10. Multiple Cosmic Sources for Meteorite Macromolecules? (United States)

    Sephton, Mark A; Watson, Jonathan S; Meredith, William; Love, Gordon D; Gilmour, Iain; Snape, Colin E


    The major organic component in carbonaceous meteorites is an organic macromolecular material. The Murchison macromolecular material comprises aromatic units connected by aliphatic and heteroatom-containing linkages or occluded within the wider structure. The macromolecular material source environment remains elusive. Traditionally, attempts to determine source have strived to identify a single environment. Here, we apply a highly efficient hydrogenolysis method to liberate units from the macromolecular material and use mass spectrometric techniques to determine their chemical structures and individual stable carbon isotope ratios. We confirm that the macromolecular material comprises a labile fraction with small aromatic units enriched in (13)C and a refractory fraction made up of large aromatic units depleted in (13)C. Our findings suggest that the macromolecular material may be derived from at least two separate environments. Compound-specific carbon isotope trends for aromatic compounds with carbon number may reflect mixing of the two sources. The story of the quantitatively dominant macromolecular material in meteorites appears to be made up of more than one chapter.


    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsin-Wei; Lee, Typhoon; Lee, Der-Chuen; Shen, Jason Jiun-San; Chen, Jiang-Chang, E-mail: [Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan (China)


    Isotopic heterogeneities of {sup 48}Ca have been found in numerous bulk meteorites that are correlated with {sup 50}Ti and {sup 54}Cr anomalies among differentiated planetary bodies, and the results suggest that a rare subset of neutron-rich Type Ia supernova (nSN Ia) was responsible for contributing these neutron-rich iron-group isotopes into the solar system (SS). The heterogeneity of these isotopes found in differentiated meteorites indicates that the isotopic compositions of the bulk SS are not uniform, and there are significant amounts of nSNe Ia dust incompletely mixed with the rest of SS materials during planetary formation. Combined with the data of now-extinct short-lived nuclide {sup 60}Fe, which can be produced more efficiently from an nSN Ia than a Type II supernova ejecta, the observed planetary-scale isotopic heterogeneity probably reflects a late input of stellar dust grains with neutron-rich nuclear statistical equilibrium nuclides into the early SS.

  12. Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers

    Directory of Open Access Journals (Sweden)

    Alastair W. Tait


    Full Text Available Finding fresh, sterilized rocks provides ecologists with a clean slate to test ideas about first colonization and the evolution of soils de novo. Lava has been used previously in first colonizer studies due to the sterilizing heat required for its formation. However, fresh lava typically falls upon older volcanic successions of similar chemistry and modal mineral abundance. Given enough time, this results in the development of similar microbial communities in the newly erupted lava due to a lack of contrast between the new and old substrates. Meteorites, which are sterile when they fall to Earth, provide such contrast because their reduced and mafic chemistry commonly differs to the surfaces on which they land; thus allowing investigation of how community membership and structure respond to this new substrate over time. We conducted 16S rRNA gene analysis on meteorites and soil from the Nullarbor Plain, Australia. We found that the meteorites have low species richness and evenness compared to soil sampled from directly beneath each meteorite. Despite the meteorites being found kilometers apart, the community structure of each meteorite bore more similarity to those of other meteorites (of similar composition than to the community structure of the soil on which it resided. Meteorites were dominated by sequences that affiliated with the Actinobacteria with the major Operational Taxonomic Unit (OTU classified as Rubrobacter radiotolerans. Proteobacteria and Bacteroidetes were the next most abundant phyla. The soils were also dominated by Actinobacteria but to a lesser extent than the meteorites. We also found OTUs affiliated with iron/sulfur cycling organisms Geobacter spp. and Desulfovibrio spp. This is an important finding as meteorites contain abundant metal and sulfur for use as energy sources. These ecological findings demonstrate that the structure of the microbial community in these meteorites is controlled by the substrate, and will not

  13. Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers. (United States)

    Tait, Alastair W; Gagen, Emma J; Wilson, Siobhan A; Tomkins, Andrew G; Southam, Gordon


    Finding fresh, sterilized rocks provides ecologists with a clean slate to test ideas about first colonization and the evolution of soils de novo. Lava has been used previously in first colonizer studies due to the sterilizing heat required for its formation. However, fresh lava typically falls upon older volcanic successions of similar chemistry and modal mineral abundance. Given enough time, this results in the development of similar microbial communities in the newly erupted lava due to a lack of contrast between the new and old substrates. Meteorites, which are sterile when they fall to Earth, provide such contrast because their reduced and mafic chemistry commonly differs to the surfaces on which they land; thus allowing investigation of how community membership and structure respond to this new substrate over time. We conducted 16S rRNA gene analysis on meteorites and soil from the Nullarbor Plain, Australia. We found that the meteorites have low species richness and evenness compared to soil sampled from directly beneath each meteorite. Despite the meteorites being found kilometers apart, the community structure of each meteorite bore more similarity to those of other meteorites (of similar composition) than to the community structure of the soil on which it resided. Meteorites were dominated by sequences that affiliated with the Actinobacteria with the major Operational Taxonomic Unit (OTU) classified as Rubrobacter radiotolerans. Proteobacteria and Bacteroidetes were the next most abundant phyla. The soils were also dominated by Actinobacteria but to a lesser extent than the meteorites. We also found OTUs affiliated with iron/sulfur cycling organisms Geobacter spp. and Desulfovibrio spp. This is an important finding as meteorites contain abundant metal and sulfur for use as energy sources. These ecological findings demonstrate that the structure of the microbial community in these meteorites is controlled by the substrate, and will not reach homeostasis

  14. Siena, 1794: History's Most Consequential Meteorite Fall (United States)

    Marvin, U. B.


    In the mythos of meteoritics, the fall of stones at L'Aigle in Normandy at 1 p. m. on April 26, 1803, is commonly regarded as the event that turned skeptics into believers and opened the way for the new science. A strong case can be made, however, that the fall of stones at Siena at 7:00 p.m. on June 16, 1794, established the authenticity of meteorite falls and set in motion the reexaminations of entrenched beliefs that led to the founding of the new science. The Siena fall was heralded by the appearance of an extraordinarily high, dark cloud emitting smoke, sparks like rockets, and bolts of unusually slow-moving red lightning. With a tremendous explosion a shower of stones, ranging in weight from a few milligrams to 3 kg, fell southeast of Siena. This was the first meteorite fall to occur in the vicinity of a sizeable European city and the first to be witnessed by so many people, including English visitors, that the fall of the stones from the sky could not be denied. It also was the first fall to be seriously investigated by scholars, at several universities in Italy, who collected eye-witness reports and specimens and formulated hypotheses of origin. Their task was greatly complicated by the timing of the fall which occurred 18 hours after Mt. Vesuvius sprang into full eruption. Some believed that the two events were entirely coincidental; others thought that the stones either were ejecta from the volcano (which lay about 320 km to the southeast of Siena) or had consolidated in the fiery masses of dust and ash expelled by the mountain. No explanations seemed entirely satisfactory, but, in an age when the very possibility of falling stones had been decisively ruled out by savants of the Enlightenment, the well-observed fall at Siena opened a new dialog on this subject. The Siena fall occurred only two months after the publication in Riga and Leipzig of Ernst F. F. Chladni's book On the Origin of Ironmasses in which he concluded from historical records that

  15. International Collaboration in Lunar Exploration (United States)

    Morris, K. Bruce; Horack, John M.; Nall, Mark; Leahy, Bart. D.


    The U.S. Vision for Space Exploration commits the United States to return astronauts to the moon by 2020 using the Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle. Like the Apollo program of the 1960s and 1970s, this effort will require preliminary reconnaissance in the form of robotic landers and probes. Unlike Apollo, some of the data NASA will rely upon to select landing sites and conduct science will be based on international missions as well, including SMART-1, SELENE, and Lunar Reconnaissance Orbiter (LRO). Opportunities for international cooperation on the moon also lie in developing lunar exploration technologies. The European Space Agency's SMART-1 orbiter (Figure 1) is making the first comprehensive inventory of key chemical elements in the lunar surface. It is also investigating the impact theory of the moon's formation.'

  16. Lunar Ice Cube: Searching for Lunar Volatiles with a lunar cubesat orbiter (United States)

    Clark, Pamela E.; Malphrus, Ben; Brown, Kevin; Hurford, Terry; Brambora, Cliff; MacDowall, Robert; Folta, David; Tsay, Michael; Brandon, Carl; Lunar Ice Cube Team


    Lunar Ice Cube, a NASA HEOMD NextSTEP science requirements-driven deep space exploration 6U cubesat, will be deployed, with 12 others, by NASA's EM1 mission. The mission's high priority science application is understanding volatile origin, distribution, and ongoing processes in the inner solar system. JPL's Lunar Flashlight, and Arizona State University's LunaH-Map, also lunar orbiters to be deployed by EM1, will provide complementary observations. Lunar Ice Cube utilizes a versatile GSFC-developed payload: BIRCHES, Broadband InfraRed Compact, High-resolution Exploration Spectrometer, a miniaturized version of OVIRS on OSIRIS-REx. BIRCHES is a compact (1.5U, 2 kg, 20 W including cryocooler) point spectrometer with a compact cryocooled HgCdTe focal plane array for broadband (1 to 4 micron) measurements and Linear Variable Filter enabling 10 nm spectral resolution. The instrument will achieve sufficient SNR to identify water in various forms, mineral bands, and potentially other volatiles seen by LCROSS (e.g., CH4) as well. GSFC is developing compact instrument electronics easily configurable for H1RG family of focal plane arrays. The Lunar Ice Cube team is led by Morehead State University, who will provide build, integrate and test the spacecraft and provide mission operations. Onboard communication will be provided by the X-band JPL Iris Radio and dual X-band patch antennas. Ground communication will be provided by the DSN X-band network, particularly the Morehead State University 21-meter substation. Flight Dynamics support is provided by GSFC. The Busek micropropulsion system in a low energy trajectory will allow the spacecraft to achieve the science orbit less than a year. The high inclination, equatorial periapsis orbit will allow coverage of overlapping swaths once every lunar cycle at up to six different times of day (from dawn to dusk) as the mission progresses during its nominal six month science mapping period. Led by the JPL Science PI, the Lunar Ice Cube

  17. Ancient Uses of Meteoritic Metals as Precedent for Modern In-Situ Asteroid Mining (United States)

    Mardon, Austin A.; Fawcett, Brett; Krispin, Daniel


    Given the strain on earth's supply of metal and the meteoritic content of meteorites, a prudent course would be to pursue in-situ asteroid mining of meteors for metal. There is a precedent for this going back to ancient Egypt; humans have always used the meteoritic content of meteorites to fashion everything from weapons to cosmetics.

  18. Lunar Mare Dome Identification and Morphologic Properties Analysis Using Chang'E-2 Lunar Data (United States)

    Zeng, Xingguo; Mu, Lingli; Li, Chunlai; Liu, Jianjun; Ren, Xin; Wang, Yuanyuan


    Identify the lunar mare dome and study the morphologic properties to know more knowledge about the structure will enhance the study of lunar volcanism. Traditionally, most lunar domes are identified by the scientists from exploring the images or topographic maps of the lunar surface with manual method, which already found out a bunch of lunar domes in specific local areas. For the purpose of getting more knowledge about global lunar dome, it is necessary to identify the lunar dome from the global lunar mare. However, it is hard to find new lunar domes from the global lunar mare only with manual method, since in that case, the large volume lunar data is needed and such work is too time consumed, so that, there are few researchers who have indentified and study the properties of the lunar dome from the perspective of lunar global scale. To solve the problem mentioned above, in this approach , CE-2 DEM, DOM data in 7m resolution were used in the detection and morphologic analysis of the lunar domes and a dome detection method based on topographic characteristics were developed.We firstly designed a method considering the morphologic characteristics to identify the lunar dome with Chang'E2(CE-2) lunar global data, after that, the initial identified result with properties is analyzed, and finally, by integrating the result with lunar domes already found by former researchers, we made some maps about the spatial distribution of the global lunar mare dome. With the CE-2 data covering the former lunar domes and the new found lunar domes, we surveyed and calculated some morphologic properties, and found that, lunar domes are circular or eclipse shaped, obviously different from background in topography,which has a average diameter between 3-25km, circular degree less than 1.54, with a average slope less than 10°, average height less than 650m and diameter/height less than 0.065. Almost all of the lunar domes are located in the extent of 58°N~54°S,167°W~180°E,and nearly

  19. Redetermination of the Sm-Nd Age and Initial (Epsilon)Nd of Lunar Troctolite 76535: Implications for Lunar Crustal Development (United States)

    Nyquist, Laurence E.; Shih, C.-Y.; Reese, Y. D.


    Lunar troctolite 76535 is an old lunar rock predating the era of the lunar cataclysmic bombardment, but its radiometrially determined ages have been discordant [1-3]. The most recent multi-chronometer study [4] gave preferred ages of 4226+/-35 Ma and 4236+/-15 Ma from a Pb-207/Pb-206 isochron and an U-Pb upper concordia intercept, resp. We derive an age of 4323+/-64 Ma from Sm-Nd data reported by [4] for the bulk rock and three mineral separates. They derived an age of approx.4.38 Ga from combined Rb-Sr data [3,4] by omitting data for olivine separates. Ar-39-Ar-40 ages of approx.4.2 Ga are summarized by [5]. New Sm-147-Nd-143 data presented here give an age of 4335+/-71 Ma in agreement with the Sm-Nd age from [4], whereas Sm-146-Nd-142 data give a model age T(sub LEW) = 4439+/-22 Ma. Further, initial (Epsilon)Nd-143 for 76535 conforms to the Nd-143 evolution expected in an urKREEP [6] reservoir, consistent with inheritance of urKREEP Sm-Nd systematics via assimilation. We show that urKREEP Sm-Nd systematics require the lunar initial (Epsilon)Nd-143 to exceed the Chondritic Uniform Reservoir (CHUR) value [7], but are consistent with evolution from initial (Epsilon)Nd-143 like that of the HED meteorite parent body as defined by a 4557+/-20 Ma internal isochron for the cumulate eucrites Y-980433 and Y- 980318 [8].

  20. Lunar Base Heat Pump (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.


    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  1. NASA's Lunar Robotic Architecture Study (United States)

    Mulville, Daniel R.


    This report documents the findings and analysis of a 60-day agency-wide Lunar Robotic Architecture Study (LRAS) conducted by the National Aeronautics and Space Administration (NASA). Work on this study began in January 2006. Its purpose was to: Define a lunar robotics architecture by addressing the following issues: 1) Do we need robotic missions at all? If so, why and under what conditions? 2) How would they be accomplished and at what cost? Are they within budget? 3) What are the minimum requirements? What is the minimum mission set? 4) Integrate these elements together to show a viable robotic architecture. 5) Establish a strategic framework for a lunar robotics program. The LRAS Final Report presents analysis and recommendations concerning potential approaches related to NASA s implementation of the President's Vision for Space Exploration. Project and contract requirements will likely be derived in part from the LRAS analysis and recommendations contained herein, but these do not represent a set of project or contract requirements and are not binding on the U.S. Government unless and until they are formally and expressly adopted as such. Details of any recommendations offered by the LRAS Final Report will be translated into implementation requirements. Moreover, the report represents the assessments and projects of the report s authors at the time it was prepared; it is anticipated that the concepts in this report will be analyzed further and refined. By the time some of the activities addressed in this report are implemented, certain assumptions on which the report s conclusions are based will likely evolve as a result of this analysis. Accordingly, NASA, and any entity under contract with NASA, should not use the information in this report for final project direction. Since the conclusion of this study, there have been various changes to the Agency's current portfolio of lunar robotic precursor activities. First, the Robotic Lunar Exploration Program (RLEP

  2. Terrestrial microbes in martian and chondritic meteorites (United States)

    Airieau, S.; Picenco, Y.; Andersen, G.


    Introduction: The best extraterrestrial analogs for microbiology are meteorites. The chemistry and mineralogy of Asteroid Belt and martian (SNC) meteorites are used as tracers of processes that took place in the early solar system. Meteoritic falls, in particular those of carbonaceous chondrites, are regarded as pristine samples of planetesimal evolution as these rocks are primitive and mostly unprocessed since the formation of the solar system 4.56 billion years ago. Yet, questions about terrestrial contamination and its effects on the meteoritic isotopic, chemical and mineral characteristics often arise. Meteorites are hosts to biological activity as soon as they are in contact with the terrestrial biosphere, like all rocks. A wide biodiversity was found in 21 chondrites and 8 martian stones, and was investigated with cell culture, microscopy techniques, PCR, and LAL photoluminetry. Some preliminary results are presented here. The sample suite included carbonaceous chondrites of types CR, CV, CK, CO, CI, and CM, from ANSMET and Falls. Past studies documented the alteration of meteorites by weathering and biological activity [1]-[4]. Unpublished observations during aqueous extraction for oxygen isotopic analysis [5], noted the formation of biofilms in water in a matter of days. In order to address the potential modification of meteoritic isotopic and chemical signatures, the culture of microbial contaminating species was initiated in 2005, and after a prolonged incubation, some of the species obtained from cell culture were analyzed in 2006. The results are preliminary, and a systematic catalog of microbial contaminants is developing very slowly due to lack of funding. Methods: The primary method was cell culture and PCR. Chondrites. Chondritic meteorite fragments were obtained by breaking stones of approximately one gram in sterile mortars. The core of the rocks, presumably less contaminated than the surface, was used for the present microbial study, and the

  3. Lunar Prospecting With Chandra (United States)


    Observations of the bright side of the Moon with NASA's Chandra X-ray Observatory have detected oxygen, magnesium, aluminum and silicon over a large area of the lunar surface. The abundance and distribution of those elements will help to determine how the Moon was formed. "We see X-rays from these elements directly, independent of assumptions about the mineralogy and other complications," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., at a press conference at the "Four Years with Chandra" symposium in Huntsville, Alabama. "We have Moon samples from the six widely-space Apollo landing sites, but remote sensing with Chandra can cover a much wider area," continued Drake. "It's the next best thing to being there, and it's very fast and cost-effective." The lunar X-rays are caused by fluorescence, a process similar to the way that light is produced in fluorescent lamps. Solar X-rays bombard the surface of the Moon, knock electrons out of the inner parts of the atoms, putting them in a highly unstable state. Almost immediately, other electrons rush to fill the gaps, and in the process convert their energy into the fluorescent X-rays seen by Chandra. According to the currently popular "giant impact" theory for the formation of the Moon, a body about the size of Mars collided with the Earth about 4.5 billion years ago. This impact flung molten debris from the mantle of both the Earth and the impactor into orbit around the Earth. Over the course of tens of millions of years, the debris stuck together to form the Moon. By measuring the amounts of aluminum and other elements over a wide area of the Moon and comparing them to the Earth's mantle, Drake and his colleagues plan to help test the giant impact hypothesis. "One early result," quipped Drake, "is that there is no evidence for large amounts of calcium, so cheese is not a major constituent of the Moon." Illustration of Earth's Geocorona Illustration of Earth's Geocorona The same

  4. Manufacturing High-Fidelity Lunar Agglutinate Simulants (United States)

    Gutafson, R. J.; Edmunson, J. E.; Rickman, D. L.


    The lunar regolith is very different from many naturally occurring material on Earth because it forms in the unique, impact-dominated environment of the lunar surface. Lunar regolith is composed of five basic particle types: mineral fragments, pristine crystalline rock fragments, breccia fragments, glasses of various kinds, and agglutinates (glass-bonded aggregates). Agglutinates are abundant in the lunar regolith, especially in mature regoliths where they can be the dominant component.This presentation will discuss the technical feasibility of manufacturing-simulated agglutinate particles that match many of the unique properties of lunar agglutinates.

  5. Economic geology of lunar Helium-3 (United States)

    Schmitt, Harrison H.


    Economic geology evaluation of lunar He-3 should answer the question: Can lunar He-3 be sold on Earth with sufficient profit margins and low enough risk to attract capital investment in the enterprise. Concepts that relate to economic geology of recovering He-3 from the lunar maria are not new to human experience. A parametric cost and technology evaluation scheme, based on existing and future data, is required to qualitatively and quantitatively assess the comprehensive economic feasibility and return on investment of He-3 recovery from the lunar maria. There are also many political issues which must be considered as a result of nuclear fusion and lunar mining.

  6. What is a lunar standstill III?

    Directory of Open Access Journals (Sweden)

    Lionel Duke Sims


    Full Text Available Prehistoric monument alignments on lunar standstills are currently understood for horizon range, perturbation event, crossover event, eclipse prediction, solstice full Moon and the solarisation of the dark Moon. The first five models are found to fail the criteria of archaeoastronomy field methods. The final model of lunar-solar conflation draws upon all the observed components of lunar standstills – solarised reverse phased sidereal Moons culminating in solstice dark Moons in a roughly nine-year alternating cycle between major and minor standstills. This lunar-solar conflation model is a syncretic overlay upon an antecedent Palaeolithic template for lunar scheduled rituals and amenable to transformation.

  7. Geopolymers from lunar and Martian soil simulants (United States)

    Alexiadis, Alessio; Alberini, Federico; Meyer, Marit E.


    This work discusses the geopolymerization of lunar dust simulant JSC LUNAR-1A and Martian dust simulant JSC MARS-1A. The geopolymerization of JSC LUNAR-1A occurs easily and produces a hard, rock-like, material. The geopolymerization of JSC MARS-1A requires milling to reduce the particle size. Tests were carried out to measure, for both JSC LUNAR-1A and JSC MARS-1A geopolymers, the maximum compressive and flexural strengths. In the case of the lunar simulant, these are higher than those of conventional cements. In the case of the Martian simulant, they are close to those of common building bricks.

  8. APOLLO 14: Lift off from lunar surface (United States)


    APOLLO 14: The lunar module 'Falcon' lifts off from the lunar surface From the film documentary 'APOLLO 14: 'Mission to Fra Mauro'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLO 14: Third manned lunar landing with Alan B. Shepard, Jr.,Stuart A. Roosa, and Edgar D. Mitchell. Landed in the Fra Mauro area on Ferurary 5, 1971; performed EVA, deployed lunar experiments, returned lunar samples. Mission Duration 216 hrs 1 min 58 sec

  9. Economic geology of lunar Helium-3 (United States)

    Schmitt, Harrison H.


    Economic geology evaluation of lunar He-3 should answer the question: Can lunar He-3 be sold on Earth with sufficient profit margins and low enough risk to attract capital investment in the enterprise. Concepts that relate to economic geology of recovering He-3 from the lunar maria are not new to human experience. A parametric cost and technology evaluation scheme, based on existing and future data, is required to qualitatively and quantitatively assess the comprehensive economic feasibility and return on investment of He-3 recovery from the lunar maria. There are also many political issues which must be considered as a result of nuclear fusion and lunar mining.

  10. Unprecedented concentrations of indigenous amino acids in primitive CR meteorites (United States)

    Ehrenfreund, Pascale; Martins, Zita; Alexander, Conel; Orzechowska, Grazyna; Fogel, Marylin

    CR meteorites are among the most primitive meteorites. We have performed pioneering work determining the compositional characteristics of amino acids in this type of carbonaceous chondrites. We report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. We have analyzed the amino acid content of the Antarctic CRs EET92042, GRA95229 and GRO95577 using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatography-mass spectrometry (GC-MS). Additionally, compound-specific carbon isotopic measurements for most of the individual amino acids from the EET92042 and GRA95229 meteorites were achieved by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations of 180 and 249 parts-per-million (ppm), respectively. GRO95577, however, is depleted in amino acids (determined for most amino acids indicate that primitive organic matter was preserved in these meteorites. In addition, the relative abundances of α-AIB and β-alanine amongst Antarctic CR meteorites appear to correspond to the degree of aqueous alteration on their respective parent body. Investigating the abundances and isotopic composition of amino acids in primitive chondrites helps to understand the role of meteorites as a source of extraterrestrial prebiotic organic compounds to the early Earth.

  11. Castelvecchio and Castiglione del Lago: Two new Italian iron meteorites (United States)

    Moggi Cecchi, V.; Pratesi, G.; Caporali, S.; Herd, C. D. K.; Chen, G.


    Until 2016 only 38 Italian meteorites have been classified and published on the Meteoritical Bulletin Database. Among these, only 4 were irons. We here report the results of the analyses performed on two iron meteorites recovered in Italy. The first one, Castiglione del Lago, weighing 667g, was recovered in 1970. The textural features observed by means of both optical microscope and SEM, as well as SEM-EDX and ICP-MS analyses, allowed to classify it as IAB-MG iron. The second one, named Castelvecchio, has been recovered at Lignana, near Pontito, in August 2015. In the same locality a fireball was witnessed on October 23, 1986, by Mario Goiorani, a meteorite collector. The main mass, weighing 49.5g, was recovered inside a hollow. A chip, observed with both optical metallographic microscope and SEM, displayed no kamacite lamellae at the centimetric scale, suggesting a classification as IIAB iron. This classification was confirmed by ICP-MS analyses. Both meteorites have been approved by the Meteoritical Society in 2016 and published in the on-line Meteoritical Bulletin Database (

  12. The Okhansk Meteorite: Specifics of Composition, Structure, and Genesis

    Directory of Open Access Journals (Sweden)

    A.I. Bakhtin


    Full Text Available The Okhansk meteorite fell on August 18, 1887 near the village of Tabor, about 15 km away from the town of Okhansk in Perm province and weighed 186.5 kg (the total weight of collected fragments, according to P.I. Krotov, was more than 245 kg. The shock wave from the meteorite entry knocked down animals and riders on horses. Despite the fact that it was significantly stronger than that caused by the Chelyabinsk meteorite of 2013, all information about this meteorite has completely erased from people's memory. It has been shown that the meteorite is an ordinary olivine-bronzite chondrite. Its main silicate minerals are olivine, bronzite, plagioclase, and diopside. The main ore minerals are kamacite and troilite. The meteorite contains silicate glass in large amounts. The analysis of the composition and structure of the Okhansk meteorite has demonstrated that it was formed at the early stages of accretion of the melted substance of the protosolar nebula without undergoing endogenous, temperature, or pressure changes.

  13. Terrestrial Ages of Antarctic Meteorites: Up Date 1999 (United States)

    Nishiizumi, K.; Caffee, M. W.; Welten, K. C.


    We are continuing our ongoing study of cosmogenic nuclides in Antarctic meteorites. In addition to the studies of exposure histories of meteorites, we study terrestrial ages and pairing of Antarctic meteorites and desert meteorites. Terrestrial ages of Antarctic meteorites provide information on meteorite accumulation mechanisms, mean weathering lifetimes, and influx rates. The determination of Cl-36 (half-life=3.01 x 10(exp 5) y) terrestrial ages is one of our long-term on-going projects, however, in many instances neither Cl-36 or C-14 (5,730 y) yields an accurate terrestrial age. Using Ca-41 (1.04 x 10(exp 5) y) for terrestrial age determinations solves this problem by filling the gap in half-life between C-14 and Cl-36 ages. We are now applying the new Ca-41 - Cl-36 terrestrial age method as well as the Cl-36 - Be-10 method to Antarctic meteorites. Our measurements and C-14 terrestrial age determinations by the University of Arizona group are always complementary.

  14. Lunar and Planetary Science XXXV: Astrobiology (United States)


    The session "Astrobiology" included the following reports:The Role of Cometary and Meteoritic Delivery in the Origin and Evolution of Life: Biogeological Evidences Revisited; Hopane Biomarkers Traced from Bedrock to Recent Sediments and Ice at the Haughton Impact Structure, Devon Island: Implications for the Search for Biomarkers on Mars; and Survival of Organic Matter After High Temperature Events (Meteorite Impacts, Igneous Intrusions).

  15. Impact of Infrared Lunar Laser Ranging on Lunar Dynamics (United States)

    Viswanathan, Vishnu; Fienga, Agnès; Manche, Hervé; Gastineau, Mickael; Courde, Clément; Torre, Jean-Marie; Exertier, Pierre; Laskar, Jacques; LLR Observers : Astrogeo-OCA, Apache Point, McDonald Laser Ranging Station, Haleakala Observatory, Matera Laser Ranging Observatory


    Since 2015, in addition to the traditional green (532nm), infrared (1064nm) has been the preferred wavelength for lunar laser ranging at the Calern lunar laser ranging (LLR) site in France. Due to the better atmospheric transmission of IR with respect to Green, nearly 3 times the number of normal points have been obtained in IR than in Green [ C.Courde et al 2016 ]. In our study, in addition to the historical data obtained from various other LLR sites, we include the recent IR normal points obtained from Calern over the 1 year time span (2015-2016), constituting about 4.2% of data spread over 46 years of LLR. Near even distribution of data provided by IR on both the spatial and temporal domain, helps us to improve constraints on the internal structure of the Moon modeled within the planetary ephemeris : INPOP [ Fienga et al 2015 ]. IERS recommended models have been used in the data reduction software GINS (GRGS,CNES) [ V.Viswanathan et al 2015 ]. Constraints provided by GRAIL, on the Lunar gravitational potential and Love numbers have been taken into account in the least-square fit procedure. New estimates on the dynamical parameters of the lunar core will be presented.

  16. [Effect of lunar dust on humans: -lunar dust: regolith-]. (United States)

    Morimoto, Yasuo; Miki, Takeo; Higashi, Toshiaki; Horie, Seichi; Tanaka, Kazunari; Mukai, Chiaki


    We reviewed the effect of lunar dust (regolith) on humans by the combination of the hazard/exposure of regolith and microgravity of the moon. With regard to the physicochemical properties of lunar dust, the hazard-related factors are its components, fibrous materials and nanoparticles. Animal exposure studies have been performed using a simulant of lunar dust, and it was speculated that the harmful effects of the simulant lies between those of crystalline silica and titanium dioxide. Fibrous materials may not have a low solubility judging from their components. The nanoparticles in lunar dust may have harmful potentials from the view of the components. As for exposure to regolith, there is a possibility that particles larger than ones in earth (1 gravity) are respirable. In microgravity, 1) the deposition of particles of less than 1 µm in diameter in the human lung did not decrease, 2) the functions of macrophages including phagocytosis were suppressed, 3) pulmonary inflammation was changed. These data on hazard/exposure and microgravity suggest that fine and ultrafine particles in regolith may have potential hazards and risks for humans.

  17. Activity in the lunar surface: Transient Lunar Phenomena

    CERN Document Server

    AF, Cruz Roa


    Transient Lunar Phenomena (TLP) observed on the surface of the moon, are of high rarity, low repetition rate and very short observation times, resulting in that there is little information about this topic. This necessitates the importance of studying them in detail. They have been observed as very bright clouds of gases of past geological lunar activity. According its duration, there have been registered in different colors (yellow, orange, red). Its size can vary from a few to hundreds of kilometers. The TLP Usually occur in certain locations as in some craters (Aristarchus, Plato, Kepler, etc.) and at the edges of lunar maria (Sea of Fecundity, Alps hills area, etc.). The exposure time of a TLP can vary from a few seconds to a little more than one hour. In this paper, a literature review of the TLP is made to build a theory from the existing reports and scientific hypotheses, trying to unify and synthesize data and concepts that are scattered by different lunar research lines. The TLP need to be explained ...

  18. Research Progress in Meteoritics and Cosmochemistry(2001-2010)%陨石学与天体化学(2001~2010)研究进展

    Institute of Scientific and Technical Information of China (English)

    林杨挺; 缪秉魁; 徐琳; 胡森; 冯璐; 赵旭晁; 杨晶


    In the first 10 years of 21st century, meteoritics and cosmochemistry made significant progress in China. During 5 times of Chinese Antarctic Research Expeditions, more than 10 thousands of meteorites have been collected from Grove Mountain areas, supplying with precious extraterrestrial samples. The study of meteoritics and cosmochemistry has also been promoted by Chang'e mission and the great success in the first episode of Chinese lunar exploration, and is challenged by the demands of space exploration. Various high precision and high laterial resolution measurements of extraterrestrial samples are now available with a number of newly established facilities and e-quipments. Furthermore, many young researchers have been involved in cosmochemistry and trained via classifying the large number of Antarctic meteorites. By studying of various groups of meteorites, numerous discoveries have been made, inclusing presolar grains in primitive chondrites, short-lived radionuclides, condensation processes of the solar nebula under different redox conditions, petrogenesis and isotopic dating of lunar meteorites and martian meteorites, shock metamorphism and high pressure polymorphs in shocked meteorites, and confirmation of the first meteorite impact crater in China.%21世纪的第一个十年,陨石学与天体化学研究在中国迎来了一个前所未有的发展时期.在南极格罗夫山地区共开展了5次科学考察,收集到超过1万块陨石,提供了珍贵的研究样品;嫦娥工程的立项和一期工程的成功实施,是陨石学与天体化学发展的重大机遇,也是挑战;高精度原位微区分析平台建设的完成,则为地外物质样品的分析提供了关键的技术保证.更为重要的是,通过大量南极陨石的分类工作,培养和锻炼了陨石学研究的青年人才.在此基础上,通过对各化学群陨石的研究,取得了许多重要的成果,包括陨石中前太阳颗粒的发现和研究、陨石中的灭绝核

  19. The effect of carbon on phosphate reduction. [in lunar soil and breccia metal particles (United States)

    Friel, J. J.; Goldstein, J. I.; Romig, A. D., Jr.


    Several experiments were performed in order to evaluate the effect of carbon on phosphate reduction in synthetic systems. It was attempted to simulate in the experiments conditions occurring during lunar impact processes, but without shock pressure. Temperature, oxygen fugacity, and bulk chemistry were evaluated separately in order to determine the conditions which are suitable for carbon reduction. It appears on the basis of the results of the reported investigation that carbon can be an effective reducing agent during reheating events such as those encountered by lunar soils and breccias. Phosphate reduction may be viewed as a two-step process in which carbon is mobilized as CO during heating and preferentially dissolved in the metal phase. It then acts as a reducing agent on cooling. Gas phase transport and diffusion of carbon in metal are sufficiently rapid to allow uniform carbon distribution both within and between metal grains. The availability of metal from meteorites and carbon from the solar wind is probably sufficient to make reduction by carbon a significant process on the lunar surface.

  20. Simulated meteorite impacts and volcanic explosions: Ejecta analyses and planetary implications (United States)

    Gratz, A. J.; Nellis, W. J.


    Past cratering studies have focused primarily on crater morphology. However, important questions remain about the nature of crater deposits. Phenomena that need to be studied include the distribution of shock effects in crater deposits and crater walls; the origin of mono- and polymict breccia; differences between local and distal ejecta; deformation induced by explosive volcanism; and the production of unshocked, high-speed ejecta that could form the lunar and martian meteorites found on the Earth. To study these phenomena, one must characterize ejecta and crater wall materials from impacts produced under controlled conditions. New efforts at LLNL simulate impacts and volcanism and study resultant deformation. All experiments use the two-stage light-gas gun facility at LLNL to accelerate projectiles to velocities of 0.2 to 4.3 km/s, including shock pressures of 0.9 to 50 GPa. We use granite targets and novel experimental geometries to unravel cratering processes in crystalline rocks. We have thus far conducted three types of simulations: soft recovery of ejecta, 'frozen crater' experiments, and an 'artificial volcano. Our ejecta recovery experiments produced a useful separation of impactites. Material originally below the projectile remained trapped there, embedded in the soft metal of the flyer plate. In contrast, material directly adjacent to the projectile was jetted away from the impact, producing an ejecta cone that was trapped in the foam recovery fixture. We find that a significant component of crater ejecta shows no signs of strong shock; this material comes from the near-surface 'interference zone' surrounding the impact site. This phenomenon explains the existence of unshocked meteorites on the Earth of lunar and martian origin. Impact of a large bolide on neighboring planets will produce high-speed, weakly shocked ejecta, which may be trapped by the Earth's gravitational field. 'Frozen crater' experiments show that the interference zone is highly

  1. Reflectance Spectral Characteristics of Lunar Surface Materials

    Institute of Scientific and Technical Information of China (English)

    Yong-Liao Zou; Jian-Zhong Liu; Jian-Jun Liu; Tao Xu


    Based on a comprehensive analysis of the mineral composition of major lunar rocks (highland anorthosite, lunar mare basalt and KREEP rock), we investigate the reflectance spectral characteristics of the lunar rock-forming minerals, including feldspar, pyroxene and olivine. The affecting factors, the variation of the intensity of solar radiation with wavelength and the reflectance spectra of the lunar rocks are studied. We also calculate the reflectivity of lunar mare basalt and highland anorthosite at 300 nm, 415 nm, 750 nm, 900 nm, 950 nm and 1000 nm.It is considered that the difference in composition between lunar mare basalt and highland anorthosite is so large that separate analyses are needed in the study of the reflectivity of lunar surface materials in the two regions covered by mare basalt and highland anorthosite, and especially in the region with high Th contents, which may be the KREEP-distributed region.

  2. Noble Gases in the Lunar Regolith

    Institute of Scientific and Technical Information of China (English)

    邹永廖; 徐琳; 欧阳自远


    The most fundamental character of lunar soil is its high concentrations of solar-windimplanted dements,and the concentrations and behavior of the noble gases He,Ne,Ar,and Xe,which provide unique and extensive information about a broad range of fundamental problems. In this paper,the authors studied the forming mechanism of lunar regolith,and proposed that most of the noble gases in lunar regolith come from the solar wind. Meteoroid bombardment controls the maturity of lunar soil,with the degree of maturation decreasing with grain size; the concentrations of the noble gases would be of slight variation with the depth of lunar soil but tend to decrease with grain size. In addition,the concentrations of noble gases in lunar soil also show a close relationship with its mineral and chemical compositions. The utilization prospects of the noble gas s He in lunar regolith will be further discussed.

  3. Mechanical properties of lunar regolith and lunar soil simulant (United States)

    Perkins, Steven W.


    Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.

  4. Organic Matter Responses to Radiation under Lunar Conditions (United States)

    Matthewman, Richard; Crawford, Ian A.; Jones, Adrian P.; Joy, Katherine H.; Sephton, Mark A.


    Large bodies, such as the Moon, that have remained relatively unaltered for long periods of time have the potential to preserve a record of organic chemical processes from early in the history of the Solar System. A record of volatiles and impactors may be preserved in buried lunar regolith layers that have been capped by protective lava flows. Of particular interest is the possible preservation of prebiotic organic materials delivered by ejected fragments of other bodies, including those originating from the surface of early Earth. Lava flow layers would shield the underlying regolith and any carbon-bearing materials within them from most of the effects of space weathering, but the encapsulated organic materials would still be subject to irradiation before they were buried by regolith formation and capped with lava. We have performed a study to simulate the effects of solar radiation on a variety of organic materials mixed with lunar and meteorite analog substrates. A fluence of ˜3 × 1013 protons cm-2 at 4-13 MeV, intended to be representative of solar energetic particles, has little detectable effect on low-molecular-weight (≤C30) hydrocarbon structures that can be used to indicate biological activity (biomarkers) or the high-molecular-weight hydrocarbon polymer poly(styrene-co-divinylbenzene), and has little apparent effect on a selection of amino acids (≤C9). Inevitably, more lengthy durations of exposure to solar energetic particles may have more deleterious effects, and rapid burial and encapsulation will always be more favorable to organic preservation. Our data indicate that biomarker compounds that may be used to infer biological activity on their parent planet can be relatively resistant to the effects of radiation and may have a high preservation potential in paleoregolith layers on the Moon.

  5. Meteorite falls in Bulgaria: Reappraisal of mineralogy, chemistry, and classification (United States)

    Dekov, Vesselin; Rochette, Pierre; Gattacceca, JéRôMe


    We present a summary of the mineralogy, mineral chemistry, and magnetic characteristics of all the five Bulgarian meteorite falls. We report the first mineralogical descriptions, chemical analyses, and magnetic measurements of the Konevo (1931) and Silistra (1917) meteorites. We classify Konevo as LL5, and Silistra as an ungrouped achondrite with HED affinities. Pavel (1966; previously classified as an H5) is reclassified as H3-anomalous. We also provide precise mineralogy and mineral chemistry of the Virba meteorite (1873, L6), and more details on the mineral chemistry of Gumoschnik (1904, H5).

  6. Effects of bulk composition on nuclide production processes in meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Masarik, J.; Reedy, R.C. [Los Alamos National Lab., NM (United States)


    The bulk chemical composition of meteorites is a major factor influencing the production of cosmogenic nuclides. Numerical simulations using Monte Carlo particle production and transport codes were used to investigate particle fluxes, {sup 38}Ar elemental production ratios, and {sup 21}Ne/{sup 22}Ne ratios in meteorites with a wide range of compositions. The calculations show that enhanced fluxes of low-energy secondary particles in metal-rich phases explain certain experimentally observed differences in nuclide production in various meteorite classes.

  7. Meteoritics and cosmology among the Aboriginal cultures of Central Australia

    CERN Document Server

    Hamacher, Duane W


    The night sky played an important role in the social structure, oral traditions, and cosmology of the Arrernte and Luritja Aboriginal cultures of Central Australia. A component of this cosmology relates to meteors, meteorites, and impact craters. This paper discusses the role of meteoritic phenomena in Arrernte and Luritja cosmology, showing not only that these groups incorporated this phenomenon in their cultural traditions, but that their oral traditions regarding the relationship between meteors, meteorites and impact structures suggests the Arrernte and Luritja understood that they are directly related.

  8. Crystal fractionation in the SNC meteorites: Implications for sample selection (United States)

    Treiman, Allan H.


    Almost all rock types in the SNC meteorites are cumulates, products of magma differentiation by crystal fractionation (addition or removal of crystals). If the SNC meteorites are from the surface of Mars or near subsurface, then most of the igneous units on Mars are differentiated. Basaltic units probably experienced minor to moderate differientation, but ultrabasic units probably experienced extreme differentiation. Products of this differentiation may include Fe-rich gabbro, pyroxenite, periodotite (and thus serpentine), and possibly massive sulfides. The SNC meteorites include ten lithologies (three in EETA79001), eight of which are crystal cumulates. The other lithologies, EETA79001 A and B are subophitic basalts.

  9. Preterrestrial aqueous alteration of the Lafayette (SNC) meteorite (United States)

    Treiman, Allan H.; Barrett, Ruth A.; Gooding, James L.


    The structure and chemical composition of the Lafayette meteorite were examined using several methods. The meteorite contains abundant hydrous post-magnetic alteration material consisting of ferroan smectite clays, magnetite, and ferrihydrite. The textural relations, mineralogy, and composition of these materials were examined and their preterrestrial nature was documented. Olivine, pyroxene, and glass alteration are described and the bulk compositions of the alteration veinlets is discussed. Essential features of the geochemistry of the alteration processes are described. It is suggested that the alteration of the Lafayette meteorite occurred during episodic infiltrations of small volumes of saline water. Constraints placed on water chemistry and water-rock interactions in the Martian crust are outlined.

  10. Sugar-Related Organic Compounds in Carbonaceous Meteorites (United States)

    Cooper, G.; Kimmich, N.; Belisle, W.; Sarinana, J.; Brabham, K.; Garrel, L.; DeVincenzi, Donald L. (Technical Monitor)


    Sugars and related polyols are critical components of all organisms and may have been necessary for the origin of life. To date, this class of organic compounds had not been definitively identified in meteorites. This study was undertaken to determine if polyols were present in the early Solar System as constituents of carbonaceous meteorites. Results of analyses of the Murchison and Murray meteorites indicate that formaldehyde and sugar chemistry may be responsible for the presence of a variety of polyols. We conclude that polyols were present on the early Earth through delivery by asteroids and possibly comets.

  11. Galileo Observations of Gaspra, Ida, and Dactyl: Implications for Meteoritics (United States)

    Chapman, C. R.


    -mare Moon. Some of Ida's craters may be from the break-up of the Koronis parent body. Dactyl was probably created during that break-up; small satellites around other asteroids may be common. "Space weathering," which slightly modifies spectral reflectance with time, is marginally evident on Gaspra and prominent on Ida. Most surfaces have spectra that are slightly redder, more linear, and with shallower absorption bands than for regions associated with fresh craters. The unknown mechanism appears analogous to the well-known (but still not fully understood) lunar space-weathering process. The spectrum for Dactyl (which is expected to retain the least regolith of the three bodies) is even less weathered. The spectral trend from weathered-Ida, to fresh-Ida, to Dactyl extrapolates toward spectra of ordinary chondrites (OC). Thus Ida (and other members of the Koronis family) may be of OC composition. Some or all of the S-IV asteroids may, therefore, be the "missing main-belt parent bodies" for OC's. This possibility is bolstered by the unexpected finding [4] that Ida's bulk density is only ~2 1/2 g/cm^3. Compositions that are half metallic (e.g. pallasites or mesosiderites) are ruled out even for a rubble-pile structure. However, Gaspra has been known, since before the Galileo fly-by, to be too olivine-rich to be an OC parent body. Possibly it is roughly pallasitic in composition and structure. The Galileo observations, and other recent asteroid research, suggest a new -- though controversial, unproven -- paradigm: Meteorites (and their larger siblings, the Earth-approaching asteroids) are derived, in a fairly representative fashion, from main-belt asteroids, which include all common meteorite types, including OC's. The immediate (and intermediate) parent bodies are highly fractured, often with compound, rubble-pile-like structures, that represent a long history of cascading fragmentation. It is doubtful how much these modern parent bodies resemble the original bodies that

  12. Lunar science. [geophysics, mineralogy and evolution of moon (United States)

    Brett, R.


    A review of the recent developments in lunar science summarizing the most important lunar findings and the known restraints on the theories of lunar evolution is presented. Lunar geophysics is discussed in sections dealing with the figure of the moon, mascons, and the lunar thermal regime; recent seismic studies and magnetic results are reported. The chemical data on materials taken from lunar orbit are analyzed, and the lunar geology is discussed. Special attention is accorded the subject of minerology, reflecting the information obtained from lunar samples of both mare and nonmare origin. A tentative timetable of lunar events is proposed, and the problem of the moon's origin is briefly treated.

  13. Lunar resources and their utilization (United States)

    Phinney, W. C.; Criswell, D.; Drexler, E.; Garmirian, J.


    Lunar surface materials offer a source of raw materials for space processing to produce structural metals, oxygen, silicon, glass, and ceramic products. Significant difference exist, however, between lunar surface materials in the highlands and those in the maria. In the highlands the soil depth is at least an order of magnitude greater, the Al:Fe ratio is ten times greater, the content of plagioclase as a source of clear glass is three times as great, and the content of Ti is at least an order of magnitude lower. Evaluation of the extractive metallurgy and chemical operations associated with carbothermic and silicothermic refinement of lunar regolith suggests that Fe, Al, Si, Mg and probably Ti, Cr and Mn can be recovered, while oxygen is produced as a by-product. A conservative plant design yields its own weight in oxygen, silicon, and structural metals in less than six days. Power requirements for a throughput of 300,000 tons per year is less than 500 megawatts. The processing is done more economically in space than on the lunar surface.

  14. Lunar secondary craters, part K (United States)

    Overbeck, V. R.; Morrison, R. H.; Wedekind, J.


    Formation of V-shaped structures surrounding the fresh Copernicus Crater and its secondary craters are reviewed, and preliminary observations of the more extensively eroded secondary crater field of Theophilus are presented. Results of laboratory simulation of secondary lunar craters to examine their effects on V-shaped ridges are also described.

  15. Lunar articulated remote transportation system (United States)


    The students of the Florida A&M/Florida State University College of Engineering continued their design from 1988 to 1989 on a first generation lunar transportation vehicle for use on the surface of the Moon between the years 2010 and 2020. Attention is focused on specific design details on all components of the Lunar Articulated Remote Transportation System (Lunar ARTS). The Lunar ARTS will be a three-cart, six-wheeled articulated vehicle. Its purpose will be the transportation of astronauts and/or materials for excavation purposes at a short distance from the base (37.5 km). The power system includes fuel cells for both the primary system and the back-up system. The vehicle has the option of being operated in a manned or unmanned mode. The unmanned mode includes stereo imaging with signal processing for navigation. For manned missions the display console is a digital readout displayed on the inside of the astronaut's helmet. A microprocessor is also on board the vehicle. Other components of the vehicle include a double wishbone/flexible hemispherical wheel suspension; chassis; a steering system; motors; seat retraints; heat rejection systems; solar flare protection; dust protection; and meteoroid protection. A one-quarter scale dynamic model has been built to study the dynamic behavior of the vehicle. The dynamic model closely captures the mechanical and electrical details of the total design.

  16. The Megalithic Lunar Season Pointer

    DEFF Research Database (Denmark)

    Clausen, Claus

    are concentrated in the east, east- southeast and southeast. This orientation points to specific full moons during the summer period – the lunar season pointer, where the rising points of the full moons, at the horizon concentrate around a few specific directions in the Southeastern quadrant, which specially...

  17. Concept of Lunar Energy Park (United States)

    Niino, Masayuki; Kisara, Katsuto; Chen, Lidong


    This paper presents a new concept of energy supply system named Lunar Energy Park (LEP) as one of the next-generation clean energy sources. In this concept, electricity is generated by nuclear power plants built on the moon and then transmitted to receiving stations on the earth by laser beam through transporting systems situated in geostationary orbit. The lunar nuclear power plants use a high-efficiency composite energy conversion system consisting of thermionic and thermoelectric generators to change nuclear thermal energy into electricity directly. The nuclear resources are considered to be available from the moon, and nuclear fuel transport from earth to moon is not necessary. Because direct energy conversion systems are employed, the lunar nuclear plants can be operated and controlled by robots and are maintenance-free, and so will cause no pollution to humans. The key technologies for LEP include improvements of conversion efficiency of both thermionic and thermoelectric converters, and developments of laser-beam power transmission technology as well. The details, including the construction of lunar nuclear plants, energy conversion and energy transmission systems, as well as the research plan strategies for this concept are reviewed.

  18. Mobile Lunar Laser Ranging Station (United States)

    Intellect, 1977


    Harlan Smith, chairman of the University of Texas's Astronomy Department, discusses a mobile lunar laser ranging station which could help determine the exact rates of movement between continents and help geophysicists understand earthquakes. He also discusses its application for studying fundamental concepts of cosmology and physics. (Editor/RK)

  19. Lunar Polar Landing Sites (United States)

    Kamps, Oscar; Foing, Bernard H.; Flahaut, Jessica


    An important step for a scientific mission is to assess on where the mission should be conducted. This study on landing site selection focuses on a mission to the poles of the Moon where an in-situ mission should be conducted to answer the questions with respect to volatiles and ices. The European interest for a mission to the poles of the Moon is presented in the mission concept called Heracles. This mission would be a tele-operated, sample return mission where astronauts will controlling a rover from an Orion capsule in cislunar orbit. The primary selection of landing sites was based on the scientific interest of areas near the poles. The maximum temperature map from Diviner was used to select sites where CO^2¬ should always be stable. This means that the maximum temperature is lower than 54K which is the sublimation temperature for CO^2¬ in lunar atmospheric pressure. Around these areas 14 potential regions of interest were selected. Further selection was based on the epoch of the surface in these regions of interest. It was thought that it would be of high scientific value if sites are sampled which have another epoch than already sampled by one of the Apollo or Luna missions. Only 6 sites on both North as South Pole could contain stable CO^2 ¬and were older than (Pre-)Necterian. Before a landing site and rover traverse was planned these six sites were compared on their accessibility of the areas which could contain stable CO^2. It was assumed that slope lower than 20^o is doable to rove. Eventually Amundsen and Rozhdestvenskiy West were selected as regions of interest. Assumptions for selecting landing sites was that area should have a slope lower than 5^o, a diameter of 1km, in partial illuminated area, and should not be isolated but inside an area which is in previous steps marked as accessible area to rove. By using multiple tools in ArcGIS it is possible to present the area's which were marked as potential landing sites. The closest potential landing

  20. Finite Element Estimation of Meteorite Structural Properties (United States)

    Hart, Kenneth Arthur


    The goal of the project titled Asteroid Threat Assessment at NASA Ames Research Center is to develop risk assessment tools. The expertise in atmospheric entry in the Entry Systems and Technology Division is being used to describe the complex physics of meteor breakup in the atmosphere. The breakup of a meteor is dependent on its structural properties, including homogeneity of the material. The present work describes an 11-week effort in which a literature survey was carried for structural properties of meteoritic material. In addition, the effect of scale on homogeneity isotropy was studied using a Monte Carlo approach in Nastran. The properties were then in a static structural response simulation of an irregularly-shape meteor (138-scale version of Asteroid Itokawa). Finally, an early plan was developed for doctoral research work at Georgia Tech. in the structural failure fragmentation of meteors.

  1. Amino Acid Contents of Meteorite Mineral Separates (United States)

    Berger, E. L.; Burton, A. S; Locke, D.


    Indigenous amino acids have been found indigenous all 8 carbonaceous chondrite groups. However, the abundances, structural, enantiomeric and isotopic compositions of amino acids differ significantly among meteorites of different groups and petrologic types. This suggests that parent-body conditions (thermal or aqueous alteration), mineralogy, and the preservation of amino acids are linked. Previously, elucidating specific relationships between amino acids and mineralogy was not possible because the samples analyzed for amino acids were much larger than the scale at which petrologic heterogeneity is observed (sub mm-scale differences corresponding to sub-mg samples). Recent advances in amino acid measurements and application of techniques such as high resolution X-ray diffraction (HR-XRD) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) for mineralogical characterizations allow us to perform coordinated analyses on the scale at which mineral heterogeneity is observed.

  2. More Evidence for Multiple Meteorite Magmas (United States)

    Taylor, G. J.


    Cosmochemists have identified six main compositional types of magma that formed inside asteroids during the first 100 million years of Solar System history. These magmas vary in their chemical and mineralogical make up, but all have in common low concentrations of sodium and other volatile elements. Our low-sodium-magma diet has now changed. Two groups of researchers have identified a new type of asteroidal magma that is rich in sodium and appears to have formed by partial melting of previously unmelted, volatile-rich chondritic rock. The teams, one led by James Day (University of Maryland) and the other by Chip Shearer (University of New Mexico), studied two meteorites found in Antarctica, named Graves Nunatak 06128 and 06129, using a battery of cosmochemical techniques. These studies show that an even wider variety of magmas was produced inside asteroids than we had thought, shedding light on the melting histories and formation of asteroids.

  3. Did meteorites bring the ingredients of life ? (United States)

    Remusat, L.


    Carbonaceous chondrites are commonly considered as the most primitive meteorites and they accreted the primordial constituents of the Solar System. They are called "carbonaceous" due their high amount in extraterrestrial organic compounds. These compounds mainly formed 4.5 billion years ago by processes involving non-biologic chemical reactions, as shown by their isotopes. Among these molecules, several are considered as of biological interest because they could participate to processes equivalent to present day metabolic pathways in living cells; they include sugars, amino acids or nucleobases. These molecules being brought continuously on Earth, they may have induced the appearance of Life on Earth and/or could have an influence on the primitive forms of life.

  4. Evidence for methane in Martian meteorites. (United States)

    Blamey, Nigel J F; Parnell, John; McMahon, Sean; Mark, Darren F; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R M; Banerjee, Neil R; Flemming, Roberta L


    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.

  5. SNC meteorites - Igneous rocks from Mars (United States)

    Wood, C. A.; Ashwal, L. D.


    It is argued that SNC (shergottite, nakhlite, chassignite) meteorites are ejecta from Mars. The mineralogy and chemistry of these objects is discussed, including rare earth element content, potassium/uranium ratios, oxidation state, oxygen isotopes, ages and isotopic evolution, magnetism, shock and texture. The possibility of SNC's deriving from Mercury, Venus, earth, moon, or a eucrite parent body is argued against. Mercury is too volatile-poor and anhydrous, Venus's atmosphere too thick and hot and its gravitational field too large, earth's oxygen isotope content too different from that of SNC's, the moon too different isotopically and chemically, and the ages of eucrites too different. Models suggest that SNC's could have escaped from Mars's gravitational field, and their composition supports Martian origin. Statistically, they could have reached the earth within their measured shock ages. Objections to the hypothesis are also discussed.

  6. Lunar Rings In South Africa. (United States)

    Makarenko, G. F.

    Recently [1], when I have revealed the basic property of planet Earth's outer shell ­ its axial structural symmetry. Thus, it became clear that mobilistic models are void now. One can see W.Indic and E.Pacific ridges on thje same meridiane (60 E, 120 W). They stretch northward to Urals (variscan) and Cordilleras (laramian) with the edge of Bear zone (precambrian) in America. Other structures are obvious. The giant fault-ridge line Apsheron - N.Anatolia - Atlas - Mavritanians has as its twin on the other globe side the fracture zone Mendocino with the Mapmaker island chain. African Ugartha has Hawaiians as its twin, rifts Chad-Njassa have as their twin island chain Line in Pacific etc. We can compare the Earth with its permamnent structural symmetry with other planets. Lunar and earthen tectonic megaforms: Imbrium, Oriental Mare and other have identical positions on their planets. It is evident if planet's 0-meridians are matched [1]. Lunar big rings have their places on the African old blocks. Tanganjica massive coincides with risen lunar region. Rodezian block with parts of Kibara, Lomagundy, Limpopo zones coincides with lunar Maria Nectaris and with their nearest rings. SW edge of these rings coincides with lunar Rupes Altai. Young structure of basin Congo coincides with risen block, its center- crater Delambr. Young ocean earthen structures have lunar images also. NW edge of Fecundidatis Maria and its floor coincides with Somali abissal plane, Davie ridge - with lunar Montes Pyrenaeus etc. Resume. The matrix of earthen tectonic forms is drawn on the Moon . The arc forms are cyclic renovating all the time on their own planet places with extending, shortening along one or another of their sides. Mountain arcs give birth to rear basalts. Question. Why 0-meridians of the Moon (center of its disk) and of the Earth (the decision of astronomers, 1884) have the same position relative to tectonic structures of their planets? Why earthen 0-meridian is chosen so

  7. Settlement-Compatible Lunar Transporation (United States)

    Morgenthaler, G.

    Over the past few years we have published papers in this forum identifying, characterizing and advocating settlement-compatible transportation architectures for Mars. In the present paper, we do the same for the Moon and show evolutionary potentials for growth of lunar architectures into Mars architectures of the types discussed in our previous papers. The essence of a settlement-compatible architecture is that it yields a low recurring transportation cost and that the elements of the architecture are enduring, i.e., fully reusable with lifetimes on the order of Earth-based capital investments. Our previous papers have shown that extension of human habitation to other bodies in our Solar System is probably unaffordable with any other approach. The design of a settlement-compatible architecture begins with Earth launch. In our prior papers, we simply identified the Earth launch option as a fully reusable system with roughly Shuttle (or Atlas 5 or Delta 4 or Sea Launch or Ariane 5) capability, i.e. about 20 metric t. to low Earth orbit and a payload bay of dimensions about 5 m diameter x 15 to 20 m length. This is what the commercial market needs; this is where the traffic demand is; this is approximately the design point for a next-generation (after Shuttle) reusable launch vehicle. We continue in that vein for the present paper. Human mission advocates may argue it isn't big enough; that they need 80 metric t. payload to orbit. We answer that to achieve our cost criteria, there isn't much of a choice, and that the savings in launch cost will far outweigh the added expense for on-orbit assembly. Lunar transportation is considerably less demanding than Mars transportation. The main difference is in trip time. Because lunar trips are short, the crew habitat can be small, a la the Apollo Command Module, and the propulsion system to move it is also small by comparison. We analyze and depict a lunar transportation system based on crew elements adapted from the

  8. Stable Chlorine Isotopes and Elemental Chlorine by Thermal Ionization Mass Spectrometry and Ion Chromatography; Martian Meteorites, Carbonaceous Chondrites and Standard Rocks (United States)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.


    Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.

  9. Radial Breathing Modes in Cosmochemistry and Meteoritics (United States)

    Wilson, T.L.; Wilson, K.B.


    One area of continuing interest in cosmochemistry and meteoritics (C&M) is the identification of the nature of Q-phase, although some researchers in C&M are not reporting relevant portions of Raman spectral data. Q is the unidentified carrier of noble gases in carbonaceous chondrites (CCs). Being carbonaceous, the focus has been on any number of Q-candidates arising from the sp2 hybridization of carbon (C). These all derive from various forms of graphene, a monolayer of C atoms packed into a two-dimensional (2D) hexagonal honeycomb lattice that is the basic building block for graphitic materials of all other dimensions for sp2 allotropes of C. As a basic lattice, 2D graphene can be curled into fullerenes (0D), wrapped into carbon nanotubes or CNTs (1D), and stacked into graphite (3D). These take such additional forms as scroll-like carbon whiskers, carbon fibers, carbon onions, GPCs (graphite polyhedral crystals) [6], and GICs (graphite intercalation compounds). Although all of these have been observed in meteoritics, the issue is which can explain the Q-abundances. In brief, one or more of the 0D-3D sp2 hybridization forms of C is Q. For some Q-candidates, the radial breathing modes (RBMs) are the most important Raman active vibrational modes that exist, and bear a direct relevance to solving this puzzle. Typically in C&M they are ignored when present. Their importance is addressed here as smoking-gun signatures for certain Q-candidates and are very relevant to the ultimate identification of Q.

  10. Cis-Lunar Base Camp (United States)

    Merrill, Raymond G.; Goodliff, Kandyce E.; Mazanek, Daniel D.; Reeves, John D., Jr.


    Historically, when mounting expeditions into uncharted territories, explorers have established strategically positioned base camps to pre-position required equipment and consumables. These base camps are secure, safe positions from which expeditions can depart when conditions are favorable, at which technology and operations can be tested and validated, and facilitate timely access to more robust facilities in the event of an emergency. For human exploration missions into deep space, cis-lunar space is well suited to serve as such a base camp. The outer regions of cis-lunar space, such as the Earth-Moon Lagrange points, lie near the edge of Earth s gravity well, allowing equipment and consumables to be aggregated with easy access to deep space and to the lunar surface, as well as more distant destinations, such as near-Earth Asteroids (NEAs) and Mars and its moons. Several approaches to utilizing a cis-lunar base camp for sustainable human exploration, as well as some possible future applications are identified. The primary objective of the analysis presented in this paper is to identify options, show the macro trends, and provide information that can be used as a basis for more detailed mission development. Compared within are the high-level performance and cost of 15 preliminary cis-lunar exploration campaigns that establish the capability to conduct crewed missions of up to one year in duration, and then aggregate mass in cis-lunar space to facilitate an expedition from Cis-Lunar Base Camp. Launch vehicles, chemical propulsion stages, and electric propulsion stages are discussed and parametric sizing values are used to create architectures of in-space transportation elements that extend the existing in-space supply chain to cis-lunar space. The transportation options to cis-lunar space assessed vary in efficiency by almost 50%; from 0.16 to 0.68 kg of cargo in cis-lunar space for every kilogram of mass in Low Earth Orbit (LEO). For the 15 cases, 5-year campaign

  11. Integrated lunar materials manufacturing process (United States)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)


    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about, C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at, C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  12. Small Near-Earth Asteroids as a Source of Meteorites

    CERN Document Server

    Borovička, Jiří; Brown, Peter


    Small asteroids intersecting Earth's orbit can deliver extraterrestrial rocks to the Earth, called meteorites. This process is accompanied by a luminous phenomena in the atmosphere, called bolides or fireballs. Observations of bolides provide pre-atmospheric orbits of meteorites, physical and chemical properties of small asteroids, and the flux (i.e. frequency of impacts) of bodies at the Earth in the centimeter to decameter size range. In this chapter we explain the processes occurring during the penetration of cosmic bodies through the atmosphere and review the methods of bolide observations. We compile available data on the fireballs associated with 22 instrumentally observed meteorite falls. Among them are the heterogeneous falls Almahata Sitta (2008 TC$_3$) and Bene\\v{s}ov, which revolutionized our view on the structure and composition of small asteroids, the P\\v{r}\\'{\\i}bram-Neuschwanstein orbital pair, carbonaceous chondrite meteorites with orbits on the asteroid-comet boundary, and the Chelyabinsk fal...

  13. The Chelyabinsk Meteorite Hits an Anomalous Zone in the Urals (United States)

    Kochemasov, G. G.


    The Chelyabinsk meteorite is "strange" because it hits an area in the Urals where anomalous events are observed: shining skies, light balls, UFOs, electrphonic bolids. The area tectonically occurs at the intersection of two fold belts: Urals and Timan.

  14. Chelyabinsk meteorite explains unusual spectral properties of Baptistina Asteroid Family

    CERN Document Server

    Reddy, Vishnu; Bottke, William; Cloutis, Ed; Izawa, Matt; O'Brien, Dave; Mann, Paul; Cuddy, Matt; Corre, Lucille Le; Gaffey, Michael; Fujihara, Gary


    We investigated the spectral and compositional properties of Chelyabinsk meteorite to identify its possible parent body in the main asteroid belt. Our analysis shows that the meteorite contains two spectrally distinct but compositionally indistinguishable components of LL5 chondrite and shock blackened/impact melt material. Our X-ray diffraction analysis confirms that the two lithologies of the Chelyabinsk meteorite are extremely similar in modal mineralogy. The meteorite is compositionally similar to LL chondrite and its most probable parent asteroid in the main belt is a member of the Flora family. Intimate mixture of LL5 chondrite and shock blackened/impact melt material from Chelyabinsk provides a spectral match with (8) Flora, the largest asteroid in the Flora family. The Baptistina family and Flora family overlap each other in dynamical space. Mineralogical analysis of (298) Baptistina and 9 small family members shows that their surface compositions are similar to LL chondrites, although their absorptio...

  15. Investigations of Carbon Phases in Canyon Diablo Meteorite (United States)

    Karczemska, A.; Jakubowski, T.; Ouzillou, M.; Batory, D.; Abramczyk, H.; Brozek-Pluska, B.; Kopec, M.; Kozanecki, M.; Wiosna-Salyga, G.


    X-ray diffraction, Raman mapping and micro-spectrofluorimetric studies have been used in investigations of carbon in Canyon Diablo meteorite. Results show the presence of defected diamond and not well recognized carbon phases (unclear Raman peaks).

  16. International Conference on Large Meteorite Impacts and Planetary Evolution (United States)


    The papers that were accepted for the International Conference on Large Meteorite Impacts and Planetary Evolution, 31 Aug. - 2 Sep. 1992, are presented. One of the major paper topics was the Sudbury project.

  17. Clay minerals in primitive meteorites and interplanetary dust 1 (United States)

    Zolensky, M. E.; Keller, L. P.


    Many meteorites and interplanetary dust particles (IDPs) with primitive compositions contain significant amounts of phyllosilicate minerals, which are generally interpreted as evidence of protoplanetary aqueous alteration at an early period of the solar system. These meteorites are chondrites (near solar composition) of the carbonaceous and ordinary varieties. The former are subdivided (according to bulk composition and petrology) into CI, CM, CV, CO, CR, and ungrouped classes. IDPs are extraterrestrial particulates, collected in stratosphere, which have chemical compositions indicative of a primitive origin; they are typically distinct from the primitive meteorites. Characterization of phyllosilicates in these materials is a high priority because of the important physico-chemical information they hold. The most common phyllosilicates present in chondritic extraterrestrial materials are serpentine-group minerals, smectites, and micas. We discuss these phyllosilicates and describe the interpretation of their occurrence in meteorites and IDPs and what this indicates about history of their parent bodies, which are probably the hydrous asteroids.

  18. Microprobe analysis of brine shrimp grown on meteorite extracts

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, J. [National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)]. E-mail:; Mautner, M.N. [Soil, Plant and Ecological Sciences Division, Lincoln University (New Zealand) and Department of Chemistry, University of Canterbury, Christchurch 8001 (New Zealand)]. E-mail:; Barry, B. [National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); Markwitz, A. [National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)


    Nuclear microprobe methods have been used to investigate the uptake and distribution of various elements by brine shrimps and their unhatched eggs when grown in extracts of the Murchison and Allende carbonaceous meteorites, which were selected as model space resources. Measurements were carried out using a focussed 2 MeV proton beam raster scanned over the samples in order to obtain the average elemental concentrations. Line scans across the egg and shrimp samples show uptake of elements such as Mg, Ni, S and P which are present in the meteorites. The results confirmed that carbonaceous chondrite materials can provide nutrients, including high levels of the essential nutrient phosphate. The concentrations of these elements varied significantly between shrimp and eggs grown in extracts of the two meteorite types, which can help in identifying optimal growth media. Our results illustrate that nuclear microprobe techniques can determine elemental concentrations in organisms exposed to meteorite derived media and thus help in identifying useful future resources.

  19. Xe and Kr analyses of silicate inclusions from iron meteorites. (United States)

    Bogard, D. D.; Huneke, J. C.; Burnett, D. S.; Wasserburg, G. J.


    Measurements have been conducted of the amounts and isotopic composition of Xe and Kr in silicate inclusions of several iron meteorites. It is shown that the Xe and Kr contents are comparable to chondritic values. The isotopic compositions show trapped gas of both chondritic and atmospheric composition. Large spallation effects occur in some of the meteorites; the spallation spectra in some instances differ from those reported for stone meteorites. In several meteorites, very large neutron capture effects on Br and I occur. All samples have pronounced Xe129 excesses which apparently indicate differences in the formation times from chondrites of less than about 100 million years; however, the presence of trapped Xe132 in silicates which were enclosed in molten Fe-Ni and cooled slowly proves that they were not entirely outgassed, so that some of the Xe129 excess may also be trapped.

  20. Cosmogenic nuclide evidence on ages, sizes and orbits of meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, V.A.; Ustinova, G.K. [AN SSSR, Moscow (Russian Federation). Inst. Geokhimii i Analiticheskoj Khimii


    Meteorites, being the most ancient objects in the solar system, retain evidence of many events and processes which have played, perhaps, a crucial role in its formation. To derive and interpret correctly the available information, the history and evolution of the meteorites themselves must be studied thoroughly. Due to radiogenic and cosmogenic nuclides the chronology of meteorites can be retraced from the moment of solidification to their fall to Earth. A consideration of the properties and features of meteorites with different radiogenic and cosmic-ray ages of exposure makes it possible to locate key events in their evolution on a long term scale. Peculiarities in the formation mechanism of H- and L-chondrites have emerged. (author).