WorldWideScience

Sample records for ma956 strain rate

  1. Comparative study of the wear resistance of Al{sub 2}O{sub 3}-coated MA956 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Canahua Loza, H.; Escudero rincon, M. L.; Ruiz Fernandez, J. [Centro Nacional de Investigaciones Metalurgicas CENIM. Madrid (Spain)

    2000-07-01

    Preoxidation of the MA956 superalloy, proposed as prosthetic biomaterial, generates a compact and inert {alpha}-alumina surface layer. The aim of this study is to assess the wear resistance provided by this alumina layer on the MA956 alloy in comparison with the same coated alloy and versus high density polyethylene. Comparative wear tests were carried out in both dry and wet conditions using the couples MA956/MA956, MA956/UHMWPE (ultra high molecular weight polyethylene) and 316LVM/UHMWPE. The results corresponding to the couples MA956/MA956, with and without alumina layer, show that the load has more significant effect than the rotation speed on the weight loss and on the roughness. On the other hand the alumina surface layer provides a clear wear protection. The weight losses of the MA956 specimen in this couple are ten times lower when testing under wet conditions than under dry conditions. The MA956/UHMWPE couple behaves much better than the 316LVM/UHMWPE, as it presents the lowest values of friction coefficient and weight losses of the MA956 specimen. These are only detectable after 70,000 cycles under a 70 MPa contact pressure. This couple offers the best guarantee of a prolonged service life for articulated parts in a prosthesis. (Author) 18 refs.

  2. A comparative study of the corrosion resistance of incoloy MA 956 and PM 2000 superalloys

    Directory of Open Access Journals (Sweden)

    Maysa Terada

    2010-12-01

    Full Text Available Austenitic stainless steels, titanium and cobalt alloys are widely used as biomaterials. However, new medical devices require innovative materials with specific properties, depending on their application. The magnetic properties are among the properties of interest for some biomedical applications. However, due to the interaction of magnetic materials with Magnetic Resonance Image equipments they might used only as not fixed implants or for medical devices. The ferromagnetic superalloys, Incoloy MA 956 and PM 2000, produced by mechanical alloying, have similar chemical composition, high corrosion resistance and are used in high temperature applications. In this study, the corrosion resistance of these two ferritic superalloys was compared in a phosphate buffer solution. The electrochemical results showed that both superalloys are passive in this solution and the PM 2000 present a more protective passive film on it associated to higher impedances than the MA 956.

  3. Processing-Microstructure Relationships in Friction Stir Welding of MA956 Oxide Dispersion Strengthened Steel

    Science.gov (United States)

    Baker, Bradford W.; Menon, E. Sarath K.; McNelley, Terry R.; Brewer, Luke N.; El-Dasher, Bassem; Farmer, Joseph C.; Torres, Sharon G.; Mahoney, Murray W.; Sanderson, Samuel

    2014-12-01

    A comprehensive set of processing-microstructure relationships is presented for friction stir welded oxide dispersion strengthened MA956 steel. Eight rotational speed/traverse speed combinations were used to produce friction stir welds on MA956 plates using a polycrystalline cubic boron nitride tool. Weld conditions with high thermal input produced defect-free, full-penetration welds. Electron backscatter diffraction results showed a significant increase in grain size, a persistent body centered cubic torsional texture in the stir zone, and a sharp transition in grain size across the thermo-mechanically affected zone sensitive to weld parameters. Micro-indentation showed an asymmetric reduction in hardness across a transverse section of the weld. This gradient in hardness was greatly increased with higher heat inputs. The decrease in hardness after welding correlates directly with the increase in grain size and may be explained with a Hall-Petch type relationship.

  4. Characterization of Residual Stress as a Function of Friction Stir Welding Parameters in ODS Steel MA956

    Science.gov (United States)

    2013-06-01

    OF RESIDUAL STRESS AS A FUNCTION OF FRICTION STIR WELDING PARAMETERS IN ODS STEEL MA956 by Martin S. Bennett June 2013 Thesis Advisor...characterizes the residual stresses generated by friction stir welding of ODS steel MA956 as a function of heat index. The heat index of a weld is used to...determine relative heat input among different friction stir welding conditions. It depends on a combination of the rotational speed and traverse, or

  5. Shear Punch Testing on ATR Irradiated MA956 FeCrAl Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Tarik A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Quintana, Matthew Estevan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Tobias J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    The shear punch testing of irradiated and control MA956 (FeCrAl) Alloy from the NSUF-ATR-UCSB irradiation is presented. This is the first data taken on a new shear punch fixture design to test three 1.5mm punches from each 8mm x 0.5mm Disc Multipurpose Coupon (DMC). Samples were irradiated to 6.1dpa at a temperature of 315°C and 6.2 dpa at 400°C.

  6. Comparative study of the wear resistance of Al2O3-coated MA956 superalloy

    Directory of Open Access Journals (Sweden)

    Canahua Loza, Hugo

    2000-10-01

    Full Text Available Preoxidation of the MA956 superalloy, proposed as a prosthetic biomaterial, generates a compact and inert a-alumina surface layer. The aim of this study is to assess the wear resistance provided by this alumina layer on the MA956 alloy in comparison with the same coated alloy and versus high density polyethylene. Comparative wear tests were carried out in both dry and wet conditions using the couples MA956/MA956, MA956/UHMWPE (ultra high molecular weight polyethylene and 316LVM/UHMWPE. The results corresponding to the couples MA956/MA956, with and without alumina layer, show that the load has more significant effect than the rotation speed on the weight loss and on the roughness. On the other hand the alumina surface layer provides a clear wear protection. The weight losses of the MA956 specimen in this couple are ten times lower when testing under wet conditions than under dry conditions. The MA956/UHMWPE couple behaves much better than the 316LVM/UHMWPE, as it presents the lowest values of friction coefíicient and weight losses of the MA956 specimen. These are only detectable after 70,000 cycles under a 70 MPa contact pressure. This couple offers the best guarantee of a prolonged service life for articulated parts in a prosthesis.

    La superaleación MA956, que se ha propuesto como biomaterial para prótesis osteoarticulares genera, mediante un adecuado tratamiento de preoxidación, una capa superficial, compacta e inerte, de alúmina alfa. El objetivo del presente trabajo es el estudio de la resistencia al desgaste de esta capa de alúmina, cuando se encuentra en contacto con la propia aleación recubierta y con polietileno de alta densidad. Se realizaron ensayos comparativos de desgaste, tanto en seco como en húmedo, con los pares MA956/MA956, MA956/UHMWPE (polietileno de muy elevado peso molecular y 316LVM/UHMWPE. Los resultados obtenidos con el par MA956/MA956, con y sin capa de alúmina, indican que la carga es el factor de mayor

  7. Caracterización de la superaleación ODS MA 956 para aplicaciones biomédicas

    Directory of Open Access Journals (Sweden)

    Escudero, M. I.

    1998-05-01

    Full Text Available Since the MA 956 was proposed as a possible new biomaterial due to its good corrosion resistance values in physiological fluids a long way, still not finished, has been done. An exhaustive characterization of this alloy at room temperature has been developed. The technological objectives are well established: the possible use of this material for biomedical applications as hip or knee prostheses and as dental implants. The study was performed comparing the results of this alloy with the materials used nowadays as surgical implants, i.e., titanium alloys and polyethylene.

    Desde que la MA 956 fue propuesta como posible nuevo biomaterial en base a su buena resistencia a la corrosión frente a sueros fisiológicos, un largo camino, aún sin finalizar, se ha recorrido, en el que se ha llevado a cabo una caracterización exhaustiva de esta aleación a temperatura ambiente con fines tecnológicos bien definidos: su posible uso en aplicaciones biomédicas, bien sea como prótesis de cadera o de rodilla y para implantes dentales. Los estudios se han llevado a cabo comparando esta aleación con los materiales más comúnmente utilizados en implantes ortopédicos como aleaciones de titanio y polietileno.

  8. Influencia del tratamiento de oxidación de la aleación MA956 sobre sus propiedades mecánicas

    Directory of Open Access Journals (Sweden)

    Chao, J.

    1998-05-01

    Full Text Available The MA956 alloy is a ferritic oxide dispersion strengthened alloy processed by mechanical alloying which exhibits a good high temperature oxidation resistance due to the capability to develop a compact and tightly adherent α-Al2O3 scale by thermal oxidation. The present study deals with the effects of the oxidation treatment (1,100°C/100 h on its mechanical behavior at room temperature. It has been found that the oxide scale induces a decrease of the flow strength of the MA956/Al2O3 system with respect to that of scale-free specimens. This feature has been related to the formation during the preoxidation treatment of a high density of edge dislocations in a narrow zone of the substrate beneath the scale.

    La aleación MA956 es un material ferrítico fabricado por aleado mecánico que presenta la peculiaridad de generar mediante un proceso de oxidación térmica una delgada capa de alúmina α densa y bien adherida al substrato que protege al material contra los ambientes agresivos. En este trabajo se estudia la influencia del tratamiento de oxidación (1.100°C/100 h sobre el comportamiento mecánico de esta aleación a temperatura ambiente. En particular, se observa que en tracción y en compresión, la tensión de flujo plástico del material con capa es inferior a la del material sin capa. Dicha disminución de la tensión de flujo se puede atribuir aja formación, durante el proceso de oxidación, de dislocaciones en arista en una estrecha franja de substrato adyacente a la capa.

  9. Efecto del procesado termomecánico sobre las propiedades mecánicas de la aleación MA956. I Caracterización microestructura

    Directory of Open Access Journals (Sweden)

    Chao, J.

    1998-05-01

    Full Text Available Both the microstructural characteristics and the texture of the ferritic oxide dispersion strengthened MA956 alloy have been studied after different stages of processing. The material was supplied by INCO Alloys International in three conditions: hot isostatically pressed (HIP, hot extruded + 1,330°C/1 h and hot rolled. Two annealing treatments: 1,100°C/100 h and 1,330°C/1 h were performed on the HIP and hot rolled materials to observe the effect of previous microstructure (or the thermomechanical history on the final microstructure. In the hot-extruded condition, the initial strong <110> fibre texture evolves towards a very strong <111> texture after 1,330°C/1 h treatment, whereas in the hot rolled condition the initial fibre texture with components <110> and <100> results in a <100> after the same thermal treatment. It is pointed out that this difference in the final texture could be due to the differences in the volume fraction of primary grains with <100> and <111> orientations.

    Se describen las características microestructurales y la textura de la aleación MA956 en las etapas intermedias de su procesado termomecánico para obtener el producto en forma de barras. Se partió de un material procesado en INCO Alloys International de tres formas: compactado isostáticamente, eximido en caliente + 1.330°C/1 h y laminado en caliente. Los materiales procesados mediante compactación isostática y laminación en caliente, se sometieron, además, a dos tipos de recocido, uno a 1.100ºC/100 h y otro a 1.330ºC/1 h. En el caso del material procesado mediante extrusión en caliente, la textura inicial de fibra del tipo <110> evoluciona hacia una del tipo <111> cuando se la somete al tratamiento de 1.330ºC/1 h, mientras que en el caso del material procesado mediante laminación en caliente, la textura inicial, con componentes <110> y <100>, cambia hacia una del tipo <100> después del mismo tratamiento. La razón de la diferencia en la

  10. Strain y strain rate para dummies

    Directory of Open Access Journals (Sweden)

    Pastor Olaya, MD

    2011-11-01

    Full Text Available Desarrollos recientes en el campo de la ecocardiografía han permitido a los cardiólogos cuantificar de manera objetiva la función miocárdica regional y global con base en los conceptos de deformación (strain y velocidad de deformación (strain rate que pueden calcularse de manera no invasiva tanto en el ventrículo izquierdo como en el derecho, y suministrar valiosa información en múltiples escenarios clínicos. Dado que esta técnica novedosa y promisoria se utiliza cada vez más en la clínica y en estudios de investigación, se hace necesario el conocimiento adecuado de sus principios, así como de sus aspectos técnicos, alcances y limitaciones para una mejor implementación. En este artículo se busca dar explicación a los conceptos fundamentales y las potenciales aplicaciones clínicas de la strain y la strain rate derivados por speckle tracking (strain 2D.

  11. Strain y strain rate para dummies Strain and strain rate for dummies

    Directory of Open Access Journals (Sweden)

    Pastor Olaya

    2011-12-01

    Full Text Available Desarrollos recientes en el campo de la ecocardiografía han permitido a los cardiólogos cuantificar de manera objetiva la función miocárdica regional y global con base en los conceptos de deformación (strain y velocidad de deformación (strain rate que pueden calcularse de manera no invasiva tanto en el ventrículo izquierdo como en el derecho, y suministrar valiosa información en múltiples escenarios clínicos. Dado que esta técnica novedosa y promisoria se utiliza cada vez más en la clínica y en estudios de investigación, se hace necesario el conocimiento adecuado de sus principios, así como de sus aspectos técnicos, alcances y limitaciones para una mejor implementación. En este artículo se busca dar explicación a los conceptos fundamentales y las potenciales aplicaciones clínicas de la strain y la strain rate derivados por speckle tracking (strain 2D.Recent developments in the field of echocardiography have allowed cardiologists to objectively quantify regional and global myocardial function based on the deformation (strain and strain rate which can be calculated non-invasively in both the left or right ventricle, and provide valuable information in multiple clinical settings. Since this new technique is promising and is being increasingly used in clinical and research studies, the adequate knowledge of its principles and its technical aspects, scope and limitations are necessary for its better implementation. This article seeks to explain fundamental concepts and potential clinical applications of strain and strain rate derived by speckle tracking (2D strain.

  12. Multiplicative earthquake likelihood models incorporating strain rates

    Science.gov (United States)

    Rhoades, D. A.; Christophersen, A.; Gerstenberger, M. C.

    2017-01-01

    SUMMARYWe examine the potential for strain-rate variables to improve long-term earthquake likelihood models. We derive a set of multiplicative hybrid earthquake likelihood models in which cell rates in a spatially uniform baseline model are scaled using combinations of covariates derived from earthquake catalogue data, fault data, and strain-rates for the New Zealand region. Three components of the strain rate estimated from GPS data over the period 1991-2011 are considered: the shear, rotational and dilatational strain rates. The hybrid model parameters are optimised for earthquakes of M 5 and greater over the period 1987-2006 and tested on earthquakes from the period 2012-2015, which is independent of the strain rate estimates. The shear strain rate is overall the most informative individual covariate, as indicated by Molchan error diagrams as well as multiplicative modelling. Most models including strain rates are significantly more informative than the best models excluding strain rates in both the fitting and testing period. A hybrid that combines the shear and dilatational strain rates with a smoothed seismicity covariate is the most informative model in the fitting period, and a simpler model without the dilatational strain rate is the most informative in the testing period. These results have implications for probabilistic seismic hazard analysis and can be used to improve the background model component of medium-term and short-term earthquake forecasting models.

  13. Strain rate effects in stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, R.N. (Newcastle upon Tyne Univ. (UK). Dept. of Metallurgy and Engineering Materials)

    1990-03-01

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  14. Using strain rates to forecast seismic hazards

    Science.gov (United States)

    Evans, Eileen

    2017-01-01

    One essential component in forecasting seismic hazards is observing the gradual accumulation of tectonic strain accumulation along faults before this strain is suddenly released as earthquakes. Typically, seismic hazard models are based on geologic estimates of slip rates along faults and historical records of seismic activity, neither of which records actively accumulating strain. But this strain can be estimated by geodesy: the precise measurement of tiny position changes of Earth’s surface, obtained from GPS, interferometric synthetic aperture radar (InSAR), or a variety of other instruments.

  15. A high-strain-rate superplastic ceramic.

    Science.gov (United States)

    Kim, B N; Hiraga, K; Morita, K; Sakka, Y

    2001-09-20

    High-strain-rate superplasticity describes the ability of a material to sustain large plastic deformation in tension at high strain rates of the order of 10-2 to 10-1 s-1 and is of great technological interest for the shape-forming of engineering materials. High-strain-rate superplasticity has been observed in aluminium-based and magnesium-based alloys. But for ceramic materials, superplastic deformation has been restricted to low strain rates of the order of 10-5 to 10-4 s-1 for most oxides and nitrides with the presence of intergranular cavities leading to premature failure. Here we show that a composite ceramic material consisting of tetragonal zirconium oxide, magnesium aluminate spinel and alpha-alumina phases exhibits superplasticity at strain rates up to 1 s-1. The composite also exhibits a large tensile elongation, exceeding 1,050 per cent for a strain rate of 0.4 s-1. The tensile flow behaviour and deformed microstructure of the material indicate that superplasticity is due to a combination of limited grain growth in the constitutive phases and the intervention of dislocation-induced plasticity in the zirconium oxide phase. We suggest that the present results hold promise for the application of shape-forming technologies to ceramic materials.

  16. Strain hardening rate sensitivity and strain rate sensitivity in TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Bintu, Alexandra [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Vincze, Gabriela, E-mail: gvincze@ua.pt [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Picu, Catalin R. [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lopes, Augusto B. [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Grácio, Jose J. [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Barlat, Frederic [Materials Mechanics Laboratory, Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2015-04-01

    TWIP steels are materials with very high strength and exceptional strain hardening capability, parameters leading to large energy absorption before failure. However, TWIP steels also exhibit reduced (often negative) strain rate sensitivity (SRS) which limits the post-necking deformation. In this study we demonstrate for an austenitic TWIP steel with 18% Mn a strong dependence of the twinning rate on the strain rate, which results in negative strain hardening rate sensitivity (SHRS). The instantaneous component of SHRS is large and negative, while its transient is close to zero. The SRS is observed to decrease with strain, becoming negative for larger strains. Direct observations of the strain rate dependence of the twinning rate are made using electron microscopy and electron backscatter diffraction, which substantiate the proposed mechanism for the observed negative SHRS.

  17. High Strain Rate Characterisation of Composite Materials

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Normann Wilken

    The high strain rate characterisation of FRP materials present the experimenter with a new set of challenges in obtaining valid experimental data. These challenges were addressed in this work with basis in classic wave theory. The stress equilibrium process for linear elastic materials, as fibre...... a linear elastic specimen to reach a state of constant strain rate before fracture. This was in contrast to ductile materials, which are widely tested with for the High-speed servohydraulic test machine. The development of the analysis and the interpretation of the results, were based on the experience...

  18. High strain rate behaviour of polypropylene microfoams

    Science.gov (United States)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  19. High strain rate behaviour of polypropylene microfoams

    Directory of Open Access Journals (Sweden)

    Martínez A.B.

    2012-08-01

    Full Text Available Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc. or personal safety (helmets, knee-pads, etc.. In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s−1 in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB. Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  20. Strain rate effects for spallation of concrete

    Directory of Open Access Journals (Sweden)

    Häussler-Combe Ulrich

    2015-01-01

    Full Text Available Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property – which can be covered by rate dependent stress strain relations – or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  1. Tensile Properties of TWIP Steel at High Strain Rate

    Institute of Scientific and Technical Information of China (English)

    XIONG Rong-gang; FU Ren-yu; SU Yu; LI Qian; WEI Xi-cheng; LI Lin

    2009-01-01

    Tensile tests of TWIP steels of two compositions are performed in the strain rate range of 10-5 -103 s-1.Results indicate that steel 1# does not exhibit TWIP effect but deformation-induced martensitic transformation appears only.There exists TWIP effect in steel 3#.Tensile properties at room temperature are sensitive to strain rate in the studied strain rate ranges.Analysis on the relationship between strain-hardening exponent and strain rates shows that strain-induced martensitic transformation and formation of twins during deformation have significant influence on their strain-hardening behavior.

  2. High strain rate characterization of polymers

    Science.gov (United States)

    Siviour, Clive R.

    2017-01-01

    This paper reviews the literature on the response of polymers to high strain rate deformation. The main focus is on the experimental techniques used to characterize this response. The paper includes a small number of examples as well as references to experimental data over a wide range of rates, which illustrate the key features of rate dependence in these materials; however this is by no means an exhaustive list. The aim of the paper is to give the reader unfamiliar with the subject an overview of the techniques available with sufficient references from which further information can be obtained. In addition to the `well established' techniques of the Hopkinson bar, Taylor Impact and Transverse impact, a discussion of the use of time-temperature superposition in interpreting and experimentally replicating high rate response is given, as is a description of new techniques in which mechanical parameters are derived by directly measuring wave propagation in specimens; these are particularly appropriate for polymers with low wave speeds. The vast topic of constitutive modelling is deliberately excluded from this review.

  3. High strain rate deformation of layered nanocomposites

    Science.gov (United States)

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.

    2012-11-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  4. Strain rate dependency of oceanic intraplate earthquake b-values at extremely low strain rates

    Science.gov (United States)

    Sasajima, Ryohei; Ito, Takeo

    2016-06-01

    We discovered a clear positive dependence of oceanic intraplate earthquake (OCEQ) b-values on the age of the oceanic lithosphere. OCEQ b-values in the youngest (20 Ma) oceanic lithosphere exceed 1.5, which is significantly higher than the average worldwide earthquake b-value (around 1.0). On the other hand, the b-value of intraplate earthquakes in the Ninety East-Sumatra orogen, where oceanic lithosphere has an anomalously higher strain rate compared with normal oceanic lithosphere, is 0.93, which is significantly lower than the OCEQ b-value (about 1.9) with the same age (50-110 Ma). Thus, the variation in b-values relates to the strain rate of the oceanic lithosphere and is not caused by a difference in thermal structure. We revealed a negative strain rate dependency of the b-value at extremely low strain rates (1.5) in oceanic lithosphere >20 Ma old imply that future improvement in seismic observation will capture many smaller magnitude OCEQs, which will provide valuable information on the evolution of the oceanic lithosphere and the driving mechanism of plate tectonics.

  5. Effect of strain rate and temperature at high strains on fatigue behavior of SAP alloys

    DEFF Research Database (Denmark)

    Blucher, J.T.; Knudsen, Per; Grant, N.J.

    1968-01-01

    Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased with decre......Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased...

  6. High strain rate loading of polymeric foams and solid plastics

    Science.gov (United States)

    Dick, Richard D.; Chang, Peter C.; Fourney, William L.

    2000-04-01

    The split-Hopkinson pressure bar (SHPB) provided a technique to determine the high strain rate response for low density foams and solid ABS and polypropylene plastics. These materials are used in the interior safety panels of automobiles and crash test dummies. Because the foams have a very low impedance, polycarbonate bars were used to acquire the strain rate data in the 100 to 1600 l/s range. An aluminum SPHB setup was used to obtain the solid plastics data which covered strain rates of 1000 to 4000 l/s. The curves for peak strain rate versus peak stress for the foams over the test range studied indicates only a slight strain rate dependence. Peak strain rate versus peak stress curves for polypropylene shows a strain rate dependence up to about 1500 l/s. At that rate the solid poly propylene indicates no strain rate dependence. The ABS plastics are strain rate dependent up to 3500 l/s and then are independent at larger strain rates.

  7. Myocardial Strain and Strain Rate Imaging: Comparison between Doppler Derived Strain Imaging and Speckle Tracking Echocardiography

    Directory of Open Access Journals (Sweden)

    Anita Sadeghpour

    2013-05-01

    Full Text Available Regional myocardial function has been traditionally assessed by visual estimation (1. Echocardiographic strain imaging which is known as deformation imaging, has been emerged as a quantitative technique to accurately estimate regional myocardial function and contractility. Currently, strain imaging has been regarded as a research tool in the most echocardiography laboratories. However, in recent years, strain imaging has gain momentum in daily clinical practice (2. The following two techniques have dominated the research arena of echocardiography: (1 Doppler based tissue velocity measurements, frequently referred to tissue Doppler or myocardial Doppler, and (2 speckle tracking on the basis of displacement measurements (3. Over the past two decades, Tissue Doppler Imaging (TDI and Doppler –derived strain (S and strain rate (SR imaging were introduced to quantify regional myocardial function. However, Doppler–derived strain variables faced criticisms, with regard to the angle dependency, noise interference, and substantial intraobserver and interobserver variability. The angle dependency is the major weakness of Doppler based methodology; however, it has the advantage of online measurements of velocities and time intervals with excellent temporal resolution, which is essential for the assessment of ischemia (4. Speckle-tracking echocardiography (STE or Non Doppler 2D strain echocardiography is a relatively new, largely angle-independent technique that analyzes motion by tracking natural acoustic reflections and interference patterns within an ultrasonic window. The image-processing algorithm tracks elements with approximately 20 to 40 pixels containing stable patterns and are described as ‘‘speckles’’ or ‘‘fingerprints’’. The speckles seen in grayscale B-mode (2D images are tracked consecutively frame to frame (5, 6. Assessment of 2D strain by STE is a semiautomatic method that requires definition of the myocardium

  8. High Strain, Strain Rate Behavior of PTFE/Al/W

    Science.gov (United States)

    Addiss, John; Cai, Jing; Walley, Steve; Proud, William; Nesterenko, Vitali

    2007-06-01

    Conventional dropweight technique was modified to accommodate low amplitude signals from low strength, cold isostatically pressed energetic ``heavy'' composites of polytetrafluoroethylene (PTFE)/AL/W. The fracture strength, strain and post-critical behaviour of fractured samples were measured for samples of different porosity and W grain size (the masses of each component being the same in each case). Unusual phenomenon of significantly higher strength (55 MPa) of porous composites (density 5.9 g/cc) with small tungsten particles (1 micron) in comparison with strength (32 MPa) of dense composites (7.1 g/cc) with larger tungsten particles (20 micron) was observed. This is attributed to force chains created by a network of small tungsten particles. Interrupted tests at the different level of strains revealed mechanism of fracture under dynamic compression.

  9. Uniaxial tension test on Rubber at constant true strain rate

    Directory of Open Access Journals (Sweden)

    Sourne H.L.

    2012-08-01

    Full Text Available Elastomers are widely used for damping parts in different industrial contexts because of their remarkable dissipation properties. Indeed, they can undergo severe mechanical loading conditions, i.e., high strain rates and large strains. Nevertheless, the mechanical response of these materials can vary from purely rubber-like to glassy depending on the strain rate undergone. Classically, uniaxial tension tests are made in order to find a relation between the stress and the strain in the material at various strain rates. However, even if the strain rate is searched to be constant, it is the nominal strain rate that is considered. Here we develop a test at constant true strain rate, i.e. the strain rate that is experienced by the material. In order to do such a test, the displacement imposed by the machine is an exponential function of time. This test has been performed with a high speed hydraulic machine for strain rates between 0.01/s and 100/s. A specific specimen has been designed, yielding a uniform strain field (and so a uniform stress field. Furthermore, an instrumented aluminum bar has been used to take into account dynamic effects in the measurement of the applied force. A high speed camera enables the determination of strain in the sample using point tracking technique. Using this method, the stress-strain curve of a rubber-like material during a loading-unloading cycle has been determined, up to a stretch ratio λ = 2.5. The influence of the true strain rate both on stiffness and on dissipation of the material is then discussed.

  10. Effect of strain rate and temperature at high strains on fatigue behavior of SAP alloys

    DEFF Research Database (Denmark)

    Blucher, J.T.; Knudsen, Per; Grant, N.J.

    1968-01-01

    Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased...

  11. Tensile Properties of Fiber Materials under Different Strain Rates

    Institute of Scientific and Technical Information of China (English)

    XIONG Jie; GU Bo-hong; WANG Shan-yuan

    2002-01-01

    The quasi-static and dynamic tensile tests of aranid and high strength PVA fiber bundles are carried out under a wider range of strain rate by use of MTS (Materials Testing System) and bar-bar tensile impact apparatus.The influences of strain rate on mechanical properties of aramid and high strength polyvinyl alcohol fibers ar estudied. Micro failure mechanisms of fibers at different strain rates are examined by means of SEM.

  12. Strain rate effect in high-speed wire drawing process

    Science.gov (United States)

    He, S.; Van Houtte, P.; Van Bael, A.; Mei, F.; Sarban, A.; Boesman, P.; Galvez, F.; Atienza, J. M.

    2002-05-01

    This paper presents a study on the strain rate effect during high-speed wire drawing process by means of finite element simulation. Based on the quasistatic stresses obtained by normal tensile tests and dynamic stresses at high strain rates by split Hopkinson pressure bar tests, the wire drawing process was simulated for low carbon steel and high carbon steel. The results show that both the deformation process and the final properties of drawn wires are influenced by the strain rate.

  13. Dynamic tensile testing for determining the stress-strain curve at different strain rate

    OpenAIRE

    Mansilla, A; Regidor, A.; García, D.; Negro, A

    2001-01-01

    A detailed discussion of high strain-rate tensile testing is presented. A comparative analysis of different ways to measure stress and strain is made. The experimental stress-strain curves have been suitably interpreted to distinguish between the real behaviour of the material and the influence of the testing methodology itself. A special two sections flat specimen design was performed through FEA computer modelling. The mechanical properties as function of strain rate were experimentally obt...

  14. Strain Rate Effects in CFRP Used For Blast Mitigation

    Directory of Open Access Journals (Sweden)

    Sarah. L. Orton

    2014-04-01

    Full Text Available The purpose of this research is to gain a better understanding of strain rate effects in carbon fiber reinforced polymer (CFRP laminates exposed to blast loading. The use of CFRP offers an attractive option for mitigating structures exposed to blasts. However, the effect of high strain rates in CFRP composites commonly used in the civil industry is unknown. This research conducted tensile tests of 21 CFRP coupons using a hydraulically powered dynamic loader. The strain rates ranged from 0.0015 s−1 to 7.86 s−1 and are representative of strain rates that CFRP may see in a blast when used to strengthen reinforced concrete structures. The results of the testing showed no increase in the tensile strength or stiffness of the CFRP at the higher strain rates. In addition, the results showed significant scatter in the tensile strengths possibly due to the rate of loading or manufacture of the coupon.

  15. High Strain Rate Compressive Tests on Woven Graphite Epoxy Composites

    Science.gov (United States)

    Allazadeh, Mohammad Reza; Wosu, Sylvanus N.

    2011-08-01

    The behavior of composite materials may be different when they are subjected to high strain rate load. Penetrating split Hopkinson pressure bar (P-SHPB) is a method to impose high strain rate on specimen in the laboratory experiments. This research work studied the response of the thin circular shape specimens, made out of woven graphite epoxy composites, to high strain rate impact load. The stress-strain relationships and behavior of the specimens were investigated during the compressive dynamic tests for strain rates as high as 3200 s-1. One dimensional analysis was deployed for analytical calculations since the experiments fulfilled the ratio of diameter to length of bars condition in impact load experiments. The mechanics of dynamic failure was studied and the results showed the factors which govern the failure mode in high strain deformation via absorbed energy by the specimen. In this paper, the relation of particle velocity with perforation depth was discussed for woven graphite epoxy specimens.

  16. A numerical method for determining the strain rate intensity factor under plane strain conditions

    Science.gov (United States)

    Alexandrov, S.; Kuo, C.-Y.; Jeng, Y.-R.

    2016-07-01

    Using the classical model of rigid perfectly plastic solids, the strain rate intensity factor has been previously introduced as the coefficient of the leading singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. Since then, many strain rate intensity factors have been determined by means of analytical and semi-analytical solutions. However, no attempt has been made to develop a numerical method for calculating the strain rate intensity factor. This paper presents such a method for planar flow. The method is based on the theory of characteristics. First, the strain rate intensity factor is derived in characteristic coordinates. Then, a standard numerical slip-line technique is supplemented with a procedure to calculate the strain rate intensity factor. The distribution of the strain rate intensity factor along the friction surface in compression of a layer between two parallel plates is determined. A high accuracy of this numerical solution for the strain rate intensity factor is confirmed by comparison with an analytic solution. It is shown that the distribution of the strain rate intensity factor is in general discontinuous.

  17. Strain localization band width evolution by electronic speckle pattern interferometry strain rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guelorget, Bruno [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)], E-mail: bruno.guelorget@utt.fr; Francois, Manuel; Montay, Guillaume [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)

    2009-04-15

    In this paper, electronic speckle pattern interferometry strain rate measurements are used to quantify the width of the strain localization band, which occurs when a sheet specimen is submitted to tension. It is shown that the width of this band decreases with increasing strain. Just before fracture, this measured width is about five times wider than the shear band and the initial sheet thickness.

  18. Combined grain size, strain rate and loading condition effects on mechanical behavior of nanocrystalline Cu under high strain rates

    Institute of Scientific and Technical Information of China (English)

    Lu-Ming Shen

    2012-01-01

    Molecular dynamics simulations of nanocrystalline Cu with average grain sizes of 3.1 nm,6.2 nm,12.4 nm and 18.6 nm under uniaxial strain and stress tension at strain rates of 108 s-1,109 s-1 and 1010 s-1 are performed to study the combined grain size,strain rate and loading condition effects on mechanical properties. It is found that the strength of nanocrystalline Cu increases as grain size increases regardless of loading condition.Both the strength and ductility of nanocrystalline Cu increase with strain rate except that there is no monotonic relation between the strength and strain rate for specimens under uniaxial strain loading.Moreover,the strength and ductility of specimens under uniaxial strain loading are lower than those under uniaxial stress loading.The nucleation of voids at grain boundaries and their subsequent growth characterize the failure of specimens under uniaxial strain loading,while grain boundary sliding and necking dominate the failure of specimens under uniaxial stress loading.The rate dependent strength is mainly caused by the dynamic wave effect that limits dislocation motion,while combined twinning and slipping mechanism makes the material more ductile at higher strain rates.

  19. Strain rate measurement by Electronic Speckle Pattern Interferometry: A new look at the strain localization onset

    Energy Technology Data Exchange (ETDEWEB)

    Guelorget, Bruno [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)]. E-mail: bruno.guelorget@utt.fr; Francois, Manuel [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Vial-Edwards, Cristian [Departemento de Ingenieria Mecanica y Metalurgica, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, 6904411 Santiago (Chile); Montay, Guillaume [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Daniel, Laurent [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Lu, Jian [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)

    2006-01-15

    In-plane Electronic Speckle Pattern Interferometry has been successfully used during tensile testing of semi-hard copper sheets in order to measure the strain rate. On one hand, heterogeneity in strain rate field has been found before the maximum of the tensile force ({epsilon} {sup t} {approx_equal} 19.4 and 25.4%, respectively). Thus, a localization phenomenon occurs before the classic Considere's criterion (dF = 0) for the diffuse neck initiation. On the other hand, strain rate measurement before fracture shows the moment where one of the two slip band systems becomes predominant, then strain concentrates in a small area, the shear band. Uncertainty evaluation has been carried out, which shows a very good accuracy of the total strain and the strain rate measurements.

  20. Twinning in copper deformed at high strain rates

    Indian Academy of Sciences (India)

    S Cronje; R E Kroon; W D Roos; J H Neethling

    2013-02-01

    Copper samples having varying microstructures were deformed at high strain rates using a split-Hopkinson pressure bar. Transmission electron microscopy results show deformation twins present in samples that were both annealed and strained, whereas samples that were annealed and left unstrained, as well as samples that were unannealed and strained, are devoid of these twins. These deformation twins occurred at deformation conditions less extreme than previously predicted.

  1. Study of High Strain Rate Response of Composites

    Science.gov (United States)

    Gilat, Amos

    2003-01-01

    The objective of the research was to continue the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, and to initiate a study of the effects of temperature by developing an elevated temperature test. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, rate dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into testing the epoxy resin. Three types of epoxy resins were tested in tension and shear at various strain rates that ranges from 5 x 10(exp -5), to 1000 per second. Pilot shear experiments were done at high strain rate and an elevated temperature of 80 C. The results show that all, the strain rate, the mode of loading, and temperature significantly affect the response of epoxy.

  2. Elastocaloric cooling processes: The influence of material strain and strain rate on efficiency and temperature span

    Science.gov (United States)

    Schmidt, Marvin; Schütze, Andreas; Seelecke, Stefan

    2016-06-01

    This paper discusses the influence of material strain and strain rate on efficiency and temperature span of elastocaloric cooling processes. The elastocaloric material, a newly developed quaternary Ni-Ti-Cu-V alloy, is characterized at different maximum strains and strain rates. The experiments are performed with a specially designed test setup, which enables the measurement of mechanical and thermal process parameters. The material efficiency is compared to the efficiency of the Carnot process at equivalent thermal operation conditions. This method allows for a direct comparison of the investigated material with other caloric materials.

  3. Elastocaloric cooling processes: The influence of material strain and strain rate on efficiency and temperature span

    Directory of Open Access Journals (Sweden)

    Marvin Schmidt

    2016-06-01

    Full Text Available This paper discusses the influence of material strain and strain rate on efficiency and temperature span of elastocaloric cooling processes. The elastocaloric material, a newly developed quaternary Ni-Ti-Cu-V alloy, is characterized at different maximum strains and strain rates. The experiments are performed with a specially designed test setup, which enables the measurement of mechanical and thermal process parameters. The material efficiency is compared to the efficiency of the Carnot process at equivalent thermal operation conditions. This method allows for a direct comparison of the investigated material with other caloric materials.

  4. Strain Rate Dependent Modeling of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1999-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Strain rate dependent inelastic constitutive equations have been developed to model the polymer matrix, and have been incorporated into a micromechanics approach to analyze polymer matrix composites. The Hashin failure criterion has been implemented within the micromechanics results to predict ply failure strengths. The deformation model has been implemented within LS-DYNA, a commercially available transient dynamic finite element code. The deformation response and ply failure stresses for the representative polymer matrix composite AS4/PEEK have been predicted for a variety of fiber orientations and strain rates. The predicted results compare favorably to experimentally obtained values.

  5. Stretching Behavior of Red Blood Cells at High Strain Rates

    Science.gov (United States)

    Mancuso, Jordan; Ristenpart, William

    2016-11-01

    Most work on the mechanical behavior of red blood cells (RBCs) has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this work, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that a simple viscoelastic model captures the observed stretching dynamics, up to strain rates as high as 1000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  6. High strain rate compression testing of glass fibre reinforced polypropylene

    Directory of Open Access Journals (Sweden)

    Cloete T.J.

    2012-08-01

    Full Text Available This paper details an investigation of the high strain rate compression testing of GFPP with the Split Hopkinson Pressure Bar (SHPB in the through-thickness and in-plane directions. GFPP posed challenges to SHPB testing as it fails at relatively high stresses, while having relatively low moduli and hence mechanical impedance. The modifications to specimen geometry and incident pulse shaping in order to gather valid test results, where specimen equilibrium was achieved for SHPB tests on GFPP are presented. In addition to conventional SHPB tests to failure, SHPB experiments were designed to achieve specimen equilibration at small strains, which permitted the capture of high strain rate elastic modulus data. The strain rate dependency of GFPP’s failure strengths in the in-plane and through-thickness direction is modelled using a logarithmic law.

  7. Strain rate dependence in plasticized and un-plasticized PVC

    Directory of Open Access Journals (Sweden)

    Siviour C.R.

    2012-08-01

    Full Text Available An experimental and analytical investigation has been made into the mechanical behaviour of two poly (vinyl chloride (PVC polymers – an un-plasticized PVC and a diisononyl phthalate (DINP-plasticized PVC. Measurements of the compressive stress-strain behaviour of the PVCs at strain rates ranging from 10−3 to 103s−1 and temperatures from − 60 to 100∘C are presented. Dynamic Mechanical Analysis was also performed in order to understand the material transitions observed in compression testing as the strain rate is increased. This investigation develops a better understanding of the interplay between the temperature dependence and rate dependence of polymers, with a focus on locating the temperature and rate-dependent material transitions that occur during high rate testing.

  8. Strain rate dependence in plasticized and un-plasticized PVC

    Science.gov (United States)

    Kendall, M. J.; Siviour, C. R.

    2012-08-01

    An experimental and analytical investigation has been made into the mechanical behaviour of two poly (vinyl chloride) (PVC) polymers - an un-plasticized PVC and a diisononyl phthalate (DINP)-plasticized PVC. Measurements of the compressive stress-strain behaviour of the PVCs at strain rates ranging from 10-3 to 103s-1 and temperatures from - 60 to 100∘C are presented. Dynamic Mechanical Analysis was also performed in order to understand the material transitions observed in compression testing as the strain rate is increased. This investigation develops a better understanding of the interplay between the temperature dependence and rate dependence of polymers, with a focus on locating the temperature and rate-dependent material transitions that occur during high rate testing.

  9. Creep Strain and Strain Rate Response of 2219 Al Alloy at High Stress Levels

    Science.gov (United States)

    Taminger, Karen M. B.; Wagner, John A.; Lisagor, W. Barry

    1998-01-01

    As a result of high localized plastic deformation experienced during proof testing in an International Space Station connecting module, a study was undertaken to determine the deformation response of a 2219-T851 roll forging. After prestraining 2219-T851 Al specimens to simulate strains observed during the proof testing, creep tests were conducted in the temperature range from ambient temperature to 107 C (225 F) at stress levels approaching the ultimate tensile strength of 2219-T851 Al. Strain-time histories and strain rate responses were examined. The strain rate response was extremely high initially, but decayed rapidly, spanning as much as five orders of magnitude during primary creep. Select specimens were subjected to incremental step loading and exhibited initial creep rates of similar magnitude for each load step. Although the creep rates decreased quickly at all loads, the creep rates dropped faster and reached lower strain rate levels for lower applied loads. The initial creep rate and creep rate decay associated with primary creep were similar for specimens with and without prestrain; however, prestraining (strain hardening) the specimens, as in the aforementioned proof test, resulted in significantly longer creep life.

  10. Assessment of myocardial strain and strain rate by tissue doppler echocar-diography

    Directory of Open Access Journals (Sweden)

    Ekimova N.A.

    2013-03-01

    Full Text Available The objective of the article is to review the current data on the method of quantitative evaluation of cardiac mechanics — assessment of myocardial strain and strain rate according to the results of the tissue Doppler echocardiography and prospects of its clinical application.

  11. Constitutive Relation of Yunjialing Anthracite Under Medium Strain Rate

    Institute of Scientific and Technical Information of China (English)

    GAO Wen-jiao; SHAN Ren-liang; WANG Gong-cheng; CHENG Rui-qiang

    2007-01-01

    By means of the split Hopkinson pressure bar (SHPB) testing system, this paper presents a dynamic constitutive relation of anthracite at a strain rate of ε =5-85s-1. Generally, the dynamic stress-strain curve for this kind of anthracite under uni-axial compression has the following four stages: a non-linear loading stage, a plastic yielding stage, a strain-strengthening stage and an unloading breakage stage. Correspondingly, the initial elastic modulus Eb, the yielding strength σs and the ultimate strength σb increase along with an increasing strain rate. The time-dependent elasticity was identified when we analyzed the mechanical properties of anthracite. Based on characteristics of measured dynamic stress-strain curves and an analysis of existing rock dynamic constitutive models, as well as a preparatory simulation, a new visco-elastic damage model has been introduced in this paper. A linear spring is put parallel to two Maxwell units with different relaxation times to express two distinct plastic flows. The damage D is equal to [Eb- E(εi)]/Eb, where Eb is the beginning modulus and the E(εi) is the slope of a connected line between the origin point and any other point on a tested stress-strain curve. In the new constitutive model, one Maxwell unit with low relaxation time (ψ)1 is used to describe the response of anthracite to a low strain rate, while the other, with a high relaxation time (ψ)2 describes the response of anthracite to a high strain rate. Simulated stress-strain curves from the new model are consistent with the measured curves.

  12. The influence of strain rate and hydrogen on the plane-strain ductility of Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Link, T.M.; Motta, A.T.; Koss, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1998-03-01

    The authors studied the ductility of unirradiated Zircaloy-4 cladding under loading conditions prototypical of those found in reactivity-initiated accidents (RIA), i.e.: near plane-strain deformation in the hoop direction (transverse to the cladding axis) at room temperature and 300 C and high strain rates. To conduct these studies, they developed a specimen configuration in which near plane-strain deformation is achieved in the gage section, and a testing methodology that allows one to determine both the limit strain at the onset of localized necking and the fracture strain. The experiments indicate that there is little effect of strain rate (10{sup {minus}3} to 10{sup 2} s{sup {minus}1}) on the ductility of unhydrided Zircaloy tubing deformed under near plane-strain conditions at either room temperature or 300 C. Preliminary experiments on cladding containing 190 ppm hydrogen show only a small loss of fracture strain but no clear effect on limit strain. The experiments also indicate that there is a significant loss of Zircaloy ductility when surface flaws are present in the form of thickness imperfections.

  13. High Strain Rate Behavior of Polymer Matrix Composites Analyzed

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.

    2001-01-01

    Procedures for modeling the high-speed impact of composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. To characterize and validate material models that could be used in the design of impactresistant engine cases, researchers must obtain material data over a wide variety of strain rates. An experimental program has been carried out through a university grant with the Ohio State University to obtain deformation data for a representative polymer matrix composite for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used to characterize and validate a constitutive model that was developed at the NASA Glenn Research Center.

  14. Strain rate dependency of laser sintered polyamide 12

    Directory of Open Access Journals (Sweden)

    Cook J.E.T.

    2015-01-01

    Full Text Available Parts processed by Additive Manufacturing can now be found across a wide range of applications, such as those in the aerospace and automotive industry in which the mechanical response must be optimised. Many of these applications are subjected to high rate or impact loading, yet it is believed that there is no prior research on the strain rate dependence in these materials. This research investigates the effect of strain rate and laser energy density on laser sintered polyamide 12. In the study presented here, parts produced using four different laser sintered energy densities were exposed to uniaxial compression tests at strain rates ranging from 10−3 to 10+3 s−1 at room temperature, and the dependence on these parameters is presented.

  15. Attaining the rate-independent limit of a rate-dependent strain gradient plasticity theory

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2016-01-01

    The existence of characteristic strain rates in rate-dependent material models, corresponding to rate-independent model behavior, is studied within a back stress based rate-dependent higher order strain gradient crystal plasticity model. Such characteristic rates have recently been observed...... for steady-state processes, and the present study aims to demonstrate that the observations in fact unearth a more widespread phenomenon. In this work, two newly proposed back stress formulations are adopted to account for the strain gradient effects in the single slip simple shear case, and characteristic...

  16. Analysis of Changing Swarm Rate using Volumetric Strain

    Science.gov (United States)

    Kumazawa, T.; Ogata, Y.; Kimura, K.; Maeda, K.; Kobayashi, A.

    2015-12-01

    Near the eastern coast of Izu peninsula is an active submarine volcanic region in Japan, where magma intrusions have been observed many times. The forecast of earthquake swarm activities and eruptions are serious concern particularly in nearby hot spring resort areas. It is well known that temporal durations of the swarm activities have been correlated with early volumetric strain changes at a certain observation station of about 20 km distance apart. Therefore the Earthquake Research Committee (2010) investigated some empirical statistical relations to predict sizes of the swarm activity. Here we looked at the background seismicity rate changes during these swarm periods using the non-stationary ETAS model (Kumazawa and Ogata, 2013, 2014), and have found the followings. The modified volumetric strain data, by removing the effect of earth tides, precipitation and coseismic jumps, have significantly higher cross-correlations to the estimated background rates of the ETAS model than to the swarm rate-changes. Specifically, the background seismicity rate synchronizes clearer to the strain change by the lags around a half day. These relations suggest an enhanced prediction of earthquakes in this region using volumetric strain measurements. Hence we propose an extended ETAS model where the background rate is modulated by the volumetric strain data. We have also found that the response function to the strain data can be well approximated by an exponential functions with the same decay rate, but that their intersects are inversely proportional to the distances between the volumetric strain-meter and the onset location of the swarm. Our numerical results by the same proposed model show consistent outcomes for the various major swarms in this region.

  17. High-Strain Rate Mechanical Response of Cured Epoxy Networks

    Science.gov (United States)

    Sirk, Timothy; Khare, Ketan; Karim, Mir; Lenhart, Joseph; Khare, Rajesh; Andzelm, Jan

    2013-03-01

    Chemically cross-linked polymer networks are increasingly common in high performance composites, adhesives and other applications involving high-impact loading conditions or ballistic collisions. The mechanical behavior of epoxy and other polymer networks exhibit a strong dependence on strain rate near the glass transition temperature (Tg); however, the elastic modulus at strain rates greater than 105 1/s is difficult to capture with experimental techniques. We present computational results of Di-Glycidyl Ether of Bisphenol A (DGEBA) and Jeffamine diamines (D230) from molecular dynamics simulation, which is intrinsically well-suited to model material deformation at high strain rates. Our results show that the experimental Tg can be reproduced from molecular dynamics, and the Williams-Landel-Ferry equation is useful in rationalizing the shift of Tg due to fast annealing and high strain rates. Temperature sweeps of elastic modulus show the glass-rubber transition to occur over a significantly wider temperature range compared with experimental measurements at low strain rates.

  18. Strain rate effects on GRP, KRP and CFRP composite laminates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hassani, S.T.S.; Kaddour, A.S. [University of Manchester Inst. of Science and Technology (UMIST) (United Kingdom). Dept. of Mechanical Engineering

    1998-05-01

    This paper first reviews published research work on the effect of strain-rate on the in-plane mechanical properties of continuous Kevlar (KRP), glass (GRP) and carbon (CFRP) fibre reinforced plastic materials. A detailed description of techniques employed for testing composite materials at a wide range of strain rates is given. Recent relevant test results are presented showing the variation of mechanical properties with strain rates for unidirectional and multidirectional laminates under in-plane loading. The paper then concentrates on current activities on indirect determination of unidirectional dynamic properties from the behaviour of angle ply laminates by means of an extraction process. Theoretical procedures for extracting the longitudinal, transverse and in-plane shear properties are outlined. An extension to those procedures allowing simultaneous determination of transverse and in-plane shear moduli of a ply is introduced and results using this method are presented for KRP and CFRP under combined strain rate and temperature. Existing theories and mechanisms describing the combined effects of the temperature and the strain-rate on the mechanical response of composite materials are outlined. (orig.) 98 refs.

  19. Stress, strain rate and anisotropy in Kyushu, Japan

    Science.gov (United States)

    Savage, M. K.; Aoki, Y.; Unglert, K.; Ohkura, T.; Umakoshi, K.; Shimizu, H.; Iguchi, M.; Tameguri, T.; Ohminato, T.; Mori, J.

    2016-04-01

    Seismic anisotropy, the directional dependence of wave speeds, may be caused by stress-oriented cracks or by strain-oriented minerals, yet few studies have quantitatively compared anisotropy to stress and strain over large regions. Here we compare crustal stress and strain rates on the Island of Kyushu, Japan, as measured from inversions of focal mechanisms, GPS and shear wave splitting. Over 85,000 shear wave splitting measurements from local and regional earthquakes are obtained from the NIED network between 2004 and 2012, and on Aso, Sakurajima, Kirishima and Unzen volcano networks. Strain rate measurements are made from the Japanese Geonet stations. JMA-determined S arrival times processed with the MFAST shear wave splitting code measure fast polarisations (Φ), related to the orientation of the anisotropic medium and time delays (dt), related to the path length and the percent anisotropy. We apply the TESSA 2-D delay time tomography and spatial averaging code to the highest quality events, which have nearly vertical incidence angles, separating the 3455 shallow (depth = 40 km) earthquakes. Using square grids with 30 km sides for all the inversions, the best correlations are observed between splitting from shallow earthquakes and stress. Axes of maximum horizontal stress (SHmax) and Φ correlate with a coefficient c of 0.56, significant at the 99% confidence level. Their mean difference is 31.9°. Axes of maximum compressional strain rate and SHmax are also well aligned, with an average difference of 28°, but they do not correlate with each other, meaning that where they differ, the difference is not systematic. Anisotropy strength is negatively correlated with the stress ratio parameter determined from focal mechanism inversion (c = - 0.64; significant at the 99% confidence level). The anisotropy and stress results are consistent with stress-aligned microcracks in the crust in a dominantly strike-slip regime. Eigenvalues of maximum horizontal strain rate

  20. Strain rate dependency and fragmentation pattern of expanding warheads

    Institute of Scientific and Technical Information of China (English)

    John F MOXNES; Anne K PRYTZ; yvind FRYLAND; Stian SKRIUDALEN; Steinar BRVE; Gard DEGRDSTUEN

    2015-01-01

    For the characterization of the behaviors of a metal material in events like expanding warheads, it is necessary to know its strength and ductility at high strain rates, around 104e105/s. The flyer plate impact testing produces the uniform stress and strain rates but the testing is expensive. The Taylor test is relatively inexpensive but produces non-uniform stress and strain fields, and the results are not so easily inferred for material modeling. In the split-Hopkinson bar (SHB), which may be used in compression, tension and torsion testing, the strain rates never exceeds 103/s. In the present work, we use the expanding ring test where the strain rate is 104e105/s. A streak camera is used to examine the expanding ring velocity, and a water tank is used to collect the fragments. The experimental results are compared with the numerical simulations using the hydrocodes AUTODYN, IMPETUS Afea and a regularized smooth particle (RSPH) software. The number of fragments increases with the increase in the expansion velocity of the rings. The number of fragments is similar to the experimental results. The RSPH software shows much the same results as the AUTODYN where the Lagrangian solver is used for the ring. The IMPETUS Afea solver shows a somewhat different fragmentation characteristic due to the node splitting algorithm that induces pronounced tensile splitting.

  1. Strain rate dependency and fragmentation pattern of expanding warheads

    Directory of Open Access Journals (Sweden)

    John F. Moxnes

    2015-03-01

    Full Text Available For the characterization of the behaviors of a metal material in events like expanding warheads, it is necessary to know its strength and ductility at high strain rates, around 104–105/s. The flyer plate impact testing produces the uniform stress and strain rates but the testing is expensive. The Taylor test is relatively inexpensive but produces non-uniform stress and strain fields, and the results are not so easily inferred for material modeling. In the split-Hopkinson bar (SHB, which may be used in compression, tension and torsion testing, the strain rates never exceeds 103/s. In the present work, we use the expanding ring test where the strain rate is 104–105/s. A streak camera is used to examine the expanding ring velocity, and a water tank is used to collect the fragments. The experimental results are compared with the numerical simulations using the hydrocodes AUTODYN, IMPETUS Afea and a regularized smooth particle (RSPH software. The number of fragments increases with the increase in the expansion velocity of the rings. The number of fragments is similar to the experimental results. The RSPH software shows much the same results as the AUTODYN where the Lagrangian solver is used for the ring. The IMPETUS Afea solver shows a somewhat different fragmentation characteristic due to the node splitting algorithm that induces pronounced tensile splitting.

  2. Strain rate orientations near the Coso Geothermal Field

    Science.gov (United States)

    Ogasa, N. T.; Kaven, J. O.; Barbour, A. J.; von Huene, R.

    2016-12-01

    Many geothermal reservoirs derive their sustained capacity for heat exchange in large part due to continuous deformation of preexisting faults and fractures that permit permeability to be maintained. Similarly, enhanced geothermal systems rely on the creation of suitable permeability from fracture and faults networks to be viable. Stress measurements from boreholes or earthquake source mechanisms are commonly used to infer the tectonic conditions that drive deformation, but here we show that geodetic data can also be used. Specifically, we quantify variations in the horizontal strain rate tensor in the area surrounding the Coso Geothermal Field (CGF) by analyzing more than two decades of high accuracy differential GPS data from a network of 14 stations from the University of Nevada Reno Geodetic Laboratory. To handle offsets in the data, from equipment changes and coseismic deformation, we segment the data, perform a piecewise linear fit and take the average of each segment's strain rate to determine secular velocities at each station. With respect to North America, all stations tend to travel northwest at velocities ranging from 1 to 10 mm/yr. The nearest station to CGF shows anomalous motion compared to regional stations, which otherwise show a coherent increase in network velocity from the northeast to the southwest. We determine strain rates via linear approximation using GPS velocities in Cartesian reference frame due to the small area of our network. Principal strain rate components derived from this inversion show maximum extensional strain rates of 30 nanostrain/a occur at N87W with compressional strain rates of 37nanostrain/a at N3E. These results generally align with previous stress measurements from borehole breakouts, which indicate the least compressive horizontal principal stress is east-west oriented, and indicative of the basin and range tectonic setting. Our results suggest that the CGF represents an anomaly in the crustal deformation field, which

  3. Temporal evolution of strain rates at western Greenland moulins

    Science.gov (United States)

    Poinar, Kristin; Andrews, Lauren; Chu, Vena; Moon, Twila; Nowicki, Sophie

    2017-04-01

    Moulins are key sources for subglacial water across western Greenland. The rate and timing at which they deliver surface meltwater to the subglacial system are crucial inputs for ice-sheet hydrology models. Intensive field campaigns coupled to remote sensing efforts have provided, to date, information on the timing of supraglacial lake drainages and water flux through the consequent moulins, but predicting the dates of moulin activation has remained an area of active research. This is vital for the construction of spatially variable basal-input hydrographs for models that will predict the future evolution of Greenland ice flow and sliding. In this study, we combine multiple remote sensing datasets to investigate the degree to which local strain rates can predict moulin activation dates, as indicated by supraglacial lake drainage events. We find that over the period 2009-2011 in the Pâkitsoq region, moulins with more-tensile background (wintertime InSAR-derived) strain rates tend to activate first, followed by moulins in less-tensile background strain regimes. This pattern is relatively consistent across years, although we find that background strain rates are less important in explaining the date of moulin activation than are moulin elevation or cumulative days of runoff. In the Russell Glacier area, we examine the temporal evolution of summertime, Landsat-derived strain rates at moulin locations. Principal component analysis shows that strain rates at moulin locations increased abruptly over June 2012, independent of moulin elevation; strain rates in localities without moulins varied more smoothly in time. We also compare the strain rate time series at each moulin to lake drainage dates derived from MODIS and Landsat imagery from 2012. We hypothesize that the contrasting bedrock topography of the regions (Pâkitsoq is rougher than Russell at the few-km scale) may drive variations in moulin opening patterns across the two regions. Our results will have

  4. Strain rate and temperature dependent mechanical behavior of nanocrystalline gold

    Science.gov (United States)

    Karanjgaokar, Nikhil J.

    Nanocrystalline metal films are candidate materials for microelectronics and Microelectromechanical Systems (MEMS). The long term mechanical stability of metal films requires quantitative understanding of their thermo-mechanical behavior in the large range of operating strain rates and temperatures. This dissertation research studied (a) the role of thermally activated processes based on the strain rate and temperature dependent mechanical behavior of nanocrystalline Au thin films, and (b) deformation processes at nominally elastic loads that lead to creep strain over a moderate temperature range that is relevant to MEMS applications. The rate dependent mechanical behavior of nanocrystalline Au thin films was first investigated at room temperature ~ 25 °C and at strain rates between 10-6 to 20 s-1. The use of digital image correlation (DIC) facilitated repeatable and accurate measurements of fullfield strain from free-standing nanocrystalline Au thin films. The experimental stress-strain curves were used to calculate activation volumes for two film thicknesses (0.85 mum, and 1.75 mum), which were 4.5b3 and 8.1b3, at strain rates smaller than 10-4 s-1 and 12.5b3 and 14.6b3 at strain rates higher than 10-4 s-1. The reduced activation volume and increased strain rate sensitivity at slow strain rates were attributed to grain boundary (GB) diffusional processes that result in creep strain. The room temperature strain rate results were augmented with microscale strain rate experiments at temperatures up to 110 °C. Two methods for heating free-standing microscale thin film specimens, namely uniform heating using a custom-built microheater and resistive (Joule) heating, were evaluated using a combination of full-field strain measurements by optical microscopy and full-field temperature measurements by infrared (IR) thermal imaging. It was shown for the first time that the Joule specimen heating method results in large underestimation of the inelastic material properties

  5. Determination of Tensile Properties of Polymers at High Strain Rates

    Directory of Open Access Journals (Sweden)

    Major Z.

    2010-06-01

    Full Text Available In the field of high rate testing of polymers the measured properties are highly dependent on the applied methodology. Hence, the test setup as whole but in particular also the geometrical type of specimen plays a decisive role. The widely used standard for the determination of tensile properties of polymers (ISO527-2 was extended by a novel standard (ISO18872:2007, which is targeted on the determination of tensile properties at high strain rates. In this standard also a novel specimen shape is proposed. Hand in hand with the introduction of new specimen geometry the question of comparability arises. To point out the differences in stress-strain response of the ISO18872 specimen and the ISO527-2 multipurpose specimen tensile tests over a wide loading rate range were conducted in this paper. A digital image correlation system in combination with a high speed camera was used to characterize the local material behaviour. Different parameters like nominal stress, true stress, nominal strain, true strain as well as volumetric strain were determined and used to compare the two specimen geometries.

  6. Recent advances in echocardiography: strain and strain rate imaging [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Oana Mirea

    2016-04-01

    Full Text Available Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications.

  7. A fast and accurate method for echocardiography strain rate imaging

    Science.gov (United States)

    Tavakoli, Vahid; Sahba, Nima; Hajebi, Nima; Nambakhsh, Mohammad Saleh

    2009-02-01

    Recently Strain and strain rate imaging have proved their superiority with respect to classical motion estimation methods in myocardial evaluation as a novel technique for quantitative analysis of myocardial function. Here in this paper, we propose a novel strain rate imaging algorithm using a new optical flow technique which is more rapid and accurate than the previous correlation-based methods. The new method presumes a spatiotemporal constancy of intensity and Magnitude of the image. Moreover the method makes use of the spline moment in a multiresolution approach. Moreover cardiac central point is obtained using a combination of center of mass and endocardial tracking. It is proved that the proposed method helps overcome the intensity variations of ultrasound texture while preserving the ability of motion estimation technique for different motions and orientations. Evaluation is performed on simulated, phantom (a contractile rubber balloon) and real sequences and proves that this technique is more accurate and faster than the previous methods.

  8. Soft Tissue Strain Rates in Side-Blast Incidents

    Science.gov (United States)

    2014-11-02

    for Human Head Impacts. Proceedings ASME Biomechanics of Human Factors Conference. [22] Hannon P, Knapp K. 2006. Forensic Biomechanics. Lawyers...J, Song, B, Pintar, F, Yoganandan N, Chen W, Gennarelli TA. 2008. How to test brain and brain simulant at ballistic and blast strain rates. Rocky

  9. Dynamics of a seismogenic fault subject to variable strain rate

    Directory of Open Access Journals (Sweden)

    M. Dragoni

    2011-06-01

    Full Text Available The behaviour of seismogenic faults is generally investigated under the assumption that they are subject to a constant strain rate. We consider the effect of a slowly variable strain rate on the recurrence times of earthquakes generated by a single fault. To this aim a spring-block system is employed as a low-order analog of the fault. Two cases are considered: a sinusoidal oscillation in the driver velocity and a monotonic change from one velocity value to another. In the first case, a study of the orbit of the system in the state space suggests that the seismic activity of the equivalent fault is organized into cycles that include several earthquakes and repeat periodically. Within each cycle the recurrence times oscillate about an average value equal to the recurrence period for constant strain rate. In the second case, the recurrence time changes gradually from the value before the transition to the value following it. Asymptotic solutions are also given, approximating the case when the amplitude of the oscillation or of the monotonic change is much smaller than the average driver velocity and the period of oscillation or the duration of the transition is much longer than the recurrence times of block motions. If the system is not isolated but is subject to perturbations in stress, the perturbation anticipates or delays the subsequent earthquake. The effects of stress perturbations in the two cases of strain rate oscillations and monotonic change are considered.

  10. High Strain-Rate Testing of Mechanical Couplers

    Science.gov (United States)

    2009-09-01

    tensile strength equal to or greater than that of the control bar but did not achieve the ductility of the control bar. Specimen UHC 9 failed close to...than the Grade 60 bar, but only slightly so at the rapid rate. Upset head system The upset head coupler ( UHC ) system performed very well under the...average performance of the UHC system under the intermediate strain-rate loading condition produced 99% of the dynamic ultimate strength, 61% of the

  11. High Strain Rate Compression Testing of Ceramics and Ceramic Composites.

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, W. R. (William R.)

    2005-01-01

    The compressive deformation and failure behavior of ceramics and ceramic-metal composites for armor applications has been studied as a function of strain rate at Los Alamos National Laboratory since the late 1980s. High strain rate ({approx}10{sup 3} s{sup -1}) uniaxial compression loading can be achieved using the Kolsky-split-Hopkinson pressure bar (SHPB) technique, but special methods must be used to obtain valid strength results. This paper reviews these methods and the limitations of the Kolsky-SHPB technique for this class of materials. The Kolsky-split-Hopkinson pressure bar (Kolsky-SHPB) technique was originally developed to characterize the mechanical behavior of ductile materials such as metals and polymers where the results can be used to develop strain-rate and temperature-dependent constitutive behavior models that empirically describe macroscopic plastic flow. The flow behavior of metals and polymers is generally controlled by thermally-activated and rate-dependent dislocation motion or polymer chain motion in response to shear stresses. Conversely, the macroscopic mechanical behavior of dense, brittle, ceramic-based materials is dominated by elastic deformation terminated by rapid failure associated with the propagation of defects in the material in response to resolved tensile stresses. This behavior is usually characterized by a distribution of macroscopically measured failure strengths and strains. The basis for any strain-rate dependence observed in the failure strength must originate from rate-dependence in the damage and fracture process, since uniform, uniaxial elastic behavior is rate-independent (e.g. inertial effects on crack growth). The study of microscopic damage and fracture processes and their rate-dependence under dynamic loading conditions is a difficult experimental challenge that is not addressed in this paper. The purpose of this paper is to review the methods that have been developed at the Los Alamos National Laboratory to

  12. High Strain Rate Testing of Welded DOP-26 Iridium

    Energy Technology Data Exchange (ETDEWEB)

    Schneibel, J. H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, R. G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carmichael, C. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fox, E. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The iridium alloy DOP-26 is used to produce Clad Vent Set cups that protect the radioactive fuel in radioisotope thermoelectric generators (RTGs) which provide electric power for spacecraft and rovers. In a previous study, the tensile properties of DOP-26 were measured over a wide range of strain rates and temperatures and reported in ORNL/TM-2007/81. While that study established the properties of the base material, the fabrication of the heat sources requires welding, and the mechanical properties of welded DOP-26 have not been extensively characterized in the past. Therefore, this study was undertaken to determine the mechanical properties of DOP-26 specimens containing a transverse weld in the center of their gage sections. Tensile tests were performed at room temperature, 750, 900, and 1090°C and engineering strain rates of 1×10-3 and 10 s-1. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1×10-4 Torr. The welded specimens had a significantly higher yield stress, by up to a factor of ~2, than the non-welded base material. The yield stress did not depend on the strain rate except at 1090°C, where it was slightly higher for the faster strain rate. The ultimate tensile stress, on the other hand, was significantly higher for the faster strain rate at temperatures of 750°C and above. At 750°C and above, the specimens deformed at 1×10-3 s-1 showed pronounced necking resulting sometimes in perfect chisel-edge fracture. The specimens deformed at 10 s-1 exhibited this fracture behavior only at the highest test temperature, 1090°C. Fracture occurred usually in the fusion zone of the weld and was, in most cases, primarily intergranular.

  13. Recrystallization of High Carbon Steel during High Strain Rate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The recrystallization of high carbon steel during high temperature and high speed rolling has been studied by analyzing the stress-strain curves and the austenite grain size.Isothermal multi-pass hot compression at high strain rate was carried out by Gleeble-2000. The austenite grain size was measured by IBAS image analysis system. The results show that static recrystallization occurred at interpass time under pre-finish rolling, and at the finish rolling stage, due to the brief interpass time, static recrystallization can not be found.

  14. Stress-strain characteristics of materials at high strain rates. Part II. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Ripperger, E. A. [Texas. Univ., Austin, TX (US). Structural Mechanics Research Lab.

    1958-08-29

    These two reports were issued separately, but are cataloged as a unit. A photoelectric method for measuring displacements during high-velocity impacts is described. The theory of the system is discussed in detail, and a prototype system which was built and tested is described. The performance of the prototype system is evaluated by comparing the results which it gives with results obtained by other methods of measurement. The system was found capable of a resolution of at least 0.01 inches. static and dynamic stress-strain characteristics of seven high polymers, polyethylene, teflon, nylon, tenite M, tenite H, polystyrene, and saran, plus three metals, lead, copper, and aluminum, are described and compared by means of stress-strain curves and photographs. Data are also presented which show qualitatively the effects produced on stress-strain characteristics by specimen configuration, temperature, and impact velocity. It is shown that there is a definite strain-rate effect for all these materials except polystyrene. The effect is one of an apparent stiffening of the material with increasing strain rate, which is similar to the effect produced by lowering the temperature. The stress-strain measurements are examined critically, inconsistencies are pointed out, and possible sources of error suggested. Values of yield stress, modulus of elasticity and energy absorption for all materials (except copper and aluminum), specimen configurations, temperatures, and impact velocities included in the investigation are tabulated.

  15. A Comparison of Geodetic Strain Rates With Earthquake Moment Tensors

    Science.gov (United States)

    Zhu, W.; Holt, W. E.

    2004-12-01

    In this paper we compare the global model from interpolation of GPS data with the global model inferred from earthquake moment tensors. We use the Harvard CMT catalog to calculate moment rates based on 3 assumptions: a. we assume earthquakes are self-similar; b. we assume a uniform Beta value of the Gutenberg-Richter distribution; c. we assume that all of the long-term strain is accommodated seismically. If these assumptions are correct then the seismicity rate is proportional to the tectonic moment rate. We then inferred a long-term moment rate tensor field estimate for all plate boundary zones from which we inferred a long-term seismic strain rate estimate. Using this estimate we solved for a self-consistent kinematic global solution (motions of rigid spherical caps and motions within plate boundary zones) using bi-cubic spline interpolation of the inferred strain rates. We tested the above assumptions by comparing the global kinematic model obtained from earthquake data with a global model inferred from interpolation of space geodetic data [Kreemer et al., 2003]. A comparison between the two models shows good agreement for motion directions of the North American, and Eurasian plates and for the plate boundary zones within these regions (e.g., Tibet). Problems arise, and our assumptions break down, for plates adjacent to fast spreading ridges where divergence of plates appears to be accommodated aseismically. We next investigated the correlation of strain rate tensor inferred from the interpolation of GPS observations within deforming Asia with the earthquake moment tensors, using both elastic and viscous rheologies. Our solutions satisfy the force balance equations for a given rheology. Our goal for this exercise is to investigate whether the interseismic signal, inferred from GPS, correlates better with moment tensor style for an elastic rheology as opposed to a viscous rheology. Results to date suggest that the viscous models only provide a better agreement

  16. Material properties of bovine intervertebral discs across strain rates.

    Science.gov (United States)

    Newell, Nicolas; Grigoriadis, Grigorios; Christou, Alexandros; Carpanen, Diagarajen; Masouros, Spyros D

    2017-01-01

    The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10(-3)-1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Reaction weakening and emplacement of crystalline thrusts: Diffusion control on reaction rate and strain rate

    Science.gov (United States)

    O'Hara, Kieran

    2007-08-01

    In the southern Appalachians, the Blue Ridge-Piedmont crystalline thrust sheet was emplaced onto low-grade Late Precambrian and Paleozoic sedimentary rocks in the footwall along a basal detachment consisting of phyllosilicate-rich mylonites (phyllonites). The phyllonites developed first by mechanical breakdown of feldspar followed by chemical breakdown to white mica in the presence of a pore fluid. Diffusion of solute in the pore fluid is the rate limiting step in controlling reaction rate and also the strain rate. Assuming solute diffusion follows the Stokes-Einstein equation, the shear strain rate is given by ⅆγ/ⅆt=2ωkT/5ηrx for shear stress ≥20 MPa, where n is a constant, ω is a geometric factor, k is Boltzmann's constant, T is absolute temperature, η is water viscosity, r is the atomic radius of the diffusing species, and x is the diffusion distance. A bulk diffusion coefficient in the range of ˜10 -10 to 10 -12 m 2/s over distances of 10-100 m results in strain rates of 10 -14 to 10 -13 s -1 in the temperature range 200-400 °C. It is concluded that greenschist grade crystalline thrust sheets develop on pre-existing basement faults that become weak during reaction softening and localize into high strain phyllonite zones in which pore fluid diffusion controls reaction rate and strain rate.

  18. Finite Strain Behavior of Polyurea for a Wide Range of Strain Rates

    Science.gov (United States)

    2010-02-01

    influence of a surface coating on the high-rate fragmentation of a ductile material ," International Journal of Fracture , 137:89-108. [40] Haupt, P. and Lion...of localization and fragmentation - III. Effect of cladding with a polymer," International Journal of Fracture , 155:101-118. [107] Zhao, H. and Gary... toughness -to-density ratio and high strain rate-sensitivity, so its application is recently extended to structural purpose to form sandwich-type or multi

  19. High strain rate behavior of pure metals at elevated temperature

    Science.gov (United States)

    Testa, Gabriel; Bonora, Nicola; Ruggiero, Andrew; Iannitti, Gianluca; Domenico, Gentile

    2013-06-01

    In many applications and technology processes, such as stamping, forging, hot working etc., metals and alloys are subjected to elevated temperature and high strain rate deformation process. Characterization tests, such as quasistatic and dynamic tension or compression test, and validation tests, such as Taylor impact and DTE - dynamic tensile extrusion -, provide the experimental base of data for constitutive model validation and material parameters identification. Testing material at high strain rate and temperature requires dedicated equipment. In this work, both tensile Hopkinson bar and light gas gun where modified in order to allow material testing under sample controlled temperature conditions. Dynamic tension tests and Taylor impact tests, at different temperatures, on high purity copper (99.98%), tungsten (99.95%) and 316L stainless steel were performed. The accuracy of several constitutive models (Johnson and Cook, Zerilli-Armstrong, etc.) in predicting the observed material response was verified by means of extensive finite element analysis (FEA).

  20. Modeling Strain Rate Effect for Heterogeneous Brittle Materials

    Institute of Scientific and Technical Information of China (English)

    MA Guowei; DONG Aiai; LI Jianchun

    2006-01-01

    Rocks are heterogeneous from the point of microstructure which is of significance to their dynamic failure behavior.Both the compressive and tensile strength of rock-like materials is regarded different from the static strength.The present study adopts smoothed particle hydrodynamics (SPH) which is a virtual particle based meshfree method to investigate strain rate effect for heterogeneous brittle materials.The SPH method is capable of simulating rock fracture,free of the mesh constraint of the traditional FEM and FDM models.A pressure dependent J-H constitutive model involving heterogeneity is employed in the numerical modeling.The results show the compressive strength increases with the increase of strain rate as well as the tensile strength,which is important to the engineering design.

  1. Strain and strain rate: An emerging technology in the perioperative period.

    Science.gov (United States)

    Malik, Vishwas; Subramaniam, Arun; Kapoor, Poonam Malhotra

    2016-01-01

    Newer noninvasive parameters are being used for perioperative detection of myocardial ischaemia. TDI and global strain rate are some of these parameters. TDI signal is a modification of the routine Doppler flow signal. It is obtained by using thresholding and filtering algorithms that reject echoes originating from the blood pool (by-passing the high pass filter). Set-Up of the machine by activating the TDI function allows decreasing the system gain using a low pass filter and eliminates the signal produced by blood flow. Doppler shift obtained from myocardial tissue motion are of higher amplitudes (reflectivity 40 dB higher) and move about 10 times slower than blood (velocity range: 0.06 to 0.24 m/s). Speckle tracking echocardiography (tissue tracking, 2D strain) utilizes routine gray-scale 2D echo images to calculate myocardial strain. Interactions of ultrasound with myocardium result in reflection and scattering. These interactions generate a finely gray-shaded, speckled pattern (acoustic marker). This speckled pattern is unique for each myocardial region and relatively stable throughout the cardiac cycle. Spatial and temporal image processing of acoustic speckles in both 2D and 3D allows for the calculation of myocardial velocity, strain, and Strain rate.

  2. Strain and strain rate by two-dimensional speckle tracking echocardiography in a maned wolf

    Directory of Open Access Journals (Sweden)

    Matheus M. Mantovani

    2012-12-01

    Full Text Available The measurement of cardiovascular features of wild animals is important, as is the measurement in pets, for the assessment of myocardial function and the early detection of cardiac abnormalities, which could progress to heart failure. Speckle tracking echocardiography (2D STE is a new tool that has been used in veterinary medicine, which demonstrates several advantages, such as angle independence and the possibility to provide the early diagnosis of myocardial alterations. The aim of this study was to evaluate the left myocardial function in a maned wolf by 2D STE. Thus, the longitudinal, circumferential and radial strain and strain rate were obtained, as well as, the radial and longitudinal velocity and displacement values, from the right parasternal long axis four-chamber view, the left parasternal apical four chamber view and the parasternal short axis at the level of the papillary muscles. The results of the longitudinal variables were -13.52±7.88, -1.60±1.05, 4.34±2.52 and 3.86±3.04 for strain (%, strain rate (1/s, displacement (mm and velocity (cm/s, respectively. In addition, the radial and circumferential Strain and Strain rate were 24.39±14.23, 1.86±0.95 and -13.69±6.53, -1.01±0.48, respectively. Thus, the present study provides the first data regarding the use of this tool in maned wolves, allowing a more complete quantification of myocardial function in this species.

  3. Rotation and strain rate of Sulawesi from geometrical velocity field

    Science.gov (United States)

    Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.

    2017-07-01

    One of methods that can be used to determine the tectonic deformation status is rate estimation from geometric rotation and strain using quantitative velocity data from GPS observations. Microplate Sulawesi region located in the zone of triple junction (Eurasia, Australia and Philippine Sea Plates) has very complex tectonic and seismic condition, which is why become very important to know its recent deformation status in order to study neo-tectonic and disaster mitigation. Deformation rate quantification is estimated in two parameters: rotation and geodetic strain rate of each GPS station Delaunay triangle in the study area. The analysis in this study is not done using the grids since there is no rheological information at location that can be used as the interpolation-extrapolation constraints. Our analysis reveals that Sulawesi is characterized by rapid rotation in several different domains and compression-strain pattern that varies depending on the type and boundary conditions of microplate. This information is useful for studying neo tectonic deformation status and earthquake disaster mitigation.

  4. Atomistic simulations of high strain rate loading of nanocrystals

    Science.gov (United States)

    Bringa, E. M.; Tramontina, D.; Ruestes, C. J.; Tang, Y.; Meyers, M. A.; Gunkelmann, N.; Urbassek, H. M.

    2013-03-01

    Materials loaded at high strain rates can reach extreme temperature and pressure conditions. Most experiments on loading of simple materials use poly crystals, while most atomistic simulations of shock wave loading deal with single crystals, due to the higher computational cost of running polycrystal samples. Of course, atomistic simulations of polycrystals with micron-sized grains are beyond the capabilities of current supercomputers. On the other hand, nanocrystals (nc) with grain sizes below 50 nm can be obtained experimentally and modeled reasonably well at high strain rates, opening the possibility of nearly direct comparison between atomistic molecular dynamics (MD) simulations and experiments using high power lasers. We will discuss MD simulations and links to experiments for nc Cu and Ni, as model f.c.c. solids, and nc Ta and Fe, as model b.c.c. solids. In all cases, the microstructure resulting from loading depends strongly on grain size, strain rate and peak applied pressure. We will also discuss effects related to target porosity in nc's. E.M.B. thanks funding from PICT2008-1325.

  5. Myocardial strain and strain rate in monitoring subclinical heart failure in asymptomatic long-term survivors of childhood cancer.

    NARCIS (Netherlands)

    Mavinkurve-Groothuis, A.M.C.; Groot-Loonen, J.J.; Marcus, K.A.; Bellersen, L.; Feuth, T.; Bokkerink, J.P.M.; Hoogerbrugge, P.M.; Korte, C.L. de; Kapusta, L.

    2010-01-01

    We studied the role of global myocardial strain and strain rate in monitoring subclinical heart failure in a large group of asymptomatic long-term survivors of childhood cancer. Global strain (rate) parameters of survivors were compared with those in healthy controls and were related to conventional

  6. Shock Compression and Strain Rate Effect in Composites and Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Eric [Los Alamos National Laboratory

    2012-06-20

    Polymers are increasingly being utilized as monolithic materials and composite matrices for structural applications historically reserved for metals. High strain and high strain-rate applications in aerospace, defense, and automotive industries have lead to interest in utilizing the ability of many polymers to withstand extensions to failure of several hundred percent, often without localization or necking and their strong rate dependence. A broad range of characterization techniques will be presented for semi-crystalline polymers and composites including elastic-plastic fracture, split Hopkinson pressure bar (SHPB), plate impact including soft-recovery and lateral gage measurements and Taylor Impact. Gas-launched, plate impact experiments have been performed on pedigreed PTFE 7C, mounted in momentum-trapped, shock assemblies, with impact pressures above and below the phase II to phase III crystalline transition to probe subtle changes in the crystallinity, microstructure, and mechanical response of PTFE. Observed strong anisotropy on the hugoniot and spall behavior of fiber-reinforced composites will be discussed. Polymers are known to exhibit a strong dependence of the yield stress on temperature and strain-rate that are often observed to be linear for temperature and logarithmic for strain-rate. Temperature and strain-rate dependence will be reviewed in terms of classic time-temperature superposition and an empirical mapping function for superposition between temperature and strain-rate. The recent extension of the new Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) technique to probe the dynamic tensile responses of polymers will be discussed, where more irregular deformation and stochastic-based damage and failure mechanisms than the stable plastic elongation and shear instabilities observed that in metals. The opportunity to use of Dyn-Ten-Ext to probe incipient damage at very high strain-rate by linking in situ and post mortem experimental observations with high

  7. Measurement of fracture properties of concrete at high strain rates

    Science.gov (United States)

    Rey-De-Pedraza, V.; Cendón, D. A.; Sánchez-Gálvez, V.; Gálvez, F.

    2017-01-01

    An analysis of the spalling technique of concrete bars using the modified Hopkinson bar was carried out. A new experimental configuration is proposed adding some variations to previous works. An increased length for concrete specimens was chosen and finite-element analysis was used for designing a conic projectile to obtain a suitable triangular impulse wave. The aim of this initial work is to establish an experimental framework which allows a simple and direct analysis of concrete subjected to high strain rates. The efforts and configuration of these primary tests, as well as the selected geometry and dimensions for the different elements, have been focused to achieve a simple way of identifying the fracture position and so the tensile strength of tested specimens. This dynamic tensile strength can be easily compared with previous values published in literature giving an idea of the accuracy of the method and technique proposed and the possibility to extend it in a near future to obtain other mechanical properties such as the fracture energy. The tests were instrumented with strain gauges, accelerometers and high-speed camera in order to validate the results by different ways. Results of the dynamic tensile strength of the tested concrete are presented. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  8. Measurement of fracture properties of concrete at high strain rates.

    Science.gov (United States)

    Rey-De-Pedraza, V; Cendón, D A; Sánchez-Gálvez, V; Gálvez, F

    2017-01-28

    An analysis of the spalling technique of concrete bars using the modified Hopkinson bar was carried out. A new experimental configuration is proposed adding some variations to previous works. An increased length for concrete specimens was chosen and finite-element analysis was used for designing a conic projectile to obtain a suitable triangular impulse wave. The aim of this initial work is to establish an experimental framework which allows a simple and direct analysis of concrete subjected to high strain rates. The efforts and configuration of these primary tests, as well as the selected geometry and dimensions for the different elements, have been focused to achieve a simple way of identifying the fracture position and so the tensile strength of tested specimens. This dynamic tensile strength can be easily compared with previous values published in literature giving an idea of the accuracy of the method and technique proposed and the possibility to extend it in a near future to obtain other mechanical properties such as the fracture energy. The tests were instrumented with strain gauges, accelerometers and high-speed camera in order to validate the results by different ways. Results of the dynamic tensile strength of the tested concrete are presented.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  9. Radial and longitudinal strain and strain rate assessed by speckle-tracking echocardiography in dogs with myxomatous mitral valve disease

    DEFF Research Database (Denmark)

    Zois, Nora Elisabeth; Tidholm, A.; Nägga, K.M.;

    2012-01-01

    Assessment of left ventricular (LV) function using conventional echocardiographic methods is difficult in mitral regurgitation (MR) owing to altered hemodynamic loading conditions. Newer methods such as speckle-tracking echocardiography (STE) provide assessment of LV strain (St) and strain rates ...

  10. Early detection of left ventricular dysfunction in asymptomatic diabetic patient using strain and strain rate echocardiographic imaging

    Directory of Open Access Journals (Sweden)

    Rania Gaber

    2014-03-01

    Conclusion: Type 2 diabetes mellitus deteriorate both LV systolic and diastolic performance. Strain and strain rate by tissue Doppler Imaging is superior to conventional Doppler in early detection and evaluation of systolic and diastolic dysfunction in type 2 diabetic patients.

  11. On the response of rubbers at high strain rates.

    Energy Technology Data Exchange (ETDEWEB)

    Niemczura, Johnathan Greenberg (University of Texas-Austin)

    2010-02-01

    In this report, we examine the propagation of tensile waves of finite deformation in rubbers through experiments and analysis. Attention is focused on the propagation of one-dimensional dispersive and shock waves in strips of latex and nitrile rubber. Tensile wave propagation experiments were conducted at high strain-rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in the rubber strips. Analysis of the response through the theory of finite waves and quantitative matching between the experimental observations and analytical predictions was used to determine an appropriate instantaneous elastic response for the rubbers. This analysis also yields the tensile shock adiabat for rubber. Dispersive waves as well as shock waves are also observed in free-retraction experiments; these are used to quantify hysteretic effects in rubber.

  12. Volume dilatation in a polycarbonate blend at varying strain rates

    Science.gov (United States)

    Hiermaier, S.; Huberth, F.

    2012-05-01

    Impact loaded polymers show a variety of strain-rate dependent mechanical properties in their elastic, plastic and failure behaviour. In contrast to purely crystalline materials, the volume of polymeric materials can significantly change under irreversible deformations. In this paper, uni-axial tensile tests were performed in order to measure the dilatation in the Polycarbonate-Acrylnitril-Butadien-Styrol (PC-ABS) Bayblend T65. The accumulation of dilatation was measured at deformation speeds of 0.1 and 500 [ mm/ s]. Instrumented with a pair of two high-speed cameras, volume segments in the samples were observed. The change in volume was quantified as relation between the deformed and initial volumes of the segments. It was observed that the measured dilatations are of great significance for the constitutive models. This is specifically demonstrated through comparisons of stress-strain relations derived from the two camera-perspectives with isochoric relations based on single-surface observations of the same experiments.

  13. Single chain stochastic polymer modeling at high strain rates.

    Energy Technology Data Exchange (ETDEWEB)

    Harstad, E. N. (Eric N.); Harlow, Francis Harvey,; Schreyer, H. L.

    2001-01-01

    Our goal is to develop constitutive relations for the behavior of a solid polymer during high-strain-rate deformations. In contrast to the classic thermodynamic techniques for deriving stress-strain response in static (equilibrium) circumstances, we employ a statistical-mechanics approach, in which we evolve a probability distribution function (PDF) for the velocity fluctuations of the repeating units of the chain. We use a Langevin description for the dynamics of a single repeating unit and a Lioville equation to describe the variations of the PDF. Moments of the PDF give the conservation equations for a single polymer chain embedded in other similar chains. To extract single-chain analytical constitutive relations these equations have been solved for representative loading paths. By this process we discover that a measure of nonuniform chain link displacement serves this purpose very well. We then derive an evolution equation for the descriptor function, with the result being a history-dependent constitutive relation.

  14. Finite Element Modeling of the Behavior of Armor Materials Under High Strain Rates and Large Strains

    Science.gov (United States)

    Polyzois, Ioannis

    For years high strength steels and alloys have been widely used by the military for making armor plates. Advances in technology have led to the development of materials with improved resistance to penetration and deformation. Until recently, the behavior of these materials under high strain rates and large strains has been primarily based on laboratory testing using the Split Hopkinson Pressure Bar apparatus. With the advent of sophisticated computer programs, computer modeling and finite element simulations are being developed to predict the deformation behavior of these metals for a variety of conditions similar to those experienced during combat. In the present investigation, a modified direct impact Split Hopkinson Pressure Bar apparatus was modeled using the finite element software ABAQUS 6.8 for the purpose of simulating high strain rate compression of specimens of three armor materials: maraging steel 300, high hardness armor (HHA), and aluminum alloy 5083. These armor materials, provided by the Canadian Department of National Defence, were tested at the University of Manitoba by others. In this study, the empirical Johnson-Cook visco-plastic and damage models were used to simulate the deformation behavior obtained experimentally. A series of stress-time plots at various projectile impact momenta were produced and verified by comparison with experimental data. The impact momentum parameter was chosen rather than projectile velocity to normalize the initial conditions for each simulation. Phenomena such as the formation of adiabatic shear bands caused by deformation at high strains and strain rates were investigated through simulations. It was found that the Johnson-Cook model can accurately simulate the behavior of body-centered cubic (BCC) metals such as steels. The maximum shear stress was calculated for each simulation at various impact momenta. The finite element model showed that shear failure first occurred in the center of the cylindrical specimen and

  15. The influence of acute unloading on left ventricular strain and strain rate by speckle tracking echocardiography in a porcine model.

    Science.gov (United States)

    Dahle, Geir Olav; Stangeland, Lodve; Moen, Christian Arvei; Salminen, Pirjo-Riitta; Haaverstad, Rune; Matre, Knut; Grong, Ketil

    2016-05-15

    Noninvasive measurements of myocardial strain and strain rate by speckle tracking echocardiography correlate to cardiac contractile state but also to load, which may weaken their value as indices of inotropy. In a porcine model, we investigated the influence of acute dynamic preload reductions on left ventricular strain and strain rate and their relation to the pressure-conductance catheter-derived preload recruitable stroke work (PRSW) and peak positive first derivative of left ventricular pressure (LV-dP/dtmax). Speckle tracking strain and strain rate in the longitudinal, circumferential, and radial directions were measured during acute dynamic reductions of end-diastolic volume during three different myocardial inotropic states. Both strain and strain rate were sensitive to unloading of the left ventricle (P speckle tracking echocardiography-derived strain rate is more robust to dynamic ventricular unloading than strain. Longitudinal and circumferential strain could not predict load-independent contractility. Strain rates, and especially in the radial direction, are good predictors of preload-independent inotropic markers derived from conductance catheter. Copyright © 2016 the American Physiological Society.

  16. Material properties of the heel fat pad across strain rates.

    Science.gov (United States)

    Grigoriadis, Grigoris; Newell, Nicolas; Carpanen, Diagarajen; Christou, Alexandros; Bull, Anthony M J; Masouros, Spyros D

    2017-01-01

    The complex structural and material behaviour of the human heel fat pad determines the transmission of plantar loading to the lower limb across a wide range of loading scenarios; from locomotion to injurious incidents. The aim of this study was to quantify the hyper-viscoelastic material properties of the human heel fat pad across strains and strain rates. An inverse finite element (FE) optimisation algorithm was developed and used, in conjunction with quasi-static and dynamic tests performed to five cadaveric heel specimens, to derive specimen-specific and mean hyper-viscoelastic material models able to predict accurately the response of the tissue at compressive loading of strain rates up to 150s(-1). The mean behaviour was expressed by the quasi-linear viscoelastic (QLV) material formulation, combining the Yeoh material model (C10=0.1MPa, C30=7MPa, K=2GPa) and Prony׳s terms (A1=0.06, A2=0.77, A3=0.02 for τ1=1ms, τ2=10ms, τ3=10s). These new data help to understand better the functional anatomy and pathophysiology of the foot and ankle, develop biomimetic materials for tissue reconstruction, design of shoe, insole, and foot and ankle orthoses, and improve the predictive ability of computational models of the foot and ankle used to simulate daily activities or predict injuries at high rate injurious incidents such as road traffic accidents and underbody blast. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Measurement of strain and strain rate in embryonic chick heart using spectral domain optical coherence tomography

    Science.gov (United States)

    Dou, Shidan; Suo, Yanyan; Liang, Chengbo; Wang, Yi; Zhao, Yuqian; Liu, Jian; Xu, Tao; Wang, Ruikang; Ma, Zhenhe

    2016-03-01

    It is important to measure embryonic heart myocardial wall strain and strain rate for understanding the mechanisms of embryonic heart development. Optical coherence tomography (OCT) can provide depth resolved images with high spatial and temporal resolution, which makes it have the potential to reveal the complex myocardial activity in the early stage embryonic heart. We develop a novel method to measure strain in embryonic chick heart based on spectral domain OCT images and subsequent image processing. We perform 4D(x,y,z,t) scanning on the outflow tract (OFT) of chick embryonic hearts in HH18 stage (~3 days of incubation). Only one image sequence acquired at the special position is selected based on the Doppler blood flow information where the probe beam penetrates through the OFT perpendicularly. For each image of the selected sequence, the cross-section of the myocardial wall can be approximated as an annulus. The OFT is segmented with a semi-automatic boundary detection algorithm, thus the area and mean circumference of the annular myocardial wall can be achieved. The myocardial wall thickness was calculated using the area divided by the mean circumference, and then the strain was obtained. The results demonstrate that OCT can be a useful tool to describe the biomechanical characteristics of the embryonic heart.

  18. Atrial Strain and Strain Rate: A Novel Method for the Evaluation of Atrial Stunning

    Science.gov (United States)

    Ozkan, Hakan; Binici, Suleyman; Tenekecioglu, Erhan; Ari, Hasan; Bozat, Tahsin

    2016-01-01

    Background Atrial fibrillation (AF) is the most common arrhythmia seen in adults. Atrial stunning is defined as the temporary mechanical dysfunction of the atrial appendage developing after AF has returned to sinus rhythm (SR). Objectives We aimed to evaluate atrial contractile functions by strain and strain rate in patients with AF, following pharmacological and electrical cardioversion and to compare it with conventional methods. Methods This study included 41 patients with persistent AF and 35 age-matched control cases with SR. All the AF patients included in the study had transthoracic and transesophageal echocardiography performed before and after. Septum (SEPsSR), left atrium (LAsSR) and right atrium peak systolic strain rate (RAsSR) were defined as the maximum negative value during atrial contraction and septum (SEPε), left atrium (LAε) and right atrium peak systolic strain (RAε) was defined as the percentage of change. Parameters of two groups were compared. Results In the AF group, 1st hour and 24th hour LAε, RAε, SEPε, LAsSR, RAsSR, SEPsSR found to be significantly lower than in the control group (LAε: 2.61%±0.13, 3.06%±0.19 vs 6.45%±0.27, p<0.0001; RAε: 4.03%±0.38, 4.50%±0.47 vs 10.12%±0.64, p<0.0001; SEPε: 3.0%±0.22, 3.19%±0.15 vs 6.23%±0.49, p<0.0001; LAsSR: 0.61±0.04s-1, 0.75±0.04s-1 vs 1.35±0.04s-1, p<0.0001; RAsSR: 1.13±0.06s-1, 1.23±0.07s-1 vs 2.10±0.08s- 1, p<0.0001; SEPsSR: 0.76±0.04s- 1, 0.78±0.04s- 1 vs 1.42±0.06 s- 1, p<0.0001). Conclusion Atrial strain and strain rate parameters are superior to conventional echocardiographic parameters for the evaluation of atrial stunning in AF cases where SR has been achieved. PMID:27627221

  19. The effect of an acute bout of resistance exercise on carotid artery strain and strain rate.

    Science.gov (United States)

    Black, Jane M; Stöhr, Eric J; Stone, Keeron; Pugh, Christopher J A; Stembridge, Mike; Shave, Rob; Esformes, Joseph I

    2016-09-01

    Arterial wall mechanics likely play an integral role in arterial responses to acute physiological stress. Therefore, this study aimed to determine the impact of low and moderate intensity double-leg press exercise on common carotid artery (CCA) wall mechanics using 2D vascular strain imaging. Short-axis CCA ultrasound images were collected in 15 healthy men (age: 21 ± 3 years; stature: 176.5 ± 6.2 cm; body mass; 80.6 ± 15.3 kg) before, during, and immediately after short-duration isometric double-leg press exercise at 30% and 60% of participants' one-repetition maximum (1RM: 317 ± 72 kg). Images were analyzed for peak circumferential strain (PCS), peak systolic and diastolic strain rate (S-SR and D-SR), and arterial diameter. Heart rate (HR), systolic and diastolic blood pressure (SBP and DBP) were simultaneously assessed and arterial stiffness indices were calculated post hoc. A two-way repeated measures ANOVA revealed that during isometric contraction, PCS and S-SR decreased significantly (P exercise (P exercise is therefore associated with similar transient changes in CCA wall mechanics at low and moderate intensities. CCA wall mechanics likely provide additional insight into localized intrinsic vascular wall properties beyond current measures of arterial stiffness.

  20. Twin Interactions in Pure Ti Under High Strain Rate Compression

    Science.gov (United States)

    Zhou, Ping; Xiao, Dawu; Jiang, Chunli; Sang, Ge; Zou, Dongli

    2017-01-01

    Twin interactions associated with {11 overline{2} 1} (E2) twins in titanium deformed by high strain rate ( 2600 s-1) compression were studied using electron backscatter diffraction technique. Three types of twins, {10 overline{1} 2} (E1), {11 overline{2} 2} (C1), and {11 overline{2} 4} (C3), were observed to interact with the preformed E2 twins in four parent grains. The E1 variants nucleated at twin boundaries of some E2 variants. And the C3 twins were originated from the intersection of C1 and E2. The selection of twin variant was investigated by the Schmid factors (SFs) and the twinning shear displacement gradient tensors (DGTs) calculations. The results show that twin variants that did not follow the Schmid law were more frequently observed under high strain rate deformation than quasi-static deformation. Among these low-SF active variants, 73 pct (8 out of 11) can be interpreted by DGT. Besides, 26 variants that have SF values close to or higher than their active counterparts were absent. Factors that may affect the twin variant selections were discussed.

  1. Tantalum strength model incorporating temperature, strain rate and pressure

    Science.gov (United States)

    Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt

    Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Influence of strain rate on fracture behavior of poly(methyl methacrylate)

    Institute of Scientific and Technical Information of China (English)

    赵荣国; 陈朝中

    2008-01-01

    The effect of strain rate on fracture behavior of poly(methyl methacrylate) was investigated.The uniaxial tensile rupture tests for the poly(methyl methacrylate) samples were carried out at different strain rates at ambient temperature.It is found that the elastic modulus of the material increases with increasing strain rate,while the elongation is reversal with strain rate.Simultaneously,there exists a critical strain rate within which the stress-strain curves overlap one another,and beyond which the curves depart from each other.The amount of energy added to the system due to work done by the imposed load was calculated,and the strain energy stored in the material at each strain rate was calculated by the current stress integral with respect to strain.The complementary strain energy,which is the difference between the work and the strain energy,was obtained and was considered to supply the surface energy to create a new crack surface in the polymeric material.It is found that the work done by the imposed load,which is needed for the fracture of poly(methyl methacrylate) sample,decreases with increasing strain rate,and the strain energy decreases with strain rate as well,which demonstrates that the polymeric material at high strain rate is easier to fracture than that at low strain rate.As the strain rate increases,the fracture mode changes from ductile,semi-ductile to brittle mode.The complementary strain energy almost sustains a constant at any strain rate.The density of surface energy,which characterizes the energy per unit area needed for creating crack surface,is a strain rate-independent material constant.

  3. Theoretical and numerical study of strain localization under high strain rate solicitation

    Science.gov (United States)

    Ranc, N.; Raynal, R.; Taravella, L.; Pina, V.; Hervé, P.

    2006-08-01

    Our study deals with the dynamic behavior of metallic materials and in particular of titanium alloy TA6V. For high strain rates, we can notice the occurrence of a phenomenon called adiabatic shearing. This phenomenon is about a plastic instability, which results in the appearance of a strain localization in narrow bands. In this paper we developed a thermo mechanical model to reproduce the formation and the propagation of adiabatic shear bands. A Johnson Cook thermo visco plastic behavior law was chosen for the titanium alloy TA6V. The law parameters were identified from static and dynamic torsion tests at various temperatures between ambient and 350circC. A 2D numerical simulation of torsion test was performed with the explicit finite elements code Abaqus. The thermo mechanical coupling and the heat conduction are taken into account. A roughness defect was inserted in the centre of a torsion specimen. The results showed that the strain of localization and the shear band speed increase when the amplitude and the size of the defect decrease.

  4. Effect of Strain Rate on Compression Behavior of Vinyl Ester Resin Casting

    Institute of Scientific and Technical Information of China (English)

    XIONG Tao; YANG Bin; XIONG Jie; XU Xian-jian; ZHOU Kai; MAO Ming-zhong

    2006-01-01

    Quasi-static and high strain rate compressive experiments on vinyl ester casting were carried out by means of MTS (Material Test System) and Hopkinson bar. The behaviors of the compressed unstable and fracture of the resin casting at different strain rates were investigated. The results indicate that the response behavior of the resin casting is controlled by different mechanisms at different strain rate, and some mechanical properties of vinyl ester casting are ratedependent: the casting are destroyed in toughness model under strain rate 3.3 × 10-4 ~ 6.6 × 10-3/s, while the casting are destroyed in brittleness model under strain rate 950~5800/s. The yield stress, yield strain energy density are all increased with the increasing strain rates at quasi-static as well as at high strain rates. What is interesting is that the yield strain decreased with the strain rates increasing at quasi-static while increased at high strain rates. It is considered that the casting occurred forcing high elastic deformation at high strain rates. The damage of the specimens is mainly controlled by axial stress before unstable deformation, while mainly controlled by shear stress after unstable deformation, and then developed to fracture finally. This progress is rate-dependent: the development of the cracks inside the castings increased with the strain rate increasing.

  5. Atrial strain rate is a sensitive measure of alterations in atrial phasic function in healthy ageing.

    Science.gov (United States)

    Boyd, Anita C; Richards, David A B; Marwick, Thomas; Thomas, Liza

    2011-09-01

    Strain and strain rate measure local deformation of the myocardium and have been used to evaluate phasic atrial function in various disease states. The aim of this study was to define normal values for tissue Doppler-derived atrial strain measurements and examine age-related changes by decade in healthy individuals. Transthoracic echocardiograms were performed on 188 healthy subjects. Tissue Doppler-derived strain and strain rate were measured from the apical four and two-chamber views of the left atrium, and global values were calculated as the mean of all segments. Measurements included peak systolic strain, systolic strain rate, early and late diastolic strain rate. Phasic left atrial volumes and fractions were calculated. Mitral inflow and tissue Doppler imaging were employed to estimate left ventricular diastolic function. A significant reduction in global systolic strain was observed from decade 6. Alterations in atrial strain rate were apparent from decade 5; systolic strain rate and early diastolic strain rate decreased, while late diastolic strain rate increased significantly. Changes in phasic atrial volume and function occurred in conjunction with age-related changes in left ventricular diastolic function. Importantly, age-related changes in global atrial systolic strain rate and early diastolic strain rate occurred a decade before corresponding changes in atrial phasic volume parameters. Atrial strain and strain rate can be used to quantify atrial phasic function and appear to be altered before traditional parameters with ageing. Strain analysis may therefore be more sensitive in detecting subclinical atrial dysfunction with alterations in strain rate parameters observed before traditional parameters.

  6. High strain rate superplastic aluminium alloys: the way forward?

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, R.; Dashwood, R.J.; Flower, H.M. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    2001-07-01

    The technical and commercial barriers to the development and successful exploitation of a high strain rate superplastically deformable aluminium alloy for use in the automotive industry are considered in this paper. Batch processing routes, such as mechanical alloying or equal channel angular extrusion, employed to deliver appropriate chemistry and structure, are inherently costly and unlikely to deliver either the quantity or the size of strip required commercially. There is evidence that there is still scope for development of conventional casting and rolling routes, but a particulate casting route combined with roll consolidation offers the prospect of a commercially viable Al-Mg-Zr product. The use of alloying additions, including zirconium, is also discussed and comparative costs are presented: on this basis the use of scandium appears economically prohibitive. (orig.)

  7. Potential pitfalls of strain rate imaging: angle dependency

    Science.gov (United States)

    Castro, P. L.; Greenberg, N. L.; Drinko, J.; Garcia, M. J.; Thomas, J. D.

    2000-01-01

    Strain Rate Imaging (SRI) is a new echocardiographic technique that allows for the real-time determination of myocardial SR, which may be used for the early and accurate detection of coronary artery disease. We sought to study whether SR is affected by scan line alignment in a computer simulation and an in vivo experiment. Through the computer simulation and the in vivo experiment we generated and validated safe scanning sectors within the ultrasound scan sector and showed that while SRI will be an extremely valuable tool in detecting coronary artery disease there are potential pitfalls for the unwary clinician. Only after accounting for these affects due to angle dependency, can clinicians utilize SRI's potential as a valuable tool in detecting coronary artery disease.

  8. DILATANCY BEHAVIOR IN CONSTANT STRAIN RATE CONSOLIDATION TEST

    Directory of Open Access Journals (Sweden)

    Berty Sompie

    2006-01-01

    Full Text Available Subjected to remolded young clay, this paper shows that a lot of time dependent behavior in the standard consolidation (SC and constant strain rate consolidation (CSRC tests is represented systematically by a simple assumption concerning the time dependency of dilatancy. In the SC test, at the first stage of each loading step little dilatancy takes place and dilatancy begins to occur several minutes after step loading. In CSRC test, some time period after the stress state has entered the normally consolidated region, dilatancy tends to occur rapidly with the increase in stress ratio. Since most of dilatancy has taken place at the earlier stage of consolidation, little dilatancy occurs at the latter stage of CSRC process. This tendency makes the specimen stiffer with the passage of time, and makes the vertical pressure and pore pressure increase substantially at the last stage of CSRC process. Consideration to such behavior may be effective to correctly interpret the result of CSRC test.

  9. Material deformation dynamics at ultrahigh pressures and strain rates

    Science.gov (United States)

    Remington, B. A.; Park, H. S.; Maddox, B. R.; May, M. J.; Pollaine, S. M.; Prisbrey, S. T.; Rudd, R. E.; Hawreliak, J. A.; Perry, T. S.; Comley, A. J.; Wark, J. S.; Meyers, M. A.

    2010-11-01

    Solid-state dynamics experiments at extreme pressures, up to 10 Mbar, and strain rates (1.e6 -1.e8 1/s) are being developed for the NIF laser. The experimental methods are being developed on the Omega laser facility. VISAR measurements establish the ramped, high-pressure conditions. Recovery experiments offer a look at the residual microstructure. Dynamic diffraction measurements allow phase, shear stress (strength), and possibly twin volume fraction and dislocation density to be inferred. Constitutive models for material strength at these conditions by comparing 2D simulations with experiments measuring the Rayleigh-Taylor instability evolution in solid-state samples of vanadium and tantalum. The material deformation likely falls into the phonon drag regime. We estimate of the (microscopic) phonon drag coefficient, by relating to the (macroscopic) effective lattice viscosity.

  10. Deviatoric constitutive model: domain of strain rate validity

    Energy Technology Data Exchange (ETDEWEB)

    Zocher, Marvin A [Los Alamos National Laboratory

    2009-01-01

    A case is made for using an enhanced methodology in determining the parameters that appear in a deviatoric constitutive model. Predictability rests on our ability to solve a properly posed initial boundary value problem (IBVP), which incorporates an accurate reflection of material constitutive behavior. That reflection is provided through the constitutive model. Moreover, the constitutive model is required for mathematical closure of the IBVP. Common practice in the shock physics community is to divide the Cauchy tensor into spherical and deviatoric parts, and to develop separate models for spherical and deviatoric constitutive response. Our focus shall be on the Cauchy deviator and deviatoric constitutive behavior. Discussions related to the spherical part of the Cauchy tensor are reserved for another time. A number of deviatoric constitutive models have been developed for utilization in the solution of IBVPs that are of interest to those working in the field of shock physics, e.g. All of these models are phenomenological and contain a number of parameters that must be determined in light of experimental data. The methodology employed in determining these parameters dictates the loading regime over which the model can be expected to be accurate. The focus of this paper is the methodology employed in determining model parameters and the consequences of that methodology as it relates to the domain of strain rate validity. We shall begin by describing the methodology that is typically employed. We shall discuss limitations imposed upon predictive capability by the typically employed methodology. We shall propose a modification to the typically employed methodology that significantly extends the domain of strain rate validity.

  11. The high strain-rate behaviour of selected tissue analogues.

    Science.gov (United States)

    Appleby-Thomas, G J; Hazell, P J; Sheldon, R P; Stennett, C; Hameed, A; Wilgeroth, J M

    2014-05-01

    The high strain-rate response of four readily available tissue simulants has been investigated via plate-impact experiments. Comparison of the shock response of gelatin, ballistic soap (both sub-dermal tissue simulants), lard (adipose layers) and Sylgard(®) (a potential brain simulant) allowed interrogation of the applicability of such monolithic tissue surrogates in the ballistic regime. The gelatin and lard exhibited classic linear Hugoniot equations-of-state in the US-uP plane; while for the ballistic soap and Sylgard(®) a polymer-like non-linear response was observed. In the P/σX-v/v0 plane there was evidence of separation of the simulant materials into distinct groups, suggesting that a single tissue simulant is inadequate to ensure a high-fidelity description of the high strain-rate response of complex mammalian tissue. Gelatin appeared to behave broadly hydrodynamically, while soap, lard and Sylgard(®) were observed to strengthen in a material-dependent manner under specific loading conditions at elevated shock loading pressures/stresses. This strengthening behaviour was tentatively attributed to a further polymeric-like response in the form of a re-arrangement of the molecular chains under loading (a steric effect). In addition, investigation of lateral stress data from the literature showed evidence of operation of a material-independent strengthening mechanism when these materials were stressed above 2.5-3.0GPa, tentatively linked to the generically polymeric-like underlying microstructure of the simulants under consideration.

  12. Statistical Tensile Strength for High Strain Rate of Aramid and UHMWPE Fibers

    Institute of Scientific and Technical Information of China (English)

    YANG Bin; XIONG Tao; XIONG Jie

    2006-01-01

    Dynamic tensile impact properties of aramid (Technora(R)) and UHMWPE (DC851) fiber bundles were studied at two high strain rates by means of reflecting type Split Hopkinson Bar, and stress-strain curves of fiber yarns at different strain rates were obtained. Experimental results show that the initial elastic modulus, failure strength and unstable strain of aramid fiber yarns are strain rate insensitive, whereas the initial elastic modulus and unstable strain of UHMWPE fiber yarns are strain rate sensitive. A fiber-bundle statistical constitutive equation was used to describe the tensile behavior of aramid and UHMWPE fiber bundles at high strain rates. The good consistency between the simulated results and experimental data indicates that the modified double Weibull function can represent the tensile strength distribution of aramid and UHMWPE fibers and the method of extracting Weibull parameters from fiber bundles stress-strain data is valid.

  13. Strain Rate Dependant Material Model for Orthotropic Metals

    Science.gov (United States)

    Vignjevic, Rade

    2016-08-01

    In manufacturing processes anisotropic metals are often exposed to the loading with high strain rates in the range from 102 s-1 to 106 s-1 (e.g. stamping, cold spraying and explosive forming). These types of loading often involve generation and propagation of shock waves within the material. The material behaviour under such a complex loading needs to be accurately modelled, in order to optimise the manufacturing process and achieve appropriate properties of the manufactured component. The presented research is related to development and validation of a thermodynamically consistent physically based constitutive model for metals under high rate loading. The model is capable of modelling damage, failure and formation and propagation of shock waves in anisotropic metals. The model has two main parts: the strength part which defines the material response to shear deformation and an equation of state (EOS) which defines the material response to isotropic volumetric deformation [1]. The constitutive model was implemented into the transient nonlinear finite element code DYNA3D [2] and our in house SPH code. Limited model validation was performed by simulating a number of high velocity material characterisation and validation impact tests. The new damage model was developed in the framework of configurational continuum mechanics and irreversible thermodynamics with internal state variables. The use of the multiplicative decomposition of deformation gradient makes the model applicable to arbitrary plastic and damage deformations. To account for the physical mechanisms of failure, the concept of thermally activated damage initially proposed by Tuller and Bucher [3], Klepaczko [4] was adopted as the basis for the new damage evolution model. This makes the proposed damage/failure model compatible with the Mechanical Threshold Strength (MTS) model Follansbee and Kocks [5], 1988; Chen and Gray [6] which was used to control evolution of flow stress during plastic deformation. In

  14. Atomistic modeling at experimental strain rates and timescales

    Science.gov (United States)

    Yan, Xin; Cao, Penghui; Tao, Weiwei; Sharma, Pradeep; Park, Harold S.

    2016-12-01

    Modeling physical phenomena with atomistic fidelity and at laboratory timescales is one of the holy grails of computational materials science. Conventional molecular dynamics (MD) simulations enable the elucidation of an astonishing array of phenomena inherent in the mechanical and chemical behavior of materials. However, conventional MD, with our current computational modalities, is incapable of resolving timescales longer than microseconds (at best). In this short review article, we briefly review a recently proposed approach—the so-called autonomous basin climbing (ABC) method—that in certain instances can provide valuable information on slow timescale processes. We provide a general summary of the principles underlying the ABC approach, with emphasis on recent methodological developments enabling the study of mechanically-driven processes at slow (experimental) strain rates and timescales. Specifically, we show that by combining a strong physical understanding of the underlying phenomena, kinetic Monte Carlo, transition state theory and minimum energy pathway methods, the ABC method has been found to be useful in a variety of mechanically-driven problems ranging from the prediction of creep-behavior in metals, constitutive laws for grain boundary sliding, void nucleation rates, diffusion in amorphous materials to protein unfolding. Aside from reviewing the basic ideas underlying this approach, we emphasize some of the key challenges encountered in our own personal research work and suggest future research avenues for exploration.

  15. Analysis of the tensile stress-strain behavior of elastomers at constant strain rates. I - Criteria for separability of the time and strain effects

    Science.gov (United States)

    Hong, S. D.; Fedors, R. F.; Schwarzl, F.; Moacanin, J.; Landel, R. F.

    1981-01-01

    A theoretical analysis of the tensile stress-strain relation of elastomers at constant strain rate is presented which shows that the time and the stress effect are separable if the experimental time scale coincides with a segment of the relaxation modulus that can be described by a single power law. It is also shown that time-strain separability is valid if the strain function is linearly proportional to the Cauchy strain, and that when time-strain separability holds, two strain-dependent quantities can be obtained experimentally. In the case where time and strain effect are not separable, superposition can be achieved only by using temperature and strain-dependent shift factors.

  16. Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography

    Science.gov (United States)

    Li, Peng; Liu, Aiping; Shi, Liang; Yin, Xin; Rugonyi, Sandra; Wang, Ruikang K.

    2011-11-01

    We present a method to assess the in vivo radial strain and strain rate of the myocardial wall, which is of great importance to understand the biomechanics of cardiac development, using tissue Doppler optical coherence tomography (tissue-DOCT). Combining the structure and velocity information acquired from tissue-DOCT, the velocity distribution in the myocardial wall is plotted, from which the radial strain and strain rate are evaluated. The results demonstrate that tissue-DOCT can be used as a useful tool to describe tissue deformation, especially, the biomechanical characteristics of the embryonic heart.

  17. Servohydraulic methods for mechanical testing in the Sub-Hopkinson rate regime up to strain rates of 500 1/s.

    Energy Technology Data Exchange (ETDEWEB)

    Crenshaw, Thomas B.; Boyce, Brad Lee

    2005-10-01

    Tensile and compressive stress-strain experiments on metals at strain rates in the range of 1-1000 1/s are relevant to many applications such as gravity-dropped munitions and airplane accidents. While conventional test methods cover strain rates up to {approx}10 s{sup -1} and split-Hopkinson and other techniques cover strain rates in excess of {approx}1000 s{sup -1}, there are no well defined techniques for the intermediate or ''Sub-Hopkinson'' strain-rate regime. The current work outlines many of the challenges in testing in the Sub-Hopkinson regime, and establishes methods for addressing these challenges. The resulting technique for obtaining intermediate rate stress-strain data is demonstrated in tension on a high-strength, high-toughness steel alloy (Hytuf) that could be a candidate alloy for earth penetrating munitions and in compression on a Au-Cu braze alloy.

  18. Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar Rao, G.; Verma, Preeti [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Chakravartty, J.K. [Mechanical Metallurgy Group, Bhabha Atomic Research Center, Trombay 400 085, Mumbai (India); Nudurupati, Saibaba [Nuclear Fuel Complex, Hyderabad 500 062 (India); Mahobia, G.S.; Santhi Srinivas, N.C. [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Singh, Vakil, E-mail: vsingh.met@itbhu.ac.in [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-02-15

    Low cycle fatigue behavior of annealed Zircaloy-2 was investigated at 300 and 400 °C at different strain amplitudes and strain rates of 10{sup −2}, 10{sup −3}, and 10{sup −4} s{sup −1}. Cyclic stress response showed initial hardening with decreasing rate of hardening, followed by linear cyclic hardening and finally secondary hardening with increasing rate of hardening for low strain amplitudes at both the temperatures. The rate as well the degree of linear hardening and secondary hardening decreased with decrease in strain rate at 300 °C, however, there was inverse effect of strain rate on cyclic stress response at 400 °C and cyclic stress was increased with decrease in strain rate. The fatigue life decreased with decrease in strain rate at both the temperatures. The occurrence of linear cyclic hardening, inverse effect of strain rate on cyclic stress response and deterioration in fatigue life with decrease in strain rate may be attributed to dynamic strain aging phenomena resulting from enhanced interaction of dislocations with solutes. Fracture surfaces revealed distinct striations, secondary cracking, and oxidation with decrease in strain rate. Deformation substructure showed parallel dislocation lines and dislocation band structure at 300 °C. Persistent slip band wall structure and development of fine Corduroy structure was observed at 400 °C.

  19. Theoretical and metrical standardization of strain rate sensitivity index

    Institute of Scientific and Technical Information of China (English)

    SONG; YuQuan; GUAN; ZhiPing; LI; ZhiGang; WANG; MingHui

    2007-01-01

    Strain rate sensitivity index m is one of the vital mechanical parameters for determining material superplasticity. In this paper, the existing formulae for measuring m value are reviewed, and it is found that the m values can be classified into three classes: mi under constant length, mv under constant velocity, and mp under constant load. The constraint equation of the generalized m value is established according to the tensile constitutive equation and the basis theory for plastic mechanics. Based on three typical deformation paths, the m value is redefined. Furthermore, from the formula of generalized m value, the formulae for measuring mi, mv and mp are theoretically deduced. The precise methods with numerical simulation are presented. The results prove that the m value is a non-constant and its dependence on (ε) changes with the deformation path. Under different deformation paths, the m values calculated from the same formula are different. Using different formulae, the m values under the same deformation path are also different. Therefore, deformation path and corresponding formula should be given during the measurement of the m value. Moreover, it is explained theoretically and experimentally that why the mv value under constant velocity is sometimes negative but the mp value under constant load is sometimes lager than 1. The aim of the analysis and measurement of the m value is to facilitate the study on the relationship between macroscopical mechanical laws and microscopic physical mechanisms during superplastic deformation.

  20. Strain-rate dependence for Ni/Al hybrid foams

    Directory of Open Access Journals (Sweden)

    Jung Anne

    2015-01-01

    Full Text Available Shock absorption often needs stiff but lightweight materials that exhibit a large kinetic energy absorption capability. Open-cell metal foams are artificial structures, which due to their plateau stress, including a strong hysteresis, can in principle absorb large amounts of energy. However, their plateau stress is too low for many applications. In this study, we use highly novel and promising Ni/Al hybrid foams which consist of standard, open-cell aluminium foams, where nanocrystalline nickel is deposited by electrodeposition as coating on the strut surface. The mechanical behaviour of cellular materials, including their behaviour under higher strain-rates, is governed by their microstructure due to the properties of the strut material, pore/strut geometry and mass distribution over the struts. Micro-inertia effects are strongly related to the microstructure. For a conclusive model, the exact real microstructure is needed. In this study a micro-focus computer tomography (μCT system has been used for the analysis of the microstructure of the foam samples and for the development of a microstructural Finite Element (micro-FE mesh. The microstructural FE models have been used to model the mechanical behaviour of the Ni/Al hybrid foams under dynamic loading conditions. The simulations are validated by quasi-static compression tests and dynamic split Hopkinson pressure bar tests.

  1. High pressure, high strain rate material strength studies

    Science.gov (United States)

    Remington, B. A.; Arsenlis, A.; Barton, N.; Belof, J.; Cavallo, R.; Maddox, B.; Park, H.-S.; Prisbrey, S.; Rudd, R.; Comley, A.; Meyers, M.; Wark, J.

    2011-10-01

    Constitutive models for material strength are currently being tested at high pressures by comparing 2D simulations with experiments measuring the Rayleigh-Taylor (RT) instability evolution in solid-state samples of vanadium (V), tantalum (Ta), and iron (Fe). The multiscale strength models being tested combine molecular dynamics, dislocation dynamics, and continuum simulations. Our analysis for the V experiments suggests that the material deformation at these conditions falls into the phonon drag regime, whereas for Ta, the deformation resides mainly in the thermal activation regime. Recent Fe-RT experiments suggest perturbation growth about the alpha-epsilon (bcc-hcp) phase transition threshold has been observed. Using the LLNL multiscale models, we decompose the strength as a function of strain rate into its dominant components of thermal activation, phonon drag, and work hardening. We have also developed a dynamic diffraction diagnostic technique to measure strength directly from shock compressed single crystal samples. Finally, recovery experiments allow a comparison of residual dislocation density with predictions from the multiscale model. This work performed under the auspices of the U.S. DoE by LLNL Security, LLC under Contract DE-AC52-07NA27344.

  2. Microtwin formation in the {alpha} phase of duplex titanium alloys affected by strain rate

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Hsiang; Wu, Shu-Ming [Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2 Pei Ning Road, Keelung 20224, Taiwan (China); Kao, Fang-Hsin [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Wang, Shing-Hoa, E-mail: shwang@ntou.edu.tw [Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2 Pei Ning Road, Keelung 20224, Taiwan (China); Yang, Jer-Ren [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Yang, Chia-Chih [Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2 Pei Ning Road, Keelung 20224, Taiwan (China); Chiou, Chuan-Sheng [Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan (China)

    2011-03-15

    Research highlights: {yields} The long and dense twins in {alpha} phase of SP700 alloy occurring at lower strain rates promote a good ductility. {yields} The deformation in SP700 alloy changed to micro twins-controlled mechanism in {alpha} as the strain rate decreases. {yields} The material has time to redistribute the deformed strain between {alpha} and {beta} as the strain rate decreases. - Abstract: The effect of tensile strain rate on deformation microstructure was investigated in Ti-6-4 (Ti-6Al-4V) and SP700 (Ti-4.5Al-3V-2Mo-2Fe) of the duplex titanium alloys. Below a strain rate of 10{sup -2} s{sup -1}, Ti-6-4 alloy had a higher ultimate tensile strength than SP700 alloy. However, the yield strength of SP700 was consistently greater than Ti-6-4 at different strain rates. The ductility of SP700 alloy associated with twin formation (especially at the slow strain rate of 10{sup -4} s{sup -1}), always exceeded that of Ti-6-4 alloy at different strain rates. It is caused by a large quantity of deformation twins took place in the {alpha} phase of SP700 due to the lower stacking fault energy by the {beta} stabilizer of molybdenum alloying. In addition, the local deformation more was imposed on the {alpha} grains from the surrounding {beta}-rich grains by redistributing strain as the strain rate decreased in SP700 duplex alloy.

  3. Material dynamics under extreme conditions of pressure and strain rate

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B A; Allen, P; Bringa, E; Hawreliak, J; Ho, D; Lorenz, K T; Lorenzana, H; Meyers, M A; Pollaine, S W; Rosolankova, K; Sadik, B; Schneider, M S; Swift, D; Wark, J; Yaakobi, B

    2005-09-06

    Solid state experiments at extreme pressures (10-100 GPa) and strain rates ({approx}10{sup 6}-10{sup 8}s{sup -1}) are being developed on high-energy laser facilities, and offer the possibility for exploring new regimes of materials science. These extreme solid-state conditions can be accessed with either shock loading or with a quasi-isentropic ramped pressure drive. Velocity interferometer measurements establish the high pressure conditions. Constitutive models for solid-state strength under these conditions are tested by comparing 2D continuum simulations with experiments measuring perturbation growth due to the Rayleigh-Taylor instability in solid-state samples. Lattice compression, phase, and temperature are deduced from extended x-ray absorption fine structure (EXAFS) measurements, from which the shock-induced {alpha}-{omega} phase transition in Ti and the {alpha}-{var_epsilon} phase transition in Fe are inferred to occur on sub-nanosec time scales. Time resolved lattice response and phase can also be measured with dynamic x-ray diffraction measurements, where the elastic-plastic (1D-3D) lattice relaxation in shocked Cu is shown to occur promptly (< 1 ns). Subsequent large-scale molecular dynamics (MD) simulations elucidate the microscopic dynamics that underlie the 3D lattice relaxation. Deformation mechanisms are identified by examining the residual microstructure in recovered samples. The slip-twinning threshold in single-crystal Cu shocked along the [001] direction is shown to occur at shock strengths of {approx}20 GPa, whereas the corresponding transition for Cu shocked along the [134] direction occurs at higher shock strengths. This slip-twinning threshold also depends on the stacking fault energy (SFE), being lower for low SFE materials. Designs have been developed for achieving much higher pressures, P > 1000 GPa, in the solid state on the National Ignition Facility (NIF) laser.

  4. Experimentation and Modeling of the Tension Behavior of Polycarbonate at High Strain Rates

    Directory of Open Access Journals (Sweden)

    Yingjie Xu

    2016-02-01

    Full Text Available A comprehensive understanding of the mechanical behavior of polycarbonate (PC under high-rate loadings is essential for better design of PC products. In this work, the mechanical behavior of PC is studied during tensile loading at high strain rates, using a split Hopkinson tension bar (SHTB. A modified experimental technique based on the SHTB is proposed to perform the tension testing on PC at rates exceeding 1000 s−1. The effect of strain rates on the tension stress–strain law of PC is investigated over a wide range of strain rates (0.0005–4500 s−1. Based on the experiments, a physically based constitutive model is developed to describe the strain rate dependent tensile stress–strain law. The high rate tensile deformation mechanics of PC are further studied via finite element simulations using the LSDYNA code together with the developed constitutive model.

  5. Effects of Strain Rate and Plastic Work on Martensitic Transformation Kinetics of Austenitic Stainless Steel 304

    Institute of Scientific and Technical Information of China (English)

    Fang PENG; Xiang-huai DONG; Kai LIU; Huan-yang XIE

    2015-01-01

    The martensitic transformation behavior and mechanical properties of austenitic stainless steel 304 were studied by both experiments and numerical simulation. Room temperature tensile tests were carried out at various strain rates to investigate the effect on volume fraction of martensite, temperature increase and flow stress. The results show that with increasing strain rate, the local temperature increases, which suppresses the transformation of martensite. To take into account the dependence on strain level, strain rate sensitivity and thermal effects, a kinetic model of martensitic transformation was proposed and constitutive modeling on stress-strain response was conducted. The validity of the proposed model has been proved by comparisons between simulation results and experimental ones.

  6. Evaluation of thermal effects and strain-rate sensitivity in frozen soil

    Directory of Open Access Journals (Sweden)

    Zhu Zhi-Wu

    2014-01-01

    Full Text Available Temperature variation is one important factor that affects the dynamic mechanical properties of frozen soil under impact loading. Thermal damage is a collective phenomenon that can be caused by temperature variation. This paper investigates the effects of thermal damage on strain course. A split Hopkinson pressure bar was employed to investigate the dynamic mechanical characteristics of frozen soil at different temperatures and different strain rates. The stress-strain curves were obtained under impact loading. The compressive strength of frozen soil showed a negative temperature sensitivity and positive strain-rate trend. Specifically, the strength of frozen soil increased with decreasing temperatures and increasing strain rates.

  7. Temperature effects on high strain rate properties of graphite/epoxy composites

    Science.gov (United States)

    Yaniv, G.; Daniel, I. M.; Cokeing, S.; Martinez, G. M.

    1991-01-01

    A unidirectional graphite epoxy material (AS4/3501-6) was characterized at strain rates ranging from 5 x 10(exp 6) s(exp -1) to 5(exp -1), at room temperature and at 128 C. Results are presented in the form of stress-strain curves to failure. The longitudinal properties remain nearly unchanged with strain rate and temperature. The transverse modulus increases with strain rate but decreases with temperature. The transverse strength and transverse ultimate tensile strain have a positive rate sensitivity at low rates, which changes to negative at intermediate rates and returns to positive rate sensitivity at the highest rates tested. A temperature-time equivalence principle was applied and master curves were obtained for the transverse mechanical properties. The in-plane shear modulus and in-plane shear strength have a positive rate sensitivity. The ultimate intralaminar shear strain has a positive rate sensitivity at low rates, which changes to negative at high rates. At the elevated temperature of 128 C, the ultimate shear strain is 25 to 30 percent higher than the room temperature value, but its strain rate dependence is moderate.

  8. Microstructure of Cu60Zr20Ti20 bulk metallic glass rolled at different strain rates

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The structural evolution of Cu60Zr20Ti20 bulk metallic glass during rolling at different strain rates and cryogenic temperature was investigated by X-ray diffraction (XRD),differential scanning calorimetry (DSC) and high-resolution transmission electron microscopy (HRTEM). It is revealed that the deformation-induced transformation is strongly dependent on the strain rate. At the lowest experimental strain rate of 1.0×10-4 s-1,no phase transformation occurs until the highest deformation degree reaches 95%. In a strain rate range of 5.0×10-4-5.0×10-2 s-1,phase separation oc-curs in a high deformation degree. As the strain rate reaches 5.0×10-1 s-1,phase separation and nanocrystallization concur. The critical deformation degree for oc-currence of phase transformation decreases with the strain rate increasing.

  9. PLASTIC DEFORMATION BEHAVIOR OF ELECTROFORMED COPPER LINER OF SHAPED CHARGE AT DIFFERENT STRAIN RATES

    Institute of Scientific and Technical Information of China (English)

    H.Y.Gao; Q.Sun

    2003-01-01

    The paper deals with different plastic deformation behavior of electroformed copper liner of shaped charge,depormed at high strain rate(about 1×107s-1) and normal strain rate (4×10-4s-1).The crystallographic orientation distribution of grains in recovered slugs which had undergone high-strain-rate plastic deformation during ex-plosive detonation was investigated by electron backscattering Kikuchi pattern tech-nique.Cellualar structures formed by tangled disocations and sub-grain boundaries consisting of dislocation arrays were detected in the recovered slugs.Some twins and slip dislocations were observed in specimen deformed at normal strain rate.It was found that dynamic recovery and recrystallization take place during high-strain-rate deformation due to the temperature rising,whereas the conventional slip mechanism operates during deformation at normal strain rate.

  10. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2016-01-20

    The effects of strain rate, oxygen enrichment and fuel type on the sooting characteristics of counterflow diffusion flames were studied. The sooting structures and relative PAH concentrations were measured with laser diagnostics. Detailed soot modeling using recently developed PAH chemistry and surface reaction mechanism was performed and the results were compared with experimental data for ethylene flames, focusing on the effects of strain rates. The results showed that increase in strain rate reduced soot volume fraction, average size and peak number density. Increase in oxygen mole fraction increased soot loading and decreased its sensitivity on strain rate. The soot volume fractions of ethane, propene and propane flames were also measured as a function of global strain rate. The sensitivity of soot volume fraction to strain rate was observed to be fuel dependent at a fixed oxygen mole fraction, with the sensitivity being higher for more sooting fuels. However, when the soot loadings were matched at a reference strain rate for different fuels by adjusting oxygen mole fraction, the dependence of soot loading on strain rate became comparable among the tested fuels. PAH concentrations were shown to decrease with increase in strain rate and the dependence on strain rate is more pronounced for larger PAHs. Soot modeling was performed using detailed PAH growth chemistry with molecular growth up to coronene. A qualitative agreement was obtained between experimental and simulation results, which was then used to explain the experimentally observed strain rate effect on soot growth. However, quantitatively, the simulation result exhibits higher sensitivity to strain rate, especially for large PAHs and soot volume fractions.

  11. Suppression of dislocations at high strain rate deformation in a twinning-induced plasticity steel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z.Y. [Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen (China); Department of Mechanical Engineering, The University of Hong Kong, Hong Kong (China); Huang, W., E-mail: whuang@szu.edu.cn [Department of Civil Engineering, Shenzhen University, Shenzhen (China); Huang, M.X., E-mail: mxhuang@hku.hk [Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen (China); Department of Mechanical Engineering, The University of Hong Kong, Hong Kong (China)

    2015-03-25

    The increase of strain rate generally enhances dislocation evolution in face-centred cubic (FCC) metals. However, by synchrotron X-ray diffraction experiments, the present work demonstrates for the first time that a higher strain rate leads to a lower dislocation density in a twinning-induced plasticity steel with an FCC structure. This unexpected suppression of dislocation evolution has been attributed to the temperature increase due to dissipative heating at high strain rate deformation.

  12. Mechanical properties of biaxially strained poly(L-lactide) tubes: Strain rate and temperature dependence

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Andreasen, Jens Wenzel; Mikkelsen, Lars Pilgaard

    2017-01-01

    Poly(l-lactide) (PLLA) is a bioabsorbable polymer with high stiffness and strength compared to the other commercially available bioabsorbable polymers. The properties of PLLA can be improved by straining, causing deformation-mediated molecular orientation. PLLA tubes were biaxially strained above...

  13. Analysis of a strain rate field in cold formed material using the visioplasticity method

    Directory of Open Access Journals (Sweden)

    L. Gusel

    2009-04-01

    Full Text Available In this paper the visioplasticity method is used to find the complete velocity and strain rate distributions from the experimental data, using the finite-difference method. The data about values of strain rates in plastic region of the material is very important for calculating stresses and the prediction of product quality. Specimens of copper alloy were extruded with different lubricants and different coefficients of friction and then the strain rate distributions were analysed and compared. Significant differences in velocity and strain rate distributions were obtained in some regions at the exit of the deformed zone.

  14. Effect of Temperature and Strain Rate on Dynamic Properties of Low Silicon TRIP Steel

    Institute of Scientific and Technical Information of China (English)

    TIAN Rong; LI Lin; B C De Cooman; WEI Xi-chen; SUN Peng

    2006-01-01

    The dynamic tensile test of 0.11C-0.62Si-1.65Mn TRIP steel was carried out at different strain rates and test temperatures. The results show that both temperature and strain rate affect the retained austenite transformation. At high strain rates, the uniform elongation decreases, whereas the total elongation and energy absorption increase. The tensile strength is less strain rate sensitive. With raising test temperature, the tensile strength is reduced and the mechanical properties generally deteriorate, especially at 110 ℃. However, excellent mechanical properties were obtained at 50 ℃ and 75 ℃.

  15. Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Shi, Zhijun; Lau, Andrew; Liu, Changqin; Yang, Guang; Silberschmidt, Vadim V

    2016-05-01

    This study is focused on anomalous strain-rate-dependent behaviour of bacterial cellulose (BC) hydrogel that can be strain-rate insensitive, hardening, softening, or strain-rate insensitive in various ranges of strain rate. BC hydrogel consists of randomly distributed nanofibres and a large content of free water; thanks to its ideal biocompatibility, it is suitable for biomedical applications. Motivated by its potential applications in complex loading conditions of body environment, its time-dependent behaviour was studied by means of in-aqua uniaxial tension tests at constant temperature of 37 °C at various strain rates ranging from 0.000 1s(-1) to 0.3s(-1). Experimental results reflect anomalous strain-rate-dependent behaviour that was not documented before. Micro-morphological observations allowed identification of deformation mechanisms at low and high strain rates in relation to microstructural changes. Unlike strain-rate softening behaviours in other materials, reorientation of nanofibres and kinematics of free-water flow dominate the softening behaviour of BC hydrogel at high strain rates.

  16. Effect of strain rate on bake hardening response of BH220 steel

    Directory of Open Access Journals (Sweden)

    Das Anindya

    2015-01-01

    Full Text Available This study aims at understanding the bake hardening ability of ultra low carbon BH220 steel at different strain rates. The as-received material has been pre-strained to four different levels and then deformed in tension under (a as pre-strained state and (b after baking at 170 ∘C for 20 minutes, at three different strain rates of 0.001, 0.1 and 100/s. In both the conditions, yield stress increased with pre-strain and strain rate, but bake hardening ability was found to decrease when strain rate was increased. The strain rate sensitivity of the material was also found to decrease with bake hardening. Generation of dislocation forests and their subsequent immobility during baking treatment enables them to act as long range obstacles during further deformation. At higher strain rates, less amount of dislocations are produced which can interact with themselves and produce hardening, because of which bake hardening ability and the strain rate drops. A dislocation based strengthening model, as proposed by Larour et al. 2011 [7], was used to predict the yield stress values obtained at different conditions. The equation produced excellent co-relation with the experimental data.

  17. Method for obtaining simple shear material properties of the intervertebral disc under high strain rates.

    Science.gov (United States)

    Ott, Kyle A; Armiger, Robert S; Wickwire, Alexis C; Carneal, Catherine M; Trexler, Morgana M; Lennon, Andrew M; Zhang, Jiangyue; Merkle, Andrew C

    2012-01-01

    Predicting spinal injury under high rates of vertical loading is of interest, but the success of computational models in modeling this type of loading scenario is highly dependent on the material models employed. Understanding the response of these biological materials at high strain rates is critical to accurately model mechanical response of tissue and predict injury. While data exists at lower strain rates, there is a lack of the high strain rate material data that are needed to develop constitutive models. The Split Hopkinson Pressure Bar (SHPB) has been used for many years to obtain properties of various materials at high strain rates. However, this apparatus has mainly been used for characterizing metals and ceramics and is difficult to apply to softer materials such as biological tissue. Recently, studies have shown that modifications to the traditional SHPB setup allow for the successful characterization of mechanical properties of biological materials at strain rates and peak strain values that exceed alternate soft tissue testing techniques. In this paper, the previously-reported modified SHPB technique is applied to characterize human intervertebral disc material under simple shear. The strain rates achieved range from 5 to 250 strain s-1. The results demonstrate the sensitivity to the disc composition and structure, with the nucleus pulposus and annulus fibrosus exhibiting different behavior under shear loading. Shear tangent moduli are approximated at varying strain levels from 5 to 20% strain. This data and technique facilitates determination of mechanical properties of intervertebral disc materials under shear loading, for eventual use in constitutive models.

  18. Mechanical behaviour of glass fibre reinforced composite at varying strain rates

    Science.gov (United States)

    Acharya, Saikat; Mondal, D. K.; Ghosh, K. S.; Mukhopadhyay, A. K.

    2017-03-01

    Here we report the results of compressive split Hopkinson pressure bar experiments (SHPB) conducted on unidirectional glass fibre reinforced polymer (GFRP) in the strain rate regime 5  ×  102–1.3  ×  103 s‑1. The maximum compressive strength of GFRP was found to increase by as much as 55% with increase in strain rate. However, the corresponding relative strain to failure response was measured to increase only marginally with increase in strain rates. Based on the experimental results and photomicrographs obtained from FE-SEM based post mortem examinations, the failure phenomena are suggested to be associated with increase in absorption of energy from low to high strain rates. Attempts have been made to explain these observations in terms of changes in deformation mechanisms primarily as a function of strain rates.

  19. Effect of transient change in strain rate on plastic flow behaviour of low carbon steel

    Indian Academy of Sciences (India)

    A Ray; P Barat; P Mukherjee; A Sarkar; S K Bandyopadhyay

    2007-02-01

    Plastic flow behaviour of low carbon steel has been studied at room temperature during tensile deformation by varying the initial strain rate of 3.3 × 10-4 s-1 to a final strain rate ranging from 1.33 × 10-3 s-1 to 2 × 10-3 s-1 at a fixed engineering strain of 12%. Haasen plot revealed that the mobile dislocation density remained almost invariant at the juncture where there was a sudden increase in stress with a change in strain rate and the plastic flow was solely dependent on the velocity of mobile dislocations. In that critical regime, the variation of stress with time was fitted with a Boltzmann type Sigmoid function. The increase in stress was found to increase with final strain rate and the time elapsed in attaining these stress values showed a decreasing trend. Both of these parameters saturated asymptotically at a higher final strain rate.

  20. Dynamic Mechanical Response of Biomedical 316L Stainless Steel as Function of Strain Rate and Temperature.

    Science.gov (United States)

    Lee, Woei-Shyan; Chen, Tao-Hsing; Lin, Chi-Feng; Luo, Wen-Zhen

    2011-01-01

    A split Hopkinson pressure bar is used to investigate the dynamic mechanical properties of biomedical 316L stainless steel under strain rates ranging from 1 × 10(3) s(-1) to 5 × 10(3) s(-1) and temperatures between 25°C and 800°C. The results indicate that the flow stress, work-hardening rate, strain rate sensitivity, and thermal activation energy are all significantly dependent on the strain, strain rate, and temperature. For a constant temperature, the flow stress, work-hardening rate, and strain rate sensitivity increase with increasing strain rate, while the thermal activation energy decreases. Catastrophic failure occurs only for the specimens deformed at a strain rate of 5 × 10(3) s(-1) and temperatures of 25°C or 200°C. Scanning electron microscopy observations show that the specimens fracture in a ductile shear mode. Optical microscopy analyses reveal that the number of slip bands within the grains increases with an increasing strain rate. Moreover, a dynamic recrystallisation of the deformed microstructure is observed in the specimens tested at the highest temperature of 800°C.

  1. Shrinkage strainRates study of dental composites based on (BisGMA/TEGDMA monomers

    Directory of Open Access Journals (Sweden)

    A. Amirouche-Korichi

    2017-02-01

    The results revealed that the fraction of opaque filler had no significant effect on the shrinkage strain-rate and on the time at maximum shrinkage strain-rate but these two parameters are closely related to the monomer ratios and viscosity of the organic matrix. The results have confirmed the proportionality of the shrinkage strain and DC and showed that the filler contents and monomer ratios would not affect this proportionality.

  2. The Effect of Strain Rate on Tensile Properties of Cotton Yarns

    Institute of Scientific and Technical Information of China (English)

    石风俊; 崔世忠

    2003-01-01

    The effect of strain rate on tensile properties of cotton yarns is analyzed using the standard linear solid model. The tensile curve, breaking strength and work of rupture of the yarns under different strain rate are calculated. A good correlation exists between the experiment results and theoretical anticipations.

  3. High Strain Rate Characterization of Shock Absorbing Materials for Landmine Protection Concepts

    Directory of Open Access Journals (Sweden)

    Jennifer McArthur

    2003-01-01

    Full Text Available Numerical modelling of footwear to protect against anti-personnel landmines requires dynamic material properties in the appropriate strain rate regime to accurately simulate material response. Several materials (foamed metals, honeycombs and polymers are used in existing protective boots, however published data at high strain rates is limited.

  4. Strain rates of opening-mode fractures in deep basinal settings

    Science.gov (United States)

    Eichhubl, Peter; Hooker John, N.; Andras, Fall; Laubach Stephen, E.

    2010-05-01

    Long-term strain rates for geologic processes are characteristically in the range of 10-13 to 10-17 s-1 as measured by a variety of techniques, including geodetic techniques, radiometric dating of tectonic and structural processes, and through stratigraphic correlations. Here, we present strain rates for populations of opening-mode fractures in sandstone in deep basinal settings. Fracture strain is obtained by collecting aperture-frequency data for microfractures along scanlines in weakly deformed sandstone. Opening durations of individual macrofractures in the same population are then obtained through detailed microthermometry of fluid inclusions in crack-seal fracture cement, combined with textural reconstructions of the fracture opening history. Temperature data are then correlated with known burial history models to obtain the duration of fracture opening and the fracture opening strain rate. Individual fractures in deeply buried sandstone of the East Texas basin, a passive margin setting, opened over 48 m.y. with a strain rate of 2x10-18 s-1to 5x10-19 s-1. Similar strain rates are obtained for fractures in the Piceance intermontane basin of Colorado. These ultraslow strain rates compare well to longterm intraplate seismic strain rates suggesting that rates of fracture opening are controlled by intraplate tectonic deformation processes.

  5. The strain-rate sensitivity of high-strength high-toughness steels.

    Energy Technology Data Exchange (ETDEWEB)

    Dilmore, M.F. (AFRL/MNMW, Eglin AFB, FL); Crenshaw, Thomas B.; Boyce, Brad Lee

    2006-01-01

    The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate. Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.

  6. High-strain-rate tensile mechanical response of a polyurethane elastomeric material

    NARCIS (Netherlands)

    Fan, J.T.; Weerheijm, J.; Sluys, L.J.

    2015-01-01

    The dynamic tensile mechanical response of a soft polymer material (Clear Flex 75) is investigated using a split Hopkinson tension bar (SHTB). Stress-strain relations are derived to reveal the mechanical properties at moderate and high strain rates. These relations appear to be rate dependent. Under

  7. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  8. Modeling of failure mode in knee ligaments depending on the strain rate

    Directory of Open Access Journals (Sweden)

    Hyman William

    2002-01-01

    Full Text Available Abstract Background The failure mechanism of the knee ligament (bone-ligament-bone complex at different strain rates is an important subject in the biomechanics of the knee. This study reviews and summarizes the literature describing ligament injury as a function of stain rate, which has been published during the last 30 years. Methods Three modes of injury are presented as a function of strain rate, and they are used to analyze the published cases. The number of avulsions is larger than that of ligament tearing in mode I. There is no significant difference between the number of avulsions and ligament tearing in mode II. Ligament tearing happens more frequently than avulsion in mode III. Results When the strain rate increases, the order of mode is mode I, II, III, I, and II. Analytical models of ligament behavior as a function of strain rate are also presented and used to provide an integrated framework for describing all of the failure regimes. In addition, this study showed the failure mechanisms with different specimens, ages, and strain rates. Conclusion There have been several a numbers of studies of ligament failure under various conditions including widely varying strain rates. One issue in these studies is whether ligament failure occurs mid-ligament or at the bone attachment point, with assertions that this is a function of the strain rate. However, over the range of strain rates and other conditions reported, there has appeared to be discrepancies in the conclusions on the effect of strain rate. The analysis and model presented here provides a unifying assessment of the previous disparities, emphasizing the differential effect of strain rate on the relative strengths of the ligament and the attachment.

  9. Inelastic strain rate in the seismogenic layer of Kyushu Island, Japan

    Science.gov (United States)

    Matsumoto, Satoshi; Nishimura, Takuya; Ohkura, Takahiro

    2016-12-01

    Seismic activity is associated with crustal stress relaxation, creating inelastic strain in a medium due to faulting. Inelastic strain affects the stress field around a weak body and causes stress concentration around the body, because the body itself has already released stress. Therefore, the understanding of inelastic deformation is important as it generates earthquakes. We investigated average inelastic strain in a spatial bin of Kyushu Island, Japan, and obtained the inelastic strain rate distribution associated with crustal earthquakes, based on the analysis of fault plane solutions and seismic moments. Large inelastic strains (>10-7 year-1) were found in the Beppu-Shimabara area, located in the center of Kyushu Island. The strain rate tensor was similar to that of the stress tensor except the absolute value in the area, implying that the inelastic strain was controlled by the stress field. The 2016 Kumamoto earthquake sequence (maximum magnitude 7.3) occurred in the Beppu-Shimabara area, with the major earthquakes located around the high inelastic strain rate area. Inelastic strain in the volume released the stress. In addition, the inelastic strain created an increment of stress around the volume. This indicates that the spatial heterogeneity of inelastic strain might concentrate stress.[Figure not available: see fulltext.

  10. PLASTIC DEFORMATION BEHAVIOR OF ELECTROFORMED COPPER LINER OF SHAPED CHARGE AT DIFFERENT STRAIN RATES

    Institute of Scientific and Technical Information of China (English)

    H.Y. Gao; W.H. Tian; A.L. Fan; Q. Sun

    2003-01-01

    The paper deals with different plastic deformation behavior of electroformed copperliner of shaped charge, deformed at high strain rate (about 1×107 s-1) and normalstrain rate (4×10-4 s-1). The crystallographic orientation distribution of grains inrecovered slugs which had undergone high-strain-rate plastic deformation during ex-plosive detonation was investigated by electron backscattering Kikuchi pattern tech-nique. Cellular structures formed by tangled dislocations and sub-grain boundariesconsisting of dislocation arrays were detected in the recovered slugs. Some twins andslip dislocations were observed in specimen deformed at normal strain rate. It wasfound that dynamic recovery and recrystallization take place during high-strain-ratedeformation due to the temperature rising, whereas the conventional slip mechanismoperates during deformation at normal strain rate.

  11. TRIP effect in austenitic-martensitic VNS9-Sh steel at various strain rates

    Science.gov (United States)

    Terent'ev, V. F.; Slizov, A. K.; Prosvirnin, D. V.

    2016-10-01

    The mechanical properties of austenitic-martensitic VNS9-Sh (23Kh15N5AM3-Sh) steel are studied at a static strain rate from 4.1 × 10-5 to 17 × 10-3 s-1 (0.05-20 mm/min). It is found that, as the strain rate increases, the ultimate tensile strength decreases and the physical yield strength remains unchanged (≈1400 MPa). As the strain rate increases, the yield plateau remains almost unchanged and the relative elongation decreases continuously. Because of high microplastic deformation, the conventional yield strength is lower than the physical yield strength over the entire strain rate range under study. The influence of the TRIP effect on the changes in the mechanical properties of VNS9-Sh steel at various strain rates is discussed.

  12. Elastography and strain rate imaging of the gastrointestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Havre, R., E-mail: roald.flesland.havre@helse-bergen.no [National Centre for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen (Norway); Gilja, O.H. [National Centre for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen (Norway); Department of Clinical Medicine, University of Bergen, Bergen (Norway)

    2014-03-15

    Ultrasound based elastography of the gastrointestinal tract may be a useful approach to improved tissue characterisation. Distinguishing malignant lesions from benign may be one useful application. Monitoring of inflammatory bowel lesions for degree of inflammation or fibrosis would be another clinically useful tool. The anatomy of the bowel, however, raises many challenges for strain or shear wave imaging due to thin structures, non-constant boundary conditions and intrinsic contractility. Pathological lesions tend to increase bowel wall thickness and may ease elastography imaging. Very few studies have addressed issues of bowel wall elastography so far, and both inflammatory and neoplastic lesions seem to increase tissue hardness in the bowel wall.

  13. How to test brain and brain simulant at ballistic and blast strain rates.

    Science.gov (United States)

    Zhang, Jiangyue; Song, Bo; Pintar, Frank A; Yoganandan, Narayan; Chen, Weinong; Gennarelli, Thomas A

    2008-01-01

    Mechanical properties of brain tissue and brain simulant at strain rate in the range of 1000 s-1 are essential for computational simulation of intracranial responses for ballistic and blast traumatic brain injury. Testing these ultra-soft materials at high strain rates is a challenge to most conventional material testing methods. The current study developed a modified split Hopkinson bar techniques using the combination of a few improvements to conventional split Hopkinson bar including: using low impedance aluminum bar, semiconductor strain gauge, pulse shaping technique and annular specimen. Feasibility tests were conducted using a brain stimulant, Sylgard 527. Stress-strain curves of the simulant were successfully obtained at strain rates of 2600 and 2700 s-1 for strain levels up to 60%. This confirmed the applicability of Hopkinson bar for mechanical properties testing of brain tissue in the ballistic and blast domain.

  14. High Strain Rate Compression of Martensitic NiTi Shape Memory Alloy at Different Temperatures

    Science.gov (United States)

    Qiu, Ying; Young, Marcus L.; Nie, Xu

    2017-02-01

    The compressive response of martensitic NiTi shape memory alloy (SMA) rods has been investigated using a modified Kolsky compression bar at various strain rates (400, 800, and 1200 s-1) and temperatures [room temperature and 373 K (100 °C)], i.e., in the martensitic state and in the austenitic state. SEM, DSC, and XRD were performed on NiTi SMA rod samples after high strain rate compression in order to reveal the influence of strain rate and temperature on the microstructural evolution, phase transformation, and crystal structure. It is found that at room temperature, the critical stress increases slightly as strain rate increases, whereas the strain-hardening rate decreases. However, the critical stress under high strain rate compression at 373 K (100 °C) increase first and then decrease due to competing strain hardening and thermal softening effects. After high rate compression, the microstructure of both martensitic and austenitic NiTi SMAs changes as a function of increasing strain rate, while the phase transformation after deformation is independent of the strain rate at room temperature and 373 K (100 °C). The preferred crystal plane of the martensitic NiTi SMA changes from ( 1bar{1}1 )M before compression to (111)M after compression, while the preferred plane remains the same for austenitic NiTi SMA before and after compression. Additionally, dynamic recovery and recrystallization are also observed to occur after deformation of the austenitic NiTi SMA at 373 K (100 °C). The findings presented here extend the basic understanding of the deformation behavior of NiTi SMAs and its relation to microstructure, phase transformation, and crystal structure, especially at high strain rates.

  15. Mechanical behavior of a lanthanum-doped magnesium alloy at different strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J. [Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States); School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Yin, W. [Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States); Kondoh, K. [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Jones, Tyrone L.; Kecskes, L.J. [WMRD, US Army Research Laboratory, Aberdeen Proving Ground, Deer Creek Loop, Aberdeen Proving Ground, MD 21005-5069 (United States); Yarmolenko, S.N. [NSF-ERC, Department of Mechanical Engineering, NC A& T State University, 1601 E. Market Street, Greensboro, NC 27411 (United States); Wei, Q., E-mail: qwei@uncc.edu [Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States)

    2015-02-25

    The mechanical behavior of a lanthanum doped Mg alloy, AZXE7111, (Mg–7Al–1Zn–1Ca–1La, all in wt%) extruded at different temperatures has been investigated under both quasi-static (strain rate ~1×10{sup −3} s{sup −1}) and dynamic (strain rate ~4×10{sup 3} s{sup −1}) compressive loading. Comparison has been made against the experimental results of two conventional Mg alloys, AZ91E and WE43. It was observed via transmission electron microscopy (TEM) that the nanoscale intermetallic compounds of Al{sub 2}Ca and Al{sub 11}La{sub 3}, have presumably formed during the hot extrusion process. These compounds are believed to contribute significantly to the strength by reducing the grain size and acting as dislocation barriers. Additionally, twinning has been considered as the main mechanism for the higher strain hardening rate at high strain rates than that at low strain rates. It has been found that the ultimate strength of the alloy is only ~10% higher at dynamic loading rate than at quasi-static loading rate. Localized micro-shear fracture was observed and adiabatic shear mode was suggested by further examination of dynamically loaded specimens. The shear localization is further discussed in detail and it is suggested that reduced strain hardening rate is responsible for shear localization and subsequent fracture at both low and high strain rates.

  16. Strain Rate Dependence of Compressive Yield and Relaxation in DGEBA Epoxies

    Science.gov (United States)

    Arechederra, Gabriel K.; Reprogle, Riley C.; Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.; Chambers, Robert S.

    2015-03-01

    The mechanical response in uniaxial compression of two diglycidyl ether of bisphenol-A epoxies were studied. These were 828DEA (Epon 828 cured with diethanolamine (DEA)) and 828T403 (Epon 828 cured with Jeffamine T-403). Two types of uniaxial compression tests were performed: A) constant strain rate compression and B) constant strain rate compression followed by a constant strain relaxation. The peak (yield) stress was analyzed as a function of strain rate from Eyring theory for activation volume. Runs at different temperatures permitted the construction of a mastercurve, and the resulting shift factors resulted in an activation energy. Strain and hold tests were performed for a low strain rate where a peak stress was lacking and for a higher strain rate where the peak stress was apparent. Relaxation from strains at different places along the stress-strain curve was tracked and compared. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Experimental study of dynamic mechanical properties of reactive powder concrete under high-strain-rate impacts

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The dynamic mechanical properties of reactive powder concrete subjected to compressive impacts with high strain rates ranging from 10 to 1.1×102 s-1 were investigated by means of SHPB (split-Hopkinson-pressure-bar) tests of the cylindrical specimens with five different steel fiber volumetric fractions.The properties of wave stress transmission,failure,strength,and energy consumption of RPC with varied fiber volumes and impact strain rates were analyzed.The influences of impact strain rates and fiber volumes on those properties were characterized as well.The general forms of the dynamic stress-strain relationships of RPC were modeled based on the experimental data.The investigations indicate that for the plain RPC the stress response is greater than the strain response,showing strong brittle performance.The RPC with a certain volume of fibers sustains higher strain rate impact and exhibits better deformability as compared with the plain RPC.With a constant fiber fraction,the peak compressive strength,corresponding peak strain and the residual strain of the fiber-reinforced RPC rise by varying amounts when the impact strain rate increases,with the residual strain demonstrating the greatest increment.Elevating the fiber content makes trivial contribution to improving the residual deformability of RPC when the impact strain rate is constant.The tests also show that the fiber content affects the peak compressive strength and the peak deformability of RPC in a different manner.With a constant impact strain rate and the fiber fraction less than 1.75%,the peak compressive strength rises with an increasing fiber volume.The peak compressive strength tends to decrease as the fiber volume exceeds 1.75%.The corresponding peak strain,however,incessantly rises with the increasing fiber volume.The total energy Edisp that RPC consumed during the period from the beginning of impacts to the time of residual strains elevates with the fiber volume increment as long as the fiber

  18. Strain and strain rate by two-dimensional speckle tracking echocardiography in a maned wolf Strain e strain rate por meio de ecocardiogratia speckle traking bidimensional em um lobo-guará

    Directory of Open Access Journals (Sweden)

    Matheus M. Mantovani

    2012-12-01

    Full Text Available The measurement of cardiovascular features of wild animals is important, as is the measurement in pets, for the assessment of myocardial function and the early detection of cardiac abnormalities, which could progress to heart failure. Speckle tracking echocardiography (2D STE is a new tool that has been used in veterinary medicine, which demonstrates several advantages, such as angle independence and the possibility to provide the early diagnosis of myocardial alterations. The aim of this study was to evaluate the left myocardial function in a maned wolf by 2D STE. Thus, the longitudinal, circumferential and radial strain and strain rate were obtained, as well as, the radial and longitudinal velocity and displacement values, from the right parasternal long axis four-chamber view, the left parasternal apical four chamber view and the parasternal short axis at the level of the papillary muscles. The results of the longitudinal variables were -13.52±7.88, -1.60±1.05, 4.34±2.52 and 3.86±3.04 for strain (%, strain rate (1/s, displacement (mm and velocity (cm/s, respectively. In addition, the radial and circumferential Strain and Strain rate were 24.39±14.23, 1.86±0.95 and -13.69±6.53, -1.01±0.48, respectively. Thus, the present study provides the first data regarding the use of this tool in maned wolves, allowing a more complete quantification of myocardial function in this species.A obtenção de parâmetros cardiovasculares em animais selvagens são importantes de serem avaliados, assim como em animais de companhia, para a obtenção da função miocárdica e determinação precoce de alterações cardíacas que poderiam evoluir para insuficiência cardíaca . A ecocardiografia speckle tracking (2D STE é uma ferramenta nova que tem sido utilizada em medicina veterinária, a qual tem demonstrado várias vantagens quanto ao seu uso, como a independência do ângulo de insonação e a possibilidade de se obter o diagnóstico precoce de altera

  19. Assessment of left ventricular functions with tissue Doppler, strain, and strain rate echocardiography in patients with familial Mediterranean fever.

    Science.gov (United States)

    Ceylan, Özben; Özgür, Senem; Örün, Utku Arman; Doğan, Vehbi; Yılmaz, Osman; Keskin, Mahmut; Arı, Mehmet Emre; Erdoğan, Özlem; Karademir, Selmin

    2015-08-01

    This study assessed the early changes in regional and global systolic and diastolic myocardial functions in patients with familial Mediterranean fever without any cardiovascular symptoms using tissue Doppler and strain and strain rate echocardiography and compared them to the results of a control group. This study has a cross-sectional and observational design. FMF patients with normal left ventricular function were included in the study. We excluded patients who had arrhythmia, acquired/congenital heart disease, pericarditis, or acute attack. We compared 45 children with familial Mediterranean fever on colchicine therapy and 45 age- and sex-matched healthy children. The 45 patients with familial Mediterranean fever included 24 (55.3%) girls and 21 (46.7%) boys with a mean age of 11.3 ± 3.7 (range 2-18) years. The mean disease duration was 4.6 ± 2.4 (range 0.5-10) years. In the patient group, the homozygous M694V mutation was the most common (64.4%) mutation. The patients with familial Mediterranean fever had statistically lower longitudinal global strain, radial global strain, and strain rates (-14.44 ± 4.77%, 14.80 ± 6.29%, and 0.59 ± 0.24 s, respectively) than the controls (-17.40 ± 1.79%, 17.53 ± 4.63%, and 0.83 ± 0.51 s) (p familial Mediterranean fever who are subclinical from a cardiac aspect might have normal left ventricular function as measured by conventional echocardiography. However, the disease affects their myocardial tissue, and these patients should be followed with conventional, strain, and strain rate echocardiography techniques regularly.

  20. Dynamic tensile behaviour and deformational mechanism of C5191 phosphor bronze under high strain rates deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dao-chun [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Taizhou Vocational & Technical College, Taizhou 318000 (China); Chen, Ming-he, E-mail: meemhchen@nuaa.edu.cn [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Lei; Cheng, Hu [College of Mechanical Engineering, Taizhou University, Taizhou 318000 (China)

    2016-01-01

    High speed stamping process is used to high strength and high electrical conductivity phosphor bronze with extremely high strain rates more than 10{sup 3} s{sup −1}. This study on the dynamic tensile behaviour and deformational mechanism is to optimise the high speed stamping processes and improve geometrical precision in finished products. Thus, the tensile properties and deformation behaviour of C5191 phosphor bronze under quasi-static tensile condition at a strain rate of 0.001 s{sup −1} by electronic universal testing machine, and dynamic tensile condition at strain rate of 500, 1000 and 1500 s{sup −1} by split Hopkinson tensile bar (SHTB) apparatus were studied. The effects of strain rate and the deformation mechanism were investigated by means of SEM and TEM. The results showed that the yield strength and tensile strength of C5191 phosphor bronze under high strain rates deformation increased by 32.77% and 11.07% respectively compared with quasi-static condition, the strain hardening index increases from 0.075 to 0.251, and the strength of the material strain rates sensitivity index change from 0.005 to 0.022, which presented a clear sensitive to strain rates. Therefore, it is claimed that the dominant deformation mechanism was changed by the dislocation motion under different strain rates, and the ability of plastic deformation of C5191 phosphor bronze increased due to the number of movable dislocations increased significantly, started multi-line slip, and the soft effect of adiabatic temperature rise at the strain rate ranging from 500 to 1500 s{sup −1}.

  1. Studies on Dynamic Damage Evolution for Pp/pa Polymer Blends Under High Strain Rates

    Science.gov (United States)

    Sun, Zi-Jian; Wang, Li-Li

    The dynamic damage evolution for PP/PA blends with different compatibilizers is studied in high strain rates from two different approaches, namely by determining the unloading elastic modulus of specimen experienced impact deformation and by combining the split Hopkinson pressure bar (SHPB) experimental technique with the back-propagation (BP) neural network. The results obtained by both approaches consistently show that a threshold strain ɛth exists for dynamic damage evolution, and both the damage evolution and ɛth are dependent on strain and strain rate. For non-linear visco-elastic materials, the damage evolution determined by the unloading elastic modulus provides an underestimation of real damage evolution.

  2. Constitutive equations of basalt filament tows under quasi-static and high strain rate tension

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Lvtao; Sun Baozhong [College of Textiles, Donghua University, Shanghai 201620 (China); Hu, Hong [Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hung Hom Kowloon (Hong Kong); Gu Bohong, E-mail: gubh@dhu.edu.cn [College of Textiles, Donghua University, Shanghai 201620 (China); Department of Textile Engineering, Zhongyuan Institute of Technology, Zhengzhou, Henan Province 450007 (China)

    2010-05-25

    The tensile properties of basalt filament tows were tested at quasi-static (0.001 s{sup -1}) and high strain rates (up to 3000 s{sup -1}) with MTS materials tester (MTS 810.23) and split Hopkinson tension bar (SHTB), respectively. Experimental results showed that the mechanical properties of the basalt filament tows were rather sensitive to strain rate. Specifically, the stiffness and failure stress of the basalt filament tows increased distinctly as the strain rate increased, while the failure strain decreased. From scanning electronic microscope (SEM) photographs of the fracture surface, it is indicated that the basalt filament tows failed in a more brittle mode and the fracture surface got more regular as the strain rate increases. The strength distributions of the basalt filament tows have been evaluated by a single Weibull distribution function. The curve predicted from the single Weibull distribution function was in good agreement with the experimental data points.

  3. Effects of Temperature and Strain Rate on Dynamic Properties of Concrete

    Institute of Scientific and Technical Information of China (English)

    JIA Bin; TAO Junlin; LI Zhengliang; WANG Ruheng; ZHANG Yu

    2008-01-01

    To study the dynamic properties of the concrete subjected to impulsive loading,stress-time curves of concrete in different velocities were measured using split Hopkinson pressure bar (SHPB).Effects of temperature and strain rate on the dynamic yield strength and constitutive relation of the concrete were analyzed.The dynamic mechanical properties of the reinforced concrete are subjected to high strain rates when it is at a relatively low temperature.But with temperature increasing,the temperature softening effect makes the strength of the concrete weaken and the impact toughness of the concrete is saliently relative to strain rate effect.So,strain rate effect,strain hardening and temperature softening work together on the dynamic mechanical capability of concrete and the relation between them is relatively corn plex.

  4. STIR: Tailored Interfaces for High Strength Composites Across Strain Rates

    Science.gov (United States)

    2013-09-02

    was requested during our kickoff meeting at ARL APG. High performance fabrics including Kevlar, Twaron, Zylon , and Dyneema are used in developing...Kevlar, and Zylon for various pullout rates. Force– displacement data was recorded, and both warp and fill yarns were pulled from the fabric. Their...results presented that the effect of pullout rate is negligible for Kevlar, whereas the effect is bigger on Spectra, and significant for Zylon

  5. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    Ravindranadh BOBBILI; B. RAMAKRISHNA; V. MADHU; A.K. GOGIA

    2015-01-01

    An artificial neural network (ANN) constitutive model and JohnsoneCook (JeC) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments at various temperatures. A neural network configuration consists of both training and validation, which is effectively employed to predict flow stress. Temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on JohnsoneCook (JeC) model and neural network model was performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tem-peratures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB over a range of temperatures (25?e300 ?C), strains (0.05e0.3) and strain rates (1500e4500 s?1) were employed to formulate JeC model to predict the flow stress behaviour of 7017 aluminium alloy under high strain rate loading. The JeC model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy under high strain rates, and their predictability was evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the J-C model are found to be 0.8461 and 10.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. The predictions of ANN model are observed to be in consistent with the experimental data for all strain rates and temperatures.

  6. High Strain and Strain-Rate Behaviour of Ptfe/aluminuim/tungsten Mixtures

    Science.gov (United States)

    Addiss, John; Cai, Jing; Walley, Stephen; Proud, William; Nesterenko, Vitali

    2007-12-01

    Conventional drop-weight techniques were modified to accommodate low-amplitude force transducer signals from low-strength, cold isostatically pressed `heavy' composites of polytetrafluoroethylene, aluminum and tungsten (W). The failure strength, strain and the post-critical behavior of failed samples were measured for samples of different porosity and tungsten grain size. Unusual phenomenon of significantly higher strength (55 MPa) of porous composites (density 5.9 g/cm3) with small W particles (compression.

  7. Thermomechanical Response of the Rotary Forged Wha Over a Wide Range of Strain Rates and Temperatures

    Science.gov (United States)

    Guo, W. G.; Qu, C.; Liu, F. L.

    This paper is to understand and model the thermomechanical response of the rotary forged WHA, uniaxial compression and tension tests are performed on cylindrical samples, using a material testing machines and the split Hopkinson bar technique. True strains exceeding 40% are achieved in these tests over the range of strain rates from 0.001/s to about 7,000/s, and at initial temperatures from 77K to 1,073K. The results show: 1) the WHA displays a pronounced changing orientation due to mechanical processing, that is, the material is inhomogeneous along the section; 2) the dynamic strain aging occurs at temperatures over 700K and in a strain rate of 10-3 1/s; 3) failure strains decrease with increasing strain rate under uniaxial tension, it is about 1.2% at a strain rate of 1,000 1/s; and 4) flow stress of WHA strongly depends on temperatures and strain rates. Finally, based on the mechanism of dislocation motion, the parameters of a physically-based model are estimated by the experimental results. A good agreement between the modeling prediction and experiments was obtained.

  8. Characteristic systolic waveform of left ventricular longitudinal strain rate in patients with hypertrophic cardiomyopathy.

    Science.gov (United States)

    Okada, Kazunori; Kaga, Sanae; Mikami, Taisei; Masauzi, Nobuo; Abe, Ayumu; Nakabachi, Masahiro; Yokoyama, Shinobu; Nishino, Hisao; Ichikawa, Ayako; Nishida, Mutsumi; Murai, Daisuke; Hayashi, Taichi; Shimizu, Chikara; Iwano, Hiroyuki; Yamada, Satoshi; Tsutsui, Hiroyuki

    2016-10-18

    We analyzed the waveform of systolic strain and strain-rate curves to find a characteristic left ventricular (LV) myocardial contraction pattern in patients with hypertrophic cardiomyopathy (HCM), and evaluated the utility of these parameters for the differentiation of HCM and LV hypertrophy secondary to hypertension (HT). From global strain and strain-rate curves in the longitudinal and circumferential directions, the time from mitral valve closure to the peak strains (T-LS and T-CS, respectively) and the peak systolic strain rates (T-LSSR and T-CSSR, respectively) were measured in 34 patients with HCM, 30 patients with HT, and 25 control subjects. The systolic strain-rate waveform was classified into 3 patterns ("V", "W", and "√" pattern). In the HCM group, T-LS was prolonged, but T-LSSR was shortened; consequently, T-LSSR/T-LS ratio was distinctly lower than in the HT and control groups. The "√" pattern of longitudinal strain-rate waveform was more frequently seen in the HCM group (74 %) than in the control (4 %) and HT (20 %) groups. Similar but less distinct results were obtained in the circumferential direction. To differentiate HCM from HT, the sensitivity and specificity of the T-LSSR/T-LS ratio waveform were 85 and 63 %, and 74 and 80 %, respectively. In conclusion, in patients with HCM, a reduced T-LSSR/T-LS ratio and a characteristic "√"-shaped waveform of LV systolic strain rate was seen, especially in the longitudinal direction. The timing and waveform analyses of systolic strain rate may be useful to distinguish between HCM and HT.

  9. Job strain in relation to ambulatory blood pressure, heart rate, and heart rate variability among female nurses

    NARCIS (Netherlands)

    Riese, H.; Doornen, L.J.P. van; Houtman, I.L.D.; Geus, E.J.C. de

    2004-01-01

    Objective. This study examined the effects of exposure to job strain on independent predictors of cardiovascular disease (ambulatory blood pressure, heart rate, and heart rate variability). Methods. The participants comprised a homogeneous group of 159 healthy female nurses [mean age 35.9 (SD 8.5)

  10. Job strain in relation to ambulatory blood pressure, heart rate, and heart rate variability among female nurses

    NARCIS (Netherlands)

    Riese, H.; Doornen, L.J.P. van; Houtman, I.L.D.; Geus, E.J.C. de

    2004-01-01

    Objective. This study examined the effects of exposure to job strain on independent predictors of cardiovascular disease (ambulatory blood pressure, heart rate, and heart rate variability). Methods. The participants comprised a homogeneous group of 159 healthy female nurses [mean age 35.9 (SD 8.5) y

  11. Cement-based composites: Strain rate effects on fracture

    Energy Technology Data Exchange (ETDEWEB)

    Mindess, S.; Shah, S.P.

    1986-01-01

    This book contains over 20 selections. Some of the titles are: Continuum damage mechanics studies on the dynamic fracture of concrete; Dynamic compressive strength of cementitious materials; Rate-sensitivity of mode I and mode II fracture concrete; and An impact damage model of concrete.

  12. Calculation of the Distribution Rule of Equivalent Strain Rate near Explosive Welding Interface

    Institute of Scientific and Technical Information of China (English)

    李晓杰; 闫鸿浩; 李瑞勇; 王金相

    2004-01-01

    The objectives of this study were to analyze the distribution of equivalent strain rate near the stagnation point and probe into the effects of colliding angle on strain rate. An ideal fluid model of symmetrically colliding was used to research them. Calculations showed the equivalent strain rate and the colliding half angle are closely related to each other with the material geometrical size and explosive velocity selected, the equivalent strain has large gradient within several jet thicknesses near the stagnation point, the maximal strain points are lined up along a beeline, but a curve near the stagnation point. With different colliding angles, they can be fitted by using exponential curve. That is, the exponential curve can be regarded as the token curve in explosive welding.

  13. Identification of strain-rate and thermal sensitive material model with an inverse method

    CERN Document Server

    Peroni, L; Peroni, M

    2010-01-01

    This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strain-rates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields) or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena). Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, an...

  14. Response of Polypmeric Foams and ABS Plastics to High Strain Rate Loading

    Science.gov (United States)

    Dick, Richard; Chang, Peter; Fourney, William

    1999-06-01

    The split-Hopkinson pressure bar (SHPB) technique was utilized to obtain high strain rate response data for low-density foams and solid ABS and polypropylene plastics. General Motors provided the materials for this study. These materials are used in the interior panels of automobiles. Because the foams have a very low impedance, polycarbonate bars were used to acquire the strain rate data in the 100 to 1600 per second range. An aluminum SHPB was used to obtain the solid plastics data that covered strain rates of 1000 to 4000 pre second. The experimental data indicate that the foams over the test range are only slightly strain rate dependent while the polypropylene appears to be strain rate independent above 1000 per second and the ABS plastics are strain rate independent above 3000 per second. The projectile length was varied to provide a wide range of induced strains ranging from 10 to 70 per cent for the foams and up to 20 per cent for the plastic materials.

  15. High strain rate tensile behavior of Al-4.8Cu-1.2Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bobbili, Ravindranadh, E-mail: ravindranadh@dmrl.drdo.in; Paman, Ashish; Madhu, V.

    2016-01-10

    The purpose of the current study is to perform quasi static and high strain rate tensile tests on Al-4.8Cu-1.2Mg alloy under different strain rates ranging from 0.01–3500/s and also at temperatures of 25,100, 200 and 300 °C. The combined effect of strain rate, temperature and stress triaxiality on the material behavior is studied by testing both smooth and notched specimens. Johnson–Cook (J–C) constitutive and fracture models are established based on high strain rate tensile data obtained from Split hopkinson tension bar (SHTB) and quasi-static tests. By modifying the strain hardening and strain rate hardening terms in the Johnson–Cook (J–C) constitutive model, a new J–C constitutive model of Al-4.8Cu-1.2Mg alloy was obtained. The improved Johnson–Cook constitutive model matched the experiment results very well. With the Johnson–Cook constitutive and fracture models, numerical simulations of tensile tests at different conditions for Al-4.8Cu-1.2Mg alloy were conducted. Numerical simulations are performed using a non-linear explicit finite element code autodyn. Good agreement is obtained between the numerical simulation results and the experiment results. The fracture surfaces of specimens tested under various strain rates and temperatures were studied under scanning electron microscopy (SEM).

  16. Modeling temperature and strain rate history in effects in OFHU Cu

    Science.gov (United States)

    Tanner, Albert Buck

    Accurate material behavior prediction during large deformations is essential. For the U.S. Army, explosively formed projectiles (EFP), penetrators, and vehicle armor are applications which will benefit from a better understanding of and ability to predict material behavior when subjected to high and varying strain rates and temperatures. Linking macro-scale material behavior with the evolution of microstructure has proven effective in obtaining an appropriate mathematical structure for constitutive relationships. Incorporation of strain rate, temperature, and deformation path history effects are especially critical to accurately predict material responses for arbitrary nonisothermal, variable strain rate conditions. Material constitutive equations contain numerous parameters which must be determined experimentally, and often are not fully optimized. The goal of this research was to develop more physically descriptive kinematics and kinetics models for large strain deformation based on internal state variable (ISV) evolution laws which include strain rate and temperature history dependence. A unique and comprehensive set of experiments involving sequences of different strain rates, temperatures, and deformation paths, as well as, constant strain rate, isothermal and experiments characterizing restoration processes, were conducted on OFHC Cu. Microstructural examinations found that recrystallization occurs and has a significant influence on the flow stress. The performance of various models, including state-of-the-art models such as the BCJ (Sandia), MTS (Los Alamos), and McDowell models were correlated and compared to experimental data. A novel hybrid optimization strategy was used to obtain the optimum parameter set possible corresponding to each model form. To account for the observed flow stress softening, an internal state variable representing the "softened" recrystallized state was incorporated into the hardening evolution equations in the BCJ and Mc

  17. Modeling Temperature and Strain Rate History Effects in OFHC Cu

    Science.gov (United States)

    2007-11-02

    Klepaczko and Duffy (1974), OFHC Cu and Al-1100 by Senseny (1977), Cu by Stelly and Dormeval (1977), AISI 316 by Albertini et al. (1985), and on OFHC Cu by...Shukla, et al. 301 (1996) also develops an ANN for function approximation. Through this process, the functional form of experimental data can be...Rate History on the Ambient Tensile Strength of AISI Type 316 Stainless Steel," Nuclear Engineering and Design, Vol. 88, pp. 131-141. Ellwood, S

  18. High Strain Rate Experiments of Energetic Material Binder

    OpenAIRE

    Rangel Mendoza, Roberto; Harr, Michael; Chen, Weinong

    2016-01-01

    Energetic materials, in particular HMX, is widely used in many applications as polymer bonded explosives (PBX) and rocket propellant. However, when damaged, HMX is known to be an unstable substance which renders it a hazardous material and in some cases unreliable. Finding critical mechanical conditions at high rates that render various forms of energetic materials as unreliable would be vital to understand the effects that vibrations and compression forces have on energetic materials. A bett...

  19. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    NARCIS (Netherlands)

    Huang, M.; Rivera-Diaz-del-Castillo, P.E.J.; Bouaziz, O.; Van der Zwaag, S.

    2009-01-01

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that t

  20. High- and low-strain rate compression properties of several energetic material composites as a function of strain rate and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III; Idar, D.J.; Blumenthal, W.R.; Cady, C.M.; Peterson, P.D.

    1998-12-31

    High- and low-strain rate compression data were obtained on several different energetic composites: PBX 9501, X0242-92-4-4, PBXN-9, as well as the polymeric binder used in PBX 9501 and X0242-92-4-4 composites. The effects of energetic-to-binder ratios, different binder systems, and different energetic formulations were investigated. All the energetic composites exhibit increasing elastic modulus, E, maximum flow stresses, {sigma}{sub m}, and strain-at-maximum stress, {var_epsilon}{sub m}, with increasing strain rate at ambient temperature. PBX 9501 displays marginally higher ultimate flow strength than X0242-92-4-4, and significantly higher ultimate compressive strength than PBXN-9 at quasi-static and dynamic strain rates. The failure mode of PBX 9501 and X0242-92-4-4 under high-rate loading changes from a mixture of ductile binder tearing and transgranular cleavage and cracking of the HMX when tested at 20 C to transgranular brittle HMX cleavage and glassy fracture of the binder at {minus}40 C.

  1. Strain rate and temperature effects on crack initiation of direct aged 718 Alloy

    Directory of Open Access Journals (Sweden)

    Perrais Maxime

    2014-01-01

    Full Text Available During mechanical tests at high temperature in an oxidizing atmosphere, the effects of strain rate on crack initiation are noticeable. This effect is due to a coupling between local mechanical loading and oxidation. Samples were machined in a turbine disk made of direct aged alloy 718. Tests were performed to understand the effect of these couplings on crack initiation and to ensure lifetime is optimized. This study compared the cracking resistance of two different specimen geometries at a given plastic strain and performed quantitative measurement of the mechanical loading conditions inducing crack initiation between 600 ∘C and 650 ∘C. Sample geometries consisted in tensile flat specimens and V-shaped samples. This specific geometry was used to localize strain and damage in the apex of the V and to reach strain rates lower than those possible on standard specimens. Digital image correlation technique was used to provide strain measurements. For each temperature and strain rate, finite element calculations using the identified constitutive law were performed to get a refined level of strain in different areas at the V apex. Tests were stopped after an imposed displacement corresponding to a given plastic strain distribution. SEM observations of the surface of the flat tensile samples revealed no crack initiation. On the contrary, SEM observations at the apex of V specimens for which the level of cumulative strain was close to the level of cumulative strain of flat samples reveal the presence of intergranular damage when the strain rate used was below a given level.

  2. Compressive behavior of bulk metallic glass under different conditions --- Coupled effect of temperature and strain rate

    Science.gov (United States)

    Yin, Weihua

    Metallic glass was first reported in 1960 by rapid quenching of Au-Si alloys. But, due to the size limitation, this material did not attract remarkable interest until the development of bulk metallic glasses (BMGs) with specimen sizes in excess of 1 mm. BMGs are considered to be promising engineering materials because of their ultrahigh strength, high elastic limit and wear resistance. However, they usually suer from a strong tendency for localized plastic deformation with catastrophic failure. Many basic questions, such as the origin of shear softening and the strain rate eect remain unclear. In this thesis, the mechanical behavior of the Zr55Al 10Ni5Cu30 bulk metallic glass and a metallic glass composite is investigated. The stress-strain relationship for Zr55Al10Ni 5Cu30 over a wide range of strain rate (5x10 --5 to 2x103 s--1) was investigated in uniaxial compression loading using both MTS servo-hydraulic system (quasi-static) and compression Kolsky bar system (dynamic). The effect of the strain rate on the fracture stress at room temperature was discussed. Based on the experimental results, the strain rate sensitivity of the bulk metallic glass changes from a positive value to a negative value at high strain rate, which is a consequence of the significant adiabatic temperature rise during the dynamic testing. In order to characterize the temperature eect on the mechanical behavior of the metallic glass, a synchronically assembled heating unit was designed to be attached onto the Kolsky bar system to perform high temperature and high strain rate mechanical testing. A transition from inhomogeneous deformation to homogeneous deformation has been observed during the quasi-static compressive experiments at testing temperatures close to the glass transition temperature. However, no transition has been observed at high strain rates at all the testing temperatures. A free volume based model is applied to analyze the stress-strain behavior of the homogeneous

  3. Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.

  4. The effect of strain rate on the evolution of microstructure in aluminium alloys.

    Science.gov (United States)

    Leszczyńska-Madej, B; Richert, M

    2010-03-01

    Intensive deformations influence strongly microstructure. The very well-known phenomenon is the diminishing dimension of grain size by the severe plastic deformation (SPD) methods. The nanometric features of microstructure were discovered after the SPD deformation of various materials, such as aluminium alloys, iron and others. The observed changes depended on the kind of the deformed material, amount of deformation, strain rate, existence of different phases and stacking fault energy. The influence of the strain and strain rate on the microstructure is commonly investigated nowadays. It was found that the high strain rates activate deformation in shear bands, microbands and adiabatic shear bands. It was observed that bands were places of the nucleation of nanograins in the material deformed by SPD methods. In the work, the refinement of microstructure of the aluminium alloys influenced by the high strain rate was investigated. The samples were compressed by a specially designed hammer to the deformation of phi= 0/0.62 with the strain rate in the range of [Formula in text]. The highest reduction of microbands width with the increase of the strain was found in the AlCu4Zr alloy. The influence of the strain rate on the microstructure refinement indicated that the increase of the strain rate caused the reduction of the microbands width in the all investigated materials (Al99.5, AlCu4Zr, AlMg5, AlZn6Mg2.5CuZr). A characteristic feature of the microstructure of the compressed material was large density of the shear bands and microbands. It was found that the microbands show a large misorientation to the surrounds and, except Al99.5, the large density of dislocation.

  5. Determination of the strain rate dependent thermal softening behavior of thermoplastic materials for crash simulations

    Science.gov (United States)

    Hopmann, Christian; Klein, Jan; Schöngart, Maximilian

    2016-03-01

    Thermoplastic materials are increasingly used as a light weight replacement for metal, especially in automotive applications. Typical examples are frontends and bumpers. The loads on these structures are very often impulsive, for example in a crash situation. A high rate of loading causes a high strain rate in the material which has a major impact on the mechanical behavior of thermoplastic materials. The stiffness as well as the rigidity of polymers increases to higher strain rates. The increase of the mechanical properties is superimposed at higher rates of loading by another effect which works reducing on stiffness and rigidity, the increase of temperature caused by plastic deformation. The mechanical behavior of thermoplastic materials is influenced by temperature opposing to strain rate. The stiffness and rigidity are decreased to higher values of temperature. The effect of thermal softening on thermoplastic materials is investigated at IKV. For this purpose high-speed tensile tests are performed on a blend, consisting of Polybutylenterephthalate (PBT) and Polycarbonate (PC). In preliminary investigations the effects of strain rate on the thermomechanical behavior of thermoplastic materials was studied by different authors. Tensile impact as well as split Hopkinson pressure bar (SHPB) tests were conducted in combination with high-speed temperature measurement, though, the authors struggled especially with temperature measurement. This paper presents an approach which uses high-speed strain measurement to transpire the link between strain, strain rate and thermal softening as well as the interdependency between strain hardening and thermal softening. The results show a superimposition of strain hardening and thermal softening, which is consistent to preliminary investigations. The advantage of the presented research is that the results can be used to calibrate damage and material models to perform mechanical simulations using Finite Element Analysis.

  6. High-Strain Rate Testing of Gun Propellants

    Science.gov (United States)

    1988-12-01

    formulations under high loading rates have been studied previously (see Fong (1985); et al. (1981); Schubert and Schmitt (1973); Greidanus (1976...the transmission of a wave was described by Davies and Hunter (1963) and by Hoge (1970). Impedance is defined as Z = A(pE)h, where A is the area, p is...A = ma, a2u ac a 2U m = p A dx, a = . Assembling these, - p -= at 2 ax at 2 For isotropic elastic materials, a = Ee, where e = au/ax. The partial

  7. Strain rate dependence of impact properties of sintered 316L stainless steel

    Science.gov (United States)

    Lee, Woei-Shyan; Lin, Chi-Feng; Liu, Tsung-Ju

    2006-12-01

    This paper uses a material testing system (MTS) and a compressive split-Hopkinson bar to investigate the impact behaviour of sintered 316L stainless steel at strain rates ranging from 10 -3 s -1 to 7.5 × 10 3 s -1. It is found that the true stress, the rate of work hardening and the strain rate sensitivity vary significantly as the strain rate increases. The flow behaviour of the sintered 316L stainless steel can be accurately predicted using a constitutive law based on Gurson's yield criterion and the flow rule proposed by Khan, Huang and Liang (KHL). Microstructural observations reveal that the degree of localized grain deformation increases, but the pore density and the grain size decrease, with increasing strain rate. Adiabatic shear bands associated with cracking are developed at strain rates higher than 5.6 × 10 3 s -1. The fracture surfaces exhibit ductile dimples. The depth and density of these dimples decrease with increasing strain rate.

  8. Strain rate dependence of impact properties of sintered 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.-S. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)]. E-mail: wslee@mail.ncku.edu.tw; Lin, C.-F. [National Center for High-Performance Computing, Hsin-Shi Tainan County 744, Taiwan (China); Liu, T.-J. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2006-12-15

    This paper uses a material testing system (MTS) and a compressive split-Hopkinson bar to investigate the impact behaviour of sintered 316L stainless steel at strain rates ranging from 10{sup -3} s{sup -1} to 7.5 x 10{sup 3} s{sup -1}. It is found that the true stress, the rate of work hardening and the strain rate sensitivity vary significantly as the strain rate increases. The flow behaviour of the sintered 316L stainless steel can be accurately predicted using a constitutive law based on Gurson's yield criterion and the flow rule proposed by Khan, Huang and Liang (KHL). Microstructural observations reveal that the degree of localized grain deformation increases, but the pore density and the grain size decrease, with increasing strain rate. Adiabatic shear bands associated with cracking are developed at strain rates higher than 5.6 x 10{sup 3} s{sup -1}. The fracture surfaces exhibit ductile dimples. The depth and density of these dimples decrease with increasing strain rate.

  9. Study of creep behaviour in P-doped copper with slow strain rate tensile tests

    Energy Technology Data Exchange (ETDEWEB)

    Xuexing Yao; Sandstroem, Rolf [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Science and Engineering

    2000-08-01

    Pure copper with addition of phosphorous is planned to be used to construct the canisters for spent nuclear fuel. The copper canisters can be exposed to a creep deformation up to 2-4% at temperatures in services. The ordinary creep strain tests with dead weight loading are generally employed to study the creep behaviour; however, it is reported that an initial plastic deformation of 5-15% takes place when loading the creep specimens at lower temperatures. The slow strain rate tensile test is an alternative to study creep deformation behaviour of materials. Ordinary creep test and slow strain rate tensile test can give the same information in the secondary creep stage. The advantage of the tensile test is that the starting phase is much more controlled than in a creep test. In a tensile test the initial deformation behaviour can be determined and the initial strain of less than 5% can be modelled. In this study slow strain rate tensile tests at strain rate of 10{sup -4}, 10{sup -5}, 10{sup -6}, and 10{sup -7}/s at 75, 125 and 175 degrees C have been performed on P-doped pure Cu to supplement creep data from conventional creep tests. The deformation behaviour has successfully been modelled. It is shown that the slow strain rate tensile tests can be implemented to study the creep deformation behaviours of pure Cu.

  10. Longitudinal Strain and Strain Rate Abnormalities Precede Invasive Diagnosis of Transplant Coronary Artery Vasculopathy in Pediatric Cardiac Transplant Patients.

    Science.gov (United States)

    Zoeller, Bridget B; Miyamoto, Shelley D; Younoszai, Adel K; Landeck, Bruce F

    2016-04-01

    Transplant coronary artery vasculopathy (TCAV) is the primary cause of late graft loss in pediatric heart transplant recipients. TCAV is diagnosed using angiography or intravascular ultrasound; however, noninvasive methods remain elusive. We sought to define patterns of myocardial mechanics in patients with TCAV and to determine whether this can detect TCAV before invasive methods. In this retrospective study, we queried our heart transplant database to identify all recipients with TCAV since 2006 (n = 41). Echoes were reviewed from the last normal catheterization and at TCAV diagnosis, and from time-matched transplant controls (n = 33) without TCAV. Peak global circumferential and longitudinal strain and systolic and diastolic strain rate (SSR and DSR) of the left ventricle were derived using velocity vector imaging. T tests were used to compare both groups longitudinally and between groups at both time points. Longitudinal strain, SSR, and DSR were diminished in the TCAV group compared to the transplant control group at both time points. No differences were found across time points in either group. Retrospective modeling using a longitudinal strain cutoff of 15 % on echoes 2 years prior to TCAV diagnosis predicted development or exclusion of TCAV with sensitivity of 53 %, specificity of 89 % with an area under the curve of 0.8. Decreases in longitudinal strain measurements demonstrate that alterations in myocardial mechanics occur in patients with TCAV at least 2 years prior to invasive diagnosis. These early changes may be due to microvascular disease. This modality could aid in earlier treatment and intervention for this challenging problem .

  11. HIGH STRAIN RATE BEHAVIOUR OF AN AZ31 + 0.5 Ca MAGNESIUM ALLOY

    Directory of Open Access Journals (Sweden)

    Josef Pešička

    2012-01-01

    Full Text Available The paper reports behaviour of magnesium alloy AZ31 (nominal composition 3 % Al - 1 % Zn – balance Mg with an addition of 0.5 wt. % Ca at high strain rates. Samples were prepared by the squeeze cast technology. Dynamic compression Hopkinson tests were performed at room temperature with impact velocities ranging from 11.2 to 21.9 m.s-1. A rapid increase of the flow stress and the strain rate sensitivity was observed at high strain rates. Transmission electron microscopy showed extremely high dislocation density and mechanical twins of two types. Adiabatic shear banding is discussed as the reason for the observed behaviour at high strain rates.

  12. A Model for High-Strain-Rate Deformation of Uranium-Niobium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    F.L.Addessio; Q.H.Zuo; T.A.Mason; L.C.Brinson

    2003-05-01

    A thermodynamic approach is used to develop a framework for modeling uranium-niobium alloys under the conditions of high strain rate. Using this framework, a three-dimensional phenomenological model, which includes nonlinear elasticity (equation of state), phase transformation, crystal reorientation, rate-dependent plasticity, and porosity growth is presented. An implicit numerical technique is used to solve the evolution equations for the material state. Comparisons are made between the model and data for low-strain-rate loading and unloading as well as for heating and cooling experiments. Comparisons of the model and data also are made for low- and high-strain-rate uniaxial stress and uniaxial strain experiments. A uranium-6 weight percent niobium alloy is used in the comparisons of model and experiment.

  13. Strain gradient effects on steady state crack growth in rate-sensitive materials

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof; Hutchinson, John W.

    2012-01-01

    Steady state crack propagation produce substantial plastic strain gradients near the tip, which are accompanied by a high density of geometrically necessary dislocations and additional local strain hardening. Here, the objective is to study these gradient effects on Mode I toughness...... of a homogeneous rate-sensitive metal, using a higher order plasticity theory. Throughout, emphasis is on the toughness rate-sensitivity, as a recent numerical study of a conventional material (no gradient effects) has indicated a significant influence of both strain rate hardening and crack tip velocity. Moreover......, a characteristic velocity, at which the toughness becomes independent of the rate-sensitivity, has been observed. It is the aim to bring forward a similar characteristic velocity for the current strain gradient visco-plastic model, as-well as to signify its use in future visco-plastic material modeling....

  14. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures

    National Research Council Canada - National Science Library

    Bobbili, Ravindranadh; Ramakrishna, B; Madhu, V; Gogia, A.K

    2015-01-01

    An artificial neural network (ANN) constitutive model and Johnson–Cook (J–C) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB...

  15. Physical mechanisms underlying the strain-rate-dependent mechanical behavior of kangaroo shoulder cartilage

    Science.gov (United States)

    Thibbotuwawa, Namal; Oloyede, Adekunle; Li, Tong; Singh, Sanjleena; Senadeera, Wijitha; Gu, YuanTong

    2015-09-01

    Due to anatomical and biomechanical similarities to human shoulder, kangaroo was chosen as a model to study shoulder cartilage. Comprehensive enzymatic degradation and indentation tests were applied on kangaroo shoulder cartilage to study mechanisms underlying its strain-rate-dependent mechanical behavior. We report that superficial collagen plays a more significant role than proteoglycans in facilitating strain-rate-dependent behavior of the kangaroo shoulder cartilage. By comparing the mechanical properties of degraded and normal cartilages, it was noted that proteoglycan and collagen degradation significantly compromised strain-rate-dependent mechanical behavior of the cartilage. Superficial collagen contributed equally to the tissue behavior at all strain-rates. This is different to the studies reported on knee cartilage and confirms the importance of superficial collagen on shoulder cartilage mechanical behavior. A porohyperelastic numerical model also indicated that collagen disruption would lead to faster damage of the shoulder cartilage than when proteoglycans are depleted.

  16. Effects of strain rate on the mechanical properties of tricalcium phosphate/poly(L: -lactide) composites.

    Science.gov (United States)

    Yamadi, Shusaku; Kobayashi, Satoshi

    2009-01-01

    Bioactive ceramic/bioresorbable plastic composites have been expected as materials for the bone fracture fixations which have more biocompatibility than monolithic bioresorbable plastics. Many studies have been conducted on these materials. Most studies, however, focused on the mechanical properties under static loading. In the actual usage, these materials are loaded dynamically. In this study, effects of strain rate on the mechanical properties of tricalcium phosphate/poly(L: -lactide) (TCP/PLLA) composites were investigated experimentally and analytically. The TCP/PLLA composites containing three different TCP contents (5, 10 and 15 wt.%) were prepared by injection molding. In order to characterize the mechanical properties, tensile and compressive tests were conducted. The results of tensile tests indicated that the Young's moduli of composites increased with increasing TCP contents. For each TCP contents, tensile Young's modulus kept constant up to strain rate of 10(-1)/s. On the other hand, tensile strength increased with increasing strain rate. The effect of strain rate became larger with decreasing TCP contents, which means the strain rate dependency of the PLLA is more effective than that of TCP. From the results of compressive tests, similar results with tensile tests were obtained. That is, compressive Young's modulus kept constant up to strain rate of 10(-1)/s and the 0.2% proof stress increased with increasing strain rate. In order to predict the mechanical behavior of TCP/PLLA composites, the micro-damage mechanics was proposed. In this analysis, 3-phases particle reinforced composites, which include the intact particles, damaged particles and matrix, are assumed. The elastic constants are calculated with micromechanics based on the analyses by Eshelby and Mori and Tanaka. Only the debonding between particle and matrix are assumed as the damage. The nonlinearity in the stress-strain behavior of matrix PLLA is also considered. The debonding particles

  17. Measurement of mean rotation and strain-rate tensors by using stereoscopic PIV

    DEFF Research Database (Denmark)

    Özcan, Oktay; Meyer, Knud Erik; Larsen, Poul Scheel

    2005-01-01

    A technique is described for measuring the mean velocity gradient (rate-of-displacement) tensor by using a conventional stereoscopic particle image velocimetry (SPIV) system. Planar measurement of the mean vorticity vector, rate-of-rotation and rate-of-strain tensors and the production of turbulent...

  18. Strain rate sensitivity index's theoretical formulae expressed by experimental parameters and its measurement

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A group of formulae for measuring strain rate sensitivity index is established under the conditions of constant strain rate, constant velocity and constant load. And measuring methods are given corresponding to each kind of experimental curves. Furthermore the experimental results are measured and compared on Zn-wt5%Al alloy at room temperature (18 ℃), which shows that this kind of alloy is structural sensitive even at room temperature.

  19. The Effect Analysis of Strain Rate on Power Transmission Tower-Line System under Seismic Excitation

    OpenAIRE

    Li Tian; Wenming Wang; Hui Qian

    2014-01-01

    The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results sho...

  20. Effects of Adiabatic Heating on the High Strain Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.

    2017-01-01

    Polymer matrix composites (PMCs) are increasingly being used in aerospace structures that are expected to experience complex dynamic loading conditions throughout their lifetime. As such, a detailed understanding of the high strain rate behavior of the constituents, particularly the strain rate, temperature, and pressure dependent polymer matrix, is paramount. In this paper, preliminary efforts in modeling experimentally observed temperature rises due to plastic deformation in PMCs subjected to dynamic loading are presented. To this end, an existing isothermal viscoplastic polymer constitutive formulation is extended to model adiabatic conditions by incorporating temperature dependent elastic properties and modifying the components of the inelastic strain rate tensor to explicitly depend on temperature. It is demonstrated that the modified polymer constitutive model is capable of capturing strain rate and temperature dependent yield as well as thermal softening associated with the conversion of plastic work to heat at high rates of strain. The modified constitutive model is then embedded within a strength of materials based micromechanics framework to investigate the manifestation of matrix thermal softening, due to the conversion of plastic work to heat, on the high strain rate response of a T700Epon 862 (T700E862) unidirectional composite. Adiabatic model predictions for high strain rate composite longitudinal tensile, transverse tensile, and in-plane shear loading are presented. Results show a substantial deviation from isothermal conditions; significant thermal softening is observed for matrix dominated deformation modes (transverse tension and in-plane shear), highlighting the importance of accounting for the conversion of plastic work to heat in the polymer matrix in the high strain rate analysis of PMC structures.

  1. The effect analysis of strain rate on power transmission tower-line system under seismic excitation.

    Science.gov (United States)

    Tian, Li; Wang, Wenming; Qian, Hui

    2014-01-01

    The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system.

  2. Strain Rate Dependent Ductile-to-Brittle Transition of Graphite Platelet Reinforced Vinyl Ester Nanocomposites

    Directory of Open Access Journals (Sweden)

    Brahmananda Pramanik

    2014-01-01

    Full Text Available In previous research, the fractal dimensions of fractured surfaces of vinyl ester based nanocomposites were estimated applying classical method on 3D digital microscopic images. The fracture energy and fracture toughness were obtained from fractal dimensions. A noteworthy observation, the strain rate dependent ductile-to-brittle transition of vinyl ester based nanocomposites, is reinvestigated in the current study. The candidate materials of xGnP (exfoliated graphite nanoplatelets reinforced and with additional CTBN (Carboxyl Terminated Butadiene Nitrile toughened vinyl ester based nanocomposites that are subjected to both quasi-static and high strain rate indirect tensile load using the traditional Brazilian test method. High-strain rate indirect tensile testing is performed with a modified Split-Hopkinson Pressure Bar (SHPB. Pristine vinyl ester shows ductile deformation under quasi-static loading and brittle failure when subjected to high-strain rate loading. This observation reconfirms the previous research findings on strain rate dependent ductile-to-brittle transition of this material system. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Contribution of nanoreinforcement to the tensile properties is reported in this paper.

  3. Mechanical model for yield strength of nanocrystalline materials under high strain rate loading

    Institute of Scientific and Technical Information of China (English)

    朱荣涛; 周剑秋; 马璐; 张振忠

    2008-01-01

    To understand the high strain rate deformation mechanism and determine the grain size,strain rate and porosity dependent yield strength of nanocrystalline materials,a new mechanical model based on the deformation mechanism of nanocrystalline materials under high strain rate loading was developed.As a first step of the research,the yield behavior of the nanocrystalline materials under high strain rate loading was mainly concerned in the model and uniform deformation was assumed for simplification.Nanocrystalline materials were treated as composites consisting of grain interior phase and grain boundary phase,and grain interior and grain boundary deformation mechanisms under high strain rate loading were analyzed,then Voigt model was applied to coupling grain boundary constitutive relation with mechanical model for grain interior phase to describe the overall yield mechanical behavior of nanocrystalline materials.The predictions by the developed model on the yield strength of nanocrysatlline materials at high strain rates show good agreements with various experimental data.Further discussion was presented for calculation results and relative experimental observations.

  4. Nucleation mechanisms of dynamic recrystallization in Inconel 625 superalloy deformed with different strain rates

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot compression tests were conducted using a Gleeble-1500 simulator at a true strain of 0.7 in the temperature range of 1000 to 1150 °C and strain rate range of 0.01 to 10.00 s-1. It is found that the size and volume fraction of the DRX grains in hot-deformed Inconel 625 superalloy firstly decreas...

  5. MEASUREMENTS OF HIGH STRAIN RATE PROPERTIES OF MATERIALS USING AN EXPLODING WIRE TECHNIQUE

    OpenAIRE

    Parry, D; Stewardson, H.; Ahmad, S.

    1988-01-01

    An exploding wire method is used to produce high-pressure blast-wave loading of thick polymer cylinders. The measured outer-surface hoop-strain profiles, at strain rates of about 103 s-1, agree best with prediction for values of Young's modulus which are much higher than those measured under quasistatic conditions (strain rates of about 10-3 s-1). Low density polyethylene shows a six-fold increase in modulus, high density polyethylene more than 100%, nylon 66 about 75%, and nylatron a 25% inc...

  6. A Constitutive Model for Superelastic Shape Memory Alloys Considering the Influence of Strain Rate

    Directory of Open Access Journals (Sweden)

    Hui Qian

    2013-01-01

    Full Text Available Shape memory alloys (SMAs are a relatively new class of functional materials, exhibiting special thermomechanical behaviors, such as shape memory effect and superelasticity, which enable their applications in seismic engineering as energy dissipation devices. This paper investigates the properties of superelastic NiTi shape memory alloys, emphasizing the influence of strain rate on superelastic behavior under various strain amplitudes by cyclic tensile tests. A novel constitutive equation based on Graesser and Cozzarelli’s model is proposed to describe the strain-rate-dependent hysteretic behavior of superelastic SMAs at different strain levels. A stress variable including the influence of strain rate is introduced into Graesser and Cozzarelli’s model. To verify the effectiveness of the proposed constitutive equation, experiments on superelastic NiTi wires with different strain rates and strain levels are conducted. Numerical simulation results based on the proposed constitutive equation and experimental results are in good agreement. The findings in this paper will assist the future design of superelastic SMA-based energy dissipation devices for seismic protection of structures.

  7. Dynamic tensile behavior of AZ31B magnesium alloy at ultra-high strain rates

    Directory of Open Access Journals (Sweden)

    Geng Changjian

    2015-04-01

    Full Text Available The samples having {0001} parallel to extruding direction (ED present a typical true stress–true strain curve with concave-down shape under tension at low strain rate. Ultra-rapid tensile tests were conducted at room temperature on a textured AZ31B magnesium alloy. The dynamic tensile behavior was investigated. The results show that at ultra-high strain rates of 1.93 × 102 s−1 and 1.70 × 103 s−1, the alloy behaves with a linear stress–strain response in most strain range and exhibits a brittle fracture. In this case, {10-12}  extension twinning is basic deformation mode. The brittleness is due to the macroscopic viscosity at ultra-high strain rate, for which the external critical shear stress rapidly gets high to result in a cleavage fracture before large amounts of dislocations are activated. Because {10-12} tension twinning, {10-11} compressive twinning, basal slip, prismatic slip and pyramidal slip have different critical shear stresses (CRSS, their contributions to the degree of deformation are very differential. In addition, Schmid factor plays an important role in the activity of various deformation modes and it is the key factor for the samples with different strain rates exhibit various mechanical behavior under dynamic tensile loading.

  8. Properties of heterogeneous energetic materials under high strain, high strain rate deformation

    Science.gov (United States)

    Cai, Jing

    Heterogeneous energetic materials have many applications. Their dynamic behavior and microstructural evolution upon plastic deformation have remained not fully understood. The following heterogeneous materials were investigated in the this study: the pure PTFE (usually a mixture of crystalline and amorphous phases), PTFE-Sn, PTFE-Al, PTFE-Al-W, and carbon fibers filled Al alloy. Sample manufacturing processes involving ball milling and Cold Isostatic Pressing were employed. Quasi-static and Hopkinson bar tests were carried out to obtain the compressive strengths of composites. The Conventional Thick-walled Cylinder (TWC) method and newly developed small-scale Hopkinson bar based TWC experiments were conducted to investigate single shear bands and their assembly. Conventional and "soft" drop-weight tests were performed to examine the mechanical properties and the initiation of chemical reactions. Scanning Electron Microscopy was used to detect the details of the microstructures and failure mechanisms of heterogeneous materials. New features in the dynamic behavior of heterogeneous materials were observed. They include the following: (1) Strain softening, instead of thermal softening, is the main mechanism in the initiation of shear bands in explosively driven TWC tests of solid PTFE. (2) Cold isostatically pressed PTFE-Sn samples were more stable with respect to shear localization than solid PTFE. (3) The dynamic collapse of solid PTFE-Al samples with different particle sizes was accomplished with the shear localization bands and cracks. (4) Force chains in the fine W and Al particles were attributed to the high strength of the porous PTFE-Al-W composite containing fine W particles in comparison with composites with coarse W particles. (5) Debonding of metal particles from the PTFE matrix and the fracture of the matrix were identified to be two major mechanisms for the failure of the PTFE-Al-W composites. (6) The formation of PTFE nano-fibers during high strain flow

  9. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Huang Mingxin; Rivera-Diaz-del-Castillo, Pedro E J; Zwaag, Sybrand van der [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Bouaziz, Olivier, E-mail: mingxin.huang@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, Voie Romaine-BP30320, 57283 Maizieres-les-Metz Cedex (France)

    2009-07-15

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that there is a transitional strain rate ({approx} 10{sup 4} s{sup -1}) over which the phonon drag effects appear, resulting in a significant increase in the flow stress and the average dislocation density. The model is applied to pure Cu deformed at room temperature and at strain rates ranging from 10{sup -5} to 10{sup 6} s{sup -1} showing good agreement with experimental results.

  10. Constitutive model depending upon temperature and strain rate of carbon constructional quality steels

    Institute of Scientific and Technical Information of China (English)

    杨柳; 罗迎社

    2008-01-01

    The basic factors relating to the rheological stress in the constitutive equations were introduced.Carbon constructional quality steels were regarded as a kind of elastic-viscoplastic materials under high temperature and the elastic-viscoplastic constitutive models were summarized.A series of tension experiments under the same temperature and different strain rates,and the same strain rate and different temperatures were done on 20 steel,35 steel and 45 steel.52 groups of rheological stress-strain curves were obtained.The experimental results were analyzed theoretically.The rheological stress constitutive models of carbon steels were built combining the strong points of the Perzyna model and Johnson-Cook model.Comparing the calculation results conducted from the model with the experiment results,the results proves that the model can reflect the temperature effect and strain rate effect of carbon constructional quality steels better.

  11. Influence of the temperature on the tension behaviour of EUROFER97 alloy at high strain rate

    Directory of Open Access Journals (Sweden)

    Cadoni Ezio

    2015-01-01

    Full Text Available This paper presents an experimental investigation on the influence of the temperature on the reduced activation steel Eurofer97 under uniaxial tensile loads at high strain rate. Round undamaged specimens of this material having gauge length 5 mm, diameter 3 mm, were tested in universal machine to obtain its stress-strain relation under quasi-static condition (0.001s−1, and in modified Hopkinson bar to study its mechanical behaviour at high strain rates (300 s−1, 1000 s−1 respectively. The tests at high strain rate were carried out at 450 °C and at nitrogen temperature. Finally, the parameters of the Zerilli-Armstrong constitutive material relationship were obtained.

  12. Refinement of the wedge bar technique for compression tests at intermediate strain rates

    Directory of Open Access Journals (Sweden)

    Stander M.

    2012-08-01

    Full Text Available A refined development of the wedge-bar technique [1] for compression tests at intermediate strain rates is presented. The concept uses a wedge mechanism to compress small cylindrical specimens at strain rates in the order of 10s−1 to strains of up to 0.3. Co-linear elastic impact principles are used to accelerate the actuation mechanism from rest to test speed in under 300μs while maintaining near uniform strain rates for up to 30 ms, i.e. the transient phase of the test is less than 1% of the total test duration. In particular, a new load frame, load cell and sliding anvil designs are presented and shown to significantly reduce the noise generated during testing. Typical dynamic test results for a selection of metals and polymers are reported and compared with quasistatic and split Hopkinson pressure bar results.

  13. LS-DYNA Implementation of Polymer Matrix Composite Model Under High Strain Rate Impact

    Science.gov (United States)

    Zheng, Xia-Hua; Goldberg, Robert K.; Binienda, Wieslaw K.; Roberts, Gary D.

    2003-01-01

    A recently developed constitutive model is implemented into LS-DYNA as a user defined material model (UMAT) to characterize the nonlinear strain rate dependent behavior of polymers. By utilizing this model within a micromechanics technique based on a laminate analogy, an algorithm to analyze the strain rate dependent, nonlinear deformation of a fiber reinforced polymer matrix composite is then developed as a UMAT to simulate the response of these composites under high strain rate impact. The models are designed for shell elements in order to ensure computational efficiency. Experimental and numerical stress-strain curves are compared for two representative polymers and a representative polymer matrix composite, with the analytical model predicting the experimental response reasonably well.

  14. The direct effects of strain on burning rates of composite solid propellants

    Science.gov (United States)

    Langhenry, M. T.

    1984-01-01

    A mathematical model is developed to predict burn rate augmentation due to strain in a composite solid propellant. The model assumes the effect is due to the ability of the flame to penetrate the small fissures and voids that form when a propellant is strained. The number and size of these fissures is obtained by applying a flaw propagation analysis to randomly distributed flaws that form when the binder-oxidizer particle bonds break under stress. A flame height is calculated with Summerfield's burn rate equation and is used to compute the burn rate augmentation based upon the additional burn area created when the flame penetrates the fissures. Comparisons are made with data obtained from published sources. The existence of threshold pressure and strains, above which augmentation occurs, is verified although the model predicts a lower threshold pressure and higher threshold strain than expected. Further results and applications of the model are discussed.

  15. Maximum Likelihood based comparison of the specific growth rates for P. aeruginosa and four mutator strains

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Mandsberg, Lotte Frigaard

    2008-01-01

    that best describes data is a model taking into account the full covariance structure. An inference study is made in order to determine whether the growth rate of the five bacteria strains is the same. After applying a likelihood-ratio test to models with a full covariance structure, it is concluded...... that the specific growth rate is the same for all bacteria strains. This study highlights the importance of carrying out an explorative examination of residuals in order to make a correct parametrization of a model including the covariance structure. The ML method is shown to be a strong tool as it enables......The specific growth rate for P. aeruginosa and four mutator strains mutT, mutY, mutM and mutY–mutM is estimated by a suggested Maximum Likelihood, ML, method which takes the autocorrelation of the observation into account. For each bacteria strain, six wells of optical density, OD, measurements...

  16. Characterization of a New Fully Recycled Carbon Fiber Reinforced Composite Subjected to High Strain Rate Tension

    Science.gov (United States)

    Meftah, H.; Tamboura, S.; Fitoussi, J.; BenDaly, H.; Tcharkhtchi, A.

    2017-08-01

    The aim of this study is the complete physicochemical characterization and strain rate effect multi-scale analysis of a new fully recycled carbon fiber reinforced composites for automotive crash application. Two composites made of 20% wt short recycled carbon fibers (CF) are obtained by injection molding. The morphology and the degree of dispersion of CF in the matrixes were examined using a new ultrasonic method and SEM. High strain tensile behavior up to 100 s-1 is investigated. In order to avoid perturbation due to inertial effect and wave propagation, the specimen geometry was optimized. The elastic properties appear to be insensitive to the strain rate. However, a high strain rate effect on the local visco-plasticity of the matrix and fiber/matrix interface visco-damageable behavior is emphasized. The predominant damage mechanisms evolve from generalized matrix local ductility at low strain rate regime to fiber/matrix interface debonding and fibers pull-out at high strain rate regime.

  17. Dynamic tensile fracture of mortar at ultra-high strain-rates

    Energy Technology Data Exchange (ETDEWEB)

    Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y. [CEA, DAM, GRAMAT, F-46500 Gramat (France)

    2013-12-28

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4} s{sup −1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.

  18. Prognostic value of strain and strain rate in the prediction of postoperative atrial fibrillation in patients undergoing coronary artery bypass grafting: a systematic literature review

    Directory of Open Access Journals (Sweden)

    Leila Bigdelu

    2016-03-01

    Full Text Available Introduction: Atrial fibrillation (AF is a common dysrhythmia postoperatively after coronary artery bypass grafting (CABG. Myocardial strain and strain-rate imaging is used for the assessment of postoperative atrial fibrillation (POAF as a new echocardiographic method. Methods: PubMed and Scopus were searched thoroughly using the following search terms: (strain and strain rate AND (atrial fibrillation OR AF on March 2015 to find English articles in which the strain and strain-rate echocardiographic imaging had been used for the evaluation of AF in patients undergone CABG. Full text of the relevant papers was fully reviewed for data extraction.Result: Of overall 6 articles found in PubMed, 10 records found in Scopus and 4 articles found through reference list search, only 6 papers fully met the inclusion criteria for further assessment and data extraction. The results of strain and strain-rate assessment showed that in total of 542 patients undergoing CABG, POAF occurred in 106 patients. Studies showed that the reduction of left atrial (LA strain rate is correlated with AF. Consistently, the results of present review showed that LA strain and strain-rate in patients who developed AF postoperatively after CABG are significantly reduced, suggesting that strain and strain-rate could be a predictor of POAF.Conclusion: Based on the obtained results, strain and strain-rate is a suitable and accurate echocardiographic technique in the assessment of left atrial function , and it might be helpful to detect the patients who are at high risk of POAF.

  19. Study of mechanical properties, microstructures and corrosion behavior of al 7075 t651 alloy with varying strain rate

    Science.gov (United States)

    Mukherjee, A.; Ghosh, M.; Mondal, K.; Venkitanarayanan, P.; Moon, A. P.; Varshney, A.

    2015-02-01

    Compression test of Al 7075 T651 was carried out at high strain rates (1138 - 2534 s-1) using Split Hopkinson Pressure Bar and at slow strain rate (10-4s-1) in 100KN Universal Testing machine to understand the improvement in mechanical properties and associated changes in microstructures. Cylindrical specimens of 6 mm height and 6 mm diameter were compressed dynamically. The influence of strain rates on mechanical properties, microstructure evolution and corrosion behavior after immersion test in 3.5% NaCl solution was also investigated. Strain rate, withdrawal stress and yield stress were observed to increase with impact velocity in high strain rate tests, while in slow strain rate tests, n value was observed to increase with increasing total strain. Microstructural observations revealed that after high strain rate test, grains of Al matrix were elongated. It was observed that corrosion resistance decreased with increase in impact velocity.

  20. Temperature and strain rate effects in high strength high conductivity copper alloys tested in air

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    The tensile properties of the three candidate alloys GlidCop{trademark} Al25, CuCrZr, and CuNiBe are known to be sensitive to the testing conditions such as strain rate and test temperature. This study was conducted on GlidCop Al25 (2 conditions) and Hycon 3HP (3 conditions) to ascertain the effect of test temperature and strain rate when tested in open air. The results show that the yield strength and elongation of the GlidCop Al25 alloys exhibit a strain rate dependence that increases with temperature. Both the GlidCop and the Hycon 3 HP exhibited an increase in strength as the strain rate increased, but the GlidCop alloys proved to be the most strain rate sensitive. The GlidCop failed in a ductile manner irrespective of the test conditions, however, their strength and uniform elongation decreased with increasing test temperature and the uniform elongation also decreased dramatically at the lower strain rates. The Hycon 3 HP alloys proved to be extremely sensitive to test temperature, rapidly losing their strength and ductility when the temperature increased above 250 C. As the test temperature increased and the strain rate decreased the fracture mode shifted from a ductile transgranular failure to a ductile intergranular failure with very localized ductility. This latter observation is based on the presence of dimples on the grain facets, indicating that some ductile deformation occurred near the grain boundaries. The material failed without any reduction in area at 450 C and 3.9 {times} 10{sup {minus}4} s{sup {minus}1}, and in several cases failed prematurely.

  1. Strain Rate Dependent Behavior of Glass/Nano Clay Filled Epoxy Resin Composite

    Directory of Open Access Journals (Sweden)

    R. Velmurugan

    2014-05-01

    Full Text Available It is believed that addition of small amount of nanoclays in the neat epoxy and fiber reinforced epoxy composite system can improve the mechanical properties. The mechanical properties of most of polymer matrix composites are sensitive to testing rate. However, most of the researches were concentrated on the behavior of the polymer matrix composites at high strain rates. The present research work is to investigate the role of clay on neat epoxy and glass–fiber reinforced epoxy composites, at low strain rates. The clay in terms of 1.5 wt%, 3 wt%, and 5 wt% are dispersed in the epoxy resin using mechanical stirring followed by sonication process. The corresponding glass/epoxy nanocomposites are prepared by impregnating the clay epoxy mixture by hand lay-up process. Characterization of the nanoclay is done by X-ray diffraction and Scanning Electron Microscopy. Tensile stress-strain curves are obtained at strain rates of 10-4 s-1, 10-3 s-1, 10-2 s-1, and 10-1 s-1 by a hydraulic machine reporting that, even at low strain rates, the longitudinal strength and stiffness increase as strain rate increases for all clay loadings. It is observed that the tensile modulus increases as the clay loading increases for both epoxy and glass/epoxy nanocomposites. It is also noticed that the longitudinal tensile strength decreases as the clay loading increases. The failed specimens show marked changes in the fracture surface with increased strain rate. Scanning electron microscopy is used to study the fiber/matrix/clay adhesion in fracture surfaces.

  2. Strain Rate Dependent Behavior of Glass/Nano Clay Filled Epoxy Resin Composite

    Directory of Open Access Journals (Sweden)

    R. Velmurugan

    2014-05-01

    Full Text Available It is believed that addition of small amount of nanoclays in the neat epoxy and fiber reinforced epoxy composite system can improve the mechanical properties. The mechanical properties of most of polymer matrix composites are sensitive to testing rate. However, most of the researches were concentrated on the behavior of the polymermatrix composites at high strain rates. The present research work is to investigate the role of clay on neat epoxy and glass–fiber reinforced epoxy composites, at low strain rates. The clay in terms of 1.5 wt%, 3 wt%, and 5 wt% are dispersed in the epoxy resin using mechanical stirring followed by sonication process. The corresponding glass/epoxy nanocomposites are prepared by impregnating the clay epoxy mixture by hand lay-up process. Characterization of the nanoclay is done by X-ray diffraction and Scanning Electron Microscopy. Tensile stress-strain curves are obtained at strain rates of 10-4 s-1, 10-3 s-1, 10-2 s-1, and 10-1 s-1 by a hydraulic  machine reporting that, even at low strain rates, the longitudinal strength and stiffness increase as strain rate increases for all clay loadings. It is observed that the tensile modulus increases as the clay loading increases for both epoxy and glass/epoxy nanocomposites. It is also noticed that the longitudinal tensile strength decreases as the clay loading increases. The failed specimens show marked changes in the fracture surface with increased strain rate. Scanning electron microscopy is used to study the fiber/matrix/clay adhesion in fracture surfaces.Defence Science Journal, Vol. 64, No. 3, May 2014, pp. 295-302, DOI:http://dx.doi.org/10.14429/dsj.64.7331

  3. Detection of Left Ventricular Regional Function in Asymptomatic Children with beta-Thalassemia Major by Longitudinal Strain and Strain Rate Imaging

    Directory of Open Access Journals (Sweden)

    Ali Bay

    2013-09-01

    Full Text Available Objective: Cardiac failure due to iron overload remains the most common cause of death in patients with beta-thalassemia major. This study aimed to evaluate myocardial function in children with beta-thalassemia major using standard echocardiography technique and strain rate imaging. Materials and Methods: Conventional echocardiographic analysis, tissue velocity imaging, and strain/strain rate imaging of the left ventricle were evaluated in 48 children with beta thalassemia major (19 girls, 29 boys; 8.39±4.05 years and 22 healthy children (11 girls, 11 boys; 8±3.72 years. Results: Conventional echocardiographic examinations revealed that beta-thalassemia patients had larger left ventricular end-systolic diameter, end-diastolic and end-systolic volume, left ventricular mass index, and mitral early/late diastolic flow velocity ratio (p<0.05. Strain and strain rate imaging study of the basal lateral wall of the left ventricle was higher in patients than in controls, at p=0.035 and p=0.008, respectively. Conclusion: We found that superior systolic strain and strain rate imaging of the left ventricle indicated the presence of regional systolic function in the left ventricular wall. We suggest that left ventricle volume and mass index parameters might be more sensitive than the other conventional and strain/strain rate imaging parameters during childhood. However, the adulthood strain and strain rate imaging values may be lower than controls, exceeding the critical level of iron overload.

  4. Strain Rate and Temperature Effects on the Formability and Damage of Advanced High-Strength Steels

    Science.gov (United States)

    Winkler, S.; Thompson, A.; Salisbury, C.; Worswick, M.; van Riemsdijk, I.; Mayer, R.

    2008-06-01

    In order to understand the crashworthiness and formability of advance high-strength steels, the effects of strain rate and temperature on the constitutive response of DP 600 and DP 780 steel tubes were investigated and compared with commercial drawing quality (DQ) and high strength low alloy (HSLA) 350 steel tubes. Uniaxial tensile tests were conducted at quasi-static (QS) (0.003 and 0.1 s-1), intermediate (30 and 100 s-1), and high (500, 1000, and 1500 s-1) strain rates using an Instron, instrumented falling weight impact tester and tensile split Hopkinson bar (TSHB) apparatus, respectively. Elevated temperature tests at 150 °C and 300 °C were also conducted at high strain rates. Following testing, metallography and microscopy techniques were used for material and damage characterization. The results obtained show that the steels studied exhibit a positive strain rate sensitivity. Compared to DQ and HSLA 350, the DP steels were found to have less formability at QS rates but enhanced formability at higher strain rates. A decrease in strength and ductility was measured with increasing temperature for the DP steels, indicating a reduction in energy adsorption due to adiabatic heating during a crash event.

  5. The Microstructure Evolution of Dual-Phase Pipeline Steel with Plastic Deformation at Different Strain Rates

    Science.gov (United States)

    Ji, L. K.; Xu, T.; Zhang, J. M.; Wang, H. T.; Tong, M. X.; Zhu, R. H.; Zhou, G. S.

    2017-07-01

    Tensile properties of the high-deformability dual-phase ferrite-bainite X70 pipeline steel have been investigated at room temperature under the strain rates of 2.5 × 10-5, 1.25 × 10-4, 2.5 × 10-3, and 1.25 × 10-2 s-1. The microstructures at different amount of plastic deformation were examined by using scanning and transmission electron microscopy. Generally, the ductility of typical body-centered cubic steels is reduced when its stain rate increases. However, we observed a different ductility dependence on strain rates in the dual-phase X70 pipeline steel. The uniform elongation (UEL%) and elongation to fracture (EL%) at the strain rate of 2.5 × 10-3 s-1 increase about 54 and 74%, respectively, compared to those at 2.5 × 10-5 s-1. The UEL% and EL% reach to their maximum at the strain rate of 2.5 × 10-3 s-1. This phenomenon was explained by the observed grain structures and dislocation configurations. Whether or not the ductility can be enhanced with increasing strain rates depends on the competition between the homogenization of plastic deformation among the microconstituents (ultra-fine ferrite grains, relatively coarse ferrite grains as well as bainite) and the progress of cracks formed as a consequence of localized inconsistent plastic deformation.

  6. Distribution of energy storage rate in area of strain localization during tension of austenitic steel

    Science.gov (United States)

    Oliferuk, W.; Maj, M.; Zembrzycki, K.

    2015-01-01

    The present work is devoted to experimental determination of the energy storage rate in the area of strain localization. The experimental procedure involves two complementary techniques: i.e. infrared thermography (IRT) and visible light imaging. The results of experiments have shown that during the evolution of plastic strain localization the energy storage rate in some areas of the deformed specimen drops to zero. To interpret the decrease of the energy storage rate in terms of micro-mechanisms, microstructural observations using electron back scattered diffraction (EBSC) were performed.

  7. A parametric study on the dynamic behavior of porous bronze at various strain rates

    Science.gov (United States)

    Zhang, Yue; Hu, Jianxing; Lei, Jianyin; Wang, Zhihua; Zhao, Longmao

    2016-10-01

    An experimental investigation on the porous bronze at various strain rates is firstly carried out in this study to explore the effects of relative density and strain rate in the mechanical behavior. Furthermore, a multi-parameter constitutive model of describing the rate-dependent behavior for porous bronze is developed. The parameters in the constitutive model are density dependent, and the specific forms of these parameters as functions of relative density are obtained. It can be concluded from the test results and constitutive model that the high relative density leads to increase in yield strength and energy absorption capacity of the materials and the strain rate also has positive effects on the yield strength and energy absorption capacity of porous bronze.

  8. High Strain-Rate and Quasi-Static Ductile Failure Mechanisms in Porous Materials

    Science.gov (United States)

    2007-11-02

    detailed understanding of the interrelated physical mechanisms that can result in ductile material failure in rate-dependent porous crystalline materials subjected...strains and slip-rates, and hydrostatic stresses on failure paths and ligament damage in face centered cubic (f.c.c.) crystalline materials have been

  9. Hardening in Two-Phase Materials. II. Plastic Strain and Mean Stress Hardening Rate

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1977-01-01

    The strain parameters which are relevant in a tensile experiment, are analysed and related to the geometry of deformation and to the mean stress of two-phase materials. The hardening rate of the mean stress with respect to plastic strain is found to be useful in comparison between experiments and...... and theories, and it allows theories to be probed over a range of strains. Previous experiments on the fibre-reinforced material of copper-tungsten are analysed in relation to the geometry of deformation....

  10. Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading

    Science.gov (United States)

    Gilat, Amos; Goldberg, Robert K.; Roberts, Gary D.

    2005-01-01

    The mechanical response of E-862 and PR-520 resins is investigated in tensile and shear loadings. At both types of loading the resins are tested at strain rates of about 5x10(exp 5), 2, and 450 to 700 /s. In addition, dynamic shear modulus tests are carried out at various frequencies and temperatures, and tensile stress relaxation tests are conducted at room temperature. The results show that the toughened PR-520 resin can carry higher stresses than the untoughened E-862 resin. Strain rate has a significant effect on the response of both resins. In shear both resins show a ductile response with maximum stress that is increasing with strain rate. In tension a ductile response is observed at low strain rate (approx. 5x10(exp 5) /s), and brittle response is observed at the medium and high strain rates (2, and 700 /s). The hydrostatic component of the stress in the tensile tests causes premature failure in the E-862 resin. Localized deformation develops in the PR-520 resin when loaded in shear. An internal state variable constitutive model is proposed for modeling the response of the resins. The model includes a state variable that accounts for the effect of the hydrostatic component of the stress on the deformation.

  11. Effects of temperature and strain rate on the tensile properties of potassium-doped tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Kenta, E-mail: k.sasaki@jupiter.qse.tohoku.ac.jp; Yabuuchi, Kiyohiro, E-mail: kiyohiro.yabuuchi@qse.tohoku.ac.jp; Nogami, Shuhei, E-mail: shuhei.nogami@qse.tohoku.ac.jp; Hasegawa, Akira, E-mail: akira.hasegawa@qse.tohoku.ac.jp

    2015-06-15

    Tensile tests were performed on pure and K-doped tungsten at temperatures from 25 to 700 °C and strain rates between 10{sup −5} and 10{sup −1} s{sup −1} in vacuum. The yield strength of both materials increased with increasing strain rate and decreasing temperature. The amount of change in the yield strength decreased with increasing temperature. The determination of activation volumes for plastic deformation highlighted that the rate-controlling process of the deformation behavior at lower temperatures was the same for both materials, namely, kink-pair formation on screw dislocations, and the process was not affected by potassium addition. The fracture strain of both materials increased with increasing strain rate and decreasing temperature, in the temperature range where the materials showed measurable ductility. K-doped W showed higher yield strength and a lower ductile-to-brittle transition temperature than pure W. No negative effect of K addition on strain rate- and temperature-induced changes in tensile properties was found. The analysis also highlighted the effectiveness of K addition, and of the grain refinement induced by it, for improving the mechanical properties of tungsten.

  12. High Strain-Rate Material Model Validation for Laser Peening Simulation

    Directory of Open Access Journals (Sweden)

    Kristina Langer

    2015-09-01

    Full Text Available Finite element modeling can be a powerful tool for predicting residual stresses induced by laser peening; however the sign and magnitude of the stress predictions depend strongly on how the material model captures the high strain rate response. Although a Johnson-Cook formulation is often employed, its suitability for modeling phenomena at very high strain rates has not been rigorously evaluated. In this paper, we address the effectiveness of the Johnson-Cook model, with parameters developed from lower strain rate material data (∼10^3 s^–1, to capture the higher strain rate response (∼10^5–10^6 s^–1 encountered during the laser peening process. Published Johnson-Cook parameters extracted from split Hopkinson bar testing were used to predict the shock response of aluminum samples during high-impact flyer plate tests. Additional quasi-static and split Hopkinson bar tests were also conducted to study the model response in the lower strain rate regime. The overall objective of the research was to ascertain whether a material model based on conventional test data (quasi-static compression testing and split Hopkinson bar measurements can credibly be used in FE simulations to predict laser peen-induced stresses.

  13. Effects of temperature and strain rate on the tensile properties of potassium-doped tungsten

    Science.gov (United States)

    Sasaki, Kenta; Yabuuchi, Kiyohiro; Nogami, Shuhei; Hasegawa, Akira

    2015-06-01

    Tensile tests were performed on pure and K-doped tungsten at temperatures from 25 to 700 °C and strain rates between 10-5 and 10-1 s-1 in vacuum. The yield strength of both materials increased with increasing strain rate and decreasing temperature. The amount of change in the yield strength decreased with increasing temperature. The determination of activation volumes for plastic deformation highlighted that the rate-controlling process of the deformation behavior at lower temperatures was the same for both materials, namely, kink-pair formation on screw dislocations, and the process was not affected by potassium addition. The fracture strain of both materials increased with increasing strain rate and decreasing temperature, in the temperature range where the materials showed measurable ductility. K-doped W showed higher yield strength and a lower ductile-to-brittle transition temperature than pure W. No negative effect of K addition on strain rate- and temperature-induced changes in tensile properties was found. The analysis also highlighted the effectiveness of K addition, and of the grain refinement induced by it, for improving the mechanical properties of tungsten.

  14. Experimental characterization and modelling of UO2 behavior at high temperatures and high strain rates

    Science.gov (United States)

    Salvo, Maxime; Sercombe, Jérôme; Ménard, Jean-Claude; Julien, Jérôme; Helfer, Thomas; Désoyer, Thierry

    2015-01-01

    This work presents an experimental characterization of uranium dioxide (UO2) in compression under Reactivity Initiated Accident (RIA) conditions. Pellet samples were tested at four temperatures (1100, 1350, 1550 and 1700 °C) and at a strain rate varying over 4 decades (10-4-10-3-10-2-10-1 /s). The experimental results show that the stress-strain curves cannot be fitted with a unique power law as it is the case at smaller strain rates (10-9-10-5 /s). A strain-hardening also appears in most of the tests. The microstructural observations show a pronounced evolution of the porosity at the pellet center during the tests. A hyperbolic sine model which accounts for volume variations (pore compressibility) was therefore proposed to describe the behavior of UO2 on a large range of temperatures (1100 - 1700 °C) and strain rates (10-9-10-1 /s). The Finite Element simulations of the compression tests lead to results (maximum stress, axial and hoop strain distribution, porosity distribution) in good agreement with the measurements. The model was then assessed on a database of more than two hundred creep tests.

  15. Simulation of the strain rate sensitive flow behavior of SiC-particulate reinforced aluminum metal matrix composites

    OpenAIRE

    Tirtom, İsmail; Güden, Mustafa; Yıldız, Hasan

    2008-01-01

    Strain rate dependent compression mechanical behavior of an SiC-particulate reinforced Al (2024-O) metal matrix composite (MMC) with different particle volume fractions was numerically investigated at various strain rates. Calculations were performed using axisymmetric finite element unit cell model, in which an elastic SiC particle was embedded inside a strain rate sensitive viscoplastic Al matrix. Stress–strain curves of Al matrix material were derived from Split Hopkinson Pressure Bar expe...

  16. Quasi-Static and High Strain Rate Compressive Response of Injection-Molded Cenosphere/HDPE Syntactic Foam

    Science.gov (United States)

    Bharath Kumar, B. R.; Singh, Ashish Kumar; Doddamani, Mrityunjay; Luong, Dung D.; Gupta, Nikhil

    2016-07-01

    High strain rate compressive properties of high-density polyethylene (HDPE) matrix syntactic foams containing cenosphere filler are investigated. Thermoplastic matrix syntactic foams have not been studied extensively for high strain rate deformation response despite interest in them for lightweight underwater vehicle structures and consumer products. Quasi-static compression tests are conducted at 10-4 s-1, 10-3 s-1 and 10-2 s-1 strain rates. Further, a split-Hopkinson pressure bar is utilized for characterizing syntactic foams for high strain rate compression. The compressive strength of syntactic foams is higher than that of HDPE resin at the same strain rate. Yield strength shows an increasing trend with strain rate. The average yield strength values at high strain rates are almost twice the values obtained at 10-4 s-1 for HDPE resin and syntactic foams. Theoretical models are used to estimate the effectiveness of cenospheres in reinforcing syntactic foams.

  17. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  18. Compressive Strength of Hydrostatic-Stress-Sensitive Materials at High Strain-Rates

    Institute of Scientific and Technical Information of China (English)

    LI Q M; LU Y B

    2008-01-01

    Many engineering materials demonstrate dynamic enhancement of their compressive strength with the increase of strain-rate.which have been included in material models to improve the reliability of numerical Simulations of the material and structural responses Under impact and biasl tcads,The strain-rate effects on the dynamic Compressive strength of a range of engineering materials which behave in hydrostatic-stress-sensitive manner were investigated.It is concluded that the dynamic enhancement of the compressive strength of a hydrostatic-stress-sensitive material may include inertia-induced lateral confinement effects,which,as a non-strain-rate factor,may greatly enhance the compressive strength of these materials.Some empirical formulae based on the dynamic stress-strain measurements over-predict the strain-rate effects on the compressive strength of these hydrostatic-stress-sensitive materials,and thus may over-estimate the structural resistance to impact and blast lgads.leading fo non-conservative design of protective structures.

  19. Motor unit recruitment patterns 2: the influence of myoelectric intensity and muscle fascicle strain rate.

    Science.gov (United States)

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    To effectively meet the force requirements of a given movement an appropriate number and combination of motor units must be recruited between and within muscles. Orderly recruitment of motor units has been shown to occur in a wide range of skeletal muscles, however, alternative strategies do occur. Faster motor units are better suited to developing force rapidly, and produce higher mechanical power with greater efficiency at faster shortening strain rates than slower motor units. As the frequency content of the myoelectric signal is related to the fibre type of the active motor units, we hypothesised that, in addition to an association between myoelectric frequency and intensity, there would be a significant association between muscle fascicle shortening strain rate and myoelectric frequency content. Myoelectric and sonomicrometric data were collected from the three ankle extensor muscles of the rat hind limb during walking and running. Myoelectric signals were analysed using wavelet transformation and principal component analysis to give a measure of the signal frequency content. Sonomicrometric signals were analysed to give measures of muscle fascicle strain and strain rate. The relationship between myoelectric frequency and both intensity and muscle fascicle strain rate was found to change across the time course of a stride, with differences also occurring in the strength of the associations between and within muscles. In addition to the orderly recruitment of motor units, a mechanical strategy of motor unit recruitment was therefore identified. Motor unit recruitment is therefore a multifactorial phenomenon, which is more complex than typically thought.

  20. Effects of strain rates on mechanical properties of limestone under high temperature

    Institute of Scientific and Technical Information of China (English)

    Tang Furong; Mao Xianbiao; Zhang Lianying; Yin Huiguang; Li Yan

    2011-01-01

    The experimental tests for limestone specimens at 700 ℃ in uniaxial compression were carried out to investigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servocontrolled testing system considering the loading rate as a variable.The mechanical properties of limestone such as the stress-strain curve,variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the strain rates ranging from 1.1 × 10-s to 1.1 × 10-1 s-1.(1) Sharp decreases were shown for the peak strength and elastic modulus of limestone from 1.1 × 10-5 to 1.1 × 10 4 s-1 at 700 C as well as a downward trend was shown from 1.1 × 10 4 to 1.1 × 10-1 s-1with the rise of the strain rate.(2) The peak strain increased from 1.1 × 10-5 to 1.1 × 10-4 s-1,however,there was no obvious changes shown for the peak strain of limestone from 1.1 × 10-4 to 1.1 × 10-1 s-1.These results can nrovide valuable references for the rock blasting effect and design of mine.

  1. Effects of strain rate on the hot deformation behavior and dynamic recrystallization in China low activation martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Chen, Xizhang, E-mail: kernel.chen@gmail.com [School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035 (China); Madigan, Bruce [Montana Tech, Butte, MT (United States); Cao, Hongyan [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Konovalov, Sergey [Center for Collective Use Material Science, Siberian State Industrial University, Novokuznetsk (Russian Federation)

    2016-02-15

    Graphical abstract: - Highlights: • Average grain sizes of 1.8 μm are observed at strain rate of 10 s{sup −1}. • Peak stress value increased, but strain decreased with increasing of strain rate. • A catenuliform recrystallized occurred at a strain rate of 5 s{sup −1}. • DRX effect improved with increasing of deformation amounts. - Abstract: To investigate the effects of strain rate on dynamic recrystallization (DRX) behavior on China low activation martensitic steel, hot uniaxial compression tests with strain rates ranging from 0.1 s{sup −1} to 10 s{sup −1} and deformations amounts of 40% and 70% where conducted. The true stress–true strain curves were analyzed for the occurrence of DRX under the different strain rates and compressive deformation amounts. The steel microstructures were examined and linked to the observed stress-strain diagrams to study DRX. Results show that DRX was responsible for refining the grain structure over a wide range of strain rates under 70% deformation. However, significant DRX occurred only at the relatively low strain rate of 0.1 s{sup −1} under 40% deformation. The original elongated microstructure of the rolled plate from which the specimens were taken was replaced by dynamic recrystallization grains. At 70% deformation, the average grain size was 4.2 μm at a strain rate of 0.1 s{sup −1}, 2.5 μm at a strain rate of 5 s{sup −1}, 1.8 μm at a strain rate of 10 s{sup −1}. In conclusion, with increasing strain rate, the recrystallized grain size decreased and the peak stress increased.

  2. Energy absorption at high strain rate of glass fiber reinforced mortars

    Directory of Open Access Journals (Sweden)

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  3. Strain rate sensitivity of nanoindentation creep in an AlCoCrFeNi high-entropy alloy

    Science.gov (United States)

    Jiao, Z. M.; Wang, Z. H.; Wu, R. F.; Qiao, J. W.

    2016-09-01

    Creep behaviors of an AlCoCrFeNi high-entropy alloy with the body-centered cubic structure were investigated by nanoindentation. The enhanced strain gradient induced by higher strain rate leads to decreased strain rate sensitivity during creep process. The present alloy exhibits excellent creep resistance, mainly due to its large entropy of mixing and highly distorted lattice structure.

  4. Flow propagation velocity is not a simple index of diastolic function in early filling. A comparative study of early diastolic strain rate and strain rate propagation, flow and flow propagation in normal and reduced diastolic function

    Directory of Open Access Journals (Sweden)

    Skjaerpe Terje

    2003-04-01

    Full Text Available Abstract Background Strain Rate Imaging shows the filling phases of the left ventricle to consist of a wave of myocardial stretching, propagating from base to apex. The propagation velocity of the strain rate wave is reduced in delayed relaxation. This study examined the relation between the propagation velocity of strain rate in the myocardium and the propagation velocity of flow during early filling. Methods 12 normal subjects and 13 patients with treated hypertension and normal systolic function were studied. Patients and controls differed significantly in diastolic early mitral flow measurements, peak early diastolic tissue velocity and peak early diastolic strain rate, showing delayed relaxation in the patient group. There were no significant differences in EF or diastolic diameter. Results Strain rate propagation velocity was reduced in the patient group while flow propagation velocity was increased. There was a negative correlation (R = -0.57 between strain rate propagation and deceleration time of the mitral flow E-wave (R = -0.51 and between strain rate propagation and flow propagation velocity and there was a positive correlation (R = 0.67 between the ratio between peak mitral flow velocity / strain rate propagation velocity and flow propagation velocity. Conclusion The present study shows strain rate propagation to be a measure of filling time, but flow propagation to be a function of both flow velocity and strain rate propagation. Thus flow propagation is not a simple index of diastolic function in delayed relaxation.

  5. In vivo vascular wall shear rate and circumferential strain of renal disease patients.

    Science.gov (United States)

    Park, Dae Woo; Kruger, Grant H; Rubin, Jonathan M; Hamilton, James; Gottschalk, Paul; Dodde, Robert E; Shih, Albert J; Weitzel, William F

    2013-02-01

    This study measures the vascular wall shear rate at the vessel edge using decorrelation based ultrasound speckle tracking. Results for nine healthy and eight renal disease subjects are presented. Additionally, the vascular wall shear rate and circumferential strain during physiologic pressure, pressure equalization and hyperemia are compared for five healthy and three renal disease subjects. The mean and maximum wall shear rates were measured during the cardiac cycle at the top and bottom wall edges. The healthy subjects had significantly higher mean and maximum vascular wall shear rate than the renal disease subjects. The key findings of this research were that the mean vascular wall shear rates and circumferential strain changes between physiologic pressure and hyperemia that was significantly different between healthy and renal disease subjects.

  6. Rate dependent rheological stress-strain behavior of porous nanocrystalline materials

    Institute of Scientific and Technical Information of China (English)

    李慧; 周剑秋

    2008-01-01

    To completely understand the rate-dependent stress-strain behavior of the porous nanocrystalline materials,it is necessary to formulate a constitutive model that can reflect the complicated experimentally observed stress-strain relations of nanocrystalline materials.The nanocrystalline materials consisting grain interior and grain boundary are considered as viscoplastic and porous materials for the reasons that their mechanical deformation is commonly governed by both dislocation glide and diffusion,and pores commonly exist in the nanocrystalline materials.A constitutive law of the unified theory reflecting the stress-strain relations was established and verified by experimental data of bulk nanocrystalline Ni prepared by hydrogen direct current arc plasma evaporation method and hot compression.The effect of the evolution of porosity on stress-strain relations was taken into account to make that the predicted results can keep good agreements with the corresponding experimental results.

  7. Strain Rate and Anisotropic Microstructure Dependent Mechanical Behaviors of Silkworm Cocoon Shells.

    Directory of Open Access Journals (Sweden)

    Jun Xu

    Full Text Available Silkworm cocoons are multi-layered composite structures comprised of high strength silk fiber and sericin, and their mechanical properties have been naturally selected to protect pupas during metamorphosis from various types of external attacks. The present study attempts to gain a comprehensive understanding of the mechanical properties of cocoon shell materials from wild silkworm species Antheraea pernyi under dynamic loading rates. Five dynamic strain rates from 0.00625 s-1 to 12.5 s-1 are tested to show the strain rate sensitivity of the cocoon shell material. In the meantime, the anisotropy of the cocoon shell is considered and the cocoon shell specimens are cut along 0°, 45° and 90° orientation to the short axis of cocoons. Typical mechanical properties including Young's modulus, yield strength, ultimate strength and ultimate strain are extracted and analyzed from the stress-strain curves. Furthermore, the fracture morphologies of the cocoon shell specimens are observed under scanning electron microscopy to help understand the relationship between the mechanical properties and the microstructures of the cocoon material. A discussion on the dynamic strain rate effect on the mechanical properties of cocoon shell material is followed by fitting our experimental results to two previous models, and the effect could be well explained. We also compare natural and dried cocoon materials for the dynamic strain rate effect and interestingly the dried cocoon shells show better overall mechanical properties. This study provides a different perspective on the mechanical properties of cocoon material as a composite material, and provides some insight for bio-inspired engineering materials.

  8. Numerical Derivation of Strain Rate Effects on Material Properties of Masonry with Solid Clay Bricks

    Institute of Scientific and Technical Information of China (English)

    WEI Xueying; HAO Hong

    2006-01-01

    In this paper,numerical method is used to study the strain rate effect on masonry materials.A typical unit of masonry is selected to serve as a representative volume element (RVE).Numerical model of RVE is established with detailed distinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests.The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials.Dynamic loads of different loading rates are applied to RVE.The equivalent homogenized uniaxial compressive strength,threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE.The strain rate effect on the masonry material with clay brick and mortar,such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.

  9. Effect of strain rate on shear properties and fracture characteristics of DP600 and AA5182-O sheet metal alloys

    Directory of Open Access Journals (Sweden)

    Rahmaan Taamjeed

    2015-01-01

    Full Text Available Shear tests were performed at strain rates ranging from quasi-static (.01 s−1 to 600 s−1 for DP600 steel and AA5182-O sheet metal alloys at room temperature. A miniature sized shear specimen was modified and validated in this work to perform high strain rate shear testing. Digital image correlation (DIC techniques were employed to measure the strains in the experiments, and a criterion to detect the onset of fracture based on the hardening rate of the materials is proposed. At equivalent strains greater than 20%, the DP600 and AA5182 alloys demonstrated a reduced work hardening rate at elevated strain rates. At lower strains, the DP600 shows positive rate sensitivity while the AA5182 was not sensitive to strain rate. For both alloys, the equivalent fracture strain and elongation to failure decreased with strain rate. A conversion of the shear stress to an equivalent stress using the von Mises yield criterion provided excellent agreement with the results from tensile tests at elevated strain rates. Unlike the tensile test, the shear test is not limited by the onset of necking so the equivalent stress can be determined over a larger range of strain.

  10. On the influence of strain rate sensitivity on wear in the Archard regime

    Energy Technology Data Exchange (ETDEWEB)

    Brechet, Y. (Domaine Univ. de Grenoble, Saint Martin d' Heres (France). Lab. de Thermodynamique et Physico-Chimie Metallurgique); Estrin, Y. (Univ. of Western Australia, Nedlands (Australia). Dept. of Mechanical and Materials Engineering)

    1994-06-01

    Relating wear characteristics of a metallic material to its mechanical properties (yield strength, strain hardening coefficient) and its microstructural features (size and volume fraction of inclusions) is a long-standing problem. The diversity of mechanisms which are involved during wear processes makes it practically impossible to have a general theory which would encompass all thinkable situations corresponding to various loads and various regimes of sliding. Different regimes and the conditions for their occurrence have been systematized in wear mechanism maps. In this communication the authors are going to restrict their consideration to plasticity dominated wear which is expected to occur in the low velocity range where surface heating is negligible. In this regime, the prevalent wear mechanism is the removal of slivers of metal by plastic failure due to shearing of contact asperities. The classic works by Rabinowicz have demonstrated clearly that solid friction is a rate dependent problem and that the velocity dependence of dynamic solid friction is nothing else than a consequence of the increase of static solid friction with time during which normal load was applied prior to the commencement of sliding. Creep under normal compression stress leads to flattening of the junctions causing their strength to increase with time. Like solid friction, wear appears to be a rate dependent phenomenon, and the strain rate sensitivity of the flow stress can be expected to be relevant for wear resistance. The strain rate sensitivity is known to play an important role in other damage related properties, such as ductility and fracture toughness. The authors felt that it would be of interest to evaluate the effect of strain rate sensitivity on the wear rate as part of an attempt to relate the wear properties to a bulk constitutive equation, and as a guideline for assessing the influence of alloying elements known to affect the strain rate sensitivity.

  11. Influence of Strain Rate on Tensile Strength of Woven Geotextile in the Selected Range of Temperature

    Directory of Open Access Journals (Sweden)

    Stępień Sylwia

    2015-06-01

    Full Text Available Investigation of geosynthetics behaviour has been carried out for many years. Before using geosynthetics in practice, the standard laboratory tests had been carried out to determine basic mechanical parameters. In order to examine the tensile strength of the sample which extends at a constant strain rate, one should measure the value of the tensile force and strain. Note that geosynthetics work under different conditions of stretching and temperatures, which significantly reduce the strength of these materials. The paper presents results of the tensile test of geotextile at different strain rates and temperatures from 20 °C to 100 °C. The aim of this study was to determine the effect of temperature and strain rate on tensile strength and strain of the woven geotextile. The article presents the method of investigation and the results. The data obtained allowed us to assess the parameters of material which should be considered in the design of the load-bearing structures that work at temperatures up to 100 °C.

  12. Mechanical Characterization of Brain Tissue in Compression at Dynamic Strain Rates

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.01.022

    2013-01-01

    Traumatic brain injury (TBI) occurs when local mechanical load exceeds certain tolerance levels for brain tissue. Extensive research has been done previously for brain matter experiencing compression at quasistatic loading; however, limited data is available to model TBI under dynamic impact conditions. In this research, an experimental setup was developed to perform unconfined compression tests and stress relaxation tests at strain rates < 90/s. The brain tissue showed a stiffer response with increasing strain rates, showing that hyperelastic models are not adequate. Specifically, the compressive nominal stress at 30% strain was 8.83 +/- 1.94, 12.8 +/- 3.10 and 16.0 +/- 1.41 kPa (mean +/- SD) at strain rates of 30, 60 and 90/s, respectively. Relaxation tests were also conducted at 10%-50% strain with the average rise time of 10 ms, which can be used to derive time dependent parameters. Numerical simulations were performed using one-term Ogden model with initial shear modulus mu_0 = 6.06 +/- 1.44, 9.44 +/-...

  13. Influence of Strain Rate on Tensile Strength of Woven Geotextile in the Selected Range of Temperature

    Science.gov (United States)

    Stępień, Sylwia; Szymański, Alojzy

    2015-06-01

    Investigation of geosynthetics behaviour has been carried out for many years. Before using geosynthetics in practice, the standard laboratory tests had been carried out to determine basic mechanical parameters. In order to examine the tensile strength of the sample which extends at a constant strain rate, one should measure the value of the tensile force and strain. Note that geosynthetics work under different conditions of stretching and temperatures, which significantly reduce the strength of these materials. The paper presents results of the tensile test of geotextile at different strain rates and temperatures from 20 °C to 100 °C. The aim of this study was to determine the effect of temperature and strain rate on tensile strength and strain of the woven geotextile. The article presents the method of investigation and the results. The data obtained allowed us to assess the parameters of material which should be considered in the design of the load-bearing structures that work at temperatures up to 100 °C.

  14. Identification of strain-rate and thermal sensitive material model with an inverse method

    Directory of Open Access Journals (Sweden)

    Peroni M.

    2010-06-01

    Full Text Available This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strainrates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena. Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, anyway it allows to precisely identify the parameters of different material models. This could provide great advantages when high reliability of the material behaviour is necessary. Applicability of this method is particularly indicated for special applications in the field of aerospace engineering, ballistic, crashworthiness studies or particle accelerator technologies, where materials could be submitted to strong plastic deformations at high-strain rate in a wide range of temperature. Thermal softening effect has been investigated in a temperature range between 20°C and 1000°C.

  15. Effect of strain rate and water-to-cement ratio on compressive mechanical behavior of cement mortar

    Institute of Scientific and Technical Information of China (English)

    周继凯; 葛利梅

    2015-01-01

    Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar (SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings. Strain rate sensitivity of the materials is measured in terms of failure modes, stress−strain curves, compressive strength, dynamic increase factor (DIF) and critical strain at peak stress. A significant change in the stress−strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress−strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor (DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.

  16. A numerical basis for strain-gradient plasticity theory: Rate-independent and rate-dependent formulations

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof

    2014-01-01

    of a single plastic zone is analyzed to illustrate the agreement with earlier published results, whereafter examples of (ii) multiple plastic zone interaction, and (iii) elastic–plastic loading/unloading are presented. Here, the simple shear problem of an infinite slab constrained between rigid plates......–plastic loading/unloading and the interaction of multiple plastic zones, is proposed. The predicted model response is compared to the corresponding rate-dependent version of visco-plastic origin, and coinciding results are obtained in the limit of small strain-rate sensitivity. First, (i) the evolution...

  17. Temperature and strain rate effects on the piezoelectric charge production of PZT 95/5

    Science.gov (United States)

    Khan, Amnah S.; Proud, William G.

    2017-01-01

    To develop a better understanding of the piezoelectric ceramic lead zirconate titanate (PZT) 95/5, parameters including varying temperatures, porosities and strain rates have been studied. The effects on the charge output and fracture of poled PZT samples of different porosities have been investigated with compressive strain rates (10-4 - 10+3 s-1) using quasi-static loading equipment, drop-weight towers and Split Hopkinson Pressure Bars (SHPBs). The cylindrical specimens were of 4.4 mm diameter, thickness 0.8 - 4.4 mm, and density 7.3 - 8.3 g cm-3. The temperature range of -20 °C to +80 °C was achieved using purpose-built environmental chambers. The resulting stress-strain relationships are compared; all the samples ultimately displayed a brittle response at failure [1].

  18. Dynamic recrystallization of electroformed copper liners of shaped charges in high-strain-rate plastic deformation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The microstructures in the electroformed copper liners of shaped charges after high-strain-rate plastic deformation were investigated by transmission electron microscopy (TEM). Meanwhile, the orientation distribution of the grains in the recovered slug was examined by the electron backscattering Kikuchi pattern (EBSP) technique. EBSP analysis illustrated that unlike the as-formed electroformed copper linersof shaped charges the grain orientations in the recovered slug are distributed along randomly all the directions after undergoing heavily strain deformation at high-strain rate. Optical microscopy shows a typical recrystallization structure, and TEM examination reveals dislocation cells existed in the thin foil specimen. These results indicate that dynamic recovery and recrystallization occur during this plastic deformation process, and the associated deformation temperature is considered to be higher than 0.6 times the melting point of copper.

  19. Deformation and failure of OFHC copper under high strain rate shear compression

    Science.gov (United States)

    Ruggiero, Andrew; Testa, Gabriel; Bonora, Nicola; Iannitti, Gianluca; Persechino, Italo; Colliander, Magnus Hörnqvist

    2017-01-01

    Hat-shaped specimen geometries were developed to generate high strain, high-strain-rates deformation under prescribed conditions. These geometries offer also the possibility to investigate the occurrence of ductile rupture under low or negative stress triaxiality, where most failure models fail. In this work, three tophat geometries were designed, by means of extensive numerical simulation, to obtain desired stress triaxiality values within the shear region that develops across the ligament. Material failure was simulated using the Continuum Damage Model (CDM) formulation with a unilateral condition for damage accumulation and validated by comparing with quasi-static and high strain rate compression tests results on OFHC copper. Preliminary results seem to indicate that ductile tearing initiates at the specimen corner location where positive stress triaxiality occurs because of local rotation and eventually propagates along the ligament.

  20. Mechanical Behavior of MTMoCr under High Temperature and High Strain-rate

    Directory of Open Access Journals (Sweden)

    Zhengwei Dong

    2013-02-01

    Full Text Available MTMoCr is a kind of Mo-Cr alloy cast iron often used to make automobile panel dies. To study high-speed machining process of automobile panel dies, the material’s elastic modulus and rupture critical values of MTMoCr at 20℃-800℃ were studied based on the high temperature elongation test. The material’s stress-strain diagram at various temperatures set-points (20℃-500℃ and various strain-rates (500/s-5000/s were studied and the dynamic tensile yield strength values were obtained by dynamic SHPB (Split Hopkinson Pressure Bar high-speed compression test. The experimental results indicate that MTMoCr has heat resistance and its behavior is between toughness and brittleness materials. Its toughness is enhanced with temperature increasing. The strain-rate strengthening effect prevails over temperature softening effect.

  1. Mechanical characterization of particulate aluminum foams. Strain-rate, density and matrix alloy versus adhesive effects

    Energy Technology Data Exchange (ETDEWEB)

    Lehmhus, Dirk [ISIS Sensorial Materials Scientific Centre, University of Bremen (Germany); Baumeister, Joachim; Stutz, Lennart; Stoebener, Karsten [Fraunhofer IFAM Bremen (Germany); Schneider, Eduard [University of Bremen (Germany); Avalle, Massimiliano; Peroni, Lorenzo; Peroni, Marco [Dipartimento di Meccanica, Politecnico di Torino Vercelli (Italy)

    2010-07-15

    The study evaluates mechanical properties of APM particulate aluminum foams built up from adhesively bonded Al foam spheres. Foams of matrix alloy AlSi10 are compared, with PM AlSi7 foams used as reference. The influence of density is studied both for quasi-static and dynamic compressive loading in a range from {proportional_to}0.35 to 0.71 g cm{sup -3}. The effect of varying the bonding agent is evaluated for a single density and both strain rate levels by replacing the standard, high-strength epoxy-based adhesive with a polyamide of greatly increased ductility. The result is a clear shift of fracture events to higher strain levels, as well as the introduction of a strain-rate dependency of strength. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Behavior of steel fiber-reinforced high-strength concrete at medium strain rate

    Institute of Scientific and Technical Information of China (English)

    Chujie JIAO; Wei SUN; Shi HUAN; Guoping JIANG

    2009-01-01

    Impact compression experiments for the steel fiber-reinforced high-strength concrete (SFRHSC) at medium strain rate were conducted using the split Hopkinson press bar (SHPB) testing method. The volume fractions of steel fibers of SFRHSC were between 0 and 3%. The experimental results showed that, when the strain rate increased from threshold value to 90 s-1, the maximum stress of SFRHSC increased about 30%, the elastic modulus of SFRHSC increased about 50%, and the increase in the peak strain of SFRHSC was 2-3 times of that in the matrix specimen. The strength and toughness of the matrix were improved remarkably because of the superposition effect of the aggregate high-strength matrix and steel fiber high-strength matrix. As a result, under impact loading, cracks developed in the SFRHSC specimen, but the overall shape of the specimen remained virtually unchanged. However, under similar impact loading, the matrix specimens were almost broken into small pieces.

  3. Strain rate effects on the mechanical behavior of two Dual Phase steels in tension

    Science.gov (United States)

    Cadoni, E.; Singh, N. K.; Forni, D.; Singha, M. K.; Gupta, N. K.

    2016-05-01

    This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s-1 to 600 s-1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20∘C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s-1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s-1, and 18 s-1) and high strain rates (200 s-1, 400 s-1, and 600 s-1) respectively. Tests under quasi-static condition are performed at high temperature (200∘C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.

  4. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    Directory of Open Access Journals (Sweden)

    Yoshimoto Akifumi

    2015-01-01

    Full Text Available These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10−3 to 103 s−1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from − 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  5. Measurements of Creep Internal Stress Based on Constant Strain Rate and Its Application to Engineering

    Institute of Scientific and Technical Information of China (English)

    TAO Wen-liang; WEI Tao

    2006-01-01

    This research is carried out on the basis of Constant Strain Rate(CSR) to measure creep internal stress. Measurements of creep internal stress are conducted on the material test machine by using the CSR method. A mathematical model of creep internal stress is also proposed and its application is presented in this paper.

  6. Recent Achievements in Developing Low Temperature and High Strain Rate Superplastic Materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper is to briefly outline our recent activities in developing low temperature or high strain rate superplastic materials, including aircraft-used and general-purpose Al- and Mg-base alloys or composites, as well as Ti3Al base intermetallic alloys. The processing routes applied included the thermomechanical treatment, equal channel angular pressing and other extrusion or forging methods.

  7. The influence of strain rate on the interfacial fracture toughness between PVB and laminated glass

    Science.gov (United States)

    Iwasaki, R.; Sato, C.

    2006-08-01

    This paper presents the experimental results of high speed tests using laminated safety glass to determine the interfacial fracture toughness between PVB (polyvinyl butyral) sheets and glass plates. Low-speed tensile test of PVB was carried out firstly. PVB shows a non-linear visco-elastic property. The property was described using a non-linear visco-elastic model. The visco-elastic parameters were calculated to compare the experimentally obtained stress-strain curves and the results of simulation. A simple fracture-mechanical model for PVB laminated glass was conducted to determine the energy release rate G. The fracture toughness Gc of the PVB laminated glass specimens were calculated from both the results of low-speed tensile tests and the equation for the energy release rate. The strain-stress curves of PVB under high strain rates are totally different from those of the low speed tests. The phenomenon can be explained from the phase transition due to the difference of strain rates because the mechanical properties of PVB changes from visco-elastic to glassy behavior. The fracture toughness of PVB laminated glass was calculated from the experimental results of high speed tests. Fracture energy was defined and also compared to the fracture toughness.

  8. Heart wall motion analysis by dynamic 3D strain rate imaging from tissue Doppler echocardiography

    Science.gov (United States)

    Hastenteufel, Mark; Wolf, Ivo; de Simone, Raffaele; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2002-04-01

    The knowledge about the complex three-dimensional (3D) heart wall motion pattern, particular in the left ventricle, provides valuable information about potential malfunctions, e.g., myocardial ischemia. Nowadays, echocardiography (cardiac ultrasound) is the predominant technique for evaluation of cardiac function. Beside morphology, tissue velocities can be obtained by Doppler techniques (tissue Doppler imaging, TDI). Strain rate imaging (SRI) is a new technique to diagnose heart vitality. It provides information about the contraction ability of the myocardium. Two-dimensional color Doppler echocardiography is still the most important clinical method for estimation of morphology and function. Two-dimensional methods leads to a lack of information due to the three-dimensional overall nature of the heart movement. Due to this complex three-dimensional motion pattern of the heart, the knowledge about velocity and strain rate distribution over the whole ventricle can provide more valuable diagnostic information about motion disorders. For the assessment of intracardiac blood flow three-dimensional color Doppler has already shown its clinical utility. We have developed methods to produce strain rate images by means of 3D tissue Doppler echocardiography. The tissue Doppler and strain rate images can be visualized and quantified by different methods. The methods are integrated into an interactively usable software environment, making them available in clinical everyday life. Our software provides the physician with a valuable tool for diagnosis of heart wall motion.

  9. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    Science.gov (United States)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s-1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  10. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    Energy Technology Data Exchange (ETDEWEB)

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  11. Fracture and strain rate behavior of airplane fuselage materials under blast loading

    NARCIS (Netherlands)

    Mediavilla Varas, J.; Soetens, F.; Kroon, E.; Aanhold, J.E. van; Meulen, O.R. van der; Sagimon, M.

    2010-01-01

    The dynamic behavior of three commonly used airplane fuselage materials is investigated, namely of Al2024-T3, Glare-3 and CFRP. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The results showed no strain rate effect on Al2024-T3 and a

  12. Longevity, growth rate and related traits among strains of Tribolium castaneum.

    Science.gov (United States)

    Soliman, M H; Lints, F A

    1975-01-01

    Longevity of eight laboratory strains of the flour beetle Tribolium castaneum, with various geographic backgrounds, was studied under constant laboratory conditions of 33 degrees C and 70% relative humidity in standard medium (95% whole wheat flour and 5% dried yeast) during a period of 227 days starting from the egg stage. The eggs were collected from the same parents, first a few days after emergence and afterwards at intervals of 13, 9, 10 and 11 days. Mean survival time (MST) was found to be strain-specified. It ranges from 128.6 days for KJ (Kyoto, Japan) to 174.2 days for ES (Edinburgh, Scotland). MST was highly correlated with the percentage of adults alive after 227 days, which did not change the ranking order of strain longevity. Parental age had no effect on longevity. The mean adult longevity of the strains was correlated with the available data on adult weight, growth rate, viability and productivity. There was no relationship between adult weight and longevity. LIfe span was found to depend on growth rate (measured as 13-day larval weight), percent viability (from 13-day larvae to adulthood) and productivity. Developmental time was also found to influence adult life span within certain limits (two extreme strains deviated). The data suggest that ageing and death in T. castaneum is under genetic control and support the idea that ageing, allied to development, is genetically controlled.

  13. A real-time heat strain risk classifier using heart rate and skin temperature.

    Science.gov (United States)

    Buller, Mark J; Latzka, William A; Yokota, Miyo; Tharion, William J; Moran, Daniel S

    2008-12-01

    Heat injury is a real concern to workers engaged in physically demanding tasks in high heat strain environments. Several real-time physiological monitoring systems exist that can provide indices of heat strain, e.g. physiological strain index (PSI), and provide alerts to medical personnel. However, these systems depend on core temperature measurement using expensive, ingestible thermometer pills. Seeking a better solution, we suggest the use of a model which can identify the probability that individuals are 'at risk' from heat injury using non-invasive measures. The intent is for the system to identify individuals who need monitoring more closely or who should apply heat strain mitigation strategies. We generated a model that can identify 'at risk' (PSI 7.5) workers from measures of heart rate and chest skin temperature. The model was built using data from six previously published exercise studies in which some subjects wore chemical protective equipment. The model has an overall classification error rate of 10% with one false negative error (2.7%), and outperforms an earlier model and a least squares regression model with classification errors of 21% and 14%, respectively. Additionally, the model allows the classification criteria to be adjusted based on the task and acceptable level of risk. We conclude that the model could be a valuable part of a multi-faceted heat strain management system.

  14. Strain rate dependence of the flow stress and work hardening of {gamma}`

    Energy Technology Data Exchange (ETDEWEB)

    Ezz, S.S. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Sun, Y.Q. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Hirsch, P.B. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom)

    1995-02-15

    The strain rate ({epsilon}) sensitivity of the flow stress ({tau}), {beta}=({delta}{tau}/{delta} ln{epsilon}), of crystals of {gamma}` in the temperature (T) range of the yield stress anomaly obeys a Cottrell-Stokes law when plotted against {tau}{sub h}={tau}-{tau}{sub y}, where {tau}{sub y} is the yield stress at 0.01% strain. The slopes are approximately 1%, decrease with increasing T and are approximately independent of orientation. {tau}{sub h} is due to work hardening and depends on the prestrain {epsilon}, {epsilon} and T. Transmission electron microscopy observations suggest that at 2% strain at 600 K and 720 K, {tau}{sub h} and {beta} are mainly controlled by forest obstacles. At 600 K, the forest consists largely of [101] dislocations on the (010) cross slip plane threading the (111) planes and generated by bowing of the [101] primary screws (Kear-Wilsdorf locks). At 720 K, the forest is non-uniform and consists of [101] on (010), primary cube [110] on (001) and secondary octahedral slip dislocations. At room temperature, the strength of the obstacles is weaker and it is suggested that they are mainly jogs on edge dislocations generated by cross slip of screw segments. At 2% strain, fine slip on (010) and (001) contributes increasingly to strain with increasing T and this correlates with the decrease in the work-hardening rate. ((orig.))

  15. Effects of strain rate and confining pressure on the deformation and failure of shale

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.M. (Schlumberger Cambridge Research (GB)); Sheppard, M.C. (Anadrill/Schlumberger (US)); Houwen, O.H. (Sedco Forex (FR))

    1991-06-01

    Previous work on shale mechanical properties has focused on the slow deformation rates appropriate to wellbore deformation. Deformation of shale under a drill bit occurs at a very high rate, and the failure properties of the rock under these conditions are crucial in determining bit performance and in extracting lithology and pore-pressure information from drilling parameters. Triaxial tests were performed on two nonswelling shales under a wide range of strain rates and confining and pore pressures. At low strain rates, when fluid is relatively free to move within the shale, shale deformation and failure are governed by effective stress or pressure (i.e., total confining pressure minus pore pressure), as is the case for ordinary rock. If the pore pressure in the shale is high, increasing the strain rate beyond about 0.1%/sec causes large increases in the strength and ductility of the shale. Total pressure begins to influence the strength. At high stain rates, the influence of effective pressure decreases, except when it is very low (i.e., when pore pressure is very high); ductility then rises rapidly. This behavior is opposite that expected in ordinary rocks. This paper briefly discusses the reasons for these phenomena and their impact on wellbore and drilling problems.

  16. Transform method for laser speckle strain-rate measurements in biological tissues and biomaterials

    Science.gov (United States)

    Kirkpatrick, Sean J.

    1999-03-01

    Laser speckle strain measurements in biological tissues and some synthetic biomaterials, such as translucent dental composites and ceramics, are often complicated by the physical properties of the materials. For example, speckles generated by illuminating soft biological tissue with laser light are subject to rapid decorrelation due to the Brownian movement of water and scattering particles in the tissues and to cellular motions. In addition, the penetration of the laser beam into the tissue or translucent biomaterial results in multiple scattering and a complete depolarization of the speckle field. This may complicate the evaluation of the strain field when a force is applied to the material because the speckle pattern shift is providing information from the surface of the material as well as from the bulk sample, where the strains may or may not be the same as on the surface. This paper presents a variation of a speckle processing scheme originally called the `Transform Method' for evaluating both surface and bulk strain rates and total strains in biological tissues and translucent biomaterials. The method is not a correlation-based technique, but instead relies upon 2D frequency transforms of time series of 1D speckle pattern records stacked into 2D arrays. The method is insensitive to speckle field depolarization and, compared to correlation-based techniques, is relatively insensitive to speckle decorrelation. Strain rates and total in-plane strains were measured in both hard (cortical bone) and soft (artery segments) biological tissues and in translucent biomaterials (dental ceramics). Potential applications to medical diagnostics and biomaterials science are also discussed.

  17. Horizontal strain rate estimation using discrete geodetic data and its application to Southern California (Invited)

    Science.gov (United States)

    Shen, Z.; Zeng, Y.

    2010-12-01

    We present an algorithm to calculate horizontal strain rates through interpolation of a geodetically derived velocity field. To derive a smoothly distributed strain rate field using discrete geodetic observations is an under-determined inverse problem. Therefore a priori information, in the form of weighted smoothing, is required to facilitate the solution. Our method is revised from the previous approaches of Shen et al. (1996, 2007). At a given location, the velocity field in its vicinity is approximated by a linear function of positions and can be represented by two velocity components, three strain rate components, and a rotation rate at that point. The velocity data in the neighborhood, after re-weighting, are used to estimate the field parameters through a least-squares procedure. Data weighting is done with following considerations: (a) Data are weighted according to either the Voronoi cell area of each neighboring site, or the station azimuthal span of two azimuthally adjacent neighboring sites. (b) A distance weighting factor is assigned according to site-to-station distances, in the form of either a Gaussian or quadratic decay function. (c) The distance decay coefficient is determined from setting a minimum total weighting threshold which is defined as the sum of the weighting coefficients for all the data input. We also developed an algorithm to exclude contributions of the non-elastic strain associated with fault creep such as creeping along the Central California Creeping segment of the San Andres fault system. We apply this method to derive the strain rate field for southern California using the SCEC CMM4 velocity field.

  18. The chemical and mechanical behaviors of polymer / reactive metal systems under high strain rates

    Science.gov (United States)

    Shen, Yubin

    As one category of energetic materials, impact-initiated reactive materials are able to release a high amount of stored chemical energy under high strain rate impact loading, and are used extensively in civil and military applications. In general, polymers are introduced as binder materials to trap the reactive metal powders inside, and also act as an oxidizing agent for the metal ingredient. Since critical attention has been paid on the metal / metal reaction, only a few types of polymer / reactive metal interactions have been studied in the literature. With the higher requirement of materials resistant to different thermal and mechanical environments, the understanding and characterization of polymer / reactive metal interactions are in great demand. In this study, PTFE (Polytetrafluoroethylene) 7A / Ti (Titanium) composites were studied under high strain rates by utilizing the Taylor impact and SHPB tests. Taylor impact tests with different impact velocities, sample dimensions and sample configurations were conducted on the composite, equipped with a high-speed camera for tracking transient images during the sudden process. SHPB and Instron tests were carried out to obtain the stress vs. strain curves of the composite under a wide range of strain rates, the result of which were also utilized for fitting the constitutive relations of the composite based on the modified Johnson-Cook strength model. Thermal analyses by DTA tests under different flow rates accompanied with XRD identification were conducted to study the reaction mechanism between PTFE 7A and Ti when only heat was provided. Numerical simulations on Taylor impact tests and microstructural deformations were also performed to validate the constitutive model built for the composite system, and to investigate the possible reaction mechanism between two components. The results obtained from the high strain rate tests, thermal analyses and numerical simulations were combined to provide a systematic study on

  19. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  20. Predicting Offshore Swarm Rate Changes by Volumetric Strain Changes in Izu Peninsula, Japan

    Science.gov (United States)

    Kumazawa, T.; Ogata, Y.; Kimura, Y.; Maeda, K.; Kobayashi, A.

    2014-12-01

    The eastern offshore of Izu peninsula is one of the well known volcanic active regions in Japan, where magma intrusions have been observed several times since 1980s monitored by strain-meters located nearby. Major swarm activities have been synchronously associated with coseismic and preseismic significant sizes of a volumetric strain changes (Earthquake Research Committee, 2010). We investigated the background seismicity changes during these earthquake swarms using the nonstationary ETAS model (Kumazawa and Ogata, 2013), and have found the followings. The modified volumetric strain change data by removing the effect of earth tides and precipitation as well as removing coseismic jumps have much higher cross-correlations to the background rates of the ETAS model than to the whole seismicity rate change of the ETAS, and further the strain changes precede the background seismicity by lag of about a day. This relation suggests an enhanced prediction of earthquakes in this region using volumetric strain measurements. Thus we propose an extended ETAS model where the background seismicity rate is predicted by the time series of preceding volumetric strain changes. Our numerical results for Izu region show consistent outcomes throughout the major swarms in this region. References Earthquake Research Committee (2010). Report on "Prediction of seismic activity in the Izu Eastern Region" (in Japanese), http://www.jishin.go.jp/main/yosoku/izu/index.htm Kumazawa, T. and Ogata, Y. (2013). Quantitative description of induced seismic activity before and after the 2011 Tohoku-Oki earthquake by nonstationary ETAS model, J Geophys.Res. 118, 6165-6182.

  1. Flow and failure of an aluminium alloy from low to high temperature and strain rate

    Directory of Open Access Journals (Sweden)

    Sancho Rafael

    2015-01-01

    Full Text Available The mechanical behaviour of an aluminium alloy is presented in this paper. The study has been carried out to analyse the flow and failure of the aluminium alloy 7075-T73. An experimental study has been planned performing tests of un-notched and notched tensile specimens at low strain rates using a servo-hydraulic machine. High strain rate tests have been carried out using the same geometry in a Hopkinson Split Tensile Bar. The dynamic experiments at low temperature were performed using a cryogenic chamber, and the high temperature ones with a furnace, both incorporated to the Hopkinson bar. Testing temperatures ranged from − 50 ∘C to 100 ∘C and the strain rates from 10−4 s−1 to 600 s−1. The material behaviour was modelled using the Modified Johnson-Cook model and simulated using LS-DYNA. The results show that the Voce type of strain hardening is the most accurate for this material, while the traditional Johnson-Cook is not enough accurate to reproduce the necking of un-notched specimens. The failure criterion was obtained by means of the numerical simulations using the analysis of the stress triaxiality versus the strain to failure. The diameters at the failure time were measured using the images taken with an image camera, and the strain to failure was computed for un-notched and notched specimens. The numerical simulations show that the analysis of the evolution of the stress triaxiality is crucial to achieve accurate results. A material model using the Modified Johnson-Cook for flow and failure is proposed.

  2. Effect of strain rate on microstructure and mechanical properties of a Mg-9Li-2Zn alloy sheet

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A two-phase Mg-9Li-2Zn alloy sheet is made by cold-rolling at room temperature, and the formability of it at room temperature is investigated in this study. Uniaxial tension tests are carried out for various strain rates between 0. 5 mm/min and 250 mm/min, and the microstructural changes during the tests are observed. The sheet has high formability at comparatively low strain rates. Maximum elongation amounts to 40%. However, ductility decreases with the increase of strain rate. Even at room temperature, the stress is also sensitive to the strain rate. There are many large dimples at comparatively low strain rates, and small dimples occur at high strain rates, it shows fine sub-grains come into being.

  3. Multi-Layer Strain Rate Field Controlled by Netlike Plastic-Flow in the Lithosphere in Central-Eastern Asia

    Institute of Scientific and Technical Information of China (English)

    Wang Sheng-zu

    2006-01-01

    According to the "Netlike Plastic-Flow (NPF)" continental dynamics model, the transition of the deformation regime from brittle in shallow layers to ductile in deep layers in the lithosphere, and the controlling effect of NPF in the lower lithosphere result in intraplate multilayer tectonic deformation. NPF is a viscous (plastic) flow accompanied by shear strain localization, forming a plastic-flow network in the lower lithosphere. The strain rates in the seismogenic layer can be estimated using the "earthquake-recurrence-interval" method, in which the strain rate is calculated in terms of the recurrence interval of two sequential carthquakes and the seismic probability of the second earthquake. The strains in the lower lithosphere are estimated using the "conjugate-angle" method, which takes the relationship between the conjugate angles and the compressive strains of the network, and calculates the characteristic strain rates in this layer from the strains and the durations of deformation inferred. The contour map of characteristic maximum principal compressive strain rates in the lower lithosphere in central-eastern Asia given in the paper shows strain rates with magnitudes on the order of 10-15 ~ 10-14/s in this region. The strain rates within the plastic-flow belts,which control seismic activities in the seismogenic layer, are greater than the characteristic strain rates of the network and, in addition, the strain rates and seismic activities in the seismogenic layer are also influenced by other factors, including the directive action of driving boundary along the upper crust, the effects of plastic-flow waves and the existence of the transitional weak layer distributed discontinuously between the upper and lower layers. The comparison between the strain rates in the seismogenic layer and the characteristic strain rates in the lower lithosphere for 11 potential hypocenter areas in the region from the Qinghai-Xizang (Tibet) plateau to the North China plain

  4. DYNAMIC STRENGTH AND STRAIN RATE EFFECTS ON FRACTURE BEHAVIOR OF TUNGSTEN AND TUNGSTEN ALLOYS

    OpenAIRE

    Zurek, A; G. Gray

    1991-01-01

    An investigation of the stress-strain response as a function of strain rate, spall strength, and dynamic fracture behavior of pure W, W-26Re, W-Ni- Fe and W-Ni-Fe-Co has been performed. Spall strength measurements, obtained in symmetric-impact tests, showed an increase in spall strength from 0.4 GPa for pure tungsten to 3.8 GPa for 90W-7Ni-3Fe. Concurrent with the increase in spall strength was a change in fracture mode from cleavage (for pure W) to a mixture of transgranular and intergranula...

  5. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 2; Composite Micromechanical Model

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.

  6. ON THE TENSILE MECHANICAL PROPERTY OF Si-Mn TRIP STEELS AT HIGH STRAIN RATE

    Institute of Scientific and Technical Information of China (English)

    X.C. Wei; L. Li; R.Y. Fu; W. Shi

    2002-01-01

    Tensile mechanical properties of 1.6Si-1.58Mn-0.195C TRIP (transformation-inducedplasticity) steels under high strain rate and effects of DP (dual-phase) treatments werestudied and compared to the quasi-static tensile behavior. The results show that theincreasing of strain rate leads to increasing in their strengths and decreasing in theuniform elongation remarkably. Because the stable retained austenite in TRIP steelcan transform to martensite during tensile testing and the material exhibits excellentcharacteristic of transformation induced plasticity, the plastic deformation behavior isevidently improved and the combination of strength and elongation is superior to thatof dual-phase steel, although its strength is smaller than that of DP steel. However,DP treated steel shown lower elongation under dynamic tension in spite of higherstrength. A model was proposed to explain the excellent elongation rate of TRIPsteel compared with DP steel on the basis of SEM analysis and the strength of thecomponents in microstructure.

  7. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  8. Multi-scale modeling of the impact response of a strain-rate sensitive high-manganese austenitic steel

    OpenAIRE

    Canadinç, Demircan; Önal, Orkun; Özmenci, Cemre

    2014-01-01

    A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry, and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE) analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial ten...

  9. Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region.

    Science.gov (United States)

    Guadarrama-Mendoza, P C; del Toro, G Valencia; Ramírez-Carrillo, R; Robles-Martínez, F; Yáñez-Fernández, J; Garín-Aguilar, M E; Hernández, C G; Bravo-Villa, G

    2014-01-01

    Two native Pleurotus spp. strains (white LB-050 and pale pink LB-051) were isolated from rotten tree trunks of cazahuate (Ipomoea murucoides) from the Mexican Mixtec Region. Both strains were chemically dedikaryotized to obtain their symmetrical monokaryotic components (neohaplonts). This was achieved employing homogenization time periods from 60 to 65 s, and 3 day incubation at 28 °C in a peptone-glucose solution (PGS). Pairing of compatible neohaplonts resulted in 56 hybrid strains which were classified into the four following hybrid types: (R(1-n)xB(1-n), R(1-n)xB(2-1), R(2-n)xB(1-n) and R(2-n)xB(2-1)). The mycelial growth of Pleurotus spp. monokaryotic and dikaryotic strains showed differences in texture (cottony or floccose), growth (scarce, regular or abundant), density (high, regular or low), and pigmentation (off-white, white or pale pink). To determine the rate and the amount of mycelium growth in malt extract agar at 28 °C, the diameter of the colony was measured every 24 h until the Petri dish was completely colonized. A linear model had the best fit to the mycelial growth kinetics. A direct relationship between mycelial morphology and growth rate was observed. Cottony mycelium presented significantly higher growth rates (p < 0.01) in comparison with floccose mycelium. Thus, mycelial morphology can be used as criterion to select which pairs must be used for optimizing compatible-mating studies. Hybrids resulting from cottony neohaplonts maintained the characteristically high growth rates of their parental strains with the hybrid R(1-n)xB(1-n) being faster than the latter.

  10. Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility

    Science.gov (United States)

    Greenberg, Neil L.; Firstenberg, Michael S.; Castro, Peter L.; Main, Michael; Travaglini, Agnese; Odabashian, Jill A.; Drinko, Jeanne K.; Rodriguez, L. Leonardo; Thomas, James D.; Garcia, Mario J.

    2002-01-01

    BACKGROUND: Myocardial fiber strain is directly related to left ventricular (LV) contractility. Strain rate can be estimated as the spatial derivative of velocities (dV/ds) obtained by tissue Doppler echocardiography (TDE). The purposes of the study were (1) to determine whether TDE-derived strain rate may be used as a noninvasive, quantitative index of contractility and (2) to compare the relative accuracy of systolic strain rate against TDE velocities alone. METHODS AND RESULTS: TDE color M-mode images of the interventricular septum were recorded from the apical 4-chamber view in 7 closed-chest anesthetized mongrel dogs during 5 different inotropic stages. Simultaneous LV volume and pressure were obtained with a combined conductance-high-fidelity pressure catheter. Peak elastance (Emax) was determined as the slope of end-systolic pressure-volume relationships during caval occlusion and was used as the gold standard of LV contractility. Peak systolic TDE myocardial velocities (Sm) and peak (epsilon'(p)) and mean (epsilon'(m)) strain rates obtained at the basal septum were compared against Emax by linear regression. Emax as well as TDE systolic indices increased during inotropic stimulation with dobutamine and decreased with the infusion of esmolol. A stronger association was found between Emax and epsilon'(p) (r=0.94, P<0.01, y=0.29x+0.46) and epsilon'(m) (r=0.88, P<0.01) than for Sm (r=0.75, P<0.01). CONCLUSIONS: TDE-derived epsilon'(p) and epsilon'(m) are strong noninvasive indices of LV contractility. These indices appear to be more reliable than S(m), perhaps by eliminating translational artifact.

  11. Left ventricular dysfunction measured by tissue Doppler imaging and strain rate imaging in hypertensive adolescents

    Directory of Open Access Journals (Sweden)

    Hye Mi Ahn

    2010-01-01

    Full Text Available Purpose : Left ventricular (LV hypertrophy and impaired diastolic function may occur early in systemic hypertension. Diastolic dysfunction is associated with increased cardiovascular risk. Tissue Doppler imaging (TDI-derived tissue velocity and strain rate are new parameters for assessing diastolic dysfunction. The aim of this study is to determine whether TDI and strain rate imaging (SRI would improve the ability to recognize early impaired diastolic and systolic functions compared with conventional echocardiography in hypertensive adolescents. Methods : We included 38 hypertensive patients with systolic blood pressure above 140 mmHg or diastolic blood pressure above 90 mmHg. Ejection fraction and myocardial performance index (MPI were estimated by conventional echocardiography. Peak systolic myocardial velocity, early diastolic myocardial velocity (Em, and peak late diastolic myocardial velocity (Am were obtained by using TDI and SRI. Results : In the hypertensive group, interventricular septal thickness was significantly increased on M-mode echocardiography. Em/Am was significantly decreased at the mitral valve annulus. Among hypertensive subjects, the E strain rate at basal, mid, and apex was significantly decreased. Systolic strain was significantly decreased at the septum in the hypertensive group. Conclusion : Strain rate might be a useful new parameter for the quantification of both regional and global LV functions and could be used in long-term follow up in hypertensive patients. Early identification by SRI of subjects at risk for hypertensive and ventricular dysfunction may help to stratify risk and guide therapy. Further studies, including serial assessment of LV structure and function in a larger number of adolescents with hypertension, is necessary.

  12. Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region

    Directory of Open Access Journals (Sweden)

    P.C. Guadarrama-Mendoza

    2014-09-01

    Full Text Available Two native Pleurotus spp. strains (white LB-050 and pale pink LB-051 were isolated from rotten tree trunks of cazahuate (Ipomoea murucoides from the Mexican Mixtec Region. Both strains were chemically dedikaryotized to obtain their symmetrical monokaryotic components (neohaplonts. This was achieved employing homogenization time periods from 60 to 65 s, and 3 day incubation at 28 °C in a peptone-glucose solution (PGS. Pairing of compatible neohaplonts resulted in 56 hybrid strains which were classified into the four following hybrid types: (R1-n xB1-n, R1-n xB2-1, R2-n xB1-n and R2-n xB2-1. The mycelial growth of Pleurotus spp. monokaryotic and dikaryotic strains showed differences in texture (cottony or floccose, growth (scarce, regular or abundant, density (high, regular or low, and pigmentation (off-white, white or pale pink. To determine the rate and the amount of mycelium growth in malt extract agar at 28 °C, the diameter of the colony was measured every 24 h until the Petri dish was completely colonized. A linear model had the best fit to the mycelial growth kinetics. A direct relationship between mycelial morphology and growth rate was observed. Cottony mycelium presented significantly higher growth rates (p < 0.01 in comparison with floccose mycelium. Thus, mycelial morphology can be used as criterion to select which pairs must be used for optimizing compatible-mating studies. Hybrids resulting from cottony neohaplonts maintained the characteristically high growth rates of their parental strains with the hybrid R1-n xB1-n being faster than the latter.

  13. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.

    Science.gov (United States)

    Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon

    2009-04-01

    Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

  14. Measurement of mean rotation and strain-rate tensors by using stereoscopic PIV

    DEFF Research Database (Denmark)

    Özcan, Oktay; Meyer, Knud Erik; Larsen, Poul Scheel

    2005-01-01

    A technique is described for measuring the mean velocity gradient (rate-of-displacement) tensor by using a conventional stereoscopic particle image velocimetry (SPIV) system. Planar measurement of the mean vorticity vector, rate-of-rotation and rate-of-strain tensors and the production of turbulent...... kinetic energy can be accomplished. Parameters of the Q criterion and negative λ2 techniques used for vortex identification can be evaluated in the mean flow field. Experimental data obtained for a circular turbulent jet issuing normal to a crossflow in a low speed wind tunnel for a jet...

  15. Diagnostic Value of Strain Rate Imaging by Tissue Doppler in Patients with Suspected Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Hasan Mahfood

    2016-12-01

    Full Text Available Background: Strain Rate Imaging (SRI is a new diagnostic technique. Objectives: The present study aimed to determine the diagnostic value of SRI in detection and localization of coronary lesions in patients with chest pain, but without apparent wall motion abnormalities. Patients and Methods: This study was conducted on 91 patients with suspicion of stable angina or unstable angina selected through simple random sampling. SRI was done using Tissue Doppler Imaging (TDI prior to coronary angiography. All the patients had normal electrocardiograms and normal wall motion in echocardiography. Longitudinal strain was obtained for 18 segments in the Left Ventricle (LV. Then, peak longitudinal systolic strain (εsys, post systolic shortening, and its characteristics were assessed in normal and abnormal segments. Significant coronary lesion was considered if stenosis was above 70%. Results: The results showed that 40 patients with heterogeneous strains and 2 patients with constant strains had significant coronary stenosis. Besides, 31 patients with constant strains and 18 ones with heterogeneous strains had normal or minimal coronary lesions. Moreover, εsys was lower in ischemic than in normal segments (P < 0.001. Receiver Operator Characteristic (ROC analysis for εsys yielded the following results: Area Under Curve (AUC = 0.86 [95% CI (0.84 - 0.88]. Additionally, the cutoff point of -11.4 had the highest sensitivity and specificity (69.55% and 87.23%, respectively. The gold standard for ROC analysis was the catheter result. Furthermore, post systolic shortening was found more in ischemic compared to normal segments (64.5% vs. 22.6%, P < 0.001. The magnitudes of εpss, εpss/εsys (PSI, and εpss/εmax were significantly larger (P < 0.001 and T εpss was longer (P < 0.001 in ischemic segments. Conclusions: SRI is a new non-invasive diagnostic tool that could be used for detecting coronary stenosis in patients with chest pain, but without apparent wall

  16. High Strain Rate Compressive Behavior of Polyurethane Resin and Polyurethane/Al2O3 Hollow Sphere Syntactic Foams

    Directory of Open Access Journals (Sweden)

    Dung D. Luong

    2014-01-01

    Full Text Available Polyurethane resins and foams are finding extensive applications. Seat cushions and covers in automobiles are examples of these materials. In the present work, hollow alumina particles are used as fillers in polyurethane resin to develop closed-cell syntactic foams. The fabricated syntactic foams are tested for compressive properties at quasistatic and high strain rates. Strain rate sensitivity is an important concern for automotive applications due to the possibility of crash at high speeds. Both the polyurethane resin and the syntactic foam show strain rate sensitivity in compressive strength. It is observed that the compressive strength increases with strain rate. The energy absorbed up to 10% strain in the quasistatic regime is 400% higher for the syntactic foam in comparison to that of neat resin at the same strain rate.

  17. Rheology of arc dacite lavas: experimental determination at low strain rates

    Science.gov (United States)

    Avard, Geoffroy; Whittington, Alan G.

    2012-07-01

    Andesitic-dacitic volcanoes exhibit a large variety of eruption styles, including explosive eruptions, endogenous and exogenous dome growth, and kilometer-long lava flows. The rheology of these lavas can be investigated through field observations of flow and dome morphology, but this approach integrates the properties of lava over a wide range of temperatures. Another approach is through laboratory experiments; however, previous studies have used higher shear stresses and strain rates than are appropriate to lava flows. We measured the apparent viscosity of several lavas from Santiaguito and Bezymianny volcanoes by uniaxial compression, between 1,109 and 1,315 K, at low shear stress (0.085 to 0.42 MPa), low strain rate (between 1.1 × 10-8 and 1.9 × 10-5 s-1), and up to 43.7 % total deformation. The results show a strong variability of the apparent viscosity between different samples, which can be ascribed to differences in initial porosity and crystallinity. Deformation occurs primarily by compaction, with some cracking and/or vesicle coalescence. Our experiments yield apparent viscosities more than 1 order of magnitude lower than predicted by models based on experiments at higher strain rates. At lava flow conditions, no evidence of a yield strength is observed, and the apparent viscosity is best approached by a strain rate- and temperature-dependent power law equation. The best fit for Santiaguito lava, for temperatures between 1,164 and 1,226 K and strain rates lower than 1.8 × 10-4 s-1, is log {η_{{app}}} = - 0.738 + 9.24 × {10^3}{/}T(K) - 0.654 \\cdot log dot{\\varepsilon } where η app is apparent viscosity and dot{\\varepsilon } is strain rate. This equation also reproduced 45 data for a sample from Bezymianny with a root mean square deviation of 0.19 log unit Pa s. Applying the rheological model to lava flow conditions at Santiaguito yields calculated apparent viscosities that are in reasonable agreement with field observations and suggests that

  18. An Evaluation of Constitutive Laws and their Ability to Predict Flow Stress over Large Variations in Temperature, Strain, and Strain Rate Characteristic of Friction Stir Welding

    Science.gov (United States)

    Kuykendall, Katherine

    2011-07-01

    Constitutive laws commonly used to model friction stir welding have been evaluated, both qualitatively and quantitatively, and a new application of a constitutive law which can be extended to materials commonly used in FSW is presented. Existing constitutive laws have been classified as path-dependent or path-independent. Path-independent laws have been further classified according to the physical phenomena they capture: strain hardening, strain rate hardening, and/or thermal softening. Path-dependent laws can track gradients in temperature and strain rate characteristic to friction stir welding; however, path-independent laws cannot. None of the path-independent constitutive laws evaluated has been validated over the full range of strain, strain rate, and temperature in friction stir welding. Holding all parameters other than constitutive law constant in a friction stir weld model resulted in temperature differences of up to 21%. Varying locations for maximum temperature difference indicate that the constitutive laws resulted in different temperature profiles. The Sheppard and Wright law is capable of capturing saturation but incapable of capturing strain hardening with errors as large as 57% near yield. The Johnson-Cook law is capable of capturing strain hardening; however, its inability to capture saturation causes over-predictions of stress at large strains with errors as large as 37% near saturation. The Kocks and Mecking model is capable of capturing strain hardening and saturation with errors less than 5% over the entire range of plastic strain. The Sheppard and Wright and Johnson-Cook laws are incapable of capturing transients characteristic of material behavior under interrupted temperature or strain rate. The use of a state variable in the Kocks and Mecking law allows it to predict such transients. Constants for the Kocks and Mecking model for AA 5083, AA 3004, and Inconel 600 were determined from Atlas of Formability data. Constants for AA 5083 and AA

  19. QUANTIFICATION OF RIGHT VENTRICULAR FUNCTION IN ATRIAL SEPTAL DEFECT USING ULTRASOUND-BASED STRAIN RATE IMAGING

    Institute of Scientific and Technical Information of China (English)

    MENG Xiang-chun; SUN Kun; ZHANG Yu-qi; HUANG Mei-rong; GAO Wei; ZHANG Zhi-fang; SHEN Rong; CHEN Shu-bao

    2005-01-01

    Objective To study the validation of ultrasound-based strain rate imaging in the quantitative assessment of right ventricular (RV) function in atrial septal defect (ASD). Methods Tissue Doppler images (TDI) of RV longitudinal and short axes were recorded from the apical 4-chamber view and the subcostal short-axis view in 18 normal controls, 28 children with ASD and 14 children after Amplazter closure of ASD respectively. Peak systolic velocities (V), peak systolic strain rates (SR), peak systolic strains (S) at the basal segment, middle segment of RV lateral wall and the basal septum from the longitudinal axis, the middle segment of RV free wall from the short axis were quantitatively measured using QLAB TM tissue velocity quantification software system respectively. Peak dp/dt from the RV isovolumic contraction determined during the right cardiac catheterization in 28 ASD patients was used as the gold standard of RV contractility. Peak systolic indices were compared against max dp/dt by linear correlation. Results Peak systolic indices at the basal and middle segments of RV lateral wall from the longitudinal axis increased significantly in 28 ASD patients.Peak systolic indices at the basal septum also increased in patient group, but not significantly. Significant decreases in peak systolic indices at the basal and middle segments of RV lateral wall were observed after the Amplatzer closure in 14 ASD patients. There was no significant difference at the middle segment of RV free wall from the short axis between patient group and normal control. A strong correlation was found between max dp/dt and peak systolic indices at the basal and middle segments of RV lateral wall (P<0.05). Conclusion Ultrasound-based strain rate imaging can assess quantitatively RV function in CHD. Peak systolic strains determined at the basal and middle segments of RV lateral wall are strong noninvasive indices of RV contractility.

  20. Myocardial strain and strain rate from speckle-tracking echocardiography are unable to differentiate asymptomatic biopsy-proven cellular rejection in the first year after cardiac transplantation.

    Science.gov (United States)

    Ambardekar, Amrut V; Alluri, Nitya; Patel, Amit C; Lindenfeld, JoAnn; Dorosz, Jennifer L

    2015-04-01

    Cellular rejection after cardiac transplantation is treatable with timely diagnosis. Because noninvasive methods for diagnosis are limited, surveillance endomyocardial biopsies are routinely performed in the first year after transplantation. The aim of this study was to test whether myocardial strain and strain rate as assessed by speckle-tracking echocardiography would be a sensitive noninvasive method for the detection of asymptomatic rejection. Surveillance biopsies and echocardiograms obtained in the first year after transplantation were retrospectively reviewed, and patients with asymptomatic biopsy-proven cellular rejection were identified, as well as control transplantation patients without rejection or cardiac complications. Circumferential and longitudinal strain and strain rate were measured using Velocity Vector Imaging software from echocardiograms performed at three time points for patients with rejection-baseline (no rejection), rejection, and resolution (of rejection)-and three time points for control patients-baseline (within the first month after transplantation), 6 months, and 12 months after transplantation. Speckle-tracking strain and strain rate measurements were obtained from 30 patients with asymptomatic biopsy-proven rejection and 14 control transplantation patients. There were no significant differences in circumferential and longitudinal strain or strain rate between the baseline, rejection, and resolution studies. Furthermore, there were no significant differences in strain and strain rate in control transplantation patients during the first year after transplantation or compared with patients with rejection. Speckle-tracking analysis was unable to detect changes on serial studies from patients with asymptomatic rejection and thus cannot replace biopsy. Other noninvasive methods for the diagnosis of cellular-mediated rejection are needed. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights

  1. Investigation on grain size effect in high strain rate ductility of 1100 pure aluminum

    Science.gov (United States)

    Bonora, N.; Bourne, N.; Ruggiero, A.; Iannitti, G.; Testa, G.

    2017-01-01

    The effect of the initial grain size on the material ductility at high strain rates in 1100 pure aluminum was investigated. Dynamic tensile extrusion (DTE) tests, at different impact velocities, were performed. Samples have been annealed at 350°C for different exposure times to induce grain growth. Extruded fragments were soft-recovered and the overall length of the extruded jets was used as a measure of material ductility at high strain rates. Numerical simulation of DTE test at different velocity was performed using the modified Rusinek-Klepaczko constitutive model. Results indicates that, as reported for pure copper, the overall ductility of the aluminum increases when grain size decreases. Numerical simulation results were in quite good agreement with experimental data.

  2. Inner-product of strain rate vector through direction cosine in coordinates for disk forging

    Institute of Scientific and Technical Information of China (English)

    ZHAO De-wen; JIN Wen-zhong; WANG Lei; LIU Xiang-hua

    2006-01-01

    A new linear integration for plastic power was proposed. The effective strain rate for disk forging with bulge was expressed in terms of two-dimensional strain rate vector, and then its direction cosines were determined by the ratio of coordinate increments. Furthermore, inner-product of the vector for plastic power was term integrated by term and summed. Thereafter, through a formula for determination of bulge an analytical solution of stress effective factor was obtained. Finally, through compression tests, the calculated results of above formula were compared with those of Avitzur's approximate solution and total indicator readings of the testing machine. It is indicated that the calculated compression forces are basically in agreement with the measured ones if the pass reduction is less than 13.35%.However, when the reduction gets up to 25.34% and 33.12%, the corresponding errors between the calculated and measured results also get up to 6% and 13.5%, respectively.

  3. The Dynamic Tensile Behavior of Railway Wheel Steel at High Strain Rates

    Science.gov (United States)

    Jing, Lin; Han, Liangliang; Zhao, Longmao; Zhang, Ying

    2016-11-01

    The dynamic tensile tests on D1 railway wheel steel at high strain rates were conducted using a split Hopkinson tensile bar (SHTB) apparatus, compared to quasi-static tests. Three different types of specimens, which were machined from three different positions (i.e., the rim, web and hub) of a railway wheel, were prepared and examined. The rim specimens were checked to have a higher yield stress and ultimate tensile strength than those web and hub specimens under both quasi-static and dynamic loadings, and the railway wheel steel was demonstrated to be strain rate dependent in dynamic tension. The dynamic tensile fracture surfaces of all the wheel steel specimens are cup-cone-shaped morphology on a macroscopic scale and with the quasi-ductile fracture features on the microscopic scale.

  4. Dynamic Evaluation of Acrylonitrile Butadiene Styrene Subjected to High-Strain-Rate Compressive Loads

    Science.gov (United States)

    2014-12-01

    explores the fused deposition modeling ( FDM ) and the printing orientation as a means to quantify the potential benefits. These benefits include more cost...effective, time-efficient, in-house fabrication of designs, while optimizing the mechanical and structural integrity. In FDM , CAD software is used to...relationship to the stress experienced in a material at high-strain-rate deformation. For polymers such as ABS, the mechanical properties vary

  5. Hardness and phase analysis of IN 718 deformed at high strain rate.

    Science.gov (United States)

    Renhof, L; Guder, S; Werner, E

    2004-06-01

    Specimens of the nickel base alloy IN 718 deformed at high strain rate (approximately 10 s(-1)), as realized in a screw press, have higher strength than parts forged conventionally in a hydraulic press. Microstructure analyses in light and transmission electron microscopes reveal the precipitation of very small Ni(3)Nb particles (gamma"-phase) to be the reason for the increased hardness. Several processing routes are discussed and analyzed in relation to the TTT-diagram of IN 718.

  6. Strain-Rate Dependency of Strength of Soft Marine Deposits of the Gulf of Mexico

    Science.gov (United States)

    2010-06-01

    abstract number: 090612-057 Strain-rate dependency of strength of soft marine deposits of the Gulf of Mexico Andrei Abelev and Philip Valent...from the Gulf of Mexico . The vane test may not always be the most accurate method of describing the undrained shear strength, mainly because it...deposits of the Gulf of Mexico 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER

  7. Correlation of fracture features with mechanical properties as a function of strain rate in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Das, Arpan; Chakravartty, Jayanta Kumar [Bhabha Atomic Research Centre (Department of Atomic Energy), Trombay, Mumbai, Maharashtra (India). Mechanical Metallurgy Div.

    2016-02-15

    Two dimensional fracture features (i. e., dimple diameter, extent of tearing ridges etc.) quantified from the tensile fractographs are investigated to predict the nature of variation in mechanical properties with strain rates in zirconium alloys tested under ambient temperature where the initial inclusion or other second phase particle contents were kept unaltered. It has been possible to reasonably estimate the strength and ductility properties of an alloy from a systematic analysis of fractographic features.

  8. Identification of neutron irradiation induced strain rate sensitivity change using inverse FEM analysis of Charpy test

    Science.gov (United States)

    Haušild, Petr; Materna, Aleš; Kytka, Miloš

    2015-04-01

    A simple methodology how to obtain additional information about the mechanical behaviour of neutron-irradiated WWER 440 reactor pressure vessel steel was developed. Using inverse identification, the instrumented Charpy test data records were compared with the finite element computations in order to estimate the strain rate sensitivity of 15Ch2MFA steel irradiated with different neutron fluences. The results are interpreted in terms of activation volume change.

  9. The dynamic Virtual Fields Method on rubbers at medium and high strain rates

    Directory of Open Access Journals (Sweden)

    Yoon Sung-Ho

    2015-01-01

    Full Text Available Elastomeric materials are widely used for energy absorption applications, often experiencing high strain rate deformations. The mechanical characterization of rubbers at high strain rates presents several experimental difficulties, especially associated with achieving adequate signal to noise ratio and static stress equilibrium, when using a conventional technique such as the split Hopkinson pressure bar. In the present study, these problems are avoided by using the dynamic Virtual Fields Method (VFM in which acceleration fields, clearly generated by the non-equilibrium state, are utilized as a force measurement with in the frame work of the principle of virtual work equation. In this paper, two dynamic VFM based techniques are used to characterise an EPDM rubber. These are denoted as the linear and nonlinear VFM and are developed for (respectively medium (drop-weight and high (gas-gun strain-rate experiments. The use of the two VFMs combined with high-speed imaging analysed by digital imaging correlation allows the identification of the parameters of a given rubber mechanical model; in this case the Ogden model is used.

  10. Strength and strain rate sensitivity for hcp and fcc nanopolycrystal metals

    Indian Academy of Sciences (India)

    P Rodriguez; R W Armstrong

    2006-12-01

    While there is overwhelming evidence that strengthening from grain size refinement persists into the nanocrystalline grain size regime consistent with extrapolation of classical Hall–Petch (H–P) behaviour, there are indications of a transition to an inverse H–P dependence, i.e. grain boundary weakening behaviour, occurring below a grain size of ∼ 10–20 nm. When Hall–Petch strengthening predominates, and the stress intensity, i.e. H–P slope value, , is thermally-activated (as is the case for pure fcc and the easy basal slip hcp metals), the strain rate sensitivity, defined as [/ ln(d/d], also is predicted to follow an H–P type dependence, thus, increasing with decrease in grain size. As a consequence, the activation volume that is inversely proportional to the strain rate sensitivity, is found to decrease by an order of magnitude, from around 1000 b3 in conventional grain size fcc Cu and Ni materials to 10–100 b3, for nanomaterials. At the smallest grain sizes, the transition to an inverse H–P dependence has been proposed to occur because of onset of effective high temperature grain boundary weakening behaviour that is well known in limiting creep property descriptions. If the inverse H–P effect (grain boundary weakening) is genuine, we predict that the strain rate sensitivity and corresponding inverse activation volume dependence on grain size should also have to show a reversal.

  11. Grain-size-independent plastic flow at ultrahigh pressures and strain rates.

    Science.gov (United States)

    Park, H-S; Rudd, R E; Cavallo, R M; Barton, N R; Arsenlis, A; Belof, J L; Blobaum, K J M; El-dasher, B S; Florando, J N; Huntington, C M; Maddox, B R; May, M J; Plechaty, C; Prisbrey, S T; Remington, B A; Wallace, R J; Wehrenberg, C E; Wilson, M J; Comley, A J; Giraldez, E; Nikroo, A; Farrell, M; Randall, G; Gray, G T

    2015-02-13

    A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100  GPa) and strain rate (∼10(7)  s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25  μm sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion.

  12. On the influence of strain rate in acousto-elasticity : experimental results for Berea sandstone

    Science.gov (United States)

    Riviere, J. V.; Candela, T.; Scuderi, M.; Marone, C.; Guyer, R. A.; Johnson, P. A.

    2013-12-01

    Elastic nonlinear effects are pervasive in the Earth, including during strong ground motion, tidal forcing and earthquake slip processes. We study elastic nonlinear effects in the laboratory with the goal of developing new methods to probe elastic changes in the Earth, and to characterize and understand their origins. Here we report on nonlinear, frequency dispersion effects by applying a method termed dynamic acousto-elasticity (DAE), analogous to quasi-static acousto-elasticity. DAE allows one to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. We perform DAE on samples of Berea sandstone subject to 0.5 MPa uniaxial and biaxial loading conditions with oscillating loads at frequencies from 0.001 to 10 Hz and amplitudes of a few 100 kPa. We compare results to DAE measurements made in the kHz range. We observe that the average decrease in modulus due to nonlinear material softening increases with frequency, suggesting a frequency and/or a strain rate dependence. Previous quasi-static measurements (Claytor et al., GRL 2009) show that stress-strain nonlinear hysteretic behavior disappears when the experiment is performed at a very low strain-rate, implying that a rate dependent nonlinear elastic model would be useful (Gusev et al., PRB 2004). Our results also suggest that when elastic nonlinear Earth processes are studied, stress forcing frequency is an important consideration, and may lead to unexpected behaviors.

  13. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: liuyang@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Dong, Danyang, E-mail: dongdanyang@mail.neu.edu.cn [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Lei, E-mail: wanglei@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Chu, Xi, E-mail: chuxi.ok@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Pengfei, E-mail: wpf1963871400@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Jin, Mengmeng, E-mail: 24401878@163.com [College of Science, Northeastern University, Shenyang 110819 (China)

    2015-03-11

    Laser welded DP steel joints are used widely in the automotive industry for weight reduction. Understanding the deformation and fracture behavior of the base metal (BM) and its welded joint (WJ), especially at high strain rates, is critical for the design of vehicle structures. This paper is concerned with the effects of strain rate on the tensile properties, deformation and fracture behavior of the laser welded DP780 steel joint. Quasi-static and dynamic tensile tests were performed on the WJ and BM of the DP780 steel using an electromechanical universal testing machine and a high-speed tensile testing machine over a wide range of strain rate (0.0001–1142 s{sup −1}). The microstructure change and microhardness distribution of the DP780 steel after laser welding were examined. Digital image correlation (DIC) and high-speed photography were employed for the strain measurement of the DP780 WJ during dynamic tensile tests. The DP780 WJ is a heterogeneous structure with hardening in fusion zone (FZ) and inner heat-affected zone (HAZ), and softening in outer HAZ. The DP780 BM and WJ exhibit positive strain rate dependence on the YS and UTS, which is smaller at lower strain rates and becomes larger with increasing strain rate, while ductility in terms of total elongation (TE) tends to increase under dynamic loading. Laser welding leads to an overall reduction in the ductility of the DP780 steel. However, the WJ exhibits a similar changing trend of the ductility to that of the BM with respect to the strain rate over the whole strain rate range. As for the DP780 WJ, the distance of tensile failure location from the weld centerline decreases with increasing strain rate. The typical ductile failure characteristics of the DP780 BM and WJ do not change with increasing strain rate. DIC measurements reveal that the strain localization starts even before the maximum load is attained in the DP780 WJ and gradual transition from uniform strains to severely localized strains

  14. Mechanical deformation model of the western United States instantaneous strain-rate field

    Science.gov (United States)

    Pollitz, Fred F.; Vergnolle, Mathilde

    2006-10-01

    We present a relationship between the long-term fault slip rates and instantaneous velocities as measured by Global Positioning System (GPS) or other geodetic measurements over a short time span. The main elements are the secularly increasing forces imposed by the bounding Pacific and Juan de Fuca (JdF) plates on the North American plate, viscoelastic relaxation following selected large earthquakes occurring on faults that are locked during their respective interseismic periods, and steady slip along creeping portions of faults in the context of a thin-plate system. In detail, the physical model allows separate treatments of faults with known geometry and slip history, faults with incomplete characterization (i.e. fault geometry but not necessarily slip history is available), creeping faults, and dislocation sources distributed between the faults. We model the western United States strain-rate field, derived from 746 GPS velocity vectors, in order to test the importance of the relaxation from historic events and characterize the tectonic forces imposed by the bounding Pacific and JdF plates. Relaxation following major earthquakes (M γ 8.0) strongly shapes the present strain-rate field over most of the plate boundary zone. Equally important are lateral shear transmitted across the Pacific-North America plate boundary along ~1000 km of the continental shelf, downdip forces distributed along the Cascadia subduction interface, and distributed slip in the lower lithosphere. Post-earthquake relaxation and tectonic forcing, combined with distributed deep slip, constructively interfere near the western margin of the plate boundary zone, producing locally large strain accumulation along the San Andreas fault (SAF) system. However, they destructively interfere further into the plate interior, resulting in smaller and more variable strain accumulation patterns in the eastern part of the plate boundary zone. Much of the right-lateral strain accumulation along the SAF system

  15. Mechanical deformation model of the western United States instantaneous strain-rate field

    Science.gov (United States)

    Pollitz, F.F.; Vergnolle, M.

    2006-01-01

    We present a relationship between the long-term fault slip rates and instantaneous velocities as measured by Global Positioning System (GPS) or other geodetic measurements over a short time span. The main elements are the secularly increasing forces imposed by the bounding Pacific and Juan de Fuca (JdF) plates on the North American plate, viscoelastic relaxation following selected large earthquakes occurring on faults that are locked during their respective interseismic periods, and steady slip along creeping portions of faults in the context of a thin-plate system. In detail, the physical model allows separate treatments of faults with known geometry and slip history, faults with incomplete characterization (i.e. fault geometry but not necessarily slip history is available), creeping faults, and dislocation sources distributed between the faults. We model the western United States strain-rate field, derived from 746 GPS velocity vectors, in order to test the importance of the relaxation from historic events and characterize the tectonic forces imposed by the bounding Pacific and JdF plates. Relaxation following major earthquakes (M ??? 8.0) strongly shapes the present strain-rate field over most of the plate boundary zone. Equally important are lateral shear transmitted across the Pacific-North America plate boundary along ???1000 km of the continental shelf, downdip forces distributed along the Cascadia subduction interface, and distributed slip in the lower lithosphere. Post-earthquake relaxation and tectonic forcing, combined with distributed deep slip, constructively interfere near the western margin of the plate boundary zone, producing locally large strain accumulation along the San Andreas fault (SAF) system. However, they destructively interfere further into the plate interior, resulting in smaller and more variable strain accumulation patterns in the eastern part of the plate boundary zone. Much of the right-lateral strain accumulation along the SAF

  16. A fault-based model for crustal deformation, fault slip-rates and off-fault strain rate in California

    Science.gov (United States)

    Zeng, Yuehua; Shen, Zheng-Kang

    2016-01-01

    We invert Global Positioning System (GPS) velocity data to estimate fault slip rates in California using a fault‐based crustal deformation model with geologic constraints. The model assumes buried elastic dislocations across the region using Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault geometries. New GPS velocity and geologic slip‐rate data were compiled by the UCERF3 deformation working group. The result of least‐squares inversion shows that the San Andreas fault slips at 19–22  mm/yr along Santa Cruz to the North Coast, 25–28  mm/yr along the central California creeping segment to the Carrizo Plain, 20–22  mm/yr along the Mojave, and 20–24  mm/yr along the Coachella to the Imperial Valley. Modeled slip rates are 7–16  mm/yr lower than the preferred geologic rates from the central California creeping section to the San Bernardino North section. For the Bartlett Springs section, fault slip rates of 7–9  mm/yr fall within the geologic bounds but are twice the preferred geologic rates. For the central and eastern Garlock, inverted slip rates of 7.5 and 4.9  mm/yr, respectively, match closely with the geologic rates. For the western Garlock, however, our result suggests a low slip rate of 1.7  mm/yr. Along the eastern California shear zone and southern Walker Lane, our model shows a cumulative slip rate of 6.2–6.9  mm/yr across its east–west transects, which is ∼1  mm/yr increase of the geologic estimates. For the off‐coast faults of central California, from Hosgri to San Gregorio, fault slips are modeled at 1–5  mm/yr, similar to the lower geologic bounds. For the off‐fault deformation, the total moment rate amounts to 0.88×1019  N·m/yr, with fast straining regions found around the Mendocino triple junction, Transverse Ranges and Garlock fault zones, Landers and Brawley seismic zones, and farther south. The overall California moment rate is 2.76×1019

  17. Decreased Cure and Increased Recurrence Rates for Clostridium difficile Infection Caused by the Epidemic C. difficile BI Strain

    OpenAIRE

    Petrella, Laurica A.; Sambol, Susan P.; Cheknis, Adam; Nagaro, Kristin; Kean, Yin; Sears, Pamela S.; Babakhani, Farah; Johnson, Stuart; Gerding, Dale N.

    2012-01-01

    In 2 large, prospective, randomized, blinded trials of fidaxomicin versus vancomycin, the Clostridum difficile infection clinical cure rate was lower and the recurrence rate was higher for patients infected with the BI C. difficile strain than those infected with non-BI strains.

  18. Experimental and numerical analysis of high strain rate behavior of aluminum alloys AMg-6 and D-16

    NARCIS (Netherlands)

    Abramov, A. V.; Bragov, A. M.; Lomunov, A. K.; Konstantinov, A. Yu.; Kruszka, L.; Sergeichev, I. V.

    2006-01-01

    Results of experimental investigation and numerical modeling of high strain rate behavior of aluminium alloys AMg-6 and D-16 are presented. Using Split Hopkinson Pressure Bar (SHPB) parameters of Johnson-Cook's model and other models from LS-DYNA library were determined in strain rate range 10(2)-10

  19. High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar

    Science.gov (United States)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian

    2016-04-01

    Dynamic mechanical testing of rocks is important to define the onset of rate dependency of brittle failure. The strain rate dependency occurs through the propagation velocity limit (Rayleigh wave speed) of cracks and their reduced ability to coalesce, which, in turn, significantly increases the strength of the rock. We use a newly developed pressurized air driven Split-Hopkinson-Pressure Bar (SHPB), that is specifically designed for the investigation of high strain rate testing of rocks, consisting of several 10 to 50 cm long strikers and bar components of 50 mm in diameter and 2.5 meters in length each. The whole set up, composed of striker, incident- and transmission bar is available in aluminum, titanium and maraging steel to minimize the acoustic impedance contrast, determined by the change of density and speed of sound, to the specific rock of investigation. Dynamic mechanical parameters are obtained in compression as well as in spallation configuration, covering a wide spectrum from intermediate to high strain rates (100-103 s-1). In SHPB experiments [1] one-dimensional longitudinal compressive pulses of diverse shapes and lengths - formed with pulse shapers - are used to generate a variety of loading histories under 1D states of stress in cylindrical rock samples, in order to measure the respective stress-strain response at specific strain rates. Subsequent microstructural analysis of the deformed samples is aimed at quantification fracture orientation, fracture pattern, fracture density, and fracture surface properties as a function of the loading rate. Linking mechanical and microstructural data to natural dynamic deformation processes has relevance for the understanding of earthquakes, landslides, impacts, and has several rock engineering applications. For instance, experiments on dynamic fragmentation help to unravel super-shear rupture events that pervasively pulverize rocks up to several hundred meters from the fault core [2, 3, 4]. The dynamic, strain

  20. Strain Rate Dependency of Bronze Metal Matrix Composite Mechanical Properties as a Function of Casting Technique

    Science.gov (United States)

    Brown, Lloyd; Joyce, Peter; Radice, Joshua; Gregorian, Dro; Gobble, Michael

    2012-07-01

    Strain rate dependency of mechanical properties of tungsten carbide (WC)-filled bronze castings fabricated by centrifugal and sedimentation-casting techniques are examined, in this study. Both casting techniques are an attempt to produce a functionally graded material with high wear resistance at a chosen surface. Potential applications of such materials include shaft bushings, electrical contact surfaces, and brake rotors. Knowledge of strain rate-dependent mechanical properties is recommended for predicting component response due to dynamic loading or impact events. A brief overview of the casting techniques for the materials considered in this study is followed by an explanation of the test matrix and testing techniques. Hardness testing, density measurement, and determination of the volume fraction of WC particles are performed throughout the castings using both image analysis and optical microscopy. The effects of particle filling on mechanical properties are first evaluated through a microhardness survey of the castings. The volume fraction of WC particles is validated using a thorough density survey and a rule-of-mixtures model. Split Hopkinson Pressure Bar (SHPB) testing of various volume fraction specimens is conducted to determine strain dependence of mechanical properties and to compare the process-property relationships between the two casting techniques. The baseline performances of C95400 bronze are provided for comparison. The results show that the addition of WC particles improves microhardness significantly for the centrifugally cast specimens, and, to a lesser extent, in the sedimentation-cast specimens, largely because the WC particles are more concentrated as a result of the centrifugal-casting process. Both metal matrix composites (MMCs) demonstrate strain rate dependency, with sedimentation casting having a greater, but variable, effects on material response. This difference is attributed to legacy effects from the casting process, namely

  1. Heart rate response as indicator of mental strain: interaction of personality and situational factors.

    Science.gov (United States)

    Gebhart, J; Kozeny, J; Procházková, Z; Boschek, P

    1990-09-01

    Relation between mental strain defined as heart rate deviation score from person's baseline and persistence-excitation concept based on the Eysenck personality theory under various density information flow was investigated. Two groups the HPE(high EPQ-N and low EPQ-E score) and the LPE(low EPQ-N and high EPQ-E score) of a nuclear power plant operators were investigated under a monotonous condition (HPE: 15 Ss; LPE:12 Ss) and under a high density information flow condition (HPE: 17Ss, LPE: 15 Ss). The data support the view that the high persistence-low inhibition individual will be more mentally strained under high density information flow and that the level of strain will decelerate more slowly in comparison to persons with low persistence-high inhibition EPQ characteristics. The low persistence-high inhibition individuals will experience higher mental strain under monotonous situations. The findings suggest that the average EPQ-E and EPQ-N score might be useful criterion for selecting persons for tasks with alternatively monotonous and cognitively demanding situations.

  2. On Temperature and Strain Rate Dependent Strain Localization Behavior in Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy

    Institute of Scientific and Technical Information of China (English)

    B.Zhang; L.M.Lei; X.L.Jiang; Z.M.Song; X.Huang; G.P.Zhang

    2013-01-01

    Deformation behaviors of Ti-6.5Al-3.5Mo-1.5Zr-O.3Si alloys with α/β lamellar structure were investigated systematically at different temperatures from room temperature to 950 ℃ and different strain rates.Results reveal that when the deformation temperature is higher than a critical temperature of 600 ℃,an evident transition of deformation behavior from localized shear banding to α/β lamella kinking,flow softening and temperature/strain rate-dependent peak flow stress occurred in the alloy.The critical conditions for the occurrence of internal cracking and strain localization behavior associated with temperature and strain rate were determined.

  3. A comparison of the abilities of natural rubber (NR) and synthetic polyisoprene cis-1,4 rubber (IR) to crystallize under strain at high strain rates.

    Science.gov (United States)

    Candau, Nicolas; Chazeau, Laurent; Chenal, Jean-Marc; Gauthier, Catherine; Munch, Etienne

    2016-02-07

    Strain induced crystallization (SIC) of a natural rubber (NR) and a synthetic rubber (IR) with a high amount of cis-1,4 units (98.6%) is studied, thanks to in situ wide angle X-ray (WAXS) experiments at room temperature performed in a large range of strain rates. During stretching at a low strain rate (4.2 × 10(-3) s(-1)), SIC in IR occurs at a larger stretching ratio than in NR. As a result, the crystallinity index at a given stretching ratio is lower in IR than in NR, in spite of the similar crosslink densities of the chains involved in the crystallization in both materials. This lower ability for crystallization in IR is attributed to the presence of branching along its backbone and its lower stereoregularity. Conversely, dynamic experiments performed at high strain rates (10(1)/10(2) s(-1)) show for both materials a similar ability to crystallize. This unexpected result is confirmed by monotonic tensile tests performed in a large range of strain rates. The reason is thermodynamic: the chain extension plays a predominant role compared to the role of the microstructure defects when the strain rate is high, i.e. when the kinetics of the crystallite nucleation forces the crystallization to occur at a large stretching ratio. A thermodynamic model enables qualitative reproduction of the experimental results.

  4. Activated dynamic strain aging of a TRIP590 Steel at 300 °C and low strain rate and relationship to structure

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.F., E-mail: shenyf@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang 110004 (China); Wang, P.J.; Liu, Y.D. [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang 110004 (China); Misra, R.D.K., E-mail: dmisra2@utep.edu [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical and Materials Engineering, University of Texas at El Paso, TX 79968 (United States); Zuo, L. [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang 110004 (China)

    2015-10-01

    Transformation-induced plasticity (TRIP) steel was subjected to intercritical annealing and bainite partitioning to elucidate the impact on mechanical properties at temperatures in the range of −70 °C to 300 °C and strain rates of 10{sup −3} to 10{sup −1} s{sup −1} and the behavior related to structure. At temperatures in the range of −70 °C to 150 °C, both the yield strength and tensile strength increased with decrease in the deformation temperature at a constant strain rate. The elongation-to-failure was maximum at room temperature, while the product of strength and ductility was highest at the lowest temperature of −70 °C at various strain rates. Unexpectedly, the serrated flow was observed for specimens tested at 300 °C, which is attributed to dynamic strain aging (DSA), an effect that became more pronounced with decrease in strain rate. The nanosized precipitates facilitated increase in dislocation density during plastic deformation by restraining recovery and annihilation of dislocations, leading to increase in stress with increase in temperature, an effect that decreased with increase in strain rate because of adiabatic heating.

  5. Investigation of thermomechanical couplings, strain localization and shape memory properties in a shape memory polymer subjected to loading at various strain rates

    Science.gov (United States)

    Pieczyska, E. A.; Staszczak, M.; Maj, M.; Kowalczyk-Gajewska, K.; Golasiński, K.; Cristea, M.; Tobushi, H.; Hayashi, S.

    2016-08-01

    This paper presents experimental and modeling results of the effects of thermomechanical couplings occurring in a polyurethane shape memory polymer (SMP) subjected to tension at various strain rates within large strains. The SMP mechanical curves, recorded using a testing machine, and the related temperature changes, measured in a contactless manner using an IR camera, were used to investigate the polymer deformation process at various loading stages. The effects of thermomechanical couplings allowed the determination of the material yield point in the initial loading stage, the investigation of nucleation and development of the strain localization at larger strains and the estimation of the effects of thermoelastic behavior during the unloading process. The obtained stress-strain and thermal characteristics, the results of the dynamic mechanical analysis and estimated values of the shape fixity and shape recovery parameters confirmed that the shape memory polymer (T g = 45 °C) is characterized by good mechanical and shape memory properties, as well as high sensitivity to the strain rate. The mechanical response of the SMP subjected to tension was simulated using the finite element method and applying the large strain, two-phase model. Strain localization observed in the experiment was well reproduced in simulations and the temperature spots were correlated with the accumulated viscoplastic deformation of the SMP glassy phase.

  6. Inlfuence of Specimen Size on Compression Behavior of Cement Paste and Mortar under High Strain Rates

    Institute of Scientific and Technical Information of China (English)

    CHEN Xudong; CHEN Chen; QIAN Pingping; XU Lingyu

    2016-01-01

    Static and dynamic compression tests were carried out on mortar and paste specimens of three sizes (f68 mm×32 mm,f59 mm×29.5 mm andf32 mm×16 mm) to study the inlfuence of specimen size on the compression behavior of cement-based materials under high strain rates. The static tests were applied using a universal servo-hydraulic system, and the dynamic tests were applied by a spilt Hopkinson pressure bar (SHPB) system. The experimental results show that for mortar and paste specimens, the dynamic compressive strength is greater than the quasi-static one, and the dynamic compressive strength for specimens of large size is lower than those of small size. However, the dynamic increase factors (DIF) has an opposite trend. Obviously, both strain rate and size effect exist in mortar and paste. The test results were then analyzed using Weibull, Carpinteri and Bažant’s size effect laws. A good agreement between these three laws and the test results was reached on the compressive strength. However, for the experimental results of paste and cement mortar, the size effect is not evident for the peak strain and elastic modulus of paste and cement mortar.

  7. Experimental Results of High Pressure and High Strain Rate Tantalum Flow Stress on Omega and NIF

    Science.gov (United States)

    Park, Hye-Sook; Arsenlis, A.; Barton, N.; Benedetti, L.; Huntington, C.; McNaney, J.; Orlikowski, D.; Prisbrey, S.; Remington, B.; Rudd, R.; Swift, D.; Weber, S.; Wehrenberg, C.; Comley, A.

    2015-11-01

    Understanding the high pressure, high strain rate plastic deformation dynamics of materials is an area of research of high interest to planetary formation dynamics, meteor impact dynamics, and inertial confinement fusion designs. Developing predictive theoretical and computational descriptions of such systems, however, has been a difficult undertaking. We have performed many experiments on Omega, LCLS and NIF to test Ta strength models at high pressures (~ up to 4 Mbar), high strain rates (~ 107 s-1) and high strains (>30%) under ramped compression conditions using Rayleigh-Taylor and Richtmyer-Meshkov instability properties. These experiments use plasma drive to ramp compress the sample to higher pressure without shock-melting. We also studied lattice level strength mechanisms under shocked compression using a diffraction-based technique. Our studies show that the strength mechanisms from macro to micro scales are different from the traditional strength model predictions and that they are loading path dependent. We will report the experimental results. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.

  8. Tensile behaviour of geopolymer-based materials under medium and high strain rates

    Science.gov (United States)

    Menna, Costantino; Asprone, Domenico; Forni, Daniele; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Bozza, Anna; Prota, Andrea; Cadoni, Ezio

    2015-09-01

    Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.

  9. Tensile behaviour of geopolymer-based materials under medium and high strain rates

    Directory of Open Access Journals (Sweden)

    Menna Costantino

    2015-01-01

    Full Text Available Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.

  10. Influence of strain rate on the twin and slip activity of a magnesium alloy containing neodymium

    Energy Technology Data Exchange (ETDEWEB)

    Dudamell, N.V. [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Hidalgo-Manrique, P., E-mail: paloma.hidalgo@imdea.org [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Chakkedath, A.; Chen, Z.; Boehlert, C.J. [Michigan State University, East Lansing, MI 48824-1226 (United States); Gálvez, F. [ETS Ingenieros de Caminos, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Yi, S.; Bohlen, J.; Letzig, D. [Magnesium Innovation Centre, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht (Germany); Pérez-Prado, M.T. [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain)

    2013-10-20

    The mechanical behavior of an extruded magnesium–manganese alloy containing 1 wt% of neodymium (MN11) has been investigated at temperatures ranging from room temperature to 400 °C at both quasi-static and dynamic rates. Conventional ex-situ tests, carried out in compression along the extrusion axis (EA), have been combined with in-situ tests in a scanning electron microscope (SEM) in order to elucidate the effect of a rare earth (RE) addition on the dominant deformation mechanisms. An unusually large activity of twinning was observed at room temperature in a wide range of quasi-static rates. Furthermore, the twinning activity has been found to increase at temperatures around 250 °C, where clear signs of dynamic strain aging (DSA) are also apparent. The enhanced twinning activity compared to conventional Mg alloys, not containing RE elements, is attributed to an increase in the critical resolved shear stress of basal slip (CRSS{sub basal}) due to the presence of intermetallic RE-containing particles and to the Nd atoms in solid solution. The surprising decrease of the twinning activity at dynamic rates (∼10{sup 3} s{sup −1}) may be explained by a decrease in the CRSS{sub basal} as the intermetallic RE-containg particles and the Nd solid solution strengthening become less effective with increasing strain rate.

  11. Nonlinearity and Strain-Rate Dependence in the Deformation Response of Polymer Matrix Composites Modeled

    Science.gov (United States)

    Goldberg, Robert K.

    2000-01-01

    There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.

  12. Effect of confining pressure on deformation and failure of rock at higher strain rate

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-bin; PAN Yi-shan

    2005-01-01

    Influence of confining pressure from 0 to 28 MPa, which acts on the two lateral edges of rock specimen in plane strain compression, on the shear failure processes and patterns as well as on the macroscopically mechanical responses were numerically modeled by use of FLAC. A material imperfection with lower strength in comparison with the intact rock, which is close to the lower-left corner of the specimen, was prescribed. In elastic stage, the adopted constitutive relation of rock was linear elastic; in strain-softening stage, a composite Mohr-Coulomb criterion with tension cut-off and a post-peak linear constitutive relation were adopted. The numerical results show that with an increase of confining pressure the peak strength of axial stress-axial strain curve and the corresponding axial strain linearly increase; the residual strength and the stress drop from the peak strength to the residual strength increase; the failure modes of rock transform form the multiple shear bands close to the loading end of the specimen (confining pressure=0~0.1MPa), to the conjugate shear bands (0.5~2.0 MPa), and then to the single shear band (4~28 MPa). Once the tip of the band reaches the loading end of the specimen, the direction of the band changes so that the reflection of the band occurs. At higher confining pressure, the new-formed shear band does not intersect the imperfection, bringing extreme difficulties in prediction of the failure of rock structure, such as rock burst. The present results enhance the understanding of the shear failure processes and patterns of rock specimen in higher confining pressure and higher loading strain rate.

  13. Strain rate effects on the mechanical properties and fracture mode of skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Michael; Tovar, Nick; Yoo, Daniel [Biomaterials and Biomimetics, New York University College of Dentistry (United States); Sobieraj, Micheal [Orthopedic Surgery, Hospital for Joint Diseases (United States); Gupta, Nikhil [Mechanical and Aerospace Engineering, NYU-Poly (United States); Branski, Ryan C. [Dept of Otolaryngology, New York University School of Medicine (United States); Coelho, Paulo G., E-mail: pc92@nyu.edu [Biomaterials and Biomimetics, New York University College of Dentistry (United States)

    2014-06-01

    The present study aimed to characterize the mechanical response of beagle sartorius muscle fibers under strain rates that increase logarithmically (0.1 mm/min, 1 mm/min and 10 mm/min), and provide an analysis of the fracture patterns of these tissues via scanning electron microscopy (SEM). Muscle tissue from dogs' sartorius was excised and test specimens were sectioned with a lancet into sections with nominal length, width, and thickness of 7, 2.5 and 0.6 mm, respectively. Trimming of the tissue was done so that the loading would be parallel to the direction of the muscle fiber. Samples were immediately tested following excision and failures were observed under the SEM. No statistically significant difference was observed in strength between the 0.1 mm/min (2.560 ± 0.37 MPa) and the 1 mm/min (2.702 ± 0.55 MPa) groups. However, the 10 mm/min group (1.545 ± 0.50 MPa) had a statistically significant lower strength than both the 1 mm/min group and the 0.1 mm/min group with p < 0.01 in both cases. At the 0.1 mm/min rate the primary fracture mechanism was that of a shear mode failure of the endomysium with a significant relative motion between fibers. At 1 mm/min this continues to be the predominant failure mode. At the 10 mm/min strain rate there is a significant change in the fracture pattern relative to other strain rates, where little to no evidence of endomysial shear failure nor of significant motion between fibers was detected.

  14. Microstructure and nanohardness distribution in a polycrystalline Zn deformed by high strain rate impact

    Energy Technology Data Exchange (ETDEWEB)

    Dirras, G., E-mail: dirras@univ-paris13.fr [LSPM, CNRS, UPR 3407, Universite Paris 13, 99 avenue Jean Baptiste Clement, 93430 Villetaeuse (France); Ouarem, A. [LSPM, CNRS, UPR 3407, Universite Paris 13, 99 avenue Jean Baptiste Clement, 93430 Villetaeuse (France); Couque, H. [Nexter-Munitions, 7 route de Guerry, 18023 Bourges Cedex (France); Gubicza, J.; Szommer, P. [Department of Materials Physics, Eoetvoes Lorand University, Budapest, P.O.B. 32, H-1518 (Hungary); Brinza, O. [LSPM, CNRS, UPR 3407, Universite Paris 13, 99 avenue Jean Baptiste Clement, 93430 Villetaeuse (France)

    2011-05-15

    Polycrystalline Zn with an average grain size of about 300 {mu}m was deformed by direct impact Hopkinson pressure bar at a velocity of 29 m/s. An inhomogeneous grain structure was found consisting of a center region having large average grain size of 20 {mu}m surrounded by a fine-grained rim with an average grain size of 6 {mu}m. Transmission electron microscopy investigations showed a significant dislocation density in the large-grained area while in the fine-grained rim the dislocation density was negligible. Most probably, the higher strain yielded recrystallization in the outer ring while in the center only recovery occurred. The hardening effect of dislocations overwhelms the smaller grain size strengthening in the center part resulting in higher nanohardness in this region than in the outer ring. - Graphical Abstract: (a): EBSD micrograph showing the initial microstructure of polycrystalline Zn that was subsequently submitted to high strain rate impact. (b): an inhomogeneous grain size refinement was obtained which consists of a central coarse-grained area, surrounded by a fine-grained recrystallized rim. The black arrow points to the disc center. Research Highlights: {yields} A polycrystalline Zn specimen was submitted to high strain rate impact loading. {yields} Inhomogeneous grain refinement occurred due to strain gradient in impacted sample. {yields} A fine-grained recrystallized rim surrounded the coarse-grained center of specimen. {yields} The coarse-grained center exhibited higher hardness than the fine-grained rim. {yields} The higher hardness of the center was caused by the higher dislocation density.

  15. Behaviour and modelling of aluminium alloy AA6060 subjected to a wide range of strain rates and temperatures

    Directory of Open Access Journals (Sweden)

    Vilamosa Vincent

    2015-01-01

    Full Text Available The thermo-mechanical behaviour in tension of an as-cast and homogenized AA6060 alloy was investigated at a wide range of strains (the entire deformation process up to fracture, strain rates (0.01–750 s−1 and temperatures (20–350 ∘C. The tests at strain rates up to 1 s−1 were performed in a universal testing machine, while a split-Hopkinson tension bar (SHTB system was used for strain rates from 350 to 750 s−1. The samples were heated with an induction-based heating system. A typical feature of aluminium alloys at high temperatures is that necking occurs at a rather early stage of the deformation process. In order to determine the true stress-strain curve also after the onset of necking, all tests were instrumented with a digital camera. The experimental tests reveal that the AA6060 material has negligible strain-rate sensitivity (SRS for temperatures lower than 200 ∘C, while both yielding and work hardening exhibit a strong positive SRS at higher temperatures. The coupled strain-rate and temperature sensitivity is challenging to capture with most existing constitutive models. The paper presents an outline of a new semi-physical model that expresses the flow stress in terms of plastic strain, plastic strain rate and temperature. The parameters of the model were determined from the tests, and the stress-strain curves from the tests were compared with the predictions of the model. Good agreement was obtained over the entire strain rate and temperature range.

  16. Influence of high-strain rate and temperature on the mechanical behavior of Nl-, Fe-, and Ti- based aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III

    1996-09-01

    The majority of the strength characterization studies on ordered intermetallics have concentrated on the assessment of strength and work-hardening at conventional strain rates. Although the influence of strain rate on the structure/property relationships of pure nickel, iron, and titanium and a variety of their alloys have been extensively studied, the effect of strain rate on the stress-strain response of Ni-, Fe-, and Ti-based aluminides remains poorly understood. Dynamic constitutive behavior is however relevant to high speed impact performance of these materials such as during foreign object damage in aerospace applications, high-rate forging, and localized deformation behavior during machining. The influence of strain rate, varied between 0.001 and 10{sup 4} s{sup -1}, and temperatures, between 77 & 800K, on the compressive mechanical behavior of Ni{sub 3}A1, NiAl, Fe{sub 3}Al, Fe-40Al-0.1B, Ti-24Al-11Nb, and Ti-48Al-2Cr-2Nb will be presented. In this paper the influence of strain rate on the anomalous temperature dependency of the flow stresses in these aluminides will be reviewed and compared between aluminides. The rate sensitivity and work hardening of each aluminide will be discussed as a function of strain rate and temperature and contrasted to each other and to the values typical for their respective disordered base metals. 66 refs., 16 figs., 2 tabs.

  17. Implementation of Improved Transverse Shear Calculations and Higher Order Laminate Theory Into Strain Rate Dependent Analyses of Polymer Matrix Composites

    Science.gov (United States)

    Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.

    2004-01-01

    A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.

  18. Parametric Study of Strain Rate Effects on Nanoparticle-Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    B. Soltannia

    2016-01-01

    Full Text Available Crashworthiness, energy absorption capacity, and safety are important factors in the design of lightweight vehicles made of fiber-reinforced polymer composite (FRP components. The relatively recent emergence of the nanotechnology industry has presented a novel means to augment the mechanical properties of various materials. As a result, recent attempts have contemplated the use of nanoparticles to further improve the resiliency of resins, especially when resins are used for mating FRP components. Therefore, a comprehensive understanding of the response of nanoreinforced polymer composites, subjected to various rates of loading, is of paramount importance for developing reliable structures. In this paper, the effects of nanoreinforcement on the mechanical response of a commonly used epoxy resin subjected to four different strain rates, are systematically investigated. The results are then compared to those of the neat resin. To characterize the mechanical properties of the nanocomposite, a combination of the strain rate-dependent mechanical (SRDM model of Goldberg and his coworkers and Halpin-Tsai’s micromechanical approach is employed. Subsequently, a parametric study is conducted to ascertain the influences of particle type and their weight percentage. Finally, the numerical results are compared to the experimental data obtained from testing of the neat and the nanoreinforced epoxy resin.

  19. Scale dependence of the alignment between strain rate and rotation in turbulent shear flow

    KAUST Repository

    Fiscaletti, D.

    2016-10-24

    The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor e(i), with the vorticity vector omega, is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors vertical bar e(i) . (omega) over cap vertical bar are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e(1), in contrast to the global tendency for omega to be aligned in parallelwith the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008)]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between omega and nonlocal e(1) and that the strongly swirling worms are kinematically significant to this process.

  20. Multiscale simulations of damage of perfect crystal Cu at high strain rates

    Indian Academy of Sciences (India)

    S Rawat; M Warrier; S Chaturvedi; V R Ikkurthi

    2014-08-01

    We use the molecular dynamics code, large-scale atomic/molecular massively parallel simulator (LAMMPS), to simulate high strain rate triaxial deformation of crystal copper to understand void nucleation and growth (NAG) within the framework of an experimentally fitted macroscopic NAG model for polycrystals (also known as DFRACT model). It is seen that void NAG at the atomistic scales for crystal copper (Cu) has the same qualitative behaviour as the DFRACT model, albeit with a different set of parameters. The effect of material temperature on the nucleation and growth of voids is studied. As the temperature increases, there is a steady decrease in the void NAG thresholds and close to the melting point of Cu, a double-dip in the pressure–time profile is observed. Analysis of this double-dip shows disappearance of the long-range order due to the creation of stacking faults and the system no longer has a face centred cubic (fcc) structure. Molecular dynamics simulation of shock in crystal Cu at strain rates high enough to cause spallation of crystal Cu are then carried out to validate the void NAG parameters. We show that the pre-history of the material affects the void nucleation threshold of the material. We also simulate high-strain-rate triaxial deformation of crystal Cu with defects and obtain void NAG parameters. The parameters are then used in a macroscale hydrodynamic simulation to obtain spallation threshold of realistic crystal Cu. It is seen that our results match experimental results within the limit of 20% error.

  1. Left ventricular strain and strain rate by 2D speckle tracking in chronic thromboembolic pulmonary hypertension before and after pulmonary thromboendarterectomy

    Directory of Open Access Journals (Sweden)

    Waltman Thomas J

    2010-09-01

    Full Text Available Abstract Background Echocardiographic evaluation of left ventricular (LV strain and strain rate (SR by 2D speckle tracking may be useful tools to assess chronic thromboembolic pulmonary hypertension (CTEPH severity as well as response to successful pulmonary thromboendarterectomy (PTE. Methods We evaluated 30 patients with CTEPH before and after PTE using 2D speckle tracking measurements of LV radial and circumferential strain and SR in the short axis, and correlated the data with right heart catheterization (RHC. Results PTE resulted in a decrease in mean PA pressure (44 ± 15 to 29 ± 9 mmHg, decrease in PVR (950 ± 550 to 31 ± 160 [dyne-sec]/cm5, and an increase in cardiac output (3.9 ± 1.0 to 5.0 ± 1.0 L/min, p change in circumferential strain and change in posterior wall radial strain correlated moderately well with changes in PVR, mean PA pressure and cardiac output (r = 0.69, 0.76, and 0.51 for circumferential strain [p Conclusions LV circumferential and posterior wall radial strain change after relief of pulmonary arterial obstruction in patients with CTEPH, and these improvements occur rapidly. These changes in LV strain may reflect effects from improved LV diastolic filling, and may be useful non-invasive markers of successful PTE.

  2. Microstructural Evolution of Ti-6Al-4V during High Strain Rate Conditions of Metal Cutting

    Science.gov (United States)

    Dong, Lei; Schneider, Judy

    2009-01-01

    The microstructural evolution following metal cutting was investigated within the metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior grains and equiaxed primary located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary grains and lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the transus temperature.

  3. Experimental investigation of an aggregate material behavior under confinement at high strain rate

    Directory of Open Access Journals (Sweden)

    Biessy M.

    2010-06-01

    Full Text Available Low velocity impacts can ignite explosives or energetic materials. Ignition depends on the mechanical behavior of the energetic material which needs to be characterized for both high pressure level and high strain rate. A technique based on the Split Hopkinson Pressure Bars system is proposed to reproduce these loading conditions. A cylindrical specimen is placed in a confining ring and is dynamically compressed. The ring prevents the radial extension and confines the specimen. Each ring is designed to plastify and to obtain a constant radial pressure during the test. Some experiments are carried out on an inert aggregate material and show the validity of this experimental device.

  4. HIGH STRAIN RATE SUPERPLASTICITY OF A AIN PARTICULATE REINFORCED 6061Al COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    L.H. Han; J.T. Niu; D.M. Jiang; T. Imai

    2001-01-01

    The superplasticity of AlNp/6061Al composite, fabricated by powder metallurgy method and hot-rolled after extrusion, was investigated. The AlNp/6061Al composite exhibits an m-value of 0.49 and a maximum elongation of 438% in the strain rates ranging from 10-2-10°s-1 and at temperatures from 823K to 893K. Differential scanning calorimeter was used to ascertain the possibility of any partial melting in the vicinity of optimum superplastic temperature. These results suggested that liquid phase existed where maximum elongation was obtained.

  5. Stress and strain rate analysis of the FT4 Powder Rheometer

    Directory of Open Access Journals (Sweden)

    Hare Colin

    2017-01-01

    Full Text Available The Freeman FT4 Powder Rheometer has been reported to describe well the powder flow behaviour in instances where other techniques fail. We use DEM to simulate the FT4 operation for slightly cohesive large glass beads at a range of strain rates. The curved impeller is shown to be beneficial in comparison to a flat blade as the variation of shear stress across the blade is reduced. The shear stress in front of the blade correlates well with flow energy (which the device measures for a range of tip speeds and is shown to increase approximately linearly with tip speed when operating beyond the quasi-static regime.

  6. A QUASI-FLOW CONSTITUTIVE MODEL WITH STRAIN-RATE DEPENDENCE

    Institute of Scientific and Technical Information of China (English)

    HU Ping; SHEN Guozhe; YANG Guang

    2004-01-01

    In this paper, the proposed is a quasi-flow constitutive model with strain-rate sensitivity for elastic plastic large deformation. The model is based on the Quasi-flow Corner theory,and is suitable for the sheet metal forming process simulation with a variable punch machine velocity.Uniaxial tensile tests and deep-drawing tests of a circular blank with square punch are carried out and numerically simulated. The consistency between the experimental and the numerically simulated results shows the validity of the present new constitutive model.

  7. Slow Strain Rate Testing for Hydrogen Embrittlement Susceptibility of Alloy 718 in Substitute Ocean Water

    Science.gov (United States)

    LaCoursiere, M. P.; Aidun, D. K.; Morrison, D. J.

    2017-05-01

    The hydrogen embrittlement susceptibility of near-peak-aged UNS N07718 (Alloy 718) was evaluated by performing slow strain rate tests at room temperature in air and substitute ocean water. Tests in substitute ocean water were accomplished in an environmental cell that enabled in situ cathodic charging under an applied potential of -1.1 V versus SCE. Some specimens were cathodically precharged for 4 or 16 weeks at the same potential in a 3.5 wt.% NaCl-distilled water solution at 50 °C. Unprecharged specimens tested in substitute ocean water exhibited only moderate embrittlement with plastic strain to failure decreasing by about 20% compared to unprecharged specimens tested in air. However, precharged specimens exhibited significant embrittlement with plastic strain to failure decreasing by about 70%. Test environment (air or substitute ocean water with in situ charging) and precharge time (4 or 16 weeks) had little effect on the results of the precharged specimens. Fracture surfaces of precharged specimens were typical of hydrogen embrittlement and consisted of an outer brittle ring related to the region in which hydrogen infused during precharging, a finely dimpled transition zone probably related to the region where hydrogen was drawn in by dislocation transport, and a central highly dimpled ductile region. Fracture surfaces of unprecharged specimens tested in substitute ocean water consisted of a finely dimpled outer ring and heavily dimpled central region typical of ductile fracture.

  8. Characteristics of myocardial postsystolic shortening in patients with coronary artery disease assessed by strain rate imaging

    Institute of Scientific and Technical Information of China (English)

    YANG Li; QIU Qiong; ZHANG Hui-zhong; XIA Jin-xi

    2007-01-01

    Background Postsystolic shortening (PSS) has been proposed as a marker of myocardial dysfunction. Strain rate imaging (SRI)is a novel ultrasonic technique, allowing reliable and noninvasive measurement of myocardial deformation.The purpose of this study was to investigate the characteristics of myocardial longitudinal PSS by SRI in ischemic and infarct myocardium in patients with coronary artery disease, and to explore its clinical applicability.Methods Eleven patients with angina pectoris, 21 patients with myocardial infarction and 20 healthy subjects were included in the study. Apical four-, three- and two-chamber views were displayed; and septal, lateral, anteroseptal,posterior, anterior and inferior walls of the left ventricle were scanned, respectively. PSS strain (εpss), the ratio of εpss and systolic strain (εpss/εsys), the ratio of εpss and maximum strain (εpss/εmax) and the duration of PSS (Tpss) in ischemic, infarct and normal myocardium were analyzed.Results PSS was found more frequent in the ischemic and infarct segments compared with the normal segments (39%vs 22% and 56% vs 22%, respectively; both P<0.01). It was even more frequent in the infarct segments than in the ischemic segments (56% vs 39%, P<0.01). The absolute magnitude of εpss, εpss/εsys, εpss/εmax were significantly larger and Tpss significantly longer in the ischemic and infarct segments compared with that in the normal myocardium (P<0.01).εpss/εsys, εpss/εmax were even larger and Tpss even longer in the infarct than in the ischemic segments (P<0.01).Conclusions PSS is a common and important feature of the ischemic and infarct myocardium. εpss, εpss/εsys, εpss/εmax and Tpss as measured by SRI may be promising markers for the quantitative assessment of regional myocardial dysfunction in patients with coronary artery disease. εpss/εsys, εpss/εmax and Tpss may be helpful in differentiating infarct from ischemic myocardium.

  9. High strain rate sensitivity of hardness in quinary Ti-Zr-Hf-Cu-Ni high entropy metallic glass thin films

    Science.gov (United States)

    Zhao, Shaofan; Wang, Haibin; Xiao, Lin; Guo, Nan; Zhao, Delin; Yao, Kefu; Chen, Na

    2017-10-01

    Quinary Ti-Zr-Hf-Cu-Ni high-entropy metallic glass thin films were produced by magnetron sputter deposition. Nanoindentation tests indicate that the deposited film exhibits a relatively large hardness of 10.4±0.6 GPa and a high elastic modulus of 131±11 GPa under the strain rate of 0.5 s-1. Specifically, the strain rate sensitivity of hardness measured for the thin film is 0.05, the highest value reported for metallic glasses so far. Such high strain rate sensitivity of hardness is likely due to the high-entropy effect which stabilizes the amorphous structure with enhanced homogeneity.

  10. On the Consistency of Large Earthquake Moment and Strain Rate Inferred from GPS Data in North China

    Institute of Scientific and Technical Information of China (English)

    Wan Yongge; He Zhende; Shen Zhengkang; Gan Weijun; Wang Aijun

    2005-01-01

    The new GPS data can map crustal strain rates over large areas with a useful degree of precision. Stable strain measurement results open the door for improved estimates of earthquake occurrence. The Kostrov's formula (1974) translates the smoothed strain rates in North China into geodetic moment rates. In North China, the ratio of seismic moment released to moment accumulated from GPS measurement is 60.6% in NS direction, 68.9% in EW direction, and 104.1% in NE shear direction. The near unit ratio points to the reliability of GPS measurements there. The combination of historical seismicity and GPS measurement offers a powerful attack on earthquake hazard.

  11. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  12. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  13. Strain rate sensitivity of Al-based composites reinforced with MnO{sub 2} additions

    Energy Technology Data Exchange (ETDEWEB)

    Blaz, L.; Lobry, P.; Zygmunt-Kiper, M.; Koziel, J.; Wloch, G. [AGH-University of Science and Technology, Faculty of Non-Ferrous Metals, Cracow (Poland); Dymek, S. [AGH-University of Science and Technology, Faculty of Metals Engineering and Industrial Informatics, Cracow (Poland)

    2015-01-15

    Highlights: • Fine-grained Al–MnO{sub 2} and Al–MnO{sub 2}–Mg composites were processed and studied. • Powder metallurgy (PM) and mechanical alloying (MA) methods were used. • Increase of strain rate sensitivity (SRS) vs. temperature was observed at 300–600 K. • Efficiency of the SRS increase was reduced above ∼600 K for PM composites. • Decrease of SRS above ∼600 K was observed for MA Al–MnO{sub 2} composite. - Abstract: Fine-grained Al-based composites reinforced with MnO{sub 2} particles were manufactured by means of powder metallurgy (PM) and mechanical alloying (MA) methods. It was found that the applied powder consolidation methods, including KOBO extrusion, did not induce any chemical reaction between thermodynamically unstable components. However, it was shown that addition of magnesium to the Al-matrix initiated a reaction in the vicinity of MnO{sub 2} particles that resulted in the nucleation and growth of nano-sized aluminum–magnesium oxides. This led to a local refining of structural components. The most intense refining of structural components was observed for the MA Al–MnO{sub 2} composite. Strain rate sensitivity (SRS) of as-extruded materials was tested in compression in the range 293–773 K. SRS was determined by making a rapid change in the basic true strain rate from ε-dot=1.2·10{sup -3} to ε-dot=1.2·10{sup -2}. It is found that SRS did not practically depend on strain. The highest value of SRS was observed for the PM Al–MnO{sub 2}–Mg composite. SRS of PM materials evidently increases with deformation temperature; however, it becomes smaller above a temperature of ∼600 K. For the MA Al–MnO{sub 2} composite, tested at high temperatures, primary mechanical alloying resulted in relatively low increase of SRS with temperature that also becomes smaller above ∼600 K. Suppression of the increase in SRS at high temperatures can be attributed to the specific features of grain boundaries created by the adhesive

  14. Effect of specimen size on energy dissipation characteristics of red sandstone under high strain rate

    Institute of Scientific and Technical Information of China (English)

    Li Ming; Mao Xianbiao; Lu Aihong; Tao Jing; Zhang Guanghui; Zhang Lianying; Li Chong

    2014-01-01

    In this experiment, red sandstone specimens, having slenderness ratios of 0.5, 0.7, 0.9 and 1.1 respec-tively, were subjected to blow tests using a Split Hopkinson Pressure Bar (SHPB) system at a pressure of 0.4 atmospheres. In this paper, we have analyzed the effect of slenderness ratio on the mechanical properties and energy dissipation characteristics of red sandstone under high strain rates. The processes of compaction, elastic deformation and stress softening deformation of specimens contract with an increase in slenderness ratio, whilst the nonlinear deformation process extends correspondingly. In addi-tion, degrees of damage of specimens reduced gradually and the type of destruction showed a transfor-mation trend from stretching failure towards shear failure when the slenderness ratio increased. A model of dynamic damage evolution in red sandstone was established and the parameters of the constitutive model at different ratios of length to diameter were determined. By comparison with the experimental curve, the accuracy of the model, which could reflect the stress-strain dynamic characteristics of red sandstone, was verified. From the view of energy dissipation, an increase in slenderness ratio of a specimen decreased the proportion of energy dissipation and caused a gradual fall in the capability of energy dissipation during the specimen failure process. To some extent, the study indicated the effects of slenderness ratios on the mechanical properties and energy dissipation characteristics of red sandstone under the high strain rate, which provides valuable references to related engineering designs and academic researches.

  15. Variation of strain energy release rate with plate thickness. [fracture mode transition

    Science.gov (United States)

    Sih, G. C.; Hartranft, R. J.

    1973-01-01

    An analytical model of a through-thickness crack in a statically stretched plate is presented in which the crack front stress state is permitted to vary in the direction of the plate thickness. The amplitude or intensity of this stress field can be made nearly constant over a major portion of the interior crack front which is in a state of plane strain. The average amount of work available for extending a small segment of the crack across the thickness is associated with an energy release rate quantity in a manner similar to the two-dimensional Griffith crack model. The theoretically calculated energy release rate is shown to increase with increasing plate thickness, indicating that available work for crack extension is higher in a thicker plate.

  16. Strain rate and shear stress at the grain scale generated during near equilibrium antigorite dehydration

    Science.gov (United States)

    Padrón-Navarta, José Alberto; Tommasi, Andréa; Garrido, Carlos J.; Mainprice, David; Clément, Maxime

    2016-04-01

    Dehydration reactions are an outstanding case of mineral replacement reactions because they produce a significant transient fluid-filled porosity. Because fluids are present, these reactions occur by interface-coupled dissolution-precipitation. Under poorly drained conditions corresponding to foliated metamorphic rocks, they generate fluid pressure gradients that evolve in time and space eventually controlling fluid migration [1]. Despite the general agreement on this fact, we still lack of a precise knowledge of the complex coupling between the stresses generated during the reaction and the timescales for mineral growth and how they ultimate control the rate of fluid migration. Constraining these rates is challenge because the timescales of the feedback between fluid flow and mineral growth rates at near equilibrium are beyond the current experimental capabilities. For instance, numerical simulations suggest that the draining times of a dehydration front by compaction are in the order of 10-100 ky [1] difficult to translate into experimental strain rates. On the other hand, the natural record of dehydration reaction might potentially provide unique constrains on this feedback, but we need to identify microstructures related to compaction and quantify them. Features interpreted as due to compaction have been identified in a microstructural study [2] of the first stages of the antigorite dehydration at high-pressure conditions in Cerro del Almirez, Spain (ca. 1.6-1.9 GPa and 630-710 ° C). Compaction features can be mostly observed in the metamorphic enstatite in the form of (1) gradual crystallographic misorientation (up to 16°) of prismatic crystals due to buckling, (3) localized orthoenstatite(Pbca)/low clinoenstatite (P21/c) inversion (confirmed optically and by means of Electron Backscattered Diffraction) and (4) brittle fracturing of prismatic enstatite wrapped by plastically deformed chlorite. The coexistence of enstatite buckling and clinoenstatite lamellae

  17. Effect of Microstructure in TRIP Steel on Its Tensile Behavior at High Strain Rate

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The relationships between microstructure of 0.195C-1.6Si-1.58Mn TRIP steel and its dynamic mechanical properties at high strain rate were investigated. The effect of microstructures on dynamic properties was discussed and the comparison with its static mechanical properties was also presented. The specimens of TRIP steel via three heat treatment techniques exhibit different morphological structures, responsible for their dynamic mechanical performances. The dynamic tensile testing was performed on self-made pneumatic tensile impact tester. The results showed that the size, volume fraction, morphology and distribution of retained austenite all affect the final mechanical properties at high strain rate. Among them, the second phase (retained austenite+bainite) with net structure severely decreases the elongation of TRIP steel in spite of the fact that it enhances strength because it restrains ferrite deformation. In order to obtain the excellent combination of strength and elongation, rational matching of morphology, size and volume fraction of several phases in TRIP steel can be obtained via proper heat treatment techniques.

  18. The development of a high strain rate superplastic Al-Mg-Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dashwood, R.J.; Grimes, R.; Harrison, A.W.; Flower, H.M. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    2001-07-01

    In order for superplastic forming of aluminium to break out of the niche market low cost alloys are required that exhibit higher strain rate capability that are capable of volume production. This paper describes an investigation into the feasibility of producing such an alloy. A series of Al-4Mg alloys with 0, 0.25, 0.5, 0.75 and 1% Zr additions was prepared using a cheap particulate casting route, in an attempt to achieve higher levels of Zr supersaturation than are possible with conventional casting. The particulate was processed into a sheet product via hot extrusion followed by cold rolling and the effect of a number of process variables on the SPF performance of the sheet was investigated. It was found that increasing the Zr content, and manipulation of the thermomechanical processing conditions improved the SPF performance. Ductilities in excess of 600% have been achieved at a strain rate of 0.01 s{sup -1}, together with flow stresses less than 15 MPa. (orig.)

  19. Size and strain rate effects in tensile strength of penta-twinned Ag nanowires

    Science.gov (United States)

    Zhang, Xuan; Li, Xiaoyan; Gao, Huajian

    2017-08-01

    Penta-twinned Ag nanowires (pt-AgNWs) have recently attracted much attention due to their interesting mechanical and physical properties. Here we perform large-scale atomistic simulations to investigate the influence of sample size and strain rate on the tensile strength of pt-AgNWs. The simulation results show an apparent size effect in that the nanowire strength (defined as the critical stress for dislocation nucleation) increases with decreasing wire diameter. To account for such size effect, a theoretical model involving the interaction between an emerging dislocation and the twin boundary has been developed for the surface nucleation of dislocations. It is shown that the model predictions are in quantitative agreement with the results from atomistic simulations and previous experimental studies in the literatures. The simulations also reveal that nanowire strength is strain-rate dependent, which predicts an activation volume for dislocation nucleation in the range of 1-10b3, where b is the magnitude of the Burgers vector for a full dislocation.

  20. Static and dynamic strain energy release rates in toughened thermosetting composite laminates

    Science.gov (United States)

    Cairns, Douglas S.

    1992-01-01

    In this work, the static and dynamic fracture properties of several thermosetting resin based composite laminates are presented. Two classes of materials are explored. These are homogeneous, thermosetting resins and toughened, multi-phase, thermosetting resin systems. Multi-phase resin materials have shown enhancement over homogenous materials with respect to damage resistance. The development of new dynamic tests are presented for composite laminates based on Width Tapered Double Cantilevered Beam (WTDCB) for Mode 1 fracture and the End Notched Flexure (ENF) specimen. The WTDCB sample was loaded via a low inertia, pneumatic cylinder to produce rapid cross-head displacements. A high rate, piezo-electric load cell and an accelerometer were mounted on the specimen. A digital oscilloscope was used for data acquisition. Typical static and dynamic load versus displacement plots are presented. The ENF specimen was impacted in three point bending with an instrumented impact tower. Fracture initiation and propagation energies under static and dynamic conditions were determined analytically and experimentally. The test results for Mode 1 fracture are relatively insensitive to strain rate effects for the laminates tested in this study. The test results from Mode 2 fracture indicate that the toughened systems provide superior fracture initiation and higher resistance to propagation under dynamic conditions. While the static fracture properties of the homogeneous systems may be relatively high, the apparent Mode 2 dynamic critical strain energy release rate drops significantly. The results indicate that static Mode 2 fracture testing is inadequate for determining the fracture performance of composite structures subjected to conditions such as low velocity impact. A good correlation between the basic Mode 2 dynamic fracture properties and the performance is a combined material/structural Compression After Impact (CAI) test is found. These results underscore the importance of

  1. Molecular dynamics simulation of temperature and strain rate effects on the elastic properties of bimetallic Pd-Pt nanowires

    Science.gov (United States)

    Sankaranarayanan, Subramanian K. R. S.; Bhethanabotla, Venkat R.; Joseph, Babu

    2007-10-01

    Molecular dynamics simulation is used to investigate the mechanical properties of infinitely long, cylindrical bimetallic Pd-Pt nanowires, with an approximate diameter of 1.4nm and two different compositions (25% and 50% Pt). The nanowires are subjected to uniaxial tensile strain along the [001] axis with varying strain rates of 0.05%ps-1 , and 5.0%ps-1 , at simulation temperatures of 50 and 300K , to study the effects of strain rates and thermal conditions on the deformation characteristics and mechanical properties of the nanowire. The deformation and rupture mechanism of these nanowires is explored in detail. Comparisons to the behavior exhibited by pure Pd and Pt nanowires of similar diameter are also made. The effect of lattice mismatch on the observed deformation modes in bimetallic nanowires is also discussed. Our simulations indicate that Pd-Pt alloy nanowires of various compositions, with little lattice mismatch between Pd and Pt atoms, undergo similar deformation and rupture upon uniaxial stretching. It is found that yielding and fracture mechanisms depend on the applied strain rate as well as atomic arrangement and temperature. At low temperature and strain rate, where crystal order and stability are highly preserved, the calculated stress-strain response of pure Pt and Pd as well as Pd-Pt alloy nanowires showed clear periodic, stepwise dislocation-relaxation behavior. Crystalline to amorphous transformation takes place at high strain rates (5%ps-1) , with amorphous melting detected at 300K . Deformation of nanowires at higher strain rates and low temperature, where the superplasticity characteristic is significantly enhanced, results in the development of a multishell helical structure. Mechanical properties of the alloy nanowires are significantly different from those of bulk phase and are dictated by the applied strain rate, temperature, alloy composition, as well as the structural rearrangement associated with nanowire elongation. We find that Young

  2. Neural network modeling to evaluate the dynamic flow stress of high strength armor steels under high strain rate compression

    Institute of Scientific and Technical Information of China (English)

    Ravindranadh BOBBILI; V. MADHU; A.K. GOGIA

    2014-01-01

    An artificial neural network (ANN) constitutive model is developed for high strength armor steel tempered at 500 ?C, 600 ?C and 650 ?C based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on JohnsoneCook (JeC) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures (500e650 ?C), strains (0.05e0.2) and strain rates (1000e5500/s) are employed to formulate JeC model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the JeC model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.

  3. The effect of heat developed during high strain rate deformation on the constitutive modeling of amorphous polymers

    Science.gov (United States)

    Safari, Keivan H.; Zamani, Jamal; Guedes, Rui M.; Ferreira, Fernando J.

    2016-02-01

    An adiabatic constitutive model is proposed for large strain deformation of polycarbonate (PC) at high strain rates. When the strain rate is sufficiently high such that the heat generated does not have time to transfer to the surroundings, temperature of material rises. The high strain rate deformation behavior of polymers is significantly affected by temperature-dependent constants and thermal softening. Based on the isothermal model which first was introduced by Mulliken and Boyce et al. (Int. J. Solids Struct. 43:1331-1356, 2006), an adiabatic model is proposed to predict the yield and post-yield behavior of glassy polymers at high strain rates. When calculating the heat generated and the temperature changes during the step by step simulation of the deformation, temperature-dependent elastic constants are incorporated to the constitutive equations. Moreover, better prediction of softening phenomena is achieved by the new definition for softening parameters of the proposed model. The constitutive model has been implemented numerically into a commercial finite element code through a user material subroutine (VUMAT). The experimental results, obtained using a split Hopkinson pressure bar, are supported by dynamic mechanical thermal analysis (DMTA) and Decompose/Shift/Reconstruct (DSR) method. Comparison of adiabatic model predictions with experimental data demonstrates the ability of the model to capture the characteristic features of stress-strain curve of the material at very high strain rates.

  4. The Effect of Strain-rate and Temperature on the Mechanical Properties of a Metal/Polymer Mixture

    Science.gov (United States)

    Woody, Diana L.; Pritchard, Rob; Davis, Jeffrey J.

    1999-06-01

    Research has been going on in materials that are energetic yet have mechanical properties suitable in structural components. A series of experiments have been performed to determine the mechanical properties of a metal/polymer composite. The high strain-rate mechanical properties were determined using a split-Hopkinson pressure bar at strain rates of 10^3. The high strain-rate work was complemented by investigating the effect of slow strain on the order of .02 inches/minute to 200 inches/minute obtained using an Instron machine. The effect of temperature upon the stress strain curves was also observed. This paper will discuss one of the mixtures investigated containing titanium (35 μm) and Teflon (35μm) in a 80/20 ratio by weight. The low rate strain curves will be compared to the data achieved at higher strain-rates. The mechanical properties obtained in this study as well as others determined in prior work are being used in a modeling effort of this material under deformation.

  5. Dependence of the brittle ductile transition on strain-rate-dependent critical homologous temperature

    Science.gov (United States)

    Davis, Paul M.

    2017-05-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022-1023 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to

  6. Seismic hazard assessment of Sub-Saharan Africa using geodetic strain rate models

    Science.gov (United States)

    Poggi, Valerio; Pagani, Marco; Weatherill, Graeme; Garcia, Julio; Durrheim, Raymond J.; Mavonga Tuluka, Georges

    2016-04-01

    The East African Rift System (EARS) is the major active tectonic feature of the Sub-Saharan Africa (SSA) region. Although the seismicity level of such a divergent plate boundary can be described as moderate, several earthquakes have been reported in historical times causing a non-negligible level of damage, albeit mostly due to the high vulnerability of the local buildings and structures. Formulation and enforcement of national seismic codes is therefore an essential future risk mitigation strategy. Nonetheless, a reliable risk assessment cannot be done without the calibration of an updated seismic hazard model for the region. Unfortunately, the major issue in assessing seismic hazard in Sub-Saharan Africa is the lack of basic information needed to construct source and ground motion models. The historical earthquake record is largely incomplete, while instrumental catalogue is complete down to sufficient magnitude only for a relatively short time span. In addition, mapping of seimogenically active faults is still an on-going program. Recent studies have identified major seismogenic lineaments, but there is substantial lack of kinematic information for intermediate-to-small scale tectonic features, information that is essential for the proper calibration of earthquake recurrence models. To compensate this lack of information, we experiment the use of a strain rate model recently developed by Stamps et al. (2015) in the framework of a earthquake hazard and risk project along the EARS supported by USAID and jointly carried out by GEM and AfricaArray. We use the inferred geodetic strain rates to derive estimates of total scalar moment release, subsequently used to constrain earthquake recurrence relationships for both area (as distributed seismicity) and fault source models. The rates obtained indirectly from strain rates and more classically derived from the available seismic catalogues are then compared and combined into a unique mixed earthquake recurrence model

  7. Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation

    Science.gov (United States)

    Tian, L.; Jiao, Z. M.; Yuan, G. Z.; Ma, S. G.; Wang, Z. H.; Yang, H. J.; Zhang, Y.; Qiao, J. W.

    2016-06-01

    In this study, nanoindentation tests with continuous stiffness measurement technique were measured to investigate the deformation behavior of a high-entropy alloy AlCoCrFeNi under different indentation strain rates at room temperature. Results suggest that the creep behavior exhibits remarkable strain rate dependence. In-situ scanning images showed a conspicuous pileup around the indents, indicating that an extremely localized plastic deformation occurred during the nanoindentation. Under different strain rates, elastic modulus basically remains unchanged, while the hardness decreases with increasing indentation depth due to the indentation size effect. Furthermore, the modulus and hardness of AlCoCrFeNi HEAs are greater than that of the Al x CoCrFeNi ( x = 0.3,0.5) at the strain rate of 0.2 s-1 due to its higher negative enthalpy of mixing related to the atomic binding force, and the solid solution strengthening induced by the lattice distortion, respectively.

  8. Large-strain response of isotropic-hardening elastoplasticity with logarithmic rate: Swift effect in torsion

    Energy Technology Data Exchange (ETDEWEB)

    Bruhns, O.T.; Xiao, H.; Meyers, A. [Bochum Univ. (Germany). Inst. fuer Mechanik

    2001-07-01

    Recently, a new Eulerian rate-type isotropic-hardening elastoplasticity model has been established by utilizing the newly discovered logarithmic rate. It has been proved that this model is unique among all isotropic hardening elastoplastic models with all possible objective corotational stress rates and other known objective stress rates by virtue of the self-consistency criterion: the hypoelastic formulation intended for elastic behaviour must be exactly integrable to deliver a hyperelastic relation. The simple shear response of this model has been studied and shown to be reasonable for both the shear and normal stress components. The objective of this work is to further study the large deformation response of this model, in particular, the second-order effects, including the well-known Swift effect, in torsion of thin-walled cylindrical tubes with free ends. An analytical perturbation solution is derived, and numerical results are presented by means of the Runge-Kutta method. It is shown that the prediction of this model for the shear stress is in good accord with experimental data, but the predicted axial length change is negligibly small and much less than experimental data. This suggests that the strain-induced anisotropy may be the main cause of the Swift effect. (orig.)

  9. Measurement of the stress/strain response of energetic materials as a function of strain rate and temperature: PBX 9501 and Mock 9501

    Energy Technology Data Exchange (ETDEWEB)

    Funk, D.J.; Laabs, G.W.; Peterson, P.D.; Asay, B.W.

    1995-09-01

    We have measured the stress/strain behavior of PBX 9501, Mock 900-21 and two new mocks consisting of monoclinic granular sugar embedded in (1) a BDNPA-F/estane binder (a 9501 material mock; a hard organic crystal embedded in a plastic) and (2) neat estane (an LX-14 mock) at strain rates from 10{sup -3} to 10{sup -1}, at two L/D`s and at two temperatures (25 and 60 C). We find that the compressive strength falls with increasing temperature and rises with increasing strain rate. We also find that the new 9501 sugar mock most closely resembles the behavior of the 9501 explosive and differences may be attributable to the different ages of the estane binder used.

  10. Strain-rate and temperature dependence of yield stress of amorphous solids via self-learning metabasin escape algorithm

    CERN Document Server

    Cao, Penghui; Park, Harold S

    2014-01-01

    A general self-learning metabasin escape (SLME) algorithm~\\citep{caoPRE2012} is coupled in this work with continuous shear deformations to probe the yield stress as a function of strain rate and temperature for a binary Lennard-Jones (LJ) amorphous solid. The approach is shown to match the results of classical molecular dynamics (MD) at high strain rates where the MD results are valid, but, importantly, is able to access experimental strain rates that are about ten orders of magnitude slower than MD. In doing so, we find in agreement with previous experimental studies that a substantial decrease in yield stress is observed with decreasing strain rate. At room temperature and laboratory strain rates, the activation volume associated with yield is found to contain about 10 LJ particles, while the yield stress is as sensitive to a $1.5\\%T_{\\rm g}$ increase in temperature as it is to a one order of magnitude decrease in strain rate. Moreover, our SLME results suggest the SLME and extrapolated results from MD simu...

  11. Electrical properties of nanoscale metallic thin films on dielectric elastomer at various strain rates

    Science.gov (United States)

    Faisal, Md. Shahnewaz Sabit; Ye, Zhihang; Chen, Zheng; Asmatulu, Ramazan

    2015-04-01

    Dielectric elastomers (DEs) have significant applications in artificial muscle and other biomedical equipment and device fabrications. Metallic thin films by thin film transfer and sputter coating techniques can provide conductive surfaces on the DE samples, and can be used as electrodes for the actuators and other biomedical sensing devices. In the present study, 3M VHB 4910 tape was used as a DE for the coating and electrical characterization tests. A 150 nm thickness of gold was coated on the DE surfaces by sputter coating under vacuum with different pre-strains, ranging from 0 to 100%. Some of the thin films were transferred to the surface of the DEs. Sputter coating, and direct transferring gold leaf coating methods were studied and the results were analyzed in detail in terms of the strain rates and electrical resistivity changes. Initial studies indicated that the metallic surfaces remain conductive even though the DE films were considerably elongated. The coated DEs can be used as artificial muscle by applying electrical stimulation through the conductive surfaces. This study may provide great benefits to the readers, researchers, as well as companies involved in manufacturing of artificial muscles and actuators using smart materials.

  12. Asymptotic decay rate of non-classical strain gradient Timoshenko micro-cantilevers by boundary feedback

    Energy Technology Data Exchange (ETDEWEB)

    Vatankhah, Ramin; Salarieh, Hassan; Alasty, Aria [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Najafi, Ali [Shiraz Branch, Islamic Azad University, Shiraz (Iran, Islamic Republic of)

    2014-02-15

    In non-classical micro-beams, the strain energy of the system is obtained based on the non-classical continuum mechanics. This paper presents the problem of boundary control of a vibrating non-classical micro-cantilever Timoshenko beam to achieve the asymptotic decay rate of the closed loop system. For this aim, we need to establish the well- posedness of the governing partial differential equations (PDEs) of motion in presence of boundary feedbacks. A linear control law is constructed to suppress the system vibration. The control forces and moments consist of feedbacks of the velocities and spatial derivatives of them at tip of the micro-beam. To verify the effectiveness of the proposed boundary controllers, numerical simulations of the open loop and closed loop PDE models of the system are worked out using finite element method (FEM). New Timoshenko beam element stiffness and mass matrices are derived based on the strain gradient theory and verification of this new beam element is accomplished.

  13. Subclinical Cardiotoxicity Detected by Strain Rate Imaging up to 14 months After Breast Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Erven, Katrien, E-mail: katrien.erven@uzleuven.be [Department of Radiotherapy, University Hospital Gasthuisberg, Leuven (Belgium); Iridium Cancer Network, Antwerp (Belgium); Florian, Anca [Department of Cardiology, University Hospital Gasthuisberg, Leuven (Belgium); Institute of Emergency for Cardiovascular Diseases, UMF “Carol Davila,” Bucharest (Romania); Slagmolen, Pieter [Medical Image Computing (ESAT/PSI), University Hospital Gasthuisberg, Leuven (Belgium); IBBT-KU Leuven Future Health Department, Leuven (Belgium); Sweldens, Caroline [Department of Radiotherapy, University Hospital Gasthuisberg, Leuven (Belgium); Jurcut, Ruxandra [Institute of Emergency for Cardiovascular Diseases, UMF “Carol Davila,” Bucharest (Romania); Wildiers, Hans [Department of Medical Oncology, University Hospital Gasthuisberg, Leuven (Belgium); Voigt, Jens-Uwe [Department of Cardiology, University Hospital Gasthuisberg, Leuven (Belgium); Weltens, Caroline [Department of Radiotherapy, University Hospital Gasthuisberg, Leuven (Belgium)

    2013-04-01

    Purpose: Strain rate imaging (SRI) is a new echocardiographic modality that enables accurate measurement of regional myocardial function. We investigated the role of SRI and troponin I (TnI) in the detection of subclinical radiation therapy (RT)-induced cardiotoxicity in breast cancer patients. Methods and Materials: This study prospectively included 75 women (51 left-sided and 24 right-sided) receiving adjuvant RT to the breast/chest wall and regional lymph nodes. Sequential echocardiographs with SRI were obtained before RT, immediately after RT, and 8 and 14 months after RT. TnI levels were measured on the first and last day of RT. Results: Mean heart and left ventricle (LV) doses were both 9 ± 4 Gy for the left-sided patients and 4 ± 4 Gy and 1 ± 0.4 Gy, respectively, for the right-sided patients. A decrease in strain was observed at all post-RT time points for left-sided patients (−17.5% ± 1.9% immediately after RT, −16.6% ± 1.4% at 8 months, and −17.7% ± 1.9% at 14 months vs −19.4% ± 2.4% before RT, P<.01) but not for right-sided patients. When we considered left-sided patients only, the highest mean dose was given to the anterior left ventricular (LV) wall (25 ± 14 Gy) and the lowest to the inferior LV wall (3 ± 3 Gy). Strain of the anterior wall was reduced after RT (−16.6% ± 2.3% immediately after RT, −16% ± 2.6% at 8 months, and −16.8% ± 3% at 14 months vs −19% ± 3.5% before RT, P<.05), whereas strain of the inferior wall showed no significant change. No changes were observed with conventional echocardiography. Furthermore, mean TnI levels for the left-sided patients were significantly elevated after RT compared with before RT, whereas TnI levels of the right-sided patients remained unaffected. Conclusions: In contrast to conventional echocardiography, SRI detected a regional, subclinical decline in cardiac function up to 14 months after breast RT. It remains to be determined whether these changes are related to clinical

  14. Ductile strain rate recorded in the Symvolon syn-extensional plutonic body (Rhodope core complex, Greece)

    Science.gov (United States)

    Cirrincione, Rosolino; Fazio, Eugenio; Ortolano, Gaetano; Fiannacca, Patrizia; Kern, Hartmut; Mengel, Kurt; Pezzino, Antonino; Punturo, Rosalda

    2016-04-01

    The present contribution deals with quantitative microstructural analysis, which was performed on granodiorites of the syn-tectonic Symvolon pluton (Punturo et al., 2014) at the south-western boundary of the Rhodope Core Complex (Greece). Our purpose is the quantification of ductile strain rate achieved across the pluton, by considering its cooling gradient from the centre to the periphery, using the combination of a paleopiezometer (Shimizu, 2008) and a quartz flow law (Hirth et al., 2001). Obtained results, associated with a detailed cooling history (Dinter et al., 1995), allowed us to reconstruct the joined cooling and strain gradient evolution of the pluton from its emplacement during early Miocene (ca. 700°C at 22 Ma) to its following cooling stage (ca. 500-300°C at 15 Ma). Shearing temperature values were constrained by means of a thermodynamic approach based on the recognition of syn-shear assemblages at incremental strain; to this aim, statistical handling of mineral chemistry X-Ray maps was carried out on microdomains detected at the tails of porphyroclasts. Results indicate that the strain/cooling gradients evolve "arm in arm" across the pluton, as also testified by the progressive development of mylonitic fabric over the magmatic microstructures approaching the host rock. References • Dinter, D. A., Macfarlane, A., Hames, W., Isachsen, C., Bowring, S., and Royden, L. (1995). U-Pb and 40Ar/39Ar geochronology of the Symvolon granodiorite: Implications for the thermal and structural evolution of the Rhodope metamorphic core complex, northeastern Greece. Tectonics, 14 (4), 886-908. • Shimizu, I. (2008). Theories and applicability of grain size piezometers: The role of dynamic recrystallization mechanisms. Journal of Structural Geology, 30 (7), 899-917. • Hirth, G., Teyssier, C., and Dunlap, J. W. (2001). An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth

  15. Grain boundary sliding associated with low strain rate at 1000°C in recrystallized ODS ferritic steel

    Directory of Open Access Journals (Sweden)

    R. Kamikawa

    2016-12-01

    Full Text Available The high-temperature deformation process of the recrystallized 16CrODS ferritic steel was investigated at 1000°C for the stress loading perpendicular to the elongated grain structure. The strain rate was varied in the range from 1.0×10−2 to 1.0×10−5s−1. At the strain rate over 1.0×10−4s−1, deformation is dominated by the conventional dislocation creep. Decreasing strain rate from 1.0×10−4s−1, grain boundary sliding becomes prominent. Accommodation process for the localized stress induced by grain boundary sliding could be dislocation creep at 1.0×10−4s−1, and by diffusional creep at 1.0×10−5s−1 or less. These were verified through the observation of void formation and localized strain accumulation by KAM map.

  16. Characterization of unidirectional carbon fiber reinforced polyamide-6 thermoplastic composite under longitudinal compression loading at high strain rate

    Science.gov (United States)

    Ploeckl, Marina; Kuhn, Peter; Koerber, Hannes

    2015-09-01

    In the presented work, an experimental investigation has been performed to characterize the strain rate dependency of unidirectional carbon fiber reinforced polyamide-6 composite for longitudinal compression loading. An end-loaded compression specimen geometry, suitable for contactless optical strain measurement via digital image correlation and dynamic loading in a split-Hopkinson pressure bar, was developed. For the dynamic experiments at a constant strain rate of 100 s-1 a modified version of the Dynamic Compression Fixture, developed by Koerber and Camanho [Koerber and Camanho, Composites Part A, 42, 462-470, 2011] was used. The results were compared with quasi-static test results at a strain rate of 3 · 10-4 s-1 using the same specimen geometry. It was found that the longitudinal compressive strength increased by 61% compared to the strength value obtained from the quasi-static tests.

  17. Steady thermal stress and strain rates in a rotating circular cylinder under steady state temperature

    Directory of Open Access Journals (Sweden)

    Pankaj Thakur

    2014-01-01

    Full Text Available Thermal stress and strain rates in a thick walled rotating cylinder under steady state temperature has been derived by using Seth’s transition theory. For elastic-plastic stage, it is seen that with the increase of temperature, the cylinder having smaller radii ratios requires lesser angular velocity to become fully plastic as compared to cylinder having higher radii ratios The circumferential stress becomes larger and larger with the increase in temperature. With increase in thickness ratio stresses must be decrease. For the creep stage, it is seen that circumferential stresses for incompressible materials maximum at the internal surface as compared to compressible material, which increase with the increase in temperature and measure n.

  18. Adiabatic Shear Band Formation in Intermetallic WHA at High Strain Rates and Elevated Temperatures

    Science.gov (United States)

    Duprey, K. E.; Clifton, R. J.; Griffo, A.; German, R. M.

    1997-07-01

    A novel tungsten-based composite is being developed at The Pennsylvania State University to enhance shear banding by introducing a strong thermo-plastic instability. This liquid phase sintered composite consists of tungsten grains embedded in an intermetallic alloy matrix which has the property that its flow stress increases with increasing temperature up to a critical temperature at which rapid thermal softening begins. Pressure-shear plate impact experiments are being used to subject thin plates of this composite to shearing at strain rates of 10^5 s-1 to 10^6 s-1 at pressures of 6 - 8 GPa, and temperatures up to 650 ^o C. The experiments, combined with computer simulation, are being conducted to determine the effects of the thermal properties of the matrix on the initiation and propagation of adiabatic shear bands.

  19. On the Strain Rate Sensitivity of Abs and Abs Plus Fused Deposition Modeling Parts

    Science.gov (United States)

    Vairis, A.; Petousis, M.; Vidakis, N.; Savvakis, K.

    2016-09-01

    In this work the effect of strain rate on the tensile strength of fused deposition modeling parts built with Acrylonitrile-butadiene-styrene (ABS) and ABS plus material is presented. ASTM D638-02a specimens were built with ABS and ABS plus and they were tested on a Schenck Trebel Co. tensile test machine at three different test speeds, equal, lower, and higher to the test speed required by the ASTM D638-02a standard. The experimental tensile strength results were compared and evaluated. The fracture surfaces of selected specimens were examined with a scanning electron microscope, to determine failure mode of the filament strands. It was found that, as the test speed increases, specimens develop higher tensile strength and have higher elastic modulus. Specimens tested in the highest speed of the experiment had on average about 10% higher elastic modulus and developed on average about 11% higher tensile strength.

  20. Thixoforming of Steel: New Tools Conception to Analyse Thermal Exchanges and Strain Rate Effects

    Science.gov (United States)

    Cezard, P.; Bigot, R.; Becker, E.; Mathieu, S.; Pierret, J. C.; Rassili, A.

    2007-04-01

    Through different papers, authors shown that the influence of thermal exchanges was a first order parameter on the semi-solid steel behaviour, and certainly for every semi-solid metallic materials. These thermal exchanges hide other parameters effect like, for example, the strain rate influence. This paper tries to determine the influence of these two parameters by using a new extrusion device on a hydraulic press. This new tools conception annihilated the influence of the decrease of the punch speed before stopping and permitted to have a constant speed during the experiment. This work also deals with the homogeneous flow during thixoforming of steel and shows the importance to couple initial temperature of the slug with punch speed. This paper presents different conditions which permitted to have a homogeneous flow by keeping a low load.

  1. Effects of strain rate, test temperature and test environment on tensile properties of vandium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gubbi, A.N.; Rowcliffe, A.F.; Eatherly, W.S.; Gibson, L.T. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Tensile testing was carried out on SS-3 tensile specimens punched from 0.762-mm-thick sheets of the large heat of V-4Cr-4Ti and small heats of V-3Cr-3Ti and V-6Cr-6Ti. The tensile specimens were annealed at 1000{degrees} for 2 h to obtain a fully recrystallized, fine grain microstructure with a grain size in the range of 10-19 {mu}m. Room temperature tests at strain rates ranging from 10{sup {minus}3} to 5 x 10{sup {minus}1}/s were carried out in air; elevated temperature testing up to 700{degrees}C was conducted in a vacuum better than 1 x 10{sup {minus}5} torr (<10{sup {minus}3} Pa). To study the effect of atomic hydrogen on ductility, tensile tests were conducted at room temperature in an ultra high vacuum chamber (UHV) with a hydrogen leak system.

  2. Effect of Temperature on the Void Growth in Pure Aluminium at High Strain-Rate Loading

    Institute of Scientific and Technical Information of China (English)

    QI Mei-Lan; HE Hong-Liang; YAN Shi-Lin

    2007-01-01

    @@ With the environment temperature varying from 273K to 773K, the dynamic process of void growth in pure aluminium at high strain-rate loading is calculated based on the dynamic growth equation of a void with internal pressure. The result shows that the effect of temperature on the growth of void should be emphasized. Because the initial pressure of void with gas will increase and the viscosity of materials will decrease with the rising of temperature, the growth of void is accelerated. Furthermore, material inertia restrains the growth of void evidently when the diameter exceeds 10μm. The effect of surface tension is very weak in the whole process of void growth.

  3. Gurson-type elastic-plastic damage model based on strain-rate plastic potential

    Science.gov (United States)

    Balan, Tudor; Cazacu, Oana

    2013-12-01

    Ductile damage is generally described by stress-space analytical potentials. In this contribution, it is shown that strain rate potentials, which are exact conjugate of the stress-based potentials, can be equally used to describe the dilatational response of porous metals. This framework is particularly appropriate for porous materials with matrix described by complex yield criteria for which a closed-form expression of the stress-based potential is not available. Illustration of the new approach is done for porous metals containing randomly distributed spherical voids in a von Mises elasto-plastic matrix. Furthermore, a general time integration algorithm for simulation of the mechanical response using this new formulation is developed and implemented in Abaqus/Standard. The proposed model and algorithm are validated with respect to the Abaqus built-in GTN model, which is based on a stress potential, through the simulation of a tensile test on a round bar.

  4. Numerical analysis of high strain rate failure of electro-magnetically loaded steel sheets

    Directory of Open Access Journals (Sweden)

    Erice Borja

    2015-01-01

    Full Text Available Electro-magnetic forces provide a potentially power full means in designing dynamic experiments with active control of the loading conditions. This article deals with the development of computational models to simulate the thermo-mechanical response of electro-magnetically loaded metallic structures. The model assumes linear electromagnetic constitutive equations and time-independent electric induction to estimate the Joule heating and the Lorentz forces. The latter are then taken into account when evaluating stress equilibrium. A thermo-visco-plastic model with Johnson-Cook type of temperature and strain rate dependence and combined Swift-Voce hardening is used to evaluate the material's thermo-mechanical response. As a first application, the model is used to analyse the effect of electro-magnetic loading on the ductility of advanced high strength steels.

  5. Molecular dynamics simulation of materials response to high strain-rate loading

    Energy Technology Data Exchange (ETDEWEB)

    Belak, J

    1999-07-22

    A molecular dynamics (MD) analysis of conservation of momentum through a shock front is presented. The MD model uses a non-traditional boundary condition that allows simulation in the reference frame of the shock front. Higher order terms proportional to gradients in the density are shown to be non-negligible at the shock front. The simulation is used to study the sequence of thermodynamic states during shock loading. Melting is observed in the simulations, though above the thermodynamic melt curve as is common in homogeneous simulations of melting. High strain-rate tensile loading is applied to the growth of nanoscale voids in copper. Void growth is found to occur by plasticity mechanisms with dislocations emerging from the void surface. [molecular dynamics, shock loading, conservation of momentum, shock melting, void growth

  6. Slow Strain Rate Testing of Alloy 22 in Simulated Concentrated Ground Waters

    Energy Technology Data Exchange (ETDEWEB)

    King, K J; Wong, L L; Estill, J C; Rebak, R B

    2003-10-29

    The proposed engineering barriers for the high-level nuclear waste repository in Yucca Mountain include a double walled container and a detached drip shield. The candidate material for the external wall of the container is Alloy 22 (N06022). One of the anticipated degradation modes for the containers could be environmentally assisted cracking (EAC). The objective of the current research was to characterize the effect of applied potential and temperature on the susceptibility of Alloy 22 to EAC in simulated concentrated water (SCW) and other environments using the slow strain rate technique (SSRT). Results show that the temperature and applied potential have a strong influence on the susceptibility of Alloy 22 to suffer EAC in SCW solution. Limited results show that sodium fluoride solution is more detrimental than sodium chloride solution.

  7. Effect of the strain rate on the properties of electrical copper

    Science.gov (United States)

    Loginov, Yu. N.; Demakov, S. L.; Illarionov, A. G.; Popov, A. A.

    2011-03-01

    The effect of the strain rate on the texture and strength characteristics of electrical copper is analyzed using an industrial experiment on low- and high-speed wire drawing. The mechanical properties of the product are determined. The strength of the wire drawn at a high speed is found to be about 20 MPa higher than that of the wire drawn at a low speed. Metallographic analysis shows no differences in the wire structures, and texture analysis reveals differences in the behavior of dominant texture components. The directions of the dominant texture components are found to rotate near the periphery of the workpiece (i.e., at the workpiece surface). The solution of the drawing problem by the finite element method demonstrates an analogous rotation of the principal elongation directions.

  8. Maximum Likelihood based comparison of the specific growth rates for P. aeruginosa and four mutator strains

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Mandsberg, Lotte Frigaard

    2008-01-01

    with an exponentially decaying function of the time between observations is suggested. A model with a full covariance structure containing OD-dependent variance and an autocorrelation structure is compared to a model with variance only and with no variance or correlation implemented. It is shown that the model...... are used for parameter estimation. The data is log-transformed such that a linear model can be applied. The transformation changes the variance structure, and hence an OD-dependent variance is implemented in the model. The autocorrelation in the data is demonstrated, and a correlation model...... that best describes data is a model taking into account the full covariance structure. An inference study is made in order to determine whether the growth rate of the five bacteria strains is the same. After applying a likelihood-ratio test to models with a full covariance structure, it is concluded...

  9. PRINCIPAL COMPONENT DECOMPOSITION BASED FINITE ELEMENT MODEL UPDATING FOR STRAIN-RATE-DEPENDENCE NONLINEAR DYNAMIC PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    GUO Qintao; ZHANG Lingmi; TAO Zheng

    2008-01-01

    Thin wall component is utilized to absorb impact energy of a structure. However, the dynamic behavior of such thin-walled structure is highly non-linear with material, geometry and boundary non-linearity. A model updating and validation procedure is proposed to build accurate finite element model of a frame structure with a non-linear thin-walled component for dynamic analysis. Design of experiments (DOE) and principal component decomposition (PCD) approach are applied to extract dynamic feature from nonlinear impact response for correlation of impact test result and FE model of the non-linear structure. A strain-rate-dependent non-linear model updating method is then developed to build accurate FE model of the structure. Computer simulation and a real frame structure with a highly non-linear thin-walled component are employed to demonstrate the feasibility and effectiveness of the proposed approach.

  10. Hydrogen embrittlement of duplex steel tested using slow strain rate test

    Directory of Open Access Journals (Sweden)

    P. Vaňova

    2014-04-01

    Full Text Available This paper is dealing with hydrogen embrittlement of austenitic-ferritic 2205 duplex steel using the slow strain rate test (SSRT. The original material was subjected to heat treatment under 700 °C during 5 hours and following aircooling with the aim of provoking sigma phase precipitation and embrittlement of the material. The samples of both states were electrolytic saturation with hydrogen in 0,1N solution of sulfuric acid (H2SO4 with addition KSCN during 24 hours. The hydrogen embrittlement appeared on fracture surfaces of tested tensile bars as a quasi-cleavage damage on their perimeter. From the established depth of hydrogen charging the diffusion coefficient of hydrogen in duplex steel with ferritic-austenitic structure and with the structure containing the sigma phase as well were estimated.

  11. Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate

    Science.gov (United States)

    Chadegani, Alireza; Yang, Chihdar; Smeltzer, Stanley S. III

    2012-01-01

    This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.

  12. The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates.

    Science.gov (United States)

    Danto, M I; Woo, S L

    1993-01-01

    The effect of strain rate on the mechanical properties of the rabbit anterior cruciate ligament (ACL) and patellar tendon (PT) was evaluated. The medial portion of the ACL was loaded to tensile failure at rates of 0.003, 0.3, and 113 mm/s, and the middle third of the PT was loaded at rates of 0.008, 0.8, and 113 mm/s. The load was recorded with a high-speed measurement plotting system, and each test was videotaped for strain analysis. The nonlinear portion of the stress-strain curve was curve-fit to an exponential function having two nonlinear constants, representing the initial modulus and rate of change of the modulus. The modulus of the rabbit PT was found to be 89% higher than that of the ACL. The initial modulus and rate of change of the modulus also were greater for the PT than for the ACL. The modulus of the PT was shown to be more sensitive to strain rate than that of the ACL; a 94% increase was observed for the PT, and a 31% increase was observed for the ACL. There was no effect of strain rate on the mode of failure of either the ACL or the PT; all but three of the specimens failed at the insertion site.

  13. Global stability analysis of two-strain epidemic model with bilinear and non-monotone incidence rates

    Science.gov (United States)

    Baba, Isa Abdullahi; Hincal, Evren

    2017-05-01

    In this article we studied an epidemic model consisting of two strains with different types of incidence rates; bilinear and non-monotone. The model consists of four equilibrium points: disease-free equilibrium, endemic with respect to strain 1, endemic with respect to strain 2, and endemic with respect to both strains. The global stability analysis of the equilibrium points was carried out through the use of Lyapunov functions. Two basic reproduction ratios R 1 0 and R 2 0 are found, and we have shown that if both are less than one, the disease dies out, and if both are greater than one epidemic occurs. Furthermore, epidemics occur with respect to any strain with a basic reproduction ratio greater than one and disease dies out with respect to any strain with a basic reproduction ratio less than one. It was also shown that any strain with highest basic reproduction ratio will automatically outperform the other strain, thereby eliminating it. Numerical simulations were carried out to support the analytic result and to show the effect of the parameter k in the non-monotone incidence rate, which describes the psychological effect of general public towards infection.

  14. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury.

    Science.gov (United States)

    Bar-Kochba, Eyal; Scimone, Mark T; Estrada, Jonathan B; Franck, Christian

    2016-08-02

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression.

  15. Different transcriptional responses from slow and fast growth rate strains of Listeria monocytogenes adapted to low temperature

    Directory of Open Access Journals (Sweden)

    Ninoska eCordero

    2016-03-01

    Full Text Available Listeria monocytogenes has become one of the principal foodborne pathogens worldwide. The capacity of this bacterium to grow at low temperatures has opened an interesting field of study in terms of the identification and classification of new strains of L. monocytogenes with different growth capacities at low temperatures. We determined the growth rate at 8 ºC of 110 strains of L. monocytogenes isolated from different food matrices. We identified a group of slow and fast strains according to their growth rate at 8 °C and performed a global transcriptomic assay in strains previously adapted to low temperature. We then identified shared and specific transcriptional mechanisms, metabolic and cellular processes of both groups; bacterial motility was the principal process capable of differentiating the adaptation capacity of L. monocytogenes strains with different ranges of tolerance to low temperatures. Strains belonging to the fast group were less motile, which may allow these strains to achieve a greater rate of proliferation at low temperature.

  16. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury

    Science.gov (United States)

    Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian

    2016-08-01

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression.

  17. Experimental characterization and modelling of UO{sub 2} behavior at high temperatures and high strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Salvo, Maxime, E-mail: maxime.salvo@cea.fr [CEA, DEN, DEC/SESC, F-13108 Saint-Paul-lez-Durance (France); Sercombe, Jérôme [CEA, DEN, DEC/SESC, F-13108 Saint-Paul-lez-Durance (France); Ménard, Jean-Claude [CEA, DEN, DEC/SPUA, F-13108 Saint-Paul-lez-Durance (France); Julien, Jérôme; Helfer, Thomas [CEA, DEN, DEC/SESC, F-13108 Saint-Paul-lez-Durance (France); Désoyer, Thierry [CNRS, LMA, 13402 Marseille Cedex 20 (France)

    2015-01-15

    Highlights: • This paper presents an experimental characterization of UO{sub 2} in compression. • The tests are performed at high temperatures (1100–1700 °C) and high strain rates (10{sup -4}–10{sup -1}/s). • With a power law model, the stress exponent n deduced from the tests varies between 16 and 20. • A hyperbolic sine model was therefore developed to describe UO{sub 2} behavior at high strain rates. • Pore compressibility as observed during the tests was introduced in the model. - Abstract: This work presents an experimental characterization of uranium dioxide (UO{sub 2}) in compression under Reactivity Initiated Accident (RIA) conditions. Pellet samples were tested at four temperatures (1100, 1350, 1550 and 1700°C) and at a strain rate varying over 4 decades (10{sup -4}–10{sup -3}–10{sup -2}–10{sup -1}/s). The experimental results show that the stress–strain curves cannot be fitted with a unique power law as it is the case at smaller strain rates (10{sup -9}–10{sup -5}/s). A strain-hardening also appears in most of the tests. The microstructural observations show a pronounced evolution of the porosity at the pellet center during the tests. A hyperbolic sine model which accounts for volume variations (pore compressibility) was therefore proposed to describe the behavior of UO{sub 2} on a large range of temperatures (1100-1700°C) and strain rates (10{sup -9}–10{sup -1}/s). The Finite Element simulations of the compression tests lead to results (maximum stress, axial and hoop strain distribution, porosity distribution) in good agreement with the measurements. The model was then assessed on a database of more than two hundred creep tests.

  18. Oxide Particle Growth During Friction Stir Welding of Fine Grain MA956 Oxide Dispersion-Strengthened Steel

    Science.gov (United States)

    Baker, Brad W.; Knipling, Keith E.; Brewer, Luke N.

    2017-03-01

    Friction stir welding of an aluminum-containing oxide dispersion-strengthened steel causes significant oxide particle growth visible at both the nano- and microscales. Quantitative stereology of scanning electron images, small-angle X-ray scattering, energy-dispersive X-ray spectroscopy, and atom-probe tomography is used to quantify the degree of particle coarsening as a function of welding parameters. Results show the dispersed oxides are significantly coarsened in the stir zone due to a proposed combination of agglomeration, Ostwald ripening, and phase transformation within the Al2O3-Y2O3 system. This oxide particle coarsening effectively removes all strengthening contribution of the original oxide particles, as confirmed by uniaxial tensile tests and microhardness measurements.

  19. Oxide Particle Growth During Friction Stir Welding of Fine Grain MA956 Oxide Dispersion-Strengthened Steel

    Science.gov (United States)

    Baker, Brad W.; Knipling, Keith E.; Brewer, Luke N.

    2017-01-01

    Friction stir welding of an aluminum-containing oxide dispersion-strengthened steel causes significant oxide particle growth visible at both the nano- and microscales. Quantitative stereology of scanning electron images, small-angle X-ray scattering, energy-dispersive X-ray spectroscopy, and atom-probe tomography is used to quantify the degree of particle coarsening as a function of welding parameters. Results show the dispersed oxides are significantly coarsened in the stir zone due to a proposed combination of agglomeration, Ostwald ripening, and phase transformation within the Al2O3-Y2O3 system. This oxide particle coarsening effectively removes all strengthening contribution of the original oxide particles, as confirmed by uniaxial tensile tests and microhardness measurements.

  20. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures

    Science.gov (United States)

    Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan

    2016-06-01

    The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates ( 10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass ( α ) transition and the secondary ( β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.

  1. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures

    Science.gov (United States)

    Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan

    2017-02-01

    The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates (10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass (α ) transition and the secondary (β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.

  2. Correlation Between Microstructure and Corrosion Resistance of Magnesium Alloys Prepared by High Strain Rate Rolling

    Science.gov (United States)

    Chen, Jihua; Chen, Guanqing; Yan, Hongge; Su, Bin; Gong, Xiaole; Zhou, Bo

    2017-09-01

    Microstructure and corrosion resistance in Hank's solution of four magnesium alloys (pure Mg, ZK60, Mg-4Zn and Mg-4Zn-0.3Ca) prepared by high strain rate rolling (HSRR) and conventional rolling (CR) are comparatively investigated. The HSRR alloy exhibits better bio-corrosion resistance than the CR alloy. The HSRR ZK60 alloy has finer grains, higher dynamic recrystallization (DRX) extent, lower twin fraction, coarser residual second-phase particles, finer and denser nanometer β 1 precipitates, lower residual compressive stress and stronger basal texture than the CR alloy. The average corrosion rate of the HSRR ZK60 sheet after 90-day immersion in Hank's solution is 0.17 mg cm-2 d-1, about 19% lower than that of the CR sheet. Its corrosion current density is 30.9 μA/cm2, about 45% lower than that of the CR sheet. Bio-corrosion resistance enhancement by HSRR can be mainly ascribe to the reduced grain size, the relatively adequate DRX, non-twinning, the coarser residual second-phase particles, the finer and denser nanometer precipitates and the slightly stronger (0001) texture.

  3. Accuracy of heart strain rate calculation derived from Doppler tissue velocity data

    Science.gov (United States)

    Santos, Andres; Ledesma-Carbayo, Maria J.; Malpica, Norberto; Desco, Manuel; Antoranz, Jose C.; Marcos-Alberca, Pedro; Garcia-Fernandez, Miguel A.

    2001-05-01

    Strain Rate (SR) Imaging is a recent imaging technique that provides information about regional myocardial deformation by measuring local compression and expansion rates. SR can be obtained by calculating the local in-plane velocity gradients along the ultrasound beam from Doppler Tissue velocity data. However, SR calculations are very dependent on the image noise and artifacts, and different calculation algorithms may provide inconsistent results. This paper compares techniques to calculate SR. 2D Doppler Tissue Images (DTI) are acquired with an Acuson Sequoia scanner. Noise was measured with the aid of a rotating phantom. Processing is performed on polar coordinates. For each image, after removal of black spot artifacts by a selective median filter, two different SR calculation methods have been implemented. In the first one, SR is computed as the discrete velocity derivative, and noise is reduced with a variable-width gaussian filter. In the second method a smoothing cubic spine is calculated for every scan line according to the noise level and the derivative is obtained from an analytical expression. Both methods have been tested with DTI data from synthetic phantoms and normal volunteers. Results show that noise characteristics, border effects and the adequate scale are critical to obtain meaningful results.

  4. Basic theories for strain localization analysis of porous media with rate dependent model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongwu; QIN Jianmin

    2005-01-01

    This paper analyzes the interaction between two kinds of internal length scales when the rate dependent plasticity is introduced to a multiphase material model to study the dynamic strain localization phenomenon of saturated and partially saturated porous media. The stability analysis demonstrates that the enhanced porous media model preserves the well-posedness of the initial value problem for both axial and shear waves because an internal length scale parameter is introduced in the visco-plasticity model. On the other hand, the interaction between the length scale introduced by the rate dependent model and that naturally contained in the governing equations of fully and partially saturated model will take place. A basic method is presented to investigate the internal length scale of the multiphase porous media under the interaction of these two kinds of length scale parameters. Material stability analysis is carried out for a certain permeability from which the results of wave number domain with real wave speed are distinguished. A one dimensional example is given to illustrate the theoretical findings.

  5. Stress corrosion cracking of alloy 600 using the constant strain rate test

    Energy Technology Data Exchange (ETDEWEB)

    Bulischeck, T. S.; van Rooyen, D.

    1980-01-01

    The most recent corrosion problems experienced in nuclear steam generators tubed with Inconel alloy 600 is a phenomenon labeled ''denting''. Denting has been found in various degrees of severity in many operating pressurized water reactors. Laboratory investigations have shown that Inconel 600 exhibits intergranular SCC when subjected to high stresses and exposed to deoxygenated water at elevated temperatures. A research project was initiated at Brookhaven National Laboratory in an attempt to improve the qualitative and quantitative understanding of factors influencing SCC in high temperature service-related environments. An effort is also being made to develop an accelerated test method which could be used to predict the service life of tubes which have been deformed or are actively denting. Several heats of commercial Inconel 600 tubing were procured for testing in deaerated pure and primary water at temperatures from 290 to 365/sup 0/C. U-bend type specimens were used to determine crack initiation times which may be expected for tubes where denting has occurred but is arrested and provide baseline data for judging the accelerating effects of the slow strain rate method. Constant extension rate tests were employed to determine the crack velocities experienced in the crack propagation stage and predict failure times of tubes which are actively denting. 8 refs., 17 figs., 5 tabs.

  6. The significance of grain morphology, moisture, and strain rate on the rapid compaction of silica sands

    Science.gov (United States)

    Perry, J. I.; Braithwaite, C. H.; Taylor, N. E.; Pullen, A. D.; Jardine, A. P.

    2016-10-01

    There is considerable interest in the high-rate compaction of brittle granular materials such as sand. However, the vast majority of studies focus on a single granular system, limiting our ability to make comparisons between materials to discern how granular structure manifests as bulk material response. Here, three different silica sands with similar grain size and shape are studied: we compare a rough quarry sand, a smoother-grained sand, and a sandy loam. Quasi-static compaction and planar shock loading responses are compared, and recovered samples analyzed. The combination provides information regarding the interplay between granular properties, loading conditions, and material response. We show that the fundamental grain-scale behaviour depends on loading conditions: At low strain rates compaction behaviour is dominated by grain morphology, and in particular, smoothness and particle size distribution. Under shock loading, grain rearrangement and force chain effects are suppressed, and the nature of inter-granular contact points, modified by the presence of moisture or fines, is most important. Furthermore, grain fracture under shock loading is substantially reduced with increasing moisture content.

  7. The Influence of Strain-Rate History and Temperature on the Shear Strength of Copper, Titanium and Mild Steel

    Science.gov (United States)

    1976-03-01

    17. DISTRIBSUTION STATEMENT (of the absltact enteped In BItk 20, It ditferentt hora Repat) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue or r’everse...above, it is not possible to determine T2 unambiguously, because of the absence of a well- defined yield point; AT is clearly very small, if not zero ...letter F) except in some of the dynamic tests where the strain-hardening rate becomes zero at large strains. The considerable temperature sensitivity

  8. The role of partial melting and extensional strain rates in the development of metamorphic core complexes

    Science.gov (United States)

    Rey, P. F.; Teyssier, C.; Whitney, D. L.

    2009-11-01

    geothermal gradient (35 to 65 °C km - 1 ); material remains partially molten in the dome during ascent. At low strain rate (mm yr - 1 in the core complex region), the partially molten crust crystallizes at high pressure; this material is subsequently deformed in the solid-state along a cooler geothermal gradient (20 to 35 °C km - 1 ) during ascent. Therefore, the models predict distinct crystallization versus exhumation histories of migmatite cores as a function of extensional strain rates. The Shuswap metamorphic core complex (British Columbia, Canada) exemplifies a metamorphic core complex in which an asymmetric, detachment-controlled migmatite dome records rapid exhumation and cooling likely related to faster rates of extension. In contrast the Ruby Mountain-East Humboldt Ranges (Nevada, U.S.A.) exhibits characteristics associated with slower metamorphic core complexes.

  9. Early Detection of Regional and Global Left Ventricular Myocardial Function Using Strain and Strain-rate Imaging in Patients with Metabolic Syndrome

    Institute of Scientific and Technical Information of China (English)

    Qin Wang; Qi-Wei Sun; Dan Wu; Ming-Wu Yang; Rong-Juan Li; Bo Jiang; Jiao Yang

    2015-01-01

    Background:Strain and strain-rate imaging (SRI) have been found clinically useful in the assessment of cardiac systolic and diastolic function as well as providing new insights in deciphering cardiac physiology and mechanics in cardiomyopathies,and identifying early subclinical changes in various pathologies.The aim of this study was to evaluate the regional and global left ventricular (LV) myocardial function in metabolic syndrome (MS) with SRI so that we can provide more myocardial small lesions in patients with MS,which is robust and reliable basis for early detection of LV function.Methods:Thirty-nine adults with MS were enrolled in the study.There was a control group of 39 healthy adults.In addition to classic echocardiographic assessment of LV global functional changes,SRI was used to evaluate regional and global LV function.Including:Peak systolic strain (S),peak systolic strain-rate (SR-s),peak diastolic strain-rate (SR-e).Results:There were no statistically significant differences between MS and controls in all traditional parameters of LV systolic function.On the other hand,significant differences were observed between MS and the control group in most of the parameters of S,SR-s,SR-e in regional LV function.Multiple stepwise regression analyses revealed that S and SR significantly were negatively correlated with blood pressure,waist circumference,fasting plasma glucose,uric acid,suggesting that risk factories were relevant to regional systolic dysfunction.Conclusion:In MS with normal LV ejection fraction,there was regional myocardial dysfunction,risk factors contributed to the impairment of systolic and diastolic function of the regional myocardium.Assessment of myocardial function using SRI could be more accurate in MS patient evaluation than conventional echocardiography alone.

  10. Early Detection of Regional and Global Left Ventricular Myocardial Function Using Strain and Strain-rate Imaging in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Qin Wang

    2015-01-01

    Full Text Available Background: Strain and strain-rate imaging (SRI have been found clinically useful in the assessment of cardiac systolic and diastolic function as well as providing new insights in deciphering cardiac physiology and mechanics in cardiomyopathies, and identifying early subclinical changes in various pathologies. The aim of this study was to evaluate the regional and global left ventricular (LV myocardial function in metabolic syndrome (MS with SRI so that we can provide more myocardial small lesions in patients with MS, which is robust and reliable basis for early detection of LV function. Methods: Thirty-nine adults with MS were enrolled in the study. There was a control group of 39 healthy adults. In addition to classic echocardiographic assessment of LV global functional changes, SRI was used to evaluate regional and global LV function. Including: Peak systolic strain (S, peak systolic strain-rate (SR-s, peak diastolic strain-rate (SR-e. Results: There were no statistically significant differences between MS and controls in all traditional parameters of LV systolic function. On the other hand, significant differences were observed between MS and the control group in most of the parameters of S, SR-s, SR-e in regional LV function. Multiple stepwise regression analyses revealed that S and SR significantly were negatively correlated with blood pressure, waist circumference, fasting plasma glucose, uric acid, suggesting that risk factories were relevant to regional systolic dysfunction. Conclusion: In MS with normal LV ejection fraction, there was regional myocardial dysfunction, risk factors contributed to the impairment of systolic and diastolic function of the regional myocardium. Assessment of myocardial function using SRI could be more accurate in MS patient evaluation than conventional echocardiography alone.

  11. Using Google Earth to Explore Strain Rate Models of Southern California

    Science.gov (United States)

    Richard, G. A.; Bell, E. A.; Holt, W. E.

    2007-12-01

    A series of strain rate models for the Transverse Ranges of southern California were developed based on Quaternary fault slip data and geodetic data from high precision GPS stations in southern California. Pacific-North America velocity boundary conditions are applied for all models. Topography changes are calculated using the model dilatation rates, which predict crustal thickness changes under the assumption of Airy isostasy and a specified rate of crustal volume loss through erosion. The models were designed to produce graphical and numerical output representing the configuration of the region from 3 million years ago to 3 million years into the future at intervals of 50 thousand years. Using a North American reference frame, graphical output for the topography and faults and numerical output for locations of faults and points on the crust marked by the locations on cities were used to create data in KML format that can be used in Google Earth to represent time intervals of 50 thousand years. As markers familiar to students, the cities provide a geographic context that can be used to quantify crustal movement, using the Google Earth ruler tool. By comparing distances that markers for selected cities have moved in various parts of the region, students discover that the greatest amount of crustal deformation has occurred in the vicinity of the boundary between the North American and Pacific plates. Students can also identify areas of compression or extension by finding pairs of city markers that have converged or diverged, respectively, over time. The Google Earth layers also reveal that faults that are not parallel to the plate boundary have tended to rotate clockwise due to the right lateral motion along the plate boundary zone. KML TimeSpan markup was added to two versions of the model, enabling the layers to be displayed in an automatic sequenced loop for a movie effect. The data is also available as QuickTime (.mov) and Graphics Interchange Format (.gif

  12. Strain-rate sensitivity of foam materials: A numerical study using 3D image-based finite element model

    Science.gov (United States)

    Sun, Yongle; Li, Q. M.; Withers, P. J.

    2015-09-01

    Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band) of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi) may not be sufficiently representative to capture the actual structural effect. To overcome these limitations, the strain-rate sensitivity of the compressive and tensile properties of closed-cell aluminium Alporas foam is investigated in this study by means of meso-scale realistic finite element (FE) simulations. The FE modelling method based on X-ray computed tomography (CT) image is introduced first, as well as its applications to foam materials. Then the compression and tension of Alporas foam at a wide variety of applied nominal strain-rates are simulated using FE model constructed from the actual cell geometry obtained from the CT image. The stain-rate sensitivity of compressive strength (collapse stress) and tensile strength (0.2% offset yield point) are evaluated when considering different cell-wall material properties. The numerical results show that the rate dependence of cell-wall material is the main cause of the strain-rate hardening of the compressive and tensile strengths at low and intermediate strain-rates. When the strain-rate is sufficiently high, shock compression is initiated, which significantly enhances the stress at the loading end and has complicated effect on the stress at the supporting end. The plastic tensile wave effect is evident at high strain-rates, but shock tension cannot develop in Alporas foam due to the softening associated with single fracture process zone occurring in tensile response. In all cases the micro inertia of individual cell walls subjected to localised deformation is found to

  13. Effect of strain rates on deformation behaviors of an in situ Ti-based metallic glass matrix composite

    Science.gov (United States)

    Jiao, Z. M.; Wang, Z. H.; Chu, M. Y.; Wang, Y. S.; Yang, H. J.; Qiao, J. W.

    2016-06-01

    Quasi-static and dynamic deformation behaviors of an in situ dendrite-reinforced metallic glass matrix composite: Ti56Zr18V10Cu4Be12 were investigated. Upon quasi-static compression, the composite exhibits distinguished work hardening, accompanied by the ultimate strength of 1290 MPa and the plasticity of 20 %. The improved plasticity is attributed to the multiplication of shear bands within the glass matrix and pileups of dislocations within the dendrites. Upon dynamic compression, the stable plastic flow prevails and the yielding stress increases with the strain rate. The macroscopic plasticity decreases considerably, since the shear bands cannot be effectively hindered by dendrites with deteriorated toughness. The dendrite-dominated mechanism results in the positive strain-rate sensitivity, and the Cowper-Symonds model is employed to depict the strain-rate dependency of yielding strength.

  14. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha” martensite transformation occurs.

  15. Strain Rate Dependent Deformation of a Polymer Matrix Composite with Different Microstructures Subjected to Off-Axis Loading

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhu

    2014-01-01

    Full Text Available This paper aims to investigate the comprehensive influence of three microstructure parameters (fiber cross-section shape, fiber volume fraction, and fiber off-axis orientation and strain rate on the macroscopic property of a polymer matrix composite. During the analysis, AS4 fibers are considered as elastic solids, while the surrounding PEEK resin matrix exhibiting rate sensitivities are described using the modified Ramaswamy-Stouffer viscoplastic state variable model. The micromechanical method based on generalized model of cells has been used to analyze the representative volume element of composites. An acceptable agreement is observed between the model predictions and experimental results found in the literature. The research results show that the stress-strain curves are sensitive to the strain rate and the microstructure parameters play an important role in the behavior of polymer matrix.

  16. Evaluation of Dynamic Deformation Behaviors in Metallic Materials under High Strain-Rates Using Taylor Bar Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyung Oh; Shin, Hyung Seop [Andong National Univ., Andong (Korea, Republic of)

    2016-09-15

    To ensure the reliability and safety of various mechanical systems in accordance with their high-speed usage, it is necessary to evaluate the dynamic deformation behavior of structural materials under impact load. However, it is not easy to understand the dynamic deformation behavior of the structural materials using experimental methods in the high strain-rate range exceeding 10{sup 4} s{sup -1}. In this study, the Taylor bar impact test was conducted to investigate the dynamic deformation behavior of metallic materials in the high strain-rate region, using a high-speed photography system. Numerical analysis of the Taylor bar impact test was performed using AUTODYN S/W. The results of the analysis were compared with the experimental results, and the material behavior in the high strain-rate region was discussed.

  17. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions

    Directory of Open Access Journals (Sweden)

    Tao-Hsing Chen

    2015-04-01

    Full Text Available In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB and an MTS tester. An in situ transmission electron microscope (TEM nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles.

  18. Multi-scale Modeling of the Impact Response of a Strain Rate Sensitive High-Manganese Austenitic Steel

    Directory of Open Access Journals (Sweden)

    Orkun eÖnal

    2014-09-01

    Full Text Available A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial tensile loading. The equivalent stress – equivalent strain response was then incorporated into the FE model for the sake of a more representative hardening rule under impact loading. The current results demonstrate that reliable predictions can be obtained by proper coupling of crystal plasticity and FE analysis even if the experimental flow rule of the material is acquired under uniaxial loading and at moderate strain rates that are significantly slower than those attained during impact loading. Furthermore, the current findings also demonstrate the need for an experiment-based multi-scale modeling approach for the sake of reliable predictions of the impact response.

  19. Strain and strain rate by speckle-tracking echocardiography correlate with pressure-volume loop-derived contractility indices in a rat model of athlete's heart.

    Science.gov (United States)

    Kovács, Attila; Oláh, Attila; Lux, Árpád; Mátyás, Csaba; Németh, Balázs Tamás; Kellermayer, Dalma; Ruppert, Mihály; Török, Marianna; Szabó, Lilla; Meltzer, Anna; Assabiny, Alexandra; Birtalan, Ede; Merkely, Béla; Radovits, Tamás

    2015-04-01

    Contractile function is considered to be precisely measurable only by invasive hemodynamics. We aimed to correlate strain values measured by speckle-tracking echocardiography (STE) with sensitive contractility parameters of pressure-volume (P-V) analysis in a rat model of exercise-induced left ventricular (LV) hypertrophy. LV hypertrophy was induced in rats by swim training and was compared with untrained controls. Echocardiography was performed using a 13-MHz linear transducer to obtain LV long- and short-axis recordings for STE analysis (GE EchoPAC). Global longitudinal (GLS) and circumferential strain (GCS) and longitudinal (LSr) and circumferential systolic strain rate (CSr) were measured. LV P-V analysis was performed using a pressure-conductance microcatheter, and load-independent contractility indices [slope of the end-systolic P-V relationship (ESPVR), preload recruitable stroke work (PRSW), and maximal dP/dt-end-diastolic volume relationship (dP/dtmax-EDV)] were calculated. Trained rats had increased LV mass index (trained vs. control; 2.76 ± 0.07 vs. 2.14 ± 0.05 g/kg, P rats (GLS: -18.8 ± 0.3 vs. -15.8 ± 0.4%; LSr: -5.0 ± 0.2 vs. -4.1 ± 0.1 Hz; GCS: -18.9 ± 0.8 vs. -14.9 ± 0.6%; CSr: -4.9 ± 0.2 vs. -3.8 ± 0.2 Hz, P rat model, strain and strain rate parameters closely reflected the improvement in intrinsic contractile function induced by exercise training.

  20. Numerical implementation of a crystal plasticity model with dislocation transport for high strain rate applications

    Science.gov (United States)

    Mayeur, Jason R.; Mourad, Hashem M.; Luscher, Darby J.; Hunter, Abigail; Kenamond, Mark A.

    2016-05-01

    This paper details a numerical implementation of a single crystal plasticity model with dislocation transport for high strain rate applications. Our primary motivation for developing the model is to study the influence of dislocation transport and conservation on the mesoscale response of metallic crystals under extreme thermo-mechanical loading conditions (e.g. shocks). To this end we have developed a single crystal plasticity theory (Luscher et al (2015)) that incorporates finite deformation kinematics, internal stress fields caused by the presence of geometrically necessary dislocation gradients, advection equations to model dislocation density transport and conservation, and constitutive equations appropriate for shock loading (equation of state, drag-limited dislocation velocity, etc). In the following, we outline a coupled finite element-finite volume framework for implementing the model physics, and demonstrate its capabilities in simulating the response of a [1 0 0] copper single crystal during a plate impact test. Additionally, we explore the effect of varying certain model parameters (e.g. mesh density, finite volume update scheme) on the simulation results. Our results demonstrate that the model performs as intended and establishes a baseline of understanding that can be leveraged as we extend the model to incorporate additional and/or refined physics and move toward a multi-dimensional implementation.

  1. Finite element analysis of the high strain rate testing of polymeric materials

    Science.gov (United States)

    Gorwade, C. V.; Alghamdi, A. S.; Ashcroft, I. A.; Silberschmidt, V. V.; Song, M.

    2012-08-01

    Advanced polymer materials are finding an increasing range of industrial and defence applications. Ultra-high molecular weight polymers (UHMWPE) are already used in lightweight body armour because of their good impact resistance with light weight. However, a broader use of such materials is limited by the complexity of the manufacturing processes and the lack of experimental data on their behaviour and failure evolution under high-strain rate loading conditions. The current study deals with an investigation of the internal heat generation during tensile of UHMWPE. A 3D finite element (FE) model of the tensile test is developed and validated the with experimental work. An elastic-plastic material model is used with adiabatic heat generation. The temperature and stresses obtained with FE analysis are found to be in a good agreement with the experimental results. The model can be used as a simple and cost effective tool to predict the thermo-mechanical behaviour of UHMWPE part under various loading conditions.

  2. Plasticity induced by pre-existing defects during high strain-rate loading

    Science.gov (United States)

    Bringa, Eduardo

    2014-03-01

    High strain-rate deformation of metals has been typically studied for perfect monocrystals. Computational advances now allow more realistic simulations of materials including defects, which lower the Hugoniot Elastic Limit, and lead to microstructures differing from the ones from perfect monocrystals. As pre-existing defects one can consider vacancy clusters, dislocation loops, grain boundaries, etc. New analysis tools allow analysis of dislocation densities and twin fractions, for both f.c.c. and b.c.c. metals. Recent results for defective single crystal Ta [Tramontina et al.., High Energy Den. Phys. 10, 9 (2014), and Ruestes et al., Scripta Mat. 68, 818 (2013)], and for polycrystalline b.c.c metals [Tang et al., Mat. Sci. Eng. A 580, 414 (2013), and Gunkelmann et al., Phys. Rev. B 86, 144111 (2012)] will be highlighted, alongside new results for nanocrystalline Cu, Ta, Fe, and Zr [Ruestes et al., Scripta Mat. 71, 9 (2014)]. This work has been carried out in collaboration with D. Tramontina, C. Ruestes, E. Millan, J. Rodriguez-Nieva, M.A. Meyers, Y. Tang, H. Urbassek, N. Gunkelmann, A. Stukowski, M. Ruda, G. Bertolino, D. Farkas, A. Caro, J. Hawreliak, B. Remington, R. Rudd, P. Erhart, R. Ravelo, T. Germann, N. Park, M. Suggit, S. Michalik, A. Higginbotham and J. Wark. Funding by PICT2008-1325 and SeCTyP U.N. Cuyo.

  3. Cerebrovascular injury caused by a high strain rate insult in the thorax

    CERN Document Server

    Courtney, Amy

    2011-01-01

    Primary blast-induced traumatic brain injury (TBI) has increased in documented incidence and public prominence in recent conflicts. Evidence for a thoracic mechanism of blast-induced TBI was recently reviewed and, while the totality is compelling, data from experiments isolating this mechanism is sparse. Notably, one recent study showed pericapillar haemorrhage in brain tissue from victims of single, fatal gunshot wounds to the chest. Here, qualitative results are reported for a small field study that isolated a thoracic mechanism for TBI caused by a high strain rate insult in white-tailed deer (Odocoileus virginianus, mass 49-80 kg) in a natural environment. In each of three cases, petechiae were present on the surface of the frontal, occipital and/or left parietal lobes, along with capillary damage in the choroid plexus. The location of the projectile impact to the thorax seemed to affect the degree of damage. This may be due to the proximity to the great vessels. The data reported here provides direct evid...

  4. The role of reactant unmixedness, strain rate, and length scale on premixed combustor performance

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsen, S.; LaRue, J.; Vilayanur, S. [Univ. of California, Irvine, CA (United States)] [and others

    1995-10-01

    Lean premixed combustion provides a means to reduce pollutant formation and increase combustion efficiency. However, fuel-air mixing is rarely uniform in space and time. This nonuniformity in concentration will lead to relative increases in pollutant formation and decreases in combustion efficiency. The nonuniformity of the concentration at the exit of the premixer has been defined by Lyons (1981) as the {open_quotes}unmixedness.{close_quotes} Although turbulence properties such as length scales and strain rate are known to effect unmixedness, the exact relationship is unknown. Evaluating this relationship and the effect of unmixedness in premixed combustion on pollutant formation and combustion efficiency are an important part of the overall goal of US Department of Energy`s Advanced Turbine Systems (ATS) program and are among the goals of the program described herein. The information obtained from ATS is intended to help to develop and commercialize gas turbines which have (1) a wide range of operation/stability, (2) a minimal amount of pollutant formation, and (3) high combustion efficiency. Specifically, with regard to pollutants, the goals are to reduce the NO{sub x} emissions by at least 10%, obtain less than 20 PPM of both CO and UHC, and increase the combustion efficiency by 5%.

  5. Slow strain rate corrosion and fracture characteristics of X-52 and X-70 pipeline steels

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, A. [Instituto Mexicano del Petroleo, Programa de Investigacion y Desarrollo de Ductos, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, C.P. 07730, Mexico, D.F. (Mexico)]. E-mail: acontrer@imp.mx; Albiter, A. [Instituto Mexicano del Petroleo, Programa de Investigacion y Desarrollo de Ductos, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, C.P. 07730, Mexico, D.F. (Mexico); Salazar, M. [Instituto Mexicano del Petroleo, Programa de Investigacion y Desarrollo de Ductos, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, C.P. 07730, Mexico, D.F. (Mexico); Perez, R. [Instituto Mexicano del Petroleo, Programa de Investigacion y Desarrollo de Ductos, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, C.P. 07730, Mexico, D.F. (Mexico)

    2005-10-25

    The susceptibility to stress corrosion cracking (SCC) in a NACE solution saturated with H{sub 2}S, of the X-52 and X-70 steels was studied using slow strain rate tests (SSRT) and electrochemical evaluations. SCC tests were performed in samples which include the longitudinal weld bead of the pipeline steels and were carried out in the NACE solution at both room temperature and 50 deg. C. After failure, the fracture surfaces were observed in a scanning electron microscope (SEM) and the chemical analysis were obtained using X-rays energy dispersive (EDXs) techniques. The specimens tested in air, exhibited a ductile type of failure, and whereas, those tested in the corrosive solution showed a brittle fracture. Specimens tested in the NACE solution saturated with H{sub 2}S presented high susceptibility to SCC. Corrosion was found to be an important factor in the initiation of some cracks. In addition, the effect of the temperature on the corrosion attack was explored. The susceptibility to SCC was manifested as a decrease in the mechanical properties. Potentiodynamic polarization curves and hydrogen permeation measurements were made. The diffusion of atomic hydrogen was related to this fracture forms. The hydrogen permeation flux increased with the increasing of temperature.

  6. Some influences of rock strength and strain rate on propagation of rock avalanches

    Science.gov (United States)

    Bowman, Elisabeth; Rait, Kim

    2016-04-01

    Rock avalanches are extreme and destructive mass movements in which large volumes of rock (typically >1 million cubic metres) travel at high speeds, covering large distances, and the occurrence of which is highly unpredictable. The "size effect" in rock avalanches, whereby those with larger volumes produce greater spreading efficiency (as defined by an increase in normalised runout) or lower farboschung angle (defined as the tangent of the ratio of fall height to runout length), is well known. Studies have shown that rock strength is a controlling factor in the mobility of rock avalanches - that is, mass movements involving lower strength rock are generally found to produce greater mobility as evidenced by the spread of deposits or low farboschung angle. However, there are conflicting ideas as to how and why this influence is manifested. This paper discusses different theories of rock comminution in light of numerical simulations of rock clasts undergoing normal and shear induced loading, experimental work on rock avalanche behaviour, and dynamic fracture mechanics. In doing so, we introduce the idea of thresholds of strain rate for the production of dynamic fragmentation (as opposed to pseudo-static clast crushing) that are based, inter alia, on static rock strength. To do this, we refer to data from physical models using rock analogue materials, field data on chalk cliff collapses, and field statistics from documented rock avalanches. The roles of normal and shear loading and loading rate within a rock avalanche are examined numerically using 3D Discrete Element Method models of rock clasts loaded to failure. Results may help to reconcile the observations that large rock avalanches in stronger materials tend not to fragment as much as those in weaker materials and also possess lower mobility, while small cliff collapses (typically > 1000 cubic metres) in weak chalk can exhibit rock avalanche-like behaviour at much smaller volumes.

  7. Experimental study of the compression properties of Al/W/PTFE granular composites under elevated strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.F., E-mail: lynx@mail.njust.edu.cn [School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zhang, J.; Qiao, L.; Shi, A.S.; Zhang, Y.G.; He, Y. [School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Guan, Z.W. [School of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GQ (United Kingdom)

    2013-10-01

    Granular composites consisting of aluminium (Al), tungsten (W) and polytetraflouroethylene (PTFE) are typical energetic materials, which possess high density and strength along with other advantageous properties. To investigate the mechanical behaviour of Al/W/PTFE granular composites, compression tests of three Al/W/PTFE mixtures under quasi-static loading and high strain rate conditions were conducted on a CSS-44100 Materials Testing System and a Split-Hopkinson Pressure Bar (SHPB), respectively. By employing Al bars, the amplitude of the transmitted signal was significantly enhanced and a high signal-to-noise ratio was obtained. This enhancement was due to the decreased Young's modulus of the bars, which led to increased signal amplitude from the strain gauges. The Al/W/PTFE granular composites were processed using a cold isostatic pressing and vacuum sintering approach. In this work, the fracture modes and stress-strain relationships of Al/W/PTFE composites with mass ratios of Al:W:PTFE of 24:0:76, 12:50:38 and 5.5:77:17.5 were studied. A detailed discussion is provided to cover the effect that tungsten addition, strain rate and mass ratio have on the deformation behaviour of the composites. The results show that the mass ratio plays a significant role in determining the dynamic behaviour and failure modes of the composites. Both the Al/W/PTFE (24:0:76) and the Al/W/PTFE (12:50:38) composites are strain rate dependent, elasto-plastic materials characterised by increased yield stress with increased strain rate. However, the Al/W/PTFE (5.5:77:17.5) composite is a brittle material, which shows brittle fracture at a relatively low strain.

  8. Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica

    Science.gov (United States)

    Asija, Neelanchali; Chouhan, Hemant; Gebremeskel, Shishay Amare; Bhatnagar, Naresh

    2017-01-01

    Shear thickening is a non-Newtonian flow behavior characterized by the increase in apparent viscosity with the increase in applied shear rate, particularly when the shear rate exceeds a critical value termed as the critical shear rate (CSR). Due to this remarkable property of shear-thickening fluids (STFs), they are extensively used in hip protection pads, protective gear for athletes, and more recently in body armor. The use of STFs in body armor has led to the development of the concept of liquid body armor. In this study, the effect of particle size is explored on the low and high strain rate behavior of nanosilica dispersions, so as to predict the efficacy of STF-aided personal protection systems (PPS), specifically for ballistic applications. The low strain rate study was conducted on cone and plate rheometer, whereas the high strain rate characterization of STF was conducted on in-house fabricated split Hopkinson pressure bar (SHPB) system. Spherical nanosilica particles of three different sizes (100, 300, and 500 nm) as well as fumed silica particles of four different specific surface areas (Aerosil A-90, A-130, A-150, and A-200), respectively, were used in this study. The test samples were prepared by dispersing nanosilica particles in polypropylene glycol (PPG) using ultrasonic homogenization method. The low strain rate studies aided in determining the CSR of the synthesized STF dispersions, whereas the high strain rate studies explored the impact-resisting ability of STFs in terms of the impact toughness and the peak stress attained during the impact loading of STF in SHPB testing.

  9. Effect of the strain rate on the mechanical properties of a sheet TRIP steel with a high martensite content

    Science.gov (United States)

    Eliseev, E. A.; Terent'ev, V. F.; Voznesenskaya, N. M.; Slizov, A. K.; Sirotinkin, V. P.; Baikin, A. S.; Seval'nev, G. S.

    2017-04-01

    The laws of changing the mechanical properties of sheet austenitic-martensitic VNS9-Sh (23Kh15N5AM3-Sh) TRIP steel are studied when the static strain rate changes in the range 0.1-20 mm/min (8.3 × 10-5-17 × 10-3 s-1). The 0.35-mm strip under study is characterized by a high martensite content (≈100%) in the surface layer at an average content of 80-85%. The transformation induced plasticity effect is maximal at a strain rate of 0.1 mm/min (8.3 × 10-5 s-1).

  10. Quantification of Regional Left Ventricular Systolic Dysfunction in Patients With Coronary Artery Disease by Strain Rate Imaging

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To detect and compare the systolic strain rate (SR) and strain in the infarct and ischemic myocardiu mby strain rate imaging ( SRI), in order to explore the clinical value of SRI in evaluating regional left ventricular systolic dysfunction. Methods Patients with coronary artery disease were divided into angina pectoris ( 11 cases) and myocardial infarction (21 cases) groups. Twenty age-matched normal subjects served as the control group. Septal, lateral, anterior, inferior, anteroseptal and posterior walls of the left ventricle were respectively scanned using color tissue Doppler imaging (TDI). Then SR and strain curves were derived from TDI for basal, middle and apical segments of each wall.SRI parameters were: Systolic SR ( Srsys), systolic strain (εsys) and maximum strain (εmax). Results Compared with normal segments, Srsys, εsys and εmax decreased significantly in the infarct and ischemic segments ( P < 0.01 ). Compared with ischemic segments, Srsys, εsys and εmax decreased significantly in the infarct segments ( P <0.05 ). Conclusions Srsys, εsys and εmax measured by SRI can be used to quantitatively analyze regional left ventricular systolic dysfunction in patients with coronary artery disease, and aid in differentiating infarct from ischemic myocardium.

  11. Mycobacterium tuberculosis Outbreak Strain of Danish Origin Spreading at Worrying Rates among Greenland-Born Persons in Denmark and Greenland

    DEFF Research Database (Denmark)

    Lillebaek, T; Andersen, A B; Rasmussen, E M

    2013-01-01

    origin has been transmitted to Greenland-born persons in Denmark and subsequently to Greenland, where it is spreading at worrying rates and adding to the already heavy tuberculosis burden in this population group. It is now clear that the C2/1112-15 strain is able to gain new territories using a new...... population group as the "vehicle." Thus, it might have the ability to spread even further, considering the potential clinical consequences of strain diversity such as that seen in the widely spread Beijing genotype. The introduction of the predominant M. tuberculosis outbreak strain C2....../1112-15 into the Arctic circumpolar region is a worrying tendency which deserves attention. We need to monitor whether this strain already has, or will, spread to other countries....

  12. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.

    Science.gov (United States)

    Asgharpour, Zahra; Zioupos, Peter; Graw, Matthias; Peldschus, Steffen

    2014-03-01

    Computer-aided methods such as finite-element simulation offer a great potential in the forensic reconstruction of injury mechanisms. Numerous studies have been performed on understanding and analysing the mechanical properties of bone and the mechanism of its fracture. Determination of the mechanical properties of bones is made on the same basis used for other structural materials. The mechanical behaviour of bones is affected by the mechanical properties of the bone material, the geometry, the loading direction and mode and of course the loading rate. Strain rate dependency of mechanical properties of cortical bone has been well demonstrated in literature studies, but as many of these were performed on animal bones and at non-physiological strain rates it is questionable how these will apply in the human situations. High strain-rates dominate in a lot of forensic applications in automotive crashes and assault scenarios. There is an overwhelming need to a model which can describe the complex behaviour of bone at lower strain rates as well as higher ones. Some attempts have been made to model the viscoelastic and viscoplastic properties of the bone at high strain rates using constitutive mathematical models with little demonstrated success. The main objective of the present study is to model the rate dependent behaviour of the bones based on experimental data. An isotropic material model of human cortical bone with strain rate dependency effects is implemented using the LS-DYNA material library. We employed a human finite element model called THUMS (Total Human Model for Safety), developed by Toyota R&D Labs and the Wayne State University, USA. The finite element model of the human femur is extracted from the THUMS model. Different methods have been employed to develop a strain rate dependent material model for the femur bone. Results of one the recent experimental studies on human femur have been employed to obtain the numerical model for cortical femur. A

  13. Effect of deformation temperature and strain rate on semi-solid deformation behavior of spray-formed Al-70 %Si alloys

    Institute of Scientific and Technical Information of China (English)

    ZHANG Di; YANG Bin; ZHANG Ji-shan; ZHANG Yong-an; XIONG Bai-qing

    2005-01-01

    Spray-formed Al-70%Si(mass fraction) alloys were deformed by compression in the semi-solid state.The effects of the deformation temperature, strain rate and the microstructure were studied. Two strain rates(1 s-1and 0.1 s-1) and six deformation temperatures (600 ℃, 720 ℃ , 780 ℃, 900 ℃, 1 000 ℃ and 1 100 ℃) were chosen. The stress-strain curve exhibits a peak at low strain and then decreases to a plateau before it starts to increase again as the strain increases. The stress required for deformation at lower strain rate and at higher deformation temperatures is less than those at higher strain rate and at lower deformation temperatures. Four mechanisms of semisolid deformation can be used to explain the different behaviors of the stress-strain curves under different conditions.

  14. Segment-orientated analysis of two-dimensional strain and strain rate as assessed by velocity vector imaging in patients with acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Thomas Butz, Corinna N. Lang, Marc van Bracht, Magnus W. Prull, Hakan Yeni, Petra Maagh, Gunnar Plehn, Axel Meissner, Hans-Joachim Trappe

    2011-01-01

    Full Text Available Aims: Strain rate imaging techniques have been proposed for the detection of ischemic or viable myocardium in coronary artery disease, which is still a challenge in clinical cardiology. This retrospective comparative study analyzed regional left ventricular function and scaring with two-dimensional strain (2DS in the first 4 to 10 days after acute anterior myocardial infarction (AMI.Methods and results: The study population consisted of 32 AMI patients with an LAD occlusion and successful reperfusion. The assessment of peak systolic 2DS and peak systolic strain rate (SR was performed segment-oriented with the angle-independent speckle tracking algorithm Velocity Vector Imaging (VVI. The infarcted, adjacent and non-infarcted segments were revealed by late enhancement MRI (LE-MRI, which was used as reference for the comparison with 2DS. The infarcted segments showed a significant decrease of tissue velocities, 2DS and SR in comparison to the non-affected segments.Conclusion: 2DS and SR as assessed by VVI seem to be a suitable approach for echocardiographic quantification of global and regional myocardial function as well as a promising tool for multimodal risk stratification after anterior AMI.

  15. Environmental and strain rate effects on graphite/epoxy composites. Final Report; M.S. Thesis, 1987

    Science.gov (United States)

    Peimandis, Konstantinos

    1991-01-01

    The hygrothermal characterization of unidirectional graphite/epoxy composites over a range of strain rates was investigated. Special techniques developed for such hygrothermal characterization are also described. The mechanical properties of the composite material were obtained and analyzed by means of a time-temperature-moisture superposition principle. The results show the following: (1) the embedded gage technique was thoroughly examined and found to be appropriate for both hygrothermal expansion and mechanical strain measurements; (2) all transverse properties were found to decrease with increasing temperature and moisture content; and (3) ultimate transverse properties were found to increase with strain rate at low temperatures but follow an opposite trend at high temperatures compared to dry specimens.

  16. Strain rate dependent behaviors of a hot isotropically processed Ti-6Al-4V: Mechanisms and material model

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaohan; Ren, Mingfa; Bu, Fanzi; Chen, Guoqing; Li, Gang [Dalian University of Technology, Dalian (China); Li, Tong [Queensland University of Technology, Brisbane (Australia)

    2016-02-15

    Split-Hopkinson pressure bar (SHPB) was adopted to study the dynamic response of a specifically designed Hot isotropically processed (HIP) Casting Titanium alloy (Ti-6Al-4V). The strain-stress curves were obtained in a range of strain rate (10{sup -3}⁓2.6x10{sup 3}/s) to study the constitutive relationships and the Johnson-Cook model is developed to describe this dynamic constitutive law. It can be found that the static microstructure of this specific HIP casting Ti-6Al-4V is lamellar structure. When the loading increases (strain rate higher than 10{sup 3}/s), this lamellar structure changes to basket weave structure, which further changes the mechanical strength and plasticity.

  17. Numerical studies of tool diameter on strain rates, temperature rises and grain sizes in friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhao; Qi, Wu [Dalian University of Technology, Dalian (China)

    2015-10-15

    Fully coupled thermo-mechanical model is used to obtain the true strain components. The sizes of the TMAZ and the SZ are predicted according to the different behaviors of the traced material particles. The strain rate and the temperature histories are used to calculate the Zener-Hollomon parameter and then the grain size in the SZ. Results indicate that the contribution from the temperatures is much more important than the one from the deformations. The strain rates at the advancing side are higher than the ones at the retreating side on the top surface but become symmetrical on the bottom surface. The widths of the TMAZ and the SZ become narrower in smaller shoulder diameter. Smaller shoulder can lead to smaller grain size in the SZ.

  18. Effects that different types of sports have on the hearts of children and adolescents and the value of two-dimensional strain-strain-rate echocardiography.

    Science.gov (United States)

    Binnetoğlu, Fatih Köksal; Babaoğlu, Kadir; Altun, Gürkan; Kayabey, Özlem

    2014-01-01

    Whether the hypertrophy found in the hearts of athletes is physiologic or a risk factor for the progression of pathologic hypertrophy remains controversial. The diastolic and systolic functions of athletes with left ventricular (LV) hypertrophy usually are normal when measured by conventional methods. More precise assessment of global and regional myocardial function may be possible using a newly developed two-dimensional (2D) strain echocardiographic method. This study evaluated the effects that different types of sports have on the hearts of children and adolescents and compared the results of 2D strain and strain-rate echocardiographic techniques with conventional methods. Athletes from clubs for five different sports (basketball, swimming, football, wrestling, and tennis) who had practiced regularly at least 3 h per week during at least the previous 2 years were included in the study. The control group consisted of sedentary children and adolescents with no known cardiac or systemic diseases (n = 25). The athletes were grouped according to the type of exercise: dynamic (football, tennis), static (wrestling), or static and dynamic (basketball, swimming). Shortening fraction and ejection fraction values were within normal limits for the athletes in all the sports disciplines. Across all 140 athletes, LV geometry was normal in 58 athletes (41.4 %), whereas 22 athletes (15.7 %) had concentric remodeling, 20 (14.3 %) had concentric hypertrophy, and 40 (28.6 %) had eccentric hypertrophy. Global LV longitudinal strain values obtained from the average of apical four-, two-, and three-chamber global strain values were significantly lower for the basketball players than for all the other groups (p < 0.001).

  19. Doppler-derived strain and strain rate imaging assessment of right ventricular systolic function in adults late after tetralogy of Fallot repair: an observational study.

    Science.gov (United States)

    Sadeghpour, Anita; Kyavar, Majid; Madadi, Shabnam; Ebrahimi, Leili; Khajali, Zahra; Sani, Zahra Alizadeh

    2013-09-01

    Tetralogy of Fallot (TOF) is the most common form of cyanotic congenital heart disease. Today, we are faced with an increasing number of patients with residual pulmonary regurgitation (PR) late after TOF repair. The right ventricular (RV) volumes and function are among the most important factors influencing clinical decision-making. Cardiac magnetic resonance (CMR) is the gold standard method for the quantitative assessment of the RV function; it is, however, expensive for routine clinical follow-up and sometimes is contraindicated. We sought to evaluate the RV systolic function via CMR and compare it with Doppler-derived strain(S) and strain rate (SR) imaging in patients with repaired TOF. In an observational cross-sectional study, 70 patients (22 women, mean age=22±4.9 years) late after TOF repair with severe PR were evaluated. Peak systolic strain and SR in the basal, mid, and apical segments of RV free wall (RVFW) were measured and compared with the RV function measured in the short-axis cine MR. Associations between RVEF and S/SR, investigated by ordinal logistic regression models. Significant association was observed between RV function and mean S of all the three segments of the RVFW segments [OR (CI95%): 1.17 (1.05-1.31)]. Association between RV function and mean SR of all the three segments of the RVFW segments was borderline significant [OR (CI95%): 1.7 (0.97-2.93)]. There was a significant correlation between the Doppler-derived mean strain of RVFW and the RV function measured by CMR in adults late after TOF repair. These quantitative methods improved the assessment of the RV function and served as an additional method to follow up patients with contraindications to CMR.

  20. TEM sample preparation by femtosecond laser machining and ion milling for high-rate TEM straining experiments.

    Science.gov (United States)

    Voisin, Thomas; Grapes, Michael D; Zhang, Yong; Lorenzo, Nicholas; Ligda, Jonathan; Schuster, Brian; Weihs, Timothy P

    2016-12-05

    To model mechanical properties of metals at high strain rates, it is important to visualize and understand their deformation at the nanoscale. Unlike post mortem Transmission Electron Microscopy (TEM), which allows one to analyze defects within samples before or after deformation, in situ TEM is a powerful tool that enables imaging and recording of deformation and the associated defect motion during mechanical loading. Unfortunately, all current in situ TEM mechanical testing techniques are limited to quasi-static strain rates. In this context, we are developing a new test technique that utilizes a rapid straining stage and the Dynamic TEM (DTEM) at the Lawrence Livermore National Laboratory (LLNL). The new straining stage can load samples in tension at strain rates as high as 4×10(3)/s using two piezoelectric actuators operating in bending while the DTEM at LLNL can image in movie mode with a time resolution as short as 70ns. Given the piezoelectric actuators are limited in force, speed, and displacement, we have developed a method for fabricating TEM samples with small cross-sectional areas to increase the applied stresses and short gage lengths to raise the applied strain rates and to limit the areas of deformation. In this paper, we present our effort to fabricate such samples from bulk materials. The new sample preparation procedure combines femtosecond laser machining and ion milling to obtain 300µm wide samples with control of both the size and location of the electron transparent area, as well as the gage cross-section and length.

  1. Strain Rate Effect on the Tensile Behavior of Fibers and Its Application to Ballistic Perforation of Multi-layered Fabrics

    Institute of Scientific and Technical Information of China (English)

    GU Bo-hong; PAN Xiong-qi

    2002-01-01

    Rate-dependent property of material is very important in analysis of ballistic impact. The tensile property of Twaron(R) filaments at strain rate range from 0.01/s to1 000/s was obtained by MTS materials testing and split Hopkinson tension bar. Rate sensitivity of Twaron(R) filaments is discussed. Application of high strain rate property to ballistic perforation of multi- layered fabrics conforms to the actual situation than that of quasi-static property. The revised analytical model can be used to calculate the process of ballistic penetration and perforation on soft armour, such as fabric target plate,at intuitive approach and simple algorithm with a little computer process time. Predictions of the residual velocities and energy absorbed by the multi- layered fabric show good agreement with experimental data.

  2. A numerical and experimental study of temperature effects on deformation behavior of carbon steels at high strain rates

    Science.gov (United States)

    Pouya, M.; Winter, S.; Fritsch, S.; F-X Wagner, M.

    2017-03-01

    Both in research and in the light of industrial applications, there is a growing interest in methods to characterize the mechanical behavior of materials at high strain rates. This is particularly true for steels (the most important structural materials), where often the strain rate-dependent material behavior also needs to be characterized in a wide temperature range. In this study, we use the Finite Element Method (FEM), first, to model the compressive deformation behavior of carbon steels under quasi-static loading conditions. The results are then compared to experimental data (for a simple C75 steel) at room temperature, and up to testing temperatures of 1000 °C. Second, an explicit FEM model that captures wave propagation phenomena during dynamic loading is developed to closely reflect the complex loading conditions in a Split-Hopkinson Pressure Bar (SHPB) – an experimental setup that allows loading of compression samples with strain rates up to 104 s-1 The dynamic simulations provide a useful basis for an accurate analysis of dynamically measured experimental data, which considers reflected elastic waves. By combining numerical and experimental investigations, we derive material parameters that capture the strain rate- and temperature-dependent behavior of the C75 steel from room temperature to 1000 °C, and from quasi-static to dynamic loading.

  3. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination of high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.

  4. Monotonic and cyclic responses of impact polypropylene and continuous glass fiber-reinforced impact polypropylene composites at different strain rates

    KAUST Repository

    Yudhanto, Arief

    2016-03-08

    Impact copolymer polypropylene (IPP), a blend of isotactic polypropylene and ethylene-propylene rubber, and its continuous glass fiber composite form (glass fiber-reinforced impact polypropylene, GFIPP) are promising materials for impact-prone automotive structures. However, basic mechanical properties and corresponding damage of IPP and GFIPP at different rates, which are of keen interest in the material development stage and numerical tool validation, have not been reported. Here, we applied monotonic and cyclic tensile loads to IPP and GFIPP at different strain rates (0.001/s, 0.01/s and 0.1/s) to study the mechanical properties, failure modes and the damage parameters. We used monotonic and cyclic tests to obtain mechanical properties and define damage parameters, respectively. We also used scanning electron microscopy (SEM) images to visualize the failure mode. We found that IPP generally exhibits brittle fracture (with relatively low failure strain of 2.69-3.74%) and viscoelastic-viscoplastic behavior. GFIPP [90]8 is generally insensitive to strain rate due to localized damage initiation mostly in the matrix phase leading to catastrophic transverse failure. In contrast, GFIPP [±45]s is sensitive to the strain rate as indicated by the change in shear modulus, shear strength and failure mode.

  5. The effects of temperature and strain rate on the yielding behavior of the single crystal superalloy PWA 1480

    Science.gov (United States)

    Milligan, Walter W.; Antolovich, Stephen D.

    1988-01-01

    Interrupted tensile tests were conducted on (001) oriented single crystals at temperatures from 20 to 1093 C. Two strain rates were used, 0.5 and 50 percent/min. After the tests, the deformation substructures were characterized by transmission electron microscopy. Results of these tests are given.

  6. Experimental investigation of the behaviour of tungsten and molybdenum alloys at high strain-rate and temperature

    Directory of Open Access Journals (Sweden)

    Scapin Martina

    2015-01-01

    Full Text Available The introduction in recent years of new, extremely energetic particle accelerators such as the Large Hadron Collider (LHC gives impulse to the development and testing of refractory metals and alloys based on molybdenum and tungsten to be used as structural materials. In this perspective, in this work the experimental results of a tests campaign on Inermet®  IT180 and pure Molybdenum (sintered by two different producers are presented. The investigation of the mechanical behaviour was performed in tension varying the strain-rates, the temperatures and both of them. Overall six orders of magnitude in strain-rate (between 10−3 and 103 s−1 were covered, starting from quasi-static up to high dynamic loading conditions. The high strain-rate tests were performed using a direct Hopkinson Bar setup. Both in quasi-static and high strain-rate conditions, the heating of the specimens was obtained with an induction coil system, controlled in feedback loop, based on measurements from thermocouples directly welded on the specimen. The temperature range varied between 25 and 1000°C. The experimental data were, finally, used to extract the parameters of the Zerilli-Armstrong model used to reproduce the mechanical behaviour of the investigated materials.

  7. Early diastolic strain rate in relation to systolic and diastolic function and prognosis in acute myocardial infarction

    DEFF Research Database (Denmark)

    Ersbøll, Mads; Andersen, Mads J; Valeur, Nana

    2014-01-01

    AIMS: Diastolic dysfunction in acute myocardial infarction (MI) is associated with adverse outcome. Recently, the ratio of early mitral inflow velocity (E) to global diastolic strain rate (e'sr) has been proposed as a marker of elevated LV filling pressure. However, the prognostic value of this m...

  8. On the self-pinning character of synchro-Shockley dislocations in a Laves phase during strain rate cyclical compressions

    NARCIS (Netherlands)

    Kazantzis, A. V.; Aindow, M.; Triantafyllidis, G. K.; De Hosson, J. Th. M.

    2008-01-01

    Strain rate cyclical tests in compression, between 1350 and 1500 degrees C, have been employed to study the self-pinning character of thermally activated synchro-Shockley dislocations in the C15 Cr2Nb Laves phase. An average minimum effective (pinning) stress was calculated to be necessary for their

  9. An Experimental study of the initial volumetric strain rate effect on the creep behaviour of reconstituted clays

    Science.gov (United States)

    Bagheri, M.; Rezania, M.; Nezhad, M. M.

    2015-09-01

    Clayey soils tend to undergo continuous compression with time, even after excess pore pressures have substantially dissipated. The effect of time on deformation and mechanical response of these soft soils has been the subject of numerous studies. Based on these studies, the observed time-dependent behaviour of clays is mainly related to the evolution of soil volume and strength characteristics with time, which are classified as creep and/or relaxation properties of the soil. Apart from many empirical relationships that have been proposed in the literature to capture the rheological behaviour of clays, a number of viscid constitutive relationships have also been developed which have more attractive theoretical attributes. A particular feature of these viscid models is that their creep parameters often have clear physical meaning (e.g. coefficient of secondary compression, Cα). Sometimes with these models, a parameter referred to as initial/reference volumetric strain rate, has also been alluded as a model parameter. However, unlike Cα, the determination of and its variations with stress level is not properly documented in the literature. In an attempt to better understand , this paper presents an experimental investigation of the reference volumetric strain rate in reconstituted clay specimens. A long-term triaxial creep test, at different shear stress levels and different strain rates, was performed on clay specimen whereby the volumetric strain rate was measured. The obtained results indicated the stress-level dependency and non-linear variation of with time.

  10. Experimental investigation of the behaviour of tungsten and molybdenum alloys at high strain-rate and temperature

    CERN Document Server

    Scapin, Martina; Carra, Federico; Peroni, Lorenzo

    2015-01-01

    The introduction in recent years of new, extremely energetic particle accelerators such as the Large Hadron Collider (LHC) gives impulse to the development and testing of refractory metals and alloys based on molybdenum and tungsten to be used as structural materials. In this perspective, in this work the experimental results of a tests campaign on Inermet® IT180 and pure Molybdenum (sintered by two different producers) are presented. The investigation of the mechanical behaviour was performed in tension varying the strain-rates, the temperatures and both of them. Overall six orders of magnitude in strain-rate (between 10−3 and 103 s−1) were covered, starting from quasi-static up to high dynamic loading conditions. The high strain-rate tests were performed using a direct Hopkinson Bar setup. Both in quasi-static and high strain-rate conditions, the heating of the specimens was obtained with an induction coil system, controlled in feedback loop, based on measurements from thermocouples directly welded on...

  11. Strain-rate and temperature dependent material properties of Agar and Gellan Gum used in biomedical applications.

    Science.gov (United States)

    Schiavi, Alessandro; Cuccaro, Rugiada; Troia, Adriano

    2016-01-01

    Agar and Gellan Gum are biocompatible polymers extensively used in several fields of tissue engineering research (e.g. tissue replacement, tissue support, tissue mimicking), due to their mechanical behaviour effectively representative of actual biological tissues. Since mechanical properties of artificial tissues are related to biocompatibility and functionality of medical implants and significantly influence adhesion, growth and differentiation of cells in tissue-engineering scaffolds, an accurate characterization of Young׳s modulus and relaxation time processes is needed. In this study, the strain-rate and temperature dependent material properties of Agarose and one among the numerous kind of Gellan Gum commercially available, known as Phytagel(®), have been investigated. Nine hydrogel samples have been realized with different mechanical properties: the first one Agar-based as a reference material, the further eight samples Gellan Gum based in which the effect of dispersed solid particles like kieselguhr and SiC, as enhancing mechanical properties factors, have been investigated as a function of concentration. Stress-strain has been investigated in compression and relaxation time has been evaluated by means of the Kohlrausch-Williams-Watts time decay function. Mechanical properties have been measured as a function of temperature between 20 °C and 35 °C and at different strain rates, from ~10(-3)s(-1) and ~10(-2)s(-1) (or deformation rate from ~0.01 mms(-1) to ~0.1 mms(-1)). From experimental data, the combined temperature and strain-rate dependence of hydrogels Young׳s modulus is determined on the basis of a constitutive model. In addition to a dependence of Young׳s modulus on temperature, a remarkable influence of strain-rate has been observed, especially in the sample containing solid particles; in same ranges of temperature and strain-rate, also relaxation time variations have been monitored in order to identify a possible dependence of damping

  12. Deformation nanotwins in coarse-grained aluminum alloy at ambient temperature and low strain rate

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhu; Li, Ning, E-mail: hslining@mail.hust.edu.cn; Jiang, Huawen; Liu, Lin

    2015-01-05

    In order to reveal the possible occurrence of deformation twins in coarse-grained aluminum/aluminum alloy at normal experimental conditions, a 5A02-O aluminum alloy with coarse grains was compressed quasi-statically to various plastic strains at ambient temperature, followed by high-resolution transmission electron analysis. The results revealed some long streaks produced by the thin plate-like structure with 2 atomic planes thick in the specimen undergoing a large strain, while under a relatively small plastic strain, the striped characteristics disappeared. The fast Fourier transform and theoretical analysis have shown that these long streaks are nanotwins, derived from the overlapping of stacking fault ribbons formed by Shockley partial dislocation on adjacent slip planes, which are triggered by the large plastic strain.

  13. Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain

    Science.gov (United States)

    Westerlind, K. C.; Wronski, T. J.; Ritman, E. L.; Luo, Z. P.; An, K. N.; Bell, N. H.; Turner, R. T.

    1997-01-01

    Estrogen deficiency induced bone loss is associated with increased bone turnover in rats and humans. The respective roles of increased bone turnover and altered balance between bone formation and bone resorption in mediating estrogen deficiency-induced cancellous bone loss was investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in the distal femur. However, cancellous bone was preferentially lost in the metaphysis, a site that normally experiences low strain energy. No bone loss was observed in the epiphysis, a site experiencing higher strain energy. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased and decreased in long bones of ovariectomized rats by treadmill exercise and functional unloading, respectively. Functional unloading was achieved during orbital spaceflight and following unilateral sciatic neurotomy. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing loading accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in the unloaded and prevented loss in the loaded limb following unilateral sciatic neurotomy in part by reducing indices of bone turnover. These results suggest that estrogen regulates the rate of bone turnover, but the overall balance between bone formation and bone resorption is influenced by prevailing levels of mechanical strain.

  14. Mycobacterium tuberculosis outbreak strain of Danish origin spreading at worrying rates among greenland-born persons in Denmark and Greenland.

    Science.gov (United States)

    Lillebaek, T; Andersen, A B; Rasmussen, E M; Kamper-Jørgensen, Z; Pedersen, M K; Bjorn-Mortensen, K; Ladefoged, K; Thomsen, V O

    2013-12-01

    Transmission of Mycobacterium tuberculosis continues at high rates among Greenland-born persons in Greenland and Denmark, with 203 and 450 notified cases per 10(5) population, respectively, in the year 2010. Here, we document that the predominant M. tuberculosis outbreak strain C2/1112-15 of Danish origin has been transmitted to Greenland-born persons in Denmark and subsequently to Greenland, where it is spreading at worrying rates and adding to the already heavy tuberculosis burden in this population group. It is now clear that the C2/1112-15 strain is able to gain new territories using a new population group as the "vehicle." Thus, it might have the ability to spread even further, considering the potential clinical consequences of strain diversity such as that seen in the widely spread Beijing genotype. The introduction of the predominant M. tuberculosis outbreak strain C2/1112-15 into the Arctic circumpolar region is a worrying tendency which deserves attention. We need to monitor whether this strain already has, or will, spread to other countries.

  15. Tide-corrected strain rate and crevasses of Campbell Glacier Tongue in East Antarctica measured by SAR interferometry

    Science.gov (United States)

    Han, H.; Lee, H.

    2016-12-01

    Measurement of flow velocity strain rate of a floating glacier is critical to the investigation of detailed flow regime and crevassing mechanism. We measured the surface deformation of Campbell Glacier Tongue (CGT) in East Antarctica from the 14 COSMO-SkyMed one-day tandem differential interferometric SAR (DInSAR) image pairs obtained in 2011. By removing the vertical tidal deflection obtained from the double-differential InSAR (DDInSAR) signals, we derived the tide-corrected ice-flow velocity and strain rate of CGT. The vertical tidal deflection of CGT was estimated by multiplying the tidal variations corresponding to the DInSAR images by the DDInSAR-derived tide deflection ratio, which was removed from the DInSAR signals to extract ice velocity only. The orientation of crevasses in CGT was nearly perpendicular to the direction of the most tensile strain rate calculated from the tide-corrected ice velocity. This demonstrates that the crevasses form by ice flow in respect of the DInSAR accuracy, not by tidal deflection. The tide correction of DInSAR signals over floating glaciers by using the DDInSAR-derived tide deflection ratio is useful for estimating accurate ice velocity and strain rate for analyzing crevasses. The tide-corrected ice velocity and strain rate will thus be of great value in a better understating of ice dynamics of floating glaciers. This research was funded by National Research Foundation of Korea (NRF-2016R1D1A1A09916630).

  16. Evaluation of Regional Myocardial Systolic Function in the Early Stage of Acute Myocardial Infarction by Strain Rate Imaging

    Directory of Open Access Journals (Sweden)

    M Esmaeilzadeh

    2009-12-01

    Full Text Available Background: We sought to evaluate the impact of different therapeutic strategies on longitudinal regional myocardial systolic function in the early phase of acute myocardial infarction using strain rate imaging.Methods: A total of 38 patients (34 males, with first acute myocardial infarction (AMI were evaluated. Our patients were divided into 3 groups according to the kind of therapy. The mean age of the patients was 55 ± 9.4 years (range: 39- 75 years. Mean left ventricular ejection fraction (LVEF in the patients was 41 ± 10.7%. Primary percutaneous coronary intervention (PCI was performed in 10 patients. Sixteen patients were treated by thrombolytic therapy using streptokinase (SK and 12 were followed-up conservatively. All patients underwent a comprehensive echocardiography study including SR imaging within 3- 5 days after AMI. The parameters measured included peak systolic strain (peakε and strain rate (SRs, end-systolic strain (εes, post systolic shortening (PSS, time to peak systolic strain rate (tSRs, time to end of shortening (teSRs, post systolic strain (PSε, post-systolic strain index (PSI, PSS ratio (PSS/ εMax and peak postsystolic strain rate (SRPSS. Results: There was not any association either between WMSI and tå (P=0.4, or MI location and PSS ratio (P=0.13. But there was an inverse relationship between WMSI and mean SRS, especially when WMSI was more pronounced. A significant relationship was found between tε and teSRs with the kind of therapy (shorter in PCI group (P= 0.04. Using a simple linear regression model, no association was found between PSS ratio and SRs (â=0.056, P =0.70, PSI and teSRs (β= -0.772, P=0.12. Simple linear regression model showed a weak but significant relationship between PSI and Median tε (β = -0.851, P =0.04; r =0.33.Conclusion: Our study showed that PCI resulted in early recovery of regional systolic function of infarcted myocardium during the early stage of acute myocardial infarction.

  17. Effects of strain rate and elevated temperature on compressive flow stress and absorbed energy of polyimide foam

    Directory of Open Access Journals (Sweden)

    Horikawa K.

    2012-08-01

    Full Text Available In this study, at first, the effect of strain rate on the strength and the absorbed energy of polyimide foam was experimentally examined by carrying out a series of compression tests at various strain rates, from 10−3 to 103 s−1. This polyimide foam has open cell structure with small cell size of 0.3 ∼ 0.6 mm. In the measurement of impact load, a special load cell with a small part for sensing load was adopted. For the measurement of the displacement, a high-speed camera was used. It was found that the flow stress of polyimide foam and the absorbed energy up to a strain of 0.4 increased with the increase of the strain rates. Secondly, the effect of ambient temperature on the strength and absorbed energy of polyimide foam was also investigated by using a sprit Hopkinson pressure bar apparatus and testing at elevated temperatures of 100 and 200 ∘C. With the increase of temperature, the strength and absorbed energy decreased and the effect is smaller in dynamic tests than static tests.

  18. Effect of glucose concentration on the rate of fructose consumption in native strains isolated from the fermentation of Agave duranguensis.

    Science.gov (United States)

    Díaz-Campillo, M; Urtíz, N; Soto, O; Barrio, E; Rutiaga, M; Páez, J

    2012-12-01

    Studies on hexose consumption by Saccharomyces cerevisiae show that glucose is consumed faster than fructose when both are present (9:1 fructose to glucose) in the medium during the fermentation of Agave. The objective of this work was to select strains of S. cerevisiae that consume fructose equal to or faster than glucose at high fructose concentrations by analyzing the influence of different glucose concentrations on the fructose consumption rate. The optimal growth conditions were determined by a kinetics assay using high performance liquid chromatography (HPLC) using 50 g of glucose and 50 g of fructose per liter of synthetic medium containing peptone and yeast extract. Using the same substrate concentrations, strain ITD-00185 was shown to have a higher reaction rate for fructose over glucose. At 75 g of fructose and 25 g of glucose per liter, strain ITD-00185 had a productivity of 1.02 gL(-1) h(-1) after 40 h and a fructose rate constant of 0.071 h(-1). It was observed that glucose concentration positively influences fructose consumption when present in a 3:1 ratio of fructose to glucose. Therefore, adapted strains at high fructose concentrations could be used as an alternative to traditional fermentation processes.

  19. EFFECTS OF TEST TEMPERATURE AND STRAIN RATE ON THE MECHANICAL PROPERTIES IN AN INTERCRITICALLY HEAT-TREATED BAINITE-TRANSFORMED STEEL

    Institute of Scientific and Technical Information of China (English)

    Z. Li; D. Wu

    2004-01-01

    Larger amount of austenite could be retained in an intercritically heat-treated bainitetransformed steel. The elongation and the strength-ductility balance of the steel could be enhanced considerably due to strain-induced martensite transformation and transformationinduced plasticity (TRIP) of retained austenite. The effects of test temperature and strain rate on the mechanical properties and strain induced transformation behavior of retained austenite in the steel were investigated. Total elongation and strength-ductility balance of the specimen reached maximum when it strained at a strain rate of 2.8×10-4s-1 and at 350℃. The relation between test temperature and tensile properties showed the same tendency at three kinds of strain rates. Flow stress increased considerably with decreasing the strain rate.

  20. A Summary of Fault Recurrence and Strain Rates in the Vicinity of the Hanford Site--Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, Bruce N.; Winsor, Kelsey; Unwin, Stephen D.

    2012-08-01

    This document is one in a series of topical reports compiled by the Pacific Northwest National Laboratory to summarize technical information on selected topics important to the performance of a probabilistic seismic hazard analysis of the Hanford Site. The purpose of this report is to summarize available data and analyses relevant to fault recurrence and strain rates within the Yakima Fold Belt. Strain rates have met with contention in the expert community and may have a significant potential for impact on the seismic hazard estimate at the Hanford Site. This report identifies the alternative conceptual models relevant to this technical issue and the arguments and data that support those models. It provides a brief description of the technical issue and principal uncertainties; a general overview on the nature of the technical issue, along with alternative conceptual models, supporting arguments and information, and uncertainties; and finally, suggests some prospective approaches to reducing uncertainties about earthquake recurrence rates for the Yakima Fold Belt.

  1. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    Science.gov (United States)

    Javvaji, Brahmanandam; Raha, S.; Mahapatra, D. Roy

    2017-02-01

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  2. Transient deformation from daily GPS displacement time series: postseismic deformation, ETS and evolving strain rates

    Science.gov (United States)

    Bock, Y.; Fang, P.; Moore, A. W.; Kedar, S.; Liu, Z.; Owen, S. E.; Glasscoe, M. T.

    2016-12-01

    underlying physical mechanisms. (3) We present evolving strain dilatation and shear rates based on the SESES velocities for regional subnetworks as a metric for assigning earthquake probabilities and detection of possible time-dependent deformation related to underlying physical processes.

  3. Ductile failure of steel HY80 under high strain rates and triaxial stress states, experimental results and damage description

    Science.gov (United States)

    Abdel-Malek, S.; Halle, Th.; Meyer, L. W.

    2003-09-01

    Ductile fracture investigations are an important part in current research. The simulation of fracture by means of numerical codes needs precise material data that may be reached from accurate mechanical testing. In order to predict failure processes, the stress state history as a function of strain development has to be known. In this work tensile tests on HY80 steel were performed under quasistatic and high strain rate loading conditions at room temperature using smooth and notched specimens. The force-time and displacement-time behaviour was measured during testing. Additionally, scanning electron microscopy was used to investigate the fractured surfaces. Furthermore, different models were applied to describe the failure process. FE-calculations were used to receive the stress state in the material in the region of the notch as a function of strain development.

  4. Strain rate dependence of the tensile properties of V-(4--5%)Cr-(4--5%)Ti irradiated in EBR-II and HFBR

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Snead, L.L.; Robertson, J.P.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States)

    1998-03-01

    Elevated temperature tensile tests performed on V-(405)Cr-(4-5)Ti indicate that the yield stress increases with increasing strain rate for irradiation and test temperatures near 200 C, and decreases with increasing strain rate for irradiation and test temperatures near 400 C. This observation is in qualitative agreement with the temperature-dependent strain rate effects observed on unirradiated specimens, and implies that some interstitial solute remains free to migrate in irradiated specimens. Additional strain rate data at different temperatures are needed.

  5. CONDITIONAL FLOW STATISTICS AND ALIGNMENT OF PRINCIPAL STRAIN RATES, VORTICITY, AND SCALAR GRADIENTS IN A TURBULENT NONPREMIXED JET FLAME

    KAUST Repository

    Attili, Antonio

    2015-06-30

    The alignment of vorticity and gradients of conserved and reactive scalars with the eigenvectors of the strain rate tensor (i.e., the principal strains) is investigated in a direct numerical simulation of a turbulent nonpremixed flame achieving a Taylor’s scale Reynolds number in the range 100≤Reλ≤150 (Attili et al. Comb. Flame, 161, 2014). The vorticity vector displays a pronounced tendency to align with the direction of the intermediate strain. These alignment statistics are in almost perfect agreement with those in homogeneous isotropic turbulence (Ashurst et al. Physics of Fluids 30, 1987) and differ significantly from the results obtained in other nonpremixed flames in which vorticity alignment with the most extensive strain was observed (Boratavet al. Physics of Fluids 8, 1996). The gradients of conserved and reactive scalars align with the most compressive strain. It is worth noting that conditioning on the local values of the mixture fraction, or equivalently conditioning on the distance from the flame sheet, does not affect the statistics. Our results suggest that turbulence overshadows the effects of heat release and chemical reactions. This may be due to the larger Reynolds number achieved in the present study compared to that in previous works.

  6. Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains.

    Science.gov (United States)

    Brandt, K K; Hesselsøe, M; Roslev, P; Henriksen, K; Sørensen, J

    2001-06-01

    Strong inhibitory effects of the anionic surfactant linear alkylbenzene sulfonate (LAS) on four strains of autotrophic ammonia-oxidizing bacteria (AOB) are reported. Two Nitrosospira strains were considerably more sensitive to LAS than two Nitrosomonas strains were. Interestingly, the two Nitrosospira strains showed a weak capacity to remove LAS from the medium. This could not be attributed to adsorption or any other known physical or chemical process, suggesting that biodegradation of LAS took place. In each strain, the metabolic activity (50% effective concentration [EC(50)], 6 to 38 mg liter(-1)) was affected much less by LAS than the growth rate and viability (EC(50), 3 to 14 mg liter(-1)) were. However, at LAS levels that inhibited growth, metabolic activity took place only for 1 to 5 days, after which metabolic activity also ceased. The potential for adaptation to LAS exposure was investigated with Nitrosomonas europaea grown at a sublethal LAS level (10 mg liter(-1)); compared to control cells, preexposed cells showed severely affected cell functions (cessation of growth, loss of viability, and reduced NH(4)(+) oxidation activity), demonstrating that long-term incubation at sublethal LAS levels was also detrimental. Our data strongly suggest that AOB are more sensitive to LAS than most heterotrophic bacteria are, and we hypothesize that thermodynamic constraints make AOB more susceptible to surfactant-induced stress than heterotrophic bacteria are. We further suggest that AOB may comprise a sensitive indicator group which can be used to determine the impact of LAS on microbial communities.

  7. Microstructure- and Strain Rate-Dependent Tensile Behavior of Fiber Laser-Welded DP980 Steel Joint

    Science.gov (United States)

    Jia, Qiang; Guo, Wei; Peng, Peng; Li, Minggao; Zhu, Ying; Zou, Guisheng

    2016-02-01

    DP980 steels were butt-welded by fiber laser welding. The microstructures, microhardness distribution, and tensile behavior of the joint were investigated. The results showed that the fusion zone (FZ) consisted of fully martensite with higher hardness compared to the base metal (BM). A softened zone (20 HV0.2 drop) was produced in heat-affected zone due to martensite tempering during the laser welding. The ultimate tensile strength (UTS) and yield strength (YS) of the laser-welded joint were not degraded compared to BM with the existence of softened zone. The UTS and YS of the welded joint increased with the increase of tensile strain rate. The work hardening exponents of the BM and welded joint showed weak positive strain rate dependence. The deformation of softened zone was restrained by the hardened FZ during loading, resulting in a higher work hardening rate of softened zone than that of BM. The failure of welded joint occurred in the BM instead of softened zone. The fracture surfaces of the joint exhibited typical ductile fracture over strain rate from 0.0001 to 0.1 s-1.

  8. Polymer-Ion Interaction Weakens the Strain-Rate Dependence of Extension-Induced Crystallization for Poly(ethylene oxide).

    Science.gov (United States)

    Hu, Tingting; Tian, Nan; Ali, Sarmad; Wang, Zhen; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-03-01

    The crystallization of poly(ethylene oxide) (PEO)-sodium iodine (NaI) composites is investigated by differential scanning calorimetry (DSC), extensional rheology, and in situ small-angle X-ray scattering (SAXS) with the aim of demonstrating versatile roles played by polymer-ion interactions. In the isothermal quiescent crystallization process, a decrease in the crystal growth rate is observed for PEO-NaI and is attributed to slow chain movement caused by the coordination between cations and polymer. In situ SAXS on extensional flow-induced crystallization (FIC) exhibits enhanced kinetics and orientation for both PEO and PEO-NaI with increasing strain rate. However, an overall weaker strain-rate dependence of FIC is observed for PEO-NaI, which can be interpreted as a synergistic consequence of promoted nucleation under flow and impeded crystal growth by polymer-ion interaction. A possible microscopic mechanism is proposed to account for the experimental observation based on the formation of transient cross-linking points in PEO-NaI and their influence on the entanglement network of polymer under various flow fields. The disclosed strain-rate dependence and various ion effects on the behavior of PEO-salt composites contribute to a comprehensive understanding of polymer-ion solid polyelectrolytes.

  9. Compressive response of a glass-polymer system at various strain rates

    NARCIS (Netherlands)

    Fan, J.T.; Weerheijm, J.; Sluys, L.J.

    2016-01-01

    A glass-polymer system of a polyurethane elastomeric matrix with a single 3 mm-diameter glass particle was investigated using a split Hopkinson pressure bar (SHPB) setup for revealing the dynamic compressive mechanical response. This study produced the characteristics of the dynamic stress-strain re

  10. Deformation and Shear Band Development in an Ultrahigh Carbon Steel During High Strain Rate Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D R; Syn, C K; Sherby, O D

    2004-07-06

    The mechanical response of a pearlitic UHCS-1.3C steel deformed at approximately 4000 s{sup -1} to large strains ({var_epsilon} = -0.9) has been studied. Failure, at both the macroscopic and the microscopic levels has been evaluated, and the ability of the material to absorb energy in compression has been examined. Failure occurred by the development of a shear band. However before failure, extensive buckling of the carbide plates was observed and the UHCS-1.3C material exhibited significant potential for compressive ductility and energy absorption due to the distributed buckling of these plates. Strain localization during adiabatic shear band development resulted in the formation of austenite. Subsequent cooling produced a divorced-eutectoid transformation with associated deformation, which resulted in a microstructure consisting of 50 to 100 nm sized grains. The stress-strain behavior within the shear band has also been determined. The results are used to critically evaluate the maximum shear stress criterion of shear band development. New criteria for the development of shear bands are developed based on a strain energy concept.

  11. Standard practice for slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This practice covers procedures for the design, preparation, and use of axially loaded, tension test specimens and fatigue pre-cracked (fracture mechanics) specimens for use in slow strain rate (SSR) tests to investigate the resistance of metallic materials to environmentally assisted cracking (EAC). While some investigators utilize SSR test techniques in combination with cyclic or fatigue loading, no attempt has been made to incorporate such techniques into this practice. 1.2 Slow strain rate testing is applicable to the evaluation of a wide variety of metallic materials in test environments which simulate aqueous, nonaqueous, and gaseous service environments over a wide range of temperatures and pressures that may cause EAC of susceptible materials. 1.3 The primary use of this practice is to furnish accepted procedures for the accelerated testing of the resistance of metallic materials to EAC under various environmental conditions. In many cases, the initiation of EAC is accelerated through the applic...

  12. High-strain-rate superplasticity in oxide ceramics: a trial of microstructural design based on creep-cavitation mechanisms

    Institute of Scientific and Technical Information of China (English)

    Keijiro HIRAGA; Byung-Nam KIM; Koji MORITA; Hidehiro YOSHIDA; Yoshio SAKKA; Masaaki TABUCHI

    2011-01-01

    From existing knowledge about high-temperature cavitation mechanisms, necessary conditions were discussed for the suppression of cavitation failure during superplastic deformation in ceramic materials. The discussion, where special attention was placed on the relaxation of stress concentrations during grain-boundary sliding and cavity nucleation and growth, leaded to a conclusion that cavitation failure could be retarded by the simultaneous controlling of the initial grain size, the number of residual defects,diffusivity, dynamic grain growth and the homogeneity of microstructure. On the basis of this conclusion, high-strain-rate superplasticity (defined as superplasticity at a strain rate higher than 0.01 s-1) could be intentionally attained in some oxide ceramic materials. This was shown in tetragonal zirconia and composites consisting of zirconia, α-alumina and a spinel phase.

  13. Temperature-strain rate dependence of mechanical properties of a beryllium of the DShG-200 brand

    Energy Technology Data Exchange (ETDEWEB)

    Khomutov, A.M.; Gorokhov, V.A.; Mikhailov, V.S.; Nikolaev, G.N.; Timofeev, R.Yu.; Chernov, V.M. [Vserossijskij Nauchno-Issledovatel' skij Inst. Neorganicheskikh Materialov, Moscow (Russian Federation)

    2000-04-01

    Beryllium preforms of the DShG-200 brand of improved quality were manufactured by the method of a powder metallurgy and the mechanical tests on tension in longitudinal and transversal directions in temperature range 20-600 C and strain rates of 0,02 - 20 mm/min were held. It was shown, that at an alteration of strain rate within the indicated limits the values of stresses of flow and of the relative elongation can vary by several times. Comparison testing for tension by the Russian and American procedures (GOST and ASTM) was made. The obtained results can be beneficial at calculations of thermal stresses originating in fusion reactors (FR). (orig.)

  14. High creep strain rates observed in nanocrystalline α-Fe{sub 2}O{sub 3} particles by nanoindentation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hajra, P.; Saha, D.R. [MLS Professor' s Unit, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Kolkata 700032 (India); Mada, M.R. [School of Materials Science and Engineering, Kensington, University of New South Wales, Sydney 2052 (Australia); Dutta, S. [Department of Physics, Rammohan College, 102/1 Raja Rammohan Roy Sarani, Kolkata 700009 (India); Brahma, P. [Department of Physics, Gurudas College, Kolkata 700054 (India); Boughton, P.; Bandyopadhyay, S. [School of Materials Science and Engineering, Kensington, University of New South Wales, Sydney 2052 (Australia); Chakravorty, D., E-mail: mlsdc@iacs.res.in [MLS Professor' s Unit, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Kolkata 700032 (India)

    2014-05-01

    Nanocrystalline α-Fe{sub 2}O{sub 3} with particle sizes in the range 10–24 nm were produced by mechanical milling of micron-sized α-Fe{sub 2}O{sub 3} particles. Microstructures of sintered pellets of cold compacted powder were investigated by electron microscopy. Nanoindentation studies showed the creep strain rates had values of the order of 10{sup −4} s{sup −1} at room temperature with creep increasing to higher values with increase of particle diameter. This was attributed to grain boundary sliding enhancement due to a piezomagnetic-type effect in the particles. Compressive tests at room temperature carried out on bulk samples with nanosized crystallites also showed large creep strain rate behaviour. The result will be helpful in designing ceramic systems with plastic behaviour at room temperature.

  15. Temperature increase of Zircaloy-4 cladding tubes due to plastic heat dissipation during tensile tests at 0.1-10 s-1 strain rates

    Science.gov (United States)

    Hellouin de Menibus, Arthur; Auzoux, Quentin; Besson, Jacques; Crépin, Jérôme

    2014-11-01

    This study is focused on the impact of rapid Reactivity Initiated Accident (RIA) representative strain rates (about 1 s-1 NEA, 2010) on the behavior and fracture of unirradiated cold work stress relieved Zircaloy-4 cladding tubes. Uniaxial ring tests (HT) and plane strain ring tensile tests (PST) were performed in the 0.1-10 s-1 strain rate range, at 25 °C. The local temperature increase due to plastic dissipation was measured with a high-speed infrared camera. Limited temperature increases were measured at 0.1 s-1 strain rate. Limited but not strongly localized temperature increases were measured at 1 s-1. Large temperature increase were measured at 5 and 10 s-1 (142 °C at 5 s-1 strain rate in HT tests). The local temperature increase induced heterogeneous temperature fields, which enhanced strain localization and resulted in a reduction of the plastic elongation at fracture.

  16. Comparison of microstructures in electroformed and spin-formed copper liners of shaped charge undergone high-strain-rate deformation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The as-formed and post-deformed microstructures in both electroformed and spin-formed copper liners of shaped charge were studied by optical microscopy(OM), electron backscattering Kikuchi patterns(EBSP) technique and transmission electron microscopy(TEM). The deformation was carried out at an ultra-high strain rate. OM analysis shows that the initial grains of the electroformed copper liner are finer than those of the spin-formed copper liners. Meanwhile, EBSP analysis reveals that the fiber texture exists in the electroformed copper liners, whereas there is no texture observed in the spin-formed copper liners before deformation. Having undergone high-strain-rate deformation the grains in the recovered slugs, which are transformed from both the electroformed and spin-formed copper liners, all become small. TEM observations of the above two kinds of post-deformed specimens show the existence of cellular structures characterized by tangled dislocations and subgrain boundaries consisting of dislocation arrays. These experimental results indicate that dynamic recovery and recrystallization play an important role in the high-strain-rate deformation process.

  17. A constitutive model for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures

    Directory of Open Access Journals (Sweden)

    Song Wei-Dong

    2013-01-01

    Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.

  18. A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.

    Energy Technology Data Exchange (ETDEWEB)

    English, Shawn Allen

    2014-09-01

    A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.

  19. An Experimental Technique for Developing Intermediate Strain Rates in Ductile Metals

    Science.gov (United States)

    2008-03-01

    Instrumented Charpy tests rely on a strain gage instrumented load cell to col- lect a load-history during impact. However, the same fundamental limitations due...to wave-propagation and inertia effects are inherent in the instrumented Charpy test , as other instrumented impact tests , limiting the velocities at...lower velocities, the instrumentation of the Charpy test has transformed it from an al- most purely subjective impact survivability test to

  20. Influence of free water content on the compressive mechanical behaviour of cement mortar under high strain rate

    Indian Academy of Sciences (India)

    Jikai Zhou; Xudong Chen; Longqiang Wu; Xiaowei Kan

    2011-06-01

    The effect of free water content upon the compressive mechanical behaviour of cement mortar under high loading rate was studied. The uniaxial rapid compressive loading testing of a total of 30 specimens, nominally 37 mm in diameter and 18.5 mm in height, with five different saturations (0%, 25%, 50%, 75% and 100%, respectively) were executed in this paper. The technique ‘Split Hopkinson pressure bar’ (SHPB) was used. The impact velocity was 10 m/s with the corresponding strain rate as 102/s. Water-cement ratio of 0.5 was used. The compressive behaviour of the materials was measured in terms of the maximum stress, Young’s modulus, critical strain at maximum stress and ultimate strain at failure. The data obtained from test indicates that the similarity exists in the shape of strain–stress curves of cement mortars with different water content, the upward section of the stress–strain curve shows bilinear characteristics, while the descending stage (softening state) is almost linear. The dynamic compressive strength of cement mortar increased with the decreasing of water content, the dynamic compressive strength of the saturated specimens was 23% lower than that of the totally dry specimens. With an increase in water content, the Young’s modulus first increases and then decreases, the Young’s modulus of the saturated specimens was 23% lower than that of the totally dry specimens. No significant changes occurred in the critical and ultimate strain value as the water content is changed.