WorldWideScience

Sample records for m181 yeast extract

  1. Production of yeast extract from whey using Kluyveromyces marxianus

    Directory of Open Access Journals (Sweden)

    Revillion Jean P. de Palma

    2003-01-01

    Full Text Available The yeast Kluyveromyces marxianus CBS 6556 was grown on whey to produce nucleotide-rich yeast extracts. Thermal treatments of cells at 35 or 50ºC for 15-30h resulted in yeast extracts containing about 20 g/L protein, with only the second treatment resulting in the presence of small amounts of RNA. In contrast, autolysis in buffered solution was the unique treatment that resulted in release of high amounts of intracellular RNA, being, therefore, the better procedure to produce 5'-nucletide rich extract with K. marxianus.

  2. 21 CFR 172.590 - Yeast-malt sprout extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Flavoring Agents and Related Substance...

  3. 21 CFR 184.1983 - Bakers yeast extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 18...

  4. An efficient method for the extraction of astaxanthin from the red yeast Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Choi, Seok-Keun; Kim, Jeong-Hwan; Park, Young-Sam; Kim, Young-Jin; Chang, Hyo-Ihl

    2007-05-01

    This study investigated an efficient method for the extraction of astaxanthin from the red yeast Xanthophyllomyces dendrorhous. The extraction process comprised three steps: (1) cultivating the yeast; (2) treating the yeast culture suspension with microwaves to destroy the cell walls and microbodies; and (3) drying the yeast and extracting the astaxanthin pigment using ethanol, methanol, acetone, or a mixture of the three as the extraction solvent. Ultimately, various treatment tests were performed to determine the conditions for optimal pigment extraction, and the total carotenoid and astaxanthin contents were quantified. A frequency of 2,450 MHz, an output of 500 watts, and irradiation time of 60 s were the most optimum conditions for yeast cell wall destruction. Furthermore, optimal pigment extraction occurred when using a cell density of 10 g/l at 30 C over 24 h, with a 10% volume of ethanol.

  5. Effect of yeast extract and chitosan on shoot proliferation ...

    African Journals Online (AJOL)

    Jane

    2011-08-01

    Aug 1, 2011 ... inhibition of leaf-development in the in vitro plantlets of C. mangga (Figure 1). .... yeast 2.0 yeast 3.5 yeast 5.0. Incubation time (minutes). D. P. P. H fre e rad ic al scave n g in g a .... example of rapid development. Pharmazie.

  6. Yeast extract with blood plasma in diets for piglets from 21 to 35 days of age

    Directory of Open Access Journals (Sweden)

    Cinthia Maria Carlos Pereira

    2012-07-01

    Full Text Available The objective of this study was to evaluate the inclusion of yeast extract as a partial replacemer of blood plasma in piglet diets and its effect on the performance and intestinal morphometry of pigs weaned at 21 days of age. One hundred and twenty animals were randomized into blocks, with five diets (4.0% blood plasma; 2.0% blood plasma with 0.0; 1.0; 2.0 or 3.0% yeast extract, six replicates and four pigs per experimental unit. At 35 days of age, one pig per experimental unit was slaughtered in order to evaluate duodenal and jejunal morphometry. The levels of yeast extract had a quadratic impact on daily feed intake and final weight, which increased up to the estimated level of 1.91%. Daily weight gain and feed conversion rate were not affected. A comparison between diets containing different levels of yeast extract and the basal diet showed that the diets containing 2.0% and 1.0% yeast extract provided the highest final weight and the worst feed conversion rate, respectively. Duodenal villus height and crypt depth were quadratically affected by yeast extract levels and the best results were achieved with the estimated levels of 1.64 and 1.16%, respectively. The levels of yeast extract provided a linear increase in the duodenal villus:crypt ratio, but did not change the morphometric variables of the jejunum. No difference was found in the morphometric variables of the duodenum and jejunum when diets containing different levels of yeast extract were compared with the basal diet. The results suggest that the inclusion of 1.91% yeast extract allows for a partial replacement for plasma in the diet, decreasing plasma inclusion from 4.0 to 2.0%.

  7. Enumeration and rapid identification of yeasts during extraction processes of extra virgin olive oil in Tuscany.

    Science.gov (United States)

    Mari, Eleonora; Guerrini, Simona; Granchi, Lisa; Vincenzini, Massimo

    2016-06-01

    The aim of this study was to evaluate the occurrence of yeast populations during different olive oil extraction processes, carried out in three consecutive years in Tuscany (Italy), by analysing crushed pastes, kneaded pastes, oil from decanter and pomaces. The results showed yeast concentrations ranging between 10(3) and 10(5) CFU/g or per mL. Seventeen dominant yeast species were identified by random amplified polymorphic DNA with primer M13 and their identification was confirmed by restriction fragments length polymorphism of ribosomal internal transcribed spacer and sequencing rRNA genes. The isolation frequencies of each species in the collected samples pointed out that the occurrence of the various yeast species in olive oil extraction process was dependent not only on the yeasts contaminating the olives but also on the yeasts colonizing the plant for oil extraction. In fact, eleven dominant yeast species were detected from the washed olives, but only three of them were also found in oil samples at significant isolation frequency. On the contrary, the most abundant species in oil samples, Yamadazyma terventina, did not occur in washed olive samples. These findings suggest a phenomenon of contamination of the plant for oil extraction that selects some yeast species that could affect the quality of olive oil.

  8. Controllable Biosynthesis and Properties of Gold Nanoplates Using Yeast Extract

    Institute of Scientific and Technical Information of China (English)

    Zhi Yang; Yasha Yi; Zhaohui Li; Xuxing Lu; Fengjiao He; Xingzhong Zhu; Yujie Ma; Rong He; Feng Gao; Weihai Ni

    2017-01-01

    Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source and difficulties of controllable formation of morphology and size. Herein, one-pot biosynthesis of gold nanoplates is proposed, in which cheap yeast was extracted as a green precursor. The morphologies and sizes of the gold nanostructures can be controlled via varying the pH value of the biomedium. In acid condition, gold nanoplates with side length from 1300 ± 200 to 300 ± 100 nm and height from 18 to 15 nm were obtained by increasing the pH value. Whereas, in neutral or basic condition, only gold nanoflowers and nanoparticles were obtained. It was determined that organic molecules, such as succinic acid, lactic acid, malic acid, and glutathione, which are generated in metabolism process, played important role in the reduction of gold ions. Besides, it was found that the gold nanoplates exhibited plasmonic property with prominent dipole infrared resonance in near-infrared region, indicating their potential in surface plasmon-enhanced applications, such as bioimaging and photothermal therapy.

  9. Strategy for the extraction of yeast DNA from artisan agave must for quantitative PCR analysis.

    Science.gov (United States)

    Kirchmayr, Manuel Reinhart; Segura-Garcia, Luis Eduardo; Flores-Berrios, Ericka Patricia; Gschaedler, Anne

    2011-11-01

    An efficient method for the direct extraction of yeast genomic DNA from agave must was developed. The optimized protocol, which was based on silica-adsorption of DNA on microcolumns, included an enzymatic cell wall degradation step followed by prolonged lysis with hot detergent. The resulting extracts were suitable templates for subsequent qPCR assays that quantified mixed yeast populations in artisan Mexican mezcal fermentations. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation

    Directory of Open Access Journals (Sweden)

    Edward D. Kerr

    2016-08-01

    Full Text Available Vegemite is an iconic Australian food spread made from spent brewers’ yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers’ yeast. No fermentation occurred in any condition without addition of extra brewer’s yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers’ yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers’ yeast had been added. We estimate that the real-world cost of home brewed “Vegemite Beer” would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  11. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation.

    Science.gov (United States)

    Kerr, Edward D; Schulz, Benjamin L

    2016-01-01

    Vegemite is an iconic Australian food spread made from spent brewers' yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers' yeast. No fermentation occurred in any condition without addition of extra brewer's yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers' yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers' yeast had been added. We estimate that the real-world cost of home brewed "Vegemite Beer" would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  12. Unveiling the potential of novel yeast protein extracts in white wines clarification and stabilization

    Directory of Open Access Journals (Sweden)

    Joana Pinto Fernandes

    2015-03-01

    Full Text Available Fining agents derived from animal and mineral sources are widely used to clarify and stabilize white wines. Nevertheless, health and environmental problems are being raised, concerning the allergenic and environmental impact of some of those fining products. In this study, our aim is to validate the potential of non-allergenic protein extracts, obtained from an alternative and safe source, naturally present in wine: oenological yeasts. Three untreated white wines were used in this work in order to evaluate the impact of these novel yeast protein extracts (YPE in terms of the wine clarification and stabilization improvement. Two separated fining trials were thus conducted at laboratory scale and the yeast alternatives were compared with reference fining agents, obtained from mineral, animal and vegetable origins. Our results indicate that yeast protein extracts were capable to promote (i brilliance/color improvement, (ii turbidity reduction (76-89% comparing with the untreated wines and (iii production of compact and homogeneous lees (44% smaller volume than obtained with bentonite. Additionally, after submitting wines to natural and forced oxidations, YPE treatments revealed (iv different forms of colloidal stabilization, by presenting comparable or superior effects when particularly compared to casein. Altogether, this study reveals that yeast protein extracts represent a promising alternative for white wine fining, derived from an entirely non-allergenic and sustainable origin.

  13. Chromatin Assembly in a Yeast Whole-Cell Extract

    Science.gov (United States)

    Schultz, Michael C.; Hockman, Darren J.; Harkness, Troy A. A.; Garinther, Wendy I.; Altheim, Brent A.

    1997-08-01

    A simple in vitro system that supports chromatin assembly was developed for Saccharomyces cerevisiae. The assembly reaction is ATP-dependent, uses soluble histones and assembly factors, and generates physiologically spaced nucleosomes. We analyze the pathway of histone recruitment into nucleosomes, using this system in combination with genetic methods for the manipulation of yeast. This analysis supports the model of sequential recruitment of H3/H4 tetramers and H2A/H2B dimers into nucleosomes. Using a similar approach, we show that DNA ligase I can play an important role in template repair during assembly. These studies demonstrate the utility of this system for the combined biochemical and genetic analysis of chromatin assembly in yeast.

  14. Use of non-conventional cell disruption method for extraction of proteins from black yeasts

    Directory of Open Access Journals (Sweden)

    Maja eLeitgeb

    2016-04-01

    Full Text Available The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2 by varying pressure at fixed temperature (35 °C. The black yeasts cell walls were disrupted and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV-Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2 treated cells. The advantages of the proposed method are in a simple use which is also possible for heat sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions.

  15. Utilization of baker's yeast (Saccharomyces cerevisiae for the production of yeast extract: effects of different enzymatic treatments on solid, protein and carbohydrate recovery

    Directory of Open Access Journals (Sweden)

    TATJANA VUKASINOVIC MILIC

    2007-05-01

    Full Text Available Yeast extract (YE was produced from commercial pressed baker's yeast (active and inactivated using two enzymes: papain and lyticase. The effects of enzyme concentration and hydrolysis time on the recovery of solid, protein and carbohydrate were investigated. Autolysis, as a basic method for cell lysis was also used and the results compared. The optimal extraction conditions were investigated. The optimal concentrations of papain and lyticase were found to be 2.5 % and 0.025 %, respectively.

  16. A single protocol for extraction of gDNA from bacteria and yeast.

    Science.gov (United States)

    Vingataramin, Laurie; Frost, Eric H

    2015-03-01

    Guanidine thiocyanate breakage of microorganisms has been the standard initial step in genomic DNA (gDNA) extraction of microbial DNA for two decades, despite the requirement for pretreatments to extract DNA from microorganisms other than Gram-negative bacteria. We report a quick and low-cost gDNA extraction protocol called EtNa that is efficient for bacteria and yeast over a broad range of concentrations. EtNa is based on a hot alkaline ethanol lysis. The solution can be immediately centrifuged to yield a crude gDNA extract suitable for PCR, or it can be directly applied to a silica column for purification.

  17. Six plant extracts delay yeast chronological aging through different signaling pathways

    Science.gov (United States)

    Lutchman, Vicky; Dakik, Pamela; McAuley, Mélissa; Cortes, Berly; Ferraye, George; Gontmacher, Leonid; Graziano, David; Moukhariq, Fatima-Zohra; Simard, Éric; Titorenko, Vladimir I.

    2016-01-01

    Our recent study has revealed six plant extracts that slow yeast chronological aging more efficiently than any chemical compound yet described. The rate of aging in yeast is controlled by an evolutionarily conserved network of integrated signaling pathways and protein kinases. Here, we assessed how single-gene-deletion mutations eliminating each of these pathways and kinases affect the aging-delaying efficiencies of the six plant extracts. Our findings imply that these extracts slow aging in the following ways: 1) plant extract 4 decreases the efficiency with which the pro-aging TORC1 pathway inhibits the anti-aging SNF1 pathway; 2) plant extract 5 mitigates two different branches of the pro-aging PKA pathway; 3) plant extract 6 coordinates processes that are not assimilated into the network of presently known signaling pathways/protein kinases; 4) plant extract 8 diminishes the inhibitory action of PKA on SNF1; 5) plant extract 12 intensifies the anti-aging protein kinase Rim15; and 6) plant extract 21 inhibits a form of the pro-aging protein kinase Sch9 that is activated by the pro-aging PKH1/2 pathway. PMID:27447556

  18. [Influence of yeast extract on the fermentation of glucose by the demulsifying strain Alcaligenes sp. S-XJ-1].

    Science.gov (United States)

    Huang, Xiang-Feng; Wang, Kai; Li, Ming-Xia; Wang, Cai-Lin; Lu, Li-Jun; Liu, Jia

    2013-04-01

    The demulsifying strain Alcaligenes sp. S-XJ-1, isolated from oil contaminated soil, was cultivated with glucose as the carbon source. The influences of yeast extract on the growth, demulsifying ability and the element composition of the strain were investigated. The results showed that the yeast extract could increase the biomass and enhance the glucose utilization of Alcaligenes sp. S-XJ-1. When the concentration of the yeast extract was 5 g x L(-1), the biomass was increased up to 3.0 g x L(-1), and the glucose utilization achieved 58%. The demulsifying ability of the strain was improved with increasing yeast extract concentration. When the concentration of the yeast extract was 10 g x L(-1), the demulsification ratio of the obtained cell was 76%. While the C/N ratio of the cells decreased with the increasing concentration of yeast extract. The proteins of cells were extracted and measured. The results showed that the proteins of the obtained cell increased with the increasing concentration of yeast extract, in accordance with the increased concentrations of proteins on the surface of the cells as measured by FTIR. It is estimated that the increase of the proteins leads to the improvement of the demulsifying ability of the demulsifying strain and theses proteins play essential roles in the demulsifying process.

  19. Combined effects of sugarcane bagasse extract and Zinc(II) ions on the growth and bioaccumulation properties of yeast isolates.

    OpenAIRE

    Geetanjali Basak; CHARUMATHI D; NILANJANA DAS

    2011-01-01

    Bioaccumulation of zinc(II) ions by yeast isolates viz. Candida rugosa and Cryptococcus laurentii was investigated in different growth media. Both the isolates showed maximum bioaccumulation of zinc(II) in the medium prepared from sugarcane bagasse extract. The growth and zinc(II) bioaccumulation properties of yeasts in sugar cane bagasse extract were tested as a function of pH, temperature and initial metal concentrations. The combined effects of sugar extracted from bagasse and initial zinc...

  20. Taggiasca extra virgin olive oil colonization by yeasts during the extraction process.

    Science.gov (United States)

    Ciafardini, G; Cioccia, G; Zullo, B A

    2017-04-01

    The opalescent appearance of the newly produced olive oil is due to the presence of solid particles and microdrops of vegetation water in which the microorganisms from the olives' carposphere are trapped. Present research has demonstrated that the microbiota of the fresh extracted olive oil, produced in the mills, is mainly composed of yeasts and to a lesser extent of molds. The close link between the composition of the microbiota of the olives' carposphere undergoing to processing, and that of the microbiota of the newly produced olive oil, concerns only the yeasts and molds, given that the bacterial component is by and large destroyed mainly in the kneaded paste during the malaxation process. Six physiologically homogenous yeast groups were highlighted in the wash water, kneaded paste and newly produced olive oil from the Taggiasca variety which had been collected in mills located in the Liguria region. The more predominant yeasts of each group belonged to a single species called respectively: Kluyveromyces marxianus, Candida oleophila, Candida diddensiae, Candida norvegica, Wickerhamomyces anomalus and Debaryomyces hansenii. Apart from K. marxianus, which was found only in the wash water, all the other species were found in the wash water and in the kneaded paste as well as in the newly produced olive oil, while in the six-month stored olive oil, was found only one physiologically homogeneous group of yeast represented by the W. anomalus specie. These findings in according to our previous studies carried out on other types of mono varietal olive oils, confirms that the habitat of the Taggiascas' extra virgin olive oil, had a strong selective pressure on the yeast biota, allowing only to a few member of yeast species, contaminating the fresh product, to survive and reproduce in it during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Antifungal activity of mango peel and seed extracts against clinically pathogenic and food spoilage yeasts.

    Science.gov (United States)

    Dorta, E; González, M; Lobo, M G; Laich, F

    2015-11-26

    The antioxidant and antifungal (antiyeast) properties of mango (Mangifera indica) peel and seed by-products were investigated. Nine extracts were obtained using three cultivars and two extraction methods. Significant differences between cultivars and extraction methods were detected in their bioactive compounds and antioxidant activity. The antifungal property was determined using agar diffusion and broth micro-dilution assays against 18 yeast species of the genera Candida, Dekkera, Hanseniaspora, Lodderomyces, Metschnikowia, Pichia, Schizosaccharomyces, Saccharomycodes and Zygosaccharomyces. All mango extracts showed antifungal activity. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) values were lower for seed than for peel extracts. MICs and MFCs ranged from values 30 mgGAE/mL, respectively. The multivariate analysis showed a relationship between antifungal activity, the capacity to inhibit lipid peroxidation and total phenol content. These properties were associated with high levels of proanthocyanidins, gallates and gallotannins in the extracts.

  2. In Vitro Testing to Aflatoxin Binding by Glucomannan Yeast Product and Glucomannan Extract from Amorphophallus oncophyllus

    Directory of Open Access Journals (Sweden)

    A. Susanto

    2014-08-01

    Full Text Available The aim of research was to test the capability of glucomannan yeast product (GYP and glucomannan resulted from Amorphophallus oncophyllus extraction (GRE to bind aflatoxin in in vitro testing. Before in vitro testing, both GYP and GRE were analyzed to determine proximate analysis, glucose, and mannose concentrations. In vitro testing used aflatoxin, binder and gastro intestinal fluid in 3% ringer solution. The weights of binders were 41.05; 82.1; 123.15; and 164.2 mg and weight of aflatoxin was 0.1642 µg of each tube. The results showed that the percentage of aflatoxin bound increased by the increasing weight either glucomannan from yeast product or glucomannan resulted from A. oncophylus extraction. The percentages of aflatoxin binding with binder of both glucomannan yeast product were 19.72%; 21.51%; 42.25%; 46.35% and glucomannan from A. oncophyllus extraction were 4.08%; 28.72%; 36.73%; and 89.07%, consecutively. There were positive correlations (P<0.05 between the weight of binder and the percentage of aflatoxin bound, with coefficient correlations of GYP was 0.9602 and of GRE was 0.9338. In regression modeling, linear equation of GYP was Yp= -6.92 + 12.03x and of GRE was Ye= -31.53+21.07x. It is concluded that in vitro testing of glucomannan product of extraction from A. oncophyllus can bind aflatoxin.

  3. Unveiling the potential of novel yeast protein extracts in white wines clarification and stabilization.

    Science.gov (United States)

    Fernandes, Joana P; Neto, Rodrigo; Centeno, Filipe; De Fátima Teixeira, Maria; Gomes, Ana Catarina

    2015-01-01

    Fining agents derived from animal and mineral sources are widely used to clarify and stabilize white wines. Nevertheless, health and environmental problems are being raised, concerning the allergenic and environmental impact of some of those fining products. In this study, our aim is to validate the potential of yeast protein extracts, obtained from an alternative and safe source, naturally present in wine: oenological yeasts. Three untreated white wines were used in this work in order to evaluate the impact of these novel yeast protein extracts (YPE) in terms of the wine clarification and stabilization improvement. Two separated fining trials were thus conducted at laboratory scale and the yeast alternatives were compared with reference fining agents, obtained from mineral, animal and vegetable origins. Our results indicate that YPE were capable to promote (i) brilliance/color improvement, (ii) turbidity reduction (76-89% comparing with the untreated wines), and (iii) production of compact and homogeneous lees (44% smaller volume than obtained with bentonite). Additionally, after submitting wines to natural and forced oxidations, YPE treatments revealed (iv) different forms of colloidal stabilization, by presenting comparable or superior effects when particularly compared to casein. Altogether, this study reveals that YPE represent a promising alternative for white wine fining, since they are resultant from a natural and more sustainable origin, at present not regarded as potential allergenic according to Regulation (EC) No. 1169/2011.

  4. Acceleration of yoghurt fermentation time by yeast extract and partial characterisation of the active components.

    Science.gov (United States)

    Smith, Esti-Andrine; Myburgh, Jacobus; Osthoff, Gernot; de Wit, Maryna

    2014-11-01

    Water soluble autolysate of yeast, usually utilised for microbial growth support, was used as additive in yoghurt fermentation. The yeast extract (YE) resulted in a decrease of fermentation time by 21% to reach a pH of 4·6. However, the YE resulted in unacceptable flavour and taste. By size exclusion chromatography, a fraction of the YE was obtained that could account for the observed 21% decrease in fermentation time. The fraction contained molecules of low molecular weight, consisting of minerals, free amino acids and peptides. The acceleration of the yoghurt fermentation was ascribed to the short peptides in the fraction. It is proposed that the application of this extract in industrial yoghurt manufacture would result in savings for both the industry and the consumer.

  5. Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation.

    Science.gov (United States)

    Zhao, Guili; Chen, Xue; Wang, Lei; Zhou, Shixiao; Feng, Huixing; Chen, Wei Ning; Lau, Raymond

    2013-01-01

    Recently, carbohydrates biomass from microalgae is considered as a promising and inexpensive feedstock for biofeuls production by microorganism fermentation. The main obstacle of the process is microalgae pretreatment and carbohydrates extraction from algal cell. In this study, comparison of three pretreatment methods was performed and the results showed that ultrasonic assisted extraction (UAE) was very effective. The effects of four parameters (ultrasonic power, extraction time, flow rate and algal cell concentration, respectively) on extraction efficiency were also investigated. Additionally, in order to identify significant factors for glucose yield, combination of these four parameters was examined by using fractional factorial design (FFD) and the regression model was obtained. Meanwhile, the refined model was confirmed as a good fitting model via analysis of variance (ANOVA). After extraction, glucose obtained from microalgae was used as substrate for Rhodosporidium toruloides fermentation and yeast biomass was much higher than that of control culture.

  6. Astaxanthin Synthesis by Yeast Xanthophyllomyces dendrorhous and its Mutants on Media Based on Plant Extracts.

    Science.gov (United States)

    Stachowiak, Barbara

    2012-12-01

    The study evaluated the effect of media based on plant extracts: potato, carrot and barley malt broth, on growth and astaxanthin synthesis by yeast Xanthophyllomyces dendrorhous DSM 5626 and its mutants. The carrot medium promoted carotenogenesis most effectively. In cultures on this medium the highest volumetric and cellular concentrations of astaxanthin were recorded for four out of five tested strains. Also the share of astaxanthin in the total carotenoids produced by the tested strains was the highest.

  7. Astaxanthin Synthesis by Yeast Xanthophyllomyces dendrorhous and its Mutants on Media Based on Plant Extracts

    OpenAIRE

    Stachowiak, Barbara

    2012-01-01

    The study evaluated the effect of media based on plant extracts: potato, carrot and barley malt broth, on growth and astaxanthin synthesis by yeast Xanthophyllomyces dendrorhous DSM 5626 and its mutants. The carrot medium promoted carotenogenesis most effectively. In cultures on this medium the highest volumetric and cellular concentrations of astaxanthin were recorded for four out of five tested strains. Also the share of astaxanthin in the total carotenoids produced by the tested strains wa...

  8. Microbial dynamics during azo dye degradation in a UASB reactor supplied with yeast extract

    Directory of Open Access Journals (Sweden)

    S.Q. Silva

    2014-12-01

    Full Text Available The present work aimed to investigate the microbial dynamics during the anaerobic treatment of the azo dye blue HRFL in bench scale upflow anaerobic sludge bed (UASB reactor operated at ambient temperature. Sludge samples were collected under distinct operational phases, when the reactor were stable (low variation of color removal, to assess the effect of glucose and yeast extract as source of carbon and redox mediators, respectively. Reactors performance was evaluated based on COD (chemical oxygen demand and color removal. The microbial dynamics were investigated by PCR-DGGE (Polimerase Chain Reaction - Denaturing Gradient of Gel Electrophoresis technique by comparing the 16S rDNA profiles among samples. The results suggest that the composition of microorganisms changed from the beginning to the end of the reactor operation, probably in response to the presence of azo dye and/or its degradation byproducts. Despite the highest efficiency of color removal was observed in the presence of 500 mg/L of yeast extract (up to 93%, there were no differences regarding the microbial profiles that could indicate a microbial selection by the yeast extract addition. On the other hand Methosarcina barkeri was detected only in the end of operation when the best efficiencies on color removal occurred. Nevertheless the biomass selection observed in the last stages of UASB operation is probably a result of the washout of the sludge in response of accumulation of aromatic amines which led to tolerant and very active biomass that contributed to high efficiencies on color removal.

  9. Production of alcohol and edible yeast with extract of carob fruit

    Energy Technology Data Exchange (ETDEWEB)

    Beundia, M.; Arroyo, V.; Inigo, B.; Garrido, J.M.

    1961-01-01

    Media based on extraction from carob fruit (Ceratonia siliqua) have been used successfully in laboratory production of edible yeast and of alcohol. The fruit is a pod, 25 to 40 g, with sweet meaty flesh containing 34% sugar (dry weight), half sucrose and half invert sugar. Because of butyric acid and tannin, no antimicrobial need be added to the pulp prepared by adding H/sub 2/O (3 times weight) and autoclaving 1 hour in flowing stream. Of 3 yeast spp., Candida pulcherrima, Hansenula anomala, and Rhodotorula rubra, the latter (notable for carotenoid content) produced the most dry material in 48 hours at 32/sup 0/ on a reciprocating shaker with medium containing (NH/sub 4/)/sub 2/SO/sub 4/ 2.52 and extraction contributing 20 g reducing sugar/1. Alcohol fermentation, heretofore effected by natural microflora, was attempted with pure cultures of 4 yeast spp., Saccharomyces cerevisae (4 strains), S. oviformis (2 strains), S. beticus, and S. chevalieri. All were suitable except one strain of S. oviformis. The carob extraction had enough nitrogenous and growth substances so that no other medium ingredient was needed. With reducing sugar level t 23 g/100 mil, alcohol yield was close to the theoretical unitage (13.5) after 17-days growth. The range for the 7 isolates was 10.2 to 12.4. One strain of S. cereviseae reached its maximum, 11.8 in only 7 days.

  10. Host-Pathogen Interactions: XIV. Isolation and Partial Characterization of an Elicitor from Yeast Extract.

    Science.gov (United States)

    Hahn, M G; Albersheim, P

    1978-07-01

    An elicitor of glyceollin accumulation in soybeans (Glycine max L.) has been isolated from a commercially available extract of brewers' yeast. Yeast is not a known pathogen of plants. The elicitor was isolated by precipitation in 80% (v/v) ethanol followed by column chromatography on DEAE-cellulose, sulfopropyl-Sephadex, and concanavalin A-Sepharose. Compositional and structural analysis showed the elicitor to be a glucan containing terminal, 3-, 6-, and 3,6-linked glucosyl residues. The yeast elicitor stimulates the accumulation of glyceollin in the cotyledons and hypocotyls of soybeans when as little as 15 nanograms or 100 nanograms of the elicitor is applied to the respective tissues. The yeast elicitor is very similar in both structure and absolute elicitor activity to an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae, a pathogen of soybeans. These and other results of this laboratory suggest that plants are able to respond to the presence of a wide range of fungi by recognizing, as foreign to the plant, structural polysaccharides of the mycelial walls of the fungi.

  11. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Directory of Open Access Journals (Sweden)

    Alena V Makarova

    Full Text Available Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+ ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA". We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  12. Antifungal activity of propolis extract against yeasts isolated from onychomycosis lesions

    Directory of Open Access Journals (Sweden)

    Ana Carla Pozzi Oliveira

    2006-08-01

    Full Text Available The aim of this study was to determine the in vitro activity of propolis extract against 67 yeasts isolated from onychomycosis in patients attending at the Teaching and Research Laboratory of Clinical Analysis of the State University of Maringá. The method used was an adaptation made from the protocol approved by the National Committee for Clinical Laboratory Standards. The yeasts tested were: Candida parapsilosis 35%, C. tropicalis 23%, C. albicans 13%, and other species 29%. The propolis extract showed excellent performance regarding its antifungal activity: the concentration capable of inhibiting the all of the yeasts was 5 × 10-2 mg/ml of flavonoids and 2 × 10-2 mg/ml of flavonoids stimulated their cellular death. Trichosporon sp. were the most sensitive species, showing MIC50 and MIC90 of 1.25 × 10-2 mg/ml of flavonoids, and C. tropicalis was the most resistant, with CFM50 of 5 × 10-2 mg/ml of flavonoids and MFC90 of 10 × 10-2 mg/ml. In view of the fact that propolis is a natural, low cost, non-toxic product with proven antifungal activity, it should be considered as another option in the onychomycosis treatment.

  13. Antifungal activity evaluation of Aloe arborescens dry extract against trichosporon genus yeasts

    Directory of Open Access Journals (Sweden)

    João Ricardo Bueno de Morais Borba

    2014-10-01

    Full Text Available The objective of this study was to investigate the antifungal activity of Aloe arborescens dry extract against Trichosporon genus yeast species. Extraction was carried out by means of a longitudinal incision in fresh leaves, which were collected on a vat, and the total volume was frozen and subsequently lyophilized. Then, 40 mg of the dry extract was dissolved in DMSO by gentle inversion in order to obtain a solution whose concentration was 4000 µg mL-1. This solution became limpid and slightly yellowish because the pigment of the latex was attenuated. It was performed serial dilutions from 2,000 to 15.625 µg mL-1 with RPMI-1640 broth. There was already no pigment in the first dilution of 2000 μg mL-1. It was analyzed fifteen strains of Trichosporon spp., and Candida albicans ATCC 10231 was used as control strain. We carried out the reading of microplates in the ELISA reader device at a wavelength of 530 nm, after incubation for 24 and 48 hours, and it was determinated the Minimum Inhibitory Concentration (MIC. The MIC50 value obtained for all Trichosporon species and for C. albicans was 500 µg mL-1. As a result, we concluded that Aloe arborescens dry extract has antifungal activity against Trichosporon yeasts.

  14. The degradation of nucleotide triphosphates extracted under boiling ethanol conditions is prevented by the yeast cellular matrix.

    Science.gov (United States)

    Gil, Andres; Siegel, David; Bonsing-Vedelaar, Silke; Permentier, Hjalmar; Reijngoud, Dirk-Jan; Dekker, Frank; Bischoff, Rainer

    2017-01-01

    Boiling ethanol extraction is a frequently used method for metabolomics studies of biological samples. However, the stability of several central carbon metabolites, including nucleotide triphosphates, and the influence of the cellular matrix on their degradation have not been addressed. To study how a complex cellular matrix extracted from yeast (Saccharomyces cerevisiae) may affect the degradation profiles of nucleotide triphosphates extracted under boiling ethanol conditions. We present a double-labelling LC-MS approach with a (13)C-labeled yeast cellular extract as complex surrogate matrix, and (13)C(15)N-labeled nucleotides as internal standards, to study the effect of the yeast matrix on the degradation of nucleotide triphosphates. While nucleotide triphosphates were degraded to the corresponding diphosphates in pure solutions, degradation was prevented in the presence of the yeast matrix under typical boiling ethanol extraction conditions. Extraction of biological samples under boiling ethanol extraction conditions that rapidly inactivate enzyme activity are suitable for labile central energy metabolites such as nucleotide triphosphates due to the stabilizing effect of the yeast matrix. The basis of this phenomenon requires further study.

  15. Identification of sugar-tolerant yeasts isolated from high-sugar fermented vegetable extracts.

    Science.gov (United States)

    Ok, Taing; Hashinaga, Fumio

    1997-02-01

    In Japan, high-sugar fermented vegetable extracts are novel functional food products for which sugar-tolerant yeasts are employed during processing. In order to understand the yeast distribution in these foods and their role in the functionality of such foods, we isolated sugar-tolerant yeasts from nine sample products, together with one sample each of fermented extract of ume (Japanese apricot) and honey. Twenty-three strains were identified as Zygosaccharomyces rouxii; one strain as Z. bailii; one strain as Torulaspora delbrueckii; and one strain as Candida bombicola. Nearly 90% of the identified strains belonged to Z. rouxii with variations in fermentation and assimilation properties. All strains grew well on 50% w/w glucose medium, and all but two strains grew on 60% w/w glucose medium. Sixteen strains belonged to the strong sugar tolerance type (poor or no growth at 1% and maximum growth at 30 or 40% w/w glucose); four strains to the moderate type (grew well at 1% and maximum growth at 10 or 20% w/w glucose); and seven strains to the weak type (maximum growth only at 1% w/w glucose). One strain of Z. rouxii, V19, grew up to 80% (w/w) glucose in liquid medium. In view of salt tolerance, only two strains belonged to the moderate type (maximum growth at 0.5 or 1 m NaCl); the remaining strains all belonged to the weak type (maximum growth only at 0 m NaCl). This suggests that sugar tolerance and salt tolerance of yeasts have different aspects.

  16. Comparison of two lipid extraction methods produced by yeast in cheese whey

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernandes Castanha

    2013-08-01

    Full Text Available This work aimed to evaluate nine strains of yeast, previously identified as good producers of lipids in honey medium, for selecting the most suitable strain for the production of lipids in cheese whey medium and compared two well known extraction methods of lipids from the culture medium. The highest yield of total lipids was 1.27 g.L-1 produced by Cryptococcus laurentii 11. A comparison was made between the two culture media: cheese whey and liquid YEPG, and two lipid extraction methods: Bligh and Dyer and Folch et al. for C. laurentii. The experiments were performed with 2² full factorial design using two factors and two levels. Lipid content was higher in cheese whey and there was no difference in the extraction methods statistically. The method of Bligh and Dyer was used in preference to Folch et al. as it resulted in larger mean of total lipids.

  17. Malolactic bioconversion using a Oenococcus oeni strain for cider production: effect of yeast extract supplementation.

    Science.gov (United States)

    Herrero, Mónica; García, Luis A; Díaz, Mario

    2003-12-01

    Yeast extract addition to reconstituted apple juice had a positive impact on the development of the malolactic starter culture used to ensure malolactic fermentation in cider, using active but non-proliferating cells. In this work, the reuse of fermentation lees from cider is proposed as an alternative to the use of commercial yeast extract products. Malolactic enzymatic assays, both in whole cells and cell-free extracts, were carried out to determine the best time to harvest cells for use as an inoculum in cider. Cells harvested at the late exponential phase, the physiological stage of growth corresponding to the maximum values of specific malolactic activity, achieved a good rate of malic acid degradation in controlled cider fermentation. Under the laboratory conditions used, malic acid degradation rates in the fermentation media turned out to be near 2.0 and 2.5 times lower, compared with the rates obtained in whole-cell enzymatic assays, as useful data applicable to industrial cider production.

  18. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis.

    Science.gov (United States)

    Hodgman, C Eric; Jewett, Michael C

    2013-10-01

    Cell-free protein synthesis (CFPS) has emerged as a powerful platform technology to help satisfy the growing demand for simple, affordable, and efficient protein production. In this article, we describe a novel CFPS platform derived from the popular bio-manufacturing organism Saccharomyces cerevisiae. By developing a streamlined crude extract preparation protocol and optimizing the CFPS reaction conditions we were able to achieve active firefly luciferase synthesis yields of 7.7 ± 0.5 µg mL(-1) with batch reactions lasting up to 2 h. This duration of synthesis is the longest ever reported for a yeast CFPS batch reaction. Furthermore, by removing extraneous processing steps and eliminating expensive reagents from the cell-free reaction, we have increased relative product yield (µg protein synthesized per $ reagent cost) over an alternative commonly used method up to 2000-fold from ∼2 × 10(-4) to ∼4 × 10(-1)  µg $(-1) , which now puts the yeast CPFS platform on par with other eukaryotic CFPS platforms commercially available. Our results set the stage for developing a yeast CFPS platform that provides for high-yielding and cost-effective expression of a variety of protein therapeutics and protein libraries.

  19. Effect of scenedesmus acuminatus green algae extracts on the development of Candida lipolytic yeast in gas condensate-containing media

    Science.gov (United States)

    Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.

    1980-01-01

    Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.

  20. Biphenyl synthase from yeast-extract-treated cell cultures of Sorbus aucuparia.

    Science.gov (United States)

    Liu, Benye; Beuerle, Till; Klundt, Tim; Beerhues, Ludger

    2004-01-01

    Biphenyls and dibenzofurans are the phytoalexins of the Maloideae, a subfamily of the economically important Rosaceae. The biphenyl aucuparin accumulated in Sorbus aucuparia L. cell cultures in response to yeast extract treatment. Incubation of cell-free extracts from challenged cell cultures with benzoyl-CoA and malonyl-CoA led to the formation of 3,5-dihydroxybiphenyl. This reaction was catalysed by a novel polyketide synthase, which will be named biphenyl synthase. The most efficient starter substrate for the enzyme was benzoyl-CoA. Relatively high activity was also observed with 2-hydroxybenzoyl-CoA but, instead of the corresponding biphenyl, the derailment product 2-hydroxybenzoyltriacetic acid lactone was formed.

  1. High-Throughput Screen of Natural Product Extracts in A Yeast Model of Polyglutamine Proteotoxicity

    Science.gov (United States)

    Walter, Gladis M.; Raveh, Avi; Mok, Sue-Ann; McQuade, Thomas J.; Arevang, Carl J.; Schultz, Pamela J.; Smith, Matthew C.; Asare, Samuel; Cruz, Patricia G.; Wisen, Susanne; Matainaho, Teatulohi; Sherman, David H.; Gestwicki, Jason E.

    2014-01-01

    Proteins with expanded polyglutamine (polyQ) segments cause a number of fatal neurodegenerative disorders, including Huntington’s disease (HD). Previous high-throughput screens in cellular and biochemical models of HD have revealed compounds that mitigate polyQ aggregation and proteotoxicity, providing insight into the mechanisms of disease and leads for potential therapeutics. However, the structural diversity of natural products has not yet been fully mobilized toward these goals. Here, we have screened a collection of ~11 000 natural product extracts for the ability to recover the slow growth of ΔProQ103-expressing yeast cells in 384-well plates (Z’ ~ 0.7, CV ~ 8%). This screen identified actinomycin D as a strong inhibitor of polyQ aggregation and proteotoxicity at nanomolar concentrations (~50–500 ng/mL). We found that a low dose of actinomycin D increased the levels of the heat-shock proteins Hsp104, Hsp70 and Hsp26 and enhanced binding of Hsp70 to the polyQ in yeast. Actinomycin also suppressed aggregation of polyQ in mammalian cells, suggesting a conserved mechanism. These results establish natural products as a rich source of compounds with interesting mechanisms of action against polyQ disorders. PMID:24636344

  2. Research and application of yeast extract special for chicken bouillon%鸡精专用酵母抽提物的研制与应用

    Institute of Scientific and Technical Information of China (English)

    刘政芳; 颜明; 李知洪; 李沛; 李库

    2004-01-01

    The processing of a type of yeast extract special for chicken bouillon was introduced in this paper. The effects of application in chicken bouillon were studied, The results showed that the yeast extract special for chicken bouillon w.ould be an excellent material to increase the content of other nitrogen and raise the flavour of chicken bouillon.

  3. Digestibilidade do extrato de leveduras em frangos de corte Yeast extract digestibility for broilers

    Directory of Open Access Journals (Sweden)

    Vanessa Karla Silva

    2009-10-01

    Full Text Available O objetivo neste trabalho foi determinar a composição química e de energia metabolizável e os coeficientes de digestibilidade da matéria seca, proteína bruta e dos aminoácidos contidos no extrato de leveduras fornecido para frangos de corte. Dois ensaios de metabolismo foram conduzidos: no primeiro ensaio, foram utilizados 200 frangos de corte machos Cobb-500® com 14 dias de idade alojados em baterias metálicas, distribuídos em delineamento inteiramente casualizado em grupos de 10 aves por unidade experimental. Utilizou-se o método de coleta total para determinar a energia metabolizável aparente (EMA e aparente corrigida pelo balanço de nitrogênio (EMAn e os coeficientes de digestibilidade aparente da matéria seca e da proteína bruta. No segundo ensaio, foi utilizado o método da alimentação forçada em oito galos cecectomizados para determinação do coeficiente de digestibilidade dos aminoácidos. O delineamento experimental foi em blocos casualizados repetidos no tempo, com um grupo de cinco aves recebendo o extrato de leveduras e outro com três aves mantidas em jejum para determinação das perdas endógenas de aminoácidos. Para avaliação da composição química do ingrediente, foram determinados os teores de bruta (PB, matéria seca (MS, energia bruta (EB e aminoácidos. O extrato de leveduras contém em média 92,49% de MS, 48,07% de PB, 4.883 kcal de EB/kg e 2.073 kcal de EMAn/kg e coeficientes de digestibilidade de 65,79% da matéria seca, 65,47% da proteína bruta e 99,42% dos aminoácidos em frangos de corte. Os aminoácidos em maior proporção no extrato de leveduras são ácido glutâmico, leucina, ácido aspártico, alanina, prolina, lisina, valina, serina, isoleucina, glicina e treonina.The objective of this study was to evaluate the chemical composition, metabolizable energy, the digestibility coefficients of dry matter, crude protein and the amino acids contained in yeast extract supplied to broiler

  4. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast ( Saccharomyces cerevisiae) extract

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-11-01

    Synthesis of metallic and semiconductor nanoparticles through physical and chemical route is quiet common but biological synthesis procedures are gaining momentum due to their simplicity, cost-effectivity and eco-friendliness. Here, we report green synthesis of silver nanoparticles from aqueous solution of silver salts using yeast ( Saccharomyces cerevisiae) extract. The nanoparticles formation was gradually investigated by UV-Vis spectrometer. X-ray diffraction analysis was done to identify different phases of biosynthesized Ag nanoparticles. Transmission electron microscopy was performed to study the particle size and morphology of silver nanoparticles. Fourier transform infrared spectroscopy of the nanoparticles was performed to study the role of biomolecules capped on the surface of Ag nanoparticles during interaction. Photocatalytic activity of these biosynthesized nanoparticles was studied using an organic dye, methylene blue under solar irradiation and these nanoparticles showed efficacy in degrading the dye within a few hours of exposure.

  5. Elicitation effect of Saccharomyces cerevisiae yeast extract on main health-promoting compounds and antioxidant and anti-inflammatory potential of butter lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Złotek, Urszula; Świeca, Michał

    2016-05-01

    This paper presents a study on changes in the main phytochemical levels and antioxidant and anti-inflammatory activity of lettuce caused by different doses and times of application of yeast extracts. Elicitation with yeast extract caused an increase in the total phenolic compounds and chlorophyll content, which varied according to the dose and time of spraying, but it did not have a positive impact on vitamin C, flavonoid and carotenoid content in lettuce. The best effect was achieved by double spraying with 1% yeast extract and by single spraying with 0.1% yeast extract. The increase in phytochemical content was positively correlated with the antioxidant and anti-inflammatory activity of the studied lettuce leaves. Chicoric acid seems to be the major contributor to these antioxidant activities. Yeast extract may be used as a natural, environmentally friendly and safe elicitor for improving the health-promoting qualities of lettuce. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. Effect of ultrafiltration of yeast extracts on their ability to promote lactic acid bacteria growth.

    Science.gov (United States)

    Gaudreau, H; Champagne, C P; Conway, J; Degré, R

    1999-11-01

    Five yeast extracts (YE) were fractionated by ultrafiltration (UF) with 1, 3, and 10 kDa molecular weight cutoff membranes, concentrated by freeze-drying, and the resulting powders of yeast extract filtrates (YEF) were evaluated for their growth-promoting properties on nine cultures of lactic acid bacteria (LAB). There was an increase in alpha-amino nitrogen content of the YEF powders as the pore size of the UF membranes used to filter the YE solutions decreased. The source of YE had a much greater effect than UF on the growth of LAB. This was also the case for the YEF contents in total and alpha-amino nitrogen. Growth curves of the LAB showed that maximum growth rate (mumax) data were on average 30% higher with bakers' YE than with brewers' YE, while maximum optical density (ODmax) values were on average 16% higher with bakers' YE. This could be related to the higher nitrogen content of the bakers' YE used in this study. Modification by UF of the YE had no significant influence on the growth of 4 of the 9 LAB strains. The three strains of Lactobacillus casei were negatively influenced by UF, as they did not grow as well in the media containing the YEF obtained after filtering with 1 and 3 kDa membranes. On a total solids basis, the 2.5 x retentates from the 10 kDa membrane gave, on average, 4% lower mumax and 5% lower ODmax values as compared to cultures where the corresponding YEF was used as medium supplement. This could also be partially related to the different nitrogen contents of the filtrates and retentates.

  7. Effects of adding yeast cell walls and Yucca schidigera extract to diets of layer chicks.

    Science.gov (United States)

    Gurbuz, E; Balevi, T; Kurtoglu, V; Oznurlu, Y

    2011-10-01

    This research was conducted to determine the impact of diet supplementation with yeast cell walls and Yucca schidigera extract on the growth performance, antibody titres, and intestinal tissue histology of layer chicks. White, 1-d-old, Hy-Line hybrid chicks (n = 840) were divided into 4 main groups, each comprising 7 replicates of 30 chicks (n = 210): (1) control; (2) 1000 mg/kg yeast cell walls (YCW) added; (3) 1000 mg/kg Yucca schidigera extract (YE) added; and (4) 500 mg/kg YE + 500 mg/kg YCW added. The trial lasted 60 d. Daily weight gain of the chicks was positively affected between d 45-60 in the YE and YCW + YE groups compared with the control group. Overall, feed consumption did not differ between the control and YCW, YE, YCW + YE groups during the 60 d study period. Feed efficiency was better in the YE and YCW + YE groups than in the control group between d 1-60. During the 60 d evaluation period, live weight gain, and final live weight were higher in YE and YCW + YE groups than in the control group. Antibody titres against infectious bronchitis and infectious bursal disease did not differ among the 4 treatments, but those for Newcastle disease were higher in the YE + YCW groups than in the control, YCW and YE groups on d 45. There were differences in intestinal histomorphometry between the 4 treatments. The height of the jejunal and ileal villi was greater in the YE and YCW + YE groups than in the control and YCW groups. It can be concluded that YCW and YE supplementation for layer chicks is beneficial for growth performance and intestinal histology during the 1-60 d growing period.

  8. In vitro formation of the anthranoid scaffold by cell-free extracts from yeast-extract-treated Cassia bicapsularis cell cultures.

    Science.gov (United States)

    Abdel-Rahman, Iman A M; Beuerle, Till; Ernst, Ludger; Abdel-Baky, Afaf M; Desoky, Ezz El-Din K; Ahmed, Amany S; Beerhues, Ludger

    2013-04-01

    The anthranoid skeleton is believed to be formed by octaketide synthase (OKS), a member of the type III polyketide synthase (PKS) superfamily. Recombinant OKSs catalyze stepwise condensation of eight acetyl units to form a linear octaketide intermediate which, however, is incorrectly folded and cyclized to give the shunt products SEK4 and SEK4b. Here we report in vitro formation of the anthranoid scaffold by cell-free extracts from yeast-extract-treated Cassia bicapsularis cell cultures. Unlike field- and in vitro-grown shoots which accumulate anthraquinones, cell cultures mainly contained tetrahydroanthracenes, formation of which was increased 2.5-fold by the addition of yeast extract. The elicitor-stimulated accumulation of tetrahydroanthracenes was preceded by an approx. 35-fold increase in OKS activity. Incubation of cell-free extracts from yeast-extract-treated cell cultures with acetyl-CoA and [2-(14)C]malonyl-CoA led to formation of torosachrysone (tetrahydroanthracene) and emodin anthrone, beside two yet unidentified products. No product formation occurred in the absence of acetyl-CoA as starter substrate. To confirm the identities of the enzymatic products, cell-free extracts were incubated with acetyl-CoA and [U-(13)C(3)]malonyl-CoA and (13)C incorporation was analyzed by ESI-MS/MS. Detection of anthranoid biosynthesis in cell-free extracts indicates in vitro cooperation of OKS with a yet unidentified factor or enzyme for octaketide cyclization.

  9. Use of yeast cell wall extract as a tool to reduce the impact of necrotic enteritis in broilers.

    Science.gov (United States)

    M'Sadeq, Shawkat A; Wu, Shu-Biao; Choct, Mingan; Forder, Rebecca; Swick, Robert A

    2015-05-01

    The use of a yeast cell wall extract derived from Saccharomyces cerevisiae (Actigen(®)) has been proposed as an alternative to in-feed antibiotics. This experiment was conducted to investigate the efficacy of yeast cell extract as an alternative to zinc bacitracin or salinomycin using a necrotic enteritis challenge model. A feeding study was conducted using 480-day-old male Ross 308 chicks assigned to 48 floor pens. A 2 × 4 factorial arrangement of treatments was employed. The factors were: challenge (- or +) and feed additive (control, zinc bacitracin at 100/50 mg/kg, yeast cell wall extract at 400/800/200 mg/kg, or salinomycin at 60 mg/kg in starter, grower, and finisher, respectively). Diets based on wheat, sorghum, soybean meal, meat and bone meal, and canola meal were formulated according to the Ross 308 nutrient specifications. Birds were challenged using a previously established protocol (attenuated Eimeria spp oocysts) on d 9 and 10(8) to 10(9) Clostridium perfringens (type A strain EHE-NE18) on d 14 and 15). Challenged and unchallenged birds were partitioned to avoid cross contamination. Challenged birds had lower weight gain, feed intake and livability compared to unchallenged birds on d 24 and d 35 (P enteritis lesion scores in the small intestine sections when compared to unchallenged birds (P enteritis in the current study. This study indicates that yeast cell wall extract has promise as a tool for controlling necrotic enteritis.

  10. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a tolerance. 180.1246 Section 180.1246 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD...

  11. Optimization of laccase production in the white-rot fungus Pleurotus ostreatus (ACCC 52857 induced through yeast extract and copper

    Directory of Open Access Journals (Sweden)

    Changwei Zhu

    2016-03-01

    Full Text Available Different inducers for laccase production in Pleurotus ostreatus (ACCC 52857 were screened: carbon and nitrogen source, phenolic compounds and metal ions. Among the tested substances, yeast extract and copper showed the strongest effect on laccase activity. Laccase activity increased during the early phase of cultivation in the presence of yeast extract, peaking on the 6th day and decreasing thereafter. Copper-induced laccase activity increased both in a dose-dependent and a time-dependent manner. The highest laccase activity was obtained with 2 mmol/L Cu2+, while the mycelial growth was inhibited approximately 27%. Thus, the time-dependent effect of copper on laccase activity was examined. The results showed that the best laccase production was induced when copper was added during the mid-logarithmic phase of cultivation (the 5th day. A positive synergistic effect of yeast extract and copper on the laccase production was observed. Laccase activity dramatically increased upon the addition of copper to medium containing 1% yeast extract on the 5th day of cultivation. The highest activity (8533.33 ± 1228.94 U/mL was observed on the 13th day of cultivation, increased more than 80 folds compared to the original level.

  12. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice

    Directory of Open Access Journals (Sweden)

    Swee Keong Yeap

    2014-01-01

    Full Text Available Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA, higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR. In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA.

  13. The effect of yeast extract addition on quality of fermented sausages at low NaCl content.

    Science.gov (United States)

    Campagnol, Paulo Cezar Bastianello; dos Santos, Bibiana Alves; Wagner, Roger; Terra, Nelcindo Nascimento; Pollonio, Marise Aparecida Rodrigues

    2011-03-01

    Fermented sausages with 25% or 50% of their NaCl replaced by KCl and supplemented with 1% or 2% concentrations of yeast extract were produced. The sausage production process was monitored with physical, chemical and microbiological analyses. After production, the sausage samples were submitted to a consumer study and their volatile compounds were extracted by solid-phase microextraction and analyzed by GC-MS. The replacement of NaCl by KCl did not significantly influence the physical, chemical or microbiological characteristics. The sensory quality of the fermented sausages with a 50% replacement was poor compared with the full-salt control samples. The use of yeast extract at a 2% concentration increased volatile compounds that arose from amino acids and carbohydrate catabolism. These compounds contributed to the suppression of the sensory-quality defects caused by the KCl introduction, thus enabling the production of safe fermented sausages that have acceptable sensory qualities with half as much sodium content.

  14. Extraction of nucleic acids from yeast cells and plant tissues using ethanol as medium for sample preservation and cell disruption.

    Science.gov (United States)

    Linke, Bettina; Schröder, Kersten; Arter, Juliane; Gasperazzo, Tatiana; Woehlecke, Holger; Ehwald, Rudolf

    2010-09-01

    Here we report that dehydrated ethanol is an excellent medium for both in situ preservation of nucleic acids and cell disruption of plant and yeast cells. Cell disruption was strongly facilitated by prior dehydration of the ethanol using dehydrated zeolite. Following removal of ethanol, nucleic acids were extracted from the homogenate pellet using denaturing buffers. The method provided DNA and RNA of high yield and integrity. Whereas cell wall disruption was essential for extraction of DNA and large RNA molecules, smaller molecules such as tRNAs could be selectively extracted from undisrupted, ethanol-treated yeast cells. Our results demonstrate the utility of absolute ethanol for sample fixation, cell membrane and cell wall disruption, as well as preservation of nucleic acids during sample storage.

  15. Inhibition of human calcineurin and yeast calcineurin-dependent gene expression by Jasminum humile leaf and root extracts.

    Science.gov (United States)

    Prescott, Thomas A K; Ariño, Joaquín; Kite, Geoffrey C; Simmonds, Monique S J

    2012-03-27

    The leaves of Jasminum humile are used to treat skin disorders in a way which resembles the use of modern topical anti-inflammatory drugs. Ethanolic extracts of the roots and leaves were shown to inhibit calcineurin which is a regulator of inflammatory gene expression. A novel yeast calcineurin reporter gene assay suitable for a 96 well plate format was developed to test for inhibition of calcineurin-dependent gene expression. Calmodulin/calcineurin phosphatase assays were then used to further elucidate the mode of action of the extracts. Jasminum humile root and leaf extract exhibited calcineurin inhibition activity that was shown to be mediated through a direct interaction with calcineurin enzyme. The activity is sufficient to block calcineurin-dependent gene expression in a yeast model. The activity of the plant supports its traditional use in the treatment of inflammatory skin disorders. The specially adapted yeast reporter assay was found to be a highly effective way of detecting calcineurin inhibitors in plant extracts. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Utilization of Candida utilis Cells for the Production of Yeast Extract:Effects of Enzyme Types, Dosages and Treatment Time

    Directory of Open Access Journals (Sweden)

    Yuping Guan

    2013-05-01

    Full Text Available The purpose of this study was to establish an enzymatic hydrolysis process to prepare yeast extract with the advantages of low-cost and high-content of flavor nucleotides. Yeast extract was produced from the broken cell suspension of Candida utilis, using papain, 5′-Phosphodiesterase (RP-1 and Adenosine Monophosphate (AMP -deaminase. The effects of types, dosages and treatment time of enzymes on the recovery of solid, protein and flavor nucleotides, as well as the extract composition were investigated. Enzyme types remarkably affected the recovery of protein and solid and papain was found to be the most effective hydrolysis enzyme. The optimal dosage of papain and its treatment time were determined as 0.2% and 6 h, respectively. On this condition, the recovery of solid and protein of yeast cells was 69.26 and 60.87%, respectively. Further treatments with RP-1 (0.045%, 3 h and AMP-deaminase (0.045%, 2 h were employed to obtain a higher content of flavor 5′-nucleotides (GMP + IMP, 4.39%. This process had the advantages of a small amount of enzymes dosage, short enzymatic reaction time and high extraction yield.

  17. Effects of Nitrogen Supplementation on Yeast (Candida utilis Biomass Production by Using Pineapple (Ananas comosus Waste Extracted Medium

    Directory of Open Access Journals (Sweden)

    Rosma, A.

    2007-01-01

    Full Text Available Pineapple waste medium was used to cultivate yeast, Candida utilis. It served as the sole carbon and energy source for the yeast growth. However, pineapple waste media contain very little nitrogen (0.003-0.015% w/v. Various nitrogen sources were incorporate and their effects on biomass, yield and productivity were studied. Significant (p<0.05 increment on biomass production was observed when nitrogen supplement (commercial yeast extract, peptone, ammonium dihydrogen phosphate, ammonium sulphate and potassium nitrate was added into fermentation medium. Commercial yeast extract, Maxarome® which increased 55.2% of biomass production at 0.09% (w/v nitrogen content, is the most suitable among the selected organic source. On the other hand, ammonium dihydrogen phosphate at 0.09% (w/v nitrogen content is comparable inorganic source which enhanced 53.7% of production. Total nitrogen content of each treatment at 0.05% (w/v showed that nitrogen supplied was not fully utilized as substrate limitation in the fermentation medium.

  18. Use of yeast cell walls and Yucca schidigera extract in layer hens’ diets

    Directory of Open Access Journals (Sweden)

    Yasemin Oznurlu

    2011-04-01

    Full Text Available This research was conducted to determine the impact of diet supplementation with yeast cell walls (YCW and Yucca schidigera extract (YE on performance, egg weight, specific gravity, body weight, and intestinal tissue hist­ology in layer hens. White, 48-week-old, Hy-line hybrid hens (n=320 were divided into four main groups, each comprising eight groups of 10 hens: (1 control, (2 500 mg/kg YCW added, (3 500 mg/kg YE added and (4 250 mg/kg YE plus 2500 mg/kg YCW added. While the egg production and feed intake of the hens was significantly affected, overall feed efficiency, damaged-egg ratio, dirty-egg ratio, egg weight and specific gravity did not differ between the control group and the YCW, YE or YCW+YE groups. Final body weight was higher in the YCW, YE and YCW+YE groups than in the control group. There were differences in the width, muscle layer thickness and height/crypt depth ratio of the duodenal villus and the width of the ileal villus among the four groups. It can be concluded that YCW and YCW+YE supplementation for layer hens are beneficial for egg production.

  19. Impact of water extracts of Spirulina (WES on bacteria, yeasts and molds

    Directory of Open Access Journals (Sweden)

    Aleksandra Duda-Chodak

    2013-03-01

    Full Text Available Background. Due to its chemical composition, Spirulina is widely used as a dietary supplement that exerts positive effects on the human body. It also has the ability to inhibit the growth of cert ain microorganisms, both pathogens that pose a health hazard, as well as those that cause food spoilage in all branches of food industry. The main aim of this study was to determine the impact of water extracts of Spirulina (WES on the growth of various microorganism both useful and harmful for humans and the economy. Material and methods. The impact of different WES concentrations (0.1, 1.0, 2.5, or 5.0% on the growth of various bacteria, yeasts and molds was determined by diffusion method on solid medium. Results. It was demonstrated that WES have a diversifi ed impact on microorganisms, depending on the species. The inhibitory activity was shown against Bacillus subtilis, Micrococcus luteus, Rhodotorula, and Penicillium. WES had strong stimulating effect on Alicyclobacillus acidoterrestris and Geotrichum. Moreover, higher concentrations of WES stimulated also the development of mycelium and production of conidiophores by Cladosporium and Aspergillus niger. Conclusions. Inhibitory impact of WES on microorganisms that cause food spoilage may be used in food production. However, the obtained results indicate the need for further studies, particularly in order to evaluate the effect of the WES on microfl ora in the food matrices.

  20. Biphenyl Phytoalexin in Sorbus pohuashanensis Suspension Cell Induced by Yeast Extract.

    Science.gov (United States)

    Zhou, Liangyun; Yang, Jian; Yang, Guang; Kang, Chuanzhi; Xiao, Wenjuan; Lv, Chaogeng; Wang, Sheng; Tang, Jinfu; Guo, Lanping

    2016-09-14

    Biphenyls are unique phytoalexins de novo synthesized in plants in response to pathogen attack. These compounds are found in Maloideae, a subfamily of the Rosaceae. The anti-microbial activities of biphenyls have been reported in a number of studies and they appear to represent an important defense strategy against pathogens common in the Maloideae, such as species in Malus, Pyrus, Sorbus, and Chaenomeles. Here, cell suspension cultures of Sorbus pohuashanensis were established to study biphenyl phytoalexins formation after yeast extract (YE) treatment. An ultra-performance liquid chromatography (UPLC) method coupled with quadrupole time of flight mass spectrometry (Q-TOF-MS) LC-MS/MS was applied to determine the time course of these biphenyl biomarkers accumulation in YE-treated S. pohuashanensis suspension cells. The results of quantitative analyses show the content of Noraucuparin, 2'-Hydroxyaucuparin, and their glycosides initially increased, then decreased over time. The Noraucuparin content reached its highest (225.76 μg·g(-1)) at 18 h after treatment, 6 hours earlier than that of Noraucuparin 5-O-β-d-glucopyranoside. The content of 2'-Hydroxyaucuparin reached its highest (422.75 μg·g(-1)) at 30 h after treatment, also earlier than that of its glycoside. The understanding of phytoalexin metabolism in this study may provide a basis for improving Maloideae resistance to pathogens.

  1. Biphenyl Phytoalexin in Sorbus pohuashanensis Suspension Cell Induced by Yeast Extract

    Directory of Open Access Journals (Sweden)

    Liangyun Zhou

    2016-09-01

    Full Text Available Biphenyls are unique phytoalexins de novo synthesized in plants in response to pathogen attack. These compounds are found in Maloideae, a subfamily of the Rosaceae. The anti-microbial activities of biphenyls have been reported in a number of studies and they appear to represent an important defense strategy against pathogens common in the Maloideae, such as species in Malus, Pyrus, Sorbus, and Chaenomeles. Here, cell suspension cultures of Sorbus pohuashanensis were established to study biphenyl phytoalexins formation after yeast extract (YE treatment. An ultra-performance liquid chromatography (UPLC method coupled with quadrupole time of flight mass spectrometry (Q-TOF-MS LC−MS/MS was applied to determine the time course of these biphenyl biomarkers accumulation in YE-treated S. pohuashanensis suspension cells. The results of quantitative analyses show the content of Noraucuparin, 2′-Hydroxyaucuparin, and their glycosides initially increased, then decreased over time. The Noraucuparin content reached its highest (225.76 μg·g−1 at 18 h after treatment, 6 hours earlier than that of Noraucuparin 5-O-β-d-glucopyranoside. The content of 2′-Hydroxyaucuparin reached its highest (422.75 μg·g−1 at 30 h after treatment, also earlier than that of its glycoside. The understanding of phytoalexin metabolism in this study may provide a basis for improving Maloideae resistance to pathogens.

  2. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar): Increased Abundance and Expression of a Calreticulin-Like Protein.

    Science.gov (United States)

    Micallef, Giulia; Cash, Phillip; Fernandes, Jorge M O; Rajan, Binoy; Tinsley, John W; Bickerdike, Ralph; Martin, Samuel A M; Bowman, Alan S

    2017-01-01

    In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts.

  3. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar): Increased Abundance and Expression of a Calreticulin-Like Protein

    Science.gov (United States)

    Micallef, Giulia; Cash, Phillip; Fernandes, Jorge M. O.; Rajan, Binoy; Tinsley, John W.; Bickerdike, Ralph

    2017-01-01

    In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts. PMID:28046109

  4. IMPACTS OF LIGNIN CONTENTS AND YEAST EXTRACT ADDITION ON THE INTERACTION BETWEEN SPRUCE PULPS AND CRUDE RECOMBINANT PAENIBACILLUS ENDOGLUCANASE

    Directory of Open Access Journals (Sweden)

    Chun-Han Ko

    2011-02-01

    Full Text Available Crude recombinant Paenibacillus endoglucanase was employed to investigate its ability to gain access into and to degrade spruce pulps having different lignin and pentosan contents. Since yeast extract is commonly present in the simultaneous saccharification and fermentation processes as a nitrogen source, its effect on the accessibility and degradability of crude endoglucanase was examined. Pulps with more lignin contents adsorbed more overall proteins. More protein impurities other than the recombinant Paenibacillus endoglucanase were found to be preferentially adsorbed on the surfaces of pulp with higher lignin contents. The addition of yeast extracts further enhanced the above trends, which might reduce the non-productive binding by pulp lignin. Pulps with more lignin contents were more difficult to be degraded by the crude endoglucanase; the reductions of degree of polymerization (DP for pulps were more sensitive to the dosage of endoglucanase applied. The presence of yeast extracts increased the DP degradation rate constants, but decreased the release of reducing sugars during hydrolysis for pulp with higher lignin contents.

  5. Impact of Phosphate, Potassium, Yeast Extract, and Trace Metals on Chitosan and Metabolite Production by Mucor indicus.

    Science.gov (United States)

    Safaei, Zahra; Karimi, Keikhosro; Zamani, Akram

    2016-08-30

    In this study the effects of phosphate, potassium, yeast extract, and trace metals on the growth of Mucor indicus and chitosan, chitin, and metabolite production by the fungus were investigated. Maximum yield of chitosan (0.32 g/g cell wall) was obtained in a phosphate-free medium. Reversely, cell growth and ethanol formation by the fungus were positively affected in the presence of phosphate. In a phosphate-free medium, the highest chitosan content (0.42 g/g cell wall) and cell growth (0.66 g/g sugar) were obtained at 2.5 g/L of KOH. Potassium concentration had no significant effect on ethanol and glycerol yields. The presence of trace metals significantly increased the chitosan yield at an optimal phosphate and potassium concentration (0.50 g/g cell wall). By contrast, production of ethanol by the fungus was negatively affected (0.33 g/g sugars). A remarkable increase in chitin and decrease in chitosan were observed in the absence of yeast extract and concentrations lower than 2 g/L. The maximum chitosan yield of 51% cell wall was obtained at 5 g/L of yeast extract when the medium contained no phosphate, 2.5 g/L KOH, and 1 mL/L trace metal solution.

  6. Studies on the effects of carbon:nitrogen ratio, inoculum type and yeast extract addition on jasmonic acid production by Botryodiplodia theobromae Pat. strain RC1

    National Research Council Canada - National Science Library

    Eng Sánchez, Felipe; Gutiérrez-Rojas, Mariano; Favela-Torres, Ernesto

    2008-01-01

    .... Studies concerning the effects of carbon: nitrogen ratio (C/Nr: 17, 35 and 70), type of inoculum (spores or mycelium) and the yeast extract addition in the media on jasmonic acid production by Botryodiplodia theobromae were evaluated...

  7. Host-pathogen interactions. XIV. Isolation and partial characterization of an elicitor from yeast extract. [Glycine max, Phytophthora megasperma

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, M.G.; Albersheim, P.

    1978-01-01

    An elicitor of glyceollin accumulation in soybeans (Glycine max L.) has been isolated from a commercially available extract of brewers' yeast. Yeast is not a known pathogen of plants. The elicitor was isolated by precipitation in 80% (v/v) ethanol followed by column chromatography on DEAE-cellulose, sulfopropyl-Sephadex, and concanavalin A-Sepharose. Compositional and structural analysis showed the elicitor to be a glucan containing terminal, 3-, 6-, and 3,6-linked glucosyl residues. The yeast elicitor stimulates the accumulation of glyceollin in the cotyledons and hypocotyls of soybeans when as little as 15 nanograms or 100 nanograms of the elicitor is applied to the respective tissues. The yeast elicitor is very similar in both structure and absolute elicitor activity to an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae, a pathogen of soybeans. These and other results of this laboratory suggest that plants are able to respond to the presence of a wide range of fungi by recognizing, as foreign to the plant, structural polysaccharides of the mycelial walls of the fungi.

  8. Comparative Fingerprint of Aromatic Herbs and Yeast Alcoholic Extracts used as Ingredients for Promen, a Prostate Preventive Nutraceutical

    Directory of Open Access Journals (Sweden)

    Florina Csernatoni

    2013-11-01

    Full Text Available The aim of this study was to characterize and identify different bioactive compounds in plant sources and yeast powders  to obtain an original nutraceutical (Promen which has beneficial effects in prostate disease prevention. Seven plant and fruit sources, namely nettle (Urtica dioica, green tea (Camellia sinensis, fluff with small flowers (Epilobium parviplorum, tomato (Solanum licopersicum,  sea buckthorn (Hippophae rhamnoides, pumpkin (Cucurbita maxima, sunflower (Helianthus annus and lyophilized beer yeast (Saccharomyces cerevisiae were investigated. Methanolic extracts were prepared using 15% plant concentration and the purified fractions were analyzed using high throughput techniques like UV-VIS spectroscopy, high performance liquid chromatography coupled with photodiode array detection (HPLC-DAD and mass spectrometry LC-QTOF -MS. The majority of the investigated plants were rich in phenolic derivatives, polyphenols (flavonoid glucosides, while yeast was rich in aminoacids, peptides and vitamins B. The major compounds identified were: Juglone, Resveratrol, Quercetin, Epigallocatechin, Gallocatechin, Biochanin A, Isorhamnetin 3-O-glucoside 7-O-rhamnoside, Quercetin 3-O-galactoside 7-O-rhamnoside, Kaempferol 3,7-O-diglucoside and p-Coumaroylquinic acid. The specific biomarkers were identified for both plant extracts used as ingredients to obtain an nutraceutical  Promen. Combined UV-Vis spectroscopy, HPLC-PDA chromatography and LC-MS spectrometry are recommended as accurate, sensible and reliable tools to investigate the plants and nutraceutical fingerprints and to predict the relation between ingredients composition and their health effects.

  9. Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract.

    Science.gov (United States)

    Portu, Javier; López, Rosa; Baroja, Elisa; Santamaría, Pilar; Garde-Cerdán, Teresa

    2016-06-15

    Phenolic compounds play a key role in grape and wine organoleptic properties, being therefore a key parameter in wine quality. Elicitor application constitutes an interesting field of research since it is indirectly involved in the accumulation of phenolic compounds. The aim of this study was to compare the effect of the application of three different elicitors on both grape and wine phenolic content. Methyl jasmonate, chitosan, and a commercial yeast extract were applied to the canopy at veraison and one week later. Results showed that foliar treatments carried out with methyl jasmonate and yeast extract achieved the best results, increasing grape and wine anthocyanin content when compared to the control. Moreover, the application of the yeast elicitor also enhanced grape stilbene content. In contrast, the chitosan treatment did not have a substantial impact on the phenolic compounds. The results of this study indicate that methyl jasmonate and yeast extract applications could be a simple practice to increase grape and wine phenolic content.

  10. Yeast extract promotes phase shift of bio-butanol fermentation by Clostridium acetobutylicum ATCC824 using cassava as substrate.

    Science.gov (United States)

    Li, Xin; Li, Zhigang; Zheng, Junping; Shi, Zhongping; Li, Le

    2012-12-01

    When fermenting on cassava (15-25%, w/v) with Clostridium acetobutylicum ATCC824, a severe delay (18-40 h) was observed in the phase shift from acidogenesis to solventogenesis, compared to the cases of fermenting on corn. By adding yeast extract (2.5 g/L-broth) into cassava meal medium when the delay appeared, the phase shift was triggered and fermentation performances were consequently improved. Total butanol concentrations/butanol productivities, compared to those with cassava substrate alone, increased 15%/80% in traditional fermentation while 86%/79% in extractive fermentation using oleyl alcohol as the extractant, and reached the equivalent levels of those using corn substrate. Analysis of genetic transcriptional levels and measurements of free amino acids in the broth demonstrated that timely and adequate addition of yeast extract could promote phase shift by increasing transcriptional level of ctfAB to 16-fold, and indirectly enhance butanol synthesis through accelerating the accumulation of histidine and aspartic acid families. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Interactions of grape tannins and wine polyphenols with a yeast protein extract, mannoproteins and β-glucan.

    Science.gov (United States)

    Mekoue Nguela, J; Poncet-Legrand, C; Sieczkowski, N; Vernhet, A

    2016-11-01

    At present, there is a great interest in enology for yeast derived products to replace aging on lees in winemaking or as an alternative for wine fining. These are yeast protein extracts (YPE), cell walls and mannoproteins. Our aim was to further understand the mechanisms that drive interactions between these components and red wine polyphenols. To this end, interactions between grape skin tannins or wine polyphenols or tannins and a YPE, a mannoprotein fraction and a β-glucan were monitored by binding experiments, ITC and DLS. Depending on the tannin structure, a different affinity between the polyphenols and the YPE was observed, as well as differences in the stability of the aggregates. This was attributed to the mean degree of polymerization of tannins in the polyphenol fractions and to chemical changes that occur during winemaking. Much lower affinities were found between polyphenols and polysaccharides, with different behaviors between mannoproteins and β-glucans.

  12. Effect of plasma and/or yeast extract on performance and intestinal morphology of piglets from 7 to 63 days of age

    Directory of Open Access Journals (Sweden)

    Leandro César Milagres Rigueira

    2013-07-01

    Full Text Available The objective of this study was to evaluate the effect of diets supplemented with plasma and/or yeast extract on performance (daily weight gain [DWG], daily feed intake [DFI] and feed conversion [FC] and intestinal morphology of piglets from 7 to 63 days of age. A total of 288 piglets aged 7 days and weighing 2.57±0.05 kg were studied. A randomized block design consisting of four experimental diets, six repetitions and 12 piglets per experimental unit was adopted. The pre-starter I (7 to 21 days, pre-starter II (22 to 35 days and starter I (36 to 49 days diets were supplemented as follows: control diet (CD: no plasma or yeast extract; plasma (PL diet: addition of 6%, 4% and 2% plasma; yeast extract (YE diet: addition of 6%, 4% and 2% yeast extract; plasma + yeast extract (PL+YE diet: addition of 3%, 2% and 1% plasma and yeast extract each. From 50 to 63 days of age all piglets received the same diet. No difference in performance was observed from 7 to 21 days and from 7 to 28 days of age, whereas DWG was higher from 7 to 35 days in piglets receiving the PL+YE diet (268, 278, 271 and 288 g/day for CD, PL, YE and PL+YE, respectively. From 7 to 49 days and from 7 to 63 days, DWG (330 and 519 g/day, respectively and DFI (307 and 647 g/day were higher in animals receiving the PL-YE diet when compared with those consuming CD (DWG: 295 and 486 g/day; DFI: 266 and 594 g/day. No significant differences in intestinal morphology were observed between piglets receiving the different diets. The combination of plasma and yeast extract elevates DWG, but does not affect the intestinal morphology of piglets from 7 to 63 days of age.

  13. Exopolysaccharide production by Lactobacillus confusus TISTR 1498 using coconut water as an alternative carbon source: the effect of peptone, yeast extract and beef extract

    Directory of Open Access Journals (Sweden)

    Phisit Seesuriyachan

    2011-08-01

    Full Text Available Coconut water (CW is a by-product of food industry and has little value in Thailand. It is usually discarded as a wasteinto the environment. Consequently, we developed a value added process of exopolysaccharide (EPS production usingLactobacillus confusus TISTR 1498 and coconut water. The effect of three expensive supplements (peptone, yeast extractand beef extract on EPS and biomass production was investigated at 35°C for 24 h. Using a mod-MRS-CW medium, preparedby replacing the de-ionized water with 100% CW and supplemented with 20 g/l crystalline sucrose and a reduced quantity(50% of the three expensive supplements (5 g/l of peptone, 2.5 g/l of yeast extract, and 2.5 g/l of beef extract gave thehighest yield of EPS (12.3 g/l. By optimizing the conditions for fermentation (pH 5.5, agitation speed at 50 rpm and initialsucrose concentration of 100 g/l, EPS yield increased up to 38.2 g/l. When compared with the modified MRS medium, themedium supplemented with CW was found to be suitable for the reduction of cost spent on the organic nitrogen and growthfactors (savings close to 50%.

  14. Evaluation of Extraction Protocols for Simultaneous Polar and Non-Polar Yeast Metabolite Analysis Using Multivariate Projection Methods

    Directory of Open Access Journals (Sweden)

    Nicolas P. Tambellini

    2013-07-01

    Full Text Available Metabolomic and lipidomic approaches aim to measure metabolites or lipids in the cell. Metabolite extraction is a key step in obtaining useful and reliable data for successful metabolite studies. Significant efforts have been made to identify the optimal extraction protocol for various platforms and biological systems, for both polar and non-polar metabolites. Here we report an approach utilizing chemoinformatics for systematic comparison of protocols to extract both from a single sample of the model yeast organism Saccharomyces cerevisiae. Three chloroform/methanol/water partitioning based extraction protocols found in literature were evaluated for their effectiveness at reproducibly extracting both polar and non-polar metabolites. Fatty acid methyl esters and methoxyamine/trimethylsilyl derivatized aqueous compounds were analyzed by gas chromatography mass spectrometry to evaluate non-polar or polar metabolite analysis. The comparative breadth and amount of recovered metabolites was evaluated using multivariate projection methods. This approach identified an optimal protocol consisting of 64 identified polar metabolites from 105 ion hits and 12 fatty acids recovered, and will potentially attenuate the error and variation associated with combining metabolite profiles from different samples for untargeted analysis with both polar and non-polar analytes. It also confirmed the value of using multivariate projection methods to compare established extraction protocols.

  15. Rapid yeast DNA extraction by boiling and freeze-thawing without using chemical reagents and DNA purification

    Directory of Open Access Journals (Sweden)

    Gildo Almeida da Silva

    2012-04-01

    Full Text Available The purpose of this work was to study a rapid yeast DNA extraction by boiling and freeze-thawing processes without using chemical reagents or any purification procedures, to obtain a high grade PCR-product. A specific DNA fragment of the 18S region of Dekkera bruxellensis and Saccharomyces cerevisiae was chosen. The described boiling and freeze-thawing protocols generated the PCR-grade product preparations and could be used to process many samples. The amplification of the fragments could be observed after 30 and 35 cycles. These processes of extraction without using any kind of chemical reagents, especial water, and purification procedures proved to be efficient, reproducible, simple, fast, and inexpensive.

  16. Asymmetric bioreduction of acetophenones by Baker's yeast and its cell-free extract encapsulated in sol-gel silica materials

    Science.gov (United States)

    Kato, Katsuya; Nakamura, Hitomi; Nakanishi, Kazuma

    2014-02-01

    Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol-gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol-gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.

  17. Anaerobic degradation of azo dye Drimaren blue HFRL in UASB reactor in the presence of yeast extract a source of carbon and redox mediator.

    Science.gov (United States)

    Baêta, B E L; Aquino, S F; Silva, S Q; Rabelo, C A

    2012-04-01

    This paper presents results on anaerobic degradation of the azo dye blue HFRL in a bench scale Upflow anaerobic sludge blanket (UASB) reactor operated at ambient temperature. The results show that the addition of yeast extract (500 mg/L) increased color removal (P dye removal increased along the operational phases and depended on the presence of yeast extract, suggesting progressive biomass acclimatization. Analysis of bacterial diversity by Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) method showed there was biomass selection along the bioreactor operation and no evidence of azo dye degrading bacteria predominance. This strengthens the hypothesis that color removal happens extracellularly by the reduction of azo bond by reduced redox mediators, such as riboflavin, which is present in high amount in the yeast extract.

  18. Effect of synbiotics between Bacillus licheniformis and yeast extract on growth, hematological and biochemical indices of the Nile tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    M.S. Hassaan

    2014-01-01

    Full Text Available Twelve practical diets were formulated to contain four levels of Bacillus licheniformis (0.0, 0.24 × 106, 0.48 × 106 and 0.96 × 106 CFU g−1, respectively, with three yeast extract levels (0%, 0.5% and 1%, respectively. Each diet was randomly assigned to duplicate groups of 50 Nile tilapia (Oreochromis niloticus (5.99 ± 0.03 g in 24 concrete ponds (0.5 m3 and 1.25 m depth for 12 weeks. Increasing dietary B. licheniformis levels in O. niloticus and yeast extract levels significantly (P < 0.01 improved growth performance and nutrient utilization. Supplementation of the experimental diets with, 0.48 × 106 CFU/g−1 and 1.0% yeast extract showed the best nutrient utilization compared to other treatments. All probiotic levels significantly (P < 0.01 increased chemical composition (P < 0.05 compared to the control group, while increasing yeast extract did not significantly alter chemical composition. Hematological indices, total protein and albumin of O. niloticus significantly increased while aspartate aminotransferase and alanine aminotransferase significantly (P < 0.01 decreased with an increase in B. licheniformis level up to 0.48 × 106 CFU g−1. Increasing levels of yeast extract had no effect on hematological parameters and the diets supplemented with 0.48 × 106 CFU g−1 and 0.5% yeast extract showed the highest hematological values.

  19. UMAMI 型酵母抽提物在食醋中的应用%Application of the Umami Yeast Extract in Vinegar

    Institute of Scientific and Technical Information of China (English)

    郭辉; 赵丽娟; 李沛

    2016-01-01

    By applying comparative experiments and sensory evaluation,the umami yeast extract and its application in vinegar are studied.The study shows that the umami yeast extract could enhance the flavor of vinegar significantly.In this study,KU012 yeast extract is added into aged vinegar,rice vinegar or apple vinegar.The experiments show that the addition of KU012 yeast extract could enhance the color,and doesn't affect the transparency and clarity of vinegar,and dilute the sour stimulus of vinegar slightly,and yeast extract could enrich and balance the taste of vinegar,at the same time,addition of KU012 yeast extract doesn't affect the routine testing project of vinegar.%通过应用对比实验、感官品评的方法,对 Umami 型酵母抽提物及其在食醋中的应用进行分析,证明了此款酵母抽提物(YE)具有显著提升食醋风味的作用。通过在陈醋、米醋和苹果醋三种食醋实验样品中添加 KU012酵母抽提物,实验表明添加了 KU012酵母抽提物提升了三种食醋的外观色泽,且不影响食醋的透明度和澄清度;略淡化了食醋的刺激酸味,丰富了食醋口感,使得口感更加协调;同时,添加了 KU012酵母抽提物并不对食醋的常规检测项目造成影响。

  20. Lead and Cu in contaminated urban soils: extraction with chemical reagents and bioluminescent bacteria and yeast.

    Science.gov (United States)

    Peltola, Pasi; Ivask, Angela; Aström, Mats; Virta, Marko

    2005-11-01

    Twenty urban soil samples, with a wide range of Pb (14-5323 mg/kg) and Cu (8-12987 mg/kg), were used to compare the operational speciation of a five-step sequential leach with the bioavailability determined with bioluminescent Pb (RN4220(pTOO24)) and Cu (MC1061(pSLcueR/pDNPcopAluc)) specific bacterial biosensors and a Cu specific yeast sensor. The bioavailable Pb concentrations were all similar or lower than the first sequential leach step (1M NaOAc). In contrast, in some samples the bioavailable concentrations of Cu clearly exceeded even the second sequential leach step (0.1 M Na4P2O7). With the yeast sensor 12/20 samples were below detection, however, the yeast sensor was capable of detecting all high Cu concentrations. The biosensors used in this study are not capable of detecting the natural soil concentrations of Pb and Cu in the studied area.

  1. [Studies on the effects of carbon:nitrogen ratio, inoculum type and yeast extract addition on jasmonic acid production by Botryodiplodia theobromae Pat. strain RC1].

    Science.gov (United States)

    Eng Sánchez, Felipe; Gutiérrez-Rojas, Mariano; Favela-Torres, Ernesto

    2008-09-30

    Jasmonic acid is a native plant growth regulator produced by algae, microorganisms and higher plants. This regulator is involved in the activation of defence mechanisms against pathogens and wounding in plants. Studies concerning the effects of carbon: nitrogen ratio (C/Nr: 17, 35 and 70), type of inoculum (spores or mycelium) and the yeast extract addition in the media on jasmonic acid production by Botryodiplodia theobromae were evaluated. Jasmonic acid production was stimulated at the carbon: nitrogen ratio of 17. Jasmonic acid productivity was higher in the media inoculated with mycelium and in the media with yeast extract 1.7 and 1.3 times, respectively.

  2. Effects of yeast extract and methyl jasmonate on the enhancement of solasodine biosynthesis in cell cultures of Solanum hainanense Hance

    Directory of Open Access Journals (Sweden)

    NGUYEN HOANG LOC

    2014-04-01

    Full Text Available In this work, the effects of the elicitors methyl jasmonate (MeJA and yeast extract (YE on the growth and solasodine production of Solanum hainanense cells were investigated. The results showed that various concentrations of MeJA (50-250 µM and YE (1-4 g/L have different eliciting influences. The increase of solasodine content induced by the elicitation of 3 g/L of YE and 50 µM of MeJA at the beginning of cell culture was about 1.9- and 1.3-fold, respectively, as compared with that of the non-elicitated cells. In general, YE (biotic elicitor was more effective in enhancing solasodine production than MeJA (abiotic elicitor.

  3. Ethanol fermentation by the thermotolerant yeast, Kluyveromyces marxianus TISTR5925, of extracted sap from old oil palm trunk

    Directory of Open Access Journals (Sweden)

    Yoshinori Murata

    2015-05-01

    Full Text Available Palm sap extracted from old oil palm trunks was previously found to contain sugar and nutrients (amino acids and vitamins. Some palm saps contain a low content of sugar due to differences in species or in plant physiology. Here we condensed palm sap with a low content of sugar using flat membrane filtration, then fermented the condensed palm sap at high temperature using the thermotolerant, high ethanol-producing yeast, Kluyveromyces marxianus. Ethanol production under non-optimum conditions was evaluated. Furthermore, the energy required to concentrate the palm sap, and the amount of energy that could be generated from the ethanol, was calculated. The condensation of sugar in sap from palm trunk required for economically viable ethanol production was evaluated.

  4. Astaxanthin Production by the Red Yeast (Phaffia rhodozyma, Grown on Yeast Extract Addes Coconut Water [PRODUKSI ASTAXANTHIN OLEH KAMIR MERAH (Phaffia Rhodozyma DITUMBUHKAN DALAM AIR KELAPA YANG DITAMBAHKAN EKSTRAK KAMIR

    Directory of Open Access Journals (Sweden)

    V I Meitiniarti

    2003-08-01

    Full Text Available This experiment was conducted to evaluated the effect of yeast extract addition in fresh green coconut water medium during the batch growth and astaxanthin production of Phaffia rhodozyma MUCL 31142. The addition of yeast extract (0,025% and 0,075% could increase the cell growth (37,12 g/l and 49,18 g/l, growth rate (0,061/hour and 0,074/hour, total production of astaxanthin (4,871 mg/l and 9,442 mg/l, specific concentration of astaxanthin (118,99 µg/g biomass, production rate of astaxanthin (0,042/hour and 0,088/hour, astaxanthin yield (0,236 mg/g glucose and 0,342 mg/g glucose, and glocose consumption (19,84 g/l and 26,95 g/l.

  5. 以啤酒废酵母为原料生产优质酵母提取物%Study on Processing Technology of High-quality Yeast Extract Based on Spent Brewer's Yeast

    Institute of Scientific and Technical Information of China (English)

    任光辉; 王德良; 林智平; 郭立芸; 苏东海

    2012-01-01

    ABSTRACT The study focused on a kind of high-quality yeast extract processing technology based on spent brew- er' s yeast. The process included removal of impurity, debittering, enzymolysis, concentration and spray dehydration, after which a kind of light yellow yeast extract powder with well water-solubility can be obtained. During the process, 71.00% of raw yeast' s total amount, which be measured by absolutely dry weight, came into the final product, andthe percent for crude protein was 85.55%. Analysis result ot the product snowed mat lotJ g yeast extract eonta~neu 52.90 g crude protein, 26.48 g Carbohydrate, 0.20 g fat, 11.08 g ash and 9.34 g dietary fiber. What' s more, free amino acids and oligopeptide was the main form of nitrogen in the yeast extract, and it will be of great important po- tential material for health-care food.%研究了以啤酒生产中废弃酵母为原料的优质酵母提取物制备工艺。啤酒废酵母经除杂、洗涤脱苦、细胞破碎、蛋白水解、浓缩干燥等加工程序,获得一种水溶性良好、淡黄色、粉末状酵母提取物产品。该产品的原料利用率为71.00%,粗蛋白利用率为85.55%。100 g绝干酵母提取物含有粗蛋白52.90 g、膳食纤维9.34 g、灰分11.08 g、脂肪0.20 g、碳水化合物26.48 g,其中粗蛋白主要以游离氨基酸和低聚肽形式存在。

  6. Extraction of yeast mitochondrial membrane proteins by solubilization and detergent/polymer aqueous two-phase partitioning.

    Science.gov (United States)

    Everberg, Henrik; Gustavsson, Niklas; Tjerneld, Folke

    2009-01-01

    Identification and characterization of membrane proteins is of increasing importance in modern proteomic studies. It is of central interest to have access to methods that combine efficient solubilization with enrichment of proteins and intact protein complexes. Separation methods have been developed based on nondenaturing detergent extraction of yeast mitochondrial membrane proteins followed by enrichment of hydrophobic proteins in aqueous two-phase system. Combining the zwitterionic detergent Zwittergent 3-10 and the nonionic detergent Triton X-114 results in a complementary solubilization of proteins, which is similar to that of the anionic detergent sodium dodecyl sulfate (SDS) but with the important advantage of being nondenaturing. Detergent/polymer two-phase system partitioning offers removal of soluble proteins, which can be further improved by manipulation of the driving forces governing protein distribution between the phases. Integral and peripheral membrane protein subunits from intact membrane protein complexes partition to the detergent phase while soluble proteins are found in the polymer phase. A protocol is presented which combines nondenaturing solubilization of membrane proteins with extraction in detergent/polymer two-phase system for application in proteomic studies as a mild and efficient method for enrichment of membrane proteins and membrane protein complexes.

  7. THE VITAMIN B(1) AND B(2) G CONTENT OF LIVER EXTRACT AND BREWERS' YEAST CONCENTRATE.

    Science.gov (United States)

    Miller, D K; Rhoads, C P

    1934-02-28

    1. Liver extract powder, No. 343 Lilly, and the same material prepared for parenteral use, when administered daily by mouth in amounts derived from 2.5 gm. of fresh whole liver, to rats weighing from 40 to 50 gm., contain sufficient vitamin B(1) to support normal growth, provided the animals receive in addition an adequate amount of vitamin B(2) G. Moreover, liver extract in the forms mentioned, administered in the same amounts, does not contain sufficient vitamin B(2) G to maintain normal growth of similar rate when all other necessary constituents of the diet are provided. 2. Liver extract (Lilly) in the form prepared for parenteral use, when administered daily by intraperitoneal injections, in amounts derived from 2.5 gm. of fresh whole liver, to rats under standard experimental conditions, does not contain sufficient vitamin B(2) G to maintain normal growth. Furthermore, the amount of vitamin B(1) present in liver extract in this form is not as effective in supporting normal growth when given by intraperitoneal injection as it is when given by mouth. 3. Vegex, when administered daily in amounts of 50, 150, and 250 mg. to rats of 40 to 50 gm. in weight contains sufficient vitamin B(1) to maintain normal growth of the rats, provided the animals receive in addition an adequate amount of vitamin B(2) G. However, vegex in the same amounts does not contain sufficient vitamin B(2) G to support normal growth of similar rats when all other necessary constituents of the diet are provided. 4. These experiments indicate that the extrinsic, anti-anemic factor of Castle and the thermostable growth-promoting food constituent, commonly known as vitamin B(2) G, are not identical.

  8. Two distinct DNA ligase activities in mitotic extracts of the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Ramos, W; Tappe, N; Talamantez, J; Friedberg, E C; Tomkinson, A E

    1997-01-01

    Four biochemically distinct DNA ligases have been identified in mammalian cells. One of these enzymes, DNA ligase I, is functionally homologous to the DNA ligase encoded by the Saccharomyces cerevisiae CDC9 gene. Cdc9 DNA ligase has been assumed to be the only species of DNA ligase in this organism. In the present study we have identified a second DNA ligase activity in mitotic extracts of S. cerevisiae with chromatographic properties different from Cdc9 DNA ligase, which is the major DNA joi...

  9. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  10. PERFORMANCE AND CARCASS TRAITS OF BROILERS FED DIETS CONTAINING YEAST EXTRACT DESEMPENHO E CARACTERISTICAS DE CARCAÇAS DE FRANGOS DECORTE RECEBENDO EXTRATO DE LEVEDURAS NA DIETA

    Directory of Open Access Journals (Sweden)

    Niédi Zauk

    2006-12-01

    Full Text Available This experiment was conducted to evaluate the effectof a yeast extract product on broiler growth performanceand carcass traits. A total of 810 male Ross broiler chickswere distributed in 27 pens (30 birds per pen in a completelyrandomized design. The animals were fed the experimentaldiets from 1 to 42 days of age. Treatments consisted offeeding a T1 basal corn-soybean meal diet; T2 a dietcontaining 2% yeast extract from 1 to 7 days of age and T3a diet containing 2% yeast extract from 1 to7 and 38 to 42days of age. Better growth performance was observed inbirds fed yeast extract from 1 to 7 and from 38 to 42 days ofage. Carcass traits were not statistically influenced by thedietary treatments. KEY WORDS: Body weight gain, feed conversion, feed intake, organs. Este estudo visou avaliar o efeito da utilização deum extrato de levedura sobre o desempenho e característi-cas de carcaça de frangos de corte. Um total de 810 frangos Ross, machos, foram distribuídos aleatoriamente em 27 boxes (trinta aves por boxe. As aves receberam as dietasexperimentais de 1 a 42 dias de idade. Os tratamentos consistiram em fornecer uma dieta à base de milho e farelo desoja (T1, uma dieta contendo extrato de levedura de 1 a 7dias (T2 e uma dieta contendo extrato de levedura de 1 a 7e de 38 a 42 dias de idade (T3. Os resultados experimentais indicam que o desempenho produtivo foi melhor ao se fornecer extrato de levedura de 1 a 7 e de 38 a 42 dias de idade.As características de carcaça não foram influenciadas estatisticamente pelas dietas experimentais. PALAVRAS-CHAVE: Ganho de peso, conversão alimentar, consumo de ração, órgãos.

  11. Effects of Nitrogen Supplementation on Yeast (Candida utilis) Biomass Production by Using Pineapple (Ananas comosus) Waste Extracted Medium

    OpenAIRE

    Rosma, A.; Cheong, M. W.

    2007-01-01

    Pineapple waste medium was used to cultivate yeast, Candida utilis. It served as the sole carbon and energy source for the yeast growth. However, pineapple waste media contain very little nitrogen (0.003-0.015% w/v). Various nitrogen sources were incorporate and their effects on biomass, yield and productivity were studied. Significant (p

  12. Comparative proteomic analysis of the response to silver ions and yeast extract in Salvia miltiorrhiza hairy root cultures.

    Science.gov (United States)

    Wang, Yajun; Shen, Ye; Shen, Zhuo; Zhao, Le; Ning, Deli; Jiang, Chao; Zhao, Rong; Huang, Luqi

    2016-10-01

    Biotic and abiotic stresses can inhibit plant growth, resulting in losses of crop productivity. However, moderate adverse stress can promote the accumulation of valuable natural products in medicinal plants. Elucidating the underlying molecular mechanisms thus might help optimize the variety of available plant medicinal materials and improve their quality. In this study, Salvia miltiorrhiza hairy root cultures were employed as an in vitro model of the Chinese herb Danshen. A comparative proteomic analysis using 2-dimensional gel electrophoresis and MALDI-TOF-MS was performed. By comparing the gel images of groups exposed to the stress of yeast extract (YE) combined with Ag(+) and controls, 64 proteins were identified that showed significant changes in protein abundance for at least one time point after treatment. According to analysis based on the KEGG and related physiological experimental verification, it was found that YE and Ag(+) stress induced a burst of reactive oxygen species and activated the Ca(2+)/calmodulin signaling pathway. Expression of immune-suppressive proteins increased. Epidermal cells underwent programmed cell death. Energy metabolism was enhanced and carbon metabolism shifted to favor the production of secondary metabolites such as lignin, tanshinone and salvianolic acids. The tanshinone and salvianolic acids were deposited on the collapsed epidermal cells forming a physicochemical barrier. The defense proteins and these natural products together enhanced the stress resistance of the plants. Since higher levels of natural products represent good quality in medicinal materials, this study sheds new light on quality formation mechanisms of medicinal plants and will hopefully encourage further research on how the planting environment affects the efficacy of herbal medicines.

  13. Beneficial Effect of Brewers' Yeast Extract on Daily Activity in a Murine Model of Chronic Fatigue Syndrome

    Directory of Open Access Journals (Sweden)

    Takashi Takahashi

    2006-01-01

    Full Text Available The aim of this study was to assess the effect of Brewers' yeast extract (BYE on daily activity in a mouse model of chronic fatigue syndrome (CFS. CFS was induced by repeated injection of Brucella abortus (BA antigen every 2 weeks. BYE was orally administered to mice in a dose of 2 g per kg per day for 2 weeks before injecting BA and for 4 weeks thereafter. We evaluated daily running activity in mice receiving BYE as compared with that in untreated mice. Weekly variation of body weight (BW and survival in both groups was monitored during the observation period. Spleen weight (SW, SW/BW ratio, percent splenic follicular area and expression levels of interferon-γ (IFN-γ and interleukin-10 (IL-10 mRNA in spleen were determined in both groups at the time of sacrifice. The daily activity during 2 weeks after the second BA injection was significantly higher in the treated group than in the control. There was no difference in BW between both groups through the experimental course. Two mice in the control died 2 and 7 days after the second injection, whereas no mice in the treated group died. Significantly decreased SW and SW/BW ratio were observed in the treated mice together with elevation of splenic follicular area. There were suppressed IFN-γ and IL-10 mRNA levels in spleens from the treated mice. Our results suggest that BYE might have a protective effect on the marked reduction in activity following repeated BA injection via normalization of host immune responses.

  14. Beneficial effect of brewers' yeast extract on daily activity in a murine model of chronic fatigue syndrome.

    Science.gov (United States)

    Takahashi, Takashi; Yu, Fei; Zhu, Shi-Jie; Moriya, Junji; Sumino, Hiroyuki; Morimoto, Shigeto; Yamaguchi, Nobuo; Kanda, Tsugiyasu

    2006-03-01

    The aim of this study was to assess the effect of Brewers' yeast extract (BYE) on daily activity in a mouse model of chronic fatigue syndrome (CFS). CFS was induced by repeated injection of Brucella abortus (BA) antigen every 2 weeks. BYE was orally administered to mice in a dose of 2 g per kg per day for 2 weeks before injecting BA and for 4 weeks thereafter. We evaluated daily running activity in mice receiving BYE as compared with that in untreated mice. Weekly variation of body weight (BW) and survival in both groups was monitored during the observation period. Spleen weight (SW), SW/BW ratio, percent splenic follicular area and expression levels of interferon-gamma (IFN-gamma) and interleukin-10 (IL-10) mRNA in spleen were determined in both groups at the time of sacrifice. The daily activity during 2 weeks after the second BA injection was significantly higher in the treated group than in the control. There was no difference in BW between both groups through the experimental course. Two mice in the control died 2 and 7 days after the second injection, whereas no mice in the treated group died. Significantly decreased SW and SW/BW ratio were observed in the treated mice together with elevation of splenic follicular area. There were suppressed IFN-gamma and IL-10 mRNA levels in spleens from the treated mice. Our results suggest that BYE might have a protective effect on the marked reduction in activity following repeated BA injection via normalization of host immune responses.

  15. Characterization of binding and bioaccessibility of Cr in Cr-enriched yeast by sequential extraction followed by two-dimensional liquid chromatography with mass spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Kaewkhomdee, Nattikarn [Laboratoire de Chimie Analytique Bio-inorganique et Environnement, Angot (France); Mahidol University, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Bangkok (Thailand); Mounicou, Sandra; Szpunar, Joanna [Laboratoire de Chimie Analytique Bio-inorganique et Environnement, Angot (France); Lobinski, Ryszard [Laboratoire de Chimie Analytique Bio-inorganique et Environnement, Angot (France); Warsaw University of Technology, Department of Analytical Chemistry, Warsaw (Poland); Shiowatana, Juwadee [Mahidol University, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Bangkok (Thailand)

    2010-02-15

    Sequential extraction (water, Driselase, protease XIV) and extraction with simulated gastric and intestinal fluids were proposed to characterize the binding and the bioaccessibility of chromium in two commercial food supplements obtained by incorporation of this element into yeast. Chromium in Cr-enriched yeast was found to be hardly extractable with water, Driselase, or simulated gastric fluid (recoveries of approximately 10-20%), but proteolysis or gastrointestinal fluid digestion released more than half of the chromium present. Fractionation with size-exclusion chromatography with Cr-specific detection by inductively coupled plasma mass spectrometry (ICP MS) allowed the distinction of two fractions: one below approximately 1 kDa and one 1-5 kDa; they contained the entirety of the released Cr with proportions varying as a function of the extracting solution and the origin of sample. When collected and investigated by reversed-phase high-performance liquid chromatography-ICP MS, the low molecular mass fraction was found to release Cr(III), whereas the heavier one showed most of Cr bound in fairly stable hydrophobic complexes. However, an attempt of their identification by electrospray ionization MS/MS and matrix-assisted laser desorption ionization MS was not successful. (orig.)

  16. Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid.

    Science.gov (United States)

    Wang, Ling-Fei; Wang, Zhi-Peng; Liu, Xiao-Yan; Chi, Zhen-Ming

    2013-11-01

    In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L(-1) total sugars, 68.3 g L(-1) citric acid was produced and the yield of citric acid was 0.91 g g(-1) within 336 h. At the end of the fermentation, 9.2 g L(-1) of residual total sugar and 2.1 g L(-1) of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %.

  17. Characterization of binding and bioaccessibility of Cr in Cr-enriched yeast by sequential extraction followed by two-dimensional liquid chromatography with mass spectrometric detection.

    Science.gov (United States)

    Kaewkhomdee, Nattikarn; Mounicou, Sandra; Szpunar, Joanna; Lobinski, Ryszard; Shiowatana, Juwadee

    2010-02-01

    Sequential extraction (water, Driselase, protease XIV) and extraction with simulated gastric and intestinal fluids were proposed to characterize the binding and the bioaccessibility of chromium in two commercial food supplements obtained by incorporation of this element into yeast. Chromium in Cr-enriched yeast was found to be hardly extractable with water, Driselase, or simulated gastric fluid (recoveries of approximately 10-20%), but proteolysis or gastrointestinal fluid digestion released more than half of the chromium present. Fractionation with size-exclusion chromatography with Cr-specific detection by inductively coupled plasma mass spectrometry (ICP MS) allowed the distinction of two fractions: one below approximately 1 kDa and one 1-5 kDa; they contained the entirety of the released Cr with proportions varying as a function of the extracting solution and the origin of sample. When collected and investigated by reversed-phase high-performance liquid chromatography-ICP MS, the low molecular mass fraction was found to release Cr(III), whereas the heavier one showed most of Cr bound in fairly stable hydrophobic complexes. However, an attempt of their identification by electrospray ionization MS/MS and matrix-assisted laser desorption ionization MS was not successful.

  18. The implementation of high fermentative 2,3-butanediol production from xylose by simultaneous additions of yeast extract, Na2EDTA, and acetic acid.

    Science.gov (United States)

    Wang, Xiao-Xiong; Hu, Hong-Ying; Liu, De-Hua; Song, Yuan-Quan

    2016-01-25

    The effective use of xylose may significantly enhance the feasibility of using lignocellulosic hydrolysate to produce 2,3-butanediol (2,3-BD). Previous difficulties in 2,3-BD production include that the high-concentration xylose cannot be converted completely and the fermentation rate is slow. This study investigated the effects of yeast extract, ethylenediaminetetraacetic acid disodium salt (Na2EDTA), and acetic acid on 2,3-BD production from xylose. The central composite design approach was used to optimize the concentrations of these components. It was found that simultaneous addition of yeast extract, Na2EDTA, and acetic acid could significantly improve 2,3-BD production. The optimal concentrations of yeast extract, Na2EDTA, and acetic acid were 35.2, 1.2, and 4.5 g/L, respectively. The 2,3-BD concentration in the optimized medium reached 39.7 g/L after 48 hours of shake flask fermentation, the highest value ever reported in such a short period. The xylose utilization ratio and the 2,3-BD concentration increased to 99.0% and 42.7 g/L, respectively, after 48 hours of stirred batch fermentation. Furthermore, the 2,3-BD yield was 0.475 g/g, 95.0% of the theoretical maximum value. As the major components of lignocellulosic hydrolysate are glucose, xylose, and acetic acid, the results of this study indicate the possibility of directly using the hydrolysate to effectively produce 2,3-BD.

  19. Optimization of Conditions for Extraction of Glutathione in Yeast%酵母还原型谷胱甘肽提取条件的优化

    Institute of Scientific and Technical Information of China (English)

    刘超; 袁建国; 高艳华; 李峰

    2011-01-01

    Objective To extract glutathione(GSH) from baker's yeast with hot water, ethanol, acid respectively to get the best extraction method. Methods Based on the single factor experiment, the optimal conditions for ethanol extraction were obtained by L9(34) orthogonal design and were validated by secondary extraction. Results GSH was effectively extracted with 50% ethanol for 40 min at 40 ℃and pH 1.0. The extraction rate reached 95.4%, validated by secondary extraction method. Conclusion Compared with other methods, ethanol extraction method proved to be a convenient, fast and effective method for the extraction of glutathione.%目的 采用热水、乙醇、盐酸提取面包酵母中的还原型谷胱甘肽,获得最优的提取方法.方法 在单因素试验的基础上对乙醇提取法的乙醇浓度、pH、温度、提取时间进行L(3)正交试验并采用二次提取验证提取效果.结果 在40℃,pH1.0,乙醇含量50%条件下提取40 min,能有效地提取还原型谷胱甘肽,采用二次提取法验证其提取率达到95.4%.结论 与其它方法相比,乙醇提取法是一种简便、快速、经济、有效的方法.

  20. Antifungal activity of the extract of Curcuma zedoaria (Christm. Roscoe, Zingiberaceae, against yeasts of the genus Candida isolated from the oral cavity of patients infected with the human immunodeficiency virus

    Directory of Open Access Journals (Sweden)

    Cristiane S. Shinobu-Mesquita

    2011-02-01

    Full Text Available Oropharyngeal candidiasis is the most common fungal infection among patients infected with the human immunodeficiency virus (HIV, and is treated empirically with topical or systemic antifungals. The objective of the present study was to investigate the possible antifungal action of the hydroalcoholic extract of Curcuma zedoaria (Christm. Roscoe, Zingiberaceae, on yeasts in this population. Samples were collected from HIV-positive patients who attended the Laboratory for Teaching and Research in Clinical Analysis at the Universidade Estadual de Maringá for routine exams. The isolated yeasts were identified at the genus and species levels through classical methodology. Next, tests of microdilution in broth were carried out to determine the profile of susceptibility of these yeasts towards the hydroalcoholic extract of C. zedoaria, following methodology standardised by the CLSI (2002. A total of 53 yeasts were identified, 49 of them C. albicans, two C. tropicalis and two C. glabrata. These yeasts were inhibited by low concentrations of the extract of C. zedoaria (between 1.95 and 15.63 μg/mL. In addition, 7.82 μg/mL inhibited 90% of the yeasts. Our results indicate a potent antifungal action for C. zedoaria and suggest more detailed studies with a view towards the practical application of this phytomedicine in topical pharmaceutical forms for the treatment of oral candidosis or candidiasis.

  1. Application of isotope dilution analysis for the evaluation of extraction conditions in the determination of total selenium and selenomethionine in yeast-based nutritional supplements.

    Science.gov (United States)

    Hinojosa Reyes, L; Marchante-Gayón, J M; García Alonso, J I; Sanz-Medel, A

    2006-03-08

    Isotope dilution analysis (IDA) has been used to quantify total selenium, total solubilized selenium, and the selenomethionine (SeMet) amount in yeast and yeast-based nutritional supplements after acid microwave digestion and different enzymatic extraction procedures. For this purpose, both a (77)Se-enriched SeMet spike, previously synthesized and characterized in our laboratory, and a (77)Se(VI) spike were used. In the analysis of the nutritional supplements, the SeMet spike was added to the sample and extracted under different conditions, and the (78)Se/(77)Se and (80)Se/(77)Se isotope ratios were measured as peak area ratios after high-performance liquid chromatography (HPLC) separation and inductively coupled plasma mass spectrometry (ICP-MS) detection. The formation of SeH(+) and mass discrimination were corrected using a natural SeMet standard injected every three samples. Similarly, total solubilized selenium was measured in the extracts after enzymatic hydrolysis using the (77)Se-enriched SeMet as a spike by direct nebulization without a chromatographic separation. To establish a mass balance, total selenium was also determined by IDA-ICP-MS on the yeast tablets after microwave digestion using (77)Se(VI) as a spike. Results showed that all enzymatic procedures tested were able to solubilize total selenium quantitatively from the solid. However, the recovery for the species SeMet, the major selenium compound detected, was seriously affected by the enzymatic procedure employed and also by the matrix composition of the supplement evaluated. For the yeast sample, SeMet recovery increased from 68 to 76% by the combined use of driselase and protease. For the nutritional supplements, the two most effective procedures appeared to be protease and driselase/protease, with a SeMet recovery ranging from 49 to 63%, depending upon the supplement evaluated. In the case of in vitro gastrointestinal enzymolysis, the results obtained showed 26-37% SeMet recovery, while the

  2. Asymmetric bioreduction of acetophenones by Baker's yeast and its cell-free extract encapsulated in sol–gel silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Katsuya, E-mail: katsuya-kato@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8560 (Japan); Nakamura, Hitomi [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8560 (Japan); Nakanishi, Kazuma [Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie, 514-8570 (Japan)

    2014-02-28

    Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol–gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption–desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol–gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.

  3. Improvement on the productivity of continuous tequila fermentation by Saccharomyces cerevisiae of Agave tequilana juice with supplementation of yeast extract and aeration.

    Science.gov (United States)

    Hernández-Cortés, Guillermo; Valle-Rodríguez, Juan Octavio; Herrera-López, Enrique J; Díaz-Montaño, Dulce María; González-García, Yolanda; Escalona-Buendía, Héctor B; Córdova, Jesús

    2016-12-01

    Agave (Agave tequilana Weber var. azul) fermentations are traditionally carried out employing batch systems in the process of tequila manufacturing; nevertheless, continuous cultures could be an attractive technological alternative to increase productivity and efficiency of sugar to ethanol conversion. However, agave juice (used as a culture medium) has nutritional deficiencies that limit the implementation of yeast continuous fermentations, resulting in high residual sugars and low fermentative rates. In this work, fermentations of agave juice using Saccharomyces cerevisiae were put into operation to prove the necessity of supplementing yeast extract, in order to alleviate nutritional deficiencies of agave juice. Furthermore, continuous fermentations were performed at two different aeration flow rates, and feeding sterilized and non-sterilized media. The obtained fermented musts were subsequently distilled to obtain tequila and the preference level was compared against two commercial tequilas, according to a sensorial analysis. The supplementation of agave juice with air and yeast extract augmented the fermentative capacity of S. cerevisiae S1 and the ethanol productivities, compared to those continuous fermentations non supplemented. In fact, aeration improved ethanol production from 37 to 40 g L(-1), reducing sugars consumption from 73 to 88 g L(-1) and ethanol productivity from 3.0 to 3.2 g (Lh)(-1), for non-aerated and aerated (at 0.02 vvm) cultures, respectively. Supplementation of yeast extract allowed an increase in specific growth rate and dilution rates (0.12 h(-1), compared to 0.08 h(-1) of non-supplemented cultures), ethanol production (47 g L(-1)), reducing sugars consumption (93 g L(-1)) and ethanol productivity [5.6 g (Lh)(-1)] were reached. Additionally, the effect of feeding sterilized or non-sterilized medium to the continuous cultures was compared, finding no significant differences between both types of cultures. The overall effect

  4. AppI ication of Yeast Extract in Instant NoodIes Sauces%酱类专用酵母抽提物在几款方便面调味酱料中的应用

    Institute of Scientific and Technical Information of China (English)

    郭辉; 李沛; 沈硕; 孙合群; 刘雪娇

    2015-01-01

    By the methods of comparative experiments and sensory analysis, the application characteristics of yeast extract in instant noodles sauces are analyzed.Ultimately,it is proved that the yeast extract has a significant role in enhancing the flavor of instant noodles sauces.%对酱类专用酵母抽提物进行了分析,通过应用对比实验和感官品评的方法,证明了此款酵母抽提物具有提升方便面调味酱料风味的显著作用。

  5. Effects of added chelated trace minerals, organic selenium, yeast culture, direct-fed microbials, and Yucca schidigera extract in horses: II. Nutrient excretion and potential environmental impact.

    Science.gov (United States)

    Gordon, M E; Edwards, M S; Sweeney, C R; Jerina, M L

    2013-08-01

    The objective of this study was to test the hypothesis that an equine diet formulated with chelated trace minerals, organic selenium, yeast culture, direct-fed microbials (DFM) and Yucca schidigera extract would decrease excretion of nutrients that have potential for environmental impact. Horses were acclimated to 100% pelleted diets formulated with (ADD) and without (CTRL) the aforementioned additives. Chelated sources of Cu, Zn, Mn, and Co were included in the ADD diet at a 100% replacement rate of sulfate forms used in the CTRL diet. Additionally, the ADD diet included organic selenium yeast, DFM, and Yucca schidigera extract. Ten horses were fed the 2 experimental diets during two 42-d periods in a crossover design. Total fecal and urine collection occurred during the last 14 d of each period. Results indicate no significant differences between Cu, Zn, Mn, and Co concentrations excreted via urine (P > 0.05) due to dietary treatment. There was no difference between fecal Cu and Mn concentrations (P > 0.05) based on diet consumed. Mean fecal Zn and Co concentrations excreted by horses consuming ADD were greater than CTRL (P 0.05). In feces stockpiled to simulate a crude composting method, no differences (P > 0.05) due to diet were detected for particle size, temperature, moisture, OM, total N, P, phosphate, K, moisture, potash, or ammonia N (P > 0.05). Although no difference (P = 0.2737) in feces stockpile temperature due to diet was found, temperature differences over time were documented (P Yucca schidigera extract did not decrease most nutrient concentrations excreted. Horses consuming organic selenium as part of the additive diet had lower fecal and urine Se concentrations, as well as greater fecal K concentrations.

  6. 超声波破壁提取葡萄酒酵母泥中多糖的研究%Study on extraction of polysaccharide by ultrasonic dilapidating walls from waste wine yeast slurry

    Institute of Scientific and Technical Information of China (English)

    胡云峰; 陈君然; 胡晗艳; 崔瀚元; 杨秋月

    2013-01-01

    Objective To establish a method for the extraction of polysaccharide of waste wine yeast slurry by ultrasonic method. Methods On the basis of single factor experiments, the effects of operating con-ditions, such as yeast concentration, ultrasonic-assisted extraction temperature, and ultrasonic-assisted extrac-tion time, were analyzed by response surface methodology. Results The optimized conditions of ultrason-ic-assisted extraction are as following: yeast concentration 9.10%, ultrasonic-assisted extraction temperature 65.42 ℃, and ultrasonic-assisted extraction time 132.97 min. Under the optimized conditions, the extraction yield of yeast polysaccharide was 1.85%. The optimum technological condition was validated. the actual ex-traction yield of yeast polysaccharide was 1.86%. It showed that the result was stable. Conclusion The ultra-sonic-assisted extraction method has a high extraction rate in extracting the polysaccharide of waste wine yeast slurry. The method is simple and practical.%目的:利用超声波法提取葡萄酒酵母泥中多糖。方法研究了酵母浓度、超声温度、超声时间对葡萄酒酵母泥中多糖得率的影响,并采用响应面分析法对葡萄酒酵母泥中多糖提取工艺进行优化设计。结果超声波法提取葡萄酒酵母泥中多糖的最佳条件为:酵母浓度9.10%,超声温度为65.42℃,超声时间为132.97 min。最终酵母多糖得率为1.85%,对最佳工艺条件进行验证,酵母多糖实际得率为1.86%,结果重复性较好。结论超声波辅助提取葡萄酒酵母泥中的多糖,工艺简便,多糖得率较高,具有实际的应用价值。

  7. Growth and nitrogen metabolism of sea bass fed graded levels of nucleic acid nitrogen from yeast or RNA extract as partial substitute for protein nitrogen from fish meal

    Directory of Open Access Journals (Sweden)

    S. Kaushik

    2010-01-01

    Full Text Available Some studies carried out in mammalian models have shown de novo synthesis and salvage of nucleotides to be a costly metabolic process and a dietary supplementation with nucleic acids (NA or nucleotides has been suggested to result in a protein sparing action (Sanderson and He, 1994. On the other hand, high levels of dietary NA could have toxic effects and lead to disturbance in protein, lipid and carbohydrate metabolism in monogastric animals lacking uricase activity, an enzyme involved in NA degradation (Clifford and Story, 1976. So far, there is no clear indication of such effects in fish fed nucleic acid-enriched diets (Tacon and Cooke, 1980; Rumsey et al., 1992; Fournier et al., 2002. The aim of this experiment was to investigate growth response and N metabolism in juvenile sea bass (D. labrax fed diets supplying graded levels of nucleic acid N from dry brewer's yeast or RNA extract as partial substitutes for protein nitrogen provided by fish meal.

  8. A yeast bioassay for direct measurement of thyroid hormone disrupting effects in water without sample extraction, concentration, or sterilization.

    Science.gov (United States)

    Li, Jian; Ren, Shujuan; Han, Shaolun; Li, Na

    2014-04-01

    The present study introduces an improved yeast bioassay for rapid yet sensitive evaluation of thyroid hormone disruption at the level of thyroid receptor (TR) in environmental water samples. This assay does not require water sample preparation and thus requires very little hands-on time. Based on different β-galactosidase substrates, two modified bioassays, a colorimetric bioassay and a chemiluminescent bioassay, were developed. The compounds tested included the known thyroid hormone 3,3',5-triiodo-l-thyronine (T3), the specific TR antagonist amiodarone hydrochloride (AH) and phthalate esters (PAEs), which potentially disrupt thyroid hormone signaling. The EC50 values for T3 were similar to those previously obtained using a 96-well plate bioassay. TR antagonism by AH was studied in the presence of 2.5 × 10(-7)M T3, and the concentration producing 20% of the maximum effect (RIC20) for AH was 3.1 × 10(-7)M and 7.8 × 10(-9)M for the colorimetric bioassay and chemiluminescent bioassay, respectively. None of the tested PAEs induced β-galactosidase expression, but diethylhexyl phthalate, benzyl butyl phthalate and dibutyl phthalate demonstrated TR antagonism. Furthermore, water samples collected from Guanting reservoir in Beijing were evaluated. Although TR agonism was not observed, antagonism was detected in all water samples and is expressed as AH equivalents. The toxicology equivalent quantity values obtained by the chemiluminescent bioassay ranged from 21.2 ± 1.6 to 313.9 ± 28.8 μg L(-1) AH, and similar values were obtained for the colorimetric bioassay. The present study shows that the modified yeast bioassay can be used as a valuable tool for quantification of thyroid hormone disrupting effects in environmental water samples.

  9. Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing.

    Science.gov (United States)

    Beloshapka, Alison N; Dowd, Scot E; Suchodolski, Jan S; Steiner, Jörg M; Duclos, Laura; Swanson, Kelly S

    2013-06-01

    Our objective was to determine the effects of feeding raw meat-based diets with or without inulin or yeast cell wall extract (YCW) on fecal microbial communities of dogs using 454 pyrosequencing. Six healthy female adult beagles (5.5 ± 0.5 years; 8.5 ± 0.5 kg) were randomly assigned to six test diets using a Latin square design: (1) beef control; (2) beef + 1.4% inulin; (3) beef + 1.4% YCW; (4) chicken control; (5) chicken + 1.4% inulin; and (6) chicken + 1.4% YCW. Following 14 days of adaptation, fresh fecal samples were collected on day 15 or day 16 of each period. Fecal genomic DNA was extracted and used to create 16S rRNA gene amplicons, which were subjected to 454 pyrosequencing and qPCR. Predominant fecal bacterial phyla included Fusobacteria, Firmicutes, Bacteroidetes, and Proteobacteria. Beef-based diets increased (P Inulin decreased (P Inulin increased (P Inulin also decreased (P inulin and control and inulin increased (P inulin or YCW consumption, a strong prebiotic effect was not observed.

  10. The effects of 5'-capping, 3'-polyadenylation and leader composition upon the translation and stability of mRNA in a cell-free extract derived from the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gerstel, B; Tuite, M F; McCarthy, J E

    1992-08-01

    A new modular expression system was developed to direct the in vitro synthesis of defined transcripts that were used as templates for translation in yeast cell-free extracts. The system was used to examine the influence of 5'-capping, 3'-polyadenylation and leader sequence upon the translation and stability of the synthetic Tn9 cat (chloramphenicol acetyl transferase), yeast PGK (phosphoglycerate kinase) and yeast HSP26 (heat-shock protein 26) mRNAs. The addition of a methylated cap (m7Gppp) or of a poly(A) tail enhanced translation and stabilized the mRNA. The dependence of translation upon capping was reduced in the presence of the HSP26 leader sequence. This may indicate the existence of a translational mechanism that enhances cap-independent translation. The enhancement of the translation and stability of mRNA was relatively insensitive to changes in the position of the poly(A) tail relative to the reading frame.

  11. Proteolytic activities in yeast.

    Science.gov (United States)

    Saheki, T; Holzer, H

    1975-03-28

    Studies on the mechanism and time course of the activation of proteinases A (EC 3.4.23.8), B (EC 3.4.22.9) and C (EC 3.4.12.--) in crude yeast extracts at pH 5.1 and 25 degrees C showed that the increase in proteinase B activity is paralleled with the disappearance of proteinase B inhibitor. Addition of purified proteinase A to fresh crude extracts accelerates the inactivation of the proteinase B inhibitor and the appearance of maximal activities of proteinases B and C. The decrease of proteinase B inhibitor activity and the increase of proteinase B activity are markedly retarded by the addition of pepstatin. Because 10-minus 7 M pepstatin completely inhibits proteinase A without affecting proteinase B activity, this is another indication for the role of proteinase A during the activation of proteinase B. Whereas extracts of yeast grown on minimal medium reached maximal activation of proteinases B and C after 20 h of incubation at pH 5.1 and 25 degrees C, extracts of yeast grown on complete medium had to be incubated for about 100 h. In the latter case, the addition of proteinas A results in maximal activation of proteinases B and C and disappearance of proteinase B inhibitor activity only after 10--20 h of incubation. With the optimal conditions, the maximal activities of proteinases A, B and C, as well as of the proteinase B inhibitor, were determined in crude extracts of yeast that had been grown batchwise for different lengths of time either on minimal or on complete medium. Upon incubation, all three proteinases were activated by several times their initial activity. This reflects the existence of proteolytically degradable inhibitors of the three proteinases and together with the above mentioned observations it demonstrates that the "activation" of yeast proteinases A, B and C upon incubation results from the proteolytic digestion of inhibitors rather than from activation of inactive zymogens by limited proteolysis.

  12. Effects of added chelated trace minerals, organic selenium, yeast culture, direct-fed microbials, and Yucca schidigera extract in horses. Part I: Blood nutrient concentration and digestibility.

    Science.gov (United States)

    Gordon, M E; Edwards, M S; Sweeney, C R; Jerina, M L

    2013-08-01

    The objective of this study was to test the hypothesis that feed additives such as chelated minerals, organic Se, yeast culture, direct-fed microbials, and Yucca schidigera extract would improve nutrient digestibility when included in an equine diet. Horses (Quarter Horse geldings 4.5 to 16 yr of age; mean BW 522 kg ± 46 kg) were acclimated to 100% pelleted diets formulated with (ADD) and without (CTRL) commercially available sources of the aforementioned additives followed by a 14-d collection period of feces and urine. Chelated sources of Cu, Zn, Mn and Co were utilized versus sulfated forms, at a 100% replacement rate. No significant differences among apparent the digestibility of DM, ADF, or NDF (P= 0.665, P = 0.866, P = 0.747, respectively) were detected between dietary treatments. Likewise, no differences in apparent digestibility of Cu (P = 0.724), Zn (P = 0.256), Mn (P = 0.888), Co (P = 0.71), or Se (P = 0.588) were observed. No differences were observed in serum Cu, Mn, or Co concentrations between ADD and CTRL at acclimation or collection time points (P > 0.05). While no difference in serum Zn concentrations were observed between ADD and CTRL groups at acclimation (P > 0.05), they were statistically higher at the collection time period for horses consuming CTRL (P 0.05). Serum Zn concentrations of horses consuming both ADD (P = 0.021) and CTRL (P 0.05) were observed in serum Mn concentrations. Serum Co concentrations increased over time in horses consuming both ADD (P = 0.001) and CTRL (P = 0.021). From acclimation to collection, whole blood Se concentration increased for horses consuming CTRL (P = 0.01) but not for ADD (P > 0.05). The results of this study indicate no effect on nutrient digestibility due to the inclusion of chelated minerals, organic Se, yeast culture, direct-fed microbials, and Yucca schidigera extract for horses at maintenance.

  13. Comparing the sugar profiles and primary structures of alkali-extracted water-soluble polysaccharides in cell wall between the yeast and mycelial phases from Tremella fuciformis.

    Science.gov (United States)

    Zhu, Hanyu; Yuan, Yuan; Liu, Juan; Zheng, Liesheng; Chen, Liguo; Ma, Aimin

    2016-05-01

    To gain insights into dimorphism, cell wall polysaccharides from Tremella fuciformis strains were obtained from alkali-extracted water-soluble fractions PTF-M38 (from the mycelial form), PTF-Y3 and PTF-Y8 (from the yeast form) of T. fuciformis strains were used to gain some insights into dimorphism study. Their chemical properties and structural features were investigated using gel permeation chromatography, gas chromatography, UV and IR spectrophotometry and Congo red binding reactions. The results indicated that the backbones of PTF-M38, PTF-Y3 and PTF-Y8 were configured with α-linkages with average molecular weights of 1.24, 1.08, and 1.19 kDa, respectively. PTF-M38 was mainly composed of xylose, mannose, glucose, and galactose in a ratio of 1:1.47:0.48:0.34, while PTF-Y3 and PTF-Y8 were mainly composed of xylose, mannose and glucose in a ratio of 1:1.65:4.06 and 1:1.21:0.44, respectively. The sugar profiles of PTF-M38, PTF-Y3 and PTF-Y8 were also established for further comparison. These profiles showed that all three polysaccharides contained the same sugars but in different ratios, and the carbon sources (xylose, mannose, glucose, and galactose) affected the sugar ratios within the polysaccharides.

  14. An economic approach to efficient isotope labeling in insect cells using homemade {sup 15}N-, {sup 13}C- and {sup 2}H-labeled yeast extracts

    Energy Technology Data Exchange (ETDEWEB)

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan, E-mail: Stephan.Grzesiek@unibas.ch [University of Basel, Focal Area Structural Biology and Biophysics, Biozentrum (Switzerland)

    2015-07-15

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein {sup 15}N and {sup 13}C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor.

  15. An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts.

    Science.gov (United States)

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan

    2015-07-01

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein (15)N and (13)C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor.

  16. Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus.

    Science.gov (United States)

    Li, Ming; Si, Shengli; Hao, Bo; Zha, Yi; Wan, Can; Hong, Shufen; Kang, Yongbo; Jia, Jun; Zhang, Jing; Li, Meng; Zhao, Chunqiao; Tu, Yuanyuan; Zhou, Shiguang; Peng, Liangcai

    2014-10-01

    In this study, various alkali-pretreated lignocellulose enzymatic hydrolyses were evaluated by using three standard pairs of Miscanthus accessions that showed three distinct monolignol (G, S, H) compositions. Mfl26 samples with elevated G-levels exhibited significantly increased hexose yields of up to 1.61-fold compared to paired samples derived from enzymatic hydrolysis, whereas Msa29 samples with high H-levels displayed increased hexose yields of only up to 1.32-fold. In contrast, Mfl30 samples with elevated S-levels showed reduced hexose yields compared to the paired sample of 0.89-0.98 folds at pbiomass samples exhibited complete enzymatic hydrolysis under 4% NaOH pretreatment. Furthermore, the G-rich samples showed more effective extraction of lignin-hemicellulose complexes than the S- and H-rich samples upon NaOH pretreatment, resulting in large removal of lignin inhibitors to yeast fermentation. Therefore, this study proposes an optimal approach for minor genetic lignin modification towards cost-effective biomass process in Miscanthus.

  17. Endogenous hydrogen peroxide is a key factor in the yeast extract-induced activation of biphenyl biosynthesis in cell cultures of Sorbus aucuparia.

    Science.gov (United States)

    Qiu, Xiaofang; Lei, Caiyan; Huang, Lili; Li, Xing; Hao, He; Du, Zhigao; Wang, Hong; Ye, Hechun; Beerhues, Ludger; Liu, Benye

    2012-01-01

    Biphenyls are unique phytoalexins produced by plants belonging to Pyrinae, a subtribe of the economically important Rosaceae family. The formation of aucuparin, a well-known biphenyl, is induced by yeast extract (YE) in cell cultures of Sorbus aucuparia. However, the molecular mechanism underlying YE-induced activation of biphenyl biosynthesis remains unknown. Here we demonstrate that the addition of YE to the cell cultures results in a burst of reactive oxygen species (ROS; H(2)O(2) and O(2) (-)), followed by transcriptional activation of the biphenyl synthase 1 gene (BIS1) encoding the key enzyme of the biphenyl biosynthetic pathway and aucuparin accumulation. Pretreatment of the cell cultures with ROS scavenger dihydrolipoic acid and NADPH oxidase-specific inhibitor diphenylene iodonium abolished all of the above YE-induced biological events. However, when the cell cultures was pretreated with superoxide dismutase specific inhibitor N,N-diethyldithiocarbamic acid, although O(2) (-) continued to be generated, the H(2)O(2) accumulation, BIS1 expression and aucuparin production were blocked. Interestingly, exogenous supply of H(2)O(2) in the range of 0.05-10 mM failed to induce aucuparin accumulation. These results indicate that endogenous generation of H(2)O(2) rather than that of O(2) (-) is a key factor in YE-induced accumulation of biphenyl phytoalexins in cell cultures of S. aucuparia.

  18. Yeast and mould dynamics in Caciofiore della Sibilla cheese coagulated with an aqueous extract of Carlina acanthifolia All.

    Science.gov (United States)

    Cardinali, Federica; Taccari, Manuela; Milanović, Vesna; Osimani, Andrea; Polverigiani, Serena; Garofalo, Cristiana; Foligni, Roberta; Mozzon, Massimo; Zitti, Silvia; Raffaelli, Nadia; Clementi, Francesca; Aquilanti, Lucia

    2016-08-01

    Caciofiore della Sibilla is a speciality ewes' milk cheese traditionally manufactured in a foothill area of the Marche region (Central Italy) with a crude extract of fresh young leaves of Carlina acanthifolia All. subsp. acanthifolia as a coagulating agent. The fungal dynamics and diversity of this speciality cheese were investigated throughout the manufacturing and 20-day ripening process, using a combined PCR-DGGE approach. The fungal biota of a control ewes' milk cheese, manufactured with the same batch of milk coagulated with a commercial animal rennet, was also monitored by PCR-DGGE, in order to investigate the contribution of the peculiar vegetable coagulant to the fungal diversity and dynamics of the cheese. Based on the overall results collected, the raw milk and the dairy environment represented the main sources of fungal contamination, with a marginal or null contribution of thistle rennet to the fungal diversity and dynamics of Caciofiore della Sibilla cheese. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Production of Food Grade Yeasts

    Directory of Open Access Journals (Sweden)

    Argyro Bekatorou

    2006-01-01

    Full Text Available Yeasts have been known to humans for thousands of years as they have been used in traditional fermentation processes like wine, beer and bread making. Today, yeasts are also used as alternative sources of high nutritional value proteins, enzymes and vitamins, and have numerous applications in the health food industry as food additives, conditioners and flavouring agents, for the production of microbiology media and extracts, as well as livestock feeds. Modern scientific advances allow the isolation, construction and industrial production of new yeast strains to satisfy the specific demands of the food industry. Types of commercial food grade yeasts, industrial production processes and raw materials are highlighted. Aspects of yeast metabolism, with respect to carbohydrate utilization, nutritional aspects and recent research advances are also discussed.

  20. EFFECTS OF MILLET MALT WORT ON BREWER'S YEAST

    African Journals Online (AJOL)

    BSN

    Barely malt has been the brewers choice for beer fermentation. (1'. ... Peptone yeast extract glucose broth prepared according to the methods of .... satisfactory as the crop of yeast recovered was high and responded well in fermentation to the ...

  1. In vitro exposure of Penicillium mycotoxins with or without a modified yeast cell wall extract (mYCW) on bovine macrophages (BoMacs).

    Science.gov (United States)

    Oh, Se-Young; Quinton, V Margaret; Boermans, Herman J; Swamy, H V L N; Karrow, Niel A

    2015-11-01

    Penicillium mycotoxins (PMs) are contaminants that are frequently found in grain or crop-based silage for animal feed. Previously, we have characterized the potential immunotoxicity of the following PMs: citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA), and penicillic acid (PA) by using a bovine macrophage cell line (BoMacs). In the present study, cell proliferation was used as a bioassay endpoint to evaluate the efficacy of a modified yeast cell wall extract (mYCW), for preventing PM toxicity under various in vitro conditions such as the following: pH (3, 5, 7), incubation time (1, 2, 4, 6 h), percentage of mYCW (0.05, 0.1, 0.2, 0.5, 1.0 %), and PM concentration. mYCW was most effective in preventing the toxicity of 12.88 and 25.8 μM OTA at pH 3.0 (p < 0.0001), regardless of incubation time (p < 0.0001) and the percentage of mYCW (p < 0.0001). An incubation time of 6 h (p < 0.05) or 0.5 and 1.0 % mYCW (p < 0.0001) significantly improved the efficacy of mYCW for preventing CIT toxicity. In contrast, 0.5 and 1.0 % of mYCW appeared to exacerbate the PAT toxicity (p < 0. 0001). This effect on PAT toxicity was constantly observed with higher PAT concentrations, and it reached significance at a concentration of 0.70 μM (p < 0.0001). mYCW had no effect on PA toxicity. These results suggest that mYCW may reduce OTA toxicity and, to some extent, CIT toxicity at pH 3.0. Although PAT toxicity was increased by mYCW treatment, PAT is readily degraded during heat treatment and may therefore be dealt with using other preventative measures.

  2. 啤酒废酵母中β-D-葡聚糖非降解提取工艺%A Novel Method for Non-degradative Extraction of β-D-Glucans from Spent Yeast Cells

    Institute of Scientific and Technical Information of China (English)

    朱益波; 翟丽君; 朱明; 齐斌

    2011-01-01

    We here present a novel method to extract non-degraded β-D-glucans from spent yeast cells,mainly based on induced yeast autolysis,hot water extraction,cell wall disruption,defatting and protease hydrolysis.One-factor-at-a-time coupled with orthogonal array design method was applied to the process conditions of induced yeast autolysis and cell wall disruption.The extract obtained under optimized conditions had a total sugar content of 84.9% with an extraction yield of 13.7%.Its purity and yield were both higher than previously reported.Induced yeast autolysis and hot water extraction had a significant effect on β-D-glucan purity and yield.Moreover,protease treatment could further remove protein impurities and increase β-D-glucan purity.The absence of strong acid,strong alkali and oxidant throughout the process helped to protect the physiological activity of products and the environment.%采用单因素及正交试验研究新型非降解法提取废啤酒酵母β-D-葡聚糖工艺。该工艺主要包括诱导自溶、热水浸提、破壁、脱脂、蛋白酶处理等过程。结果表明,提取物中总糖质量百分含量为84.9%,得率为13.7%。与已有报道相比具备较高的纯度和得率。诱导自溶及热水浸提处理对于提取物的得率和纯度具有重要影响,蛋白酶处理对于进一步减少蛋白质含量和提高产物纯度也有显著作用。整个提取过程没有采用强酸、碱和氧化剂有助于保护产物的生理活性和环境。

  3. 蒸鱼豉油专用YE产品开发及应用研究%Product Development and Application Research of the Special Yeast Extract Used in Seasoned Soya Sauce for Seafood

    Institute of Scientific and Technical Information of China (English)

    熊建; 李沛; 唐冠群

    2013-01-01

    Yeast Extract (YE) is a kind of nutritional-type multifunctional umami agent and flavor enhancer,which has the characteristics of rich umami,mellow taste,natural nutrition,etc.Seasoned soya sauce for seafood is the special soy sauce for steamed fish; taste and flavor are the important indicators for the quality evaluation.The research and development and the application evaluation for seasoned soya sauce for seafood are carried out.The results show that the special yeast extract used in seasoned soya sauce for seafood can increase the taste of sauce and coordinate the delicious flavor of sauce.It can enhance the overall flavor of seasoned soya sauce for seafood products.%酵母抽提物(Yeast Extract,YE)是一种营养型多功能鲜味剂和风味增强剂,具有鲜味丰富,口感醇厚,天然营养的特点.蒸鱼豉油是蒸鱼特制的酱油,口感和风味是评价其品质的重要指标.文章针对蒸鱼豉油专用YE进行了研究开发,并对其进行应用评价.结果表明:蒸鱼豉油专用型YE能增加蒸鱼豉油产品的厚实口感,协调产品鲜美风味,对蒸鱼豉油产品整体风味的提升具有很好的效果.

  4. Yeast Lab

    OpenAIRE

    Lewis, Matt; Powell, Jim

    2016-01-01

    Yeast are grown in a small, capped ask, generating carbon dioxide which is trapped in an inverted jar full of colored water. The volume of carbon dioxide produced can either be measured directly or using time-lapse imagery on an iPad or similar. Students are then challenged to model the resulting data. From this exercise students gain greater understand- ing of ODE compartment models, parameter estimation, population dynamics and limiting factors.

  5. EXTRACT

    DEFF Research Database (Denmark)

    Pafilis, Evangelos; Buttigieg, Pier Luigi; Ferrell, Barbra

    2016-01-01

    The microbial and molecular ecology research communities have made substantial progress on developing standards for annotating samples with environment metadata. However, sample manual annotation is a highly labor intensive process and requires familiarity with the terminologies used. We have the...... and text-mining-assisted curation revealed that EXTRACT speeds up annotation by 15-25% and helps curators to detect terms that would otherwise have been missed.Database URL: https://extract.hcmr.gr/....

  6. Modulation of intestinal inflammation by yeasts and cell wall extracts: strain dependence and unexpected anti-inflammatory role of glucan fractions.

    Directory of Open Access Journals (Sweden)

    Samir Jawhara

    Full Text Available Yeasts and their glycan components can have a beneficial or adverse effect on intestinal inflammation. Previous research has shown that the presence of Saccharomyces cerevisiae var. boulardii (Sb reduces intestinal inflammation and colonization by Candida albicans. The aim of this study was to identify dietary yeasts, which have comparable effects to the anti-C. albicans and anti-inflammatory properties of Sb and to assess the capabilities of yeast cell wall components to modulate intestinal inflammation. Mice received a single oral challenge of C. albicans and were then given 1.5% dextran-sulphate-sodium (DSS for 2 weeks followed by a 3-day restitution period. S. cerevisiae strains (Sb, Sc1 to Sc4, as well as mannoprotein (MP and β-glucan crude fractions prepared from Sc2 and highly purified β-glucans prepared from C. albicans were used in this curative model, starting 3 days after C. albicans challenge. Mice were assessed for the clinical, histological and inflammatory responses related to DSS administration. Strain Sc1-1 gave the same level of protection against C. albicans as Sb when assessed by mortality, clinical scores, colonization levels, reduction of TNFα and increase in IL-10 transcription. When Sc1-1 was compared with the other S. cerevisiae strains, the preparation process had a strong influence on biological activity. Interestingly, some S. cerevisiae strains dramatically increased mortality and clinical scores. Strain Sc4 and MP fraction favoured C. albicans colonization and inflammation, whereas β-glucan fraction was protective against both. Surprisingly, purified β-glucans from C. albicans had the same protective effect. Thus, some yeasts appear to be strong modulators of intestinal inflammation. These effects are dependent on the strain, species, preparation process and cell wall fraction. It was striking that β-glucan fractions or pure β-glucans from C. albicans displayed the most potent anti-inflammatory effect in the

  7. Modulation of intestinal inflammation by yeasts and cell wall extracts: strain dependence and unexpected anti-inflammatory role of glucan fractions.

    Science.gov (United States)

    Jawhara, Samir; Habib, Khalid; Maggiotto, François; Pignede, Georges; Vandekerckove, Pascal; Maes, Emmanuel; Dubuquoy, Laurent; Fontaine, Thierry; Guerardel, Yann; Poulain, Daniel

    2012-01-01

    Yeasts and their glycan components can have a beneficial or adverse effect on intestinal inflammation. Previous research has shown that the presence of Saccharomyces cerevisiae var. boulardii (Sb) reduces intestinal inflammation and colonization by Candida albicans. The aim of this study was to identify dietary yeasts, which have comparable effects to the anti-C. albicans and anti-inflammatory properties of Sb and to assess the capabilities of yeast cell wall components to modulate intestinal inflammation. Mice received a single oral challenge of C. albicans and were then given 1.5% dextran-sulphate-sodium (DSS) for 2 weeks followed by a 3-day restitution period. S. cerevisiae strains (Sb, Sc1 to Sc4), as well as mannoprotein (MP) and β-glucan crude fractions prepared from Sc2 and highly purified β-glucans prepared from C. albicans were used in this curative model, starting 3 days after C. albicans challenge. Mice were assessed for the clinical, histological and inflammatory responses related to DSS administration. Strain Sc1-1 gave the same level of protection against C. albicans as Sb when assessed by mortality, clinical scores, colonization levels, reduction of TNFα and increase in IL-10 transcription. When Sc1-1 was compared with the other S. cerevisiae strains, the preparation process had a strong influence on biological activity. Interestingly, some S. cerevisiae strains dramatically increased mortality and clinical scores. Strain Sc4 and MP fraction favoured C. albicans colonization and inflammation, whereas β-glucan fraction was protective against both. Surprisingly, purified β-glucans from C. albicans had the same protective effect. Thus, some yeasts appear to be strong modulators of intestinal inflammation. These effects are dependent on the strain, species, preparation process and cell wall fraction. It was striking that β-glucan fractions or pure β-glucans from C. albicans displayed the most potent anti-inflammatory effect in the DSS model.

  8. Preparation of low nucleic acid yeast extract by a mesotherm/light-salt method%中温淡盐法制备低核酸酵母抽提物的工艺研究

    Institute of Scientific and Technical Information of China (English)

    王斌; 黄丽娜; 邱丽娟

    2014-01-01

    Using a novel mesotherm/light-salt method for the removal of nucleic acid , the high quality , low nucleic acid yeast extract was successfully prepared .This technique was simple and short in processing time under 70℃.By using low amount of sodium chlo-ride, desalting is not required.Moreover, content of nucleic acid was reduced by over 70%.Further more, the yeast product had a light color with a tasty meat flavor , suitable for food processing .In addition , this technique produced a high-yield high-purity nucleic acid byproduct .Mesotherm/light-salt technique broadened the application field of yeast extract products , provided a solution for obtai-ning safe and nutritious yeast products to individuals with uric acid in the high side or gout .%通过建立一种新的酵母核酸中温淡盐去除法,成功研制出品质优良的低核酸酵母抽提物。工艺简单,处理时间短,温度不超过70℃,可避免高温对酵母营养物质的破坏;该法氯化钠用量少,无需脱盐处理,易产业化及应用推广;研究制备的酵母抽提物,核酸去除量达70%以上,色浅、肉香味鲜,适合食品加工。同时,附加得到高提取率、高纯度的核酸。中温淡盐法去除酵母核酸的技术,扩展了酵母制品的应用领域,更为尿酸偏高及痛风人群食用安全营养的酵母食品提供了解决方案。

  9. The influence of exogenous nutrients on the abundance of yeasts on the phylloplane of turfgrass.

    Science.gov (United States)

    Nix-Stohr, Shannon; Burpee, Leon L; Buck, James W

    2008-01-01

    Four experiments were conducted to assess the effect of foliar applications of various nutrient solutions on the phylloplane yeast community of tall fescue (Festuca arundinacea Schreb.). In the first three experiments, increasing concentrations of sucrose (2-16%), yeast extract (0.5-2.5%), and sucrose plus yeast extract (2.5-18.5% total) were applied and the yeast colony forming units (cfu) enumerated 14 h later by dilution plating. Significant positive linear relationships were observed between the number of yeast cfu and applications of both yeast extract and sucrose plus yeast extract. Foliar applications of sucrose alone had no significant effect on yeast community abundance, indicating that phylloplane yeasts of turfgrass are not limited by the amount or availability of carbohydrates. In the fourth experiment, five different solutions were applied to tall fescue to investigate the response of the yeast community to organic and inorganic nitrogen sources. Tryptone or yeast extract, both with considerable amino acid composition, significantly increased the yeast population, while yeast nitrogen base (with or without amino acids) and ammonium sulfate had no affect on yeast abundance. These results suggest that organic nitrogen stimulate yeast community growth and development on the phylloplane of tall fescue, while carbohydrates, inorganic nitrogen, and non-nitrogenous nutrients have little positive effect.

  10. 酵母多糖的提取、组分分析及对小鼠免疫功能的影响%Extraction, Component Analysis of Yeast Polysaccharide and Its Influence on Immunologic Function in Mice

    Institute of Scientific and Technical Information of China (English)

    王元秀; 李峰

    2009-01-01

    Objective To study the effect of waste beer yeast polysaccharide on immunologic function in mice. Methods With waste beer yeast as the material, the yeast polysaccharide was extracted with citric acid. The poly-saccharide content was determined with phenol-sulfuric acid method and component analysis was performed with pa-per chromatography. The male mice at the age of 18 months were randomly divided into two groups. One group was lavaged with 1.0 mL of 1% polysaccharide for 30 days, the other group was treated with equivalent normal saline for 30 days. Results The corrected carbon clearance value, liver and spleen index and the activities of superoxide dismutase(SOD) and catalase(CAT) as well as the content of malondialdehyde(MDA) in tissue homogenate were significantly different between the two groups. Conclusion Yeast polysaccharide can promote the growth of immune organs, enhance macrophage phagocytosis, significantly increase the activities of SOD and CAT, and meanwhile re-duce the MDA content in liver and spleen in mice.%目的 研究啤酒废酵母多糖对小鼠免疫功能的影响.方法 以啤酒废酵母为材料,用柠檬酸法提取酵母多糖,苯酚-硫酸法测定多糖含量,纸层析鉴定多糖组分.随机将18月龄的雄性小鼠分为2组,一组每天定时灌胃1%多糖1.0 mL,一组灌胃等量生理盐水,连续30 d.结果 2组小鼠的碳颗粒校正廓清指数、肝脏和脾脏指数以及组织匀浆中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性和丙二醛(MDA)含量有显著差异.结论 酵母多糖可促进小鼠免疫器官生长,增强小鼠巨噬细胞的吞噬能力;可显著提高SOD、CAT活性,减少肝脏、脾脏中MDA的含量.

  11. Assessment of Extracts from Red Yeast Rice for Herb-Drug Interaction by in-vitro and in-vivo assays

    Science.gov (United States)

    Fung, Wai To; Subramaniam, G.; Lee, Joel; Loh, Heng Meng; Leung, Pak Ho Henry

    2012-01-01

    Red yeast rice (RYR) is made by fermenting the yeast Monascus purpureus over rice. It is a source of natural red food colorants, a food garnish and a traditional medication. Results of the current study demonstrated that polar fractions of the RYR preparations contained herbal-drug interaction activity, which if left unremoved, enhanced P-glycoprotein activity and inhibited the major drug metabolizing cytochromes P450, i,e, CYP 1A2, 2C9 and 3A4. The data from Caco-2 cell absorption and animal model studies further demonstrated that the pharmacokinetic modulation effect by RYR preparations containing the polar fractions (“untreated” preparation) was greater than that from RYR preparations with the polar fractions removed (“treated” preparation). The data indicates a potential for herb-drug interactions to be present in RYR commonly sold as nutritional supplements when the polar fractions are not removed and this should be taken into consideration when RYR is consumed with medications, including verapamil. PMID:22389767

  12. Collision-induced dissociation pathways of yeast sphingolipids and their molecular profiling in total lipid extracts: a study by quadrupole TOF and linear ion trap-orbitrap mass spectrometry

    DEFF Research Database (Denmark)

    Ejsing, Christer S.; Moehring, Thomas; Bahr, Ute

    2006-01-01

    and the long chain base moieties in individual molecular species. By selecting m/z of class-specific fragment ions for multiple precursor ion scanning, we profiled yeast sphingolipids in total lipid extracts on a QqTOF mass spectrometer. Thus, a combination of QqTOF and LTQ Orbitrap mass spectrometry lends......TOF) instrument produced fragments of inositol-containing head groups, which were specific for each lipid class. MS(n) analysis performed on a hybrid linear ion trap-orbitrap (LTQ Orbitrap) mass spectrometer with better than 3 ppm mass accuracy identified fragment ions specific for the amide-linked fatty acid...... itself to rapid, comprehensive and structure-specific profiling of the molecular composition of sphingolipids and glycerophospholipids in important model organisms, such as fungi and plants....

  13. Determinação do valor protéico de células íntegras, autolisado total e extrato de levedura (Saccharomyces sp. Determination of protein value of integral cells, total autolisate and yeast extract (Saccharomyces sp.

    Directory of Open Access Journals (Sweden)

    Elke Simone Dias VILELA

    2000-12-01

    Full Text Available Biomassa de células de levedura, limpa e desamargada, bem como seus derivados autolisado total e extrato de levedura, desidratados em spray dryer foram analisados por ensaio biológico com ratos da linhagem Wistar, em crescimento, para determinação do valor nutritivo da proteína e avaliação do impacto da utilização desses produtos, como única fonte de proteína, nos níveis séricos de triacilgliceróis, colesterol total, ácido úrico e de Lipoproteína de Alta Densidade-colesterol. Células íntegras, autolisado total e extrato de levedura não diferiram estatisticamente (p.Clean and debittered yeast cells biomass and its derivatives, total autolisate and extract, after dehydration (spray dryer, were used in a bioassay with wistar rats for determination of protein nutritive value and evaluation of the impact of the yeast products on the blood serum levels of uric acid, triacylglycerols, total cholesterol and High Density Lipoproteins-cholesterol. Integral cells, total autolisate and yeast extract did not differ statistically (p <= 0.05 regarding Protein Efficiency Ratio and Net Protein Ratio, which were significantly lower than the casein value. The growth promoting capacity was higher for casein, followed by integral cells, yeast extract and total autolisate, in decreasing order of magnitude. Net protein utilization values confirmed the Protein Efficiency Ratio and Net Protein Ratio results. Yeast products protein nutritive value was statistically identical but inferior to casein value. On the whole, the nutritive value of the yeast products protein ranked between 80-85% of the casein value. Uric acid serum concentration increased in the rats fed the diets containing yeast products, but the values remained in the range considered of normality for rats. The diet containing yeast autolisate produced a reduction of the triacylglycerols content, which was not observed in the other diets. For total cholesterol and High Density

  14. Yeast extract and prebiotic in pre-initial phase diet for broiler chickens raised under different temperatures Extrato de leveduras e prebiótico na dieta pré-inicial de frangos de corte criados em diferentes temperaturas

    Directory of Open Access Journals (Sweden)

    Vanessa Karla Silva

    2010-01-01

    Full Text Available The objective of this research was to evaluate the performance, carcass yield and intestinal morphometry of broiler chickens raised under different temperatures that received feed with or without yeast extract and prebiotic in the pre-initial phase. One thousand four hundred and forty one-day old male chicks were used, raised in different climate chambers. Feed with or without the addition of yeast extract and prebiotic was offered only in the pre-initial phase (1 to 7 days. From the eighth day on, every chick received the same feed, readjusted according to usual recommendations. A randomized complete experimental design was used in a 3 × 2 × 2 factorial arrangement, consisting of three environmental temperatures (hot, comfort and cold and two levels of yeast extract (with or without and prebiotic (with or without. The performance of the birds was evaluated considering weight gain, feed intake, food conversion and viability at 42 days of age. Carcass yield and intestinal morphometry were also evaluated. Environmental heat impaired performance and carcass yield. Prebiotic inclusion in the pre-initial feed increased weight gain and enhanced food conversion of birds raised under hot conditions. The inclusion of products in the feed of broiler chickens raised in hot and cold environments has beneficial effects on chicken intestinal villi.Objetivou-se nesta pesquisa avaliar o desempenho, o rendimento de carcaça e a morfometria intestinal de frangos de corte criados em diferentes temperaturas e que receberam na fase pré-inicial ração contendo ou não extrato de leveduras e prebiótico. Foram utilizados 1.440 pintos machos de 1 dia de idade, criados em diferentes câmaras climáticas. As rações, acrescidas ou não de extrato de leveduras e prebiótico, foram oferecidas somente na fase pré-inicial (1 a 7 dias. A partir do oitavo dia, todas as aves receberam a mesma ração, reajustada de acordo com as recomendações usuais. Adotou-se o

  15. Yeast communities in a natural tequila fermentation.

    Science.gov (United States)

    Lachance, M A

    1995-08-01

    Fresh and cooked agave, Drosophila spp., processing equipment, agave molasses, agave extract, and fermenting must at a traditional tequila distillery (Herradura, Amatitan, Jalisco, México) were studied to gain insight on the origin of yeasts involved in a natural tequila fermentations. Five yeast communities were identified. (1) Fresh agave contained a diverse mycobiota dominated by Clavispora lusitaniae and an endemic species, Metschnikowia agaveae. (2) Drosophila spp. from around or inside the distillery yielded typical fruit yeasts, in particular Hanseniaspora spp., Pichia kluyveri, and Candida krusei. (3) Schizosaccharomyces pombe prevailed in molasses. (4) Cooked agave and extract had a considerable diversity of species, but included Saccharomyces cerevisiae. (5) Fermenting juice underwent a gradual reduction in yeast heterogeneity. Torulaspora delbrueckii, Kluyveromyces marxianus, and Hanseniaspora spp. progressively ceded the way to S. cerevisiae, Zygosaccharomyces bailii, Candida milleri, and Brettanomyces spp. With the exception of Pichia membranaefaciens, which was shared by all communities, little overlap existed. That separation was even more manifest when species were divided into distinguishable biotypes based on morphology or physiology. It is concluded that crushing equipment and must holding tanks are the main source of significant inoculum for the fermentation process. Drosophila species appear to serve as internal vectors. Proximity to fruit trees probably contributes to maintaining a substantial Drosophila community, but the yeasts found in the distillery exhibit very little similarity to those found in adjacent vegetation. Interactions involving killer toxins had no apparent direct effects on the yeast community structure.

  16. EFEITO DA SUPLEMENTAÇÃO DO EXTRATO DE LEVEDURA NA DIETA DE POEDEIRAS COMERCIAIS. 1 - DESEMPENHO PRODUTIVO EFFECT OF SUPPLEMENTATION OF AN YEAST EXTRACT PRODUCT IN COMMERCIAL LAYER DIETS. 1- PRODUCTIVE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Marcos Antonio Anciuti

    2008-07-01

    Full Text Available

    Este experimento foi desenvolvido para avaliar o efeito de níveis crescentes (0%, 1%, 2% e 3% do extrato de levedura (NuPro® sobre o desempenho produtivo de poedeiras alimentadas com dietas à base de milho e farelo de soja. Um total de 240 poedeiras Hy Line W36, no período de 47 a 75 semanas de idade, foi distribuído em sessenta gaiolas, sendo quatro aves por gaiola, e divididas em quinze repetições por tratamento. As características avaliadas foram consumo de ração, peso corporal, produção de ovos, peso do ovo, massa de ovo e conversões alimentares por dúzia e por massa de ovo. Não houve efeito (P>0,05 dos tratamentos sobre o desempenho produtivo das aves. Pode-se concluir que a inclusão do extrato de levedura não melhorou o desempenho produtivo das poedeiras.

    PALAVRAS-CHAVES: Aditivos, aves de postura, produção de ovos.

    This study was run to evaluate the effect of increasing levels (0%, 1%, 2% and 3% of yeast extract (NuPro® on productive performance of laying hens fed corn-soybean meal diet. A total of 240 Hy Line W36 layers (47 to 75 weeks of age were allocated in 60 cages (4 birds per cage and divided into 15 cages per treatment. Feed consumption, body weight, egg production, egg weight, egg mass and feed conversion (per dozen or per mass were evaluated. There was no effect (P>0.05 of the treatments on the productive performance of the birds. It was concluded that the yeast extract inclusion did not improve the productive performance of the layers.

     

    KEY WORDS: Additives, egg production, laying hens.

  17. Occurrence of Killer Yeast Strains in Fruit and Berry Wine Yeast Populations

    Directory of Open Access Journals (Sweden)

    Gintare Gulbiniene

    2004-01-01

    Full Text Available Apple, cranberry, chokeberry and Lithuanian red grape wine yeast populations were used for the determination of killer yeast occurrence. According to the tests of the killer characteristics and immunity the isolated strains were divided into seven groups. In this work the activity of killer toxins purified from some typical strains was evaluated. The analysed strains produced different amounts of active killer toxin and some of them possessed new industrially significant killer properties. Total dsRNA extractions in 11 killer strains of yeast isolated from spontaneous fermentations revealed that the molecular basis of the killer phenomenon was not only dsRNAs, but also unidentified genetic determinants.

  18. Yeast That Smell

    Directory of Open Access Journals (Sweden)

    Eugenia Y Xu

    2008-08-01

    Full Text Available The fundamental mechanism of olfactory receptor activation has been conserved from yeast to humans. Engineered yeast cells can smell some of the same odorants as humans can, which makes yeast an ideal model system for studying human olfaction. Furthermore, if engineered yeast cells are incorporated into sensory arrays, they can be used as biosensors or artificial noses.Keywords: Yeast, olfactory receptor, G protein-coupled receptor, biosensor, smellReceived: 31 July 2008 / Received in revised form: 6 August 2008, Accepted: 13 August 2008, Published online: 17 August 2008

  19. A comparison between a yeast cell wall extract (Bio-Mos® and palm kernel expeller as mannan-oligosaccharides sources on the performance and ileal microbial population of broiler chickens

    Directory of Open Access Journals (Sweden)

    Bahman Navidshad

    2015-02-01

    Full Text Available The present study was conducted to determine the effect of a yeast cell wall extract (Bio- Mos and palm kernel expeller (PKE on the performance, nutrient digestibility, and ileal bacteria population of broiler chickens. A total of 60 1-d-old male broiler chicks (Cobb 500 were fed one of the 3 isonitrogenous and isocaloric diet including a control diet, or a control diet supplemented with 2 g/kg Bio-Mos (1-42 d, and for the third group, the control diet at 1-28 d following a diet containing 200 g/kg of an enzymatically-treated PKE at 29-42 d. The weight gains of birds fed the PKE containing diet (96.17 g/d were less than other groups (109.10 and 104.42 g/d for the Bio-Mos and control diet, respectively (P0.05, but the birds fed PKE or Bio-Mos containing diets had a lower population of Escherichia coli than the control group (P<0.05. The results showed that PKE potentially has a prebiotic property for chicken; however, a 200 g/kg dietary inclusion rate of PKE is not commercially recommendable because of its negative effects on the nutrients digestibility.

  20. Efeito do enriquecimento de biscoitos tipo água e sal, com extrato de levedura (Saccharomyces sp. Effect of enrichment of water and salt biscuits with yeast (Saccharomyces sp. extract

    Directory of Open Access Journals (Sweden)

    Marjorie Carelli Costa Santucci

    2003-12-01

    Full Text Available Os objetivos desta pesquisa foram a caracterização química de um autolisado (AT de levedura (Saccharomyces sp. , subproduto da fermentação alcoólica e de seus derivados, fração solúvel (Ex e insolúvel (FI. O autolisado integral (AT e o extrato (Ex, depois de desidratados por atomização (spray dryer foram utilizados como enriquecedores do gosto e do aroma de biscoitos salgados do tipo água e sal. A adição ao biscoito de 5% de Ex elevou o escore de aminoácidos essenciais (EAE de 38% para 60% e o índice de utilização líquida da proteína (NPR de 1,0 para 2,0 (100%. Houve ainda uma melhora significativa na aceitabilidade e na preferência dos biscoitos enriquecidos, pelos consumidores.The objective of this investigation was to establish the composition of the yeast (Saccharomyces sp. obtained as a byproduct of the alcoholic fermentation industry, in the form of an autolysate (AT and their derivatives, extract (Ex and insoluble fraction (FI. The total autolysate (AT and the extract (Ex, after dehydration in spray dryer, were utilized as flavour enhancers in salted biscuits. Addition to the biscuits of 5% Ex improved the essential amino acid score (EAE from 38 to 60%, and the net protein utilization index (NPR from 1.0 to 2.0 (100%. There was also a significant improvement in the acceptability and preference of the enriched biscuits by the consumers.

  1. Process optimization for ultrasonic-assisted extraction of superoxide dismutase from waste wine yeast%超声波辅助提取葡萄酒泥酵母超氧化物歧化酶工艺优化

    Institute of Scientific and Technical Information of China (English)

    祝霞; 盛文军; 杜娜; 韩舜愈; 付文力; 王婧; 张波; 杨学山

    2014-01-01

    Taking waste wine yeast as the research obj ect,the superoxide dismutase(SOD)was extrac-ted from it by ultrasonic wave.Four extraction parameters including material-liquid ratio,ultrasonic power, ultrasonic time and thermal denaturation temperature were studied by single factor test,and the optimum process parameters were determined by orthogonal test.The results showed that the optimal material-liquid ratio was 1∶2.5,ultrasonic power was 400 W,ultrasonic time was 16 min,thermal denaturation temperature was 45 ℃,under these conditions,the specific activities of SOD was 169.32 U/mg.The process was sim-ple,inexpensive and the specific activities of SOD was high.%以葡萄酒泥酵母为试验材料,采用超声波辅助法分离提取超氧化物歧化酶(SOD).通过单因素试验,研究了料液比、超声波功率、超声波时间和热变性温度对 SOD 比活力的影响,并采用正交试验确定了超声波法分离提取 SOD的最佳工艺参数.结果表明:葡萄酒泥酵母 SOD提取的最佳工艺参数为料液比1∶2.5、超声功率400 W、超声作用时间16 min、热变性温度45℃,在此条件下,分离提取得到的 SOD比活力最高为169.32 U/mg.此方法操作简单,成本低,所得 SOD比活力较高.

  2. Process optimization for extracting superoxide dismutase from waste wine yeast%葡萄酒泥酵母超氧化物歧化酶分离提取工艺条件优化

    Institute of Scientific and Technical Information of China (English)

    杜娜; 杨学山; 韩舜愈; 祝霞; 付文力; 王婧; 盛文军; 张波

    2013-01-01

    以葡萄酒泥酵母试材,采用甲苯破壁法分离纯化超氧化物歧化酶(SOD),选择甲苯用量、作用时间、作用温度以及缓冲液pH进行单因素实验,通过L9(34)正交实验优化工艺参数.结果表明:在甲苯用量0.8mL/g,作用时间25min,作用温度50℃,磷酸缓冲液pH8.0的最优条件下,分离纯化的SOD平均比活力为178.73U/mg.此方法操作简单,成本低,适合工厂化生产.%Waste wine yeast as the research object,the superoxide dismutase (SOD)was extracted from it by toluene method.Four extraction parameters including amount of toluene,react time,react temperature and pH used for single factor test,and optimization of process parameters through L9 (34) orthogonal test.The results showed that the optimal amount of toluene were 0.8mL/g,react time was 25min,react temperature was 50℃,pH was 8.0,under these conditions,the specific activity of SOD was 178.73U/mg.The process was simple and inexpensive and coude be applied to industrialized production.

  3. Isolation and characterization of ethanol tolerant yeast strains

    Science.gov (United States)

    Tikka, Chiranjeevi; Osuru, Hari Prasad; Atluri, Navya; Raghavulu, Praveen Chakravarthi Veera; yellapu, Nanda Kumar; Mannur, Ismail Shaik; Prasad, Uppu Venkateswara; Aluru, Sudheer; K, Narasimha Varma; Bhaskar, Matcha

    2013-01-01

    Yeast strains are commonly associated with sugar rich environments. Various fruit samples were selected as source for isolating yeast cells. The isolated cultures were identified at Genus level by colony morphology, biochemical characteristics and cell morphological characters. An attempt has been made to check the viability of yeast cells under different concentrations of ethanol. Ethanol tolerance of each strain was studied by allowing the yeast to grow in liquid YEPD (Yeast Extract Peptone Dextrose) medium having different concentrations of ethanol. A total of fifteen yeast strains isolated from different samples were used for the study. Seven strains of Saccharomyces cerevisiae obtained from different fruit sources were screened for ethanol tolerance. The results obtained in this study show a range of tolerance levels between 7%-12% in all the stains. Further, the cluster analysis based on 22 RAPD (Random Amplified polymorphic DNA) bands revealed polymorphisms in these seven Saccharomyces strains. PMID:23750092

  4. Influence of Yeast Extract on the Fermentation of Glucose by the Demulsifying Strain Alcaligenes sp.S-XJ-1%酵母提取物对葡萄糖发酵生产生物破乳菌Alcaligenes sp.S-XJ-1的影响

    Institute of Scientific and Technical Information of China (English)

    黄翔峰; 王凯; 黎明霞; 王彩林; 陆丽君; 刘佳

    2013-01-01

    以从石油污染的土壤中筛选出1株生物破乳菌Alcaligenes sp.S-XJ-1为对象,考察了以葡萄糖为碳源时添加酵母提取物对生物破乳菌菌体性质、破乳性能以及菌体元素组成的影响.结果表明,酵母提取物的投加能够有效提高生物破乳菌产量,在酵母提取物浓度为5g·L-1时,生物破乳菌产量达到3.0g·L-1,此时葡萄糖利用率亦达到最大的58%.随着酵母提取物的投加浓度的增大,培养得到的菌体破乳性能提高,在投加浓度为10 g·L-1时,破乳率达到76%;而培养得到的菌体C/N有所降低,对其菌体表面蛋白进行提取测定发现菌体总蛋白含量升高,这与FTIR分析破乳菌菌体表面蛋白质类物质提高的结论一致.推测该生物破乳菌菌体蛋白含量的提高增强了菌体的破乳性能,菌体蛋白类物质是影响其破乳性能的关键组分之一.%The demulsifying strain Alcaligenes sp. S-XJ-1, isolated from oil contaminated soil, was cultivated with glucose as the carbon source. The influences of yeast extract on the growth, demulsifying ability and the element composition of the strain were investigated. The results showed that the yeast extract could increase the biomass and enhance the glucose utilization of Alcaligenes sp. S-XJ-1. When the concentration of the yeast extract was 5 g·L-1 , the biomass was increased up to 3.0 g·L-1, and the glucose utilization achieved 58% . The demulsifying ability of the strain was improved with increasing yeast extract concentration. When the concentration of the yeast extract was 10 g·L-1 , the demulsification ratio of the obtained cell was 76% . While the C/N ratio of the cells decreased with the increasing concentration of yeast extract. The proteins of cells were extracted and measured. The results showed that the proteins of the obtained cell increased with the increasing concentration of yeast extract, in accordance with the increased concentrations of proteins on the

  5. EFECTO DE LA CONCENTRACIÓN DEL METIL PARATIÓN Y EL EXTRACTO DE LEVADURA COMO FACTORES DE SELECCIÓN DE MICROORGANISMOS DEGRADADORES DEL PESTICIDA A PARTIR DE SUELOS CONTAMINADOS Effect of Methyl Parathion Concentration and Yeast Extract as Factors for Selecting Pesticide Degrading Microorganisms from Polluted Soils

    Directory of Open Access Journals (Sweden)

    L. R. Botero

    2011-12-01

    Full Text Available El aislamiento y cultivo de microorganismos con capacidades para degradar los contaminantes ambientales es importante para implementar planes de biorremediación. En este estudio se evaluó el efecto del extracto de levadura tanto en la capacidad de asimilación microbiana del pesticida organofosforado metil paratión, como en los procesos de aislamiento de microorganismos útiles para de degradar este pesticida. Los microorganismos evaluados fueron obtenidos de suelo fresco fumigado históricamente con este pesticida. Los ensayos se efectuaron con medios sólidos definidos enriquecidos con metil paratión (0-60 mg L-1 y extracto de levadura (0-0.5 g L -1. Se encontró que los microorganismos fueron capaces de asimilar hasta 5 mg L -1 del metil paratión en ausencia de extracto de levadura sin evidenciar efectos tóxicos. La capacidad de asimilación aumentó a 10 mg L-1 en los cultivos enriquecidos con 0.5 g L-1 de extracto de levadura. El extracto de levadura en las dosis usadas no afectó el aislamiento de microorganismos. Sin embargo, el aislamiento por siembra directa en medios enriquecidos con metil paratión como única fuente de carbono se dificultó por el aporte de la materia orgánica del suelo que permitió el crecimiento de cepas tolerantes sin capacidad para degradar el pesticida.Isolation and culture of microorganisms with capacity to degrade environmental pollutants are important for implementing bioremediation plans. This study is an evaluation of the yeast extract effect on both the microbial capacity to assimilate the organo-phosphorous pesticide methyl parathion and the isolation processes of microorganisms useful for degrading this pesticide. Microorganisms evaluated were obtained from fresh soil historically fumigate with this pesticide. Trials were conducted with defined solid means enriched with methyl parathion (0-60 mg L-1 and yeast extract (0-0.5 g L-1. It was found that microorganisms were able to assimilate up to 5

  6. Ethanol Production by Fermentation of Various Sweet-Stalk Sorghum Juices Using Various Yeast Strains

    Directory of Open Access Journals (Sweden)

    Donny Widianto

    2015-11-01

    Full Text Available The ethanol production by fermentation of sweet-stalk sorghum juice is affected by the juice composition and the capability of the yeast strain to ferment it. Eight yeast strains were tested on their growth and ethanol fermentation abilities in sweet-stalk sorghum juices extracted from three cultivars of sweet sorghum. The best specific growth rate of the yeast strains grown aerobically in the yeast extract peptone dextrose (YEPD broth and the sweet-stalk sorghum juices of KCS105, FS501, and FS902 cultivars, were achieved by OUT7903, OUT7913, OUT7903, and OUT7027 yeast strains, respectively. However, the best specific CO2 evolution rate of the yeast strain during fermentation of the juices was achieved by OUT7027 yeast strains. The highest ethanol concentration, ethanol yield, and sugar conversion efficiency (SCE were obtained by strain OUT7921 when it was employed to ferment sweet-stem sorghum juice of FS902 cultivar. It was also observed that the juice extracted from sweet-stalk sorghum of FS902 cultivar is the most suitable medium for all yeast strains to achieve their best fermentation abilities. Thus, it is likely that the growth and ethanol production ability of a yeast strain in sweet-stalk sorghum juice depend on the physiological responses of the yeasts to nutrientcomposition of the sorghum juice and the sorghum cultivar from which the juice was extracted.Key words : Sweet-stalk sorghum juice, ethanol, fermentation, yeast

  7. Desempenho de Lecanicillium lecanii em meios de cultura contendo vitaminas e concentrações de extrato de levedura Performance of Lecanicillium lecaniion culture media containing vitamins and yeast extract concentrations

    Directory of Open Access Journals (Sweden)

    Inajá Marchizeli Wenzel

    2007-01-01

    ção usando uma das menores quantidades do suplemento.Massal production of entomopathogenic fungi for the biological control of insects should be based on the species' nutritional and physiological characteristics and the conditions that favor high growth and sporulation. The performance of Lecanicillium lecanii on culture media with various vitamin and yeast extract concentrations was assessed. The JAB 02 and JAB 45 isolates were grown on media containing a vitamins solution (thiamin, biotin, riboflavin, pyridoxine, nicotinic acid, rho-amino benzoic acid or other containing one vitamin at a time. The same isolates were then cultivated on media supplemented with yeast extract concentrations at 0.0, 0.5, 1.0, 2.0, 3.0 and 5.0 %. Mycelia growth was evaluated measuring two colonies diameters, every three days, during the eighteen days incubation period. Sporulation was assessed on the 18th day, by counting the conidia. The culture media containing the all-vitamins and that containing thiamin only provided greater growth of the fungus isolates but decreased JAB 45 sporulation. Nicotinic acid stimulated JAB 45 sporulation by 38.5% but did not differ (P>0.05 from the control. Little conidial production was observed for JAB 02 isolate on media containing vitamins, but an increased sporulation was observed with the addition of riboflavin, biotin and pyridoxine. Yeast extract stimulated growth of the isolates JAB 02 and JAB 45 and sporulation of JAB 02 at all concentrations but did not affect (P>0.05 conidia production by JAB 45 at any concentration. Concentration of 1.0% led to the highest sporulation values and can, therefore, be considered the most favorable since it represent one of the smaller amounts of supplement used.

  8. Spent yeast as natural source of functional food additives

    Science.gov (United States)

    Rakowska, Rita; Sadowska, Anna; Dybkowska, Ewa; Świderski, Franciszek

    Spent yeasts are by-products arising from beer and wine production which over many years have been chiefly used as feed additives for livestock. They contain many valuable and bioactive substances which has thereby generated much interest in their exploitation. Up till now, the main products obtained from beer-brewing yeasts are β-glucans and yeast extracts. Other like foodstuffs include dried brewer’s yeast, where this is dried and the bitterness removed to be fit for human consumption as well as mannan-oligosaccharides hitherto used in the feed industry. β-glucans constitute the building blocks of yeast cell walls and can thus be used in human nutrition as dietary supplements or serving as food additives in functional foods. β-glucans products obtained via post-fermentation of beer also exhibit a high and multi-faceted biological activity where they improve the blood’s lipid profile, enhance immunological status and have both prebiotic and anti-oxidant properties. Yeast extracts are currently being used more and more to enhance flavour in foodstuffs, particularly for meat and its products. Depending on how autolysis is carried out, it is possible to design extracts of various meat flavours characteristic of specific meats. Many different flavour profiles can be created which may be additionally increased in combination with vegetable extracts. Within the food market, yeast extracts can appear in various guises such as liquids, pastes or powders. They all contain significant amounts of glutamic acid, 5’-GMP and 5’-IMP nucleotides together with various amino acids and peptides that act synergistically for enhancing the flavour of foodstuff products. Recent studies have demonstrated additional benefits of yeast extracts as valuable sources of amino acids and peptides which can be used in functional foods and dietary supplements. These products possess GRAS status (Generally Recognised As Safe) which thereby also adds further as to why they should be used

  9. The yeast Golgi apparatus.

    Science.gov (United States)

    Suda, Yasuyuki; Nakano, Akihiko

    2012-04-01

    The Golgi apparatus is an organelle that has been extensively studied in the model eukaryote, yeast. Its morphology varies among yeast species; the Golgi exists as a system of dispersed cisternae in the case of the budding yeast Saccharomyces cerevisiae, whereas the Golgi cisternae in Pichia pastoris and Schizosaccharomyces pombe are organized into stacks. In spite of the different organization, the mechanism of trafficking through the Golgi apparatus is believed to be similar, involving cisternal maturation, in which the resident Golgi proteins are transported backwards while secretory cargo proteins can stay in the cisternae. Questions remain regarding the organization of the yeast Golgi, the regulatory mechanisms that underlie cisternal maturation of the Golgi and transport machinery of cargo proteins through this organelle. Studies using different yeast species have provided hints to these mechanisms.

  10. Detection and identification of wild yeasts in lager breweries.

    Science.gov (United States)

    van der Aa Kühle, A; Jespersen, L

    1998-09-08

    Wild yeasts were detected in 41 out of 101 brewery yeast samples investigated using six different selective principles. Malt extract, yeast extract, glucose, peptone (MYGP) agar supplemented with 195 ppm CuSO4 was found to be the most effective selective principle, detecting wild yeasts in 80% of the contaminated samples. Both Saccharomyces and non-Saccharomyces wild yeasts were detected on this medium. Lysine medium, crystal violet medium and incubation of non-selective media at 37 degrees C detected wild yeasts in 46-56% of the contaminated samples. On using actidione medium, only 20% of the wild yeasts were detected. The combined use of MYGP supplemented with 195 ppm CuSO4 and one of the other selective principles did not improve the recovery of the wild yeasts. The wild yeasts found consisted of Saccharomyces cerevisiae (57%), Pichia spp. (28%) and Candida spp. (15%). Using the API ID 32 C kit, 35 different assimilation profiles were obtained for the 124 wild yeast isolates investigated. All isolates were capable of glucose assimilation, whereas only 79% of the isolates assimilated saccharose, 75% maltose, 70% galactose, 65% raffinose and 65% lactate. Lactose, inositol, rhamnose and glucuronate were not assimilated by any of the isolates. The differences in assimilation pattern did not reflect any differences in recovery by the selective principles investigated. The majority of the wild yeast isolates investigated were capable of growth in wort and beer, indicating their possible role as spoilage organisms. The Sacch. cerevisiae isolates were found to be the most hazardous, with some isolates being capable of extensive growth in bottled beer within seventeen days at ambient temperature.

  11. Exploring Catalase and Invertase Activity Using Sodium Alginate-Encapsulated Yeast (Yeast Spheres

    Directory of Open Access Journals (Sweden)

    Pamela J. Bryer

    2016-12-01

    Full Text Available Finding the right enzyme experiment can be problematic, depending what one is trying to show, what supplies and equipment are available, and the time one can devote to the topic.  I’ve developed simple and inexpensive labs for looking at catalase and invertase activity using yeast encapsulated in sodium alginate.  Single-celled yeast, Saccharomyces cerevisiae, are encapsulated in sodium alginate, a readily available extract from brown algae that, when it comes in contact with calcium chloride (CaCl2, forms a sphere or “bead.”  These spheres may then be put into a solution containing substrate to test for enzyme activity.  The spheres are easy to manipulate, one doesn’t have the variability and mess of a yeast solution, and since there are no cells in solution, there is nothing to interfere with the various assay methods one might want to use to test for product.  The graduated cylinder method for testing catalase activity introduced here is especially good for collecting large amounts of data that enable students to use statistics and, unlike similar yeast catalase experiments using paper disks and a yeast solution, the yeast spheres are easy to manipulate and there is very little variability.  I have used this procedure with students in class and with teachers in workshops with positive results and comments.

  12. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  13. Vaginal Yeast Infections

    Science.gov (United States)

    ... tight or made of materials like nylon that trap heat and moisture might make yeast infections more ... Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart.com

  14. Modeling brewers' yeast flocculation

    Science.gov (United States)

    van Hamersveld EH; van der Lans RG; Caulet; Luyben

    1998-02-01

    Flocculation of yeast cells occurs during the fermentation of beer. Partway through the fermentation the cells become flocculent and start to form flocs. If the environmental conditions, such as medium composition and fluid velocities in the tank, are optimal, the flocs will grow in size large enough to settle. After settling of the main part of the yeast the green beer is left, containing only a small amount of yeast necessary for rest conversions during the next process step, the lagering. The physical process of flocculation is a dynamic equilibrium of floc formation and floc breakup resulting in a bimodal size distribution containing single cells and flocs. The floc size distribution and the single cell amount were measured under the different conditions that occur during full scale fermentation. Influences on flocculation such as floc strength, specific power input, and total number of yeast cells in suspension were studied. A flocculation model was developed, and the measured data used for validation. Yeast floc formation can be described with the collision theory assuming a constant collision efficiency. The breakup of flocs appears to occur mainly via two mechanisms, the splitting of flocs and the erosion of yeast cells from the floc surface. The splitting rate determines the average floc size and the erosion rate determines the number of single cells. Regarding the size of the flocs with respect to the scale of turbulence, only the viscous subrange needs to be considered. With the model, the floc size distribution and the number of single cells can be predicted at a certain point during the fermentation. For this, the bond strength between the cells, the fractal dimension of the yeast, the specific power input in the tank and the number of yeast cells that are in suspension in the tank have to be known. Copyright 1998 John Wiley & Sons, Inc.

  15. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  16. Forces in yeast flocculation.

    Science.gov (United States)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N; Dufrêne, Yves F

    2015-02-07

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion ("flocculation") is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  17. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  18. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies ), 2013. Scientific Opinion on the substantiation of a health claim related to the combination of artichoke leaf dry extract standardised in caffeoylquinic acids, monacolin K in red yeast ric e, sugar - cane derived, policosanols, OPC from French maritime pine bark, garlic dry extract standardised in allicin, d - α - tocopheryl hydrogen succinate , riboflavin and inositol hexanicotinate in Limicol ® and reduction of blood LDL - cholesterol concentrations pursuant to Article 14 of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    claim related to the combination of artichoke leaf dry extract standardised in caffeoylquinic acids, monacolin K in red yeast rice, sugar-cane derived policosanols, OPC from French maritime pine bark, garlic dry extract standardised in allicin, d-α-tocopheryl hydrogen succinate, riboflavin and inositol...... hexanicotinate in Limicol® and reduction of blood LDL-cholesterol concentrations. The Panel considers that the food which is the subject of the claim is sufficiently characterised. The Panel considers that reduction of blood LDL-cholesterol concentrations is a beneficial physiological effect. High LDL...... ingredients in Limicol® on blood LDL-cholesterol concentrations. The Panel concludes that a cause and effect relationship has been established between the consumption of the combination of artichoke leaf dry extract standardised in caffeoylquinic acids, monacolin K in red yeast rice, sugar-cane derived...

  19. Transcription reactions of yeast RNA polymerase II in vitro

    Institute of Scientific and Technical Information of China (English)

    赵宇; 敖世洲

    1995-01-01

    The transcription reactions in vitro of yeast ADHl and PHO5 gene promoters are investigated by means of a yeast crude nuclear extract. Using specific RNA probes, the transcription products of these 2 promoters have been first obtained. A low concentration of α-amanitin is highly inhibitory. The transcription of the PHO5 gene was initiated in vitro at or near the sites used in vim. The transcription products increase with the amount of the template and reach the maximum at certain concentrations of the template. The deletion of the yeast promoter sequences abolishes the reaction.

  20. Ethanol Production by Fermentation of Various Sweet-Stalk Sorghum Juices Using Various Yeast Strains

    OpenAIRE

    Donny Widianto; Akbar Arofatullah; Triwibowo Yuwono; Irfan Dwidya Prijambada

    2015-01-01

    The ethanol production by fermentation of sweet-stalk sorghum juice is affected by the juice composition and the capability of the yeast strain to ferment it. Eight yeast strains were tested on their growth and ethanol fermentation abilities in sweet-stalk sorghum juices extracted from three cultivars of sweet sorghum. The best specific growth rate of the yeast strains grown aerobically in the yeast extract peptone dextrose (YEPD) broth and the sweet-stalk sorghum juices of KCS105, FS501, and...

  1. Using Microsatellites to Identify Yeast Strains in Beer

    Science.gov (United States)

    Bruke, Alexandria; Van Brocklin, Jennifer; Rivest, Jason; Prenni, Jessica E.; Ibrahim, Hend

    2012-01-01

    Yeast is an integral part of the brewing process and is responsible for much of the taste and characteristics of beer. During the brewing process, yeast is subject to ageing and stress factors that can result in growth inhibition, decreased genetic stability, and changes in cell membrane stability. Characterization of yeast species used in industrial fermentation (e.g. S. cerevisiae) is of great importance to the brewing industry. The objective of this study was to develop an assay to identify yeast strains commonly used in the production of beer. Six microsatellite regions of DNA (comprised of AAT) were used as sequence tagged site markers (STR) to identify and compare yeast samples and to determine strain within a species. Labeled primers ScATT (1-6) targeting these six microsatellite regions were designed using 6-FAM, VIC, NED and PET 5′-fluorescent labels. The six regions were amplified, in a single reaction, from extracted yeast genomic DNA using a modified multiplex-PCR protocol and the labeled PCR products were analyzed on an ABI 3130xl Genetic Analyzer. Using this approach 6 STR markers were amplified in a single multiplex reaction from a commercially utilized yeast strain provided by Odell Brewing. Different alleles were distinguished based on the size of each STR and the labeling fluorophore. The procedures developed in this study will provide an invaluable tool for the quality control of yeast strains in the brewing industry.

  2. Scientific Opinion on the substantiation of a health claim related to the combination of artichoke leaf dry extract standardised in caffeoylquinic acids, monacolin K in red yeast rice, sugar-cane derived policosanols, OPC from French maritime pine bark, garlic dry extract standardised in allicin, d-α-tocopheryl hydrogen succinate, riboflavin and inositol hexanicotinate in Limicol® and reduction of blood LDL-cholesterol concentrations pursuant to Article 14 of Regulation (EC No 1924/2006

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA

    2013-07-01

    Full Text Available Following an application from Laboratoire Lescuyer, submitted pursuant to Article 14 of Regulation (EC No 1924/2006 via the Competent Authority of France, the Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to deliver an opinion on the scientific substantiation of a health claim related to the combination of artichoke leaf dry extract standardised in caffeoylquinic acids, monacolin K in red yeast rice, sugar-cane derived policosanols, OPC from French maritime pine bark, garlic dry extract standardised in allicin, d-α-tocopheryl hydrogen succinate, riboflavin and inositol hexanicotinate in Limicol® and reduction of blood LDL-cholesterol concentrations. The Panel considers that the food which is the subject of the claim is sufficiently characterised. The Panel considers that reduction of blood LDL-cholesterol concentrations is a beneficial physiological effect. High LDL-cholesterol is a risk factor in the development of coronary heart disease. In weighing the evidence, the Panel took into account that, although no evidence was provided for an LDL-cholesterol lowering effect of any of the single food constituents in Limicol® at the proposed conditions of use or as to how the ingredients individually or in any combination could contribute to the claimed effect and despite the lack of a dose-response relationship observed in one human intervention study, three human intervention studies conducted by two independent research groups showed an effect of the combination of food ingredients in Limicol® on blood LDL-cholesterol concentrations. The Panel concludes that a cause and effect relationship has been established between the consumption of the combination of artichoke leaf dry extract standardised in caffeoylquinic acids, monacolin K in red yeast rice, sugar-cane derived policosanols, OPC from French maritime pine bark, garlic dry extract standardised in allicin, d-α-tocopheryl hydrogen succinate, riboflavin and inositol

  3. Mapping yeast transcriptional networks.

    Science.gov (United States)

    Hughes, Timothy R; de Boer, Carl G

    2013-09-01

    The term "transcriptional network" refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.

  4. [Fructose transporter in yeasts].

    Science.gov (United States)

    Lazar, Zbigniew; Dobrowolski, Adam; Robak, Małgorzata

    2014-01-01

    Study of hexoses transporter started with discovery of galactose permease in Saccharomyces cerevisiae. Glucose, fructose and mannose assimilation is assumed by numerous proteins encoded by different genes. To date over 20 hexoses transporters, belonging to Sugar Porter family and to Major Facilitator Superfamily, were known. Genome sequence analysis of Candida glabrata, Kluyveromyces lactis, Yarrowia lipolytica, S. cerevisaie and Debaryomyces hansenii reveled potential presence of 17-48 sugar porter proteins. Glucose transporters in S. cerevisiae have been already characterized. In this paper, hexoses transporters, responsible for assimilation of fructose by cells, are presented and compared. Fructose specific transporter are described for yeasts: Zygosaccharomyces rouxii, Zygosaccharomyces bailli, K. lactis, Saccharomyces pastorianus, S. cerevisiae winemaking strain and for fungus Botritys cinerea and human (Glut5p). Among six yeasts transporters, five are fructose specific, acting by facilitated diffusion or proton symport. Yeasts monosaccharides transporter studies allow understanding of sugars uptake and metabolism important aspects, even in higher eukaryotes cells.

  5. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  6. Global metabolite analysis of yeast: evaluation of sample preparation methods

    DEFF Research Database (Denmark)

    Villas-Bôas, Silas Granato; Højer-Pedersen, Jesper; Åkesson, Mats Fredrik;

    2005-01-01

    , which is the analysis of a large number of metabolites with very diverse chemical and physical properties. This work reports the leakage of intracellular metabolites observed during quenching yeast cells with cold methanol solution, the efficacy of six different methods for the extraction...... of intracellular metabolites, and the losses noticed during sample concentration by lyophilization and solvent evaporation. A more reliable procedure is suggested for quenching yeast cells with cold methanol solution, followed by extraction of intracellular metabolites by pure methanol. The method can be combined...

  7. Rapid isolation of yeast genomic DNA: Bust n' Grab

    Directory of Open Access Journals (Sweden)

    Peterson Kenneth R

    2004-04-01

    Full Text Available Abstract Background Mutagenesis of yeast artificial chromosomes (YACs often requires analysis of large numbers of yeast clones to obtain correctly targeted mutants. Conventional ways to isolate yeast genomic DNA utilize either glass beads or enzymatic digestion to disrupt yeast cell wall. Using small glass beads is messy, whereas enzymatic digestion of the cells is expensive when many samples need to be analyzed. We sought to develop an easier and faster protocol than the existing methods for obtaining yeast genomic DNA from liquid cultures or colonies on plates. Results Repeated freeze-thawing of cells in a lysis buffer was used to disrupt the cells and release genomic DNA. Cell lysis was followed by extraction with chloroform and ethanol precipitation of DNA. Two hundred ng – 3 μg of genomic DNA could be isolated from a 1.5 ml overnight liquid culture or from a large colony. Samples were either resuspended directly in a restriction enzyme/RNase coctail mixture for Southern blot hybridization or used for several PCR reactions. We demonstrated the utility of this method by showing an analysis of yeast clones containing a mutagenized human β-globin locus YAC. Conclusion An efficient, inexpensive method for obtaining yeast genomic DNA from liquid cultures or directly from colonies was developed. This protocol circumvents the use of enzymes or glass beads, and therefore is cheaper and easier to perform when processing large numbers of samples.

  8. Yeast cells proliferation on various strong static magnetic fields and temperatures

    Science.gov (United States)

    Otabe, E. S.; Kuroki, S.; Nikawa, J.; Matsumoto, Y.; Ooba, T.; Kiso, K.; Hayashi, H.

    2009-03-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 ±0.2 x 106/ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, ρ, of initial part is analyzed in terms of Malthus equation as given by ρ = ρo exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  9. Yeast cells proliferation on various strong static magnetic fields and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Otabe, E S; Kuroki, S; Nikawa, J [Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu Iizuka Fukuoka 820-8502 (Japan); Matsumoto, Y [Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Ooba, T [Fukuoka Industrial Technology Center, 1465-5 Aikawa-machi, Kurume, Fukuoka 839-0861 (Japan); Kiso, K [Fukuoka Regional Taxation Bureau, 2-11-1 Hakataekihigashi, Hakata-ku Fukuoka, 812-8547 (Japan); Hayashi, H [Kyushu Power Electric, 2-1-47 Shiobaru Minami-ku Fukuoka 815-8520 (Japan)], E-mail: otabe@cse.kyutech.ac.jp

    2009-03-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 {+-}0.2 x 10{sup 6}/ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, {rho}, of initial part is analyzed in terms of Malthus equation as given by {rho} = {rho}o exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  10. L-arabinose fermenting yeast

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  11. L-arabinose fermenting yeast

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  12. Flavour-active wine yeasts.

    Science.gov (United States)

    Cordente, Antonio G; Curtin, Christopher D; Varela, Cristian; Pretorius, Isak S

    2012-11-01

    The flavour of fermented beverages such as beer, cider, saké and wine owe much to the primary fermentation yeast used in their production, Saccharomyces cerevisiae. Where once the role of yeast in fermented beverage flavour was thought to be limited to a small number of volatile esters and higher alcohols, the discovery that wine yeast release highly potent sulfur compounds from non-volatile precursors found in grapes has driven researchers to look more closely at how choice of yeast can influence wine style. This review explores recent progress towards understanding the range of 'flavour phenotypes' that wine yeast exhibit, and how this knowledge has been used to develop novel flavour-active yeasts. In addition, emerging opportunities to augment these phenotypes by engineering yeast to produce so-called grape varietal compounds, such as monoterpenoids, will be discussed.

  13. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation

    DEFF Research Database (Denmark)

    Möllers, K Benedikt; Canella, D.; Jørgensen, Henning;

    2014-01-01

    cyanobacteria or microalgae. Importantly, as well as fermentable carbohydrates, the cyanobacterial hydrolysate contained additional nutrients that promoted fermentation. This hydrolysate is therefore a promising substitute for the relatively expensive nutrient additives (such as yeast extract) commonly used...

  14. Production of yeast extracts from whey for food use: market and technical considerations Produção de extratos de leveduras de uso alimentar a partir do soro de queijo: abordagem de elementos técnicos e mercadológicos relevantes

    Directory of Open Access Journals (Sweden)

    Jean P. RÉVILLION

    2000-08-01

    Full Text Available Whey is produced in large amounts by cheese industries. This by-product can be used for biomass production by yeast cultivation, resulting in commercially attractive products. The use of yeast extracts as source of flavour enhancer consists of an expansible market, encouraged by costumer's choice for natural additives. The development of a suitable and economically viable project for the generation of valued-added by-products, may allow the dairy industry to diversify their portfolio and increase their rentability.O soro de queijo é produzido em grandes quantidades pelas indústrias de laticínios. Este subproduto pode ser utilizado para produção de biomassa através do cultivo de leveduras, resultando em produtos com elevado interesse comercial. O uso de extratos de levedura como fonte de realçadores de sabor constitui-se num mercado em expansão, estimulado pela preferência do consumidor por aditivos naturais. O desenvolvimento de um processo adequado e economicamente viável para geração de um sub-produto valorizado, pode permitir ao setor de laticínios diversificar seu portfolio de negócios e aumentar a sua receita.

  15. Mapping Yeast Transcriptional Networks

    OpenAIRE

    Hughes, Timothy R; de Boer, Carl G.

    2013-01-01

    The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face....

  16. Glutathione Production in Yeast

    Science.gov (United States)

    Bachhawat, Anand K.; Ganguli, Dwaipayan; Kaur, Jaspreet; Kasturia, Neha; Thakur, Anil; Kaur, Hardeep; Kumar, Akhilesh; Yadav, Amit

    Glutathione, γ -glutamyl-cysteinyl-glycine, is the most abundant non-protein thiol found in almost all eukaryotic cells (and in some prokaryotes). The tripeptide, which is synthesized non-ribosomally by the consecutive action of two soluble enzymes, is needed for carrying out numerous functions in the cell, most important of which is the maintenance of the redox buffer. The cycle of glutathione biosynthesis and degradation forms part of the γ -glutamyl cycle in most organisms although the latter half of the pathway has not been demonstrated in yeasts. Our current understanding of how glutathione levels are controlled at different levels in the cell is described. Several different routes and processes have been attempted to increase commercial production of glutathione using both yeast and bacteria. In this article we discuss the history of glutathione production in yeast. The current bottlenecks for increased glutathione production are presented based on our current understanding of the regulation of glutathione homeostasis, and possible strategies for overcoming these limitations for further enhancing and improving glutathione production are discussed

  17. Partial purification and properties of thiaminokinase from yeast

    NARCIS (Netherlands)

    Steyn-Parvé, Elizabeth P.

    1952-01-01

    Thiaminokinase, the enzyme catalyzing the synthesis of thiaminepyrophosphate from thiamine and adenosinetriphosphate, has been extracted from fresh bakers' yeast by plasmolysis by freezing at -70°C and thawing, followed by maceration at 37° in 0.5 M KCl. The enzyme has been partially purified by f

  18. Partial purification and properties of thiaminokinase from yeast

    NARCIS (Netherlands)

    Steyn-Parvé, Elizabeth P.

    1952-01-01

    Thiaminokinase, the enzyme catalyzing the synthesis of thiaminepyrophosphate from thiamine and adenosinetriphosphate, has been extracted from fresh bakers' yeast by plasmolysis by freezing at -70°C and thawing, followed by maceration at 37° in 0.5 M KCl. The enzyme has been partially purified by f

  19. Yeast lipids can phase separate into micrometer-scale membrane domains

    DEFF Research Database (Denmark)

    Klose, Christian; Ejsing, Christer S; Garcia-Saez, Ana J;

    2010-01-01

    The lipid raft concept proposes that biological membranes have the potential to form functional domains based on a selective interaction between sphingolipids and sterols. These domains seem to be involved in signal transduction and vesicular sorting of proteins and lipids. Although...... there is biochemical evidence for lipid raft-dependent protein and lipid sorting in the yeast Saccharomyces cerevisiae, direct evidence for an interaction between yeast sphingolipids and the yeast sterol ergosterol, resulting in membrane domain formation, is lacking. Here we show that model membranes formed from yeast...... total lipid extracts possess an inherent self-organization potential resulting in Ld-Lo phase coexistence at physiologically relevant temperature. Analyses of lipid extracts from mutants defective in sphingolipid metabolism as well as reconstitution of purified yeast lipids in model membranes of defined...

  20. Yeasts associated with the infrabuccal pocket and colonies of the carpenter ant Camponotus vicinus.

    Science.gov (United States)

    Mankowski, M E; Morrell, J J

    2004-01-01

    After scanning electron microscopy indicated that the infrabuccal pockets of carpenter ants (Camponotus vicinus) contained numerous yeast-like cells, yeast associations were examined in six colonies of carpenter ants from two locations in Benton County in western Oregon. Samples from the infrabuccal-pocket contents and worker ant exoskeletons, interior galleries of each colony, and detritus and soil around the colonies were plated on yeast-extract/ malt-extract agar augmented with 1 M hydrochloric acid and incubated at 25 C. Yeasts were identified on the basis of morphological characteristics and physiological attributes with the BIOLOG(®) microbial identification system. Yeast populations from carpenter ant nest material and material surrounding the nest differed from those obtained from the infrabuccal pocket. Debaryomyces polymorphus was isolated more often from the infrabuccal pocket than from other material. This species has also been isolated from other ant species, but its role in colony nutrition is unknown.

  1. Hydrothermal decomposition of yeast cells for production of proteins and amino acids.

    Science.gov (United States)

    Lamoolphak, Wiwat; Goto, Motonobu; Sasaki, Mitsuru; Suphantharika, Manop; Muangnapoh, Chirakarn; Prommuag, Chattip; Shotipruk, Artiwan

    2006-10-11

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 degrees C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 degrees C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 degrees C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products.

  2. Production of intracellular enzymes by enzymatic treatment of yeast

    Energy Technology Data Exchange (ETDEWEB)

    Zomer, E.; Er-El, Z.; Rokem, J.S.

    1987-01-01

    Enzymatic extraction of intracellular enzymes from various yeasts by glucanase was investigated. Favourable conditions for lysis and release of intracellular enzymes were established. The effects of yeast concentration, growth phase of yeast, storage temperature and pretreatment of yeast were studied. The yeasts investigated can be divided into two groups. The first, Kluyveromyces lactis, Saccharomyces cerevisiae, Saccharomyces oviformis, Torulopsis glabrata, Hansenula polymorpha and local bakers' yeast, lysed relatively easily (70-80% of the cells), especially when cells from the logarithmic growth phase were treated. The second, Candida utilis and Candida vini, were more susceptible to lysis (40-50%) when cells were taken from the stationary phase. Release of two enzymes, glycerol kinase from Candida utilis grown on glycerol and formate dehydrogenase from Torulopsis glabrata grown on methanol was examined. The highest specific activities were obtained by incubating the cells with glucanase for 1.5 hours at 37 degrees C. Inactivation of the released enzyme was relatively low. After 12 hours of enzymatic treatment at 28 degrees C glycerol kinase maintained about 50%, and formate dehydrogenase over 80%, of the original activities. (Refs. 12).

  3. Determination of Yeasts Antimicrobial Activity in Milk and Meat Products

    Directory of Open Access Journals (Sweden)

    L.B. Roostita

    2011-12-01

    Full Text Available The research was arranged to isolate yeasts from livestock products and then the yeasts antimicrobial activity was tested towards putrefaction and pathogenic bacteria. Yeasts isolated from livestock products using Malt Extract Agar (MEA, the total yeasts population counted with using total plate count method, antimicrobial activity tested using diffusion methods against Pseudomonas aerugenes, Staphylococcus aureus and Escherichia coli and then the chosen isolate identified with using 18s RNA method. The results have shown that the total yeasts population on pasteurized cow’s milk were 1.2×106 cfu/g, fruit yoghurt 5.4×106 cfu/g, lamb meat 1×105 cfu/g, beef 1×105 cfu/g and beef sausages 1×106 cfu/g total yeasts population. Fruit yoghurt isolate shown the best antimicrobial activity with 35 mm clear zone diameter against Pseudomonas aerugenes, 8 mm clear zone diameter against Staphylococcus aureus and 10 mm clear zone diameter against Escherichia coli. The 18 s RNA test shown that fruit yoghurt isolate was 100% (FR3-F primer and 99% (FR3-R primer identical with Candida parapsilosis.

  4. Production and characterization of algae extract from Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Weston Kightlinger

    2014-01-01

    Conclusions: This study showed that algae extract derived from C. reinhardtii is similar, if not superior, to commercially available yeast extract in nutrient content and effects on the growth and metabolism of E. coli and S. cerevisiae. Bacto™ yeast extract is valued at USD $0.15–0.35 per gram, if algae extract was sold at similar prices, it would serve as a high-value co-product in algae-based fuel processes.

  5. Genomics and the making of yeast biodiversity

    Science.gov (United States)

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces ...

  6. Ethanol tolerance in yeasts.

    Science.gov (United States)

    Casey, G P; Ingledew, W M

    1986-01-01

    It is now certain that the inherent ethanol tolerance of the Saccharomyces strain used is not the prime factor regulating the level of ethanol that can be produced in a high sugar brewing, wine, sake, or distillery fermentation. In fact, in terms of the maximum concentration that these yeasts can produce under batch (16 to 17% [v/v]) or fed-batch conditions, there is clearly no difference in ethanol tolerance. This is not to say, however, that under defined conditions there is no difference in ethanol tolerance among different Saccharomyces yeasts. This property, although a genetic determinant, is clearly influenced by many factors (carbohydrate level, wort nutrition, temperature, osmotic pressure/water activity, and substrate concentration), and each yeast strain reacts to each factor differently. This will indeed lead to differences in measured tolerance. Thus, it is extremely important that each of these be taken into consideration when determining "tolerance" for a particular set of fermentation conditions. The manner in which each alcohol-related industry has evolved is now known to have played a major role in determining traditional thinking on ethanol tolerance in Saccharomyces yeasts. It is interesting to speculate on how different our thinking on ethanol tolerance would be today if sake fermentations had not evolved with successive mashing and simultaneous saccharification and fermentation of rice carbohydrate, if distillers' worts were clarified prior to fermentation but brewers' wort were not, and if grape skins with their associated unsaturated lipids had not been an integral part of red wine musts. The time is now ripe for ethanol-related industries to take advantage of these findings to improve the economies of production. In the authors' opinion, breweries could produce higher alcohol beers if oxygenation (leading to unsaturated lipids) and "usable" nitrogen source levels were increased in high gravity worts. White wine fermentations could also, if

  7. Detection of myosin immunoanalogue in the yeast Candida albicans.

    Science.gov (United States)

    Ghazali, M; Rodier, M H; el Moudni, B; Quellard, N; Jacquemin, J L

    1995-06-01

    Detection and localization of myosin immunoanalogue protein in the yeast Candida albicans were achieved by immunoblotting, indirect immunofluorescence assay, and immunoelectron microscopy. A polypeptide with an M(r) about 110,000, from cytosolic extract and insoluble fraction in the corresponding membrane pellet, was reacted with polyclonal and monoclonal antibodies raised against vertebrate muscle myosin. This protein was located by immunofluorescence and immunoelectron microscopy in the cell cortex along the plasmalemma, in the cytoplasm, and in the septum corresponding to bud scar region situated between the yeast-mother cell and the bud.

  8. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  9. Yeast two-hybrid screen.

    Science.gov (United States)

    Makuch, Lauren

    2014-01-01

    Yeast two-hybrid is a method for screening large numbers of gene products (encoded by cDNA libraries) for their ability to interact with a protein of interest. This system can also be used for characterizing and manipulating candidate protein: protein interactions. Interactions between proteins are monitored by the growth of yeast plated on selective media.

  10. Interaction of Ddc1 and RPA with single-stranded/double-stranded DNA junctions in yeast whole cell extracts: Proteolytic degradation of the large subunit of replication protein A in ddc1Δ strains.

    Science.gov (United States)

    Sukhanova, Maria V; D'Herin, Claudine; Boiteux, Serge; Lavrik, Olga I

    2014-10-01

    To characterize proteins that interact with single-stranded/double-stranded (ss/ds) DNA junctions in whole cell free extracts of Saccharomyces cerevisiae, we used [(32)P]-labeled photoreactive partial DNA duplexes containing a 3'-ss/ds-junction (3'-junction) or a 5'-ss/ds-junction (5'-junction). Identification of labeled proteins was achieved by MALDI-TOF mass spectrometry peptide mass fingerprinting and genetic analysis. In wild-type extract, one of the components of the Ddc1-Rad17-Mec3 complex, Ddc1, was found to be preferentially photocrosslinked at a 3'-junction. On the other hand, RPAp70, the large subunit of the replication protein A (RPA), was the predominant crosslinking product at a 5'-junction. Interestingly, ddc1Δ extracts did not display photocrosslinking of RPAp70 at a 5'-junction. The results show that RPAp70 crosslinked to DNA with a 5'-junction is subject to limited proteolysis in ddc1Δ extracts, whereas it is stable in WT, rad17Δ, mec3Δ and mec1Δ extracts. The degradation of the RPAp70-DNA adduct in ddc1Δ extract is strongly reduced in the presence of the proteasome inhibitor MG 132. We also addressed the question of the stability of free RPA, using anti-RPA antibodies. The results show that RPAp70 is also subject to proteolysis without photocrosslinking to DNA upon incubation in ddc1Δ extract. The data point to a novel property of Ddc1, modulating the turnover of DNA binding proteins such as RPAp70 by the proteasome.

  11. Evolutionary History of Ascomyceteous Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Haridas, Sajeet; Riley, Robert; Salamov, Asaf; Goker, Markus; Klenk, Hans-Peter; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor; Jeffries, Thomas W.

    2014-06-06

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.

  12. Sustained glycolytic oscillations in individual isolated yeast cells.

    Science.gov (United States)

    Gustavsson, Anna-Karin; van Niekerk, David D; Adiels, Caroline B; du Preez, Franco B; Goksör, Mattias; Snoep, Jacky L

    2012-08-01

    Yeast glycolytic oscillations have been studied since the 1950s in cell-free extracts and intact cells. For intact cells, sustained oscillations have so far only been observed at the population level, i.e. for synchronized cultures at high biomass concentrations. Using optical tweezers to position yeast cells in a microfluidic chamber, we were able to observe sustained oscillations in individual isolated cells. Using a detailed kinetic model for the cellular reactions, we simulated the heterogeneity in the response of the individual cells, assuming small differences in a single internal parameter. This is the first time that sustained limit-cycle oscillations have been demonstrated in isolated yeast cells. The mathematical model described here has been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/gustavsson/index.html free of charge. © 2012 The Authors Journal compilation © 2012 FEBS.

  13. Isolation and Identification of Yeasts from Wild Flowers Collected around Jangseong Lake in Jeollanam-do, Republic of Korea, and Characterization of the Unrecorded Yeast Bullera coprosmaensis.

    Science.gov (United States)

    Han, Sang-Min; Hyun, Se-Hee; Lee, Hyang Burm; Lee, Hye Won; Kim, Ha-Kun; Lee, Jong-Soo

    2015-09-01

    Several types of yeasts were isolated from wild flowers around Jangseong Lake in Jeollanam-do, Republic of Korea and identified by comparing the nucleotide sequences of the PCR amplicons for the D1/D2 variable domain of the 26S ribosomal DNA using Basic Local Alignment Search Tool (BLAST) analysis. In total, 60 strains from 18 species were isolated, and Pseudozyma spp. (27 strains), which included Pseudozyma rugulosa (7 strains) and Pseudozyma aphidis (6 strains), was dominant species. Among the 60 strains, Bullera coprosmaensis JS00600 represented a newly recorded yeast strain in Korea, and its microbiological characteristics were investigated. The yeast cell has an oval-shaped morphology measuring 1.4 × 1.7 µm in size. Bullera coprosmaensis JS00600 is an asporous yeast that exhibits no pseudomycelium formation. It grew well in vitamin-free medium as well as in yeast extract-malt extract broth and yeast extract-peptone-dextrose (YPD) broth, and it is halotolerant growing in 10% NaCl-containing YPD broth.

  14. Effects of different yeast cell wall supplements added to maize- or wheat-based diets for broiler chickens.

    Science.gov (United States)

    Morales-López, R; Auclair, E; Van Immerseel, F; Ducatelle, R; García, F; Brufau, J

    2010-06-01

    1. Three experiments were carried out to study the effects of two experimental yeast cell wall (YCW) supplements, one from the yeast extract industry and the other from the brewery industry, added to maize or wheat based-diets, on performance and intestinal parameters of broiler chickens (Ross 308). 2. In the first and second experiments, a completely randomised block design with 4 experimental treatments was used: T-1) Negative control, no additives T-2) Positive control, avilamycin group (10 mg/kg feed), T-3) Yeast extract-YCW (500 mg/kg), and T-4) Brewery-YCW (500 mg/kg feed). There were 6 replicates of 20 (experiment 1) and 22 (experiment 2) chicks per treatment. 3. In experiment 1 (wheat based diets), yeast extract-YCW increased BW and daily feed intake (42 d). The effects were comparable to those of avilamycin. In experiment 2 (maize based diet), avilamycin, yeast extract-YCW and brewery-YCW treatments improved the feed conversion ratio with respect to the negative control group (0 to 14 d). 4. At 24 d, in both experiments, the ileal nutrient digestibility and ileal bacterial counts were not affected by any experimental treatment. In maize diets, lower intestinal viscosity was obtained with avilamycin, yeast extract-YCW and brewery-YCW than with the negative control. In wheat diets, yeast extract-YCW and brewery-YCW reduced intestinal viscosity. 5. A third experiment was conducted to study the effect of yeast extract-YCW on animal performance, intestinal mucosa morphology and intestinal viscosity. A 2 x 2 factorial arrangement of treatments was used; one factor was the dietary yeast extract-YCW supplementation (0 or 500 mg/kg feed) and the other the cereal in the diet (maize or wheat). 6. At 43 d, the heaviest BW was in chickens fed on yeast extract-YCW compared to those given the negative control. At 22 d, yeast extract-YCW increased villus height, mucus thickness and number of goblet cells with respect to negative control. 7. Results of these experiments

  15. Production of novel antioxidative phenolic amides through heterologous expression of the plant’s chlorogenic acid biosynthesis genes in yeast

    NARCIS (Netherlands)

    Moglia, A.; Comino, C.; Lanteri, S.; Vos, de C.H.; Waard, de P.; Beek, van T.A.; Goitre, L.; Retta, S.F.; Beekwilder, M.J.

    2010-01-01

    Phenolic esters like chlorogenic acid play an important role in therapeutic properties of many plant extracts. We aimed to produce phenolic esters in baker’s yeast, by expressing tobacco 4CL and globe artichoke HCT. Indeed yeast produced phenolic esters. However, the primary product was identified a

  16. Yeast identification in floral nectar of Mimulus aurantiacus (Invited)

    Science.gov (United States)

    Kyauk, C.; Belisle, M.; Fukami, T.

    2009-12-01

    Nectar is such a sugar-rich resource that serves as a natural habitat in which microbes thrive. As a result, yeasts arrive to nectar on the bodies of pollinators such as hummingbirds and bees. Yeasts use the sugar in nectar for their own needs when introduced. This research focuses on the identification of different types of yeast that are found in the nectar of Mimulus aurantiacus (commonly known as sticky monkey-flower). Unopened Mimulus aurantiacus flower buds were tagged at Jasper Ridge and bagged three days later. Floral nectar was then extracted and plated on potato dextrose agar. Colonies on the plates were isolated and DNA was extracted from each sample using QIAGEN DNeasy Plant Mini Kit. The DNA was amplified through PCR and ran through gel electrophoresis. The PCR product was used to clone the nectar samples into an E.coli vector. Finally, a phylogenetic tree was created by BLAST searching sequences in GenBank using the Internal Transcribed Space (ITS) locus. It was found that 18 of the 50 identified species were Candida magnifica, 14 was Candida rancensis, 6 were Crytococcus albidus and there were 3 or less of the following: Starmella bombicola, Candida floricola, Aureobasidium pullulans, Pichia kluyvera, Metschnikowa cibodaserisis, Rhodotorua colostri, and Malassezia globosa. The low diversity of the yeast could have been due to several factors: time of collection, demographics of Jasper Ridge, low variety of pollinators, and sugar concentration of the nectar. The results of this study serve as a necessary first step for a recently started research project on ecological interactions between plants, pollinators, and nectar-living yeast. More generally, this research studies the use of the nectar-living yeast community as a natural microcosm for addressing basic questions about the role of dispersal and competitive and facilitative interactions in ecological succession.

  17. Analysis of Arabidopsis glutathione-transferases in yeast.

    Science.gov (United States)

    Krajewski, Matthias P; Kanawati, Basem; Fekete, Agnes; Kowalski, Natalie; Schmitt-Kopplin, Philippe; Grill, Erwin

    2013-07-01

    The genome of Arabidopsis thaliana encodes 54 functional glutathione transferases (GSTs), classified in seven clades. Although plant GSTs have been implicated in the detoxification of xenobiotics, such as herbicides, extensive redundancy within this large gene family impedes a functional analysis in planta. In this study, a GST-deficient yeast strain was established as a system for analyzing plant GSTs that allows screening for GST substrates and identifying substrate preferences within the plant GST family. To this end, five yeast genes encoding GSTs and GST-related proteins were simultaneously disrupted. The resulting yeast quintuple mutant showed a strongly reduced conjugation of the GST substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl). Consistently, the quintuple mutant was hypersensitive to CDNB, and this phenotype was complemented by the inducible expression of Arabidopsis GSTs. The conjugating activity of the plant GSTs was assessed by in vitro enzymatic assays and via analysis of exposed yeast cells. The formation of glutathione adducts with dinitrobenzene was unequivocally verified by stable isotope labeling and subsequent accurate ultrahigh-resolution mass spectrometry (ICR-FTMS). Analysis of Arabidopsis GSTs encompassing six clades and 42 members demonstrated functional expression in yeast by using CDNB and NBD-Cl as model substrates. Subsequently, the established yeast system was explored for its potential to screen the Arabidopsis GST family for conjugation of the fungicide anilazine. Thirty Arabidopsis GSTs were identified that conferred increased levels of glutathionylated anilazine. Efficient anilazine conjugation was observed in the presence of the phi, tau, and theta clade GSTs including AtGSTF2, AtGSTF4, AtGSTF6, AtGSTF8, AtGSTF10, and AtGSTT2, none of which had previously been known to contribute to fungicide detoxification. ICR-FTMS analysis of yeast extracts allowed the simultaneous detection and

  18. BIOSYNTHESIS OF YEAST CAROTENOIDS

    Science.gov (United States)

    Simpson, Kenneth L.; Nakayama, T. O. M.; Chichester, C. O.

    1964-01-01

    Simpson, Kenneth L. (University of California, Davis), T. O. M. Nakayama, and C. O. Chichester. Biosynthesis of yeast carotenoids. J. Bacteriol. 88:1688–1694. 1964.—The biosynthesis of carotenoids was followed in Rhodotorula glutinis and in a new strain, 62-506. The treatment of the growing cultures by methylheptenone, or ionone, vapors permitted observations of the intermediates in the biosynthetic pathway. On the basis of concentration changes and accumulation in blocked pathways, the sequence of carotenoid formation is postulated as phytoene, phytofluene, ζ-carotene, neurosporene, β-zeacarotene, γ-carotene, torulin, a C40 aldehyde, and torularhodin. Torulin and torularhodin were established as the main carotenoids of 62-506. PMID:14240958

  19. Cell Polarity in Yeast.

    Science.gov (United States)

    Chiou, Jian-Geng; Balasubramanian, Mohan K; Lew, Daniel J

    2017-08-07

    A conserved molecular machinery centered on the Cdc42 GTPase regulates cell polarity in diverse organisms. Here we review findings from budding and fission yeasts that reveal both a conserved core polarity circuit and several adaptations that each organism exploits to fulfill the needs of its lifestyle. The core circuit involves positive feedback by local activation of Cdc42 to generate a cluster of concentrated GTP-Cdc42 at the membrane. Speciesspecific pathways regulate the timing of polarization during the cell cycle, as well as the location and number of polarity sites. Expected final online publication date for the Annual Review of Cell and Developmental Biology Volume 33 is October 6, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  20. Bioprotective Role of Yeasts

    Directory of Open Access Journals (Sweden)

    Serena Muccilli

    2015-10-01

    Full Text Available The yeasts constitute a large group of microorganisms characterized by the ability to grow and survive in different and stressful conditions and then to colonize a wide range of environmental and human ecosystems. The competitive traits against other microorganisms have attracted increasing attention from scientists, who proposed their successful application as bioprotective agents in the agricultural, food and medical sectors. These antagonistic activities rely on the competition for nutrients, production and tolerance of high concentrations of ethanol, as well as the synthesis of a large class of antimicrobial compounds, known as killer toxins, which showed clearly a large spectrum of activity against food spoilage microorganisms, but also against plant, animal and human pathogens. This review describes the antimicrobial mechanisms involved in the antagonistic activity, their applications in the processed and unprocessed food sectors, as well as the future perspectives in the development of new bio-drugs, which may overcome the limitations connected to conventional antimicrobial and drug resistance.

  1. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  2. Yeasts: from genetics to biotechnology.

    Science.gov (United States)

    Russo, S; Berkovitz Siman-Tov, R; Poli, G

    1995-01-01

    Yeasts have been known and used in food and alcoholic fermentations ever since the Neolithic Age. In more recent times, on the basis of their peculiar features and history, yeasts have become very important experimental models in both microbiological and genetic research, as well as the main characters in many fermentative production processes. In the last 40 years, advances in molecular biology and genetic engineering have made possible not only the genetic selection of organisms, but also the genetic modification of some of them, especially the simplest of them, such as bacteria and yeasts. These discoveries have led to the availability of new yeast strains fit to fulfill requests of industrial production and fermentation. Moreover, genetically modified and transformed yeasts have been constructed that are able to produce large amounts of biologically active proteins and enzymes. Thus, recombinant yeasts make it easier to produce drugs, biologically active products, diagnostics, and vaccines, by inexpensive and relatively simple techniques. Yeasts are going to become more and more important in the "biotechnological revolution" by virtue of both their features and their very long and safe use in human nutrition and industry.

  3. Immobilized yeast bioreactor systems for continuous beer fermentation

    Science.gov (United States)

    Tata; Bower; Bromberg; Duncombe; Fehring; Lau; Ryder; Stassi

    1999-01-01

    Two different types of immobilized yeast bioreactors were examined for continuous fermentation of high-gravity worts. One of these is a fluidized bed reactor (FBR) that employs porous glass beads for yeast immobilization. The second system is a loop reactor containing a porous silicon carbide cartridge (SCCR) for immobilizing the yeast cells. Although there was some residual fermentable sugar in the SCCR system product, nearly complete attenuation of the wort sugars was achieved in either of the systems when operated as a two-stage process. Fermentation could be completed in these systems in only half the time required for a conventional batch process. Both the systems showed similar kinetics of extract consumption, and therefore similar volumetric productivity. As compared to the batch fermentation, total fusel alcohols were lower; total esters, while variable, were generally higher. The yeast biomass production was similar to that in a conventional fermentation process. As would be expected in an accelerated fermentation system, the levels of vicinal diketones (VDKs) were higher. To remove the VDKs, the young beer was heat-treated to convert the VDK precursors and processed through a packed bed immobilized yeast bioreactor for VDK assimilation. The finished product from the FBR system was found to be quite acceptable from a flavor perspective, albeit different from the product from a conventional batch process. Significantly shortened fermentation times demonstrate the feasibility of this technology for beer production.

  4. Table wine from tropical fruits utilizing natural yeast isolates.

    Science.gov (United States)

    Baidya, Dipak; Chakraborty, Ivi; Saha, Jayanta

    2016-03-01

    An attempt was made to utilize few widely available tropical fruits to develop wine with the objective of comparing the fermentation efficiency (along with progress in fermentation) of two efficient yeast isolates with commercially available strain. Fruit wine from juices of fully ripe mango, jackfruit and pineapple alone and in blended combinations of all three fruit juice (2: 1: 2) was prepared using two different yeasts (Y4 and Y7) isolated from natural plain date palm juice and one standard Saccharomyces cerevisiae (MTCC-170) collected from IMTECH, Chandigar. Juices were extracted by using pectinase enzyme at 0.15-0.20 % of pulp. Changes in °Brix, titratable acid content, pH, total viable yeast count were recorded and rate of fermentation, sugar use efficiency were determined at every 24-hour interval up to the completion (6 days after inoculation) of fermentation. Considering all the quality parameter as well as fermentation efficiency, yeast isolate Y7 was found superior followed by Y4 as fermenting agent and pineapple juice as sole substrate found to be the most suitable medium for production of wine followed by fruit juice blending. In interpreting the efficacy of fruit and yeast in combination, pineapple juice inoculated with Y7 found to be the best in reducing the degree Brix to its lowest from initial 24 degree.

  5. Optimization of Media for Production of an Effective Yeast Biocontrol Agent Pichia membranefaciens

    Institute of Scientific and Technical Information of China (English)

    WAN Ya-kun; TIAN Shi-ping

    2004-01-01

    The growth of Pichia membranefaciens was studied using different nitrogen and carbonsources as substrates. Among nitrogen sources tested, soya peptone, yeast extract power,beef extract and polypeptone were relatively favorable to the growth of yeast. Thedensity of the yeast showed to be directly proportional to carbon sources supplementation.Glucose and fructose were good carbon sources for the yeast growth. However, lactoseshowed poor performance for the cell growth of the yeast. In this study, beef extractpresented a good synergic effect on the yeast growth with different carbonhydrates. Themedium for P.membranefaciens used glucose and beef extract as substrates. The higherconcentration of glucose and beef extract, the better growth of P.membranefaciens. Theaddition of chlorella growth factor (CGF) stimulated markedly the growth of P.membranefaci-ens. The increased concentration of CGF from 0.5 to 1% did not enhance the numbers ofP.membranefaciens. This result will help design a better strategy for scale-up produc-tion of P.membranefaciens.

  6. Marine Yeasts and Their Applications in Mariculture

    Institute of Scientific and Technical Information of China (English)

    CHI Zhenming; LIU Zhiqiang; GAO Lingmei; GONG Fang; MA Chunling; WANG Xianghong; LI Haifeng

    2006-01-01

    The terrestrial yeasts have been receiving great attention in science and industry for over one hundred years because they can produce many kinds of bioactive substances. However, little is known about the bioactive substances of marine yeasts. In recent years, it has been found that marine yeasts have wide applications in mariculture and other fields.Therefore, marine yeasts, the bioactive substances from them and the applications of marine yeasts themselves and the bioactive substances they produced are reviewed in this paper.

  7. Applications of yeast flocculation in biotechnological processes

    OpenAIRE

    Domingues, Lucília; Vicente, A.A.; Lima, Nelson; Teixeira, J. A.

    2000-01-01

    A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects – the basics of yeast flocculation, the development of “new” flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast flocculation is reported. The const...

  8. Sexual differentiation in fission yeast

    DEFF Research Database (Denmark)

    Egel, R; Nielsen, O; Weilguny, D

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation...

  9. Biotechnical Microbiology, yeast and bacteria

    DEFF Research Database (Denmark)

    Villadsen, Ingrid Stampe

    1999-01-01

    This section contains the following single lecture notes: Eukaryotic Cell Biology. Kingdom Fungi. Cell Division. Meiosis and Recombination. Genetics of Yeast. Organisation of the Chromosome. Organization and genetics of the mitochondrial Geneme. Regulatio of Gene Expression. Intracellular...

  10. Biotechnical Microbiology, yeast and bacteria

    DEFF Research Database (Denmark)

    Villadsen, Ingrid Stampe

    1999-01-01

    This section contains the following single lecture notes: Eukaryotic Cell Biology. Kingdom Fungi. Cell Division. Meiosis and Recombination. Genetics of Yeast. Organisation of the Chromosome. Organization and genetics of the mitochondrial Geneme. Regulatio of Gene Expression. Intracellular Compart...

  11. Assimilation of nitrate by yeasts.

    Science.gov (United States)

    Siverio, José M

    2002-08-01

    Nitrate assimilation has received much attention in filamentous fungi and plants but not so much in yeasts. Recently the availability of classical genetic and molecular biology tools for the yeast Hansenula polymorpha has allowed the advance of the study of this metabolic pathway in yeasts. The genes YNT1, YNR1 and YNI1, encoding respectively nitrate transport, nitrate reductase and nitrite reductase, have been cloned, as well as two other genes encoding transcriptional regulatory factors. All these genes lie closely together in a cluster. Transcriptional regulation is the main regulatory mechanism that controls the levels of the enzymes involved in nitrate metabolism although other mechanisms may also be operative. The process involved in the sensing and signalling of the presence of nitrate in the medium is not well understood. In this article the current state of the studies of nitrate assimilation in yeasts as well as possible venues for future research are reviewed.

  12. Engineering antibodies by yeast display.

    Science.gov (United States)

    Boder, Eric T; Raeeszadeh-Sarmazdeh, Maryam; Price, J Vincent

    2012-10-15

    Since its first application to antibody engineering 15 years ago, yeast display technology has been developed into a highly potent tool for both affinity maturing lead molecules and isolating novel antibodies and antibody-like species. Robust approaches to the creation of diversity, construction of yeast libraries, and library screening or selection have been elaborated, improving the quality of engineered molecules and certainty of success in an antibody engineering campaign and positioning yeast display as one of the premier antibody engineering technologies currently in use. Here, we summarize the history of antibody engineering by yeast surface display, approaches used in its application, and a number of examples highlighting the utility of this method for antibody engineering.

  13. Sociobiology of the budding yeast

    Indian Academy of Sciences (India)

    Dominika M Wloch-Salamon

    2014-04-01

    Social theory has provided a useful framework for research with microorganisms. Here I describe the advantages and possible risks of using a well-known model organism, the unicellular yeast Saccharomyces cerevisiae, for sociobiological research. I discuss the problems connected with clear classification of yeast behaviour based on the fitness-based Hamilton paradigm. Relevant traits include different types of communities, production of flocculins, invertase and toxins, and the presence of apoptosis.

  14. Study of amyloids using yeast

    OpenAIRE

    Wickner, Reed B.; Kryndushkin, Dmitry; Shewmaker, Frank; McGlinchey, Ryan; Edskes, Herman K.

    2012-01-01

    Saccharomyces cerevisiae has been a useful model organism in such fields as the cell cycle, regulation of transcription, protein trafficking and cell biology, primarily because of its ease of genetic manipulation. This is no less so in the area of amyloid studies. The endogenous yeast amyloids described to date include prions, infectious proteins (Table 1), and some cell wall proteins (1). and amyloids of humans and a fungal prion have also been studied using the yeast system. Accordingly, th...

  15. Study of amyloids using yeast

    Science.gov (United States)

    Wickner, Reed B.; Kryndushkin, Dmitry; Shewmaker, Frank; McGlinchey, Ryan; Edskes, Herman K.

    2012-01-01

    Summary Saccharomyces cerevisiae has been a useful model organism in such fields as the cell cycle, regulation of transcription, protein trafficking and cell biology, primarily because of its ease of genetic manipulation. This is no less so in the area of amyloid studies. The endogenous yeast amyloids described to date include prions, infectious proteins (Table 1), and some cell wall proteins (1). and amyloids of humans and a fungal prion have also been studied using the yeast system. Accordingly, the emphasis of this chapter will be on genetic, biochemical, cell biological and physical methods particularly useful in the study of yeast prions and other amyloids studied in yeast. We limit our description of these methods to those aspects which have been most useful in studying yeast prions, citing more detailed expositions in the literature. Volumes on yeast genetics methods (2–4), and on amyloids and prions (5, 6) are useful, and Masison has edited a volume of Methods on “Identification, analysis and characterization of fungal prions” which covers some of this territory (7). We also outline some useful physical methods, pointing the reader to more extensive and authoratative descriptions. PMID:22528100

  16. Biotechnological Applications of Dimorphic Yeasts

    Science.gov (United States)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  17. Yeast Associated with the Ambrosia Beetle, Platypus koryoensis, the Pest of Oak Trees in Korea.

    Science.gov (United States)

    Yun, Yeo Hong; Suh, Dong Yeon; Yoo, Hun Dal; Oh, Man Hwan; Kim, Seong Hwan

    2015-12-01

    Oak tree death caused by symbiosis of an ambrosia beetle, Platypus koryoensis, and an ophiostomatoid filamentous fungus, Raffaelea quercus-mongolicae, has been a nationwide problem in Korea since 2004. In this study, we surveyed the yeast species associated with P. koryoensis to better understand the diversity of fungal associates of the beetle pest. In 2009, a total of 195 yeast isolates were sampled from larvae and adult beetles (female and male) of P. koryoensis in Cheonan, Goyang, and Paju; 8 species were identified by based on their morphological, biochemical and molecular analyses. Meyerozyma guilliermondii and Candida kashinagacola were found to be the two dominant species. Among the 8 species, Candida homilentoma was a newly recorded yeast species in Korea, and thus, its mycological characteristics were described. The P. koryoensis symbiont R. quercusmongolicae did not show extracelluar CM-cellulase, xylanase and avicelase activity that are responsible for degradation of wood structure; however, C. kashinagacola and M. guilliermondii did show the three extracellular enzymatic activities. Extracelluar CM-cellulase activity was also found in Ambrosiozyma sp., C. homilentoma, C. kashinagacola, and Candida sp. Extracelluar pectinase activity was detected in Ambrosiozyma sp., C. homilentoma, Candida sp., and M. guilliermondii. All the 8 yeast species displayed compatible relationships with R. quercus-mongolicae when they were co-cultivated on yeast extract-malt extract plates. Overall, our results demonstrated that P. koryoensis carries the yeast species as a symbiotic fungal associate. This is first report of yeast diversity associated with P. koryoensis.

  18. Baker's yeast catalyzed asymmetric reduction of methyl acetoacetate in glycerol containing systems

    Directory of Open Access Journals (Sweden)

    Adi Wolfson

    2008-09-01

    Full Text Available The asymmetric hydrogenation of methyl acetoacetate was successfully performed with baker's yeast in pure glycerol and mixtures of glycerol and water. Though yeast viability was very low after exposure to glycerol, the enzymatic activity in pure glycerol was preserved for some days. In addition, a mixture of glycerol and water combined the advantageous of each individual solvent and resulted in high catalytic performance and efficient product extraction yield

  19. Red Yeast Rice

    Science.gov (United States)

    Nguyen, Thu; Karl, Mitchell; Santini, Antonello

    2017-01-01

    Red yeast rice (RYR), produced by the fermentation of the Monascus purpureus mold, has been used for a long time in Asian cuisine and traditional medicine. It consists of multiple bioactive substances, including monacolins, which potentially can be used as a nutraceutical. Monacolin K, which is chemically identical to lovastatin, has been recognized as responsible for the cholesterol-reducing effect of this compound. While the European Food Safety Authority maintains that the use of monacolin K from RYR preparations of at least 10 mg can produce a normal blood cholesterol level, the United States Food and Drug Administration considers monacolin K, due to its similarity with lovastatin, an unapproved drug, and therefore marketing of products that label the monacolin content is prohibited. This mini-review summarizes the benefit of RYR in hyperlipidemia, maintains RYR use as a food, and addresses the importance of regulation regarding RYR and the need for clinical data and clear label information for consumers with reference to a toxin-free, non-augmented, standardized amount of monacolins. PMID:28257063

  20. Red Yeast Rice

    Directory of Open Access Journals (Sweden)

    Thu Nguyen

    2017-03-01

    Full Text Available Red yeast rice (RYR, produced by the fermentation of the Monascus purpureus mold, has been used for a long time in Asian cuisine and traditional medicine. It consists of multiple bioactive substances, including monacolins, which potentially can be used as a nutraceutical. Monacolin K, which is chemically identical to lovastatin, has been recognized as responsible for the cholesterolreducing effect of this compound. While the European Food Safety Authority maintains that the use of monacolin K from RYR preparations of at least 10 mg can produce a normal blood cholesterol level, the United States Food and Drug Administration considers monacolin K, due to its similarity with lovastatin, an unapproved drug, and therefore marketing of products that label the monacolin content is prohibited. This mini-review summarizes the benefit of RYR in hyperlipidemia, maintains RYR use as a food, and addresses the importance of regulation regarding RYR and the need for clinical data and clear label information for consumers with reference to a toxin-free, nonaugmented, standardized amount of monacolins.

  1. Bioactivity studies of extracts from Tridax procumbens.

    Science.gov (United States)

    Taddei, A; Rosas-Romero, A J

    2000-06-01

    An updated review on the biological activity of Tridax procumbens is presented. A detailed biological screening comprised of gram-positive and gram-negative bacteria, yeasts and fungi using crude extracts of this plant was undertaken. The n-hexane extract of the flowers showed activity against Escherichia coli. The same extract of the whole aerial parts was active against Mycobacterium smegmatis, Escherichia coli, Salmonella group C and Salmonella paratyphi. The ethyl-acetate extract of the flowers was active against Bacillus cereus and Klebsiella sp. The aerial parts extract also showed activity only against Mycobacterium smegmatis and Staphylococcus aureus, while the aqueous extract showed no antimicrobial activity. None of the tested extracts was active against the yeasts, Candida albicans, Candida tropicalis and Rhodotorula rubra; or the fungi: Aspergillus flavus, Aspergillus niger, Mucor sp. and Trichophyton rubrum.

  2. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits

    Directory of Open Access Journals (Sweden)

    Azucena Canto

    2017-07-01

    Full Text Available We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants.

  3. Yeast Genetics and Biotechnological Applications

    Science.gov (United States)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  4. Antifungal activity of in vitro aqueous and alcoholic extracts of Barije root (Ferula gummosa

    Directory of Open Access Journals (Sweden)

    Mohammad Salehi

    2015-01-01

    Conclusion: Methanol and ethanol extracts proved to have antifungal activity against Candida albicans yeast in vitro while the fungi of Aspergillus fumigatus and Trichophyton rubrum had no sensitivity to these types of extracts.

  5. Screening studies of yeasts capable of utilizing petroleum fractions

    Energy Technology Data Exchange (ETDEWEB)

    El-Masry, H.G.; Foda, M.S.

    1979-01-01

    In these studies 23 yeasts cultures belonging to 10 genera of ascosporogenous, ballistosporogenous, and asporogenous yeasts, were screened with respect to their abilities of hydrocarbon utilization in synthetic media. Thus, kerosene, n-hexadecane, and wax distillate were compared as sole carbon sources in 2% final concentration. Kerosene exhibited marked inhibition on the growth of the majority of the strains, whereas active growth was observed with Debaryomyces vanrijii and many species of the genus Candida in media with n-hexadecane or wax distillate as sole source of carbon. In addition, some cultures belonging to the genera Sporobolomyces, Hansenula, Cryptococcus, and Trigonopsis could utilize some of these substrates, but to a lesser extent. Highest yield of cells and protein was obtained with Candida lipolytica NRRL 1094 in n-hexadecane medium, supplied with 0.03% yeast extract and trace element solutions. The results are discussed with respect to the possibilities of using new yeast genera, with special reference to the genus Debaryomyces, in microbial protein production.

  6. Emulsifying activity of hydrocarbonoclastic marine yeasts

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, R.

    Marine yeast growth on four petroleum hydrocarbons induced the production of extracellular emulsifying agents (biosurfactants). Out of the 17 marine yeast isolates tested, 7 isolates, i.e., Candida parapsilosis, C. cantarelli, C. membranae...

  7. Advances in yeast genome engineering.

    Science.gov (United States)

    David, Florian; Siewers, Verena

    2015-02-01

    Genome engineering based on homologous recombination has been applied to yeast for many years. However, the growing importance of yeast as a cell factory in metabolic engineering and chassis in synthetic biology demands methods for fast and efficient introduction of multiple targeted changes such as gene knockouts and introduction of multistep metabolic pathways. In this review, we summarize recent improvements of existing genome engineering methods, the development of novel techniques, for example for advanced genome redesign and evolution, and the importance of endonucleases as genome engineering tools.

  8. Antimicrobial activity of the ethanol extract and compounds from the rhizomes of Kaempferia parviflora

    OpenAIRE

    Sopa Kummee; Supinya Tewtrakul; Sanan Subhadhirasakul

    2008-01-01

    The antimicrobial activity of the ethanol extract of Kaempferia parviflora was tested against human pathogens,including bacteria, yeast and dermatophyte fungi, using the agar disc diffusion. The ethanol extract exhibited strong antifungalactivity against dermatophytes with clear zone values from 10.7-19.8 mm at concentration of 2 mg/disc. However,ethanol extract showed no activities against all bacteria and yeast tested. The ethanol extract and seven compounds of K.parviflora were further stu...

  9. Yeast as factory and factotum.

    Science.gov (United States)

    Dixon, B

    2000-02-01

    After centuries of vigorous activity in making fine wines, beers and breads, Saccharomyces cerevisiae is now acquiring a rich new portfolio of skills, bestowed by genetic manipulation. As shown in a recent shop-window of research supported by the European Commission, yeasts will soon be benefiting industries as diverse as fish farming, pharmaceuticals and laundering.

  10. Black yeasts in cold habitats

    NARCIS (Netherlands)

    Selbmann, L.; de Hoog, G.S.; Zucconi, L.; Isola, D.; Onofri, S.; Buzzini, B.; Margesin, E.

    2014-01-01

    Black yeasts have already been known since the end of the nineteenth century, but for a number of reasons, only few workers were familiar with them. That was since recently, until the wealth of biodiversity, stunning ecologies and potential applications have become apparent. Some remote and extreme

  11. Nucleotide excision repair in yeast

    NARCIS (Netherlands)

    Eijk, Patrick van

    2012-01-01

    Nucleotide Excision Repair (NER) is a conserved DNA repair pathway capable of removing a broad spectrum of DNA damage. In human cells a defect in NER leads to the disorder Xeroderma pigmentosum (XP). The yeast Saccharomyces cerevisiae is an excellent model organism to study the mechanism of NER. The

  12. Yeast effects on Pinot noir wine phenolics, color, and tannin composition.

    Science.gov (United States)

    Carew, Anna L; Smith, Paul; Close, Dugald C; Curtin, Chris; Dambergs, Robert G

    2013-10-16

    Extraction and stabilization of wine phenolics can be challenging for wine makers. This study examined how yeast choice affected phenolic outcomes in Pinot noir wine. Five yeast treatments were applied in replicated microvinification, and wines were analyzed by UV-visible spectrophotometry. At bottling, yeast treatment Saccharomyces cerevisiae RC212 wine had significantly higher concentrations of total pigment, free anthocyanin, nonbleachable pigment, and total tannin and showed high color density. Some phenolic effects were retained at 6 months' bottle age, and RC212 and S. cerevisae EC1118 wines showed increased mean nonbleachable pigment concentrations. Wine tannin composition analysis showed three treatments were associated with a higher percentage of trihydroxylated subunits (skin tannin indicator). A high degree of tannin polymerization was observed in wines made with RC212 and Torulaspora delbruekii , whereas tannin size by gel permeation chromatography was higher only in the RC212 wines. The results emphasize the importance of yeast strain choice for optimizing Pinot noir wine phenolics.

  13. Analysis of gene expression profiles of Lactobacillus paracasei induced by direct contact with Saccharomyces cerevisiae through recognition of yeast mannan

    Science.gov (United States)

    YAMASAKI-YASHIKI, Shino; SAWADA, Hiroshi; KINO-OKA, Masahiro; KATAKURA, Yoshio

    2016-01-01

    Co-culture of lactic acid bacteria (LAB) and yeast induces specific responses that are not observed in pure culture. Gene expression profiles of Lactobacillus paracasei ATCC 334 co-cultured with Saccharomyces cerevisiae IFO 0216 were analyzed by DNA microarray, and the responses induced by direct contact with the yeast cells were investigated. Coating the LAB cells with recombinant DnaK, which acts as an adhesive protein between LAB and yeast cells, enhanced the ratio of adhesion of the LAB cells to the yeast cells. The signals induced by direct contact were clarified by removal of the LAB cells unbound to the yeast cells. The genes induced by direct contact with heat-inactivated yeast cells were very similar to both those induced by the intact yeast cells and those induced by a soluble mannan. The top 20 genes upregulated by direct contact with the heat-inactivated yeast cells mainly encoded proteins related to exopolysaccharide synthesis, modification of surface proteins, and transport systems. In the case of the most upregulated gene, LSEI_0669, encoding a protein that has a region homologous to polyprenyl glycosylphosphotransferase, the expression level was upregulated 7.6-, 11.0-, and 8.8-fold by the heat-inactivated yeast cells, the intact yeast cells, and the soluble mannan, respectively, whereas it was only upregulated 1.8-fold when the non-adherent LAB cells were not removed before RNA extraction. Our results indicated that the LAB responded to direct contact with the yeast cells through recognition of mannan on the surface of the yeast.

  14. Induction and inhibition of film yeast from fermented bamboo shoot by seasoning plants

    Directory of Open Access Journals (Sweden)

    Jaruwan Maneesri

    2007-07-01

    Full Text Available Three samples of fermented bamboo shoot taken from a village in Amphur Kokpho, Pattani Province, were microbiologically examined. Total viable count was between at 104-105 cfu/ml while pH range was between 3.4-4.4. Isolation and identification of film yeast on surface of fermented liquid revealed Saccharomyces cerevisiae J1, Candida krusei J2 and Candida krusei J3. When film yeast was cultivated in liquid culture with different NaCl concentrations (0, 2.5, 5 and 7.5% (w/v, all species tolerated 2.5% NaCl addition. However, growth decreased depending on NaCl concentration. S. cerevisiae J1 grew faster than C. krusei J2 and C. krusei J3. The cultivation of film yeast in medium with different agar concentrations (0.3, 0.5, 1 and 1.5% (w/v within 24 h showed that 0.3% was the optimal agar concentration. Seasoning plants (garlic, ginger, galangal, lemon grass, lesser galangal, clove, kaffir lime, garcinia and shallot were extracted with water (3% (w/v and tested for growth inhibition. Results showed the clove extract inhibited all yeast strains within 12 h and after that the efficiency of inhibition was decreased. At low concentration of 0.75% (w/v clove extract could inhibit film yeast in fermented bamboo shoot.

  15. Enzymes in Glycolysis and the Citric Acid Cycle in the Yeast and Mycelial Forms of Paracoccidioides brasiliensis

    Science.gov (United States)

    Kanetsuna, Fuminori; Carbonell, Luis M.

    1966-01-01

    Kanetsuna, Fuminori (Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela), and Luis M. Carbonell. Enzymes in glycolysis and the citric acid cycle in the yeast and mycelial forms of Paracoccidioides brasiliensis. J. Bacteriol. 92:1315–1320. 1966.—Enzymatic activities in glycolysis, the hexose monophosphate shunt, and the citric acid cycle in cell-free extracts of the yeast and mycelial forms of Paracoccidioides brasiliensis were examined comparatively. Both forms have the enzymes of these pathways. Activities of glucose-6-phosphate dehydrogenase and malic dehydrogenase of the mycelial form were higher than those of the yeast form. Another 15 enzymatic activities of the mycelial form were lower than those of the yeast form. The activity of glyceraldehyde-3-phosphate dehydrogenase showed the most marked difference between the two forms, its activity in the mycelial form being about 20% of that in the yeast form. PMID:5924267

  16. Short-term temporal dynamics of yeast abundance on the tall fescue phylloplane.

    Science.gov (United States)

    Nix, Shannon S; Burpee, Leon L; Jackson, Kimberly L; Buck, James W

    2008-04-01

    Six replicate trials were conducted to determine the short-term temporal dynamics and the effects of foliar applications of nutrients on the phylloplane yeast community of tall fescue (Festuca arundinacea Schreb.). In each trial, 2% sucrose + 0.5% yeast extract solution or sterile deionized water (control) was applied to the experiment plots. Twelve hours post-treatment (at 0600 hours), leaf samples were collected and yeast colony-forming units (cfu) were enumerated by dilution plating. This process was repeated at 1200, 1800, and 2400 hours in each trial. Significant differences were observed between the number of yeast cfu and the time at which the samples were collected. On average, the number of yeast cfu recovered was significantly less at 1800 hours and significantly greatest at 2400 hours when compared with all other sampling times. Averaged over all time intervals, we observed a trend of increased yeast abundance in turf treated with the nutrient solution compared with control treatments. In a separate investigation, atmospheric yeast abundance above the canopy of tall fescue was assessed in the morning (0900) and in the afternoon (1500) using a Thermo Andersen single stage viable particle sampler. In 5 of the 6 trials of this experiment, atmospheric yeast abundance was significantly greater in the morning than in the afternoon. Results suggest the following colonization model: phylloplane yeasts on tall fescue reproduce during the late evening and early morning, stabilize during the late morning and early afternoon through exchange of immigrants and emigrants, and decline during the late afternoon and (or) early evening.

  17. High-content screening of yeast mutant libraries by shotgun lipidomics

    DEFF Research Database (Denmark)

    Tarasov, Kirill; Stefanko, Adam; Casanovas, Albert;

    2014-01-01

    To identify proteins with a functional role in lipid metabolism and homeostasis we designed a high-throughput platform for high-content lipidomic screening of yeast mutant libraries. To this end, we combined culturing and lipid extraction in 96-well format, automated direct infusion nanoelectrosp......To identify proteins with a functional role in lipid metabolism and homeostasis we designed a high-throughput platform for high-content lipidomic screening of yeast mutant libraries. To this end, we combined culturing and lipid extraction in 96-well format, automated direct infusion...... factor KAR4 precipitated distinct lipid metabolic phenotypes. These results demonstrate that the high-throughput shotgun lipidomics platform is a valid and complementary proxy for high-content screening of yeast mutant libraries....

  18. Antimicrobial activity of Wedelia trilobata crude extracts.

    Science.gov (United States)

    Taddei, A; Rosas-Romero, A J

    1999-05-01

    A biological screening of activity against Gram-positive and Gram-negative bacteria, yeasts, and fungi of crude extracts from Wedelia trilobata is reported. The n-hexane extract showed antibacterial activity against Bacillus subtilis, Mycobacterium smegmatis, Staphylococcus aureus, and Staphylococcus epidermidis (Gram-positive bacteria); along with Proteus vulgaris, Pseudomonas aeruginosa, Salmonella group C, Salmonella paratyphi, and Shigella sonnei (Gram-negative bacteria). The ethyl acetate extract was active only against Salmonella group C; and the aqueous extract was inactive against the tested bacteria. None of the tested extracts showed biological activity against the yeasts (Candida albicans, Candida tropicalis, Rhodotorula rubra) or the fungi (Aspergillus flavus, Aspergillus niger, Mucor sp., Trichophyton rubrum).

  19. Influence of feeding chromium-enriched enzymatically hydrolyzed yeast on growth performance, dietary energetics and carcass characteristics in feedlot cattle under conditions of high ambient temperature

    National Research Council Canada - National Science Library

    Sánchez-Mendoza, B; Montelongo-Terriquez, A; Plascencia, A; Torrentera, N; Ware, R.A; Zinn, R.A

    2015-01-01

    Forty crossbred steers (245 ± 0.95 kg) were used in a 222-day feeding trial to assess the effects of a supplementation of chelated chromium-enhanced extract of enzymatically hydrolyzed yeast (Cr-EHY...

  20. Fermentation study for the production of hepatitis B virus pre-S2 antigen by the methylotrophic yeast Hansenula polymorpha.

    Science.gov (United States)

    de Roubin, M R; Bastien, L; Shen, S H; Groleau, D

    1991-10-01

    Various physico-chemical parameters have been studied in order to improve the production of hepatitis B virus pre-S2 antigen (middle surface antigen) by the methylotrophic yeast Hansenula polymorpha. Antigen production was done in two steps: first, production of cells on glycerol (Phase 1), followed by induction of antigen expression with methanol (Phase 2). Dense cultures of H. polymorpha, equivalent to 35-40 g/l (dry weight), were readily obtained in small fermenters using minimal medium containing glycerol as carbon source. Antigen expression in this minimal medium, after induction with methanol, was however, low and never exceeded 1.6 mg/l of culture. Antigen production was greatly enhanced by adding complex organic nitrogen sources along with methanol at induction time; yeast extract was the best of all the sources tested. In shake flasks, antigen production was proportional to yeast extract concentration up to 7% (w/v) yeast extract, it became clear the the nutritional conditions for good antigen expression were different from those for good biomass production. The effects of yeast extract were reproduced in small fermenters: antigen levels reached 8-9 mg/l in medium containing 6% (w/v) yeast extract during induction with methanol. The mechanisms of yeast extract's effects are still unknown but are probably nutritional. The recombinant H. polymorpha strain produced both periplasmic and intracellular antigen. The periplasmic antigen was shown to be present as 20-22-nm particles and was therefore immunogenic. Immunoblotting indicated that part of the pre-S2 antigen was present as a 24-kDa degradation product. These studies have led to a 140-fold increase in volumetric productivity of antigen and to a 4.6-fold increase in specific production.

  1. Construction and Identification of a Yeast Two-Hybrid Bait Vector and Its Effect on the Growth of Yeast Cells and the Self-Activating Function of Reporter Genes for Screening of HPV18 E6-Interacting Protein

    Institute of Scientific and Technical Information of China (English)

    梅泉; 李双; 刘萍; 奚玲; 王世宣; 孟玉菡; 刘杰; 杨欣慰; 卢运萍; 汪辉

    2010-01-01

    By using a yeast two-hybrid system,a yeast two-hybrid bait vector was constructed and identified for screening of the HPV18 E6-interacting proteins,and its effects on the growth of yeast cells and the activation of reporter genes were investigated.Total mRNA extracted from Hela cells was reversely transcribed into cDNA.Fragment of HPV18 E6 cDNA was amplified using RT-PCR and directly ligated to the pGBKT7 vector.The recombinant plasmid was confirmed by restriction endonuclease analysis and DNA sequencing.Th...

  2. Surplus yeast tank failing catastrophically

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2016-01-01

    GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air. T....... The accident described in this article serves to illustrate that care should be taken if a tank originally designed for atmospheric pressure is modified to operate at slight overpressure.......GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air...

  3. Mycotoxins - prevention and decontamination by yeasts.

    Science.gov (United States)

    Pfliegler, Walter P; Pusztahelyi, Tünde; Pócsi, István

    2015-07-01

    The application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood. The application of yeasts in various technological processes may have a direct inhibitory effect on the toxin production of certain molds, which is independent of their growth suppressing effect. Furthermore, several yeast species are capable of accumulating mycotoxins from agricultural products, thereby effectively decontaminating them. Probiotic yeasts or products containing yeast cell wall are also applied to counteract mycotoxicosis in livestock. Several yeast strains are also able to degrade toxins to less-toxic or even non-toxic substances. This intensively researched field would greatly benefit from a deeper knowledge on the genetic and molecular basis of toxin degradation. Moreover, yeasts and their biotechnologically important enzymes may exhibit sensitivity to certain mycotoxins, thereby mounting a considerable problem for the biotechnological industry. It is noted that yeasts are generally regarded as safe; however, there are reports of toxin degrading species that may cause human fungal infections. The aspects of yeast-mycotoxin relations with a brief consideration of strain improvement strategies and genetic modification for improved detoxifying properties and/or mycotoxin resistance are reviewed here.

  4. Yeast: A new oil producer?

    Directory of Open Access Journals (Sweden)

    Beopoulos Athanasios

    2012-01-01

    Full Text Available The increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives for the oleochemical field (such as lubricants, adhesives or plastics have created price imbalance in both the alimentary and energy field. Moreover, the lack of non-edible oil feedstock has given rise to concerns on land-use practices and on oil production strategies. Recently, much attention has been paid to the exploitation of microbial oils. Most of them present lipid profiles similar in type and composition to plants and could therefore have many advantages as are no competitive with food, have short process cycles and their cultivation is independent of climate factors. Among microorganisms, yeasts seem to be very promising as they can be easily genetically enhanced, are suitable for large-scale fermentation and are devoid of endotoxins. This review will focus on the recent understanding of yeasts lipid metabolism, the succeeding genetic engineering of the lipid pathways and the recent developments on fermentation techniques that pointed out yeasts as promising alternative producers for oil or plastic.

  5. Cytotoxic monacolins from red yeast rice, a Chinese medicine and food

    Science.gov (United States)

    Seven new monacolins, monacolins Q-S (1-3), a,ß-dehydromonacolin S (4), 3a-hydroxy-3,5-dihydromonacolin L (5), 3ß-hydroxy-3,5-dihydromonacolin L (6), and a,ß-hydromonacolin Q (7) were isolated and characterized from the methanol extract of red yeast rice. In addition, six known monacolins, a,ß-dehyd...

  6. Conversion of SPORL pretreated Douglas fir forest residues into microbial lipids with oleaginous yeasts

    Science.gov (United States)

    Douglas fir is the dominant commercial tree grown in the United States. In this study Douglas fir residue was converted to single cell oils using oleaginous yeasts. Monosaccharides were extracted from the woody biomass by pretreating with sulfite and dilute sulfuric acid (SPORL process) and hydrol...

  7. A small-scale method for quantitation of carotenoids in bacteria and yeasts.

    Science.gov (United States)

    Kaiser, Philipp; Surmann, Peter; Vallentin, Gerald; Fuhrmann, Herbert

    2007-07-01

    Microbial carotenoids are difficult to extract because of their embedding into a compact matrix and prominent sensitivity to degradation. Especially for carotenoid analysis of bacteria and yeasts, there is lack of information about capability, precision and recovery of the method used. Accordingly, we investigated feasibility, throughput and validity of a new small-scale method using Micrococcus luteus and Rhodotorula glutinis for testing purposes. For disintegration and extraction, we combined primarily mild techniques: enzymatically we used combinations of lysozyme and lipase for bacteria as well as lyticase and lipase for yeasts. Additional mechanical treatment included sonication and freeze-thawing cycles. Chemical treatment with dimethylsulfoxide was applied for yeasts only. For extraction we used a methanol-chloroform mixture stabilized efficiently with butylated hydroxytoluene and alpha-tocopherol. Separation of compounds was achieved with HPLC, applying a binary methanol/tert-butyl methyl ether gradient on a polymer reversed C30 phase. Substances of interest were detected and identified applying a photodiode-array (PDA) and carotenoids quantitated as all-trans-beta-carotene equivalents. For evaluation of recovery and reproducibility of the extraction method, we used beta-8'-apo-carotenal as internal standard. The method provides a sensitive tool for the determination of carotenoids from bacteria and yeasts and also for small changes in carotenoid spectrum of a single species. Corequisite large experiments are facilitated by the high throughput of the method.

  8. Application of temperature gradient gel electrophoresis to the study of yeast diversity in the estuary of the Tagus river, Portugal.

    Science.gov (United States)

    Gadanho, Mário; Sampaio, José Paulo

    2004-12-01

    Temperature gradient gel electrophoresis (TGGE) was employed for the assessment of yeast diversity in the estuary of the Tagus river (Portugal). The molecular detection of yeasts was carried out directly from water samples and, in parallel, a cultivation approach by means of an enrichment step was employed. A nested PCR was employed to obtain a fungal amplicon containing the D2 domain of the 26S rRNA gene. For identification the TGGE bands were extracted, re-amplified, and sequenced. Fourteen fungal taxa were detected and all except one were yeasts. Most yeast sequences corresponded to members of the Ascomycota and only three belonged to the Basidiomycota. Five yeasts (four ascomycetes and one basidiomycete) could not be identified to the species level due to the uniqueness of their sequences. The number of species detected after enrichment was higher than the number of taxa found using the direct detection method. This suggests that some yeast populations are present in densities that are below the detection threshold of the method. With respect to the analysis of the yeast community structure, our results indicate that the dominant populations belong to Debaryomyces hansenii, Rhodotorula mucilaginosa, Cryptococcus longus, and to an uncultured basidiomycetous yeast phylogenetically close to Cr. longus. The combined analysis of direct detection and cultivation approaches indicates a similar community structure at the two sampled sites since nine species were present at both localities.

  9. [Metabolomics analysis of taxadiene producing yeasts].

    Science.gov (United States)

    Yan, Huifang; Ding, Mingzhu; Yuan, Yingjin

    2014-02-01

    In order to study the inherent difference among terpenes producing yeasts from the point of metabolomics, we selected taxadiene producing yeasts as the model system. The changes of cellular metabolites during fermentation log phase of artificial functional yeasts were determined using metabolomics methods. The results represented that compared to W303-1A as a blank control, the metabolites in glycolysis, tricarboxylic acid cycle (TCA) cycle and several amino acids were influenced. And due to the changes of metabolites, the growth of cells was inhibited to a certain extent. Among the metabolites identified, citric acid content in taxadiene producing yeasts changed the most, the decreasing amplitude reached 90% or more. Therefore, citric acid can be a marker metabolite for the future study of artificial functional yeasts. The metabolomics analysis of taxadiene producing yeasts can provide more information in further studies on optimization of terpenes production in heterologous chassis.

  10. Yeasts Diversity in Fermented Foods and Beverages

    Science.gov (United States)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  11. Tracer studies of nitrogen assimilation in yeast.

    Science.gov (United States)

    ABRAMS, R; HAMMARSTEN, E

    1949-01-01

    By using N(15) as a tracer the assimilation of ammonia by the yeast, Torulopsis utilis, has been studied. It has been shown that: 1. There was no measurable incorporation of N in the protein or polynucleotide purine of carbon-starved yeast. 2. When ammonia is added to nitrogen-starved yeast there is a long lag period before division begins during which the yeast rapidly synthesizes protein, this process being accompanied by a turnover of polynucleotide purine. There was no significant dilution of the N(15)H(4) (+) of the medium by ordinary NH(4) (+). 3. When yeast containing N(15) is allowed to divide and grow in ordinary ammonia, the total amount of N(15) in the yeast remains constant. The dicarboxylic amino acids are most diluted, while arginine and nucleic acid guanine are not diluted at all.

  12. Beer brewing using a fusant between a sake yeast and a brewer's yeast.

    Science.gov (United States)

    Mukai, N; Nishimori, C; Fujishige, I W; Mizuno, A; Takahashi, T; Sato, K

    2001-01-01

    Beer brewing using a fusant between a sake yeast (a lysine auxotrophic mutant of sake yeast K-14) and a brewer's yeast (a respiratory-deficient mutant of the top fermentation yeast NCYC1333) was performed to take advantage of the beneficial characteristics of sake yeasts, i.e., the high productivity of esters, high tolerance to ethanol, and high osmotolerance. The fusant (F-32) obtained was different from the parental yeasts regarding, for example, the assimilation of carbon sources and tolerance to ethanol. A brewing trial with the fusant was carried out using a 100-l pilot-scale plant. The fusant fermented wort more rapidly than the parental brewer's yeast. However, the sedimentation capacity of the fusant was relatively low. The beer brewed using the fusant contained more ethanol and esters compared to that brewed using the parental brewer's yeast. The fusant also obtained osmotolerance in the fermentation of maltose and fermented high-gravity wort well.

  13. Assembly of eukaryotic algal chromosomes in yeast

    OpenAIRE

    Karas, Bogumil J.; Molparia, Bhuvan; Jablanovic, Jelena; Hermann, Wolfgang J; Lin, Ying-Chi; Dupont, Christopher L.; Tagwerker, Christian; Yonemoto, Isaac T.; Noskov, Vladimir N.; Chuang, Ray-Yuan; Allen, Andrew E; Glass, John I.; Hutchison, Clyde A; Smith, Hamilton O; Venter, J Craig

    2013-01-01

    Background Synthetic genomic approaches offer unique opportunities to use powerful yeast and Escherichia coli genetic systems to assemble and modify chromosome-sized molecules before returning the modified DNA to the target host. For example, the entire 1 Mb Mycoplasma mycoides chromosome can be stably maintained and manipulated in yeast before being transplanted back into recipient cells. We have previously demonstrated that cloning in yeast of large (> ~ 150 kb), high G + C (55%) prokaryoti...

  14. 21 CFR 73.355 - Phaffia yeast.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells...

  15. Preparation of Non-meat Sources Meaty Flavor Essence from Yeast Extract by Maillard Reaction and Fuzzy Evaluation%啤酒酵母抽提物制备非肉源肉香型香精及模糊数学评价

    Institute of Scientific and Technical Information of China (English)

    卢茳虹; 崔春; 赵谋明

    2011-01-01

    以啤酒酵母抽提物为原科,不添加任何肉蛋白酶解液和油脂,采用测定美拉德反应产物的褐变程度、美拉德反应前后氨基酸态氮损失率以及评价美拉德反应产物的风味对美拉德反应参数进行优化,制备非内源肉香型香精,并采用模糊数学评价法进行评价.优化得到的反应条件为:复合还原糖(葡萄糖∶木糖=4∶1)添加2%(w/w按体系总量计),含硫化合物(半胱氨酸∶硫胺素=2∶1)添加1%(w/w,按体系总量计),在110℃下热反应60 min.模糊教学评价法评价在该工艺条件下制得的香精,内香逼真,风味浓郁纯正,评价等级为优.%This study tried to prepare non - meat sources meaty flavor essence by taking yeast extract as raw material without adding any meat protein hydrolyzates and fats. Based on the results of browning degree, the local flavor of the Maillard reaction products, as well as the comparison of the loss rate of amino acid nitrogen before and after the reaction, the Maillard reaction parameters were optimized. Meanwhile, the fuzzy mathematics was applied to the evaluation. The optimum conditions observed were as follows: compound sugar (glucose: xylose) 2% and suffur compounds( cysteine: VB1 ) 1% at 110℃ for 60min. The fuzzy evaluation was adopted to evaluate the organoleptic quality of essence at the optimum conditions which evaluation grade was excellent.

  16. Molecular Genetic Tools and Techniques in Fission Yeast.

    Science.gov (United States)

    Murray, Johanne M; Watson, Adam T; Carr, Antony M

    2016-05-02

    The molecular genetic tools used in fission yeast have generally been adapted from methods and approaches developed for use in the budding yeast, Saccharomyces cerevisiae Initially, the molecular genetics of Schizosaccharomyces pombe was developed to aid gene identification, but it is now applied extensively to the analysis of gene function and the manipulation of noncoding sequences that affect chromosome dynamics. Much current research using fission yeast thus relies on the basic processes of introducing DNA into the organism and the extraction of DNA for subsequent analysis. Targeted integration into specific genomic loci is often used to create site-specific mutants or changes to noncoding regulatory elements for subsequent phenotypic analysis. It is also regularly used to introduce additional sequences that generate tagged proteins or to create strains in which the levels of wild-type protein can be manipulated through transcriptional regulation and/or protein degradation. Here, we draw together a collection of core molecular genetic techniques that underpin much of modern research using S. pombe We summarize the most useful methods that are routinely used and provide guidance, learned from experience, for the successful application of these methods.

  17. Chromium uptake by Saccharomyces cerevisiae and isolation of glucose tolerance factor from yeast biomass

    Indian Academy of Sciences (India)

    Vlatka Gulan Zetic; Vesna Stehlik-Tomas; Slobodan Grba; Lavoslav Lutilsky; Damir Kozlek

    2001-06-01

    Fermentations with yeast Saccharomyces cerevisiae in semiaerobic and in static conditions with the addition of chromic chloride into the used molasses medium were analysed. It was proved that the addition of optimal amounts of CrCl3 into the basal medium enhanced the kinetics of alcohol fermentations. The addition of 200 mg/l CrCl3 into the medium stimulated both the yeast growth and the ethanol production in all experimental conditions. On the other hand, the results showed that Cr3+ ions were incorporated into yeast cells during fermentation. Under these conditions the accumulation of Cr3+ ions was performed by yeast cells during the exponential growth phase, and with enriched amounts of 30–45 g/gd.m. of cells. Yeast biomass enriched with chromium ions was extracted with 0.1 mol/l NH4OH assuming that the extracts had the glucose tolerance factor (GTF). Then the extracts were passed through a gel-filtration column in order to isolate and purify the GTF. The presence of GTF in the purified fractions was determined by measuring the absorbance at 260 nm. It is evident from the obtained results that the added purified fractions enhanced the rates of CO2 production as well as the glucose utilization during alcoholic fermentation. As expected, the enhancement of both rates depended on the amounts of extracts added to the fermentation substrate. Thus, it is evident that purified extracts contained the GTF compound, and that Cr3+ ions were bonded to the protein molecule.

  18. Acetaminophen toxicity and resistance in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Srikanth, Chittur V; Chakraborti, Asit K; Bachhawat, Anand K

    2005-01-01

    Acetaminophen (paracetamol), one of the most widely used analgesics, is toxic under conditions of overdose or in certain disease conditions, but the mechanism of acetaminophen toxicity is still not entirely understood. To obtain fresh insights into acetaminophen toxicity, this phenomenon was investigated in yeast. Acetaminophen was found to be toxic to yeast cells, with erg mutants displaying hypersensitivity. Yeast cells grown in the presence of acetaminophen were found to accumulate intracellular acetaminophen, but no metabolic products of acetaminophen could be detected in these extracts. The toxicity response did not lead to an oxidative stress response, although it did involve Yap1p. The cytochrome P450 enzymes of yeast, Erg5p and Erg11p, did not appear to participate in this process, unlike the mammalian systems. Furthermore, we could not establish a central role for glutathione depletion or the cellular glutathione redox status in acetaminophen toxicity, suggesting differences from mammalian systems in the pathways causing toxicity. Investigations of the resistance mechanisms revealed that deletion of the glutathione-conjugate pumps Ycf1p (a target of Yap1p) and Bpt1p, surprisingly, led to acetaminophen resistance, while overexpression of the multidrug resistance pumps Snq2p and Flr1p (also targets of Yap1p) led to acetaminophen resistance. The Yap1p-dependent resistance to acetaminophen required a functional Pdr1p or Pdr3p protein, but not a functional Yrr1p. In contrast, resistance mediated by Pdr1p/Pdr3p did not require a functional Yap1p, and revealed a distinct hierarchy in the resistance to acetaminophen.

  19. Adhesive interactions between medically important yeasts and bacteria

    NARCIS (Netherlands)

    Millsap, KW; van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    Yeasts are being increasingly identified as important organisms in human infections. Adhesive interactions between yeasts and bacteria may contribute to yeast retention al body sites. Methods for studying adhesive interactions between bacterial strains are well known, and range from simple

  20. Quantitative Analysis and Comprehensive Study of Flavor-active Compounds and Appl ication Properties of Commercial Yeast Extract%商品化酵母抽提物中风味活性化合物的综合定量分析及其应用特性研究

    Institute of Scientific and Technical Information of China (English)

    刘建彬; 宋焕禄; 李沛; 熊建

    2015-01-01

    多种气味及滋味化合物共同决定了酵母抽提物(YE)独特的风味特性,进一步决定了不同 YE 的应用特性。利用GC-O-MS、HPLC技术,对市场上的6款商品化 YE 中的挥发性化合物及不挥发性化合物(糖、有机酸、氨基酸、呈味核苷酸、肽)进行了全定量分析;随后,结合气味及滋味感官鉴评,评价不同种类风味化合物对YE感官知觉的影响。最后,对不同商品化酵母抽提物的应用特性进行评价和研究。结果发现:挥发性化合物方面,不同厂家生产的YE在气味活性化合物方面具有较大的差异。吡嗪类主要贡献了YE中对肉味有贡献的烤香香韵。而3-甲基丁醛、乙酸和酮类分别提供了 YE 的焦苦味、酸味和奶油味。不同香韵的分布还表明酵香可能是青香/焦苦香、烤香/坚果香/甜香之间的复合风味。不挥发化合物方面,糖类、大部分氨基酸类、核苷酸类、除琥珀酸、乳酸的有机酸类在1% YE 用量下TAV值均小于1,未单独对YE溶液滋味做出贡献。对不挥发物的相关性分析表明,300~2000 Da 分布肽段对浓厚滋味具有贡献,而Glu主要贡献了YE鲜味,且鲜味与浓厚味有正相关作用。Ala可以贡献YE甜味,而一系列的苦味氨基酸与苦味具有很强烈的正相关作用。另外,苦味主要与鲜味、浓厚味、酸味有负相关关系,表明了苦味与这些滋味具有此消彼长的关系。%The unique flavor characteristics of yeast extract (YE)are determined by a series of odor and taste-active compounds.Applying of GC-O-MS and HPLC techniques,the volatile and nonvolatile compounds (sugars,organic acids,amino acids,nucleotides and peptides)of 6 commercial YE are quantitative analyzed.Further,the sensory evaluation is used to measure the effect of different flavor compounds on the sensory perception of YE. Finally, the application properties of different commercial yeast extract are studied.The result shows that the

  1. Enhanced Carotenoid Production by a Mutant of the Marine Yeast Rhodotorula sp. hidai

    Institute of Scientific and Technical Information of China (English)

    CONG Li; CHI Zhenming; LI Jing; WANG Xianghong

    2007-01-01

    After a serial of UV, EMS and NTG mutagenesis, a mutant named MM of the red marine yeast strain Rhodotorula sp.hidai was obtained. The mutant MM could produce 603.93 μg g-1 of carotenoid within 5 days in the medium containing 4.0 g sucrose,1.5 g yeast extract, 0.1 g MgSO4, and 100 mL of sea water, with pH 6.0 and at 30 ℃, while only 213.18 μg g-1 of carotenoid was produced by the wild type under the same conditions.

  2. Yeast cell factories on the horizon

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2015-01-01

    For thousands of years, yeast has been used for making beer, bread, and wine. In modern times, it has become a commercial workhorse for producing fuels, chemicals, and pharmaceuticals such as insulin, human serum albumin, and vaccines against hepatitis virus and human papillomavirus. Yeast has al...

  3. Yeasts are essential for cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics.

  4. Yeasts in sustainable bioethanol production: A review

    Directory of Open Access Journals (Sweden)

    Siti Hajar Mohd Azhar

    2017-07-01

    Full Text Available Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  5. The wine and beer yeast Dekkera bruxellensis

    Science.gov (United States)

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:24932634

  6. The wine and beer yeast Dekkera bruxellensis.

    Science.gov (United States)

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  7. Growth requirements of san francisco sour dough yeasts and bakers' yeast.

    Science.gov (United States)

    Henry, N

    1976-03-01

    The growth requirements of several yeasts isolated from San Francisco sour dough mother sponges were compared with those of bakers' yeast. The sour dough yeasts studied were one strain of Saccharomyces uvarum, one strain of S. inusitatus, and four strains of S. exiguus. S. inusitatus was the only yeast found to have an amino acid requirement, namely, methionine. All of the yeasts had an absolute requirement for pantothenic acid and a partial requirement for biotin. Inositol was stimulatory to all except bakers' yeast. All strains of S. exiguus required niacin and thiamine. Interestingly, S. inusitatus, the only yeast that required methionine, also needed folic acid. For optimal growth of S. exiguus in a molasses medium, supplementation with thiamine was required.

  8. Genetic constitution of industrial yeast.

    Science.gov (United States)

    Benítez, T; Martínez, P; Codón, A C

    1996-09-01

    Saccharomyces cerevisiae industrial yeast strains are highly heterogeneous. These industrial strains, including bakers', wine, brewing and distillers', have been compared with respect to their DNA content, number and size of chromosomes, homologies between their genes and those of laboratory strains, and restriction fragment lengths of their mitDNA. A high variability, and the presence of multigenic families, were observed in some industrial yeast groups. The occurrence or the lack of chromosomal polymorphism, as well as the presence of multiple copies of some genes, could be related to a selective process occurring under specific industrial conditions. This polymorphism is generated by reorganization events, that take place mainly during meiosis and are mediated by repetitive Y' and Ty elements. These elements give rise to ectopic and asymmetric recombination and to gene conversion. The polymorphism displayed by the mitDNA could also result from specific industrial conditions. However, in enological strains the selective process is masked by the mutagenic effect that ethanol exerts on this DNA.

  9. Antifungal resistance in yeast vaginitis.

    Science.gov (United States)

    Dun, E.

    1999-01-01

    The increased number of vaginal yeast infections in the past few years has been a disturbing trend, and the scientific community has been searching for its etiology. Several theories have been put forth to explain the apparent increase. First, the recent widespread availability of low-dosage, azole-based over-the-counter antifungal medications for vaginal yeast infections encourages women to self-diagnose and treat, and women may be misdiagnosing themselves. Their vaginitis may be caused by bacteria, parasites or may be a symptom of another underlying health condition. As a result, they may be unnecessarily and chronically expose themselves to antifungal medications and encourage fungal resistance. Second, medical technology has increased the life span of seriously immune compromised individuals, yet these individuals are frequently plagued by opportunistic fungal infections. Long-term and intense azole-based antifungal treatment has been linked to an increase in resistant Candida and non-Candida species. Thus, the future of limiting antifungal resistance lies in identifying the factors promoting resistance and implementing policies to prevent it. PMID:10907778

  10. Heterologous expression of human H1 histones in yeast.

    Science.gov (United States)

    Albig, W; Runge, D M; Kratzmeier, M; Doenecke, D

    1998-09-18

    The complete set of seven human H1 histone subtype genes was heterologously expressed in yeast. Since Saccharomyces cerevisiae lacks standard histone H1 we could isolate each recombinantly expressed human H1 subtype in pure form without contamination by endogenous H I histones. For isolation of the H1 histones in this expression system no tagging was needed and the isoforms could be extracted with the authentic primary structure by a single extraction step with 5%(0.74 M) perchloric acid. The isolated H1 histone proteins were used to assign the subtype genes to the corresponding protein spots or peaks after two-dimensional gel electrophoresis and capillary zone electrophoresis, respectively. This allowed us to correlate transcriptional data with protein data, which was barely possible until now.

  11. Fuel ethanol production from Jerusalem artichoke stalks using different yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Margaritis, A.; Bajpai, P.; Bajpai, P.K.

    1983-01-01

    The inulin-type sugars present in the stalks of Jerusalem artichoke (Helianthus tuberosus) were extracted with hot water and were used as a substrate to produce fuel EtOH. Seven different yeasts were used to obtain batch kinetic data. The medium consisted of stalk extract from Jerusalem artichoke containing 7.3% total sugars, supplemented with 0.01% oleic acid, 0.01% corn steep liquor, and 0.05% Tween 80. All batch fermentations were carried out in a 1-L bioreactor at 35 degrees and pH 4.6, and the following parameters were measured as a function of time: total sugars, EtOH and biomass concentration, maximum specific growth rate, and biomass and EtOH yields. The best EtOH producer was Kluyveromyces marxianus UCD (FST) 55-82 which gave an EtOH-to-sugar yield 97% of the theoretical maximum value, with almost 100% sugar utilization.

  12. Harnessing yeast organelles for metabolic engineering.

    Science.gov (United States)

    Hammer, Sarah K; Avalos, José L

    2017-08-01

    Each subcellular compartment in yeast offers a unique physiochemical environment and metabolite, enzyme, and cofactor composition. While yeast metabolic engineering has focused on assembling pathways in the cell cytosol, there is growing interest in embracing subcellular compartmentalization. Beyond harnessing distinct organelle properties, physical separation of organelles from the cytosol has the potential to eliminate metabolic crosstalk and enhance compartmentalized pathway efficiency. In this Perspective we review the state of the art in yeast subcellular engineering, highlighting the benefits of targeting biosynthetic pathways to subcellular compartments, including mitochondria, peroxisomes, the ER and/or Golgi, vacuoles, and the cell wall, in different yeast species. We compare the performances of strains developed with subcellular engineering to those of native producers or yeast strains previously engineered with cytosolic pathways. We also identify important challenges that lie ahead, which need to be addressed for organelle engineering to become as mainstream as cytosolic engineering in academia and industry.

  13. Comet assay on tetraploid yeast cells

    DEFF Research Database (Denmark)

    Rank, Jette; Syberg, Kristian; Jensen, Klara

    2009-01-01

    Tetraploid yeast cells (Saccharomyces cerevisiae) were used in the comet assay with the intention of developing a new, fast and easy assay for detecting environmental genotoxic agents without using higher organisms. Two DNA-damaging chemicals, H2O2 and acrylamide, together with wastewater from...... three municipal treatment plants were tested for their effect on the yeast-cell DNA. The main problem with using yeast in the comet assay is the necessity to degrade the cell wall. This was achieved by using Zymolase 100 T twice during the procedure, since Zymolase 20 T did not open the cell wall....... Analytical problems that arose due to the small amount of DNA in the yeast nuclei in haploid and diploid cells, which contain 13 Mbp and 26 Mbp DNA per cell, respectively, were solved by using tetraploid yeast cells (52 Mbp) instead. DNA damage was shown after exposure to H2O2 and acrylamide. The lowest dose...

  14. Yeasts associated with Cheddar and Gouda making.

    Science.gov (United States)

    Viljoen, B C; Greyling, T

    1995-11-01

    Sources of yeast contamination which may lead to contamination of the curd during Cheddar and Gouda cheese making, were examined in a single cheese factory. A total of 187 representative yeast isolates present in the factory environment, on working surfaces, the brine and on workers' hands and aprons were identified according to conventional methods and cellular long-chain fatty acid analyses. Product line samples were taken at critical control points in the manufacturing process and analysed after incubation at 25 degrees C for 96 h. The most prevalent isolates belonged to the genera Debaryomyces and Candida. Other genera encountered were Cryptococcus, Rhodotorula, Yarrowia, Pichia, Trichosporon, Torulaspora, Issatchenkia, Saccharomyces and Zygosaccharomyces. Characterization of the predominant yeast isolates indicated that the cheese brine was responsible for the largest variety and number of yeast isolates yielding a total of 64 yeast strains belonging to nine different genera.

  15. Yeast community survey in the Tagus estuary.

    Science.gov (United States)

    de Almeida, João M G C F

    2005-07-01

    The yeast community in the waters of the Tagus estuary, Portugal, was followed for over a year in order to assess its dynamics. Yeast occurrence and incidence were measured and this information was related to relevant environmental data. Yeast occurrence did not seem to depend upon tides, but river discharge had a dramatic impact both on the density and diversity of the community. The occurrence of some yeasts was partially correlated with faecal pollution indicators. Yeast isolates were characterized by microsatellite primed PCR (MSP-PCR) fingerprinting and rRNA gene sequencing. The principal species found were Candida catenulata, C. intermedia, C. parapsilosis, Clavispora lusitaniae, Debaryomyces hansenii, Pichia guilliermondii, Rhodotorula mucilaginosa and Rhodosporidium diobovatum. The incidence of these species was evaluated against the environmental context of the samples and the current knowledge about the substrates from which they are usually isolated.

  16. Real-Time Quantitative PCR (QPCR) and Reverse Transcription-QPCR for Detection and Enumeration of Total Yeasts in Wine▿

    Science.gov (United States)

    Hierro, Núria; Esteve-Zarzoso, Braulio; González, Ángel; Mas, Albert; Guillamón, Jose M.

    2006-01-01

    Real-time PCR, or quantitative PCR (QPCR), has been developed to rapidly detect and quantify the total number of yeasts in wine without culturing. Universal yeast primers were designed from the variable D1/D2 domains of the 26S rRNA gene. These primers showed good specificity with all the wine yeasts tested, and they did not amplify the most representative wine species of acetic acid bacteria and lactic acid bacteria. Numerous standard curves were constructed with different strains and species grown in yeast extract-peptone-dextrose medium or incubated in wine. The small standard errors with these replicas proved that the assay is reproducible and highly robust. This technique was validated with artificially contaminated and natural wine samples. We also performed a reverse transcription-QPCR (RT-QPCR) assay from rRNA for total viable yeast quantification. This technique had a low detection limit and was more accurate than QPCR because the dead cells were not quantified. As far as we know, this is the first time that RT-QPCR has been performed to quantify viable yeasts from rRNA. RT-QPCR is a rapid and accurate technique for enumerating yeasts during industrial wine fermentation and controlling the risk of wine spoilage. PMID:17088381

  17. Image processing and classification algorithm for yeast cell morphology in a microfluidic chip.

    Science.gov (United States)

    Yang Yu, Bo; Elbuken, Caglar; Ren, Carolyn L; Huissoon, Jan P

    2011-06-01

    The study of yeast cell morphology requires consistent identification of cell cycle phases based on cell bud size. A computer-based image processing algorithm is designed to automatically classify microscopic images of yeast cells in a microfluidic channel environment. The images were enhanced to reduce background noise, and a robust segmentation algorithm is developed to extract geometrical features including compactness, axis ratio, and bud size. The features are then used for classification, and the accuracy of various machine-learning classifiers is compared. The linear support vector machine, distance-based classification, and k-nearest-neighbor algorithm were the classifiers used in this experiment. The performance of the system under various illumination and focusing conditions were also tested. The results suggest it is possible to automatically classify yeast cells based on their morphological characteristics with noisy and low-contrast images.

  18. Pharmacological inhibition of eicosanoid synthesis and hyperalgesia in yeast-injected rat paws

    Energy Technology Data Exchange (ETDEWEB)

    Opas, E.E.; Dallob, A.; Herold, E.; Luell, S.; Humes, J.L.

    1986-03-01

    Brewer's yeast caused an inflammation characterized by edema and hyperalgesia when injected into the hindpaw of a rat. These events were temporally distinct and each was associated with increases of specific arachidonic and oxygenation products. As determined by radioimmunoassay (RIA) on whole paw lipid extracts, the 5-lipoxygenase (5-LO) products, leukotrienes C/sub 4/ and D/sub 4/ and 5-hydroxyeicosatetraendic acid (5-HETE) were synthesized concurrently with the onset of edema (maximal at 15 minutes after yeast injection). The hyperalgesic phase of the inflammation (3-4 hr after yeast injection) was associated with increased tissue levels of the cyclooxygenase (CO) products, prostaglandin E/sub 2/ and thromboxane B/sub 2/ (TXB/sub 2/) as well as increases in levels of the 5-LO products, leukotriene B/sub 4/ (LTB/sub 4/) and 5-HETE. Pharmacological agents modulated the synthesis of eicosanoids and suppressed the hyperalgesic response.

  19. Effect of yeast species on the terpenoids profile of Chinese light-style liquor.

    Science.gov (United States)

    Wu, Qun; Zhu, Weian; Wang, Wei; Xu, Yan

    2015-02-01

    Terpenoids are important trace flavour constituents in Chinese light-style liquors, and are formed by the various yeast species present during fermentation of liquor from cereal and legume materials. Saccharomyces cerevisiae, Pichia kudriavzevii and Wickerhamomyces anomalus are three such yeast species, and we found S. cerevisiae capable of generating thirteen different terpenoids in cereal and legume extract fermentation, by both de novo and biotransformation pathways. We also found that cereals such as sorghum and barley, and legumes such as peas, contained different terpenoids precursors, which differentially affected the formation and profile of terpenoids mixtures. This work gives new insights into the role of yeast species in generating the various terpenoids mixtures found in Chinese light-style liquors.

  20. Efficient extraction of intracellular reduced glutathione from fermentation broth of Saccharomyces cerevisiae by ethanol.

    Science.gov (United States)

    Xiong, Zhi-Qiang; Guo, Mei-Jin; Guo, Yuan-Xin; Chu, Ju; Zhuang, Ying-Ping; Zhang, Si-Liang

    2009-01-01

    Reduced glutathione (GSH) from fermentation broth of Saccharomyces cerevisiae was extracted with ethanol without disruption of the cells. The effects of ethanol concentration, extraction temperature and extraction time were assessed by using 2(3) full factorial designs (FFD). Preliminary studies showed that ethanol concentration had the most influence on GSH yield by ethanol extraction, based on the first order regression coefficients derived using MINITAB software, and an optimal ethanol concentration (25%, v/v) was obtained. However, compared to the conventional extraction technique (hot water extraction), there was no significant advantage in yield of GSH from yeast cells using ethanol extraction under these optimized conditions. But ethanol extraction has several advantages, such as lower energy consumption and lower protein concentration of extraction broth, which may reduce the complexity and cost of the purification process. Hence, ethanol extraction which does not disrupt yeast cells could be an inexpensive, simple and efficient alternative to conventional extraction techniques in the GSH industry.

  1. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production.

    Science.gov (United States)

    Peng, Huadong; Moghaddam, Lalehvash; Brinin, Anthony; Williams, Brett; Mundree, Sagadevan; Haritos, Victoria S

    2017-06-25

    As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  2. Fermentation of lignocellulosic hydrolysate by the alternative industrial ethanol yeast Dekkera bruxellensis.

    Science.gov (United States)

    Blomqvist, J; South, E; Tiukova, I; Tiukova, L; Momeni, M H; Hansson, H; Ståhlberg, J; Horn, S J; Schnürer, J; Passoth, V

    2011-07-01

    Testing the ability of the alternative ethanol production yeast Dekkera bruxellensis to produce ethanol from lignocellulose hydrolysate and comparing it to Saccharomyces cerevisiae. Industrial isolates of D. bruxellensis and S. cerevisiae were cultivated in small-scale batch fermentations of enzymatically hydrolysed steam exploded aspen sawdust. Different dilutions of hydrolysate were tested. None of the yeasts grew in undiluted or 1:2 diluted hydrolysate [final glucose concentration always adjusted to 40 g l⁻¹ (0.22 mol l⁻¹)]. This was most likely due to the presence of inhibitors such as acetate or furfural. In 1:5 hydrolysate, S. cerevisiae grew, but not D. bruxellensis, and in 1:10 hydrolysate, both yeasts grew. An external vitamin source (e.g. yeast extract) was essential for growth of D. bruxellensis in this lignocellulosic hydrolysate and strongly stimulated S. cerevisiae growth and ethanol production. Ethanol yields of 0.42 ± 0.01 g ethanol (g glucose)⁻¹ were observed for both yeasts in 1:10 hydrolysate. In small-scale continuous cultures with cell recirculation, with a gradual increase in the hydrolysate concentration, D. bruxellensis was able to grow in 1:5 hydrolysate. In bioreactor experiments with cell recirculation, hydrolysate contents were increased up to 1:2 hydrolysate, without significant losses in ethanol yields for both yeasts and only slight differences in viable cell counts, indicating an ability of both yeasts to adapt to toxic compounds in the hydrolysate. Dekkera bruxellensis and S. cerevisiae have a similar potential to ferment lignocellulose hydrolysate to ethanol and to adapt to fermentation inhibitors in the hydrolysate. This is the first study investigating the potential of D. bruxellensis to ferment lignocellulosic hydrolysate. Its high competitiveness in industrial fermentations makes D. bruxellensis an interesting alternative for ethanol production from those substrates. © 2011 The Authors. Letters in Applied

  3. Accelerating Yeast Prion Biology using Droplet Microfluidics

    Science.gov (United States)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  4. Hydrothermal treatment of oleaginous yeast for the recovery of free fatty acids for use in advanced biofuel production.

    Science.gov (United States)

    Espinosa-Gonzalez, Isabel; Parashar, Archana; Bressler, David C

    2014-10-10

    Microbial oils hold great potential as a suitable feedstock for the renewable production of biofuels. Specifically, the use of oleaginous yeasts offers several advantages related to cultivation and quality of lipid products. However, one of the major bottlenecks for large-scale production of yeast oils is found in the lipid extraction process. This work investigated the hydrothermal treatment of oleaginous yeast for hydrolysis and lipid extraction resulting in fatty acids used for biofuel production. The oleaginous yeast, Cryptococcus curvatus, was grown in 5 L bioreactors and the biomass slurry with 53±4% lipid content (dry weight basis) was treated at 280 °C for 1h with an initial pressure of 500 psi in batch stainless steel reactors. The hydrolysis product was separated and each of the resulting streams was further characterized. The hexane soluble fraction contained fatty acids from the hydrolysis of yeast triacylglycerides, and was low in nitrogen and minerals and could be directly integrated as feedstock into pyrolysis processing to produce biofuels. The proposed hydrothermal treatment addresses some current technological bottlenecks associated with traditional methodologies such as dewatering, oil extraction and co-product utilization. It also enhances the feasibility of using microbial biomass for production of renewable fuels and chemicals.

  5. Viability and Acidification by Promising Yeasts Intended as Potential Starter Cultures for Rice-based Beverages

    Directory of Open Access Journals (Sweden)

    Antonio Bevilacqua

    2015-08-01

    Full Text Available Over the last years, some innovative cereal-based beverages were designed using beneficial lactic acid bacteria; however, few data are available on the potential role of yeasts. The main topic of this research was to investigate the suitability of four promising yeast strains (Saccharomyces cerevisiae var. boulardii, Kluyveromyces lactis, Saccharomyces pastorianus and Kazachstania exigua as potential starter cultures for rice-based beverages. This aim was achieved through some intermediate scientific aims, i.e., by assessing cell viability and acidification in different cereal substrates (malt extract, soft wheat, rice and kamut flours; thereafter by studying acidification and persistence in an organic rice drink during a prolonged storage at 25 and 4°C. Rice flour provided appropriate growth for all the strains. K. exigua and S. pastorianus experienced a relatively fast acidification within 24 h. After 40 d the yeasts showed similar cell counts (ca. 7 log cfu/mL and acidification (experienced a relatively fast acidification within 24 h. After 40 d the yeasts showed similar cell counts (ca. 7 log cfu/mL and acidification (ΔpH of ca. 2.7 at 25°C and ca. 1.2-1.4 at 4°C in the organic rice drink. The evaluation of viability and acidification by promising candidates should be a simple procedure to screen yeast strains for potential use as starter cultures to design new rice-fermented functional beverages.

  6. Minor Volatile Compounds Profiles of ‘Aligoté’ Wines Fermented with Different Yeast Strains

    Directory of Open Access Journals (Sweden)

    Florin VARARU

    2015-03-01

    Full Text Available The aroma of wine can be classified accordingly to its origin, in varietal aroma, pre-fermentative aroma, fermentative aroma and post-fermentative aroma. Although a number of flavor components are found in the original grape, the dominant and major compounds contributing to white wines are formed during alcoholic fermentation, in concordance with the yeast strain used. In order to highlight the influence of the yeast strain to the aroma composition of wines, wine samples from ‘Aligoté’ grape variety made with 8 different yeast strains were subjected to stir bar sorptive extraction-gas chromatography-mass spectrometry (SBSE-GC-MS analyses. Also, a sensorial analysis of the studied wines was performed by a tasting panel consisting of 15 tasters. 38 minor volatile compounds were quantified by SBSE-GC-MS technique. Different concentration of the same compound and different aroma compounds were identified and quantified in wines obtained with different yeast strains. A wine finger printing was obtained by multivariate data analyses of aroma compounds grouped by chemical families. The analytical and sensorial analysis of the wine samples confirms that there are differences in aroma composition of the wines made with different yeast strains.

  7. Spoilage of vacuum-packed beef by the yeast Kazachstania psychrophila.

    Science.gov (United States)

    Kabisch, Jan; Erl-Höning, Constanze; Wenning, Mareike; Böhnlein, Christina; Gareis, Manfred; Pichner, Rohtraud

    2016-02-01

    A survey of the psychrotolerant yeast microbiota of vacuum-packed beef was conducted between 2010 and 2012. Chilled vacuum-packed beef (n = 50) sampled from 15 different producers was found to have a mean psychrotolerant yeast count of 3.76 log cfu per cm(2). During this assessment, a recently described yeast named Kazachstania psychrophila was shown to be associated with this product. In order to gain basic knowledge about the spoilage potential of K. psychrophila in vacuum-packed beef, challenge studies were performed and the survival of three different K. psychrophila strains was analyzed during storage of artificially contaminated beef. Beef samples were inoculated with the yeasts at a contamination level of 2 log cfu per cm(2). Survival and growth of K. psychrophila strains was monitored on malt extract agar at regular intervals over 84 days. Kazachstania levels rapidly increased about 5 log units within 16 days under chill conditions (4 °C). Gas bubbles were observed after 16 days, while discoloration and production of off-flavors became evident after 42 days in inoculated samples. This study demonstrates for the first time, that the psychrotolerant yeast K. psychrophila is a dominant spoilage microorganism of vacuum-packed beef products stored at low temperatures, causing sensory defects which result in reduced shelf life, and consequently in considerable economic losses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Optimum Production and Characterization of an Acid Protease from Marine Yeast Metschnikowia reukaufii W6b

    Institute of Scientific and Technical Information of China (English)

    LI Jing; PENG Ying; WANG Xianghong; CHI Zhenming

    2010-01-01

    The marine yeast strain W6b isolated from sediment of the South China Sea was found to produce a cell-bound acid protease.The crude acid protease produced by this marine yeast showed the highest activity at pH 3.5 and 40 ℃.The optimal pH and temperature for the crude acid protease were in agreement with those for acid protease produced by the terrestrial yeasts.The optimal medium of the acid protease production was seawater containing 1.0% glucose,1.5% casein,and 0.5% yeast extract,and the optimal cultivation conditions of the acid protease production were pH 4.0,a temperature of 25 ℃ and a shaking speed of 140 rmin-1.Under the optimal conditions,72.5 UmL-1 of acid protease activity could be obtained in cell suspension within 48 h of fermentation at shake flask level.The acid protease production was induced by high-molecular-weight nitrogen sources and repressed by low-molecular-weight nitrogen sources.Skimmed-milk-clotting test showed that the crude acid protease from the cell suspension of the yeast W6b had high skimmed milk coagulability.The acid protease produced by M.reukaufii W6b may have highly potential applications in cheese,food and fermentation industries.

  9. Optimum production and characterization of an acid protease from marine yeast Metschnikowia reukaufii W6b

    Science.gov (United States)

    Li, Jing; Peng, Ying; Wang, Xianghong; Chi, Zhenming

    2010-12-01

    The marine yeast strain W6b isolated from sediment of the South China Sea was found to produce a cell-bound acid protease. The crude acid protease produced by this marine yeast showed the highest activity at pH 3.5 and 40 °C. The optimal pH and temperature for the crude acid protease were in agreement with those for acid protease produced by the terrestrial yeasts. The optimal medium of the acid protease production was seawater containing 1.0% glucose, 1.5% casein, and 0.5% yeast extract, and the optimal cultivation conditions of the acid protease production were pH 4.0, a temperature of 25 °C and a shaking speed of 140 rmin-1. Under the optimal conditions, 72.5 UmL-1 of acid protease activity could be obtained in cell suspension within 48 h of fermentation at shake flask level. The acid protease production was induced by high-molecular-weight nitrogen sources and repressed by low-molecular-weight nitrogen sources. Skimmed-milk-clotting test showed that the crude acid protease from the cell suspension of the yeast W6b had high skimmed milk coagulability. The acid protease produced by M. reukaufii W6b may have highly potential applications in cheese, food and fermentation industries.

  10. Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model.

    Science.gov (United States)

    Michel, Maximilian; Kopecká, Jana; Meier-Dörnberg, Tim; Zarnkow, Martin; Jacob, Fritz; Hutzler, Mathias

    2016-04-01

    This study describes a screening system for future brewing yeasts focusing on non-Saccharomyces yeasts. The aim was to find new yeast strains that can ferment beer wort into a respectable beer. Ten Torulaspora delbrueckii strains were put through the screening system, which included sugar utilization tests, hop resistance tests, ethanol resistance tests, polymerase chain reaction fingerprinting, propagation tests, amino acid catabolism and anabolism, phenolic off-flavour tests and trial fermentations. Trial fermentations were analysed for extract reduction, pH drop, yeast concentration in bulk fluid and fermentation by-products. All investigated strains were able to partly ferment wort sugars and showed high tolerance to hop compounds and ethanol. One of the investigated yeast strains fermented all the wort sugars and produced a respectable fruity flavour and a beer of average ethanol content with a high volatile flavour compound concentration. Two other strains could possibly be used for pre-fermentation as a bio-flavouring agent for beers that have been post-fermented by Saccharomyces strains as a consequence of their low sugar utilization but good flavour-forming properties.

  11. Interaction of Lactobacillus vini with the ethanol-producing yeasts Dekkera bruxellensis and Saccharomyces cerevisiae.

    Science.gov (United States)

    Tiukova, Ievgeniia; Eberhard, Thomas; Passoth, Volkmar

    2014-01-01

    Lactobacillus vini was recently described as a contaminant in industrial ethanol fermentations and its co-occurrence with Dekkera bruxellensis was noted. We investigated the growth characteristics of L. vini in cocultivation together with either Saccharomyces cerevisiae or D. bruxellensis. Lower cell numbers of both the yeasts and L. vini as well as a decrease in ethanol and lactate formation in mixed batch cultures compared with pure cultures were noted. L. vini formed cell aggregates (flocs) in all cultivation media with different shapes in Man-Rogosa-Sharpe and yeast extract-peptone-dextrose media. Flocs' size and proportion of cells bound to flocs increased with increasing ethanol concentration. In coculture, formation of lactic acid bacteria-yeast cell aggregates consisting of a bacterial core with an outer layer of yeast cells was observed. L. vini-D. bruxellensis flocs had a bigger surface, due to cells protruding from the pseudomycelium. The involvement of mannose residues in the flocculation between L. vini and yeasts was tested. The presence of mannose induced deflocculation in a concentration-dependent manner. Less mannose was required for the deflocculation of D. bruxellensis as compared with S. cerevisiae. © 2013 The Authors. Biotechnology and Applied Biochemistry published by Wiley Periodicals, Inc. on behalf of the International Union of Biochemistry and Molecular Biology, Inc.

  12. Enhancement of anaerobic degradation of azo dye with riboflavin and nicotinamide adenine dinucleotide harvested by osmotic lysis of wasted fermentation yeasts.

    Science.gov (United States)

    Victral, Davi M; Dias, Heitor R A; Silva, Silvana Q; Baeta, Bruno E L; Aquino, Sérgio F

    2017-02-01

    The study presented here aims at identifying the source of redox mediators (riboflavin), electron carriers nicotinamide adenine dinucleotide (NAD) and carbon to perform decolorization of azo dye under anaerobic conditions after osmotic shock pretreatment of residual yeast from industrial fermentation. Pretreatment conditions were optimized by Doehlert experiment, varying NaCl concentration, temperature, yeast density and time. After the optimization, the riboflavin concentration in the residual yeast lysate (RYL) was 46% higher than the one present in commercial yeast extract. Moreover, similar NAD concentration was observed in both extracts. Subsequently, two decolorization experiments were performed, that is, a batch experiment (48 h) and a kinetic experiment (102 h). The results of the batch experiment showed that the use of the RYL produced by the optimized method increased decolorization rates and led to color removal efficiencies similar to those found when using the commercial extract (∼80%) and from 23% to 50% higher when compared to the control (without redox mediators). Kinetics analysis showed that methane production was also higher in the presence of yeast extract and RYL, and biogas was mostly generated after stabilization of color removal. In all kinetics experiments the azo dye degradation followed the pseudo-second-order model, which suggested that there was a concomitant adsorption/degradation of the dye on the biomass cell surface. Therefore, results showed the possibility of applying the pretreated residual yeast to improve color removal under anaerobic conditions, which is a sustainable process.

  13. Corning and Kroger turn whey to yeast

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-16

    It is reported that Corning and Kroger intend to build a 35,000 sq. ft. plant in Winchester, Ky., that will turn whey into bakers' yeast. The plant will convert whey from Kroger's dairies into bakers' yeast, supplying about 60% of the yeast needed for nine Kroger bakeries. It will also produce syrups and whey protein concentrate for use in other food processing activities. In addition to making useful products, the project will convert the whey to glucose and galactose. The protein component of the whey will be concentrated and used in various foods and feeds.

  14. Pseudoporphyria associated with consumption of brewers' yeast.

    Science.gov (United States)

    Lim, C K; Rideout, J M; Peters, T J

    1984-06-01

    A case of pseudoporphyria associated with excessive consumption of brewers ' yeast was studied. Detailed analysis of the yeast tablets by high performance liquid chromatography showed the presence of dicarboxylic deuteroporphyrin , mesoporphyrin, and protoporphyrin; coproporphyrin I and III isomers; and uroporphyrin I and III isomers. The faecal porphyrin concentration of the patient taking yeast tablets was significantly increased, resembling the excretion pattern in variegate porphyria. Any patient showing an unusual porphyrin excretion pattern on high performance liquid chromatography should be investigated for a possible dietary cause.

  15. 21 CFR 172.325 - Bakers yeast protein.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is the...

  16. Presence and changes in populations of yeasts on raw and processed poultry products stored at refrigeration temperature.

    Science.gov (United States)

    Ismail, S A; Deak, T; El-Rahman, H A; Yassien, M A; Beuchat, L R

    2000-12-05

    A study was undertaken to determine populations and profiles of yeast species on fresh and processed poultry products upon purchase from retail supermarkets and after storage at 5 degrees C until shelf life expiration, and to assess the potential role of these yeasts in product spoilage. Fifty samples representing 15 commercial raw, marinated, smoked, or roasted chicken and turkey products were analyzed. Yeast populations were determined by plating on dichloran rose bengal chloramphenicol (DRBC) agar and tryptone glucose yeast extract (TGY) agar. Proteolytic activity was determined using caseinate and gelatin agars and lipolytic activity was determined on plate count agar supplemented with tributyrin. Populations of aerobic microorganisms were also determined. Initial populations of yeasts (log10 cfu/g) ranged from less than 1 (detection limit) to 2.89, and increased by the expiration date to 0.37-5.06, indicating the presence of psychrotrophic species. Highest initial populations were detected in raw chicken breast, wings, and ground chicken, as well as in turkey necks and legs, whereas roasted chicken and turkey products contained less than 1 log10 cfu/g. During storage, yeast populations increased significantly (P sausage. Isolates (152 strains) of yeasts from poultry products consisted of 12 species. Yarrowia lipolytica and Candida zeylanoides were predominant, making up 39 and 26% of the isolates, respectively. Six different species of basidiomycetous yeasts representing 24% of the isolates were identified. Most Y. lipolytica strains showed strong proteolytic and lipolytic activities, whereas C. zeylanoides was weakly lipolytic. Results suggest that yeasts, particularly Y. lipolytica, may play a more prominent role than previously recognized in the spoilage of fresh and processed poultry stored at 5 degrees C.

  17. Statistical media optimization for the biomass production of postharvest biocontrol yeast Rhodosporidium paludigenum.

    Science.gov (United States)

    Wang, Peng; Liu, Xia; Wang, Yifei; Ruan, Hui; Zheng, XiaoDong

    2011-01-01

    A cane molasses-based medium for the biomass production of biocontrol agent Rhodosporidium paludigenum was statistically optimized. Molasses concentration (after pretreatment), yeast extract, and initial pH were identified by the Plackett-Burman design to show significant influence on the biomass production. The three factors were further optimized by central composite design and response-surface methodology. The statistical analysis indicated the optimum values of the variables were 89.98 g/L for cane molasses, 2.35 g/L for yeast extract and an initial pH of 8.48. The biomass yield at the optimal culture achieved 15.89 g/L in flask fermentation, which was 2.1 times higher than that at the initial NYDB medium. In a 10-L fermenter, 18.97 g/L of biomass was obtained after 36 hr of cultivation. Moreover, the biocontrol efficacy of the yeast was investigated after culture optimization. The results showed the yeast harvested in the optimal medium maintained its initial biocontrol properties by reducing the percentage of decayed apples to below 20%.

  18. YeastWeb: a workset-centric web resource for gene family analysis in yeast

    Directory of Open Access Journals (Sweden)

    Bao Haihua

    2010-07-01

    Full Text Available Abstract Background Currently, a number of yeast genomes with different physiological features have been sequenced and annotated, which provides invaluable information to investigate yeast genetics, evolutionary mechanism, structure and function of gene families. Description YeastWeb is a novel database created to provide access to gene families derived from the available yeast genomes by assigning the genes into putative families. It has many useful features that complement existing databases, such as SGD, CYGD and Génolevures: 1 Detailed computational annotation was conducted with each entry with InterProScan, EMBOSS and functional/pathway databases, such as GO, COG and KEGG; 2 A well established user-friendly environment was created to allow users to retrieve the annotated genes and gene families using functional classification browser, keyword search or similarity-based search; 3 Workset offers users many powerful functions to manage the retrieved data efficiently, associate the individual items easily and save the intermediate results conveniently; 4 A series of comparative genomics and molecular evolution analysis tools are neatly implemented to allow users to view multiple sequence alignments and phylogenetic tree of gene families. At present, YeastWeb holds the gene families clustered from various MCL inflation values from a total of 13 available yeast genomes. Conclusions Given the great interest in yeast research, YeastWeb has the potential to become a useful resource for the scientific community of yeast biologists and related researchers investigating the evolutionary relationship of yeast gene families. YeastWeb is available at http://centre.bioinformatics.zj.cn/Yeast/.

  19. Valuation of brewers spent yeast polysaccharides: a structural characterization approach.

    Science.gov (United States)

    Pinto, Mariana; Coelho, Elisabete; Nunes, Alexandra; Brandão, Tiago; Coimbra, Manuel A

    2015-02-13

    Brewers spent yeast (BSY) is a by-product from beer industry that can be exploited as source of glucans and mannoproteins, with potential biological activities. In order to solubilize these carbohydrate-rich polymeric materials, a sequential extraction with hot water and alkaline solutions (0.1-8 M KOH) was performed. Mannoproteins were mainly (85%) extracted with 4 M KOH whereas glucans were extracted with 8 M KOH and in an amount that accounted only for 34% of total glucose. Final residue still accounted for 34% of the initial glucans and contained 98% of glucose. Cellulase and α-amylase treatments showed the presence of both α- and β-(1→4)-Glc linkages. To promote total solubilization of these insoluble glucans, the final residue was submitted to a partial acid hydrolysis. This work is the first report showing that the most abundant polysaccharides in BSY are polymers that contain structural features similar to cellulose, thus justifying their resistance to alkaline extractions, acid hydrolysis, and insolubility in water.

  20. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  1. Structure and function of yeast alcohol dehydrogenase

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2000-04-01

    Full Text Available 1. Introduction 2. Isoenzymes of YADH 3. Substrate specificity 4. Kinetic mechanism 5. Primary structure 6. The active site 7. Mutations in the yeast enzyme 8. Chemical mechanism 9. Binding of coenzymes 10. Hydride transfer

  2. Monitoring Air Quality with Leaf Yeasts.

    Science.gov (United States)

    Richardson, D. H. S.; And Others

    1985-01-01

    Proposes that leaf yeast serve as quick, inexpensive, and effective techniques for monitoring air quality. Outlines procedures and provides suggestions for data analysis. Includes results from sample school groups who employed this technique. (ML)

  3. Optimization of yeast (Saccharomyces cerevisiae) RNA isolation ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... the center of research ranging from studies of human disease genes to experimental evolution and systems biology (Landry et al., 2006). ... cells and Lyticase as the most efficient in producing high quality yeast total RNA.

  4. yeast transformation of Mucor circinelloides Tieghe

    African Journals Online (AJOL)

    GRACE

    2006-05-02

    May 2, 2006 ... messengers in signal transduction and consequent yeast induction. Whereas thallic .... part of the structural component of regulatory proteins, protein kinase C (PKC, .... the 0.25 mM Zn2+- level separated into two subsets, with.

  5. Continuous ethanol fermentation by beer yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Kenji; Morimura, Shigeru; Shima, Noriyuki; Asano, Shinichi; Yamadaki, Motozumi; Miyazawa, Toshiki

    1987-01-25

    Cooked and uncooked continuous fermentation tests and a bench-scale continuous fermentation test were carried out using a flocculating yeast, beer yeast IFO-2018, and using molasses of various origin. Heat of fermentation was measured at the same time. High productivity was found in a non-cooking continuous fermentation, but lowering of a flocculating ability was a problem. A theoretical equation for calculating the heat of fermentation was introduced and its adaptability was examined. The continuous fermentation unit was a single tank type using a tower type fermentor. The fermentor had a capacity of 0.7 l actual volume, made of glass, and consisted of the two parts, a flowing part and a precipitation/separation part. The yeast used was Saccharomyces crevisiae IFO-2018 in comparison with such yeast as S. cerevisiae IFO-0224 and S. cervisiae EP-1. (7 figs,3 tabs,21 refs)

  6. Genomic Evolution of the Ascomycete Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  7. The filtration properties of a dimorphic yeast

    OpenAIRE

    McCarthy, Anthony A

    2001-01-01

    A dimorphic yeast Kluyveromyces marxianu var. marxianus NRRLy2415 which exhibits a wide range of mean morphological forms was used as a model organism to investigate the role of cell morphology on the dead-end and crossflow filtration behaviour. Varying the culturing conditions produced cell suspensions of different mean morphology. Batch fermentations were used to produce yeast-like morphologies and continuous cultures produced cells more mycelial in nature. Semi-automated image analysis was...

  8. The wine and beer yeast Dekkera bruxellensis

    OpenAIRE

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P.; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beer...

  9. Production of inulinase from Kluyveromyces marxianus using dahlia tuber extract.

    Science.gov (United States)

    Jain, Sumat Chand; Jain, P C; Kango, Naveen

    2012-01-01

    Various carbon sources were evaluated for production of inulinase by yeast, Kluyveromyces marxianus MTCC 3995. Highest inulinase activity was observed with Dahlia extract (25.3 nkat mL(-1)) as carbon source. The enzyme activity was 1.4 folds higher than that observed in media containing pure chicory inulin (17.8 nkat mL(-1)). The yeast showed good growth on a simple medium containing dahlia extract (20% w/v) and yeast extract (2%w/v) as carbon and nitrogen source respectively, in 96 h. at 28°C and 120 rpm. Lowest inulinase yield (4.8 nkat mL(-1)) was seen in the medium containing glucose as C-source. Although varied inulinase levels were noticed on different C- sources, Inulinase: Sucrase (I/S) ratios were noticed to be similar. Among various protein sources tested, yeast extract was found to be the best source followed by beef extract (17.9 nkat mL(-1)) and peptone (13.8 nkat mL(-1)). The enzyme was optimally active at pH (4.0) and 50°C. TLC analysis of end product revealed that inulinase hydrolyzed inulin exclusively into fructose. Results suggest that the dahlia extract induced exoinulinase synthesis in Kluyveromyces marxianus and can be utilized as a potential substrate for inulinase production.

  10. Production of inulinase from Kluyveromyces marxianus using Dahlia tuber extract

    Directory of Open Access Journals (Sweden)

    Sumat Chand Jain

    2012-03-01

    Full Text Available Various carbon sources were evaluated for production of inulinase by yeast, Kluyveromyces marxianus MTCC 3995. Highest inulinase activity was observed with Dahlia extract (25.3 nkat mL-1 as carbon source. The enzyme activity was 1.4 folds higher than that observed in media containing pure chicory inulin (17.8 nkat mL-1. The yeast showed good growth on a simple medium containing dahlia extract (20% w/v and yeast extract (2%w/v as carbon and nitrogen source respectively, in 96 h. at 28°C and 120 rpm. Lowest inulinase yield (4.8 nkat mL-1 was seen in the medium containing glucose as C-source. Although varied inulinase levels were noticed on different C- sources, Inulinase: Sucrase (I/S ratios were noticed to be similar. Among various protein sources tested, yeast extract was found to be the best source followed by beef extract (17.9 nkat mL-1 and peptone (13.8 nkat mL-1. The enzyme was optimally active at pH (4.0 and 50°C. TLC analysis of end product revealed that inulinase hydrolyzed inulin exclusively into fructose. Results suggest that the dahlia extract induced exoinulinase synthesis in Kluyveromyces marxianus and can be utilized as a potential substrate for inulinase production.

  11. Flor Yeast: New Perspectives Beyond Wine Aging

    Science.gov (United States)

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C.; Mannazzu, Ilaria; Coi, Anna L.; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed. PMID:27148192

  12. Flor yeast: new perspectives beyond wine ageing

    Directory of Open Access Journals (Sweden)

    Jean-luc eLegras

    2016-04-01

    Full Text Available The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the ageing of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air-liquid biofilm on the wine surface, which is also known as the velum or flor. This behaviour is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodelling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilisation within a fungal hyphae framework, will be discussed.

  13. Revaluation of Waste Yeast from Beer Production

    Directory of Open Access Journals (Sweden)

    Nicoleta Suruceanu

    2013-11-01

    Full Text Available Brewing yeast is an important waste product from beer production. The valorification of slurry yeast mainly consists of separation of vitamins and important nitrogen compounds. The hops compounds, one of the most important raw materials in beer technology are removed beforehand valorification. The prenylflavonoids compounds from hops are important bioactive compounds that can be revaluation with proper technology. Revaluation of prenylflavonoids from waste yeast into dietary supplement, identification and quantification of xanthohumol by HPLC method. Waste yeast from brewery pilot plant of USAMV Cluj Napoca it was dried by atomization and the powder was analyzed on xanthohumol content by HPLC method. For quantification a calibration curve it was used. The process of drying by atomisation lead to a powder product. It was used malt dextrin powder for stabilisation. The final product it was encapsulated. The xanthohumol content of powdered yeast it was 1.94 µg/ml. In conclusion the slurry yeast from beer production it is an important source of prenylflavonoids compounds.

  14. Physiological and environmental control of yeast prions.

    Science.gov (United States)

    Chernova, Tatiana A; Wilkinson, Keith D; Chernoff, Yury O

    2014-03-01

    Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways, and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions.

  15. Novel brewing yeast hybrids: creation and application.

    Science.gov (United States)

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2017-01-01

    The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.

  16. Separation of selenium compounds by CE-ICP-MS in dynamically coated capillaries applied to selenized yeast samples

    DEFF Research Database (Denmark)

    Bendahl, Lars; Gammelgaard, Bente

    2004-01-01

    The selenium species in nutritional supplement tablets, based on selenized yeast, were separated by capillary zone electrophoresis using capillaries coated dynamically with poly(vinyl sulfonate) and detected by ICP-MS. Sample pre-treatment consisted of cold-water extraction by sonication and subs......The selenium species in nutritional supplement tablets, based on selenized yeast, were separated by capillary zone electrophoresis using capillaries coated dynamically with poly(vinyl sulfonate) and detected by ICP-MS. Sample pre-treatment consisted of cold-water extraction by sonication......-water extract within 13 min. The efficiency of the system corresponded to 620 000 theoretical plates. When spiking the sample with available standards, co-migration was observed with selenomethionine and selenocystine-Se-methylselenocysteine-the latter species were not separated. When the cold-water extract...

  17. The yeast mitochondrial RNA polymerase specificity factor, MTF1, is similar to bacterial sigma factors.

    Science.gov (United States)

    Jang, S H; Jaehning, J A

    1991-11-25

    We have purified the protein that confers selective promoter recognition on the core subunit of the yeast mitochondrial RNA polymerase. The N-terminal sequence of the 43-kDa specificity factor identified it as the product of the MTF1 gene described by Lisowsky and Michaelis (1988). We confirmed that MTF1 encoded the specificity factor by analyzing extracts from a yeast strain bearing a disruption of the gene. The extracts contained normal levels of core RNA polymerase but lacked selective transcription activity; adding the purified 43-kDa protein restored selective transcription. Comparison of the MTF1 protein sequence to the family of bacterial sigma factors has revealed striking similarity to domains identified with--10 promoter recognition, promoter melting, and holoenzyme stability.

  18. Evaluation of corn distillers dried grains with solubles and brewers yeast in diets for channel catfish Ictalurus punctatus

    Science.gov (United States)

    A study was conducted to examine the use of distillers grains with solubles (DDGS), ethanol extracted DDGS (EDDGS), and brewers yeast in channel catfish, Ictalurus punctatus, diets. Diets containing these ingredients were compared with all-plant and fish meal control diets. Juvenile channel catfish ...

  19. Pimenta pseudocaryophyllus inhibits virulence factors and promotes metabolic changes in Candida yeast

    Directory of Open Access Journals (Sweden)

    Flávio Ezeddinne El Assal

    2014-10-01

    Full Text Available Introduction This is the first study to examine the in vitro susceptibility and the expression of virulence factors in Candida species in the presence of Pimenta pseudocaryophyllus (Gomes L.R. Landrum (Myrtaceae, a Brazilian plant known as paucravo. Additionally, the mechanisms of action of the crude ethanol extract and the ethyl acetate and aqueous fractions of this plant were investigated. Methods The in vitro susceptibility of Candida was tested using the broth microdilution method, whereas an XTT reduction assay was used for biofilms. Adherence was determined by counting the number of yeast cells that adhered to 100 oral epithelial cells, and hyphal formation was verified in the hyphal induction medium M199. Flow cytometry with propidium iodide and FUN-1 was performed to assess the mechanism of action. Results The results revealed that the crude ethanol extract and the ethyl acetate and aqueous fractions of P. pseudocaryophyllus inhibited the growth of Candida isolates at a minimal inhibitory concentration (MIC ranging from 64 to 256µg/mL, whereas the 50% sessile minimal inhibitory concentration (SMIC50 ranged from 512 to >1,024µg/mL. Adherence and hyphal formation were significantly reduced in the presence of the crude ethanol extract and both fractions. Although cell membrane injury was detected, the predominant mechanism of action appeared to be the alteration of yeast metabolism, as demonstrated by flow cytometry. Conclusions Our results indicated that antifungal activity reduced the expression of virulence factors in yeast via the alteration of yeast metabolism, suggesting that the crude extract of P. pseudocaryophyllus and its fractions may contain novel antifungal agents.

  20. Ethanol production by a new pentose-fermenting yeast strain, Scheffersomyces stipitis UFMG-IMH 43.2, isolated from the Brazilian forest.

    Science.gov (United States)

    Ferreira, Adriana D; Mussatto, Solange I; Cadete, Raquel M; Rosa, Carlos A; Silva, Silvio S

    2011-07-01

    The ability of a recently isolated Scheffersomyces stipitis strain (UFMG-IMH 43.2) to produce ethanol from xylose was evaluated. For the assays, a hemicellulosic hydrolysate produced by dilute acid hydrolysis of sugarcane bagasse was used as the fermentation medium. Initially, the necessity of adding nutrients (MgSO(4)·7H(2)O, yeast extract and/or urea) to this medium was verified, and the yeast extract supplementation favoured ethanol production by the yeast. Then, in a second stage, assays under different initial xylose and cell concentrations, supplemented or not with yeast extract, were performed. All these three variables showed significant (p UFMG-IMH 43.2 was demonstrated to be a yeast strain with potential for use in xylose conversion to ethanol. The establishment of the best fermentation conditions was also proved to be of great importance to increasing the product formation by this yeast strain. These findings open up new perspectives for the establishment of a feasible technology for ethanol production from hemicellulosic hydrolysates.

  1. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Young-Hyo Ryu

    Full Text Available Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH· produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.

  2. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.

    Science.gov (United States)

    Ryu, Young-Hyo; Kim, Yong-Hee; Lee, Jin-Young; Shim, Gun-Bo; Uhm, Han-Sup; Park, Gyungsoon; Choi, Eun Ha

    2013-01-01

    Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media) on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose) were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH·) produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment) can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.

  3. Boolean Model of Yeast Apoptosis as a Tool to Study Yeast and Human Apoptotic Regulations

    Science.gov (United States)

    Kazemzadeh, Laleh; Cvijovic, Marija; Petranovic, Dina

    2012-01-01

    Programmed cell death (PCD) is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modeling is becoming promising approach to capture qualitative behavior and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD) in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP) are included in the model. We showed that accumulation of Bax in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behavior. Extended model of humanized yeast gives new insights of how complex human disease like neurodegeneration can initially be tested. PMID:23233838

  4. YeastIP: a database for identification and phylogeny of Saccharomycotina yeasts.

    Science.gov (United States)

    Weiss, Stéphanie; Samson, Franck; Navarro, David; Casaregola, Serge

    2013-02-01

    With the advances in sequencing techniques, identification of ascomycetous yeasts to the species level and phylogeny reconstruction increasingly require curated and updated taxonomic information. A specific database with nucleotide sequences of the most common markers used for yeast taxonomy and phylogeny and a user-friendly interface allowing identification, taxonomy and phylogeny of yeasts species was developed. By 1 September 2012, the YeastIP database contained all the described Saccharomycotina species for which sequences used for taxonomy and phylogeny, such as D1/D2 rDNA and ITS, are available. The database interface was developed to provide a maximum of relevant information and data mining tools, including the following features: (1) the blast n program for the sequences of the YeastIP database; (2) easy retrieval of selected sequences; (3) display of the available markers for each selected group of species; and (4) a tool to concatenate marker sequences, including those provided by the user. The concatenation tool allows phylogeny reconstruction through a direct link to the Phylogeny.fr platform. YeastIP is thus a unique database in that it provides taxonomic information and guides users in their taxonomic analyses. YeastIP facilitates multigenic analysis to encourage good practice in ascomycetous yeast phylogeny (URL: http://genome.jouy.inra.fr/yeastip.). © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Antimycotic activity of 4-thioisosteres of flavonoids towards yeast and yeast-like microorganisms.

    Science.gov (United States)

    Buzzini, Pietro; Menichetti, Stefano; Pagliuca, Chiara; Viglianisi, Caterina; Branda, Eva; Turchetti, Benedetta

    2008-07-01

    Different substituted methoxy- and hydroxy-4-thioisosteres of flavonoids were prepared and their in vitro antimycotic activity towards yeast (Candida spp., Clavispora spp., Cryptococcus spp., Filobasidiella spp., Issatchenkia spp., Pichia spp., Kluyveromyces spp., Saccharomyces spp. and Yarrowia spp.) and yeast-like (Prototheca spp.) microorganisms was tested. Further insights in the biological activities of these antioxidant, oestrogenic and antimicrobial biomimetic derivatives were obtained.

  6. Yeast Interacting Proteins Database: YDR357C, YGL079W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available izes to the endosome; identified as a transcriptional activator in a high-throughput yeast one-hybrid assa...ome; identified as a transcriptional activator in a high-throughput yeast one-hybrid assay Rows with this pr

  7. Yeast Interacting Proteins Database: YEL005C, YGL079W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available endosome; identified as a transcriptional activator in a high-throughput yeast one-hybrid assay Rows with th...protein localizes to the endosome; identified as a transcriptional activator in a high-throughput yeast one-hybrid assay

  8. Yeast Interacting Proteins Database: YPR083W, YMR294W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available Rows with this bait as bait (1) Rows with this bait as prey (0) YMR294W JNM1 Component of the yeast dynactin...as prey (0) Prey ORF YMR294W Prey gene name JNM1 Prey description Component of the yeast dynactin complex, c

  9. Boolean model of Yeast Apoptosis as a tool to study yeast and human apoptotic regulations

    Directory of Open Access Journals (Sweden)

    Laleh eKazemzadeh

    2012-12-01

    Full Text Available Programmed cell death (PCD is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modelling is becoming promising approach to capture qualitative behaviour and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP are included in the model. We showed that accumulation of Bax in in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behaviour. Extended model of humanized yeast gives new insights of how complex human disease like neurodegenration can initially be tested.

  10. NetPhosYeast: prediction of protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Ingrell, C.R.; Miller, Martin Lee; Jensen, O.N.

    2007-01-01

    We here present a neural network-based method for the prediction of protein phosphorylation sites in yeast-an important model organism for basic research. Existing protein phosphorylation site predictors are primarily based on mammalian data and show reduced sensitivity on yeast phosphorylation s...

  11. Yeast Interacting Proteins Database: YFR015C, YFR015C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...ression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into stationary ...tion, nitrogen starvation, environmental stress, and entry into stationary phase Rows with this bait as bait..., the more highly expressed yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental

  12. Role of specific components from commercial inactive dry yeast winemaking preparations on the growth of wine lactic acid bacteria.

    Science.gov (United States)

    Andújar-Ortiz, Inmaculada; Pozo-Bayón, Maria Angeles; García-Ruiz, Almudena; Moreno-Arribas, M Victoria

    2010-07-28

    The role of specific components from inactive dry yeast preparations widely used in winemaking on the growth of three representative wine lactic acid bacteria (Oenococcus oeni, Lactobacillus hilgardii and Pediococcus pentosaceus) has been studied. A pressure liquid extraction technique using solvents of different polarity was employed to obtain extracts with different chemical composition from the inactive dry yeast preparations. Each of the extracts was assayed against the three lactic acid bacteria. Important differences in the effect of the extracts on the growth of the bacteria were observed, which depended on the solvent employed during the extraction, on the type of commercial preparations and on the lactic acid bacteria species. The extracts that exhibited the most different activity were chemically characterized in amino acids, free monosaccharides, monosaccharides from polysaccharides, fatty acids and volatile compounds. In general, specific amino acids and monosaccharides were related to a stimulating effect whereas fatty acid composition and likely some volatile compounds seemed to show an inhibitory effect on the growth of the lactic acid bacteria. These results may provide novel and useful information in trying to obtain better and more specific formulations of winemaking inactive dry yeast preparations.

  13. Terroir of yeasts? – Application of FTIR spectroscopy and molecular methods for strain typing of yeasts

    Directory of Open Access Journals (Sweden)

    Gerhards Daniel

    2015-01-01

    Full Text Available The site specific influence on wine (Terroir is an often by wine producers, consumers and scientists discussed topic in the world of wine. A study on grapes and (spontaneous fermentations from six different vineyards was done to investigate the biodiversity of yeasts and to answer the question if there is a terroir of yeast and how it could be influenced. Randomly isolated yeasts were identified by FTIR-spectroscopy and molecular methods on species and strain level. Vineyard specific yeast floras would be observed but they are not such important as expected. Only a few overlapping strain patterns would be identified during both vintages. The yeast flora of the winery had a huge impact on the spontaneous fermentations, but is not really constant and influenced by different factors from outside.

  14. Tooth extraction

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007630.htm Tooth extraction To use the sharing features on this page, please enable JavaScript. A tooth extraction is a procedure to remove a tooth from ...

  15. Iron-binding properties of sugar cane yeast peptides.

    Science.gov (United States)

    de la Hoz, Lucia; Ponezi, Alexandre N; Milani, Raquel F; Nunes da Silva, Vera S; Sonia de Souza, A; Bertoldo-Pacheco, Maria Teresa

    2014-01-01

    The extract of sugar-cane yeast (Saccharomyces cerevisiae) was enzymatically hydrolysed by Alcalase, Protex or Viscozyme. Hydrolysates were fractionated using a membrane ultrafiltration system and peptides smaller than 5kDa were evaluated for iron chelating ability through measurements of iron solubility, binding capacity and dialyzability. Iron-chelating peptides were isolated using immobilized metal affinity chromatography (IMAC). They showed higher content of His, Lys, and Arg than the original hydrolysates. In spite of poor iron solubility, hydrolysates of Viscozyme provided higher iron dialyzability than those of other enzymes. This means that more chelates of iron or complexes were formed and these kept the iron stable during simulated gastro-intestinal digestion in vitro, improving its dialyzability.

  16. Extrinsic allergic alveolitis induced by the yeast Debaryomyces hansenii.

    Science.gov (United States)

    Yamamoto, Y; Osanai, S; Fujiuchi, S; Yamazaki, K; Nakano, H; Ohsaki, Y; Kikuchi, K

    2002-11-01

    A 65-yr-old female developed cough, fever and dyspnoea following repeated exposure to a home ultrasonic humidifier. High-resolution computed tomography showed ground-glass opacity in both lung fields. Arterial blood gas analysis gave an oxygen tension of 8.38 kPa (63 Torr). Pulmonary function testing revealed restrictive ventilatory impairment with a reduction in the diffusing capacity. The diagnosis of extrinsic allergic alveolitis (EAA) was confirmed by radiographic findings, pathological evidence of alveolitis and reproductive development by a provocation test to the humidifier water. The yeast Debaryomyces Hansenii was the only microorganism cultured from the water of the humidifier. The double diffusion precipitating test and lymphocyte proliferative response was positive for an extract of D. Hansenii, providing evidence to incriminate this fungus. This is the first described case of EAA caused by D. Hansenii.

  17. Hydrolysis of whey lactose using CTAB-permeabilized yeast cells.

    Science.gov (United States)

    Kaur, Gurpreet; Panesar, Parmjit S; Bera, Manav B; Kumar, Harish

    2009-01-01

    Disposal of lactose in whey and whey permeates is one of the most significant problems with regard to economics and environmental impact faced by the dairy industries. The enzymatic hydrolysis of whey lactose to glucose and galactose by beta-galactosidase constitutes the basis of the most biotechnological processes currently developed to exploit the sugar content of whey. Keeping this in view, lactose hydrolysis in whey was performed using CTAB permeabilized Kluyveromyces marxianus cells. Permeabilization of K. marxianus cells in relation to beta-galactosidase activity was carried out using cetyltrimethyl ammonium bromide (CTAB) to avoid the problem of enzyme extraction. Different process parameters (biomass load, pH, temperature, and incubation time) were optimized to enhance the lactose hydrolysis in whey. Maximum hydrolysis (90.5%) of whey lactose was observed with 200 mg DW yeast biomass after 90 min of incubation period at optimum pH of 6.5 and temperature of 40 degrees C.

  18. Production of Aromatic Plant Terpenoids in Recombinant Baker's Yeast.

    Science.gov (United States)

    Emmerstorfer-Augustin, Anita; Pichler, Harald

    2016-01-01

    Plant terpenoids are high-value compounds broadly applied as food additives or fragrances in perfumes and cosmetics. Their biotechnological production in yeast offers an attractive alternative to extraction from plants. Here, we provide two optimized protocols for the production of the plant terpenoid trans-nootkatol with recombinant S. cerevisiae by either (I) converting externally added (+)-valencene with resting cells or (II) cultivating engineered self-sufficient production strains. By synthesis of the hydrophobic compounds in self-sufficient production cells, phase transfer issues can be avoided and the highly volatile products can be enriched in and easily purified from n-dodecane, which is added to the cell broth as second phase.

  19. Super-paramagnetic clustering of yeast gene expression profiles

    CERN Document Server

    Getz, G; Domany, E; Zhang, M Q

    2000-01-01

    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, Super-Paramagnetic Clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

  20. Super-paramagnetic clustering of yeast gene expression profiles

    Science.gov (United States)

    Getz, G.; Levine, E.; Domany, E.; Zhang, M. Q.

    2000-04-01

    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, super-paramagnetic clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

  1. Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions.

    Science.gov (United States)

    Wei, Yongjun; Siewers, Verena; Nielsen, Jens

    2017-02-06

    Cocoa butter (CB) extracted from cocoa beans is the main raw material for chocolate production. However, growing chocolate demands and limited CB production has resulted in a shortage of CB supply. CB is mainly composed of three different kinds of triacylglycerols (TAGs), POP (C16:0-C18:1-C16:0), POS (C16:0-C18:1-C18:0), and SOS (C18:0-C18:1-C18:0). The storage lipids of yeasts, mainly TAGs, also contain relative high-level of C16 and C18 fatty acids and might be used as CB-like lipids (CBL). In this study, we cultivated six different yeasts, including one non-oleaginous yeast strain, Saccharomyces cerevisiae CEN.PK113-7D, and five oleaginous yeast strains, Trichosporon oleaginosus DSM11815, Rhodotorula graminis DSM 27356, Lipomyces starkeyi DSM 70296, Rhodosporidium toruloides DSM 70398, and Yarrowia lipolytica CBS 6124, in nitrogen-limited medium and compared their CBL production ability. Under the same growth conditions, we found that TAGs were the main lipids in all six yeasts and that T. oleaginosus can produce more TAGs than the other five yeasts. Less than 3% of the total TAGs were identified as potential SOS in the six yeasts. However, T. oleaginosus produced 27.8% potential POP and POS at levels of 378 mg TAGs/g dry cell weight, hinting that this yeast may have potential as a CBL production host after further metabolic engineering in future.

  2. Mutational analysis of yeast profilin.

    Science.gov (United States)

    Haarer, B K; Petzold, A S; Brown, S S

    1993-12-01

    We have mutated two regions within the yeast profilin gene in an effort to functionally dissect the roles of actin and phosphatidylinositol 4,5-bisphosphate (PIP2) binding in profilin function. A series of truncations was carried out at the C terminus of profilin, a region that has been implicated in actin binding. Removal of the last three amino acids nearly eliminated the ability of profilin to bind polyproline in vitro but had no dramatic in vivo effects. Thus, the extreme C terminus is implicated in polyproline binding, but the physiological relevance of this interaction is called into question. More extensive truncation, of up to eight amino acids, had in vivo effects of increasing severity and resulted in changes in conformation and expression level of the mutant profilins. However, the ability of these mutants to bind actin in vitro was not eliminated, suggesting that this region cannot be solely responsible for actin binding. We also mutagenized a region of profilin that we hypothesized might be involved in PIP2 binding. Alteration of basic amino acids in this region produced mutant profilins that functioned well in vivo. Many of these mutants, however, were unable to suppress the loss of adenylate cyclase-associated protein (Cap/Srv2p [A. Vojtek, B. Haarer, J. Field, J. Gerst, T. D. Pollard, S. S. Brown, and M. Wigler, Cell 66:497-505, 1991]), indicating that a defect could be demonstrated in vivo. In vitro assays demonstrated that the inability to suppress loss of Cap/Srv2p correlated with a defect in the interaction with actin, independently of whether PIP2 binding was reduced. Since our earlier studies of Acanthamoeba profilins suggested the importance of PIP2 binding for suppression, we conclude that both activities are implicated and that an interplay between PIP2 binding and actin binding may be important for profilin function.

  3. Baker's yeast: production of D- and L-3-hydroxy esters

    DEFF Research Database (Denmark)

    Dahl, Allan Carsten; Madsen, Jørgen Øgaard

    1998-01-01

    Baker's yeast grown under oxygen limited conditions and used in the reduction of 3-oxo esters results in a shift of the stereoselectivity of the yeast towards D-hydroxy esters as compared with ordinary baker's yeast. The highest degree of stereoselectivity was obtained with growing yeast or yeast...... harvested while growing. In contrast, the stereoselectivity was shifted towards L-hydroxy esters when the oxo esters were added slowly to ordinary baker's yeast supplied with gluconolactone as co-substrate. The reduction rate with gluconolactone was increased by active aeration. Ethyl L-(S)-3...

  4. Early commitment of yeast pre-mRNA to the spliceosome pathway.

    OpenAIRE

    Legrain, P; Seraphin, B; Rosbash, M

    1988-01-01

    Pre-mRNA splicing in vitro is preceded by complex formation (spliceosome assembly). U2 small nuclear RNA (snRNA) is found in the earliest form of the spliceosome detected by native gel electrophoresis, both in Saccharomyces cerevisiae and in metazoan extracts. To examine the requirements for the formation of this early complex (band III) in yeast extracts, we cleaved the U2 snRNA by oligonucleotide-directed RNase H digestion. U2 snRNA depletion by this means inhibits both splicing and band II...

  5. Chemotyping of yeast mutants using robotics.

    Science.gov (United States)

    Rieger, K J; El-Alama, M; Stein, G; Bradshaw, C; Slonimski, P P; Maundrell, K

    1999-07-01

    By now, the EUROFAN programme for the functional analysis of genes from the yeast genome has attained its cruising speed. Indeed, several hundreds of yeast mutants with no phenotype as tested by growth on standard media and no significant sequence similarity to proteins of known function are available through the efforts of various laboratories. Based on the methodology initiated during the pilot project on yeast chromosome III (Yeast 13, 1547-1562, 1997) we adapted it to High Throughput Screening (HTS), using robotics. The first 100 different gene deletions from EUROSCARF, constructed in an FY1679 strain background, were run against a collection of about 300 inhibitors. Many of these inhibitors have not been reported until now to interfere in vivo with growth of Saccharomyces cerevisiae. In the present paper we provide a list of novel growth conditions and a compilation of 49 yeast deletants (from chromosomes II, IV, VII, X, XIV, XV) corresponding to 58% of the analysed genes, with at least one clear and stringent phenotype. The majority of these deletants are sensitive to one or two compounds (monotropic phenotype) while a distinct subclass of deletants displays a hyper-pleiotropic phenotype with sensitivities to a dozen or more compounds. Therefore, chemotyping of unknown genes with a large spectrum of drugs opens new vistas for a more in-depth functional analysis and a more precise definition of molecular targets.

  6. Extension of yeast chronological lifespan by methylamine.

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar

    Full Text Available BACKGROUND: Chronological aging of yeast cells is commonly used as a model for aging of human post-mitotic cells. The yeast Saccharomyces cerevisiae grown on glucose in the presence of ammonium sulphate is mainly used in yeast aging research. We have analyzed chronological aging of the yeast Hansenula polymorpha grown at conditions that require primary peroxisome metabolism for growth. METHODOLOGY/PRINCIPAL FINDINGS: The chronological lifespan of H. polymorpha is strongly enhanced when cells are grown on methanol or ethanol, metabolized by peroxisome enzymes, relative to growth on glucose that does not require peroxisomes. The short lifespan of H. polymorpha on glucose is mainly due to medium acidification, whereas most likely ROS do not play an important role. Growth of cells on methanol/methylamine instead of methanol/ammonium sulphate resulted in further lifespan enhancement. This was unrelated to medium acidification. We show that oxidation of methylamine by peroxisomal amine oxidase at carbon starvation conditions is responsible for lifespan extension. The methylamine oxidation product formaldehyde is further oxidized resulting in NADH generation, which contributes to increased ATP generation and reduction of ROS levels in the stationary phase. CONCLUSION/SIGNIFICANCE: We conclude that primary peroxisome metabolism enhanced chronological lifespan of H. polymorpha. Moreover, the possibility to generate NADH at carbon starvation conditions by an organic nitrogen source supports further extension of the lifespan of the cell. Consequently, the interpretation of CLS analyses in yeast should include possible effects on the energy status of the cell.

  7. Yeast flocculation: what brewers should know.

    Science.gov (United States)

    Verstrepen, K J; Derdelinckx, G; Verachtert, H; Delvaux, F R

    2003-05-01

    For many industrial applications in which the yeast Saccharomyces cerevisiae is used, e.g. beer, wine and alcohol production, appropriate flocculation behaviour is certainly one of the most important characteristics of a good production strain. Yeast flocculation is a very complex process that depends on the expression of specific flocculation genes such as FLO1, FLO5, FLO8 and FLO11. The transcriptional activity of the flocculation genes is influenced by the nutritional status of the yeast cells as well as other stress factors. Flocculation is also controlled by factors that affect cell wall composition or morphology. This implies that, during industrial fermentation processes, flocculation is affected by numerous parameters such as nutrient conditions, dissolved oxygen, pH, fermentation temperature, and yeast handling and storage conditions. Theoretically, rational use of these parameters offers the possibility of gaining control over the flocculation process. However, flocculation is a very strain-specific phenomenon, making it difficult to predict specific responses. In addition, certain genes involved in flocculation are extremely variable, causing frequent changes in the flocculation profile of some strains. Therefore, both a profound knowledge of flocculation theory as well as close monitoring and characterisation of the production strain are essential in order to gain maximal control over flocculation. In this review, the various parameters that influence flocculation in real-scale brewing are critically discussed. However, many of the conclusions will also be useful in various other industrial processes where control over yeast flocculation is desirable.

  8. Yeast fuel cell: Application for desalination

    Science.gov (United States)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  9. Yeasts associated with Sardinian ewe's dairy products.

    Science.gov (United States)

    Cosentino, S; Fadda, M E; Deplano, M; Mulargia, A F; Palmas, F

    2001-09-19

    In the present work, the occurrence of yeasts in different types of typical Sardinian ewe's cheeses (32 samples of pecorino, 32 of caciotta, 40 of feta, 56 of ricotta) was determined. For the strains isolated the following properties were studied: proteolytic and lipolytic activities, the ability to grow at different temperatures, different concentrations of salt, and to assimilate and/or ferment compounds like lactate, citrate, lactose, glucose, galactose, lactic acid. Of 160 samples analysed, 76.2% yielded growth of yeasts. Yeast counts showed a certain variability among the samples. The highest levels were observed in caciotta and feta cheeses. A total of 281 strains belonging to 16 genera and 25 species were identified. In general, Debaryomyces hansenii was the dominant species, representing 28.8% of the total isolates. Other frequently appearing species were Geotrichum candidum, Kluyveromyces lactis and K. marxianus. Other genera encountered were Pichia, Candida, Dekkera, Yarrowia and Rhodotorula. With regard to the biochemical and technological properties of the yeasts, only K. lactis, K. marxianus and Dek. anomala assimilated and fermented lactose, whereas the majority of the species assimilated lactic acid. The assimilation of citrate was a characteristic of D. hansenii, R. rubra and Y. lipolytica. On the whole, the yeasts were weakly proteolytic while lipolytic activity was present in several species. A high percentage of strains showed a certain tolerance to low temperatures while only some strains of D. hansenii and K. lactis were able to grow at a 10% NaCl concentration.

  10. Isolation and characterization of oenological yeast.

    Directory of Open Access Journals (Sweden)

    Fatbardha Lamce

    2013-12-01

    Full Text Available Alcoholic fermentation is carried out by all microorganisms presented in must, which vary by technological characteristics of interest to oenology. So far, in Albania the fermentation is spontaneous and not directed, resulting in an absence of a standard product. The object of the present study is the isolation, identification and determination of yeasts, isolated in different phases of fermentation of musts from different varieties of grapes, with the purpose of selecting autochthonous yeasts for a directed fermentation. In the present study were isolated 14 strains, with P.D.A. and Y.M.A. mediums. After isolation, purity controls were made to the strains through cultivation and re-cultivation of them in Petri dish, and also, by running a stereomicroscopic and microscopic examination. Classification and identification of yeast strains in genus and species were based on macro-morphological characteristics of the colonies. Then, morphological characteristics of the cell were observed as an important taxonomic indicator. For the determination of the physiological and biochemical characteristics of yeasts, the assimilation of sugars and the fermenting ability of yeast were used. At the end were isolated and identified 9 strains of the genus Saccharomyces, 1 strain of the genus Schizosaccharomyces, 2 strains of the genus Brettanomyces, 2 strains of the genus Kloeckera. These will serve to further work towards their selection based on their fermenting technological characteristics.

  11. Radiodiagnosis of yeast alveolitis (a clinicoexperimental study)

    Energy Technology Data Exchange (ETDEWEB)

    Amosov, I.S.; Smirnov, V.A.

    A clinicoroetgenological study was made of 115 workers engaged in yeast production for different periods of time. Disorders of respiration biomechanics were revealed depending on the period of service. These data were obtained as a result of the use of roentgenopneumopolygraphy. An experimental study was conducted to establish the nature of lesions in the bronchopulmonary system in allergic alveolitis. The effect of finely divided yeast dust on the bronchopulmonary system was studied on 132 guinea-pigs usinq microbronchography and morphological examination. As a result of the study it has been established that during the inhalation of yeast dust, noticeable dystrophy of the bronchi develops, the sizes of alveoli enlarge and part of them undergo emphysematous distension with rupture of the interalveolar septa. In the course of the study, it has been shown that yeast alveolitis develops after many years of work. The clinical symptoms are non-specific and insignificant. X-ray and morphological changes are followed by the physical manifestations of yeast alveolitis.

  12. Antimicrobial Effect of Extracts of Cruciferous Vegetables

    Directory of Open Access Journals (Sweden)

    Shu-Hui Hu

    2004-12-01

    Full Text Available The cruciferous vegetables cauliflower, broccoli, cabbage, Chinese radish, Chinese kale, and Chinese kitam were used in this study to prepare water-soluble and methanol-water extracts. Crude protein extracts were also obtained by diethylaminoethyl (DEAE anion exchange chromatography. Water-soluble polysaccharides were prepared by ethanol precipitation followed by ultrafiltration. The antimicrobial effects of all these extracts were evaluated against Gram-positive bacteria, Gram-negative bacteria, and yeast. Crude protein extracts exhibited the greatest antimicrobial activity in monoculture experiments. The antimicrobial effects of cruciferous vegetables were also studied by steeping beef, carrot, and celery in chlorine (10 ppm or citric acid solution (1% containing the crude protein extract (500 ppm for different time periods. Total aerobic plate counts and coliform counts on these foods decreased significantly after 10 minutes in all steeping solutions (p < 0.05.

  13. Probiotic Properties of Non-Saccharomyces Yeasts

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech

    to harmless luminal substances is a key feature of the intestinal immune system. In this context, dendritic cells (DCs) present in the tissues lining the human gut are central players involved in microbial sensing and shaping of appropriate adaptive immune responses. Probiotics are live microorganisms which...... when administered in adequate amounts confer a health benefit on the host. While the majority of probiotic microorganisms studied to date are lactic acid bacteria, research in yeasts with potentially beneficial influences on human health has mainly revolved around Saccharomyces boulardii. This yeast...... has shown a positive impact on disease outcome in clinical studies of inflammatory bowel disease, indicating an ability of S. boulardii to influence human immune responses underlying intestinal inflammation. Consequent to this focus on S. boulardii as the fundamental probiotic yeast, very little...

  14. Probiotic Properties of Non-Saccharomyces Yeasts

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech

    to harmless luminal substances is a key feature of the intestinal immune system. In this context, dendritic cells (DCs) present in the tissues lining the human gut are central players involved in microbial sensing and shaping of appropriate adaptive immune responses. Probiotics are live microorganisms which...... when administered in adequate amounts confer a health benefit on the host. While the majority of probiotic microorganisms studied to date are lactic acid bacteria, research in yeasts with potentially beneficial influences on human health has mainly revolved around Saccharomyces boulardii. This yeast...... has shown a positive impact on disease outcome in clinical studies of inflammatory bowel disease, indicating an ability of S. boulardii to influence human immune responses underlying intestinal inflammation. Consequent to this focus on S. boulardii as the fundamental probiotic yeast, very little...

  15. Flux control through protein phosphorylation in yeast

    DEFF Research Database (Denmark)

    Chen, Yu; Nielsen, Jens

    2016-01-01

    describe the development of phosphoproteomics in yeast as well as approaches to analysing the phosphoproteomics data. Finally, we focus on integrated analyses with other omics data sets and genome-scale metabolic models. Despite the advances, future studies improving both experimental technologies......Protein phosphorylation is one of the most important mechanisms regulating metabolism as it can directly modify metabolic enzymes by the addition of phosphate groups. Attributed to such a rapid and reversible mechanism, cells can adjust metabolism rapidly in response to temporal changes. The yeast...... as well as identify mechanisms underlying human metabolic diseases. Here we collect functional phosphorylation events of 41 enzymes involved in yeast metabolism and demonstrate functional mechanisms and the application of this information in metabolic engineering. From a systems biology perspective, we...

  16. Metallic Biosorption Using Yeasts in Continuous Systems

    Directory of Open Access Journals (Sweden)

    Karla Miriam Hernández Mata

    2013-01-01

    Full Text Available Mining effluents were found to be the main source of pollution by heavy metals of the surface water in the San Pedro River in Sonora, Mexico. The overall objective of this study was to determine the biosorption of Zn, Cu, Mn, and Fe with yeasts isolated from San Pedro River in a continuous system. The tests conducted in two reactors packed with zeolite connected in series. The first reactor was inoculated mixing two yeasts species, and the effluent of the first reactor was fed to second reactor. Subsequently, the first reactor was fed with contaminated water of San Pedro River and effluent from this was the second reactor influent. After 40 days of the experiment a reduction of 81.5% zinc, 76.5% copper, manganese 95.5%, and 99.8% of iron was obtained. These results show that the selected yeasts are capable of biosorbing zinc, copper, manganese, and iron under these conditions.

  17. Complete biosynthesis of opioids in yeast.

    Science.gov (United States)

    Galanie, Stephanie; Thodey, Kate; Trenchard, Isis J; Filsinger Interrante, Maria; Smolke, Christina D

    2015-09-04

    Opioids are the primary drugs used in Western medicine for pain management and palliative care. Farming of opium poppies remains the sole source of these essential medicines, despite diverse market demands and uncertainty in crop yields due to weather, climate change, and pests. We engineered yeast to produce the selected opioid compounds thebaine and hydrocodone starting from sugar. All work was conducted in a laboratory that is permitted and secured for work with controlled substances. We combined enzyme discovery, enzyme engineering, and pathway and strain optimization to realize full opiate biosynthesis in yeast. The resulting opioid biosynthesis strains required the expression of 21 (thebaine) and 23 (hydrocodone) enzyme activities from plants, mammals, bacteria, and yeast itself. This is a proof of principle, and major hurdles remain before optimization and scale-up could be achieved. Open discussions of options for governing this technology are also needed in order to responsibly realize alternative supplies for these medically relevant compounds.

  18. Degradation of 5-hydroxymethylfurfural during yeast fermentation.

    Science.gov (United States)

    Akıllıoglu, Halise Gül; Mogol, Burçe Ataç; Gökmen, Vural

    2011-12-01

    5-Hydroxymethyl furfural (HMF) may occur in malt in high quantities depending on roasting conditions. However, the HMF content of different types of beers is relatively low, indicating its potential for degradation during fermentation. This study investigates the degradation kinetics of HMF in wort during fermentation by Saccharomyces cerevisiae. The results indicated that HMF decreased exponentially as fermentation progressed. The first-order degradation rate of HMF was 0.693 × 10(-2) and 1.397 × 10(-2)min(-1) for wort and sweet wort, respectively, indicating that sugar enhances the activity of yeasts. In wort, HMF was converted into hydroxymethyl furfuryl alcohol by yeasts with a high yield (79-84% conversion). Glucose and fructose were utilised more rapidly by the yeasts in dark roasted malt than in pale malt (pfermentation medium increases this activity.

  19. Bioadsorption strategies with yeast molecular display technology.

    Science.gov (United States)

    Shibasaki, Seiji; Ueda, Mitsuyoshi

    2014-01-01

    Molecular display techniques using microbial cell surfaces have been widely developed in the past twenty years, and are useful tools as whole cell catalysts for various applications such as bioconversion, bioremediation, biosensing, and the screening system of protein libraries. Furthermore, different types of microbial cells among eukaryotic and prokaryotic strains have been investigated for their use in surface display technologies. Recently, several kinds of protein-displaying yeasts have been utilized as bioadsorbents in this platform technology. In particular, these trials have successfully expanded the possibility of applications to metal binding, affinity purification, and receptor-ligand interaction by using the yeast cell surface. In this mini review, we describe the general principles of molecular display technology using yeast cells and its applications, with a particular focus on bioadsorption.

  20. New yeasts-new brews: modern approaches to brewing yeast design and development.

    Science.gov (United States)

    Gibson, B; Geertman, J-M A; Hittinger, C T; Krogerus, K; Libkind, D; Louis, E J; Magalhães, F; Sampaio, J P

    2017-06-01

    The brewing industry is experiencing a period of change and experimentation largely driven by customer demand for product diversity. This has coincided with a greater appreciation of the role of yeast in determining the character of beer and the widespread availability of powerful tools for yeast research. Genome analysis in particular has helped clarify the processes leading to domestication of brewing yeast and has identified domestication signatures that may be exploited for further yeast development. The functional properties of non-conventional yeast (both Saccharomyces and non-Saccharomyces) are being assessed with a view to creating beers with new flavours as well as producing flavoursome non-alcoholic beers. The discovery of the psychrotolerant S. eubayanus has stimulated research on de novo S. cerevisiae × S. eubayanus hybrids for low-temperature lager brewing and has led to renewed interest in the functional importance of hybrid organisms and the mechanisms that determine hybrid genome function and stability. The greater diversity of yeast that can be applied in brewing, along with an improved understanding of yeasts' evolutionary history and biology, is expected to have a significant and direct impact on the brewing industry, with potential for improved brewing efficiency, product diversity and, above all, customer satisfaction. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell

    Directory of Open Access Journals (Sweden)

    Yumei Luo

    2015-01-01

    Full Text Available The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C; knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells.

  2. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    Science.gov (United States)

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities.

  3. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    Science.gov (United States)

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells.

  4. β-Carotene from Yeasts Enhances Laccase Production of Pleurotus eryngii var. ferulae in Co-culture

    Directory of Open Access Journals (Sweden)

    Chaolin Guo

    2017-06-01

    Full Text Available Laccase is widely used in several industrial applications and co-culture is a common method for enhancing laccase production in submerged fermentation. In this study, the co-culture of four yeasts with Pleurotus eryngii var. ferulae was found to enhance laccase production. An analysis of sterilization temperatures and extraction conditions revealed that the stimulatory compound in yeasts was temperature-sensitive, and that it was fat-soluble. An LC-MS analysis revealed that the possible stimulatory compound for laccase production in the four yeast extracts was β-carotene. Moreover, the addition of 4 mg β-carotene to 150 mL of P. eryngii var. ferulae culture broth improved laccase production by 2.2-fold compared with the control (i.e., a monoculture, and was similar to laccase production in co-culture. In addition, the enhanced laccase production was accompanied by an increase of lac gene transcription, which was 6.2-time higher than the control on the fifth day. Therefore, it was concluded that β-carotene from the co-cultured yeasts enhanced laccase production in P. eryngii var. ferulae, and strains that produce β-carotene could be selected to enhance fungal laccase production in a co-culture. Alternatively, β-carotene or crude extracts of β-carotene could be used to induce high laccase production in large scale.

  5. Antifungal Activity of Brazilian Propolis Microparticles against Yeasts Isolated from Vulvovaginal Candidiasis

    Directory of Open Access Journals (Sweden)

    Kelen Fátima Dalben Dota

    2011-01-01

    Full Text Available Propolis, a resinous compound produced by Apis mellifera L. bees, is known to possess a variety of biological activities and is applied in the therapy of various infectious diseases. The aim of this study was to evaluate the in vitro antifungal activity of propolis ethanol extract (PE and propolis microparticles (PMs obtained from a sample of Brazilian propolis against clinical yeast isolates of importance in the vulvovaginal candidiasis (VVC. PE was used to prepare the microparticles. Yeast isolates (n=89, obtained from vaginal exudates of patients with VVC, were exposed to the PE and the PMs. Moreover, the main antifungal drugs used in the treatment of VVC (Fluconazole, Voriconazole, Itraconazole, Ketoconazole, Miconazole and Amphotericin B were also tested. Minimum inhibitory concentration (MIC was determined according to the standard broth microdilution method. Some Candida albicans isolates showed resistance or dose-dependent susceptibility for the azolic drugs and Amphotericin B. Non-C. albicans isolates showed more resistance and dose-dependent susceptibility for the azolic drugs than C. albicans. However, all of them were sensitive or dose-dependent susceptible for Amphotericin B. All yeasts were inhibited by PE and PMs, with small variation, independent of the species of yeast. The overall results provided important information for the potential application of PMs in the therapy of VVC and the possible prevention of the occurrence of new symptomatic episodes.

  6. From steady-state to synchronized yeast glycolytic oscillations II: model validation.

    Science.gov (United States)

    du Preez, Franco B; van Niekerk, David D; Snoep, Jacky L

    2012-08-01

    In an accompanying paper [du Preez et al., (2012) FEBS J279, 2810-2822], we adapt an existing kinetic model for steady-state yeast glycolysis to simulate limit-cycle oscillations. Here we validate the model by testing its capacity to simulate a wide range of experiments on dynamics of yeast glycolysis. In addition to its description of the oscillations of glycolytic intermediates in intact cells and the rapid synchronization observed when mixing out-of-phase oscillatory cell populations (see accompanying paper), the model was able to predict the Hopf bifurcation diagram with glucose as the bifurcation parameter (and one of the bifurcation points with cyanide as the bifurcation parameter), the glucose- and acetaldehyde-driven forced oscillations, glucose and acetaldehyde quenching, and cell-free extract oscillations (including complex oscillations and mixed-mode oscillations). Thus, the model was compliant, at least qualitatively, with the majority of available experimental data for glycolytic oscillations in yeast. To our knowledge, this is the first time that a model for yeast glycolysis has been tested against such a wide variety of independent data sets. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/dupreez/index.html. © 2012 The Authors Journal compilation © 2012 FEBS.

  7. Biodiversity of non-Saccharomyces yeasts in distilleries of the La Mancha region (Spain).

    Science.gov (United States)

    Úbeda, Juan; Maldonado Gil, María; Chiva, Rosana; Guillamón, José M; Briones, Ana

    2014-06-01

    The aim of this pioneering study was to determine the biodiversity of non-Saccharomyces yeasts in ancient distilleries located in the La Mancha region, which is the principal area for the production of bioethanol and grape-based distillates in Spain. In this study, the yeast populations that were present during the process of extraction of alcohol and residual sugars from the byproducts of vinification, such as piquettes, pomace and grape skins, were studied. Non-Saccharomyces yeasts were identified by PCR-RFLP analysis of the 5.8S rRNA genes and, when necessary, by sequencing the D1/D2 domain of the 26S and/or 5.8S rRNA genes. Further, fermentation and the assimilation of carbon compounds were studied, to identify potential industrial applications. Phylogenetic trees and heat-maps were constructed for the genetic and phenotypic traits, respectively. Twenty yeast species belonging to eight genera were identified (Torulaspora, Candida, Zygosaccharomyces, Pichia, Hanseniaspora, Kluyveromyces, Ogataea and Saccharomycodes). Pichia galeiformis, Candida lactis-condensi, Hanseniaspora osmophila and Torulaspora delbrueckii were the most abundant species and were found principally in sweet and fermented piquettes.

  8. Isolation of a yeast strain able to produce a polygalacturonase with maceration activity of cassava roots

    Directory of Open Access Journals (Sweden)

    María Alicia Martos

    2013-06-01

    Full Text Available The objective of the present study was the isolation of a yeast strain, from citrus fruit peels, able to produce a polygalacturonase by submerged fermentation with maceration activity of raw cassava roots. Among 160 yeast strains isolated from citrus peels, one strain exhibited the strongest pectinolytic activity. This yeast was identified as Wickerhamomyces anomalus by 5.8S-ITS RFLP analysis and confirmed by amplification of the nucleotide sequence. The yeast produced a polygalacturonase (PG in Erlenmeyer shake flasks containing YNB, glucose, and citrus pectin. PG synthesis occurred during exponential growth phase, reaching 51 UE.mL-1 after 8 hours of fermentation. A growth yield (Yx/s of 0.43 gram of cell dry weight per gram of glucose consumed was obtained, and a maximal specific growth rate (µm of 0.346 h-1 was calculated. The microorganism was unable to assimilate sucrose, galacturonic acid, polygalacturonic acid, or citrus pectin, but it required glucose as carbon and energy source and polygalacturonic acid or citrus pectin as inducers of enzyme synthesis. The crude enzymatic extract of Wickerhamomyces anomalus showed macerating activity of raw cassava. This property is very important in the production of dehydrated mashed cassava, a product of regional interest in the province of Misiones, Argentina.

  9. Monitoring bisphenol A and estrogenic chemicals in thermal paper with yeast-based bioreporter assay.

    Science.gov (United States)

    Rajasärkkä, Johanna; Koponen, Jani; Airaksinen, Riikka; Kiviranta, Hannu; Virta, Marko

    2014-09-01

    Bioluminescent Saccharomyces cerevisiae yeast-based bioreporters were used to monitor bisphenol A and other estrogenic chemicals in thermal paper samples collected mainly from Finland on two occasions in 2010/2011, and 2013. The bisphenol A-targeted (BPA-R) and the human oestrogen receptor (hERα) bioreporters were applied to analyse both non-treated and extracted paper samples. Bisphenol A was readily bioavailable to the yeast bioreporters on the non-treated paper samples without any pre-treatment. Detected concentrations ranged from a detection limit of 9-142 μg/g to over 20 mg/g of bisphenol A equivalents in the thermal papers. Low bisphenol A like activities were detected in many samples, and were considered to be caused by residual bisphenol A or other types of bisphenols, such as bisphenol S. Most of the thermal paper samples were toxic to the yeast bioreporters. The toxicity did not, however, depend on the bisphenol A concentration of the samples. The yeast bioreporters were demonstrated to be a robust and cost-efficient method to monitor thermal paper samples for their bisphenol A content and estrogenicity. Thermal paper was considered as a potential BPA source for both human exposure and environmental emission.

  10. Biological Function and Molecular Mapping of M Antigen in Yeast Phase of Histoplasma capsulatum

    Science.gov (United States)

    Guimarães, Allan Jefferson; Hamilton, Andrew John; de M. Guedes, Herbert Leonel

    2008-01-01

    Histoplasmosis, due to the intracellular fungus Histoplasma capsulatum, can be diagnosed by demonstrating the presence of antibodies specific to the immunodominant M antigen. However, the role of this protein in the pathogenesis of histoplasmosis has not been elucidated. We sought to structurally and immunologically characterize the protein, determine yeast cell surface expression, and confirm catalase activity. A 3D-rendering of the M antigen by homology modeling revealed that the structures and domains closely resemble characterized fungal catalases. We generated monoclonal antibodies (mAbs) to the protein and determined that the M antigen is present on the yeast cell surface and in cell wall/cell membrane preparations. Similarly, we found that the majority of catalase activity was in extracts containing fungal surface antigens and that the M antigen is not significantly secreted by live yeast cells. The mAbs also identified unique epitopes on the M antigen. The localization of the M antigen to the cell surface of H. capsulatum yeast and the characterization of the protein's major epitopes have important implications since it demonstrates that although the protein may participate in protecting the fungus against oxidative stress it is also accessible to host immune cells and antibody. PMID:18927619

  11. Autophagy: one more Nobel Prize for yeast.

    Science.gov (United States)

    Zimmermann, Andreas; Kainz, Katharina; Andryushkova, Aleksandra; Hofer, Sebastian; Madeo, Frank; Carmona-Gutierrez, Didac

    2016-12-05

    The recent announcement of the 2016 Nobel Prize in Physiology or Medicine, awarded to Yoshinori Ohsumi for the discoveries of mechanisms governing autophagy, underscores the importance of intracellular degradation and recycling. At the same time, it further cements yeast, in which this field decisively developed, as a prolific model organism. Here we provide a quick historical overview that mirrors both the importance of autophagy as a conserved and essential process for cellular life and death as well as the crucial role of yeast in its mechanistic characterization.

  12. Autophagy: one more Nobel Prize for yeast

    Directory of Open Access Journals (Sweden)

    Andreas Zimmermann

    2016-12-01

    Full Text Available The recent announcement of the 2016 Nobel Prize in Physiology or Medicine, awarded to Yoshinori Ohsumi for the discoveries of mechanisms governing autophagy, underscores the importance of intracellular degradation and recycling. At the same time, it further cements yeast, in which this field decisively developed, as a prolific model organism. Here we provide a quick historical overview that mirrors both the importance of autophagy as a conserved and essential process for cellular life and death as well as the crucial role of yeast in its mechanistic characterization.

  13. Molecular breeding of the yeast Saccharomyces.

    OpenAIRE

    大嶋, 泰治; Yasuji, Oshima; 大阪大学工学部応用生物工学科; Department of Biotechnology, faculty of Engineering, Kansai University

    1993-01-01

    In 1951,shortly after the end of World War II, I entered Osaka University to study yeast biology in brewing technology. This was due to my father's wish, in part, as well as to my own interest, though I had to give up the possibility of pursuing my long-cherished desire to be an aeronautical engineer. Because my family owns a small sake factory locally, I was already somewhat familiar with yeast, and had some interest in this simple organism. When I became a senior student in the Department o...

  14. Analysis of RNA metabolism in fission yeast

    DEFF Research Database (Denmark)

    Wise, Jo Ann; Nielsen, Olaf

    2017-01-01

    Here we focus on the biogenesis and function of messenger RNA (mRNA) in fission yeast cells. Following a general introduction that also briefly touches on other classes of RNA, we provide an overview of methods used to analyze mRNAs throughout their life cycles.......Here we focus on the biogenesis and function of messenger RNA (mRNA) in fission yeast cells. Following a general introduction that also briefly touches on other classes of RNA, we provide an overview of methods used to analyze mRNAs throughout their life cycles....

  15. Fission Yeast Cell Cycle Synchronization Methods.

    Science.gov (United States)

    Tormos-Pérez, Marta; Pérez-Hidalgo, Livia; Moreno, Sergio

    2016-01-01

    Fission yeast cells can be synchronized by cell cycle arrest and release or by size selection. Cell cycle arrest synchronization is based on the block and release of temperature-sensitive cell cycle mutants or treatment with drugs. The most widely used approaches are cdc10-129 for G1; hydroxyurea (HU) for early S-phase; cdc25-22 for G2, and nda3-KM311 for mitosis. Cells can also be synchronized by size selection using centrifugal elutriation or a lactose gradient. Here we describe the methods most commonly used to synchronize fission yeast cells.

  16. Genetic diversity of the yeast Candida utilis.

    Science.gov (United States)

    Stoltenburg, R; Klinner, U; Ritzerfeld, P; Zimmermann, M; Emeis, C C

    1992-12-01

    The electrophoretic karyotypes and some mtDNA restriction fragment patterns of 13 strains of Candida utilis and one strain of Hansenula jadinii were compared. PFGE separations revealed remarkable chromosome length polymorphisms between two groups of strains suggesting that perhaps they do not belong to the same species. However, all strains had the same or similar EcoRI, HindIII and BamHI mtDNA restriction patterns. The mtDNA genomes had an average size range of 55 kb. These results support the supposition that C. utilis is a yeast with a highly variable electrophoretic karyotype as already known for another imperfect yeast species, Candida albicans.

  17. Evaluation of fungichrom 1: A new yeast identification system

    OpenAIRE

    Umabala P; Satheeshkumar T; Lakshmi V

    2002-01-01

    Advances in anti-fungal therapy necessitate the need for accurate identification of fungi especially yeasts to their species level for more effective management. Unlike the time consuming conventional methods of yeast identification using fermentation and assimilation patterns of various carbohydrates, the new commercialized yeast identification systems are simpler, rapid and are particularly easy to interpret. In our study, a new colorimetric yeast identification system-Fungichrom 1(Internat...

  18. The significance of peroxisomes in methanol metabolism in methylotrophic yeast

    NARCIS (Netherlands)

    Klei, Ida J. van der; Yurimoto, Hiroya; Sakai, Yasuyoshi; Veenhuis, Marten

    2006-01-01

    The capacity to use methanol as sole source of carbon and energy is restricted to relatively few yeast species. This may be related to the low efficiency of methanol metabolism in yeast, relative to that of prokaryotes. This contribution describes the details of methanol metabolism in yeast and focu

  19. Adhesive interactions between medically important yeasts and bacteria

    NARCIS (Netherlands)

    Millsap, KW; van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    1998-01-01

    Yeasts are being increasingly identified as important organisms in human infections. Adhesive interactions between yeasts and bacteria may contribute to yeast retention al body sites. Methods for studying adhesive interactions between bacterial strains are well known, and range from simple macroscop

  20. Fisetin yeast-based bio-capsules via osmoporation: effects of process variables on the encapsulation efficiency and internalized fisetin content.

    Science.gov (United States)

    de Câmara, Antonio Anchieta; Dupont, Sébastien; Beney, Laurent; Gervais, Patrick; Rosenthal, Amauri; Correia, Roberta Targino Pinto; Pedrini, Márcia Regina da Silva

    2016-06-01

    Osmoporation is an innovative method that can be used with food-grade yeast cells of Saccharomyces cerevisiae as natural encapsulating matrices. This technique overcomes barriers that difficult encapsulation and enables the internalization of fragile bioactive molecules such as fisetin into yeasts. In the present study, we assessed the effects of concentration, osmotic pressure, and temperature on the encapsulation efficiency (EE) and internalized fisetin content (IF). Two different quantification strategies were investigated: direct extraction (DE) without cell washing or freeze-drying steps and indirect extraction (IE) performed after washings with ethanol and freeze-drying. Our results showed that osmoporation improved EE (33 %) and IF (1.199 mg). The best experimental conditions were found by using DE. High-resolution images showed that the yeast cell envelope was preserved during osmoporation at 30 MPa and 84 % of yeast cells remained viable after treatment. Washing cells with organic solvent led to decreased EE (0.65 %) and IF (0.023 mg). This was probably due to either damages caused to yeast cell envelope or fisetin dragged out of cell. Overall, the results demonstrated the adequacy and relevant biotechnological potential of yeasts as encapsulating matrices for hydrophobic compounds. This fresh biotechnological approach has proven to be a promising tool for the production of bioactive-rich food products.

  1. Creation of an HDAC-based yeast screening method for evaluation of marine-derived actinomycetes: discovery of streptosetin A.

    Science.gov (United States)

    Amagata, Taro; Xiao, Jing; Chen, Yi-Pei; Holsopple, Nicholas; Oliver, Allen G; Gokey, Trevor; Guliaev, Anton B; Minoura, Katsuhiko

    2012-12-28

    A histone deacetylase (HDAC)-based yeast assay employing a URA3 reporter gene was applied as a primary screen to evaluate a marine-derived actinomycete extract library and identify human class III HDAC (SIRT) inhibitors. On the basis of the bioassay-guided purification, a new compound designated as streptosetin A (1) was obtained from one of the active strains identified through the yeast assay. The gross structure of the new compound was elucidated from the 1D and 2D NMR data. The absolute stereostructure of 1 was determined based on X-ray crystal structure analysis and simulation of ECD spectra using time-dependent density functional theory calculations. This compound showed weak inhibitory activity against yeast Sir2p and human SIRT1 and SIRT2.

  2. Comparative Performance of the RapID Yeast Plus System and the API 20C AUX Clinical Yeast System

    OpenAIRE

    Smith, Michael B; Dunklee, Daisy; Vu, Hangna; Woods, Gail L.

    1999-01-01

    The performance of the RapID Yeast Plus System (Innovative Diagnostic Systems, Norcross, Ga.), a 4-h micropanel using single-substrate enzymatic test reactions, was compared with that of the API 20C AUX Clinical Yeast System (bioMerieux Vitek, Hazelwood, Mo.), a 48- to 72-h carbohydrate assimilation panel. Two hundred twenty-five yeasts, yeast-like fungi, and algae, comprising 28 species and including 30 isolates of Cryptococcus neoformans, an important pathogen not tested in appreciable numb...

  3. Identification of Anamorph Yeast of Tremella aurantialba and Optimization of Medium Composition for Production of Exopolysaccharides

    Institute of Scientific and Technical Information of China (English)

    刘春卉; 杨秀伟; 俞建国; 马维新; 瞿伟菁; 包艳洁; 武文斌; 庄秀园

    2012-01-01

    A yeast-like fungus strain B1 isolated from wild fungus Tremella aurantialba was identified and initially characterized.Two phylogenetic trees were generated based on the sequences of large subunit ribosomal RNA gene D1/D2 regions and internal transcribed spacer (ITS) regions of related fungi,respectively.The analysis of D1/D2 regions and ITS sequences showed that fungus B1 was clustered together with T.aurantialba,T.aurantia and T.microspore in the phylogenetic trees.Both the morphological characteristic and phylogenetic analysis established that fungus B1 was one of the anamorph strains of T.aurantialba and belongs to Tremella genus.A fermentation medium for exopolysaccharides (EPS)production by T.aurantialba B1.Plackett-Burmen design was used to evaluate the effects of different components in the culture medium.Glucose and yeast extract have significant influence on the EPS production.The concentrations of two factors were optimized subsequently using central composite design and response surface analysis.The results showed that 49.2 g/L glucose and 10.4 g/L yeast extract could lead to the maximum production of EPS (4.99 g/L).The optimized medium led to a 1.5-fold enhancement of the production of EPS by T.aurantialba B1,as compared with that without optimization.

  4. The yeast histone chaperone hif1p functions with RNA in nucleosome assembly.

    Directory of Open Access Journals (Sweden)

    Amy R Knapp

    Full Text Available Hif1p is an H3/H4-specific histone chaperone that associates with the nuclear form of the Hat1p/Hat2p complex (NuB4 complex in the yeast Saccharomyces cerevisiae. While not capable of depositing histones onto DNA on its own, Hif1p can act in conjunction with a yeast cytosolic extract to assemble nucleosomes onto a relaxed circular plasmid.To identify the factor(s that function with Hif1p to carry out chromatin assembly, multiple steps of column chromatography were carried out to fractionate the yeast cytosolic extract. Analysis of partially purified fractions indicated that Hif1p-dependent chromatin assembly activity resided in RNA rather than protein. Fractionation of isolated RNA indicated that the chromatin assembly activity did not simply purify with bulk RNA. In addition, the RNA-mediated chromatin assembly activity was blocked by mutations in the human homolog of Hif1p, sNASP, that prevent the association of this histone chaperone with histone H3 and H4 without altering its electrostatic properties.These results suggest that specific RNA species may function in concert with histone chaperones to assemble chromatin.

  5. Fission yeast meets a legend in Kobe: report of the Eighth International Fission Yeast Meeting.

    Science.gov (United States)

    Asakawa, Haruhiko; Yamamoto, Takaharu G; Hiraoka, Yasushi

    2015-12-01

    The Eighth International Fission Yeast Meeting, which was held at Ikuta Shrine Hall in Kobe, Japan, from 21 to 26 June 2015, was attended by 327 fission yeast researchers from 25 countries (190 overseas and 137 domestic participants). At this meeting, 124 talks were held and 145 posters were presented. In addition, newly developed database tools were introduced to the community during a workshop. Researchers shared cutting-edge knowledge across broad fields of study, ranging from molecules to evolution, derived from the superior model organism commonly used within the fission yeast community. Intensive discussions and constructive suggestions generated in this meeting will surely advance the understanding of complex biological systems in fission yeast, extending to general eukaryotes.

  6. Yeast Interacting Proteins Database: YFR015C, YLR258W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into statio

  7. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data.

    Science.gov (United States)

    Ohnuki, Shinsuke; Enomoto, Kenichi; Yoshimoto, Hiroyuki; Ohya, Yoshikazu

    2014-03-01

    The vitality of brewing yeasts has been used to monitor their physiological state during fermentation. To investigate the fermentation process, we used the image processing software, CalMorph, which generates morphological data on yeast mother cells and bud shape, nuclear shape and location, and actin distribution. We found that 248 parameters changed significantly during fermentation. Successive use of principal component analysis (PCA) revealed several important features of yeast, providing insight into the dynamic changes in the yeast population. First, PCA indicated that much of the observed variability in the experiment was summarized in just two components: a change with a peak and a change over time. Second, PCA indicated the independent and important morphological features responsible for dynamic changes: budding ratio, nucleus position, neck position, and actin organization. Thus, the large amount of data provided by imaging analysis can be used to monitor the fermentation processes involved in beer and bioethanol production.

  8. Yeast Interacting Proteins Database: YFR015C, YJL137C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...pression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into stationary

  9. Antarctic Yeasts: Biodiversity and Potential Applications

    Science.gov (United States)

    Shivaji, S.; Prasad, G. S.

    This review is an attempt in cataloguing the diversity of yeasts in Antarctica, highlight their biotechnological potential and understand the basis of adaptation to low temperature. As of now several psychrophilic and psychrotolerant yeasts from Antarctic soils and marine waters have been characterized with respect to their growth characteristics, ecological distribution and taxonomic significance. Interestingly most of these species belonged to basidiomycetous yeasts which as a group are known for their ability to circumvent and survive under stress conditions. Simultaneously their possible role as work horses in the biotechnological industry was recognized due to their ability to produce novel enzymes and biomolecules such as agents for the breakdown of xenobiotics, and novel pharmaceutical chemi cals. The high activity of psychrophilic enzymes at low and moderate temperatures offers potential economic benefits. As of now lipases from Pseudozyma antarctica have been extensively studied to understand their unique thermal stability at 90°C and also because of its use in the pharmaceutical, agriculture, food, cosmetics and chemical industry. A few of the other enzymes which have been studied include extracellular alpha-amylase and glucoamylase from the yeast Pseudozyma antarctica (Candida antarctica), an extra-cellular protease from Cryptococcus humicola, an aspartyl proteinase from Cryptococcus humicola, a novel extracellular subtilase from Leucosporidium antarcticum, and a xylanase from Cryptococcus adeliensis

  10. Modeling diauxic glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Sørensen, Preben Graae

    2010-01-01

    Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can be characteri...

  11. Resurrecting ancestral alcohol dehydrogenases from yeast.

    Science.gov (United States)

    Thomson, J Michael; Gaucher, Eric A; Burgan, Michelle F; De Kee, Danny W; Li, Tang; Aris, John P; Benner, Steven A

    2005-06-01

    Modern yeast living in fleshy fruits rapidly convert sugars into bulk ethanol through pyruvate. Pyruvate loses carbon dioxide to produce acetaldehyde, which is reduced by alcohol dehydrogenase 1 (Adh1) to ethanol, which accumulates. Yeast later consumes the accumulated ethanol, exploiting Adh2, an Adh1 homolog differing by 24 (of 348) amino acids. As many microorganisms cannot grow in ethanol, accumulated ethanol may help yeast defend resources in the fruit. We report here the resurrection of the last common ancestor of Adh1 and Adh2, called Adh(A). The kinetic behavior of Adh(A) suggests that the ancestor was optimized to make (not consume) ethanol. This is consistent with the hypothesis that before the Adh1-Adh2 duplication, yeast did not accumulate ethanol for later consumption but rather used Adh(A) to recycle NADH generated in the glycolytic pathway. Silent nucleotide dating suggests that the Adh1-Adh2 duplication occurred near the time of duplication of several other proteins involved in the accumulation of ethanol, possibly in the Cretaceous age when fleshy fruits arose. These results help to connect the chemical behavior of these enzymes through systems analysis to a time of global ecosystem change, a small but useful step towards a planetary systems biology.

  12. Ethanol tolerance of immobilized brewers' yeast cells.

    Science.gov (United States)

    Norton, S; Watson, K; D'Amore, T

    1995-04-01

    A method based on the survival of yeast cells subjected to an ethanol or heat shock was utilized to compare the stress resistance of free and carrageenan-immobilized yeast cells. Results demonstrated a significant increase of yeast survival against ethanol for immobilized cells as compared to free cells, while no marked difference in heat resistance was observed. When entrapped cells were released by mechanical disruption of the gel beads and submitted to the same ethanol stress, they exhibited a lower survival rate than entrapped cells, but a similar or slightly higher survival rate than free cells. The incidence of ethanol- or heat-induced respiratory-deficient mutants of entrapped cells was equivalent to that of control or non-stressed cells (1.3 +/- 0.5%) whereas ethanol- and heat-shocked free and released cells exhibited between 4.4% and 10.9% average incidence of respiration-deficient mutants. It was concluded that the carrageenan gel matrix provided a protection against ethanol, and that entrapped cells returned to normal physiological behaviour as soon as they were released. The cell growth rate was a significant factor in the resistance of yeast to high ethanol concentrations. The optimum conditions to obtain reliable and reproducible results involved the use of slow-growing cells after exhaustion of the sugar substrate.

  13. Centromeric DNA Facilitates Nonconventional Yeast Genetic Engineering.

    Science.gov (United States)

    Cao, Mingfeng; Gao, Meirong; Lopez-Garcia, Carmen Lorena; Wu, Yutong; Seetharam, Arun Somwarpet; Severin, Andrew Josef; Shao, Zengyi

    2017-08-18

    Many nonconventional yeast species have highly desirable features that are not possessed by model yeasts, despite that significant technology hurdles to effectively manipulate them lay in front. Scheffersomyces stipitis is one of the most important exemplary nonconventional yeasts in biorenewables industry, which has a high native xylose utilization capacity. Recent study suggested its much better potential than Saccharomyces cerevisiae as a well-suited microbial biomanufacturing platform for producing high-value compounds derived from shikimate pathway, many of which are associated with potent nutraceutical or pharmaceutical properties. However, the broad application of S. stipitis is hampered by the lack of stable episomal expression platforms and precise genome-editing tools. Here we report the success in pinpointing the centromeric DNA as the partitioning element to guarantee stable extra-chromosomal DNA segregation. The identified centromeric sequence not only stabilized episomal plasmid, enabled homogeneous gene expression, increased the titer of a commercially relevant compound by 3-fold, and also dramatically increased gene knockout efficiency from <1% to more than 80% with the expression of CRISPR components on the new stable plasmid. This study elucidated that establishment of a stable minichromosome-like expression platform is key to achieving functional modifications of nonconventional yeast species in order to expand the current collection of microbial factories.

  14. Uncommon opportunistic yeast bloodstream infections from Qatar

    NARCIS (Netherlands)

    Taj-Aldeen, S.J.; AbdulWahab, A.; Kolecka, A.; Deshmukh, A.; Meis, J.F.G.M.; Boekhout, T.

    2014-01-01

    Eleven uncommon yeast species that are associated with high mortality rates irrespective of antifungal therapy were isolated from 17/187 (201 episodes) pediatric and elderly patients with fungemia from Qatar. The samples were taken over a 6-year period (January 2004-December 2010). Isolated species

  15. Cell biology of homologous recombination in yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Rothstein, Rodney; Lisby, Michael

    2011-01-01

    Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces...

  16. An Engineered Yeast Efficiently Secreting Penicillin

    NARCIS (Netherlands)

    Gidijala, Loknath; Kiel, Jan A. K. W.; Douma, Rutger D.; Seifar, Reza M.; van Gulik, Walter M.; Bovenberg, Roel A. L.; Veenhuis, Marten; van der Klei, Ida J.

    2009-01-01

    This study aimed at developing an alternative host for the production of penicillin ( PEN). As yet, the industrial production of this beta(-)lactam antibiotic is confined to the filamentous fungus Penicillium chrysogenum. As such, the yeast Hansenula polymorpha, a recognized producer of pharmaceutic

  17. Arachidonic acid metabolites in pathogenic yeasts

    Directory of Open Access Journals (Sweden)

    Ells Ruan

    2012-08-01

    Full Text Available Abstract Although most of what is known about the biology and function of arachidonic acid metabolites comes from the study of mammalian biology, these compounds can also be produced by lower eukaryotes, including yeasts and other fungi. It is also in this group of organisms that the least is known about the metabolic pathways leading to the production of these compounds as well as the functions of these compounds in the biology of fungi and yeasts. This review will deal with the discovery of oxylipins from polyunsaturated fatty acids, and more specifically the arachidonic acid derived eicosanoids, such as 3-hydroxy eicosatetraenoic acid, prostaglandin F2α and prostaglandin E2, in yeasts starting in the early 1990s. This review will also focus on what is known about the metabolic pathways and/or proteins involved in the production of these compounds in pathogenic yeasts. The possible roles of these compounds in the biology, including the pathology, of these organisms will be discussed.

  18. In vitro analysis of signal peptidase and membrane tannslocation activity in yeast microsomal membranes. Kobomaku kakubun wo mochiiru signal peptidase kassei oyobi makutoka kassei sokuteiho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, K.; Machida, M.; Jigami, Y. (The National Chemical Laboratory for Industry, Tsukuba (Japan))

    1991-05-29

    Studies have been pursued on proteins produced using microorganisms and cultured cells. The studies aim at facilitating the purification of the protein by making it secrete outside the cell and improving productivity. Signal peptidase is related to the secretion/translocation process of the protein. An in vitro analysis system for activity of yeast signal peptidase is made to elucidate effects of activity of signal peptidase on velocity and amount of secretion of the protein. As a result, in a combination of wheat germ extract and canine pancreatic membranes, the single peptidase activity and the membrane translocation activity are seen in a colibacillus {beta}-lactamase precursor and a yeast {alpha}-factor precursor, respectively. Moreover, in a combination of yeast lysates and yeast microsomal membranes, as the result of measuring the activity with the {alpha}-factor precursor as a substrate, the membrane translocation activity can be detected in this system. 16 refs., 4 figs., 1 tab.

  19. Effect of yeast storage temperature and flour composition on fermentative activities of baker's yeast

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2009-01-01

    Full Text Available Baker's yeast is a set of living cells of Saccharomyces cerevisiae. It contains around 70-72% of water, 42-45% of proteins, around 40% of carbohydrates, around 7.5% of lipids (based on dry matter, and vitamin B-complex. On the basis of yeast cell analysis it can be concluded that yeast is a complex biological system which changes in time. The intensity of the changes depends on temperature. Yeast sample was stored at 4°C i 24°C for 12 days. During storage at 4°C, the content of total carbohydrates decreased from 48.81% to 37.50% (dry matter, whereas carbohydrate loss ranged from 40.81% to 29.28% at 24°C. The content of trehalose was 12.33% in the yeast sample stored at 4°C and 0.24% at 24°C. Loss of fermentative activity was 81.76% in the sample stored at 24°C for 12 days. The composition of five samples of 1st category flour was investigated. It was found that flours containing more reducing sugars and maltose enable higher fermentation activities. The flours with higher ash content (in the range 0.5-0.94% had higher contents of phytic acid. Higher ash and phytic contents in flour increased the yeast fermentative efficiency. In bakery industry, a range of ingredients has been applied to improve the product's quality such as surface active substances (emulsifiers, enzymes, sugars and fats. In the paper, the effect of some ingredients added to dough (margarine, saccharose, sodium chloride and malted barley on the yeast fermentative activity was studied. The mentioned ingredients were added to dough at different doses: 0.5, 1.0, 1.5 and 2.0%, flour basis. It was found that the investigated ingredients affected the fermentative activity of yeast and improved the bread quality.

  20. Yeast Interacting Proteins Database: YMR294W, YLL049W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YMR294W JNM1 Component of the yeast dynactin complex, consisting of Nip100p, Jnm1p,... for nuclear migration; null mutant shows a reduced affinity for the alcian blue dye...M1 Bait description Component of the yeast dynactin complex, consisting of Nip100...nknown function; required for nuclear migration; null mutant shows a reduced affinity for the alcian blue dye

  1. Culture medium optimization for osmotolerant yeasts by use of a parallel fermenter system and rapid microbiological testing.

    Science.gov (United States)

    Pfannebecker, Jens; Schiffer-Hetz, Claudia; Fröhlich, Jürgen; Becker, Barbara

    2016-11-01

    In the present study, a culture medium for qualitative detection of osmotolerant yeasts, named OM, was developed. For the development, culture media with different concentrations of glucose, fructose, potassium chloride and glycerin were analyzed in a Biolumix™ test incubator. Selectivity for osmotolerant yeasts was guaranteed by a water activity (aw)-value of 0.91. The best results regarding fast growth of Zygosaccharomyces rouxii (WH 1002) were achieved in a culture medium consisting of 45% glucose, 5% fructose and 0.5% yeast extract and in a medium with 30% glucose, 10% glycerin, 5% potassium chloride and 0.5% yeast extract. Substances to stimulate yeast fermentation rates were analyzed in a RAMOS(®) parallel fermenter system, enabling online measurement of the carbon dioxide transfer rate (CTR) in shaking flasks. Significant increases of the CTR was achieved by adding especially 0.1-0.2% ammonium salts ((NH4)2HPO4, (NH4)2SO4 or NH4NO3), 0.5% meat peptone and 1% malt extract. Detection times and the CTR of 23 food-borne yeast strains of the genera Zygosaccharomyces, Torulaspora, Schizosaccharomyces, Candida and Wickerhamomyces were analyzed in OM bouillon in comparison to the selective culture media YEG50, MYG50 and DG18 in the parallel fermenter system. The OM culture medium enabled the detection of 10(2)CFU/g within a time period of 2-3days, depending on the analyzed yeast species. Compared with YEG50 and MYG50 the detection times could be reduced. As an example, W. anomalus (WH 1021) was detected after 124h in YEG50, 95.5h in MYG50 and 55h in OM bouillon. Compared to YEG50 the maximum CO2 transfer rates for Z. rouxii (WH 1001), T. delbrueckii (DSM 70526), S. pombe (DSM 70576) and W. anomalus (WH 1016) increased by a factor ≥2.6. Furthermore, enrichment cultures of inoculated high-sugar products in OM culture medium were analyzed in the Biolumix™ system. The results proved that detection times of 3days for Z. rouxii and T. delbrueckii can be realized by

  2. Electromembrane extraction

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Chen, Zhiliang; Gjelstad, Astrid

    2017-01-01

    Electromembrane extraction (EME) was inspired by solid-phase microextraction and developed from hollow fiber liquid-phase microextraction in 2006 by applying an electric field over the supported liquid membrane (SLM). EME provides rapid extraction, efficient sample clean-up and selectivity based...

  3. A comparative study on the potential of epiphytic yeasts isolated from tropical fruits to produce flavoring compounds.

    Science.gov (United States)

    Grondin, Eric; Shum Cheong Sing, Alain; Caro, Yanis; Raherimandimby, Marson; Randrianierenana, Ando Lalaniaina; James, Steve; Nueno-Palop, Carmen; François, Jean Marie; Petit, Thomas

    2015-06-16

    In recent years, there has been an increasing interest in identifying and characterizing the yeast flora associated with diverse types of habitat because of the many potential desirable technological properties of these microorganisms, especially in food applications. In this study, a total of 101 yeast strains were isolated from the skins of tropical fruits collected in several locations in the South West Indian Ocean. Sequence analysis of the D1/D2 domains of the large subunit (LSU) ribosomal RNA gene identified 26 different species. Among them, two species isolated from the skins of Cape gooseberry and cocoa beans appeared to represent putative new yeast species, as their LSU D1/D2 sequence was only 97.1% and 97.4% identical to that of the yeasts Rhodotorula mucilaginosa and Candida pararugosa, respectively. A total of 52 Volatile Organic Compounds (VOCs) were detected by Head Space Solid Phase Micro Extraction coupled to Gas Chromatography and Mass Spectroscopy (HS-SPME-GC/MS) from the 26 yeast species cultivated on a glucose rich medium. Among these VOCs, 6 uncommon compounds were identified, namely ethyl but-2-enoate, ethyl 2-methylbut-2-enoate (ethyl tiglate), ethyl 3-methylbut-2-enoate, 2-methylpropyl 2-methylbut-2-enoate, butyl 2-methylbut-2-enoate and 3-methylbutyl 2-methylbut-2-enoate, making them possible yeast species-specific markers. In addition, statistical methods such as Principal Component Analysis allowed to associate each yeast species with a specific flavor profile. Among them, Saprochaete suaveolens (syn: Geotrichum fragrans) turned to be the best producer of flavor compounds, with a total of 32 out of the 52 identified VOCs in its flavor profile.

  4. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis.

    Directory of Open Access Journals (Sweden)

    Débora L Oliveira

    Full Text Available BACKGROUND: Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We characterized extracellular vesicle production in wild type (WT and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex or MVB functionality (vps23, late endosomal trafficking revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. CONCLUSIONS/SIGNIFICANCE: Our results suggest that both conventional and unconventional pathways of secretion are

  5. Polymer-immobilized ready-to-use recombinant yeast assays for the detection of endocrine disruptive compounds.

    Science.gov (United States)

    Bittner, Michal; Jarque, Sergio; Hilscherová, Klára

    2015-08-01

    Recombinant yeast assays (RYAs) constitute a suitable tool for the environmental monitoring of compounds with endocrine disrupting activities, notably estrogenicity and androgenicity. Conventional procedures require yeast reconstitution from frozen stock, which usually takes several days and demands additional equipment. With the aim of applying such assays to field studies and making them more accessible to less well-equipped laboratories, we have optimized RYA by the immobilization of Saccharomyces cerevisiae cells in three different polymer matrices - gelatin, Bacto agar, and Yeast Extract Peptone Dextrose agar - to obtain a ready-to-use version for the fast assessment of estrogenic and androgenic potencies of compounds and environmental samples. Among the three matrices, gelatin showed the best results for both testosterone (androgen receptor yeast strain; AR-RYA) and 17β-estradiol (estrogen receptor yeast strain; ER-RYA). AR-RYA was characterized by a lowest observed effect concentration (LOEC), EC50 and induction factor (IF) of 1nM, 2.2nM and 51, respectively. The values characterizing ER-RYA were 0.4nM, 1.8nM, and 63, respectively. Gelatin immobilization retained yeast viability and sensitivity for more than 90d of storage at 4°C. The use of the immobilized yeast reduced the assay duration to only 3h without necessity of sterile conditions. Because immobilized RYA can be performed either in multiwell microplates or glass tubes, it allows multiple samples to be tested at once, and easy adaptation to existing portable devices for direct in-field applications.

  6. Evolutionary constraints on yeast protein size

    Directory of Open Access Journals (Sweden)

    Blomberg Anders

    2006-08-01

    Full Text Available Abstract Background Despite a strong evolutionary pressure to reduce genome size, proteins vary in length over a surprisingly wide range also in very compact genomes. Here we investigated the evolutionary forces that act on protein size in the yeast Saccharomyces cerevisiae utilizing a system-wide bioinformatics approach. Data on yeast protein size was compared to global experimental data on protein expression, phenotypic pleiotropy, protein-protein interactions, protein evolutionary rate and biochemical classification. Results Comparing the experimentally determined abundance of individual proteins, highly expressed proteins were found to be consistently smaller than lowly expressed proteins, in accordance with the biosynthetic cost minimization hypothesis. Yeast proteins able to maintain a high expression level despite a large size tended to belong to a very distinct set of protein families, notably nuclear transport and translation initiation/elongation. Large proteins have significantly more protein-protein interactions than small proteins, suggesting that a requirement for multiple interaction domains may constitute a positive selective pressure for large protein size in yeast. The higher frequency of protein-protein interactions in large proteins was not accompanied by a higher phenotypic pleiotropy. Hence, the increase in interactions may not reflect an increase in function differentiation. Proteins of different sizes also evolved at similar rates. Finally, whereas the biological process involved was found to have little influence on protein size the biochemical activity exerted by the protein represented a dominant factor. More than one third of all biochemical activity classes were enriched in one or more size intervals. Conclusion In yeast, there is an inverse relationship between protein size and protein expression such that highly expressed proteins tend to be of smaller size. Also, protein size is moderately affected by protein

  7. Vacuum extraction

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne

    2012-01-01

    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validationof the developed OSATS scale for vacuum...... extraction in a prospective observational study. Setting. Rigshospitalet, University Hospital of Copenhagen. Population. For development an obstetric expert from each labor ward in Denmark (28 departments) were invited to participate. For validation nine first-year residents and ten chief physicians...... with daily work in the obstetric field were tested. Methods. The Delphi method was used for development of the scale. In a simulated vacuum extraction scenario first-year residents and obstetric chief physicians were rated using the developed OSATS scale for vacuum extraction to test construct validity...

  8. Vacuum extraction

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne

    2012-01-01

    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validationof the developed OSATS scale for vacuum...... extraction in a prospective observational study. Setting. Rigshospitalet, University Hospital of Copenhagen. Population. For development an obstetric expert from each labor ward in Denmark (28 departments) were invited to participate. For validation nine first-year residents and ten chief physicians...... with daily work in the obstetric field were tested. Methods. The Delphi method was used for development of the scale. In a simulated vacuum extraction scenario first-year residents and obstetric chief physicians were rated using the developed OSATS scale for vacuum extraction to test construct validity...

  9. Evaluation of fungichrom 1: A new yeast identification system

    Directory of Open Access Journals (Sweden)

    Umabala P

    2002-01-01

    Full Text Available Advances in anti-fungal therapy necessitate the need for accurate identification of fungi especially yeasts to their species level for more effective management. Unlike the time consuming conventional methods of yeast identification using fermentation and assimilation patterns of various carbohydrates, the new commercialized yeast identification systems are simpler, rapid and are particularly easy to interpret. In our study, a new colorimetric yeast identification system-Fungichrom 1(International microbio, Signes, France was evaluated against the conventional method to identify 50 clinical isolates of yeasts belonging to the genera -Candida, Cryptococcus, Geotrichum. 96% agreement was found between the two methods.

  10. Evaluation of Fungichrom 1: a new yeast identification system.

    Science.gov (United States)

    Umabala, P; Satheeshkumar, T; Lakshmi, V

    2002-01-01

    Advances in anti-fungal therapy necessitate the need for accurate identification of fungi especially yeasts to their species level for more effective management. Unlike the time consuming conventional methods of yeast identification using fermentation and assimilation patterns of various carbohydrates, the new commercialized yeast identification systems are simpler, rapid and are particularly easy to interpret. In our study, a new colorimetric yeast identification system-Fungichrom 1(International microbio, Signes, France) was evaluated against the conventional method to identify 50 clinical isolates of yeasts belonging to the genera -Candida, Cryptococcus, Geotrichum. 96% agreement was found between the two methods.

  11. Seed yeast cultivation for salad oil manufacturing wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mixture of five yeast strains obtained from soil could remove about 85% TOC of oil-rich wastewater in batch test.While the highest MLSS was obtained at an N:C of 1:5, the oil removal decreased with the increase of N:C during yeast sludge cultivation. Ammonium chloride was the best nitrogen source for yeast cultivation from the viewpoint of yeast growth and oil utilization. An ammonia concentration of over 1300 mg l-1 led to mass death of yeast at a pH of 5. The ammonia concentration should be controlled at a level of 1000 mg l-1 or lower.

  12. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs.

    Science.gov (United States)

    Kariluoto, Susanna; Aittamaa, Marja; Korhola, Matti; Salovaara, Hannu; Vahteristo, Liisa; Piironen, Vieno

    2006-02-01

    Fermentation of rye dough is often accompanied with an increase in folate content. In this study, three sourdough yeasts, Candida milleri CBS 8195, Saccharomyces cerevisiae TS 146, and Torulaspora delbrueckii TS 207; a control, baker's yeast S. cerevisiae ALKO 743; and four Lactobacillus spp., L. acidophilus TSB 262, L. brevis TSB 307, L. plantarum TSB 304, and L. sanfranciscensis TSB 299 originally isolated from rye sourdough were examined for their abilities to produce or consume folates. The microorganisms were grown in yeast extract-peptone-d-glucose medium as well as in small-scale fermentations that modelled the sourdough fermentation step used in rye baking. Total folate contents were determined using Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism. The microorganisms studied did not excrete folates into the media in significant amounts. Yeasts increased the folate contents of sterilised rye flour-water mixtures from 6.5 microg/100 g to between 15 and 23 microg/100 g after 19-h fermentation, whereas lactic acid bacteria decreased it to between 2.9 and 4.2 microg/100 g. Strains of Lactobacillus bulgaricus, L. casei, L. curvatus, L. fermentum, L. helveticus, Pediococcus spp., and Streptococcus thermophilus that were also tested gave folate contents after fermentation that varied between 2 and 10.4 microg/100 g. Although the four Lactobacillus spp. from sourdough consumed folates their effect on folate contents in co-cultivations was minimal. It was concluded that the increase of folate content during fermentation was mainly due to folate synthesis by yeasts. Fermentation of non-sterilised flour-water mixtures as such resulted in three-fold increases in the folate contents. Two folate producing bacteria were isolated from the non-sterilised flour and identified as Enterobacter cowanii and Pantoea agglomerans.

  13. Process engineering for bioflavour production with metabolically active yeasts - a mini-review.

    Science.gov (United States)

    Carlquist, Magnus; Gibson, Brian; Karagul Yuceer, Yonca; Paraskevopoulou, Adamantini; Sandell, Mari; Angelov, Angel I; Gotcheva, Velitchka; Angelov, Angel D; Etschmann, Marlene; de Billerbeck, Gustavo M; Lidén, Gunnar

    2015-01-01

    Flavours are biologically active molecules of large commercial interest in the food, cosmetics, detergent and pharmaceutical industries. The production of flavours can take place by either extraction from plant materials, chemical synthesis, biological conversion of precursor molecules or de novo biosynthesis. The latter alternatives are gaining importance through the rapidly growing fields of systems biology and metabolic engineering, giving efficient production hosts for the so-called 'bioflavours', which are natural flavour and/or fragrance compounds obtained with cell factories or enzymatic systems. Yeasts are potential production hosts for bioflavours. In this mini-review, we give an overview of bioflavour production in yeasts from the process-engineering perspective. Two specific examples, production of 2-phenylethanol and vanillin, are used to illustrate the process challenges and strategies used.

  14. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation

    DEFF Research Database (Denmark)

    Möllers, K Benedikt; Canella, D.; Jørgensen, Henning;

    2014-01-01

    Background: Microbial bioconversion of photosynthetic biomass is a promising approach to the generation of biofuels and other bioproducts. However, rapid, high-yield, and simple processes are essential for successful applications. Here, biomass from the rapidly growing photosynthetic marine...... cyanobacterium Synechococcus sp. PCC 7002 was fermented using yeast into bioethanol. Results: The cyanobacterium accumulated a total carbohydrate content of about 60% of cell dry weight when cultivated under nitrate limitation. The cyanobacterial cells were harvested by centrifugation and subjected to enzymatic...... cyanobacteria or microalgae. Importantly, as well as fermentable carbohydrates, the cyanobacterial hydrolysate contained additional nutrients that promoted fermentation. This hydrolysate is therefore a promising substitute for the relatively expensive nutrient additives (such as yeast extract) commonly used...

  15. [Determination of tetrodotoxin in fermentation broth of distiller's yeast by ion chromatography].

    Science.gov (United States)

    Shu, Jing; Li, Bailin; Ou, Jie

    2011-02-01

    A method was developed for the quantitative analysis of tetrodotoxin (TTX) in fermentation broth of distiller's yeast by ion chromatography. After extraction with acetonitrile solution (containing 0.1% phosphoric acid) and purification with an ion-exchange column, the tetrodotoxin was separated by ion chromatography and detected by a ultraviolet-visible (UV-VIS) absorbance detector. The experimental results showed that the tetrodotoxin had a good linearity (r2 = 0.997) in the range of 10 - 100 mg/L and the detection limit (3 of signal-to-noise ratio) was 1.0 mg/L. The average recoveries were between 90% - 103% with a relative standard deviation lower than 4.9%. The analysis of real samples verified the reliability of this method and demonstrated that the ion chromatography can be used for the quantification detection of the tetrodotoxin. The degradation experiment results suggested that distiller's yeast had a remarkable effect on the tetrodotoxin degradation.

  16. New methodologies for the extraction and fractionation of bioactive carbohydrates from mulberry (Morus alba) leaves.

    Science.gov (United States)

    Rodríguez-Sánchez, Sonia; Ruiz-Aceituno, Laura; Sanz, María L; Soria, Ana C

    2013-05-15

    Pressurized liquid extraction (PLE) was applied for the first time to extract bioactive low molecular weight carbohydrates (iminosugars and inositols) from mulberry ( Morus alba ) leaves. Under optimized conditions, PLE provided a similar yield to the conventional process used to extract these bioactives, but in less time (5 vs 90 min). To remove carbohydrates that interfere with the bioactivity of iminosugars from PLE extracts, two fractionation treatments were evaluated: yeast ( Saccharomyces cerevisiae ) incubation and cation-exchange chromatography (CEC). Both methods allowed complete removal of major soluble carbohydrates (fructose, glucose, galactose, and sucrose), without affecting the content of mulberry bioactives. As an advantage over CEC, the yeast treatment preserves bioactive inositols, and it is an affordable methodology that employs food grade solvents. This work found PLE followed by yeast treatment to be an easily scalable and automatable procedure that can be implemented in the food industry.

  17. Screening of hepatocyte proteins binding to NS5ABP37 protein by yeast-two hybrid system

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Qing-yong Ma; Xian-kui Meng; Kang Li; Jun Cheng

    2009-01-01

    Objective To investigate the biological function of NS5ABP37 and to look for proteins interacting with NS5ABP37 protein in hepatocytes. Methods We constructed bait plasmid expressing NS5ABP37 protein of hepatitis C virus (HCV) by cloning the gene of NS5ABP37 protein into pGBKT7, then the recombinant plasmid DNA was transformed into yeast AH109 (α type). The transformed yeast AH109 was mated with yeast Y187 (α type) containing liver cDNA library plasmid in 2×YPDA medium. Diploid yeast was plated on synthetic dropout nutrient medium (SD/-Trp-Leu-His-Ade) containing X-α-gal for selection and screening. After extracting and sequencing of plasmids from positive (blue) colonies, we made a sequence analysis by bioinformatics. Results We screened twenty-five proteins binding to NS5ABP37, including Homo sapiens cyclin Ⅰ (CCNI) gene, Homo sapiens matrix metallopeptidase 25 (MMP25) and Homo sapiens talin 1. Conclusion The yeast-two hybrid system is an effective method for identifying hepatocyte proteins interacting with NS5ABP37 of HCV. And the biological function of NS5ABP37 may be associated with glycometabolism, lipid metabolism and apoptosis.

  18. Reduction of chromate and carotene-synthesizing activity of selenite-resistant mutants of the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma

    Directory of Open Access Journals (Sweden)

    Grzàdka M.

    2009-08-01

    Full Text Available Aim. The yeast P. rhodozyma is a perspective microbial producer of carotenoid pigment astaxanthin with a high antioxidant power. The aim of the work was to study the ability of the selenite-resistant strains of this yeast to reduce chrome(VI compounds, as well as to analyze the relations between synthesis of carotenoids, resistance to selenite and chromate-reducing activity of P. rhodozyma. Methods. The yeast cells were grown at standard conditions for this species. The residual chromate content in cultural liquid was determined colorimetrically using diphenylcarbazide. The carotenoid content was determined after extraction of the pigments from the previously permeabilized cells by organic solvents. Results. The selected selenite-resistant mutants of the yeast P. rhodozyma revealed the different combinations of the phenotypes related with tolerance/sensitivity to chromate and selenite, as well as ability to reduce chromate. Conclusions. The obtained results give reasons for suggesting that pathways of detoxification of chromate and selenite by the yeast P. rhodozyma are different, although run through a common reductive type. The isolated mutant strains would be served as the useful models to study relations between homeostasis of Se and Cr oxyanions and biosynthesis of carotenes.

  19. Terverticillate Penicillia studied by direct electrospray mass spectrometric profiling of crude extracts: I. Chemosystematics

    DEFF Research Database (Denmark)

    Smedsgaard, Jørn; Frisvad, Jens Christian

    1997-01-01

    A chemosystematic study of 339 isolates from all known terverticillate Penicillium taxa was performed using electrospray mass spectrometric analysis of extractable metabolites. The mass profiles were made by injecting crude plug extracts made from cultures grown on Czapek Yeast Autolysate agar (C...... to known secondary metabolites were, however, found in all mass profiles. (C) 1997 Elsevier Science Ltd....

  20. Inventions on baker's yeast strains and specialty ingredients.

    Science.gov (United States)

    Gélinas, Pierre

    2009-06-01

    Baker's yeast is one of the oldest food microbial starters. Between 1927 and 2008, 165 inventions on more than 337 baker's yeast strains were patented. The first generation of patented yeast strains claimed improved biomass yield at the yeast plant, higher gassing power in dough or better survival to drying to prepare active dry baker's yeast. Especially between 1980 and 1995, a major interest was given to strains for multiple bakery applications such as dough with variable sugar content and stored at refrigeration (cold) or freezing temperatures. During the same period, genetically engineered yeast strains became very popular but did not find applications in the baking industry. Since year 2000, patented baker's yeast strains claimed aroma, anti-moulding or nutritive properties to better meet the needs of the baking industry. In addition to patents on yeast strains, 47 patents were issued on baker's yeast specialty ingredients for niche markets. This review shows that patents on baker's yeast with improved characteristics such as aromatic or nutritive properties have regularly been issued since the 1920's. Overall, it also confirms recent interest for a very wide range of tailored-made yeast-based ingredients for bakery applications.

  1. A comparison of the effects of different yeast products and antibiotic on broiler performance.

    Science.gov (United States)

    Owens, B; McCracken, K J

    2007-02-01

    1. The objectives of this experiment were to compare the effects of different yeast products, with different nucleotide contents and inclusion rates, on broiler performance and to compare the effects to those observed with an antibiotic growth promoter. 2. Two experiments were carried out over two time replicates, one in individual wire cages and one in group pens. 3. Birds were given a diet based on a commercial formulation, which was split into 7 batches. One batch (C) contained no growth promoter and acted as a negative control, another (AV) contained the antibiotic growth promoter Avilomycin (5 g/tonne) and acted as the positive control. The other batches contained yeast extract 2012 at 100 g/tonne (Y21), yeast extract 2012 at 500 g/tonne (Y25), standard yeast 18 at 100 g/tonne (Y81), standard yeast 18 enriched in nucleotides at 100 g/tonne (Y8N1) and standard yeast 18 enriched in nucleotides at 500 g/tonne (Y8N5). 4. In the penned experiment, 280 Cobb broiler chicks (40 birds/treatment) were randomised to diet and pen position on day of hatch. Birds were fed ad libitum until slaughter at 28 d. Bird performance was monitored during the experimental period. 5. In the individual cage experiment, 63 Cobb broiler chicks (9 birds/treatment) were taken from the pens at 7 d of age and randomised to diet and cage position. Birds were fed ad libitum from d 7 to d 28. A 7-d excreta collection was carried out to determine apparent metabolisable energy (AME) content and nutrient digestibility between d 14 and d 21. Bird intake and weight were monitored weekly during the experimental period. At 28 d the birds were killed and viscosity of jejunal digesta supernatant was determined. 6. In the penned experiment, diet had no significant effect on dry matter intake (DMI), live weight gain (LWG) or gain:feed values during any individual week of the experiment or for the entire experimental period. In the caged experiment, DMI was numerically highest for birds fed Y25 diet over

  2. Ability of RapID Yeast Plus System to identify 304 clinically significant yeasts within 5 hours.

    OpenAIRE

    Kitch, T T; Jacobs, M R; McGinnis, M R; Appelbaum, P C

    1996-01-01

    The RapID Yeast Plus System (Innovative Diagnostic Systems, Norcross, Ga.) is a qualitative micromethod that uses conventional and chromogenic substrates for the identification of medically important yeasts. The ability of the RapID Yeast Plus system to accurately identify 304 clinical yeast isolates within 5 h was evaluated. The RapID Yeast Plus method correctly identified 286 (94.1%) of strains to the species level without the need for additional tests. A further 12 strains (3.9%) were clas...

  3. Application of hybrid yeasts for molasses fermentation during the production of alcohol and bakers' yeast

    Energy Technology Data Exchange (ETDEWEB)

    Raev, Z.A.; Kovalenko, A.D.; Korobkova, L.A.; Sadovnikova, T.A.; Bespalaya, M.K.

    1973-01-01

    Various hybrids of brewers yeasts were studied and their technological properties established. It was shown that hybrid 75 was suitable for increasing alcohol yields from molasses. Hybrid 112 was suitable for increasing the maltase activity of bakers' yeast. Efficient exploitation of the above properties of yeast hybrids may be achieved in a 2 stage molasses fermentation process developed at the Ukrainian Res. Inst. of Distillery Ind. The method is based on 2-stage yeast addition: strain B yeasts in the 1st stage and an appropriate hybrid in the second.

  4. The role of indigenous yeasts in traditional Irish cider fermentations.

    Science.gov (United States)

    Morrissey, W F; Davenport, B; Querol, A; Dobson, A D W

    2004-01-01

    To study the role of the indigenous yeast flora in traditional Irish cider fermentations. Wallerstein laboratory nutrient agar supplemented with biotin, ferric ammonium citrate, calcium carbonate and ethanol was employed together with PCR-restriction fragment length polymorphism analysis of the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene in the identification of indigenous yeasts at the species level, from traditional Irish cider fermentations. By combining the molecular approach and the presumptive media it was possible to distinguish between a large number of yeast species, and to track them within cider fermentations. The Irish cider fermentation process can be divided into three sequential phases based on the predominant yeast type present. Kloeckera/Hanseniaspora uvarum type yeasts predominate in the initial 'fruit yeast phase'. Thereafter Saccharomyces cerevisiae type yeast dominate in the 'fermentation phase', where the alcoholic fermentation takes place. Finally the 'maturation phase' which follows, is dominated by Dekkera and Brettanomyces type yeasts. H. uvarum type yeast were found to have originated from the fruit. Brettanomyces type yeast could be traced back to the press house, and also to the fruit. The press house was identified as having high levels of S. cerevisiae type yeast. A strong link was noted between the temperature profile of the cider fermentations, which ranged from 22 to 35 degrees C and the yeast strain population dynamics. Many different indigenous yeast species were identified. The mycology of Irish cider fermentations appears to be very similar to that which has previously been reported in the wine industry. This study has allowed us to gain a better understanding of the role of indigenous yeast species in 'Natural' Irish cider fermentations. Copyright 2004 The Society for Applied Microbiology

  5. Screening for proteins interacting with MCM7 in human lung cancer library using yeast two hybrid system

    Directory of Open Access Journals (Sweden)

    Yuchen HAN

    2008-08-01

    Full Text Available Background and objective MCM7 is a subunit of the MCM complex that plays a key role in DNA replication initiation. But little is known about its interaction proteins. In this study yeast two hybrid screening was used to identify the MCM7 interacting proteins. Methods Yeast expression vector containing human full length MCM7-pGBKT7 plasmid was constructed, and with a library of cDNAs from human lung cancer-pACT2 plasmid was transformed into yeast strain AH109, and was electively grew in X-a-gal auxotrophy medium SD/-Trp-Leu-His-Ade, and the blue colonies were picked up, the plasmid of the yeast colonies was extracted , and transformed into E. Coli to extract DNA and performed sequence analysis. Results Eleven proteins were identified which could specifically interact with MCM7 proteins, among these five were cytoskeleton proteins, six were enzymes, kinases and related receptors. Conclusion The investigation provides functional clues for further exploration of MCM7 gene.

  6. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations.

    Science.gov (United States)

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  7. Protein Extractability

    African Journals Online (AJOL)

    human nutrition, particularly in developing ... studied the effect of NaCl on the extractability of ... significant influence on the functional properties ..... Malaka, S. L. O. and Amund, O. O. Studies on the Life Cycle and Morphometrics of Honeybees,.

  8. Bevalac extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kalnins, J.G.; Krebs, G.; Tekawa, M.; Cowles, D.; Byrne, T.

    1992-02-01

    This report will describe some of the general features of the Bevatron extraction system, primarily the dependence of the beam parameters and extraction magnet currents on the Bevalac field. The extraction magnets considered are: PFW, XPl, XP2, XS1, XS2, XM1, XM2, XM3, XQ3A and X03B. This study is based on 84 past tunes (from 1987 to the present) of various ions (p,He,O,Ne,Si,S,Ar,Ca,Ti,Fe,Nb,La,Au and U), for Bevalac fields from 1.749 to 12.575 kG, where all tunes included a complete set of beam line wire chamber pictures. The circulating beam intensity inside the Bevalac is measured with Beam Induction Electrodes (BIE) in the South Tangent Tank. The extracted beam intensity is usually measured with the Secondary Emission Monitor (SEM) in the F1-Box. For most of the tunes the extraction efficiency, as given by the SEM/BIE ratio, was not recorded in the MCR Log Book, but plotting the available Log Book data as a function of the Bevalac field, see Fig.9, we find that the extraction efficiency is typically between 30->60% with feedback spill.

  9. Genetics and breeding of brewers yeast

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson-Tillgren, T.; Gjermansen, C.; Petersen, J.G.L.; Holmberg, S.; Kielland-Brandt, M.C.

    1984-01-01

    Yeasts, used for beer production, can be divided into two groups, top fermenters and bottom fermenters and Saccharomyces carlsbergensis has been chosen as the name for the bottom fermenting yeasts which are used in lager beer production. The key for the analysis of the chromosomes of Saccharomyces carlsbergensis was provided by the discovery that single chromosomes of meiotic segregants of these strains can be transferred to genetically marked Saccharomyces cerevisiae strains and subsequently analyzed by tetrad analysis and molecular hybridization. It is proposed that Saccharomyces carlsbergensis is composed of two rather divergent genotypes. Breeding can be accomplished by cross breeding and mutagenesis and possibly by introducing in vitro modified cloned genes into meiotic segregants of Saccharomyces carlsbergensis.

  10. Microcompartments within the yeast plasma membrane.

    Science.gov (United States)

    Merzendorfer, Hans; Heinisch, Jürgen J

    2013-02-01

    Recent research in cell biology makes it increasingly clear that the classical concept of compartmentation of eukaryotic cells into different organelles performing distinct functions has to be extended by microcompartmentation, i.e., the dynamic interaction of proteins, sugars, and lipids at a suborganellar level, which contributes significantly to a proper physiology. As different membrane compartments (MCs) have been described in the yeast plasma membrane, such as those defined by Can1 and Pma1 (MCCs and MCPs), Saccharomyces cerevisiae can serve as a model organism, which is amenable to genetic, biochemical, and microscopic studies. In this review, we compare the specialized microcompartment of the yeast bud neck with other plasma membrane substructures, focusing on eisosomes, cell wall integrity-sensing units, and chitin-synthesizing complexes. Together, they ensure a proper cell division at the end of mitosis, an intricately regulated process, which is essential for the survival and proliferation not only of fungal, but of all eukaryotic cells.

  11. FYPO: the fission yeast phenotype ontology.

    Science.gov (United States)

    Harris, Midori A; Lock, Antonia; Bähler, Jürg; Oliver, Stephen G; Wood, Valerie

    2013-07-01

    To provide consistent computable descriptions of phenotype data, PomBase is developing a formal ontology of phenotypes observed in fission yeast. The fission yeast phenotype ontology (FYPO) is a modular ontology that uses several existing ontologies from the open biological and biomedical ontologies (OBO) collection as building blocks, including the phenotypic quality ontology PATO, the Gene Ontology and Chemical Entities of Biological Interest. Modular ontology development facilitates partially automated effective organization of detailed phenotype descriptions with complex relationships to each other and to underlying biological phenomena. As a result, FYPO supports sophisticated querying, computational analysis and comparison between different experiments and even between species. FYPO releases are available from the Subversion repository at the PomBase SourceForge project page (https://sourceforge.net/p/pombase/code/HEAD/tree/phenotype_ontology/). The current version of FYPO is also available on the OBO Foundry Web site (http://obofoundry.org/).

  12. Structural Studies of the Yeast Mitochondrial Degradosome

    DEFF Research Database (Denmark)

    Feddersen, Ane; Jonstrup, Anette Thyssen; Brodersen, Ditlev Egeskov

    The yeast mitochondrial degradosome/exosome (mtExo) is responsible for most RNA turnover in mitochondria and has been proposed to form a central part of a mitochondrial RNA surveillance system responsible for degradation of aberrant and unprocessed RNA ([1], [2]). In contrast to the cytoplasmic...... and nuclear exosome complexes, which consist of 10-12 different nuclease subunits, the mitochondrial degradosome is composed of only two large subunits - an RNase (Dss1p) and a helicase (Suv3p), belonging the Ski2 class of DExH box RNA helicases. Both subunits are encoded on the yeast nuclear genome...... and imported to the mitochondrial matrix posttranslationally. In an effort to understand the complex mechanisms underlying control of RNA turnover and surveillance in eukaryotic organisms, we are studying the structure of the mitochondrial degradosome as a model system for the more complex exosomes. Dss1p...

  13. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Hansen, Esben H; Møller, Birger Lindberg; Kock, Gertrud R; Bünner, Camilla M; Kristensen, Charlotte; Jensen, Ole R; Okkels, Finn T; Olsen, Carl E; Motawia, Mohammed S; Hansen, Jørgen

    2009-05-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin beta-D-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.

  14. Effect of Yeast : Saccharomyces cerevisiae and Marine Yeast as probiotic supplement on performance of poultry

    Directory of Open Access Journals (Sweden)

    I Putu Kompiang

    2002-03-01

    Full Text Available An experiment had been conducted to evaluate the effect of marine yeast and Saccharomyces cerevisiae (Sc as probiotic supplement on poultry performance. Marine yeast isolated from rotten sea-weed and commercial Saccharomyces cerevisiae were used. Evaluation was conducted by comparing performance of broiler chicken supplemented with marine yeast or Sc, which were given through drinking water (5 ml/l to negative control (feed without antibiotic growth promotor/GPA, positive control (feed with GPA, and reference commercial probiotic. Forty DOC broiler birds were used for each treatment, divided into 4 replicates (10 birds/replicate and raised in wire cages for 5 weeks. Body weight and feed consumption were measured weekly and mortality was recorded during the trial. The results showed that there were no significant difference on the birds performance among marine yeast, Sc, positive control and probiotic reference control treatments. However their effects on bird performance were better (P<0.05 than treatment of negative control. It is concluded that marine yeast or Saccharomyces cerevisiae could replace the function of antibiotic as a growth promotant.

  15. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  16. Physiology of yeasts in alcoholic fermentation processes

    OpenAIRE

    Guimarães, Pedro M. R.

    2008-01-01

    Tese de Doutoramento em Engenharia Química e Biológica This thesis is focused on physiological aspects of the yeasts used in two alcoholic fermentation processes: primary brewing fermentation and fermentation of lactose (particularly lactose derived from cheese whey) to ethanol by recombinant Saccharomyces cerevisiae flocculent strains. The brewing fermentation is probably the most extensively studied alcoholic fermentation process. Nevertheless, developments in brewing tech...

  17. Taxonomy Icon Data: fission yeast [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available fission yeast Schizosaccharomyces pombe Schizosaccharomyces_pombe_L.png Schizosaccharomy...ces_pombe_NL.png Schizosaccharomyces_pombe_S.png Schizosaccharomyces_pombe_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Schizosaccharomyces+pombe&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomy...ces+pombe&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomy...ces+pombe&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomyces+pombe&t=NS

  18. Multipurpose Transposon-Insertion Libraries in Yeast.

    Science.gov (United States)

    Kumar, Anuj

    2016-06-01

    Libraries of transposon-insertion alleles constitute powerful and versatile tools for large-scale analysis of yeast gene function. Transposon-insertion libraries are constructed most simply through mutagenesis of a plasmid-based genomic DNA library; modification of the mutagenizing transposon by incorporation of yeast selectable markers, recombination sites, and an epitope tag enables the application of insertion alleles for phenotypic screening and protein localization. In particular, yeast genomic DNA libraries have been mutagenized with modified bacterial transposons carrying the URA3 marker, lox recombination sites, and sequence encoding multiple copies of the hemagglutinin (HA) epitope. Mutagenesis with these transposons has yielded a large resource of insertion alleles affecting nearly 4000 yeast genes in total. Through well-established protocols, these insertion libraries can be introduced into the desired strain backgrounds and the resulting insertional mutants can be screened or systematically analyzed. Relative to alternative methods of UV irradiation or chemical mutagenesis, transposon-insertion alleles can be easily identified by PCR-based approaches or high-throughput sequencing. Transposon-insertion libraries also provide a cost-effective alternative to targeted deletion approaches, although, in contrast to start-codon to stop-codon deletions, insertion alleles might not represent true null-mutants. For protein-localization studies, transposon-insertion alleles can provide encoded epitope tags in-frame with internal codons; in many cases, these transposon-encoded epitope tags can provide a more accurate localization for proteins in which terminal sequences are crucial for intracellular targeting. Thus, overall, transposon-insertion libraries can be used quickly and economically and have a particular utility in screening for desired phenotypes and localization patterns in nonstandard genetic backgrounds.

  19. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations

    OpenAIRE

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of...

  20. An engineered yeast efficiently secreting penicillin.

    Directory of Open Access Journals (Sweden)

    Loknath Gidijala

    Full Text Available This study aimed at developing an alternative host for the production of penicillin (PEN. As yet, the industrial production of this beta-lactam antibiotic is confined to the filamentous fungus Penicillium chrysogenum. As such, the yeast Hansenula polymorpha, a recognized producer of pharmaceuticals, represents an attractive alternative. Introduction of the P. chrysogenum gene encoding the non-ribosomal peptide synthetase (NRPS delta-(L-alpha-aminoadipyl-L-cysteinyl-D-valine synthetase (ACVS in H. polymorpha, resulted in the production of active ACVS enzyme, when co-expressed with the Bacillus subtilis sfp gene encoding a phosphopantetheinyl transferase that activated ACVS. This represents the first example of the functional expression of a non-ribosomal peptide synthetase in yeast. Co-expression with the P. chrysogenum genes encoding the cytosolic enzyme isopenicillin N synthase as well as the two peroxisomal enzymes isopenicillin N acyl transferase (IAT and phenylacetyl CoA ligase (PCL resulted in production of biologically active PEN, which was efficiently secreted. The amount of secreted PEN was similar to that produced by the original P. chrysogenum NRRL1951 strain (approx. 1 mg/L. PEN production was decreased over two-fold in a yeast strain lacking peroxisomes, indicating that the peroxisomal localization of IAT and PCL is important for efficient PEN production. The breakthroughs of this work enable exploration of new yeast-based cell factories for the production of (novel beta-lactam antibiotics as well as other natural and semi-synthetic peptides (e.g. immunosuppressive and cytostatic agents, whose production involves NRPS's.

  1. An engineered yeast efficiently secreting penicillin.

    Science.gov (United States)

    Gidijala, Loknath; Kiel, Jan A K W; Douma, Rutger D; Seifar, Reza M; van Gulik, Walter M; Bovenberg, Roel A L; Veenhuis, Marten; van der Klei, Ida J

    2009-12-15

    This study aimed at developing an alternative host for the production of penicillin (PEN). As yet, the industrial production of this beta-lactam antibiotic is confined to the filamentous fungus Penicillium chrysogenum. As such, the yeast Hansenula polymorpha, a recognized producer of pharmaceuticals, represents an attractive alternative. Introduction of the P. chrysogenum gene encoding the non-ribosomal peptide synthetase (NRPS) delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) in H. polymorpha, resulted in the production of active ACVS enzyme, when co-expressed with the Bacillus subtilis sfp gene encoding a phosphopantetheinyl transferase that activated ACVS. This represents the first example of the functional expression of a non-ribosomal peptide synthetase in yeast. Co-expression with the P. chrysogenum genes encoding the cytosolic enzyme isopenicillin N synthase as well as the two peroxisomal enzymes isopenicillin N acyl transferase (IAT) and phenylacetyl CoA ligase (PCL) resulted in production of biologically active PEN, which was efficiently secreted. The amount of secreted PEN was similar to that produced by the original P. chrysogenum NRRL1951 strain (approx. 1 mg/L). PEN production was decreased over two-fold in a yeast strain lacking peroxisomes, indicating that the peroxisomal localization of IAT and PCL is important for efficient PEN production. The breakthroughs of this work enable exploration of new yeast-based cell factories for the production of (novel) beta-lactam antibiotics as well as other natural and semi-synthetic peptides (e.g. immunosuppressive and cytostatic agents), whose production involves NRPS's.

  2. Telomere behavior in a hybrid yeast

    Institute of Scientific and Technical Information of China (English)

    Ona C Martin; Christopher G De Sevo; Benjamin Z Guo; Douglas E Koshland; Maiterya J Dunham; Yixian Zheng

    2009-01-01

    @@ Dear Editor, Telomeres and the protein/RNA complexes involved in maintaining them are rapidly evolving systems across eukaryotes.Using two Saccharomyces species, among S.cerevisiae and S.bayanus, we provide evidence that the telomere systems of these two closely related yeasts have evolved significantly apart and that the gene in one spe-cies cannot maintain the set-point of telomere length of the other soecies in the hybrid.

  3. Secretion of invertase in mitotic yeast cells.

    OpenAIRE

    Makarow, M

    1988-01-01

    In mammalian cells intracellular transport is inhibited during mitosis. Here we show that in the yeast Saccharomyces cerevisiae secretion continues uninterrupted during mitosis. S. cerevisiae cells were arrested in mitosis by treating wild-type cells with the microtubule-inhibitor nocodazole, or by incubating a temperature-sensitive cell division cycle mutant (cdc16) at the restrictive temperature. Secretion of invertase into the periplasmic space was equally efficient in mitotic and in unsyn...

  4. Strategies for identifying new prions in yeast

    OpenAIRE

    MacLea, Kyle S.; Ross, Eric D.

    2011-01-01

    The unexpected discovery of two prions, [URE3] and [PSI+], in Saccharomyces cerevisiae led to questions about how many other proteins could undergo similar prion-based structural conversions. However, [URE3] and [PSI+] were discovered by serendipity in genetic screens. Cataloging the full range of prions in yeast or in other organisms will therefore require more systematic search methods. Taking advantage of some of the unique features of prions, various researchers have developed bioinformat...

  5. Dissection and design of yeast prions.

    OpenAIRE

    Osherovich, Lev Z.; Cox, Brian S; Tuite, Mick F; Weissman, Jonathan S.

    2004-01-01

    Many proteins can misfold into beta-sheet-rich, self-seeding polymers (amyloids). Prions are exceptional among such aggregates in that they are also infectious. In fungi, prions are not pathogenic but rather act as epigenetic regulators of cell physiology, providing a powerful model for studying the mechanism of prion replication. We used prion-forming domains from two budding yeast proteins (Sup35p and New1p) to examine the requirements for prion formation and inheritance. In both proteins, ...

  6. Relevant and selective activity of Pancratium illyricum L. against Candida albicans clinical isolates: a combined effect on yeast growth and virulence.

    Science.gov (United States)

    Bonvicini, Francesca; Antognoni, Fabiana; Iannello, Carmelina; Maxia, Andrea; Poli, Ferruccio; Gentilomi, Giovanna Angela

    2014-10-23

    Alkaloids present in plants of the Amaryllidaceae family are secondary metabolites of high biological interest, possessing a wide range of pharmacological activities. In the search for new plant-derived compounds with antimicrobial activities, two alkaloid extracts obtained from bulbs and leaves of Pancratium illyricum L., a plant of the Amarillydaceae family, were tested for their effect on bacterial and yeast growth. The broth microdilution susceptibility test was applied to study the effect of plant extracts on the growth of reference bacterial strains and Candida albicans reference and clinical isolates strains. Extracts obtained from the different parts of the plant were tested and compared with the pure components identified in the extracts. Since matrix metalloproteinase enzymes play a role in the dissemination process of Candida albicans, the effect of the bulb extract and pure alkaloids on in vitro collagenase activity was tested. Cell viability test was carried out on human embryo lung fibroblasts (HEL 299). Whilst both extracts did not show any inhibitory activity against neither Gram positive nor Gram negative bacteria, a strong antifungal activity was detected, in particular for the bulb extract. All clinical isolates were susceptible to the growth inhibitory activity of the bulb extract, with endpoint IC50 values ranging from 1.22 to 78 μg/mL. The pure alkaloids lycorine and vittatine, identified as components of the extract, were also assayed for their capacity of inhibiting the yeast growth, and lycorine turned very active, with endpoint IC50 values ranging from 0.89 to 28.5 μg/mL. A potent inhibition of the in vitro collagenase activity was found in the presence of the bulb extract, and this effect was much higher than that exerted by the pure alkaloids. Viability of cell lines tested was not affected by the extract. Taken together, results suggest that the extract of Pancratium illyricum may act as antifungal agent both directly on the yeast

  7. Yeasts found in vineyards and wineries.

    Science.gov (United States)

    Varela, Cristian; Borneman, Anthony R

    2017-03-01

    Wine is a complex beverage, comprising thousands of metabolites that are produced through the action of a plethora of yeasts and bacteria during fermentation of grape must. These microbial communities originate in the vineyard and the winery and reflect the influence of several factors including grape variety, geographical location, climate, vineyard spraying, technological practices, processing stage and season (pre-harvest, harvest, post-harvest). Vineyard and winery microbial communities have the potential to participate during fermentation and influence wine flavour and aroma. Therefore, there is an enormous interest in isolating and characterising these communities, particularly non-Saccharomyces yeast species to increase wine flavour diversity, while also exploting regional signature microbial populations to enhance regionality. In this review we describe the role and relevance of the main non-Saccharomyces yeast species found in vineyards and wineries. This includes the latest reports covering the application of these species for winemaking; and the biotechnological characteristics and potential applications of non-Saccharomyces species in other areas. In particular, we focus attention on the species for which molecular and genomic tools and resources are available for study. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Role of yeasts in table olive production.

    Science.gov (United States)

    Arroyo-López, F N; Querol, A; Bautista-Gallego, J; Garrido-Fernández, A

    2008-12-10

    Table olives are a traditional fermented vegetable of the Mediterranean countries, but their production and consumption are now spread all around the world. Yeasts can play a double role in this food. They are present throughout the fermentative process and it is generally accepted that they can produce compounds with important organoleptic attributes determining the quality and flavour of the final product. However, yeasts can also be spoilage microorganisms in olive fermentation/storage and packing causing gas pockets, swollen containers, cloudy brines and off-flavours and off-odours. Candida boidinii, Debaryomyces hansenii, Pichia anomala, P. membranifaciens, Rhodotorula glutinis and Saccharomyces cerevisiae are species isolated with a high frequency from olive processes. Scarce information is still available about the ecology, biochemistry and molecular biology of these important microorganisms in table olives. A wider knowledge about these aspects could facilitate the possible application of yeasts as a starter culture, due to their ability to produce aromatic compounds, antioxidants, enzymes, and improve the growth of lactic acid bacteria.

  9. How do yeast sense mitochondrial dysfunction?

    Directory of Open Access Journals (Sweden)

    Dmitry A. Knorre

    2016-09-01

    Full Text Available Apart from energy transformation, mitochondria play important signaling roles. In yeast, mitochondrial signaling relies on several molecular cascades. However, it is not clear how a cell detects a particular mitochondrial malfunction. The problem is that there are many possible manifestations of mitochondrial dysfunction. For example, exposure to the specific antibiotics can either decrease (inhibitors of respiratory chain or increase (inhibitors of ATP-synthase mitochondrial transmembrane potential. Moreover, even in the absence of the dysfunctions, a cell needs feedback from mitochondria to coordinate mitochondrial biogenesis and/or removal by mitophagy during the division cycle. To cope with the complexity, only a limited set of compounds is monitored by yeast cells to estimate mitochondrial functionality. The known examples of such compounds are ATP, reactive oxygen species, intermediates of amino acids synthesis, short peptides, Fe-S clusters and heme, and also the precursor proteins which fail to be imported by mitochondria. On one hand, the levels of these molecules depend not only on mitochondria. On the other hand, these substances are recognized by the cytosolic sensors which transmit the signals to the nucleus leading to general, as opposed to mitochondria-specific, transcriptional response. Therefore, we argue that both ways of mitochondria-to-nucleus communication in yeast are mostly (if not completely unspecific, are mediated by the cytosolic signaling machinery and strongly depend on cellular metabolic state.

  10. Heat shock, visible light or high calcium augment the cytotoxic effects of Ailanthus altissima (Swingle) leaf extracts against Saccharomyces cerevisiae cells.

    Science.gov (United States)

    Popa, Claudia Valentina; Lungu, Liliana; Cristache, Ligia Florentina; Ciuculescu, Crinu; Danet, Andrei Florin; Farcasanu, Ileana Cornelia

    2015-01-01

    To gain new insight into the antimicrobial potential of Ailanthus altissima Swingle, ethanol leaf extracts were evaluated for the antifungal effects against the model yeast Saccharomyces cerevisae. The extracts inhibited the yeast growth in a dose-dependent manner, and this effect could be augmented by heat shock, exposure to visible light or exposure to high concentrations of Ca(2+). Using transgenic yeast cells expressing the Ca(2+)-dependent photoprotein, aequorin, it was found that the leaf extracts induced cytosolic Ca(2+) elevation. Experiments on yeast mutants with defects in Ca(2+) transport demonstrated that the cytotoxicity of the A. altissima leaf extracts (AaLEs) was mediated by transient pulses of Ca(2+) ions which were released into the cytosol predominantly from the vacuole. The investigation of the antifungal synergies involving AaLEs may contribute to the development of optimal and safe combination therapies for the treatment of drug-resistant fungal infections.

  11. Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines.

    Science.gov (United States)

    Roohvand, Farzin; Shokri, Mehdi; Abdollahpour-Alitappeh, Meghdad; Ehsani, Parastoo

    2017-08-01

    Yeasts, as Eukaryotes, offer unique features for ease of growth and genetic manipulation possibilities, making it an exceptional microbial host. Areas covered: This review provides general and patent-oriented insights into production of biopharmaceuticals by yeasts. Patents, wherever possible, were correlated to the original or review articles. The review describes applications of major GRAS (generally regarded as safe) yeasts for the production of therapeutic proteins and subunit vaccines; additionally, immunomodulatory properties of yeast cell wall components were reviewed for use of whole yeast cells as a new vaccine platform. The second part of the review will discuss yeast- humanization strategies and innovative applications. Expert opinion: Biomedical applications of yeasts were initiated by utilization of Saccharomyces cerevisiae, for production of leavened (fermented) products, and advanced to serve to produce biopharmaceuticals. Higher biomass production and expression/secretion yields, more similarity of glycosylation patterns to mammals and possibility of host-improvement strategies through application of synthetic biology might enhance selection of Pichia pastoris (instead of S. cerevisiae) as a host for production of biopharmaceutical in future. Immunomodulatory properties of yeast cell wall β-glucans and possibility of intracellular expression of heterologous pathogen/tumor antigens in yeast cells have expanded their application as a new platform, 'Whole Yeast Vaccines'.

  12. YeastMed: an XML-Based System for Biological Data Integration of Yeast

    CERN Document Server

    Briache, Abdelaali; Kerzazi, Amine; Navas-Delgado, Ismael; Montes, Jose F Aldana; Hassani, Badr D Rossi; Lairini, Khalid

    2010-01-01

    A key goal of bioinformatics is to create database systems and software platforms capable of storing and analysing large sets of biological data. Hundreds of biological databases are now available and provide access to huge amount of biological data. SGD, Yeastract, CYGD-MIPS, BioGrid and PhosphoGrid are five of the most visited databases by the yeast community. These sources provide complementary data on biological entities. Biologists are brought systematically to query these data sources in order to analyse the results of their experiments. Because of the heterogeneity of these sources, querying them separately and then manually combining the returned result is a complex and laborious task. To provide transparent and simultaneous access to these sources, we have developed a mediator-based system called YeastMed. In this paper, we present YeastMed focusing on its architecture.

  13. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations.

    Science.gov (United States)

    Steensels, Jan; Verstrepen, Kevin J

    2014-01-01

    Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of Saccharomyces cerevisiae, S. bayanus, or S. pastorianus. Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how Saccharomyces yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as Brettanomyces, Hanseniaspora, and Pichia spp.

  14. Black yeast-like fungi in skin and nail

    DEFF Research Database (Denmark)

    Saunte, D M; Tarazooie, B; Arendrup, M C

    2011-01-01

    Black yeast-like fungi are rarely reported from superficial infections. We noticed a consistent prevalence of these organisms as single isolations from mycological routine specimens. To investigate the prevalence of black yeast-like fungi in skin, hair and nail specimens and to discuss...... the probability of these species to be involved in disease. Slow-growing black yeast-like fungi in routine specimens were prospectively collected and identified. A questionnaire regarding patient information was sent to physicians regarding black yeast-like fungus positive patients. A total of 20 746...... dermatological specimens were examined by culture. Black yeast-like fungi accounted for 2.2% (n = 108) of the positive cultures. Only 31.0% of the samples, culture positive for black yeast-like fungi were direct microscopy positive when compared with overall 68.8% of the culture positive specimens. The most...

  15. Yeast Genomics for Bread, Beer, Biology, Bucks and Breath

    Science.gov (United States)

    Sakharkar, Kishore R.; Sakharkar, Meena K.

    The rapid advances and scale up of projects in DNA sequencing dur ing the past two decades have produced complete genome sequences of several eukaryotic species. The versatile genetic malleability of the yeast, and the high degree of conservation between its cellular processes and those of human cells have made it a model of choice for pioneering research in molecular and cell biology. The complete sequence of yeast genome has proven to be extremely useful as a reference towards the sequences of human and for providing systems to explore key gene functions. Yeast has been a ‘legendary model’ for new technologies and gaining new biological insights into basic biological sciences and biotechnology. This chapter describes the awesome power of yeast genetics, genomics and proteomics in understanding of biological function. The applications of yeast as a screening tool to the field of drug discovery and development are highlighted and the traditional importance of yeast for bakers and brewers is discussed.

  16. Biosorption of nickel by yeasts in an osmotically unsuitable environment

    Energy Technology Data Exchange (ETDEWEB)

    Breierova, Emilia; Kovarova, Annamaria [SAS, Bratislava (Slovakia). Inst. of Chemistry; Certik, Milan [SUT, Bratislava (Slovakia). Dept. of Biochemical Technology; Gregor, Tomas [Mendel Univ. of Agriculture and Forestry, Brno (Czech Republic)

    2008-11-15

    The tolerance, sorption of nickel(II) ions, and changes in the production and composition of exopolymers of eight yeast strains grown under nickel presence with/without NaCl were studied. Strains of Pichia anomala and Candida maltosa known as the most resistant yeasts against nickel tolerated up to 3 mm Ni{sup 2+}. NaCl addition decreased both the resistance ofthe yeast strains toward nickel ions and the sorption of metal ions into cells. All yeasts absorbed nickel predominantly into exopolymers (glycoproteins) and on the surface of cells. However, while the amount of polysaccharide moieties of exoglycoproteins of most of the resistant yeasts was induced by stress conditions, the ratio polysaccharide/protein in the exopolymers remained unchanged in the sensitive species Cystofilobasidium. The exopolymer composition might play a key role in yeast adaptation to stress conditions caused by heavy metal ions. (orig.)

  17. Genetic aspects of targeted insertion mutagenesis in yeasts.

    Science.gov (United States)

    Klinner, U; Schäfer, B

    2004-05-01

    Targeted insertion mutagenesis is a main molecular tool of yeast science initially applied in Saccharomyces cerevisiae. The method was extended to fission yeast Schizosaccharomyces pombe and to "non-conventional" yeast species, which show specific properties of special interest to both basic and applied research. Consequently, the behaviour of such non-Saccharomyces yeasts is reviewed against the background of the knowledge of targeted insertion mutagenesis in S. cerevisiae. Data of homologous integration efficiencies obtained with circular, ends-in or ends-out vectors in several yeasts are compared. We follow details of targeted insertion mutagenesis in order to recognize possible rate-limiting steps. The route of the vector to the target and possible mechanisms of its integration into chromosomal genes are considered. Specific features of some yeast species are discussed. In addition, similar approaches based on homologous recombination that have been established for the mitochondrial genome of S. cerevisiae are described.

  18. Cell surface engineering of yeast for applications in white biotechnology.

    Science.gov (United States)

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Cell surface engineering is a promising strategy for the molecular breeding of whole-cell biocatalysts. By using this strategy, yeasts can be constructed by the cell surface display of functional proteins; these yeasts are referred to as arming yeasts. Because reactions using arming yeasts as whole-cell biocatalysts occur on the cell surface, materials that cannot enter the cell can be used as reaction substrates. Numerous arming yeasts have therefore been constructed for a wide range of uses such as biofuel production, synthesis of valuable chemicals, adsorption or degradation of environmental pollutants, recovery of rare metal ions, and biosensors. Here, we review the science of yeast cell surface modification as well as current applications and future opportunities.

  19. Development and Evaluation of qPCR Assay for Quantitation of Kazachstania slooffiae and Total Yeasts Occurring in the Porcine Gut.

    Science.gov (United States)

    Urubschurov, Vladimir; Büsing, Kirsten; Janczyk, Pawel; Souffrant, Wolfgang-Bernhard; Zeyner, Annette

    2015-09-01

    Kazachstania slooffiae is the dominating yeast in pig's gut. No methods others than cultivation were applied for enumeration of yeasts within this ecosystem. Therefore, the aim of this study was to develop a real-time quantitative polymerase chain reaction (qPCR) assay to quantitate total yeasts and K. slooffiae in the porcine gut. This work demonstrated that the copy numbers in gDNA can be determined by qPCR using PCR amplicons as a calibrator and one-point calibration method. The gDNA were then used as a calibrator for further analysis. The values of quantitation cycle and PCR amplification efficiency of gDNA calibrator were highly reproducible. DNA was extracted from feces and from 10 different cultured yeasts found in pigs' intestine. The qPCR results using primers NL1/LS2 encoding 26S rDNA correlated (r = 0.984, P < 0.0001) with cultivation results. From two primer sets developed, one set encoding act1 gene was suitable for quantitation of K. slooffiae. The copy numbers of K. slooffiae could be determined by 40% analyzed animals, amounting to about 70% of total yeasts. The application of this method in next studies will help to get more information about K. slooffiae and total yeasts in the gut of pigs.

  20. The effect of growth conditions on production and excretion of extracellular antigens by three ascomycetous yeasts.

    Science.gov (United States)

    Middelhoven, W J; Slingerland, R J; Notermans, S

    1988-01-01

    Ascomycetous yeasts produce extracellular antigens that are almost specific for the species. The antigen production by Hansenula wickerhamii and Stephanoascus ciferrii was independent of the carbon source and was proportional to the final cell density of the cultures. The same was true of chemostat cultures of Stephanoascus ciferrii, irrespective of the dilution rate and whether glucose or ammonia was the limiting nutrient. In cultures of Saccharomyces cerevisiae, however, antigen excretion mainly took place in the late exponential growth phase. Large amounts of antigen were extracted from the cell wall of Saccharomyces cerevisiae. A small amount was detected in the cytoplasm.

  1. Probiotic properties of yeasts occurring in fermented food and beverages

    DEFF Research Database (Denmark)

    Jespersen, Lene

    Besides being able to improve the quality and safety of many fermented food and beverages some yeasts offer a number of probiotic traits. Especially a group of yeast referred to as "Saccharomyces boulardii", though taxonomically belonging to Saccharomyces cerevisiae, has been claimed to have...... probiotic properties. Besides, yeasts naturally occurring globally in food and beverages will have traits that might have a positive impact on human health....

  2. Mediated Electrochemical Measurements of Intracellular Catabolic Activities of Yeast Cells

    Institute of Scientific and Technical Information of China (English)

    Jin Sheng ZHAO; Zhen Yu YANG; Yao LU; Zheng Yu YANG

    2005-01-01

    Coupling with the dual mediator system menadione/ferricyanide, microelectrode voltammetric measurements were undertaken to detect the ferrocyanide accumulations arising from the mediated reduction of ferricyanide by yeast cells. The results indicate that the dual mediator system menadione/ferricyanide could be used as a probe to detect cellular catabolic activities in yeast cells and the electrochemical response has a positive relationship with the specific growth rate of yeast cells.

  3. The Yeast Deletion Collection: A Decade of Functional Genomics

    OpenAIRE

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MAT a and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on...

  4. The complexity and implications of yeast prion domains

    OpenAIRE

    Du, Zhiqiang

    2011-01-01

    Prions are infectious proteins with altered conformations converted from otherwise normal host proteins. While there is only one known mammalian prion protein, PrP, a handful of prion proteins have been identified in the yeast Saccharomyces cerevisiae. Yeast prion proteins usually have a defined region called prion domain (PrD) essential for prion properties, which are typically rich in glutamine (Q) and asparagine (N). Despite sharing several common features, individual yeast PrDs are genera...

  5. Yarrowia lipolytica yeast use for the production of biomass and lipid

    Directory of Open Access Journals (Sweden)

    Aline da Silva Delabio

    2015-06-01

    Full Text Available Fuels from renewable energy are gaining space in a landscape where the unbridled use of fossil fuels endangers the world's energy future. Thus biofuels are possible substitutes for fossil fuels. The use of yeast in lipid synthesis is presented as an alternative since the lipids produced can serve as raw material for production of biodiesel. This study was conducted in order to assess the feasibility of production of lipid by Yarrowia lipolytica and a subsequent application as biodiesel. Yeasts of Yarrowia lipolytica were maintained in liquid medium, Yeast Extract Peptone Dextrose, and inoculated into medium containing agro-industrial waste (molasses and vinasse and other available waste (urban runoff. After inoculation the medium was incubated without agitation for a period of 7; 14 and 21 days. Three bottles every seven days were taken for quantification of lipids. The length greater oil production occurred after 21 days of incubation, while greater biomass production occurred 14 days of incubation. The production of lipids was less than reported in the literature but production can be increased with the appropriate study of each nutrient composition of the culture medium. The study was conducted in laboratory scale values probably biomass and lipids are major industrial scale.

  6. Yeast α-Glucosidase Inhibitory Phenolic Compounds Isolated from Gynura medica Leaf

    Directory of Open Access Journals (Sweden)

    Chao Tan

    2013-01-01

    Full Text Available Gynura medica leaf extract contains significant amounts of flavonols and phenolic acids and exhibits powerful hypoglycemic activity against diabetic rats in vivo. However, the hypoglycemic active constituents that exist in the plant have not been fully elaborated. The purpose of this study is to isolate and elaborate the hypoglycemic activity compounds against inhibition the yeast α-glucosidase in vitro. Seven phenolic compounds including five flavonols and two phenolic acids were isolated from the leaf of G. medica. Their structures were identified by the extensive NMR and mass spectral analyses as: kaempferol (1, quercetin (2, kaempferol-3-O-β-D-glucopyranoside (3, kaempferol-3-O-rutinoside (4, rutin (5, chlorogenic acid (6 and 3,5-dicaffeoylquinic acid methyl ester (7. All of the compounds except 1 and 3 were isolated for the first time from G. medica. Compounds 1–7 were also assayed for their hypoglycemic activity against yeast α-glucosidase in vitro. All of the compounds except 1 and 6 showed good yeast α-glucosidase inhibitory activity with the IC50 values of 1.67 mg/mL, 1.46 mg/mL, 0.38 mg/mL, 0.10 mg/mL and 0.53 mg/mL, respectively.

  7. Mass-rearing of Mediterranean fruit fly using low-cost yeast products produced in Brazil

    Directory of Open Access Journals (Sweden)

    Alberto Moreira da Silva Neto

    2012-12-01

    Full Text Available Ceratitis capitata is one of the most important pests of fruits for exportation, and Sterile Insect Technique (SIT has been the most efficient and environmental friendly technique used to control fruit fly populations around the world. A key goal in achieving a successful SIT program is a mass rearing system producing high quality insects at low cost. Providing adults with an artificial diet containing hydrolysed protein has been the major obstacle for bio-production facilities in Brazil, because it is expensive and has to be imported. Two other commercial products, autolysed yeast (AY and yeast extract (YE, of domestic origin and low cost, were tested as substitutes of the imported hydrolyzed protein. To compare their efficiency we observed the female fecundity, adult survival and egg viability of flies raised on diets containing one of each of the different protein products. Flies reared on the domestic yeast products had equivalent or superior performance to the flies reared on imported protein. Both AY and YE can be a possible substitute for imported hydrolyzed protein for C. capitata mass-rearing, as they are cheaper and are readily available in the national market.

  8. TdKT, a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts.

    Science.gov (United States)

    Villalba, María Leticia; Susana Sáez, Julieta; Del Monaco, Silvana; Lopes, Christian Ariel; Sangorrín, Marcela Paula

    2016-01-18

    Microbiological spoilage is a major concern throughout the wine industry, and control tools are limited. This paper addresses the identification and partial characterization of a new killer toxin from Torulaspora delbrueckii with potential biocontrol activity of Brettanomyces bruxellensis, Pichia guilliermondii, Pichia manshurica and Pichia membranifaciens wine spoilage. A panel of 18 different wine strains of T. delbrueckii killer yeasts was analysed, and the strain T. delbrueckii NPCC 1033 (TdKT producer) showed a significant inhibitory effect on the growth of all different spoilage yeasts evaluated. The TdKT toxin was then subjected to a partial biochemical characterization. Its estimated molecular weight was N30 kDa and it showed glucanase and chitinase enzymatic activities. The killer activity was stable between pH 4.2 and 4.8 and inactivated at temperature above 40 °C. Pustulan and chitin — but not other cell wall polysaccharides — prevented sensitive yeast cells from being killed by TdKT, suggesting that those may be the first toxin targets in the cell wall. TdKT provoked an increase in necrosis cell death after 3 h treatment and apoptotic cell death after 24 h showing time dependence in its mechanisms of action. Killer toxin extracts were active at oenological conditions, confirming their potential use as a biocontrol tool in winemaking.

  9. DNA extract characterization process for microbial detection methods development and validation

    OpenAIRE

    2012-01-01

    Background Quantitative polymerase chain reaction (qPCR) assays used in pathogen detection require rigorous methods development including characterizing DNA extraction products. A DNA extract characterization process is demonstrated using DNA extracted from five different cells types (two Gram-negatives: Escherichia coli, and Burkholderia thailandensis, spores and vegetative cells from the Gram-positive Bacillus cereus, and yeast Saccharomyces cerevisiae) with six different methods. Results D...

  10. Pharmacological screening of methanolic extract of Ixora species

    Institute of Scientific and Technical Information of China (English)

    Lachimanan Yoga Latha; Ibrahim Darah; Kassim Jain; Sreenivasan Sasidharan

    2012-01-01

    Objective:To investigate the antimicrobial activity of methanolic extracts of different parts of Ixora species. Methods:Antimicrobial activity was carried out using disc diffusion assay against fungi, gram-positive and gram-negative bacteria. Results:All methanolic extracts of different parts of Ixora species showed a broad-spectrum of antibacterial and antiyeast activities, which inhibited the growth of at least one bacterium or yeast. There was no remarkable difference between different Ixora species observed in this study. Conclusions:The significant antimicrobial activity shown by this Ixora species suggests its potential against infections caused by pathogens. The extract may be developed as an antimicrobial agent.

  11. A study of yeast carriage on hands of hospital personnel.

    Science.gov (United States)

    Kumar, S; Batra, R

    2000-01-01

    The present study was conducted by culture with a modified broth wash technique to examine the frequency of yeast carriage on the hands of 60 nurses and 35 nonnursing hospital employees. Seventy two percent of the nurses and 80% of the nonnurses were harbouring yeast on their hands. Candida spp. were isolated in 57% on of nurses and 34% of nonnurses. Ninety percent of nurses working in nursing home care unit (NHCU), 50% working in intensive care unit (ICU) and 75% working in outpatient department (OPD) carried yeasts on their hands. Only 80% of nonnurses staff harboured yeasts on their hands.

  12. Aboveground Deadwood Deposition Supports Development of Soil Yeasts

    Directory of Open Access Journals (Sweden)

    Thorsten Wehde

    2012-12-01

    Full Text Available Unicellular saprobic fungi (yeasts inhabit soils worldwide. Although yeast species typically occupy defined areas on the biome scale, their distribution patterns within a single type of vegetation, such as forests, are more complex. In order to understand factors that shape soil yeast communities, soils collected underneath decaying wood logs and under forest litter were analyzed. We isolated and identified molecularly a total of 25 yeast species, including three new species. Occurrence and distribution of yeasts isolated from these soils provide new insights into ecology and niche specialization of several soil-borne species. Although abundance of typical soil yeast species varied among experimental plots, the analysis of species abundance and community composition revealed a strong influence of wood log deposition and leakage of organic carbon. Unlike soils underneath logs, yeast communities in adjacent areas harbored a considerable number of transient (phylloplane-related yeasts reaching 30% of the total yeast quantity. We showed that distinguishing autochthonous community members and species transient in soils is essential to estimate appropriate effects of environmental factors on soil fungi. Furthermore, a better understanding of species niches is crucial for analyses of culture-independent data, and may hint to the discovery of unifying patterns of microbial species distribution.

  13. Identification of yeasts present in sour fermented foods and fodders.

    Science.gov (United States)

    Middelhoven, Wouter J

    2002-07-01

    This paper deals with rapid methods for identification of 50 yeast species frequently isolated from foods and fodders that underwent a lactic acid fermentation. However, many yeast species present in olive brine, alpechin, and other olive products were not treated. The methods required for identification include light microscopy, physiological growth tests (ID32C system of BioMérieux), assimilation of nitrate and of ethylamine as sole nitrogen sources, vitamin requirement, and maximum growth temperature. An identification key to treated yeast species is provided. In another table characteristics of all yeast species treated are listed.

  14. [Novel bioconversion systems using a yeast molecular display system].

    Science.gov (United States)

    Shibasaki, Seiji

    2010-11-01

    The budding yeast Saccharomyces cerevisiae has been used for the process of fermentation as well as for studies in biochemistry and molecular biology as a eukaryotic model cell or tool for the analysis of gene functions. Thus, yeast is essential in industries and researches. Yeast cells have a cell wall, which is one characteristic that helps distinguish yeast cells from other eukaryotic cells such as mammalian cells. We have developed a molecular display system using the protein of the yeast cell wall as an anchor for foreign proteins. Yeast cells have been designed for use in sensing and metal adsorption, and have been used in vaccines and for screening novel proteins. Currently, yeast is used not only as a tool for analyzing gene or protein function but also in molecular display technology. The phage display system, which is at the forefront of molecular display technologies, is a powerful tool for screening ligands bound to a target molecule and for analyzing protein-protein interactions; however, in some cases, eukaryotic proteins are not easily expressed by this system. On the other hand, yeast cells have the ability to express eukaryotic proteins and proliferate; thus, these cells display various proteins. Yeast cells are more appropriate for white biotechnology. In this review, displays of enzymes that are important in bioconversion, such as lipases and β-glucosidases, are going to be introduced.

  15. Extractive fermentation of aroma with supercritical CO2

    Science.gov (United States)

    Fabre; Condoret; Marty

    1999-08-20

    This work deals with the feasibility of achieving an extractive fermentation of 2-phenylethyl alcohol, the rose aroma, coupling fermentation with Kluyveromyces marxianus and supercritical carbon dioxide (SCCO2) extraction. The extractive process is, in this case, of special interest due to the strong yeast inhibition by 2-phenylethyl alcohol. First results confirmed that direct SCCO2 extraction is not possible, due to a drastic CO2 effect on cell viability. It is therefore necessary to perform cell separation prior to the extraction. Aroma extraction conditions from a synthetic mixture were then optimized, a pressure of 200 bar and a temperature in the range 35-45 degrees C being chosen. Under these conditions, the distribution coefficient Kd is 2 times higher than during the extraction using a conventional organic solvent, n-hexane. Using a simple model of aroma partition between aqueous and SCCO2 phases, the parameters of a continuous extraction from a synthetic broth were defined. The two substrates, glucose and phenylalanine, are not extracted whatever the conditions. As predicted by the model, more than 90% of 2-phenylethyl alcohol can be extracted, while the extraction of ethanol, the second main product, can be easily tuned with respect to operating conditions, as a function of its influence on the fermentation. Finally, the feasibility of the aroma recovery using two depressurization steps at the outflow of the extraction vessel was demonstrated; 97% of the extracted aroma was recovered, and a mass purity of 91% was achieved. Copyright 1999 John Wiley & Sons, Inc.

  16. Information extraction

    NARCIS (Netherlands)

    Zhang, Lei; Hoede, C.

    2002-01-01

    In this paper we present a new approach to extract relevant information by knowledge graphs from natural language text. We give a multiple level model based on knowledge graphs for describing template information, and investigate the concept of partial structural parsing. Moreover, we point out that

  17. EXPANDING EXTRACTIONS

    NARCIS (Netherlands)

    Dietzenbacher, Erik; Lahr, Michael L.

    2013-01-01

    In this paper, we generalize hypothetical extraction techniques. We suggest that the effect of certain economic phenomena can be measured by removing them from an input-output (I-O) table and by rebalancing the set of I-O accounts. The difference between the two sets of accounts yields the phenomeno

  18. Production of yeast biomass using waste Chinese cabbage

    Energy Technology Data Exchange (ETDEWEB)

    Min Ho Choi; Yun Hee Park [Ajou Univ., Suwon (Korea). Dept. of Molecular Science and Technology

    2003-08-01

    The possibility of using waste Chinese cabbage as a substrate for microbial biomass production was investigated. Cell mass and the protein content of four species of yeast, Candida utilis, Pichia stipitis, Kluyveromyces marxianus, and Saccharomyces cerevisiae, were determined when cultured in juice extracted from cabbage waste. Compared to YM broth containing the same level of sugar, all the strains except C. utilis showed higher total protein production in cabbage juice medium (CJM). Cell mass production was lower for all four strains in heat-treated CJM than in membrane-filtered medium, and this adverse effect was pronounced when the CJM was autoclaved at 121{sup o}C for 15 min. As a source of inorganic nitrogen, only ammonium sulfate added at a concentration of 0.5 g nitrogen per liter of CJM increased cell growth. Of the seven organic nitrogen sources tested, only corn steep powder was effective in increasing cell mass (by about 11%). As a micronutrient, the addition of 0.5 mM zinc increased cell mass. The results suggest that juice from waste Chinese cabbages can be used to produce microbial biomass protein without substantial modification, after preliminary heat treatment at temperatures below those required for sterilization. (Author)

  19. Proteomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous

    Directory of Open Access Journals (Sweden)

    Baeza Marcelo

    2011-06-01

    Full Text Available Abstract Background The yeast Xanthophyllomyces dendrorhous is used for the microbiological production of the antioxidant carotenoid astaxanthin. In this study, we established an optimal protocol for protein extraction and performed the first proteomic analysis of the strain ATCC 24230. Protein profiles before and during the induction of carotenogenesis were determined by two-dimensional polyacrylamide gel electrophoresis and proteins were identified by mass spectrometry. Results Among the approximately 600 observed protein spots, 131 non-redundant proteins were identified. Proteomic analyses allowed us to identify 50 differentially expressed proteins that fall into several classes with distinct expression patterns. These analyses demonstrated that enzymes related to acetyl-CoA synthesis were more abundant prior to carotenogenesis. Later, redox- and stress-related proteins were up-regulated during the induction of carotenogenesis. For the carotenoid biosynthetic enzymes mevalonate kinase and phytoene/squalene synthase, we observed higher abundance during induction and/or accumulation of carotenoids. In addition, classical antioxidant enzymes, such as catalase, glutathione peroxidase and the cytosolic superoxide dismutases, were not identified. Conclusions Our results provide an overview of potentially important carotenogenesis-related proteins, among which are proteins involved in carbohydrate and lipid biosynthetic pathways as well as several redox- and stress-related proteins. In addition, these results might indicate that X. dendrorhous accumulates astaxanthin under aerobic conditions to scavenge the reactive oxygen species (ROS generated during metabolism.

  20. Nigella sativa seed extract: 1. Enhancement of sheep macrophage immune functions in vitro.

    Science.gov (United States)

    Elmowalid, Gamal; Amar, Ahmad M; Ahmad, Adel Attia M

    2013-10-01

    Nigella sativa (N. sativa) seed, Black cumin, immunomodulatory activity has been investigated in human and mice. Little is known about the immunomodulatory effect of Nigella sativa (N. sativa) seed extract on animals' immune cells, specifically, antigen presenting cells such as macrophages. This study focused on the immunomodulatory effect of N. sativa seed extract on sheep macrophage functions in vitro. Sheep peripheral blood monocytes were isolated and derived to macrophages (MDM). The MDM were cultured with N. sativa seed extract and their morphological changes, phagocytic activity, nitric oxide production, and microbicidal activity were investigated. Marked morphological changes were observed in MDM cultured with N. sativa seed extract including cell size enlargement; increase in both cytoplasmic space and cytoplasmic granules. Significant increases in phagocytic activity to Candida albicans yeast and in number of yeast engulfed per individual MDM were observed in cells cultured with seed extract. MDM capacity to produce nitric oxide was higher in the culture media of the seed extract-cultured cells compared to the control. Interestingly, prominent enhancement in MDM microbicidal activity to yeast or bacteria was observed in MDM cultured with N. sativa seed extract confirming the potent immunostimulatory effect of the extract. From this study, it could be concluded that N. sativa seed extract can enhance macrophages' important innate immune functions that could control infectious diseases and regulate adaptive immunity.

  1. Performance of non-conventional yeasts in co-culture with brewers' yeast for steering ethanol and aroma production.

    Science.gov (United States)

    van Rijswijck, Irma M H; Wolkers-Rooijackers, Judith C M; Abee, Tjakko; Smid, Eddy J

    2017-08-18

    Increasing interest in new beer types has stimulated the search for approaches to extend the metabolic variation of brewers' yeast. Therefore, we tested two approaches using non-conventional yeast to create a beer with lower ethanol content and a complex aroma bouquet. First, the mono-culture performance was monitored of 49 wild yeast isolates of Saccharomyces cerevisiae (16 strains), Cyberlindnera fabianii (9 strains) and Pichia kudriavzevii (24 strains). Interestingly, both C. fabianii and P. kudriavzevii isolates produced relatively more esters compared with S. cerevisiae isolates, despite their limited fermentation capacity. Next, one representative strain of each species (Sc131, Cf65 and Pk129) was applied as co-culture with brewers' yeast (ratio 1:1). Co-cultures with Cf65 and Pk129 resulted in a beer with lower alcohol content (3.5, 3.8 compared with 4.2% v/v) and relatively more esters. At higher inoculum ratios of Cf65 over brewers' yeast, growth inhibition of brewers' yeast was observed, most likely caused by competition for oxygen between brewers' yeast and Cf65 resulting in a reduced level of ethanol and altered aroma profiles. With this study, we demonstrate the feasibility of using non-conventional yeast species in co-cultivation with traditional brewers' yeast to tailor aroma profiles as well as the final ethanol content of beer. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    Science.gov (United States)

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  3. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    Energy Technology Data Exchange (ETDEWEB)

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  4. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    Energy Technology Data Exchange (ETDEWEB)

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  5. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    Energy Technology Data Exchange (ETDEWEB)

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  6. Yeast Interacting Proteins Database: YGR013W, YKL012W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available st specific, no metazoan counterpart Rows with this bait as bait (1) Rows with this bait as prey (0) YKL012W...U71 Bait description Component of U1 snRNP required for mRNA splicing via spliceosome; yeast specific, no metazoan counter

  7. Yeast Interacting Proteins Database: YDR311W, YMR294W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available Rows with this bait as prey (0) YMR294W JNM1 Component of the yeast dynactin complex, consisting of Nip100p...ows with this bait as prey Rows with this bait as prey (0) Prey ORF YMR294W Prey gene name JNM1 Prey description Component of the ye

  8. Yeast Interacting Proteins Database: YBR288C, YGR261C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available bait (1) Rows with this bait as prey (0) YGR261C APL6 Beta3-like subunit of the yeast AP-3 complex; functio...rey (0) Prey ORF YGR261C Prey gene name APL6 Prey description Beta3-like subunit of the ye

  9. Utilization of spent brewer’s yeast Saccharomyces cerevisiae for the production of yeast enzymatic hydrolysate

    Directory of Open Access Journals (Sweden)

    M Bayarjargal

    2014-09-01

    Full Text Available Spent brewer’s yeast (Saccharomyces cerevisiae is a rich source of protein, vitamins and widely used as a raw material for production of food supplements. The autolysis and enzymatic treatment of spent brewer’s yeast using Pancreatin (2.5% and Flavourzyme (2.5% were performed at 45 °C and 50 °C, respectively. The autolysis and hydrolysis processes were evaluated by determining a soluble solids, soluble protein concentration and α-amino nitrogen content in a reaction mixture. The yield of pancreatic digest and α-amino nitrogen content was high in comparison with autolysis and Flavourzyme treatment. The total solids recovery in dry Yeast hydrolysate was about 50%, a protein and α-amino nitrogen content was 55.9 and 4.8%, respectively. These results show the possibility of utilizing the spent brewer’s yeast as hydrolysate using hydrolytic enzymes and use it as a food supplement after biological experiments.DOI: http://dx.doi.org/10.5564/mjc.v12i0.179 Mongolian Journal of Chemistry Vol.12 2011: 88-91

  10. How does yeast respond to pressure?

    Directory of Open Access Journals (Sweden)

    P.M.B. Fernandes

    2005-08-01

    Full Text Available The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.

  11. Studying Functions of All Yeast Genes Simultaneously

    Science.gov (United States)

    Stolc, Viktor; Eason, Robert G.; Poumand, Nader; Herman, Zelek S.; Davis, Ronald W.; Anthony Kevin; Jejelowo, Olufisayo

    2006-01-01

    A method of studying the functions of all the genes of a given species of microorganism simultaneously has been developed in experiments on Saccharomyces cerevisiae (commonly known as baker's or brewer's yeast). It is already known that many yeast genes perform functions similar to those of corresponding human genes; therefore, by facilitating understanding of yeast genes, the method may ultimately also contribute to the knowledge needed to treat some diseases in humans. Because of the complexity of the method and the highly specialized nature of the underlying knowledge, it is possible to give only a brief and sketchy summary here. The method involves the use of unique synthetic deoxyribonucleic acid (DNA) sequences that are denoted as DNA bar codes because of their utility as molecular labels. The method also involves the disruption of gene functions through deletion of genes. Saccharomyces cerevisiae is a particularly powerful experimental system in that multiple deletion strains easily can be pooled for parallel growth assays. Individual deletion strains recently have been created for 5,918 open reading frames, representing nearly all of the estimated 6,000 genetic loci of Saccharomyces cerevisiae. Tagging of each deletion strain with one or two unique 20-nucleotide sequences enables identification of genes affected by specific growth conditions, without prior knowledge of gene functions. Hybridization of bar-code DNA to oligonucleotide arrays can be used to measure the growth rate of each strain over several cell-division generations. The growth rate thus measured serves as an index of the fitness of the strain.

  12. Crystal structure of yeast Sco1

    Energy Technology Data Exchange (ETDEWEB)

    Abajian, Carnie; Rosenzweig, Amy C. (NWU)

    2010-03-05

    The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-{angstrom} resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.

  13. Specificity of transmembrane protein palmitoylation in yeast.

    Directory of Open Access Journals (Sweden)

    Ayelén González Montoro

    Full Text Available Many proteins are modified after their synthesis, by the addition of a lipid molecule to one or more cysteine residues, through a thioester bond. This modification is called S-acylation, and more commonly palmitoylation. This reaction is carried out by a family of enzymes, called palmitoyltransferases (PATs, characterized by the presence of a conserved 50- aminoacids domain called "Asp-His-His-Cys- Cysteine Rich Domain" (DHHC-CRD. There are 7 members of this family in the yeast Saccharomyces cerevisiae, and each of these proteins is thought to be responsible for the palmitoylation of a subset of substrates. Substrate specificity of PATs, however, is not yet fully understood. Several yeast PATs seem to have overlapping specificity, and it has been proposed that the machinery responsible for palmitoylating peripheral membrane proteins in mammalian cells, lacks specificity altogether.Here we investigate the specificity of transmembrane protein palmitoylation in S. cerevisiae, which is carried out predominantly by two PATs, Swf1 and Pfa4. We show that palmitoylation of transmembrane substrates requires dedicated PATs, since other yeast PATs are mostly unable to perform Swf1 or Pfa4 functions, even when overexpressed. Furthermore, we find that Swf1 is highly specific for its substrates, as it is unable to substitute for other PATs. To identify where Swf1 specificity lies, we carried out a bioinformatics survey to identify amino acids responsible for the determination of specificity or Specificity Determination Positions (SDPs and showed experimentally, that mutation of the two best SDP candidates, A145 and K148, results in complete and partial loss of function, respectively. These residues are located within the conserved catalytic DHHC domain suggesting that it could also be involved in the determination of specificity. Finally, we show that modifying the position of the cysteines in Tlg1, a Swf1 substrate, results in lack of palmitoylation, as

  14. In situ rheology of yeast biofilms.

    Science.gov (United States)

    Brugnoni, Lorena I; Tarifa, María C; Lozano, Jorge E; Genovese, Diego

    2014-01-01

    The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p rheology and contribute to a thin body of knowledge about fungal biofilm formation.

  15. Taxonomy Icon Data: Budding yeast [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Budding yeast Saccharomyces cerevisiae Saccharomyces_cerevisiae_L.png Saccharomyces..._cerevisiae_NL.png Saccharomyces_cerevisiae_S.png Saccharomyces_cerevisiae_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Saccharomyces+cerevisiae&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharomy...ces+cerevisiae&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharomy...ces+cerevisiae&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharomyces+cerevisiae&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=216 ...

  16. Biofuels. Altered sterol composition renders yeast thermotolerant

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam

    2014-01-01

    adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ≥40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol...... desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype....

  17. Levaduras inhibidoras de Penicillium Inhibitory Penicillium yeasts

    Directory of Open Access Journals (Sweden)

    M.R. Benítez Ahrendts

    2004-12-01

    Full Text Available El objetivo de este trabajo fue determinar la acción inhibitoria in vitro e in vivo de algunas cepas de levaduras de la zona citrícola jujeña sobre el crecimiento de los mohos patógenos post-cosecha y seleccionarlas para elaborar un producto de biocontrol. Se aislaron de frutos cítricos cepas de los mohos patógenos post-cosecha Penicillium digitatum, P. italicum,P. ulaiense, Phyllosticta sp. y Galactomyces geotrichum, así como de levaduras saprófítas de los géneros Brettanomyces, Candida, Cryptococcus, Kloeckera, Pichia y Rhodotorula. También se obtuvieron algunas levaduras de otras fuentes. Se identificaron las levaduras por las características macro y micromorfológicas y las pruebas fisiológicas. La actividad in vitro e in vivo de las diferentes cepas fue diferente según se enfrentaran a P. digitatum o P. ulaiense. Candida cantarellii y una cepa de Pichia subpelliculosa produjeron una reducción significativa del área de las lesiones provocadas por estas especies de Penicillium, y podrían ser empleadas en la formulación de un producto para biocontrol.The objective of this work was to establish the in vitro and in vivo inhibition of post-harvest pathogenic moulds by yeasts in order to make a biocontrol product. Post-harvest pathogenic moulds Penicillium digitatumP. italicum, P. ulaiense, Phyllosticta sp., Galactomyces geotrichum and yeasts belonging to genera Brettanomyces, Candida, Cryptococcus, Kloeckera,Pichia, Rhodotorula were isolated from citrus fruits. Some yeasts strains were also isolated from other sources. The yeasts were identified by their macro and micro-morphology and physiological tests. The in vitro and in vivo activities against P. digitatum or P. ulaiense were different. Candida cantarellii and one strain of Pichia subpelliculosa produced a significant reduction of the lesion area caused by the pathogenic moulds P. digitatum and P. ulaiense, and could be used in a biocontrol product formulation.

  18. Antimicrobial activity of toothpastes containing natural extracts, chlorhexidine or triclosan.

    Science.gov (United States)

    De Rossi, Andiara; Ferreira, Danielly Cunha Araújo; da Silva, Raquel Assed Bezerra; de Queiroz, Alexandra Mussolino; da Silva, Léa Assed Bezerra; Nelson-Filho, Paulo

    2014-01-01

    The objective of this in vitro study was to evaluate the antimicrobial effect of toothpastes containing natural extracts, chlorhexidine or triclosan. The effectiveness of toothpastes containing natural extracts (Parodontax®), 0.12% chlorhexidine (Cariax®), 0.3% triclosan (Sanogil®) or fluoride (Sorriso®, control) was evaluated against yeasts, Gram-positive and Gram-negative bacteria using the disk diffusion method. Water was used as a control. Disks impregnated with the toothpastes were placed in Petri dishes containing culture media inoculated with 23 indicative microorganisms by the pour plate method. After incubation, the inhibition growth halos were measured and statistical analyses (α=0.05) were performed. The results indicated that all formulations, except for conventional toothpaste (Sorriso®), showed antimicrobial activity against Gram-positive bacteria and yeasts. The toothpaste containing natural extracts (Parodontax®) was the only product able to inhibit the growth of Pseudomonas aeruginosa. The toothpastes containing chlorhexidine, triclosan or natural extracts presented antimicrobial activity against Gram-positive bacteria and yeasts.

  19. MAGNETIC FIELD EFFECT ON YEAST SACCHAROMYCES CEREVIISIIAE ACTIVITY AT GRAPE MUST FERMENTATION

    OpenAIRE

    Bayraktar, V.

    2013-01-01

    Treatment of yeast cultures using magnetic fields enables us to gain a better understanding of the magnetic fields’ action on enzyme activity and the fluctuation of macroand micro-element concentrations within yeast cultures. For this purpose, the two following groups of yeast were studied: laboratory yeast cultures isolated from regional grape must and commercial yeast cultures that are commonly used in the wine industry. Both yeast groups were biochemically tested with and without magnetic ...

  20. Recombinant, rice-produced yeast phytase shows the ability to hydrolyze phytate derived from seed-based feed, and extreme stability during ensilage treatment.

    Science.gov (United States)

    Hamada, Akira; Yamaguchi, Ken-Ichi; Harada, Michiko; Horiguchi, Ken-Ichi; Takahashi, Toshiyoshi; Honda, Hideo

    2006-06-01

    When fresh rice leaves producing yeast Schwanniomyces occidentalis phytase were grounded and mixed with the whole extract of seed-based feed for pigs, the release of orthophosphate increased significantly. More specifically, phytate, a major source of phosphorus in the seeds, was hydrolyzed by heterologous phytase. Moreover, when transgenic rice plants were ensiled for up to 12 weeks, no decrease in the phytase activity of the heterologous enzyme was observed. This result strongly suggests that transgenic rice plants producing yeast phytase can be stored as silage without any loss of enzyme activity until usage as a feed additive.