WorldWideScience

Sample records for m-d constitutive model

  1. Implementation and verification of interface constitutive model in FLAC3D

    Directory of Open Access Journals (Sweden)

    Hai-min Wu

    2011-09-01

    Full Text Available Due to the complexity of soil-structure interaction, simple constitutive models typically used for interface elements in general computer programs cannot satisfy the requirements of discontinuous deformation analysis of structures that contain different interfaces. In order to simulate the strain-softening characteristics of interfaces, a nonlinear strain-softening interface constitutive model was incorporated into fast Lagrange analysis of continua in three dimensions (FLAC3D through a user-defined program in the FISH environment. A numerical simulation of a direct shear test for geosynthetic interfaces was conducted to verify that the interface model was implemented correctly. Results of the numerical tests show good agreement with the results obtained from theoretical calculations, indicating that the model incorporated into FLAC3D can simulate the nonlinear strain-softening behavior of interfaces involving geosynthetic materials. The results confirmed the validity and reliability of the improved interface model. The procedure and method of implementing an interface constitutive model into a commercial computer program also provide a reference for implementation of a new interface constitutive model in FLAC3D.

  2. Crushed Salt Constitutive Model

    International Nuclear Information System (INIS)

    Callahan, G.D.

    1999-01-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well

  3. 3D phenomenological constitutive modeling of shape memory alloys based on microplane theory

    International Nuclear Information System (INIS)

    Mehrabi, R; Kadkhodaei, M

    2013-01-01

    This paper concerns 3D phenomenological modeling of shape memory alloys using microplane theory. In the proposed approach, transformation is assumed to be the only source of inelastic strain in 1D constitutive laws considered for any generic plane passing through a material point. 3D constitutive equations are derived by generalizing the 1D equations using a homogenization technique. In the developed model, inelastic strain is explicitly stated in terms of the martensite volume fraction. To compare this approach with incremental constitutive models, such an available model is applied in its 1D integral form to the microplane formulation, and it is shown that both the approaches produce similar results for different uniaxial loadings. A nonproportional loading is then studied, and the results are compared with those obtained from an available model in which the inelastic strain is divided into two separate portions for transformation and reorientation. A good agreement is seen between the results of the two approaches, indicating the capability of the proposed microplane formulation in predicting reorientation phenomena in shape memory alloys. The results of the model are compared with available experimental results for a nonproportional loading path, and a good agreement is seen between the findings. (paper)

  4. Constitutive modeling and control of 1D smart composite structures

    Science.gov (United States)

    Briggs, Jonathan P.; Ostrowski, James P.; Ponte-Castaneda, Pedro

    1998-07-01

    Homogenization techniques for determining effective properties of composite materials may provide advantages for control of stiffness and strain in systems using hysteretic smart actuators embedded in a soft matrix. In this paper, a homogenized model of a 1D composite structure comprised of shape memory alloys and a rubber-like matrix is presented. With proportional and proportional/integral feedback, using current as the input state and global strain as an error state, implementation scenarios include the use of tractions on the boundaries and a nonlinear constitutive law for the matrix. The result is a simple model which captures the nonlinear behavior of the smart composite material system and is amenable to experiments with various control paradigms. The success of this approach in the context of the 1D model suggests that the homogenization method may prove useful in investigating control of more general smart structures. Applications of such materials could include active rehabilitation aids, e.g. wrist braces, as well as swimming/undulating robots, or adaptive molds for manufacturing processes.

  5. A general 3-D nonlinear magnetostrictive constitutive model for soft ferromagnetic materials

    International Nuclear Information System (INIS)

    Zhou Haomiao; Zhou Youhe; Zheng Xiaojing; Ye Qiang; Wei Jing

    2009-01-01

    In this paper, a new general nonlinear magnetostrictive constitutive model is proposed for soft ferromagnetic materials, and it can predict magnetostrictive strain and magnetization curves under various pre-stresses. From the viewpoint of magnetic domain, it is based on the important physical fact that a nonlinear part of the elastic strain produced by magnetic domain wall motion under a pre-stress is responsible for the change of the maximum magnetostrictive strain in accordance with the pre-stress. Then the reduction of magnetostrictive strain from the maximum is caused by the domain rotation. Meanwhile, the magnetization under various pre-stresses in this model is introduced by magnetostrictive effect under the same pre-stress. A simplified 3-D model is put forward by means of linearizing the nonlinear function, i.e. the nonlinear part of the elastic strain produced by domain wall motion, and by using the quartic of magnetization to describe domain rotation. Besides, for the convenience of engineering applications, two-dimensional (plate or film) and one-dimensional (rod) models are also given for isotropic materials and their application ranges are discussed too. In comparison with the experimental data of Kuruzar and Jiles, it is found that this model can predict magnetostrictive strain and magnetization curves under various pre-stresses. The numerical simulation further illustrates that the new model can effectively describe the effects of the pre-stress or residual stress on the magnetization and magnetostrictive strain curves. Additionally, this model can be degenerated to the existing magnetostrictive constitutive model for giant magnetostrictive materials (GMM), i.e. a special soft ferromagnetic material

  6. Development of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuki, Akira; Akimoto, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kamo, Hideki

    1996-11-01

    In order to perform design calculations for a passive safety reactor with good accuracy by a multidimensional two-fluid model, we developed an analysis code, ACE-3D, which can apply for evaluation of constitutive equations. The developed code has the following features: 1. The basic equations are based on 3-dimensional two-fluid model and the orthogonal or the cylindrical coordinate system can be selected. The fluid system is air-water or steam-water. 2. The basic equations are formulated by the finite-difference scheme of staggered mesh. The convection term is formulated by an upwind scheme and the diffusion term by a center-difference scheme. 3. Semi-implicit numerical scheme is adopted and the mass and the energy equations are treated equally in convergent steps for Jacobi equations. 4. The interfacial stress term consists of drag force, life force, turbulent dispersion force, wall force and virtual mass force. 5. A {kappa}-{epsilon} turbulent model for bubbly flow is incorporated as the turbulent model. The predictive capability of ACE-3D has been verified using a data-base for bubbly flow in a small-scale vertical pipe. In future, the constitutive equations will be improved with a data-base in a large vertical pipe developed in our laboratory and we have a plan to construct a reliable analytical tool through the improvement work, the progress of calculational speed with vector and parallel processing, the assessments for phase change terms and so on. This report describes the outline for the basic equations and the finite-difference equations in ACE-3D code and also the outline for the program structure. Besides, the results for the assessments of ACE-3D code for the small-scale pipe are summarized. (author)

  7. Development of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations

    International Nuclear Information System (INIS)

    Ohnuki, Akira; Akimoto, Hajime; Kamo, Hideki.

    1996-11-01

    In order to perform design calculations for a passive safety reactor with good accuracy by a multidimensional two-fluid model, we developed an analysis code, ACE-3D, which can apply for evaluation of constitutive equations. The developed code has the following features: 1. The basic equations are based on 3-dimensional two-fluid model and the orthogonal or the cylindrical coordinate system can be selected. The fluid system is air-water or steam-water. 2. The basic equations are formulated by the finite-difference scheme of staggered mesh. The convection term is formulated by an upwind scheme and the diffusion term by a center-difference scheme. 3. Semi-implicit numerical scheme is adopted and the mass and the energy equations are treated equally in convergent steps for Jacobi equations. 4. The interfacial stress term consists of drag force, life force, turbulent dispersion force, wall force and virtual mass force. 5. A κ-ε turbulent model for bubbly flow is incorporated as the turbulent model. The predictive capability of ACE-3D has been verified using a data-base for bubbly flow in a small-scale vertical pipe. In future, the constitutive equations will be improved with a data-base in a large vertical pipe developed in our laboratory and we have a plan to construct a reliable analytical tool through the improvement work, the progress of calculational speed with vector and parallel processing, the assessments for phase change terms and so on. This report describes the outline for the basic equations and the finite-difference equations in ACE-3D code and also the outline for the program structure. Besides, the results for the assessments of ACE-3D code for the small-scale pipe are summarized. (author)

  8. Extension of the M-D model for treating stress drops in salt

    International Nuclear Information System (INIS)

    Munson, D.E.; DeVries, K.L.; Fossum, A.F.; Callahan, G.D.

    1993-01-01

    Development of the multimechanism deformation (M-D) constitutive model for steady state creep, which incorporates irreversible workhardening and recovery transient strains, was motivated by the need to predict very long term closures in underground rooms for radioactive waste repositories in salt. The multimechanism deformation model for the creep deformation of salt is extended to treat the response of salt to imposed stress drops. Stress drop tests produce a very distinctive behavior where both reversible elastic strain and reversible time dependent strain occur. These transient strains are negative compared to the positive transient strains produced by the normal creep workhardening and recovery processes. A simple micromechanical evolutionary process is defined to account for the accumulation of these reversible strains, and their subsequent release with decreases in stress. A number of experimental stress drop tests for various stress drop magnitudes and temperatures are adequately simulated with the model

  9. Constitutive Modelling in Geomechanics Introduction

    CERN Document Server

    Puzrin, Alexander M

    2012-01-01

    The purpose of this book is to bridge the gap between the traditional Geomechanics and Numerical Geotechnical Modelling with applications in science and practice. Geomechanics is rarely taught within the rigorous context of Continuum Mechanics and Thermodynamics, while when it comes to Numerical Modelling, commercially available finite elements or finite differences software utilize constitutive relationships within the rigorous framework. As a result, young scientists and engineers have to learn the challenging subject of constitutive modelling from a program manual and often end up with using unrealistic models which violate the Laws of Thermodynamics.  The book is introductory, by no means does it claim any completeness and state of the art in such a dynamically developing field as numerical and constitutive modelling of soils. The author gives basic understanding of conventional continuum mechanics approaches to constitutive modelling, which can serve as a foundation for exploring more advanced theories....

  10. Investigation of the overconsolidation and structural behavior of Shanghai clays by element testing and constitutive modeling

    Directory of Open Access Journals (Sweden)

    Guan-lin Ye

    2016-09-01

    Full Text Available The mechanical properties and constitutive modeling of Shanghai clays are very important for numerical analysis on geotechnical engineering in Shanghai, where continuous layers of soft clays run 30–40 m deep. The clays are divided into 5 major layers. A series of laboratory tests are carried out to investigate their mechanical properties. The top and bottom layers are overconsolidated hard clays, and the middle layers are normally consolidated or lightly overconsolidated sensitive marine clays. A constitutive model, which can describe the overconsolidation and structure of soils using only 8 parameters, is modified to simulate the test results. A rational procedure to determine the values of the material parameters and initial conditions is also proposed. The model is able to effectively reproduce both one-dimensional (1D consolidation and drained/undrained triaxial test results of Shanghai clays, with one set of parameters for each layer. From element testing and constitutive modeling, two findings are obtained. First, the decay rates of overconsolidation are smaller in overconsolidated layers than in normally consolidated layers. Second, the natural microstructure of layer 4 is relatively stable, that is, a large degree of structure is still maintained in the specimen even after 1D consolidation and drained triaxial tests. The modified model and obtained parameter values can be used for numerical analysis of geotechnical projects in Shanghai.

  11. Crushed-salt constitutive model update

    International Nuclear Information System (INIS)

    Callahan, G.D.; Loken, M.C.; Mellegard, K.D.; Hansen, F.D.

    1998-01-01

    Modifications to the constitutive model used to describe the deformation of crushed salt are presented in this report. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--defined previously but used separately are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. New creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from the shear consolidation tests and a combination of the shear and hydrostatic consolidation tests produced two sets of material parameter values for the model. The change in material parameter values from test group to test group indicates the empirical nature of the model but demonstrates improvement over earlier work with the previous models. Key improvements are the ability to capture lateral strain reversal and better resolve parameter values. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the model to predict the test data, the model appears to capture the creep consolidation behavior of crushed salt quite well

  12. Crushed-salt constitutive model update

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, G.D.; Loken, M.C.; Mellegard, K.D. [RE/SPEC Inc., Rapid City, SD (United States); Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States)

    1998-01-01

    Modifications to the constitutive model used to describe the deformation of crushed salt are presented in this report. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--defined previously but used separately are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. New creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from the shear consolidation tests and a combination of the shear and hydrostatic consolidation tests produced two sets of material parameter values for the model. The change in material parameter values from test group to test group indicates the empirical nature of the model but demonstrates improvement over earlier work with the previous models. Key improvements are the ability to capture lateral strain reversal and better resolve parameter values. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the model to predict the test data, the model appears to capture the creep consolidation behavior of crushed salt quite well.

  13. A 1D constitutive model for shape memory alloy using strain and temperature as control variables and including martensite reorientation and asymmetric behaviors

    International Nuclear Information System (INIS)

    Jaber, M Ben; Mehrez, S; Ghazouani, O

    2014-01-01

    In this paper, a new 1D constitutive model for shape memory alloy using strain and temperature as control variables is presented. The new formulation is restricted to the 1D stress case and takes into account the martensite reorientation and the asymmetry of the SMA behavior in tension and compression. Numerical implementation of the new model in a finite element code was conducted. The numerical results for superelastic behavior in tension and compression tests are presented and were compared to experimental data taken from the literature. Other numerical tests are presented, showing the model’s ability to reproduce the main aspects of SMA behavior such as the shape memory effect and the martensite reorientation under cyclic loading. Finally, to demonstrate the utility of the new constitutive model, a dynamic test of a bi-clamped SMA bending beam under forced oscillation is described. (paper)

  14. Evaluation of potential crushed-salt constitutive models

    International Nuclear Information System (INIS)

    Callahan, G.D.; Loken, M.C.; Sambeek, L.L. Van; Chen, R.; Pfeifle, T.W.; Nieland, J.D.; Hansen, F.D.

    1995-12-01

    Constitutive models describing the deformation of crushed salt are presented in this report. Ten constitutive models with potential to describe the phenomenological and micromechanical processes for crushed salt were selected from a literature search. Three of these ten constitutive models, termed Sjaardema-Krieg, Zeuch, and Spiers models, were adopted as candidate constitutive models. The candidate constitutive models were generalized in a consistent manner to three-dimensional states of stress and modified to include the effects of temperature, grain size, and moisture content. A database including hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt was used to determine material parameters for the candidate constitutive models. Nonlinear least-squares model fitting to data from the hydrostatic consolidation tests, the shear consolidation tests, and a combination of the shear and hydrostatic tests produces three sets of material parameter values for the candidate models. The change in material parameter values from test group to test group indicates the empirical nature of the models. To evaluate the predictive capability of the candidate models, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the models to predict the test data, the Spiers model appeared to perform slightly better than the other two candidate models. The work reported here is a first-of-its kind evaluation of constitutive models for reconsolidation of crushed salt. Questions remain to be answered. Deficiencies in models and databases are identified and recommendations for future work are made. 85 refs

  15. Elastic-plastic constitutive modeling of concrete

    International Nuclear Information System (INIS)

    Takahashi, Y.

    1983-03-01

    The need to understand concrete behavior under high temperatures in the nuclear industry has become rather accute. For this purpose, a constitutive model of concrete especially developed for this severe environment is indispensable. This report reviews the presently available constitutive models of concrete at standard-temperature conditions and considers their advantages and drawbacks. A rather simple but effective approach is selected to treat concrete behavior at high temperatures. Special emphasis is devoted to the modeling of concrete up to and including failure. The derived constitutive model is checked with biaxial and triaxial benchmark experimental results. Very good agreement is obtained

  16. The whole set of constitutive promoters recognized by RNA polymerase RpoD holoenzyme of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Tomohiro Shimada

    Full Text Available The promoter selectivity of Escherichia coli RNA polymerase is determined by the sigma subunit with promoter recognition activity. The model prokaryote Escherichia coli contains seven species of the sigma subunit, each recognizing a specific set of promoters. The major sigma subunit, sigma-70 encoded by rpoD, plays a major role in transcription of growth-related genes. Concomitant with the increase in detection of promoters functioning in vivo under various stressful conditions, the variation is expanding in the consensus sequence of RpoD promoters. In order to identify the canonical sequence of "constitutive promoters" that are recognized by the RNA polymerase holoenzyme containing RpoD sigma in the absence of supporting transcription factors, an in vitro mixed transcription assay was carried out using a whole set of variant promoters, each harboring one base replacement, within the model promoter with the conserved -35 and -10 sequences of RpoD promoters. The consensus sequences, TTGACA(-35 and TATAAT(-10, were identified to be ideal for the maximum level of open complex formation and the highest rate of promoter opening, respectively. For identification of the full range of constitutive promoters on the E. coli genome, a total of 2,701 RpoD holoenzyme-binding sites were identified by Genomic SELEX screening, and using the reconfirmed consensus promoter sequence, a total of maximum 669 constitutive promoters were identified, implying that the majority of hitherto identified promoters represents the TF-dependent "inducible promoters". One unique feature of the constitutive promoters is the high level of promoter sequence conservation, about 85% carrying five-out-of-six agreements with -35 or -10 consensus sequence. The list of constitutive promoters provides the community resource toward estimation of the inducible promoters that operate under various stressful conditions in nature.

  17. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression.

    Science.gov (United States)

    DeSmet, Marsha L; Fleet, James C

    2017-10-01

    High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH) 2 D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH) 2 D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH) 2 D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH) 2 D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A micromorphic model for monolayer hexagonal boron nitride with determined constitutive constants by phonon dispersions

    International Nuclear Information System (INIS)

    Zhang, Bin; Yang, Gang

    2014-01-01

    A two dimensional (2D) micromorphic model is developed for monolayer hexagonal boron nitride (h-BN). Theoretical expressions of phonon dispersions for 2D crystals are derived based on the simplified governing equations of specialized three dimensional micromorphic crystals. The constitutive constants of governing equations of the h-BN micromorphic model are determined, which is performed by fitting the available phonon dispersions data of experimental measurements and first-principles calculations with our theoretical expressions. The obtained Young’s modulus and Poisson’s ratio of h-BN are comparable with the results of ab initio calculations and inelastic x-ray scattering experiments, thus the constitutive relations of the h-BN model are verified, which also indicates that mechanical properties of monolayer h-BN could be characterized by our 2D micromorphic model

  19. Constitutive Modeling of Geomaterials Advances and New Applications

    CERN Document Server

    Zhang, Jian-Min; Zheng, Hong; Yao, Yangping

    2013-01-01

    The Second International Symposium on Constitutive Modeling of Geomaterials: Advances and New Applications (IS-Model 2012), is to be held in Beijing, China, during October 15-16, 2012. The symposium is organized by Tsinghua University, the International Association for Computer Methods and Advances in Geomechanics (IACMAG), the Committee of Numerical and Physical Modeling of Rock Mass, Chinese Society for Rock Mechanics and Engineering, and the Committee of Constitutive Relations and Strength Theory, China Institution of Soil Mechanics and Geotechnical Engineering, China Civil Engineering Society. This Symposium follows the first successful International Workshop on Constitutive Modeling held in Hong Kong, which was organized by Prof. JH Yin in 2007.   Constitutive modeling of geomaterials has been an active research area for a long period of time. Different approaches have been used in the development of various constitutive models. A number of models have been implemented in the numerical analyses of geote...

  20. Mathematical modeling and the two-phase constitutive equations

    International Nuclear Information System (INIS)

    Boure, J.A.

    1975-01-01

    The problems raised by the mathematical modeling of two-phase flows are summarized. The models include several kinds of equations, which cannot be discussed independently, such as the balance equations and the constitutive equations. A review of the various two-phase one-dimensional models proposed to date, and of the constitutive equations they imply, is made. These models are either mixture models or two-fluid models. Due to their potentialities, the two-fluid models are discussed in more detail. To avoid contradictions, the form of the constitutive equations involved in two-fluid models must be sufficiently general. A special form of the two-fluid models, which has particular advantages, is proposed. It involves three mixture balance equations, three balance equations for slip and thermal non-equilibriums, and the necessary constitutive equations [fr

  1. 3D finite element model of elastoplastic contact on the double sinus rough surface

    International Nuclear Information System (INIS)

    Hagege, H; Bouvier, S; Mazeran, P-E; Bigerelle, M

    2011-01-01

    One of the objectives in the field of tribology is to solve the mechanical stress-displacement problem involved by rough contacts. In our approach, the surface chosen is a 256-256 μm 2 3D sinusoidal shape (amplitude 4.5μm, wavelength 50μm) with an elastoplastic constitutive behaviour. The constitutive law combines isotropic and kinematic hardening and is experimentally identified from 316L steel sheets. The FEM deformable surface is crushed then uncrushed by a rigid flat surface: stresses, contact pressure and plastic cumulated strain are computed. We investigate the results sensitivity with respect to the level of in-plane refinement. At last, we conclude on some guidelines for 3D finite elements modelling of rough surfaces.

  2. Constitutive modeling of coronary artery bypass graft with incorporated torsion

    Czech Academy of Sciences Publication Activity Database

    Horný, L.; Chlup, Hynek; Žitný, R.; Adámek, T.

    2009-01-01

    Roč. 49, č. 2 (2009), s. 273-277 ISSN 0543-5846 R&D Projects: GA ČR(CZ) GA106/08/0557 Institutional research plan: CEZ:AV0Z20760514 Keywords : coronary artery bypass graft * constitutive model * digital image correlation Subject RIV: BJ - Thermodynamics Impact factor: 0.439, year: 2009 http://web.tuke.sk/sjf-kamam/mmams2009/contents.pdf

  3. Determination and validation of mTOR kinase-domain 3D structure by homology modeling

    Directory of Open Access Journals (Sweden)

    Lakhlili W

    2015-07-01

    Full Text Available Wiame Lakhlili,1 Gwénaël Chevé,2 Abdelaziz Yasri,2 Azeddine Ibrahimi1 1Laboratoire de Biotechnologie (MedBiotech, Faculté de Médecine et de Pharmacie de Rabat, Université Mohammed V de Rabat, Rabat, Morroco; 2OriBase Pharma, Cap Gamma, Parc Euromédecine, Montpellier, France Abstract: The AKT/mammalian target of rapamycin (mTOR pathway is considered as one of the commonly activated and deregulated signaling pathways in human cancer. mTOR is associated with other proteins in two molecular complexes: mTOR complex 1/Raptor and the mTOR complex 2/Rictor. Using the crystal structure of the related lipid kinase PI3Kγ, we built a model of the catalytic region of mTOR. The modeling of the three-dimensional (3D structure of the mTOR was performed by homology modeling program SWISS-MODEL. The quality and validation of the obtained model were performed using PROCHECK and PROVE softwares. The overall stereochemical property of the protein was assessed by the Ramachandran plot. The model validation was also done by docking of known inhibitors. In this paper, we describe and validate a 3D model for the mTOR catalytic site.Keywords: mTOR, homology modeling, mTOR kinase-domain, docking

  4. Manuel et site Web de ressources sur l'élaboration d'une constitution

    International Development Research Centre (IDRC) Digital Library (Canada)

    élaboration d'une constitution est devenue un élément essentiel dans le cheminement vers la paix et la démocratie, en période de conflit, après un conflit et dans un contexte de transition. Les constitutions servent à régir les relations entre un État et ...

  5. A phenomenological constitutive model for low density polyurethane foams

    International Nuclear Information System (INIS)

    Neilsen, M.K.; Morgan, H.S.; Krieg, R.D.

    1987-04-01

    Results from a series of hydrostatic and triaxial compression tests which were performed on polyurethane foams are presented in this report. These tests indicate that the volumetric and deviatoric parts of the foam behavior are strongly coupled. This coupling behavior could not be captured with any of several commonly used plasticity models. Thus, a new constitutive model was developed. This new model was based on a decomposition of the foam response into two parts: (1) response of the polymer skeleton, and (2) response of the air inside the cells. The air contribution was completely volumetric. The new constitutive model was implemented in two finite element codes, SANCHO and PRONTO. Results from a series of analyses completed with these codes indicated that the new constitutive model captured all of the foam behaviors that had been observed in the experiments. Finally, a typical dynamic problem was analyzed using the new constitutive model and other constitutive models to demonstrate differences between the models. Results from this series of analyses indicated that the new constitutive model generated displacement and acceleration predictions that were between predictions obtained using the other models. This result was expected. 9 refs., 45 figs., 4 tabs

  6. An advanced constitutive model in the sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion

    International Nuclear Information System (INIS)

    Alves, J.L.; Oliveira, M.C.; Menezes, L.F.

    2004-01-01

    Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results

  7. Nested 1D-2D approach for urban surface flood modeling

    Science.gov (United States)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  8. 76 FR 20034 - Calvin Ramsey, M.D.; Revocation of Registration

    Science.gov (United States)

    2011-04-11

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration [Docket No. 10-25] Calvin Ramsey, M.D.; Revocation of Registration On December 18, 2009, the Deputy Assistant Administrator, Office of Diversion... constitutional right to appointed counsel in a proceeding under 21 U.S.C. 824(a). See Goldberg v. Kelly, 397 U.S...

  9. 76 FR 20020 - Glenn D. Krieger, M.D.; Denial of Application

    Science.gov (United States)

    2011-04-11

    ....'' Id. at 10. The BHP charged that his conduct ``constitute[d] negligence,'' ``incompetence,'' and the... [Applicant] for a violation of general duty, consisting of negligence or failure to exercise due care...

  10. Constitutive Modelling of Resins in the Stiffness Domain

    Science.gov (United States)

    Klasztorny, M.

    2004-09-01

    An analytic method for inverting the constitutive compliance equations of viscoelasticity for resins is developed. These equations describe the HWKK/H rheological model, which makes it possible to simulate, with a good accuracy, short-, medium- and long-term viscoelastic processes in epoxy and polyester resins. These processes are of first-rank reversible isothermal type. The time histories of deviatoric stresses are simulated with three independent strain history functions of fractional and normal exponential types. The stiffness equations are described by two elastic and six viscoelastic constants having a clear physic meaning (three long-term relaxation coefficients and three relaxation times). The time histories of axiatoric stresses are simulated as perfectly elastic. The inversion method utilizes approximate constitutive stiffness equations of viscoelasticity for the HWKK/H model. The constitutive compliance equations for the model are a basis for determining the exact complex shear stiffness, whereas the approximate constitutive stiffness equations are used for determining the approximate complex shear stiffness. The viscoelastic constants in the stiffness domain are derived by equating the exact and approximate complex shear stiffnesses. The viscoelastic constants are obtained for Epidian 53 epoxy and Polimal 109 polyester resins. The accuracy of the approximate constitutive stiffness equations are assessed by comparing the approximate and exact complex shear stiffnesses. The constitutive stiffness equations for the HWKK/H model are presented in uncoupled (shear/bulk) and coupled forms. Formulae for converting the constants of shear viscoelasticity into the constants of coupled viscoelasticity are given as well.

  11. Constitutive models in LAME.

    Energy Technology Data Exchange (ETDEWEB)

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-09-01

    The Library of Advanced Materials for Engineering (LAME) provides a common repository for constitutive models that can be used in computational solid mechanics codes. A number of models including both hypoelastic (rate) and hyperelastic (total strain) constitutive forms have been implemented in LAME. The structure and testing of LAME is described in Scherzinger and Hammerand ([3] and [4]). The purpose of the present report is to describe the material models which have already been implemented into LAME. The descriptions are designed to give useful information to both analysts and code developers. Thus far, 33 non-ITAR/non-CRADA protected material models have been incorporated. These include everything from the simple isotropic linear elastic models to a number of elastic-plastic models for metals to models for honeycomb, foams, potting epoxies and rubber. A complete description of each model is outside the scope of the current report. Rather, the aim here is to delineate the properties, state variables, functions, and methods for each model. However, a brief description of some of the constitutive details is provided for a number of the material models. Where appropriate, the SAND reports available for each model have been cited. Many models have state variable aliases for some or all of their state variables. These alias names can be used for outputting desired quantities. The state variable aliases available for results output have been listed in this report. However, not all models use these aliases. For those models, no state variable names are listed. Nevertheless, the number of state variables employed by each model is always given. Currently, there are four possible functions for a material model. This report lists which of these four methods are employed in each material model. As far as analysts are concerned, this information is included only for the awareness purposes. The analyst can take confidence in the fact that model has been properly implemented

  12. A three-dimensional constitutive model for shape memory alloy

    International Nuclear Information System (INIS)

    Zhou, Bo; Yoon, Sung-Ho; Leng, Jin-Song

    2009-01-01

    Shape memory alloy (SMA) has a wide variety of practical applications due to its unique super-elasticity and shape memory effect. It is of practical interest to establish a constitutive model which predicts its phase transformation and mechanical behaviors. In this paper, a new three-dimensional phase transformation equation, which predicts the phase transformation behaviors of SMA, is developed based on the results of a differential scanning calorimetry (DSC) test. It overcomes both limitations: that Zhou's phase transformation equations fail to describe the phase transformation from twinned martensite to detwinned martensite of SMA and Brinson's phase transformation equation fails to express the influences of phase transformation peak temperatures on the phase transformation behaviors of SMA. A new three-dimensional constitutive equation, which predicts the mechanical behaviors associated with the super-elasticity and shape memory effect of SMA, is developed on the basis of thermodynamics and solid mechanics. Results of numerical simulations show that the new constitutive model, which includes the new phase transformation equation and constitutive equation, can predict the phase transformation and mechanical behaviors associated with the super-elasticity and shape memory effect of SMA precisely and comprehensively. It is proved that Brinson's constitutive model of SMA can be considered as one special case of the new constitutive model

  13. Experimental verification of a discrete memory constitutive model for 316 stainless steel

    International Nuclear Information System (INIS)

    Elleuch, M.N.; Han, S.; Wack, B.F.

    1983-01-01

    To identify the behaviour of high strength material, like metals, the torsion test of a circular tube is the most efficient: it allows a three-dimensional path to be followed, in the stress space for example, by adding an axial force and an internal pressure to the torque. The quality of identification depends on the quality of the experimental tests and the quality of the test deformation description: this is important since the application of a torque implies that the tube will follow a rotational solicitation path. Theoretical studies of finite deformations indicate that the torsion is accompagnied by second order effects, and particularly by an axial displacement (Pointing effect). The material behaviour description by a hereditary type constitutive model of discrete memory (M.D. model) show that these second order effects can cumulate and give ratchet phenomena. We consider only the essential features of 316 L stainless steel, i.e. the mechanical hysteresis and strain hardening; we will neglect here-in the viscosity effect, and the experimental tests were conducted at low rate. (orig./RW)

  14. A 1D thermomechanical network transition constitutive model coupled with multiple structural relaxation for shape memory polymers

    Science.gov (United States)

    Zeng, Hao; Xie, Zhimin; Gu, Jianping; Sun, Huiyu

    2018-03-01

    A new thermomechanical network transition constitutive model is proposed in the study to describe the viscoelastic behavior of shape memory polymers (SMPs). Based on the microstructure of semi-crystalline SMPs, a new simplified transformation equation is proposed to describe the transform of transient networks. And the generalized fractional Maxwell model is introduced in the paper to estimate the temperature-dependent storage modulus. In addition, a neo-KAHR theory with multiple discrete relaxation processes is put forward to study the structural relaxation of the nonlinear thermal strain in cooling/heating processes. The evolution equations of the time- and temperature-dependent stress and strain response are developed. In the model, the thermodynamical and mechanical characteristics of SMPs in the typical thermomechanical cycle are described clearly and the irreversible deformation is studied in detail. Finally, the typical thermomechanical cycles are simulated using the present constitutive model, and the simulation results agree well with the experimental results.

  15. Constitutional Justice Procedure in Lithuania: a Search for Optimal Model

    OpenAIRE

    Pūraitė-Andrikienė, Dovilė

    2017-01-01

    The dissertation systematically analyzes the preconditions for optimising the existing constitutional justice model, i.e. whether the current model meets the expectations of Lithuanian society and the legal community, corresponds to the capabilities of the legal system, and is in line with the tendencies of constitutional justice in European states, identifies the problematic aspects of the existing constitutional justice model and brings forward proposals regarding how the legal regulation c...

  16. Constitutive Modelling in Thermomechanical Processes, Using The Control Volume Method on Staggered Grid

    DEFF Research Database (Denmark)

    Thorborg, Jesper

    , however, is constituted by the implementation of the $J_2$ flow theory in the control volume method. To apply the control volume formulation on the process of hardening concrete viscoelastic stress-strain models has been examined in terms of various rheological models. The generalized 3D models are based...... on two different suggestions in the literature, that is compressible or incompressible behaviour of the viscos response in the dashpot element. Numerical implementation of the models has shown very good agreement with corresponding analytical solutions. The viscoelastic solid mechanical model is used...

  17. Constitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Huetink, Han; Khan, A.

    2010-01-01

    A physically based, macroscale constitutive model has been developed that can describe the complex mechanical behavior of metastable austenitic stainless steels. In the developed model a generalized model for the mechanically induced martensitic transformation is introduced. Mechanical tests have

  18. [Chinese constitution research and the practice of 4P medical model].

    Science.gov (United States)

    Wang, Ji; Wang, Qi

    2012-05-01

    The aim of modern medicine is transforming from disease to health. Thus the medical model of 4P was proposed in recent years. 4P includes preventive, predictive, personalized, and participatory medical model. In constitution theory of Chinese medicine, there are three main ideas. The first one is: constitutions can be divided to nine types in the Chinese population. Prevention and treatment of disease can be divided according to the constitutional type. This reflects personalized or individualized of 4P. The second one is: certain constitution is correlated to certain disease. So constitution differentiation can be used to predict the occurrence of any kind disease. The third one is: Disease can be prevented through regulating correlated constitutions. And during the course of constitution differentiation, the object of service or patients can participate in the whole course. In summary, the research of Chinese medical constitution embodies the application and practice of 4P medical model. And it provided reference for studying and developing other subjects under the present medical model.

  19. Review of constitutive models and failure criteria for concrete

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Moon; Choun, Young Sun [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The general behavior, constitutive models, and failure criteria of concrete are reviewed. The current constitutive models for concrete cannot satisfy all of mechanical behavior of concrete. Among several constitutive models, damage models are recommended to describe properly the structural behavior of concrete containment buildings, because failure modes and post-failure behavior are important in containment buildings. A constitutive model which can describe the concrete behavior in tension is required because the containment buildings will reach failure state due to ultimate internal pressure. Therefore, a thorough study on the behavior and models under tension stress state in concrete and reinforced concrete has to be performed. There are two types of failure criteria in containment buildings: structural failure criteria and leakage failure criteria. For reinforced or prestressed concrete containment buildings, concrete cracking does not mean the structural failure of containment building because the reinforcement or post-tensioning system is able to resist tensile stress up to yield stress. Therefore leakage failure criteria will be prior to structural failure criteria, and a strain failure criterion for concrete has to be established. 120 refs., 59 figs., 1 tabs. (Author)

  20. Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys

    Science.gov (United States)

    Hartl, D. J.; Lagoudas, D. C.

    2009-10-01

    The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation.

  1. Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys

    International Nuclear Information System (INIS)

    Hartl, D J; Lagoudas, D C

    2009-01-01

    The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation

  2. generalized constitutive model for stabilized quick clay

    African Journals Online (AJOL)

    QUICK CLAY. PANCRAS MUGISHAGWE BUJULU AND GUSTAV GRIMSTAD. ABSTRACT. An experimentally-based two yield surface constitutive model for cemented quick clay has been ... Clay Model, the Koiter Rule and two Mapping Rules. .... models, where a mobilization formulation is used, this is independent of q.

  3. A Mathematical Approach to Establishing Constitutive Models for Geomaterials

    Directory of Open Access Journals (Sweden)

    Guang-hua Yang

    2013-01-01

    Full Text Available The mathematical foundation of the traditional elastoplastic constitutive theory for geomaterials is presented from the mathematical point of view, that is, the expression of stress-strain relationship in principal stress/strain space being transformed to the expression in six-dimensional space. A new framework is then established according to the mathematical theory of vectors and tensors, which is applicable to establishing elastoplastic models both in strain space and in stress space. Traditional constitutive theories can be considered as its special cases. The framework also enables modification of traditional constitutive models.

  4. Transitional processes: Territorial organization of authorities and the future constitution of Serbia comparative analysis of five constitutional models

    Directory of Open Access Journals (Sweden)

    Despotović Ljubiša M.

    2004-01-01

    Full Text Available In this paper the authors give a comparative analysis of territorial organization of authorities in five constitutional models for Serbia. The paper consists of the following chapters: Introduction, Outline of the Constitution of Kingdom of Serbia, Basic Principles of the New Constitution of Serbia - DSS, Outline of Constitution of Republic of Serbia - DS Constitutional Solutions for Serbia - BCLJP, Project of Constitution of Republic of Serbia - Forum iuris, Conclusion. The analysis of territorial organization of authorities has been seen in the context of the processes of transition and archiving the important principles of civil society and civil autonomies.

  5. Study on the constitutive model for jointed rock mass.

    Directory of Open Access Journals (Sweden)

    Qiang Xu

    Full Text Available A new elasto-plastic constitutive model for jointed rock mass, which can consider the persistence ratio in different visual angle and anisotropic increase of plastic strain, is proposed. The proposed the yield strength criterion, which is anisotropic, is not only related to friction angle and cohesion of jointed rock masses at the visual angle but also related to the intersection angle between the visual angle and the directions of the principal stresses. Some numerical examples are given to analyze and verify the proposed constitutive model. The results show the proposed constitutive model has high precision to calculate displacement, stress and plastic strain and can be applied in engineering analysis.

  6. Method to determine the optimal constitutive model from spherical indentation tests

    Directory of Open Access Journals (Sweden)

    Tairui Zhang

    2018-03-01

    Full Text Available The limitation of current indentation theories was investigated and a method to determine the optimal constitutive model through spherical indentation tests was proposed. Two constitutive models, the Power-law and the Linear-law, were used in Finite Element (FE calculations, and then a set of indentation governing equations was established for each model. The load-depth data from the normal indentation depth was used to fit the best parameters in each constitutive model while the data from the further loading part was compared with those from FE calculations, and the model that better predicted the further deformation was considered the optimal one. Moreover, a Yang’s modulus calculation model which took the previous plastic deformation and the phenomenon of pile-up (or sink-in into consideration was also proposed to revise the original Sneddon-Pharr-Oliver model. The indentation results on six materials, 304, 321, SA508, SA533, 15CrMoR, and Fv520B, were compared with tensile ones, which validated the reliability of the revised E calculation model and the optimal constitutive model determination method in this study. Keywords: Optimal constitutive model, Spherical indentation test, Finite Element calculations, Yang’s modulus

  7. Stochastic 2-D galaxy disk evolution models. Resolved stellar populations in the galaxy M33

    Science.gov (United States)

    Mineikis, T.; Vansevičius, V.

    We improved the stochastic 2-D galaxy disk models (Mineikis & Vansevičius 2014a) by introducing enriched gas outflows from galaxies and synthetic color-magnitude diagrams of stellar populations. To test the models, we use the HST/ACS stellar photometry data in four fields located along the major axis of the galaxy M33 (Williams et al. 2009) and demonstrate the potential of the models to derive 2-D star formation histories in the resolved disk galaxies.

  8. Constitutive modelling of composite biopolymer networks.

    Science.gov (United States)

    Fallqvist, B; Kroon, M

    2016-04-21

    The mechanical behaviour of biopolymer networks is to a large extent determined at a microstructural level where the characteristics of individual filaments and the interactions between them determine the response at a macroscopic level. Phenomena such as viscoelasticity and strain-hardening followed by strain-softening are observed experimentally in these networks, often due to microstructural changes (such as filament sliding, rupture and cross-link debonding). Further, composite structures can also be formed with vastly different mechanical properties as compared to the individual networks. In this present paper, we present a constitutive model presented in a continuum framework aimed at capturing these effects. Special care is taken to formulate thermodynamically consistent evolution laws for dissipative effects. This model, incorporating possible anisotropic network properties, is based on a strain energy function, split into an isochoric and a volumetric part. Generalisation to three dimensions is performed by numerical integration over the unit sphere. Model predictions indicate that the constitutive model is well able to predict the elastic and viscoelastic response of biological networks, and to an extent also composite structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A microscopically motivated constitutive model for shape memory alloys: Formulation, analysis and computations

    Czech Academy of Sciences Publication Activity Database

    Frost, Miroslav; Benešová, B.; Sedlák, P.

    2016-01-01

    Roč. 21, č. 3 (2016), s. 358-382 ISSN 1081-2865 R&D Projects: GA ČR GA13-13616S; GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : shape memory alloys * constitutive model * generalized standard materials * dissipation * energetic solution Subject RIV: BA - General Mathematics Impact factor: 2.953, year: 2016 http://mms.sagepub.com/content/21/3/358

  10. A general one-dimension nonlinear magneto-elastic coupled constitutive model for magnetostrictive materials

    International Nuclear Information System (INIS)

    Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao

    2015-01-01

    For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications

  11. Mechanical characterization and constitutive modeling of Mg alloy sheets

    International Nuclear Information System (INIS)

    Mekonen, M. Nebebe; Steglich, D.; Bohlen, J.; Letzig, D.; Mosler, J.

    2012-01-01

    Highlights: ► Material characterization of the Mg alloys AZ31 and ZE10 at elevated temperatures. ► Distortion of the yield locus does not depend on the strain rate. ► Novel constitutive model suitable for the analysis of sheet forming of magnesium. ► Strain-dependent r-values are included within the model. ► The model is thermodynamically consistent and accounts for distortional hardening. - Abstract: In this paper, an experimental mechanical characterization of the magnesium alloys ZE10 and AZ31 is performed and a suitable constitutive model is established. The mechanical characterization is based on uniaxial tensile tests. In order to avoid poor formability at room temperature, the tests were conducted at elevated temperature (200 °C). The uniaxial tensile tests reveal sufficient ductility allowing sheet forming processes at this temperature. The differences in yield stresses and plastic strain ratios (r-values) confirm the anisotropic response of the materials under study. The constitutive model is established so that the characteristic mechanical features observed in magnesium alloys such as anisotropy and compression-tension asymmetry can be accommodated. This model is thermodynamically consistent, incorporates rate effect, is formulated based on finite strain plasticity theory and is applicable in sheet forming simulations of magnesium alloys. More precisely, a model originally proposed by Cazacu and Barlat in 2004 and later modified to account for the evolution of the material anisotropy is rewritten in a thermodynamically consistent framework. The calibrated constitutive model is shown to capture the characteristic mechanical features observed in magnesium alloy sheets.

  12. A constitutive model for concrete under dynamic loading

    International Nuclear Information System (INIS)

    Suaris, W.; Shah, S.P.

    1983-01-01

    A continuous damage theory for the quasistatic and dynamic behaviour of concrete is presented. The continuous damage theory is rational choice for use in predicing the dynamic behaviour of concrete as the strain-rate effects that have been observed for concrete can to a large extent be attributed to the rate-sensitivity of the microcracking process. A vectorial representation is adopted for the damage to account for the planar nature of the microcracks in concrete. Damage is treated as an internal state variable influencing the free energy of the material and the constitutive equations and the damage evolution equations are derived consistently using thermodynamic considerations. The developed constitutive model is then calibrated by using test results in flexure and compression over a range of strain-rates. The constitutive model is also shown to be capable of predicting certain other experimentally observed characteristics of the dynamic response of concrete. (orig./HP)

  13. Method to determine the optimal constitutive model from spherical indentation tests

    Science.gov (United States)

    Zhang, Tairui; Wang, Shang; Wang, Weiqiang

    2018-03-01

    The limitation of current indentation theories was investigated and a method to determine the optimal constitutive model through spherical indentation tests was proposed. Two constitutive models, the Power-law and the Linear-law, were used in Finite Element (FE) calculations, and then a set of indentation governing equations was established for each model. The load-depth data from the normal indentation depth was used to fit the best parameters in each constitutive model while the data from the further loading part was compared with those from FE calculations, and the model that better predicted the further deformation was considered the optimal one. Moreover, a Yang's modulus calculation model which took the previous plastic deformation and the phenomenon of pile-up (or sink-in) into consideration was also proposed to revise the original Sneddon-Pharr-Oliver model. The indentation results on six materials, 304, 321, SA508, SA533, 15CrMoR, and Fv520B, were compared with tensile ones, which validated the reliability of the revised E calculation model and the optimal constitutive model determination method in this study.

  14. Constitutive modeling of salt behavior: State of the technology

    International Nuclear Information System (INIS)

    Munson, D.E.; Wawersik, W.R.

    1992-01-01

    The modern investigation of the thermomechanical behavior of salt started in the mid-1930's and, for what appears to be a very narrow discipline, ''salt mechanics'' has acquired considerable technical depth and sophistication. The last three decades have been especially productive in constitutive model development and laboratory investigations of time-dependent creep behavior. This has been largely due ot anticipated use of domal or bedded salt deposits as sites for radioactive waste repositories and to expanded need for hydrocarbon and feedback storage caverns. Salt is an interesting material, in that it is ''metal-like''; and, therefore, constitutive modeling can draw upon a large body of metal deformation information to arrive at appropriate models of behavior. Testing apparatus and methods have centered on either uniaxial or triaxial compression to obtain steady state and transient creep responses. Flow and fracture potentials have been defined. Validation attempts of the models against field data, although limited, have proved promising. The objective here is to summarize the state-of-the-technology of the constitutive modeling of salt behavior or ''salt mechanics.''

  15. Constitutive Modeling for Sheet Metal Forming

    International Nuclear Information System (INIS)

    Barlat, Frederic

    2005-01-01

    This paper reviews aspects of the plastic behaviour common in sheet metals. Macroscopic and microscopic phenomena occurring during plastic deformation are described succinctly. Constitutive models of plasticity suitable for applications to forming, are discussed in a very broad manner. Approaches to plastic anisotropy are described in a somewhat more detailed manner

  16. Constitutive model for evaluation of nuclear containment structures

    Energy Technology Data Exchange (ETDEWEB)

    Gocevski, Vladimir [Hydro-Quebec, 75 Rene-Levesque Boulevard, West Montreal, QC H2Z 1A4 (Canada)

    2006-09-15

    The paper presents the new constitutive relations for a homogenized reinforced concrete material. Two-stage homogenization procedure is described, i.e. prior to cracking (Phase I) and after cracking (Phase II) of the concrete matrix. Hence, the localization phenomenon and the 'size effect' are properly described. The constitutive law incorporated in the main algorithm of the commercially available finite element code COSMOS/M is further discussed. The model is applied to simulate some relevant aging mechanisms. Therefore, in the proposed paper the assessment of the prestressed concrete aging of the containment structure of Gentilly-2 nuclear power plant using an advanced numerical procedure will be presented. Aging mechanisms considered possible are discussed, the present conditions are assessed and the mechanisms that are likely to impair proper future functioning of the structure are identified. The results of the numerical analysis of the reinforced concrete structure subjected to loads such as thermal and seismic loads are presented and discussed. Attention is given to the analysis of the effects of concrete swelling due to alkali-aggregate reaction. The paper also includes an evaluation of a potential damage in the context of a high velocity impact of a commercial aircraft into the containment structure. (author)

  17. Constitutive modelling in the range of inelastic deformations

    International Nuclear Information System (INIS)

    Bruhns, O.T.; White, P.S.; Chaboche, J.L.; Eikhoff, J.V.D.

    1988-01-01

    The main objective of this report is to describe the state of the art in constitutive modelling in the range of inelastic deformations, with particular consideration of the practical use of these models in the field of fast reactors, rather than to formulate new models. An outline is given of the constitutive equations for high-temperature reactor materials developed at the Oak Ridge National Laboratory. Two forms of equations are considered, a semi-classical treatment in terms of separate plasticity and creep and unified equations in which the classical plasticity does not explicitly occur. The fraction model originally proposed by Besseling is described. The basic concept of this model is that the material is thought to be subdivided into a number of parallel fractions, each with simple conventional properties. The more complicated behaviour of real material is thus approximated by choosing a number of parallel fractions with suitable models and model parameters. Three time-independent formulations of plasticity are considered and compared. Attention is focused on the kinematic hardening in the multi-yield surface theory of Mroz and the non-linear kinematic rule intensively used at Enset and Onera. Some connections are pointed out with the two-surface model of Dafalias and Popov, and the range of applicability of the different models is studied in detail. Finally, the constitutive equations of the Interatom model are presented. They are mainly based on the concept of overstresses, expressing the rate-dependence of the material by the magnitude of these overstresses. This model furthermore comprises a combination of general non-linear isotropic and kinematic hardening, with a smooth transition from isotropic to kinematic hardening as a function of process time

  18. A thermomechanical crystal plasticity constitutive model for ultrasonic consolidation

    KAUST Repository

    Siddiq, Amir

    2012-01-01

    We present a micromechanics-based thermomechanical constitutive model to simulate the ultrasonic consolidation process. Model parameters are calibrated using an inverse modeling approach. A comparison of the simulated response and experimental results for uniaxial tests validate and verify the appropriateness of the proposed model. Moreover, simulation results of polycrystalline aluminum using the identified crystal plasticity based material parameters are compared qualitatively with the electron back scattering diffraction (EBSD) results reported in the literature. The validated constitutive model is then used to simulate the ultrasonic consolidation process at sub-micron scale where an effort is exerted to quantify the underlying micromechanisms involved during the ultrasonic consolidation process. © 2011 Elsevier B.V. All rights reserved.

  19. Target Soil Impact Verification: Experimental Testing and Kayenta Constitutive Modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Broome, Scott Thomas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Flint, Gregory Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Dewers, Thomas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Newell, Pania [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This report details experimental testing and constitutive modeling of sandy soil deformation under quasi - static conditions. This is driven by the need to understand constitutive response of soil to target/component behavior upon impact . An experimental and constitutive modeling program was followed to determine elastic - plastic properties and a compressional failure envelope of dry soil . One hydrostatic, one unconfined compressive stress (UCS), nine axisymmetric compression (ACS) , and one uniaxial strain (US) test were conducted at room temperature . Elastic moduli, assuming isotropy, are determined from unload/reload loops and final unloading for all tests pre - failure and increase monotonically with mean stress. Very little modulus degradation was discernable from elastic results even when exposed to mean stresses above 200 MPa . The failure envelope and initial yield surface were determined from peak stresses and observed onset of plastic yielding from all test results. Soil elasto - plastic behavior is described using the Brannon et al. (2009) Kayenta constitutive model. As a validation exercise, the ACS - parameterized Kayenta model is used to predict response of the soil material under uniaxial strain loading. The resulting parameterized and validated Kayenta model is of high quality and suitable for modeling sandy soil deformation under a range of conditions, including that for impact prediction.

  20. Initiating the judicial review in the European model of constitutional justice

    OpenAIRE

    Stojanović Dragan

    2014-01-01

    Judicial review is the core competence of the constitutional judicature in Europe, which is largely shaped by the Austrian and German models of constitutional justice. In that context, the issue of initiating the constitutional review of legislation is extremely important. Depending on the subject who is authorized to initiate this proceeding, the constitutional review may be twofold: the abstract control and the incidental control. The former type of constitutional review is generally initia...

  1. A thermomechanical crystal plasticity constitutive model for ultrasonic consolidation

    KAUST Repository

    Siddiq, Amir; El Sayed, Tamer S.

    2012-01-01

    We present a micromechanics-based thermomechanical constitutive model to simulate the ultrasonic consolidation process. Model parameters are calibrated using an inverse modeling approach. A comparison of the simulated response and experimental

  2. Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model

    International Nuclear Information System (INIS)

    Baladi, G.Y.

    1977-01-01

    During the past few decades the dramatic growth of computer technology has been paralleled by an increasing degree of complexity in material constitutive modeling. This paper documents the numerical implementation of one of these models, specifically a transverse-isotropic, inelastic, work-hardening constitutive model which is developed elsewhere by the author. (Auth.)

  3. Development of a phenomenological constitutive model for polyurethane foams

    International Nuclear Information System (INIS)

    Neilsen, M.K.; Morgan, H.S.; Krieg, R.D.; Yoshimura, H.R.

    1989-01-01

    Rigid, closed-cell, polyurethane foam is used in impact limiters in nuclear waste transport containers. During a hypothetical nuclear waste transport accident, the foam is expected to absorb a significant amount of impact energy by undergoing large inelastic volume reductions. Consequently, the crushing of polyurethane foams must be well characterized and accurately modeled to properly analyze a transport container accident. At the request of Sandia National Laboratories, a series of uniaxial, hydrostatic and triaxial compression tests on polyurethane foams were performed by the New Mexico Engineering Research Institute (NMERI). The combination of hydrostatic and triaxial tests was chosen to provide sufficient data to characterize both the volumetric and deviatoric behaviors of the foams and the coupling between the two responses. Typical results from the NMERI tests are included in this paper. A complete description of these tests can be found in Neilsen et al., 1987. Constitutive models that have been used in the past to model foam did not capture some important foam behaviors observed in the NMERI tests. Therefore, a new constitutive model for rigid, closed-cell, polyurethane foams was developed and implemented in two finite element codes. Development of the new model is discussed in this paper. Also, results from analyses with the new model and other constitutive models are presented to demonstrate differences between the various models. 4 refs., 6 figs., 1 tab

  4. Modelling reinforced concrete structures in DYNA3D

    International Nuclear Information System (INIS)

    Broadhouse, B.J.; Neilson, A.J.

    1987-10-01

    A material model for reinforced concrete has been implemented in the transient structural dynamics code DYNA3D. This paper outlines the constitutive material model, and presents comparisons of DYNA3D calculations and experiments on impulsively loaded panels, covering the full range of panel damage states from light cracking through to panel collapse or perforation. The results are presented using the post-processor code TAURUS, which has also been modified to provide mesh diagrams with superimposed crack patterns from the DYNA3D predictions. (author)

  5. A constitutive model for the mechanical characterization of the plantar fascia.

    Science.gov (United States)

    Natali, Arturo N; Pavan, Piero G; Stecco, Carla

    2010-10-01

    A constitutive model is proposed to describe the mechanical behavior of the plantar fascia. The mechanical characterization of the plantar fascia regards the role in the foot biomechanics and it is involved in many alterations of its functional behavior, both of mechanical and nonmechanical origin. The structural conformation of the plantar fascia in its middle part is characterized by the presence of collagen fibers reinforcing the tissue along a preferential orientation, which is that supporting the major loading. According to this anatomical evidence, the tissue is described by developing an isotropic fiber-reinforced constitutive model and since the elastic response of the fascia is here considered, the constitutive model is based on the theory of hyperelasticity. The model is consistent with a kinematical description of large strains mechanical behavior, which is typical of soft tissues. A fitting procedure of the constitutive model is implemented making use of experimental curves taken from the literature and referring to specimens of human plantar fascia. A satisfactory fitting of the tensile behavior of the plantar fascia has been performed, showing that the model correctly interprets the mechanical behavior of the tissue in the light of comparison to experimental data at disposal. A critical analysis of the model with respect to the problem of the identification of the constitutive parameters is proposed as the basis for planning a future experimental investigation of mechanical behavior of the plantar fascia.

  6. Regulation of mouse hepatic CYP2D9 mRNA expression by growth and adrenal hormones.

    Science.gov (United States)

    Jarukamjorn, Kanokwan; Sakuma, Tsutomu; Jaruchotikamol, Atika; Oguro, Miki; Nemoto, Nobuo

    2006-02-01

    The constitutive expression of CYP2D9 is sexually dimorphic, namely, strong in males, but diminutive in females. Repetition of mimic growth hormone (GH) secretion pattern impressively returned the mRNA expression level to that in intact mice: the GH secretion pattern's regulation of CYP2D9 mRNA expression has been predominantly disrupted by exogenous GH-administration. The extensive decline of CYP2D9 mRNA expression becoming a sexually non-specific P450 in 9-week-old male mice exposed as neonates to monosodium L-glutamate (MSG) suggested that the male GH secretion pattern is a key to the regulation of male-specific CYP2D9 mRNA expression in adult mice. Dexamethasone (Dex) showed possibility to induce CYP2D9 mRNA expression in adult MSG-neonatally treated mice of either sex. However, the antagonism was observed by co-administration of Dex and GH in the males. Dex-administration in adrenalectomized mice significantly elevated CYP2D9 mRNA expression levels. These findings suggest that an adrenal hormone participates in the regulatory mechanism of CYP2D9 mRNA expression in association with GH.

  7. High Temperature Mechanical Constitutive Modeling of a High-Nb TiAl Alloy

    Directory of Open Access Journals (Sweden)

    DONG Chengli

    2018-02-01

    Full Text Available Uniaxial tensile, low cycle fatigue, fatigue-creep interaction and creep experiments of a novel high-Nb TiAl alloy (i.e. Ti-45Al-8Nb-0.2W-0.2B-0.02Y (atom fraction/% were conducted at 750℃ to obtain its tested data and curves. Based on Chaboche visco-plasticity unified constitutive model, Ohno-Wang modified non-linear kinematic hardening was introduced in Chaboche constitutive model to describe the cyclic hardening/softening, and Kachanov damage was coupled in Chaboche constitutive model to characterize the accelerated creep stage. The differential equations of the constitutive model discretized by explicit Euler method were compiled in to ABAQUS/UMAT to simulate the mechanical behavior of high-Nb TiAl alloy at different test conditions. The results show that Chaboche visco-plasticity unified constitutive model considering both Ohno-Wang modified non-linear kinematic hardening and Kachanov damage is able to simulate the uniaxial tensile, low cycle fatigue, fatigue-creep interaction and creep behavior of high-Nb TiAl alloy and has high accuracy.

  8. Constitutive relations for multiphase flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, H.; Vaeth, L.; Thurnay, K. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-01-01

    The constitutive relations that are used in the three-field fluid dynamics code IVA-KA for determining the drag in three-phase mixtures and the heat transferred by radiation are described together with some comparisons of calculational results with experiments. In these experiments (QUEOS), large quantities of solid particles are injected into water. Potential deficiencies of the present drag model are discussed. (author)

  9. M D Subash Chandran

    Indian Academy of Sciences (India)

    M D Subash Chandran · More Details Fulltext PDF. Volume 4 Issue 10 October 1999 pp 69-77 Classroom. Project Lifescape – Flowering Plants · M D Subash Chandran V V Sivan · More Details Fulltext PDF. Volume 7 Issue 11 November 2002 pp 80-81 Book Review. Ecology and Sustainable Development · M D Subash ...

  10. Preliminary Test for Constitutive Models of CAP

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Yeon Joon; Hong, Soon Joon; Hwang, Su Hyun; Lee, Keo Hyung; Kim, Min Ki; Lee, Byung Chul [FNC Tech., Seoul (Korea, Republic of); Ha, Sang Jun; Choi, Hoon [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. As a part of this project, CAP (Containment Analysis Package) code has been developing for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (vapor, continuous liquid and dispersed drop) for the assessment of containment specific phenomena, and is featured by assessment capabilities in multi-dimensional and lumped parameter thermal hydraulic cell. Thermal hydraulics solver was developed and has a significant progress now. Implementation of the well proven constitutive models and correlations are essential in other for a containment code to be used with the generalized or optimized purposes. Generally, constitutive equations are composed of interfacial and wall transport models and correlations. These equations are included in the source terms of the governing field equations. In order to develop the best model and correlation package of the CAP code, various models currently used in major containment analysis codes, such as GOTHIC, CONTAIN2.0 and CONTEMPT-LT are reviewed. Several models and correlations were incorporated for the preliminary test of CAP's performance and test results and future plans to improve the level of execution besides will be discussed in this paper

  11. Preliminary Test for Constitutive Models of CAP

    International Nuclear Information System (INIS)

    Choo, Yeon Joon; Hong, Soon Joon; Hwang, Su Hyun; Lee, Keo Hyung; Kim, Min Ki; Lee, Byung Chul; Ha, Sang Jun; Choi, Hoon

    2010-01-01

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. As a part of this project, CAP (Containment Analysis Package) code has been developing for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (vapor, continuous liquid and dispersed drop) for the assessment of containment specific phenomena, and is featured by assessment capabilities in multi-dimensional and lumped parameter thermal hydraulic cell. Thermal hydraulics solver was developed and has a significant progress now. Implementation of the well proven constitutive models and correlations are essential in other for a containment code to be used with the generalized or optimized purposes. Generally, constitutive equations are composed of interfacial and wall transport models and correlations. These equations are included in the source terms of the governing field equations. In order to develop the best model and correlation package of the CAP code, various models currently used in major containment analysis codes, such as GOTHIC, CONTAIN2.0 and CONTEMPT-LT are reviewed. Several models and correlations were incorporated for the preliminary test of CAP's performance and test results and future plans to improve the level of execution besides will be discussed in this paper

  12. A model for TRIP steel constitutive behaviour

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Menari, G

    2011-01-01

    A constitutive model is developed for TRIP steel. This is a steel which contains three or four different phases in its microstructure. One of the phases in TRIP steels is metastable austenite (Retained Austenite) which transforms to martensite upon deformation. The accompanying transformation strain

  13. Dipole model analysis of F2cc¯${m{F}}_2^{{m{car c}}} $ derived from the new D* data in DIS at HERA

    Directory of Open Access Journals (Sweden)

    Luszczak Agnieszka

    2012-12-01

    Full Text Available I analyse the new D* deep inelastic scattering data from HERA with the help of dipole models. I calculate F2cc¯${m{F}}_2^{{m{car c}}} $ from the GBW [1] and BGK [2] saturation models. I compare results with the last values determined by H1 at low Q2. I find good agreement with the data.

  14. M3D project for simulation studies of plasmas

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.; Sugiyama, L.E.

    1998-01-01

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes

  15. Constitutive relationships and models in continuum theories of multiphase flows

    International Nuclear Information System (INIS)

    Decker, R.

    1989-09-01

    In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included

  16. Wireless Device-to-Device (D2D) Links for Machine-to-Machine (M2M) Communication

    DEFF Research Database (Denmark)

    Pratas, Nuno; Popovski, Petar

    2017-01-01

    Device-to-Device (D2D) communications will play an important role in the fifth generation (5G) cellular networks, by increasing the spatial reuse of spectrum resources and enabling communication links with low latency. D2D is composed of two fundamental building blocks: proximity discovery...... and direct communication between nearby users. Another emerging trend in wireless cellular systems is Machine-to-Machine (M2M) communications, often characterized by fixed, low transmission rates. In this chapter we motivate the synergy between D2D and M2M, and present technologies that enable M2M-via-D2D...

  17. Modification of the Integrated Sasang Constitutional Diagnostic Model

    Directory of Open Access Journals (Sweden)

    Jiho Nam

    2017-01-01

    Full Text Available In 2012, the Korea Institute of Oriental Medicine proposed an objective and comprehensive physical diagnostic model to address quantification problems in the existing Sasang constitutional diagnostic method. However, certain issues have been raised regarding a revision of the proposed diagnostic model. In this paper, we propose various methodological approaches to address the problems of the previous diagnostic model. Firstly, more useful variables are selected in each component. Secondly, the least absolute shrinkage and selection operator is used to reduce multicollinearity without the modification of explanatory variables. Thirdly, proportions of SC types and age are considered to construct individual diagnostic models and classify the training set and the test set for reflecting the characteristics of the entire dataset. Finally, an integrated model is constructed with explanatory variables of individual diagnosis models. The proposed integrated diagnostic model significantly improves the sensitivities for both the male SY type (36.4% → 62.0% and the female SE type (43.7% → 64.5%, which were areas of limitation of the previous integrated diagnostic model. The ideas of these new algorithms are expected to contribute not only to the scientific development of Sasang constitutional medicine in Korea but also to that of other diagnostic methods for traditional medicine.

  18. Constitutive model with time-dependent deformations

    DEFF Research Database (Denmark)

    Krogsbøll, Anette

    1998-01-01

    are common in time as well as size. This problem is adressed by means of a new constitutive model for soils. It is able to describe the behavior of soils at different deformation rates. The model defines time-dependent and stress-related deformations separately. They are related to each other and they occur...... was the difference in time scale between the geological process of deposition (millions of years) and the laboratory measurements of mechanical properties (minutes or hours). In addition, the time scale relevant to the production history of the oil field was interesting (days or years)....

  19. Ident 1D - a novel software tool for an easy identification of material constitutive parameters

    International Nuclear Information System (INIS)

    Le Ber, L.; Cotoni, V.; Nicola, L.; Sainte Catherine, C.

    1998-01-01

    Non-linear finite element computations make use of very sophisticated constitutive equations for description of materials behaviour. The first difficulty encountered by potential users is the gap existing between raw material characterisation on uniaxial specimens and the knowledge of the required equation's parameters. There are very few software for this particular task. IDENT 1D is a special software developed under Matlab language in our laboratory, which is able to provide a complete optimised parameters set for implemented models. The originality of IDENT 1D is that no initial estimation of the material parameters is requested of the user. Two main examples are described in this article: the Lemaitre and Chaboche creep law coupled with damage and a non unified cyclic law proposed by Contesti and Cailletaud with a separation of plastic and viscous strain terms which is called DDI model. For both laws, the identification method is completely described. Each method is then applied to a set of experimental data. In both cases, the results of the parameters identification show a very good agreement with experimental data. (authors)

  20. A physically-based constitutive model for SA508-III steel: Modeling and experimental verification

    International Nuclear Information System (INIS)

    Dong, Dingqian; Chen, Fei; Cui, Zhenshan

    2015-01-01

    Due to its good toughness and high weldability, SA508-III steel has been widely used in the components manufacturing of reactor pressure vessels (RPV) and steam generators (SG). In this study, the hot deformation behaviors of SA508-III steel are investigated by isothermal hot compression tests with forming temperature of (950–1250)°C and strain rate of (0.001–0.1)s −1 , and the corresponding flow stress curves are obtained. According to the experimental results, quantitative analysis of work hardening and dynamic softening behaviors is presented. The critical stress and critical strain for initiation of dynamic recrystallization are calculated by setting the second derivative of the third order polynomial. Based on the classical stress–dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of SA508-III steel. Comparisons between the predicted and measured flow stress indicate that the established physically-based constitutive model can accurately characterize the hot deformations for the steel. Furthermore, a successful numerical simulation of the industrial upsetting process is carried out by implementing the developed constitutive model into a commercial software, which evidences that the physically-based constitutive model is practical and promising to promote industrial forging process for nuclear components

  1. A physically-based constitutive model for SA508-III steel: Modeling and experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Dingqian [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030 (China); Chen, Fei, E-mail: feechn@gmail.com [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030 (China); Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Cui, Zhenshan, E-mail: cuizs@sjtu.edu.cn [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030 (China)

    2015-05-14

    Due to its good toughness and high weldability, SA508-III steel has been widely used in the components manufacturing of reactor pressure vessels (RPV) and steam generators (SG). In this study, the hot deformation behaviors of SA508-III steel are investigated by isothermal hot compression tests with forming temperature of (950–1250)°C and strain rate of (0.001–0.1)s{sup −1}, and the corresponding flow stress curves are obtained. According to the experimental results, quantitative analysis of work hardening and dynamic softening behaviors is presented. The critical stress and critical strain for initiation of dynamic recrystallization are calculated by setting the second derivative of the third order polynomial. Based on the classical stress–dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of SA508-III steel. Comparisons between the predicted and measured flow stress indicate that the established physically-based constitutive model can accurately characterize the hot deformations for the steel. Furthermore, a successful numerical simulation of the industrial upsetting process is carried out by implementing the developed constitutive model into a commercial software, which evidences that the physically-based constitutive model is practical and promising to promote industrial forging process for nuclear components.

  2. Stellar model chromospheres. XIII - M dwarf stars

    Science.gov (United States)

    Giampapa, M. S.; Worden, S. P.; Linsky, J. L.

    1982-01-01

    Single-component, homogeneous model chromospheres that are consistent with high-resolution profiles of the Ca II K line calibrated in surface flux units for three dMe and 2 dM stars observed at quiescent times are constructed. The models reveal several systematic trends. Large values of the ratio of T(min) to T(eff) are derived, indicating a large amount of nonradiative heating present in the upper photospheres of M dwarf stars. It is also found that the lower chromospheric temperature gradient is similar for all the M dwarf stars. Since for the models here the chromospheric K line emission strength is most sensitive to the total amount of chromospheric material present within the approximate temperature range T(min)-6000 K, increasing the emission strength is not simply due to increasing chromospheric temperature gradients. It is also found that both the electron density and electron temperature at one thermalization length in the K line below the top of the chromospheres are greater in the dMe stars than in the dM stars. The M dwarf models here have microturbulent velocities between 1 and 2 km/sec, which are much smaller than for solar chromosphere models.

  3. A variational multiscale constitutive model for nanocrystalline materials

    KAUST Repository

    Gurses, Ercan

    2011-03-01

    This paper presents a variational multi-scale constitutive model in the finite deformation regime capable of capturing the mechanical behavior of nanocrystalline (nc) fcc metals. The nc-material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary effected zone (GBAZ). A rate-independent isotropic porous plasticity model is employed to describe the GBAZ, whereas a crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The constitutive models of both phases are formulated in a small strain framework and extended to finite deformation by use of logarithmic and exponential mappings. Assuming the rule of mixtures, the overall behavior of a given grain is obtained via volume averaging. The scale transition from a single grain to a polycrystal is achieved by Taylor-type homogenization where a log-normal grain size distribution is assumed. It is shown that the proposed model is able to capture the inverse HallPetch effect, i.e., loss of strength with grain size refinement. Finally, the predictive capability of the model is validated against experimental results on nanocrystalline copper and nickel. © 2010 Elsevier Ltd. All rights reserved.

  4. Constitutive relationships of hot stamping boron steel B1500HS based on the modified Arrhenius and Johnson–Cook model

    International Nuclear Information System (INIS)

    Li, Huiping; He, Lianfang; Zhao, Guoqun; Zhang, Lei

    2013-01-01

    Constitutive relationship of boron steel is one of the most necessary mathematical models in the numerical simulation of hot stamping; it describes the relationship of the flow stress with strain, strain rate and temperature. In order to attain the constitutive relationship of boron steel B1500HS, four types of samples with microstructure of austenite, ferrite+pearlite, bainite or martensite are prepared by the Gleeble 1500D thermo-mechanical simulator. Isothermal uniaxial tension testings for these specimens are performed at 20–900 °C at the strain rates of 0.01 s –1 , 0.1 s –1 , 1.0 s –1 and 10 s –1 by Gleeble 1500D, and the true stress–strain curves at the relative conditions are gained. The experimental results show that, the flow stress of samples with relative microstructure rises with the decrease of the deformation temperature, and with the increase of the strain rate. The modified Arrhenius model is used to describe the hot deformation of samples with austenite microstructure, and the modified Johnson–Cook model is used to describe the deformation process of samples with ferrite+pearlite, bainite or martensite microstructure. The constitutive equations depending on the strain, strain rate and temperature are attained by the regression analysis for the experimental data of flow stress, strain, strain rate, temperature, etc. The comparison of the computational data and the experimental results shows that, the computational data using the constitutive relationships are well consistent with the experimental data

  5. Homogenized global nonlinear constitutive model for RC panels under cyclic loadings

    International Nuclear Information System (INIS)

    Huguet, Miquel; Voldoire, Francois; Kotronis, Panagiotis; Erlicher, Silvano

    2014-01-01

    A new nonlinear stress resultant global constitutive model for RC panels is presented. Concrete damage, concrete stress transfer at cracks and bond-slip stress are the main nonlinear effects identified at the local scale that constitute the basis for the construction of the stress resultant global model through an analytical homogenization technique. The closed form solution is obtained using general functions for the previous phenomena. (authors)

  6. Constitutive Modeling of the Flow Stress of GCr15 Continuous Casting Bloom in the Heavy Reduction Process

    Science.gov (United States)

    Ji, Cheng; Wang, Zilin; Wu, Chenhui; Zhu, Miaoyong

    2018-04-01

    According to the calculation results of a 3D thermomechanical-coupled finite-element (FE) model of GCr15 bearing steel bloom during a heavy reduction (HR) process, the variation ranges in the strain rate and strain under HR were described. In addition, the hot deformation behavior of the GCr15 bearing steel was studied over the temperature range from 1023 K to 1573 K (750 °C to 1300 °C) with strain rates of 0.001, 0.01, and 0.1 s-1 in single-pass thermosimulation compression experiments. To ensure the accuracy of the constitutive model, the temperature range was divided into two temperature intervals according to the fully austenitic temperature of GCr15 steel [1173 K (900 °C)]. Two sets of material parameters for the constitutive model were derived based on the true stress-strain curves of the two temperature intervals. A flow stress constitutive model was established using a revised Arrhenius-type constitutive equation, which considers the relationships among the material parameters and true strain. This equation describes dynamic softening during hot compression processes. Considering the effect of glide and climb on the deformation mechanism, the Arrhenius-type constitutive equation was modified by a physically based approach. This model is the most accurate over the temperatures ranging from 1173 K to 1573 K (900 °C to 1300 °C) under HR deformation conditions (ignoring the range from 1273 K to 1573 K (1000 °C to 1300 °C) with a strain rate of 0.1 s-1). To ensure the convergence of the FE calculation, an approximated method was used to estimate the flow stress at temperatures greater than 1573 K (1300 °C).

  7. Numerical simulation of the time-dependent deformation behaviour of clay-stone rock mass at the Tournemire site with 2D and 3D models

    International Nuclear Information System (INIS)

    Rutenberg, M.; Lux, K. H.

    2011-01-01

    Clay-stone rock masses are a reasonable alternative to e.g. salt rock masses as a host rock for underground radioactive waste repositories because of their very low permeability as well as their radionuclide retention capacity. Though clay-stone has been explored for many years, there is still a need for further research on its hydro-mechanical behaviour. Convergence measurements over a 4-year period in the tunnel system of the argillaceous Tournemire site in France yielded the presence of a time-dependent deformation behaviour in indurated clay. Moreover, a mine-by test was carried out with extensometer measurements capturing the rock mass deformation during the excavation process of a new gallery in 2003.This work focuses on the validation of a constitutive model by means of a three-dimensional (3D) simulation of the mine-by test. The utilised constitutive model Hou/Lux-T is based on the viscous constitutive model Lubby2 with which time-dependent deformation behaviour of salt rock can appropriately be simulated. It has been adapted to clay-stone by considering anisotropy effects, and in addition it features a strain-dependent fracture and failure criterion. The results of the mine-by-test simulation show that the calculated stresses and deformations in the rock mass seem to behave reasonably under this constitutive model with respect to time-dependency. A comparison of the 3D results to the results of a simplified two-dimensional (2D) simulation confirms the adequacy of using a 2D model with the constitutive model Hou/Lux-T for the setting at hand, described in the text (material parameters, time scale), in order to assess load-bearing capacity and deformability of the gallery near field away from heading face and tunnel crossing. Finally, a comparison of the 3D simulation results to the extensometer measurement results yields the principal ability of the used constitutive model to describe time-dependent evolutions of stresses and deformations during a three

  8. Engineering Escherichia coli to grow constitutively on D-xylose using the carbon-efficient Weimberg pathway

    Science.gov (United States)

    Rossoni, Luca; Carr, Reuben; Baxter, Scott; Cortis, Roxann; Thorpe, Thomas; Eastham, Graham; Stephens, Gill

    2018-01-01

    Bio-production of fuels and chemicals from lignocellulosic C5 sugars usually requires the use of the pentose phosphate pathway (PPP) to produce pyruvate. Unfortunately, the oxidation of pyruvate to acetyl-coenzyme A results in the loss of 33 % of the carbon as CO2, to the detriment of sustainability and process economics. To improve atom efficiency, we engineered Escherichia coli to utilize d-xylose constitutively using the Weimberg pathway, to allow direct production of 2-oxoglutarate without CO2 loss. After confirming enzyme expression in vitro, the pathway expression was optimized in vivo using a combinatorial approach, by screening a range of constitutive promoters whilst systematically varying the gene order. A PPP-deficient (ΔxylAB), 2-oxoglutarate auxotroph (Δicd) was used as the host strain, so that growth on d-xylose depended on the expression of the Weimberg pathway, and variants expressing Caulobacter crescentus xylXAB could be selected on minimal agar plates. The strains were isolated and high-throughput measurement of the growth rates on d-xylose was used to identify the fastest growing variant. This strain contained the pL promoter, with C. crescentus xylA at the first position in the synthetic operon, and grew at 42 % of the rate on d-xylose compared to wild-type E. coli using the PPP. Remarkably, the biomass yield was improved by 53.5 % compared with the wild-type upon restoration of icd activity. Therefore, the strain grows efficiently and constitutively on d-xylose, and offers great potential for use as a new host strain to engineer carbon-efficient production of fuels and chemicals via the Weimberg pathway. PMID:29458683

  9. On constitutive modelling in finite element analysis

    International Nuclear Information System (INIS)

    Bathe, K.J.; Snyder, M.D.; Cleary, M.P.

    1979-01-01

    This compact contains a brief introduction to the problems involved in constitutive modeling as well as an outline of the final paper to be submitted. Attention is focussed on three important areas: (1) the need for using theoretically sound material models and the importance of recognizing the limitations of the models, (2) the problem of developing stable and effective numerical representations of the models, and (3) the necessity for selection of an appropriate finite element mesh that can capture the actual physical response of the complete structure. In the final paper, we will be presenting our recent research results pertaining to each of these problem areas. (orig.)

  10. A phenomenological two-phase constitutive model for porous shape memory alloys

    KAUST Repository

    El Sayed, Tamer S.

    2012-07-01

    We present a two-phase constitutive model for pseudoelastoplastic behavior of porous shape memory alloys (SMAs). The model consists of a dense SMA phase and a porous plasticity phase. The overall response of the porous SMA is obtained by a weighted average of responses of individual phases. Based on the chosen constitutive model parameters, the model incorporates the pseudoelastic and pseudoplastic behavior simultaneously (commonly reported for porous SMAs) as well as sequentially (i.e. dense SMAs; pseudoelastic deformation followed by the pseudoplastic deformation until failure). The presented model also incorporates failure due to the deviatoric (shear band formation) and volumetric (void growth and coalescence) plastic deformation. The model is calibrated by representative volume elements (RVEs) with different sizes of spherical voids that are solved by unit cell finite element calculations. The overall response of the model is tested against experimental results from literature. Finally, application of the presented constitutive model has been presented by performing finite element simulations of the deformation and failure in unaixial dog-bone shaped specimen and compact tension (CT) test specimen. Results show a good agreement with the experimental data reported in the literature. © 2012 Elsevier B.V. All rights reserved.

  11. Evaluation of constitutive models for crushed salt

    International Nuclear Information System (INIS)

    Callahan, G.D.; Loken, M.C.; Hurtado, L.D.; Hansen, F.D.

    1996-01-01

    Three constitutive models are recommended as candidates for describing the deformation of crushed salt. These models are generalized to three-dimensional states of stress to include the effects of mean and deviatoric stress and modified to include effects of temperature, grain size, and moisture content. A database including hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant (WIPP) and southeastern New Mexico salt is used to determine material parameters for the models. To evaluate the capability of the models, parameter values obtained from fitting the complete database are used to predict the individual tests. Finite element calculations of a WIPP shaft with emplaced crushed salt demonstrate the model predictions

  12. A constitutive model and numerical simulation of sintering processes at macroscopic level

    Science.gov (United States)

    Wawrzyk, Krzysztof; Kowalczyk, Piotr; Nosewicz, Szymon; Rojek, Jerzy

    2018-01-01

    This paper presents modelling of both single and double-phase powder sintering processes at the macroscopic level. In particular, its constitutive formulation, numerical implementation and numerical tests are described. The macroscopic constitutive model is based on the assumption that the sintered material is a continuous medium. The parameters of the constitutive model for material under sintering are determined by simulation of sintering at the microscopic level using a micro-scale model. Numerical tests were carried out for a cylindrical specimen under hydrostatic and uniaxial pressure. Results of macroscopic analysis are compared against the microscopic model results. Moreover, numerical simulations are validated by comparison with experimental results. The simulations and preparation of the model are carried out by Abaqus FEA - a software for finite element analysis and computer-aided engineering. A mechanical model is defined by the user procedure "Vumat" which is developed by the first author in Fortran programming language. Modelling presented in the paper can be used to optimize and to better understand the process.

  13. Constitutive modeling for analysis and design of aluminum sheet forming processes

    International Nuclear Information System (INIS)

    Barlat, F.; Chung, K.; Yoon, J-W.; Choi, S-H.

    2000-01-01

    Finite element modeling (FEM) technology is one of the most powerful tools used to design new products, i.e. appliances, automotive, rigid packaging and aerospace parts, etc., and processes. However, FEM users need data and models to characterize the materials used to fabricate the new products. In fact, they need more information than the traditional and standard yield strength, ultimate strength, elongation, etc. Constitutive models and their associated coefficients represent a new way to describe material properties, a way that can be used by FEM users. In order to help manufacturers use more aluminum alloy sheet in their products, appropriate material models are needed to analyze and design specifically for these materials. This work describes a methodology that provides phenomenological constitutive equations based on three main microstructure components of aluminum alloys: dislocation density, second-phase particles and crystallographic texture. Examples of constitutive equations and their applications to numerical sheet forming process analysis and design are provided in this work. (author)

  14. DoD Modeling and Simulation (M&S) Glossary

    Science.gov (United States)

    1998-01-01

    i 66 January 1998 DoD 5000.59-M SSTORM STAARS STADLS STAF STAFLO STAGE STAMIS STARS I » STDL STDN STE STEMS STEP STM STOW STOW...references (b) and (c)) 556. World Coordinate System. The right-handed geocentric Cartesian system. The shape of the world is described by the...557. World Geodetic System 1984 (WGS 84). A geocentric coordinate system which describes a basic frame of reference and geometric figure for the

  15. Constitutive Modelling of Resins in the Compliance Domain

    Science.gov (United States)

    Klasztorny, M.

    2004-07-01

    A rheological HWKK/H model for resins is developed taking into consideration the up-to-date analyses of experimental results. Constitutive compliance equations of linear are formulated for this model in the shear/bulk form, which describes, among other things, the first-rank reversible isothermal creep. The shear (distorsional) deformations are simulated with three independent stress history functions of fractional and normal exponential types. The volume deformations are simulated as perfectly elastic. The model is described by two elastic and six viscoelastic constants, namely three long-term creep coefficients and three retardation times. The constitutive compliance equations of viscoealsticity for resins are also formulated in the coupled form. Formulae for converting the constants of shear/bulk (uncoupled) viscoelasticity into the constants of coupled viscoelasticity are given too. An algorithm for identifying the material constants, based on the creep of uniaxially tensioned bar samples, is formulated in a way that gives unique results. The material constants are fiund for Epidian 53 epoxy and Polimal 109 polyester resins. The creep processes, simulated based on the experimental data, are presented graphically for both the resins examined.

  16. A New Equivalent Statistical Damage Constitutive Model on Rock Block Mixed Up with Fluid Inclusions

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2018-01-01

    Full Text Available So far, there are few studies concerning the effect of closed “fluid inclusions” on the macroscopic constitutive relation of deep rock. Fluid-matrix element (FME is defined based on rock element in statistical damage model. The properties of FME are related to the size of inclusions, fluid properties, and pore pressure. Using FME, the equivalent elastic modulus of rock block containing fluid inclusions is obtained with Eshelby inclusion theory and the double M-T homogenization method. The new statistical damage model of rock is established on the equivalent elastic modulus. Besides, the porosity and confining pressure are important influencing factors of the model. The model reflects the initial damage (void and fluid inclusion and the macroscopic deformation law of rock, which is an improvement of the traditional statistical damage model. Additionally, the model can not only be consistent with the rock damage experiment date and three-axis compression experiment date of rock containing pore water but also describe the locked-in stress experiment in rock-like material. It is a new fundamental study of the constitutive relation of locked-in stress in deep rock mass.

  17. Researches on the Constitutive Models of Artificial Frozen Silt in Underground Engineering

    Directory of Open Access Journals (Sweden)

    Yugui Yang

    2014-01-01

    Full Text Available The researches on the mechanical characteristic and constitutive models of frozen soil have important meanings in structural design of deep frozen soil wall. In the present study, the triaxial compression and creep tests have been carried out, and the mechanical characteristic of frozen silt is obtained. The experiment results show that the deformation characteristic of frozen silt is related to confining pressure under conventional triaxial compression condition. The frozen silt presents strain softening in shear process; with increase of confining pressure, the strain softening characteristic gradually decreases. The creep curves of frozen silt present the decaying and the stable creep stages under low stress level; however, under high stress level, once the strain increases to a critical value, the creep strain velocity gradually increases and the specimen quickly happens to destroy. To reproduce the deformation behavior, the disturbed state elastoplastic and new creep constitutive models of frozen silt are developed. The comparisons between experimental results and calculated results from constitutive models show that the proposed constitutive models could describe the conventional triaxial compression and creep deformation behaviors of frozen silt.

  18. Deformable M-Reps for 3D Medical Image Segmentation

    Science.gov (United States)

    Pizer, Stephen M.; Fletcher, P. Thomas; Joshi, Sarang; Thall, Andrew; Chen, James Z.; Fridman, Yonatan; Fritsch, Daniel S.; Gash, Graham; Glotzer, John M.; Jiroutek, Michael R.; Lu, Conglin; Muller, Keith E.; Tracton, Gregg; Yushkevich, Paul; Chaney, Edward L.

    2013-01-01

    M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models, which define objects at coarse scale by a hierarchy of figures – each figure generally a slab representing a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment objects of relatively simple structure. A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or chain, of medial atoms (hence the name m-reps), each atom modeling a solid region via not only a position and a width but also a local figural frame giving figural directions and an object angle between opposing, corresponding positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orientational correspondence between an object in two different states of deformation. This ability is central to effective measurement of both geometric typicality and geometry to image match, the two terms of the objective function optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models and approaches also exist in 2D, we focus on 3D objects. The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported. PMID

  19. Constitutive modeling of two phase materials using the Mean Field method for homogenization

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.

    2010-01-01

    A Mean-Field homogenization framework for constitutive modeling of materials involving two distinct elastic-plastic phases is presented. With this approach it is possible to compute the macroscopic mechanical behavior of this type of materials based on the constitutive models of the constituent

  20. Anti-NKG2D mAb

    DEFF Research Database (Denmark)

    Vadstrup, Kasper; Bendtsen, Flemming

    2017-01-01

    with a wide range of cell types and proteins involved. Natural Killer Group 2D (NKG2D) is an activating receptor constitutively expressed on human Natural Killer (NK), γδ T, mucosal-associated invariant T (MAIT), CD56⁺ T, and CD8⁺ T cells. Activation of NKG2D triggers cellular proliferation, cytokine...... production, and target cell killing. Research into the NKG2D mechanism of action has primarily been focused on cancer and viral infections where cytotoxicity evasion is a concern. In human inflammatory bowel disease (IBD) this system is less characterized, but the ligands have been shown to be highly...... expressed during intestinal inflammation and the following receptor activation may contribute to tissue degeneration. A recent phase II clinical trial showed that an antibody against NKG2D induced clinical remission of CD in some patients, suggesting NKG2D and its ligands to be of importance...

  1. Constitutive modeling of multiphase materials including phase transformations

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Khan, A.S.; Meredith, C; Farrokh, B

    2011-01-01

    A constitutive model is developed for materials involving two or more different phases in their microstructure such as DP (Dual Phase) or TRIP (TRansformation Induced Plasticity) steels. Homogenization of the response of the phases is achieved by the Mean-Field method. One of the phases in TRIP

  2. A Constitutive Model for Strain-Controlled Strength Degradation of Rockmasses (SDR)

    Science.gov (United States)

    Kalos, A.; Kavvadas, M.

    2017-11-01

    The paper describes a continuum, rate-independent, incremental plasticity constitutive model applicable in weak rocks and heavily fractured rockmasses, where mechanical behaviour is controlled by rockmass strength rather than structural features (discontinuities). The model describes rockmass structure by a generalised Hoek-Brown Structure Envelope (SE) in the stress space. Stress paths inside the SE are nonlinear and irreversible to better simulate behaviour at strains up to peak strength and under stress reversals. Stress paths on the SE have user-controlled volume dilatancy (gradually reducing to zero at large shear strains) and can model post-peak strain softening of brittle rockmasses via a structure degradation (damage) mechanism triggered by accumulated plastic shear strains. As the SE may strain harden with plastic strains, ductile behaviour can also be modelled. The model was implemented in the Finite Element Code Simulia ABAQUS and was applied in plane strain (2D) excavation of a cylindrical cavity (tunnel) to predict convergence-confinement curves. It is shown that small-strain nonlinearity, variable volume dilatancy and post-peak hardening/softening strongly affect the predicted curves, resulting in corresponding differences of lining pressures in real tunnel excavations.

  3. Mechanical modeling for magnetorheological elastomer isolators based on constitutive equations and electromagnetic analysis

    Science.gov (United States)

    Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping

    2018-06-01

    As constitutive models are too complicated and existing mechanical models lack universality, these models are beyond satisfaction for magnetorheological elastomer (MRE) devices. In this article, a novel universal method is proposed to build concise mechanical models. Constitutive model and electromagnetic analysis were applied in this method to ensure universality, while a series of derivations and simplifications were carried out to obtain a concise formulation. To illustrate the proposed modeling method, a conical MRE isolator was introduced. Its basic mechanical equations were built based on equilibrium, deformation compatibility, constitutive equations and electromagnetic analysis. An iteration model and a highly efficient differential equation editor based model were then derived to solve the basic mechanical equations. The final simplified mechanical equations were obtained by re-fitting the simulations with a novel optimal algorithm. In the end, verification test of the isolator has proved the accuracy of the derived mechanical model and the modeling method.

  4. A new constitutive model for prediction of impact rates response of polypropylene

    Directory of Open Access Journals (Sweden)

    Buckley C.P.

    2012-08-01

    Full Text Available This paper proposes a new constitutive model for predicting the impact rates response of polypropylene. Impact rates, as used here, refer to strain rates greater than 1000 1/s. The model is a physically based, three-dimensional constitutive model which incorporates the contributions of the amorphous, crystalline, pseudo-amorphous and entanglement networks to the constitutive response of polypropylene. The model mathematics is based on the well-known Glass-Rubber model originally developed for glassy polymers but the arguments have herein been extended to semi-crystalline polymers. In order to predict the impact rates behaviour of polypropylene, the model exploits the well-known framework of multiple processes yielding of polymers. This work argues that two dominant viscoelastic relaxation processes – the alpha- and beta-processes – can be associated with the yield responses of polypropylene observed at low-rate-dominant and impact-rates dominant loading regimes. Compression test data on polypropylene have been used to validate the model. The study has found that the model predicts quite well the experimentally observed nonlinear rate-dependent impact response of polypropylene.

  5. Constitutive model development needs for reactor safety thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Kelly, J.M.

    1998-01-01

    This paper discusses the constitutive model development needs for our current and future generation of reactor safety thermal-hydraulic analysis codes. Rather than provide a simple 'shopping list' of models to be improved, a detailed description is given of how a constitutive model works within the computational framework of a current reactor safety code employing the two-fluid model of two-phase flow. The intent is to promote a better understanding of both the types of experiments and the instrumentation needs that will be required in the USNRCs code improvement program. First, a summary is given of the modeling considerations that need to be taken into account when developing constitutive models for use in reactor safety thermal-hydraulic codes. Specifically, the two-phase flow model should be applicable to a control volume formulation employing computational volumes with dimensions on the order of meters but containing embedded structure with a dimension on the order of a centimeter. The closure relations are then required to be suitable when averaged over such large volumes containing millions or even tens of millions of discrete fluid particles (bubbles/drops). This implies a space and time averaging procedure that neglects the intermittency observed in slug and chum turbulent two-phase flows. Furthermore, the geometries encountered in reactor systems are complex, the constitutive relations should therefore be component specific (e.g., interfacial shear in a tube does not represent that in a rod bundle nor in the downcomer). When practicable, future modeling efforts should be directed towards resolving the spatial evolution of two-phase flow patterns through the introduction of interfacial area transport equations and by modeling the individual physical processes responsible for the creation or destruction of interfacial area. Then the example of the implementation and assessment of a subcooled boiling model in a two-fluid code is given. The primary parameter

  6. Correction of Flow Curves and Constitutive Modelling of a Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Ming Hu

    2018-04-01

    Full Text Available Isothermal uniaxial compressions of a Ti-6Al-4V alloy were carried out in the temperature range of 800–1050 °C and strain rate range of 0.001–1 s−1. The effects of friction between the specimen and anvils as well as the increase in temperature caused by the high strain rate deformation were considered, and flow curves were corrected as a result. Constitutive models were discussed based on the corrected flow curves. The correlation coefficient and average absolute relative error for the strain compensated Arrhenius-type constitutive model are 0.986 and 9.168%, respectively, while the values for a modified Johnson-Cook constitutive model are 0.924 and 22.673%, respectively. Therefore, the strain compensated Arrhenius-type constitutive model has a better prediction capability than a modified Johnson-Cook constitutive model.

  7. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad [National Energy Technology Laboratory; Wang, Ping

    2013-02-07

    The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.

  8. Polymorphism in SFTPD gene affects assembly and constitutional serum levels of surfactant protein D in a Lebanese population

    DEFF Research Database (Denmark)

    Fakih, Dalia; Chamat, Soulaima; Medlej-Hashim, Myrna

    2014-01-01

    Surfactant protein D (SP-D), an oligomeric lung-derived lectin, has essential roles in innate immunity. It can be measured in serum. Previous studies have shown that constitutional SP-D serum levels and the protein degree of multimerization are genetically influenced. We aimed to establish the di...

  9. Entropic Constitutive Relation and Modeling for Fourier and Hyperbolic Heat Conductions

    Directory of Open Access Journals (Sweden)

    Shu-Nan Li

    2017-12-01

    Full Text Available Most existing phenomenological heat conduction models are expressed by temperature and heat flux distributions, whose definitions might be debatable in heat conductions with strong non-equilibrium. The constitutive relations of Fourier and hyperbolic heat conductions are here rewritten by the entropy and entropy flux distributions in the frameworks of classical irreversible thermodynamics (CIT and extended irreversible thermodynamics (EIT. The entropic constitutive relations are then generalized by Boltzmann–Gibbs–Shannon (BGS statistical mechanics, which can avoid the debatable definitions of thermodynamic quantities relying on local equilibrium. It shows a possibility of modeling heat conduction through entropic constitutive relations. The applicability of the generalizations by BGS statistical mechanics is also discussed based on the relaxation time approximation, and it is found that the generalizations require a sufficiently small entropy production rate.

  10. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.

    Science.gov (United States)

    Demirci, Nagehan; Tönük, Ergin

    2014-01-01

    During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.

  11. Universal Unitarity Triangle 2016 and the tension between ΔM{sub s,d} and ε{sub K} in CMFV models

    Energy Technology Data Exchange (ETDEWEB)

    Blanke, Monika [Karlsruhe Institute of Technology, Institut fur Kernphysik, Eggenstein-Leopoldshafen (Germany); Karlsruhe Institute of Technology, Institut fur Theoretische Teilchenphysik, Karlsruhe (Germany); Buras, Andrzej J. [TUM-IAS, Garching (Germany); TUM, Physik Department, Garching (Germany)

    2016-04-15

    Motivated by the recently improved results from the Fermilab Lattice and MILC Collaborations on the hadronic matrix elements entering ΔM{sub s,d} in B{sup 0}{sub s,d}- anti B{sup 0}{sub s,d} mixing, we determine the universal unitarity triangle (UUT) in models with constrained minimal flavour violation (CMFV). Of particular importance are the very precise determinations of the ratio vertical stroke V{sub ub} vertical stroke / vertical stroke V{sub cb} vertical stroke = 0.0864 ± 0.0025 and of the angle γ = (62.7 ± 2.1) {sup circle}. They follow in this framework from the experimental values of ΔM{sub d}/ΔM{sub s} and of the CP-asymmetry S{sub ψK{sub S}}. As in CMFV models the new contributions to meson mixings can be described by a single flavour-universal variable S(v), we next determine the CKM matrix elements vertical stroke V{sub ts} vertical stroke, vertical stroke V{sub td} vertical stroke, vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke as functions of S(v) using the experimental value of ΔM{sub s} as input. The lower bound on S(v) in these models, derived by us in 2006, implies then upper bounds on these four CKM elements and on the CP-violating parameter ε{sub K}, which turns out to be significantly below its experimental value. This strategy avoids the use of tree-level determinations of vertical stroke V{sub ub} vertical stroke and vertical stroke V{sub cb} vertical stroke, which are presently subject to considerable uncertainties. On the other hand, if ε{sub K} is used instead of ΔM{sub s} as input, ΔM{sub s,d} are found to be significantly above the data. In this manner we point out that the new lattice data have significantly sharpened the tension between ΔM{sub s,d} and ε{sub K} within the CMFV framework. This implies the presence of new physics contributions beyond this framework that are responsible for the breakdown of the flavour universality of the function S(v). We also present the

  12. Ceramics and M.H.D

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The materials considered for the insulating walls of a M.H.D. converter are Al 2 O 3 , and the calcium or strontium zirconates. For the conducting walls electricity conducting oxides are being considered such as ZrO 2 or CrO 3 La essentially. The principle of M.H.D. systems is recalled, the materials considered are described as is their behaviour in the corrosive atmospheres of M.H.D. streams [fr

  13. Study on the Influence of the Work Hardening Models Constitutive Parameters Identification in the Springback Prediction

    International Nuclear Information System (INIS)

    Oliveira, M.C.; Menezes, L. F.; Alves, J.L.; Chaparro, B.M.

    2005-01-01

    The main goal of this work is to determine the influence of the work hardening model in the numerical prediction of springback. This study will be performed according with the specifications of the first phase of the 'Benchmark 3' of the Numisheet'2005 Conference: the 'Channel Draw'. Several work hardening constitutive models are used in order to allow a better description of the different material mechanical behavior. Two are classical pure isotropic hardening models described by a power law (Swift) or a Voce type saturation equation. Those two models were also combined with a non-linear (Lemaitre and Chaboche) kinematic hardening rule. The final one is the Teodosiu microstructural hardening model. The study is performed for two commonly used steels of the automotive industry: mild (DC06) and dual phase (DP600) steels. The mechanical characterization, as well as the constitutive parameters identification of each work hardening models, was performed by LPMTM, based on an appropriate set of experimental data such as uniaxial tensile tests, monotonic and Bauschinger simple shear tests and orthogonal strain path tests, all at various orientations with respect to the rolling direction. All the simulations were carried out with the CEMUC's home code DD3IMP (contraction of 'Deep Drawing 3-D IMPlicit code')

  14. Constitutive model for porous materials

    International Nuclear Information System (INIS)

    Weston, A.M.; Lee, E.L.

    1982-01-01

    A simple pressure versus porosity compaction model is developed to calculate the response of granular porous bed materials to shock impact. The model provides a scheme for calculating compaction behavior when relatively limited material data are available. While the model was developed to study porous explosives and propellants, it has been applied to a much wider range of materials. The early development of porous material models, such as that of Hermann, required empirical dynamic compaction data. Erkman and Edwards successfully applied the early theory to unreacted porous high explosives using a Gruneisen equation of state without yield behavior and without trapped gas in the pores. Butcher included viscoelastic rate dependance in pore collapse. The theoretical treatment of Carroll and Holt is centered on the collapse of a circular pore and includes radial inertia terms and a complex set of stress, strain and strain rate constitutive parameters. Unfortunately data required for these parameters are generally not available. The model described here is also centered on the collapse of a circular pore, but utilizes a simpler elastic-plastic static equilibrium pore collapse mechanism without strain rate dependence, or radial inertia terms. It does include trapped gas inside the pore, a solid material flow stress that creates both a yield point and a variation in solid material pressure with radius. The solid is described by a Mie-Gruneisen type EOS. Comparisons show that this model will accurately estimate major mechanical features which have been observed in compaction experiments

  15. Micromechanics and constitutive modeling of connective soft tissues.

    Science.gov (United States)

    Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M

    2016-07-01

    In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Predictive Simulation of Material Failure Using Peridynamics -- Advanced Constitutive Modeling, Verification and Validation

    Science.gov (United States)

    2016-03-31

    AFRL-AFOSR-VA-TR-2016-0309 Predictive simulation of material failure using peridynamics- advanced constitutive modeling, verification , and validation... Self -explanatory. 8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g...for public release. Predictive simulation of material failure using peridynamics-advanced constitutive modeling, verification , and validation John T

  17. Examination of constitutive model for evaluating long-term mechanical behavior of buffer. 3

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Shigeno, Yoshimasa; Shimogouchi, Takafumi; Shiratake, Toshikazu; Tamura, Hirokuni

    2004-02-01

    On the R and D of the high-level radioactive waste repository, it is essential that Engineered Barrier System (EBS) is stable mechanically over a long period of time for maintaining each ability required to EBS. After closing the repository, the various external forces will be affected to buffer intricately for a long period of time. So, to make clear the mechanical deformation behavior of buffer against the external force is important, because of carrying out safety assessment of EBS accurately. In this report, several sets of parameters are chosen for the previously selected two constitutive models, Sekiguchi-Ohta model and Adachi-Oka model, and the element tests and mock-up tests are simulated using these parameters. Through the simulation, applicability of the constitutive models and parameters is examined. Moreover, simulation analyses of EBS using these parameters is examined. Moreover, simulation analyses of EBS using these parameters were carried out, and mechanical behavior is evaluated over a long period of time. Analysis estimated the amount of settlement of the over pack, the stress state of buffer material, the reaction force to a base rock, etc., and the result that EBS is mechanically stable over a long period of time was obtained. Next, in order to prove analyses results a side, literature survey was conducted about geological age, the dynamics history of a Smectite layer. The outline plan was drawn up about the natural analogue verification method and preliminary examination was performed about the applicability of Freezing Sampling'. (author)

  18. Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model

    International Nuclear Information System (INIS)

    Baladi, G.Y.

    1977-01-01

    This paper documents the numerical implementation of a model, specifically a transverse-isotropic, inelastic, work-hardening constitutive model. A brief overview of the mathematical formulation of the model is presented to facilitate the understanding of its numerical implementation. The model is based on incremental flow theories for materials which have time- and temperature-independent properties and which are capable of undergoing small plastic as well as small elastic strain at each loading increment. In addition, the model is written in terms of 'pseudo' stress invariants so that the incremental anisotropic stress-strain relationship can be readily incorporated into existing finite-difference or finite-element computer codes. The isotropic version of the model is retrieved without any changes in the mathematical formulation or in the numerical implementation (algorithm) of the model. Various methods exist for incorporating inelastic constitutive models into computer programs. The method presented in this paper is appropriate for both finite-difference and finite-element codes, and is applicable for solving static as wall as dynamic problems. This method expresses the material constitutive properties as a matrix of coefficients, C (generalized tangent moduli), which relates incremental stresses to incremental strains. It possesses desirable convergence properties. In either finite-difference or finite-element applications the input quantities are the initial stress components, obtained at the end of the previous strain increment, and the new strain increments. The output quantities are the new values of the stress components

  19. A 3D finite-strain-based constitutive model for shape memory alloys accounting for thermomechanical coupling and martensite reorientation

    Science.gov (United States)

    Wang, Jun; Moumni, Ziad; Zhang, Weihong; Xu, Yingjie; Zaki, Wael

    2017-06-01

    The paper presents a finite-strain constitutive model for shape memory alloys (SMAs) that accounts for thermomechanical coupling and martensite reorientation. The finite-strain formulation is based on a two-tier, multiplicative decomposition of the deformation gradient into thermal, elastic, and inelastic parts, where the inelastic deformation is further split into phase transformation and martensite reorientation components. A time-discrete formulation of the constitutive equations is proposed and a numerical integration algorithm is presented featuring proper symmetrization of the tensor variables and explicit formulation of the material and spatial tangent operators involved. The algorithm is used for finite element analysis of SMA components subjected to various loading conditions, including uniaxial, non-proportional, isothermal and adiabatic loading cases. The analysis is carried out using the FEA software Abaqus by means of a user-defined material subroutine, which is then utilized to simulate a SMA archwire undergoing large strains and rotations.

  20. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature

    Science.gov (United States)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-10-01

    A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.

  1. Modreg: A Modular Framework for RGB-D Image Acquisition and 3D Object Model Registration

    Directory of Open Access Journals (Sweden)

    Kornuta Tomasz

    2017-09-01

    Full Text Available RGB-D sensors became a standard in robotic applications requiring object recognition, such as object grasping and manipulation. A typical object recognition system relies on matching of features extracted from RGB-D images retrieved from the robot sensors with the features of the object models. In this paper we present ModReg: a system for registration of 3D models of objects. The system consists of a modular software associated with a multi-camera setup supplemented with an additional pattern projector, used for the registration of high-resolution RGB-D images. The objects are placed on a fiducial board with two dot patterns enabling extraction of masks of the placed objects and estimation of their initial poses. The acquired dense point clouds constituting subsequent object views undergo pairwise registration and at the end are optimized with a graph-based technique derived from SLAM. The combination of all those elements resulted in a system able to generate consistent 3D models of objects.

  2. Constitutive melanin density is associated with higher 25-hydroxyvitamin D and potentially total body BMD in older Caucasian adults via increased sun tolerance and exposure.

    Science.gov (United States)

    Thompson, M J W; Jones, G; Aitken, D A

    2018-06-01

    Greater skin pigmentation reduces dose equivalent cutaneous vitamin D3 production, potentially impacting lifetime vitamin D status and fracture risk. We show that melanin density was positively associated with 25-hydroxyvitamin D and total body bone mineral density. These relationships were partially explained by greater sun exposure due to more permissive skin phenotype. Higher cutaneous melanin reduces vitamin D3 production. This may impact lifetime vitamin D status and increase fracture risk. This study aimed to describe the relationship between spectrophotometrically determined constitutive melanin density, osteoporotic risk factors and potential intermediaries in a cohort of exclusively older Caucasian adults. One thousand seventy-two community-dwelling adults aged 50-80 years had constitutive melanin density quantified using spectrophotometry. Sun exposure, skin phenotype, non-melanoma skin cancer (NMSC) prevalence and smoking status were assessed by questionnaire. Bone mineral density (BMD), falls risk, physical activity and 25-hydroxyvitamin D were measured using DXA, the short form Physiological Profile Assessment, pedometer and radioimmunoassay, respectively. Higher melanin density was independently associated with greater ability to tan (RR = 1.27, p density and sun exposure (RR = 1.05-1.11, p density (β = 1.71-2.05, p = 0.001). The association between melanin density and total body BMD (β = 0.007, p = 0.04) became non-significant after adjustment for 25-hydroxyvitamin D. There was no association between melanin density and physical activity, falls risk or BMD at other sites. Our data support a model of higher constitutive melanin density underpinning a less photosensitive skin phenotype, permitting greater sun exposure with fewer sequelae and yielding higher 25-hydroxyvitamin D and, potentially, total body BMD.

  3. On the constitutive laws of 1-D, two-fluid, two-phase flow models: possible mathematical forms, restrictions resulting from basic principles

    International Nuclear Information System (INIS)

    Boure, J.A.

    1981-01-01

    From both the theoretical and the practical points of view, the problem of constitutive laws is part and parcel of the modeling problem. In particular, the necessity to restore in the model, through topological laws, some of the information lost during the usual averaging process is emphasized. A new void fraction topological law is proposed. The limitations of the current assumption of uniform pressure within each phase in any cross section are also illustrated. The importance of proximity effects (neighborhood and history effects, related to characteristic lengths and times) is brought out. It results in the importance of the mathematical form of the constitutive laws. Possible mathematical forms for the transfer laws are reviewed. The last part of the paper is devoted to some restrictions, which are imposed on the transfer terms because of some basic principles: Indifference to Galilean changes of frame and to some changes of origins, second law of thermodynamics and hypothesis of local thermodynamic equilibrium, closure constraints. Practical recommendations are formulated

  4. Comparative studies on constitutive models for cohesive interface cracks of quasi-brittle materials

    International Nuclear Information System (INIS)

    Shen Xinpu; Shen Guoxiao; Zhou Lin

    2005-01-01

    In this paper, Concerning on the modelling of quasi-brittle fracture process zone at interface crack of quasi-brittle materials and structures, typical constitutive models of interface cracks were compared. Numerical calculations of the constitutive behaviours of selected models were carried out at local level. Aiming at the simulation of quasi-brittle fracture of concrete-like materials and structures, the emphases of the qualitative comparisons of selected cohesive models are focused on: (1) the fundamental mode I and mode II behaviours of selected models; (2) dilatancy properties of the selected models under mixed mode fracture loading conditions. (authors)

  5. Constitutive modeling of SMA SMP multifunctional high performance smart adaptive shape memory composite

    International Nuclear Information System (INIS)

    Jarali, Chetan S; Raja, S; Upadhya, A R

    2010-01-01

    Materials design involving the thermomechanical constitutive modeling of shape memory alloy (SMA) and shape memory polymer (SMP) composites is a key topic in the development of smart adaptive shape memory composites (SASMC). In this work, a constitutive model for SASMC is developed. First, a one-dimensional SMA model, which can simulate the pseudoelastic (PE) and shape memory effects (SME) is presented. Subsequently, a one-dimensional SMP model able to reproduce the SME is addressed. Both SMA and SMP models are based on a single internal state variable, namely the martensite fraction and the frozen fraction, which can be expressed as a function of temperature. A consistent form of the analytical solution for the SMP model is obtained using the fourth-order Runge–Kutta method. Finally, the SASMC constitutive model is proposed, following two analytical homogenization approaches. One approach is based on an equivalent inclusion method and the other approach is the rule of mixtures. The SMA and SMP constitutive models are validated independently with experimental results. However, the validation of the composite model is performed using the two homogenization approaches and a close agreement in results is observed. Results regarding the isothermal and thermomechanical stress–strain responses are analyzed as a function of SMA volume fraction. Further, it is concluded that the proposed composite model is able to reproduce consistently the overall composite response by taking into consideration not only the phase transformations, variable modulus and transformation stresses in SMA but also the variable modulus, the evolution of stored strain and thermal strain in the SMP

  6. Scaling and constitutive relationships in downcomer modeling

    International Nuclear Information System (INIS)

    Daly, B.J.; Harlow, F.H.

    1978-12-01

    Constitutive relationships to describe mass and momentum exchange in multiphase flow in a pressurized water reactor downcomer are presented. Momentum exchange between the phases is described by the product of the flux of momentum available for exchange and the effective area for interaction. The exchange of mass through condensation is assumed to occur along a distinct condensation boundary separating steam at saturation temperature from water in which the temperature falls off roughly linearly with distance from the boundary. Because of the abundance of nucleation sites in a typical churning flow in a downcomer, we propose an equilibrium evaporation process that produces sufficient steam per unit time to keep the water perpetually cooled to the saturation temperature. The transport equations, constitutive models, and boundary conditions used in the K-TIF numerical method are nondimensionalized to obtain scaling relationships for two-phase flow in the downcomer. The results indicate that, subject to idealized thermodynamic and hydraulic constraints, exact mathematical scaling can be achieved. Experiments are proposed to isolate the effects of parameters that contribute to mass, momentum, and energy exchange between the phases

  7. Constitutive Models for Shape Memory Alloy Polycrystals

    Science.gov (United States)

    Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.

    1996-01-01

    Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.

  8. A multiscale constitutive model for intergranular stress corrosion cracking in type 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Siddiq, A; Rahimi, S

    2013-01-01

    Intergranular stress corrosion cracking (IGSCC) is a fracture mechanism in sensitised austenitic stainless steels exposed to critical environments where the intergranular cracks extends along the network of connected susceptible grain boundaries. A constitutive model is presented to estimate the maximum intergranular crack growth by taking into consideration the materials mechanical properties and microstructure characters distribution. This constitutive model is constructed based on the assumption that each grain is a two phase material comprising of grain interior and grain boundary zone. The inherent micro-mechanisms active in the grain interior during IGSCC is based on crystal plasticity theory, while the grain boundary zone has been modelled by proposing a phenomenological constitutive model motivated from cohesive zone modelling approach. Overall, response of the representative volume is calculated by volume averaging of individual grain behaviour. Model is assessed by performing rigorous parametric studies, followed by validation and verification of the proposed constitutive model using representative volume element based FE simulations reported in the literature. In the last section, model application is demonstrated using intergranular stress corrosion cracking experiments which shows a good agreement

  9. Random cyclic constitutive models of 0Cr18Ni10Ti pipe steel

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Yang Bing

    2004-01-01

    Experimental study is performed on the random cyclic constitutive relations of a new pipe stainless steel, 0Cr18Ni10Ti, by an incremental strain-controlled fatigue test. In the test, it is verified that the random cyclic constitutive relations, like the wide recognized random cyclic strain-life relations, is an intrinsic fatigue phenomenon of engineering materials. Extrapolating the previous work by Zhao et al, probability-based constitutive models are constructed, respectively, on the bases of Ramberg-Osgood equation and its modified form. Scattering regularity and amount of the test data are taken into account. The models consist of the survival probability-strain-life curves, the confidence strain-life curves, and the survival probability-confidence-strain-life curves. Availability and feasibility of the models have been indicated by analysis of the present test data

  10. Aggregation and Trunking of M2M Traffic via D2D Connections

    DEFF Research Database (Denmark)

    Rigazzi, Giovanni; Kiilerich Pratas, Nuno; Popovski, Petar

    2015-01-01

    Machine-to-Machine (M2M) communications is one of the key enablers of the Internet of Things (IoT). Billions of devices are expected to be deployed in the near future for novel M2M applications demanding ubiquitous access and global connectivity. In order to cope with the massive number of machines......, there is a need for new techniques to coordinate the access and allocate the resources. Although the majority of the proposed solutions are focused on the adaptation of the traditional cellular networks to the M2M traffic patterns, novel approaches based on the direct communication among nearby devices may...... represent an effective way to avoid access congestion and cell overload. In this paper, we propose a new strategy inspired by the classical Trunked Radio Systems (TRS), exploiting the Device-to-Device (D2D) connectivity between cellular users and Machine-Type Devices (MTDs). The aggregation of the locally...

  11. Constitutive model and electroplastic analysis of structures under cyclic loading

    International Nuclear Information System (INIS)

    Wang, X.; Lei, Y; Du, Q.

    1989-01-01

    Many engineering structures in nuclear reactors, thermal power stations, chemical plants and aerospace vehicles are subjected to cyclic mechanic-thermal loading, which is the main cause of structural fatigue failure. Over the past twenty years, designers and researchers have paid great attention to the research on life prediction and elastoplastic analysis of structures under cyclic loading. One of the key problems in elastoplastic analysis is to construct a reasonable constitutive model for cyclic plasticity. In the paper, the constitutive equations are briefly outlined. Then, the model is implemented in a finite element code to predict the response of cyclic loaded structural components such as a double-edge-notched plate, a grooved bar and a nozzle in spherical shell. Numerical results are compared with those from other theories and experiments

  12. Sequential hepatobiliary scintigraphy of the patients with constitutional jaundice, ICG excretory defect disease and hepatocellular carcinoma with 99mTc-PI, 99mTc-HIDA and 99mTc-EHIDA

    International Nuclear Information System (INIS)

    Mitani, Tsuyoshi

    1987-01-01

    Sequential 2 min scintiphotos were obtained with a scintilation camera after intravenous injection of 3 mCi of 99m Tc-HIDA or 99m Tc-PI. Digital matrix images were simultaneously recorded with computer. Sequential samples for the blood clearance of 99m Tc-HIDA or 99m Tc-PI were obtained for 120 min following injection to the patient of constitutional hyperbilirubinemia and ICG excretory defect disease. In Dubin-Johnson syndrome, the hepatic uptake of 99m Tc-HIDA was faster or normal but the excretion was extremely slower than in normal cases. Both hepatic uptake and excretion of 99m Tc-PI were almost normal. In Rotor's disease, hepatic uptake of 99m Tc-HIDA or 99m Tc-PI was very poor, showing almost no hepatic images in all time. In Gilbert's disease and ICG excretory defect disease, hepatic uptake and excretion of 99m Tc-HIDA or 99m Tc-PI were within normal limit. From these results, Dubin-Johnson syndrome, Rotor's disease and Gilbert's disease show the different patterns between hepatic uptake and excretion of 99m Tc-HIDA and 99m Tc-PI hepatobiliary scintigraphy and these patterns contribute to the differential diagnosis of constitutional jaundice. The usefulness of hepatobiliary imaging with 99m Tc-EHIDA in diagnosis of hepatocellular carcinoma was studied in 15 patients with histologically verified HCC. In 15 patients, 3 patients (20 %) showed increased radioactivity with 99m Tc-EHIDA image, where liver scan with 99m Tc-Sn colloid showed filling defect. These results indicate that use of 99m Tc-EHIDA scan and 67 Ga-citrate imaging is useful for positive visualization of HCC. (author)

  13. Sequential hepato-biliary scintigraphy of the patients with constitutional jaundices and ICG excretory defect disease with sup(99m)Tc-HIDA and sup(99m)Tc-PI

    International Nuclear Information System (INIS)

    Ueda, Hideo; Asahara, Akira; Hishinuma, Sanpei; Toogin, Masayuki; Takagi, Masao

    1979-01-01

    The hepato-biliary scintigraphy with sup(99m)Tc-HIDA and sup(99m)Tc-PI and the measurement of hepatic clearance have been studied on constitutional hyperbilirubinemia and ICG excretory defect disease. The results obtained are as follows: 1) In Dubin-Johnson's syndrome cases, the hepatic uptake of sup(99m)Tc-HIDA was faster, but the excretion was extremely slower than in normal cases. 2) Hepatic uptake and excretion of sup(99m)Tc-PI were both almost normal in Dubin-Johnson's syndrome. 3) In Rotor's disease, hepatic uptake of sup(99m)Tc-HIDA was very poor, showing almost no hepatic image. 4) In Gilbert's disease and ICG excretory defect disease, hepatic uptake and excretion of sup(99m)Tc-HIDA were both within normal limit. From these results it can be presumed that Dubin-Johnson's syndrome and Rotor's disease differ in morbid condition. Dubin-Johnson's syndrome, Rotor's disease and Gilbert's disease show the different patterns between hepatic uptake and excretion on sup(99m)Tc-HIDA hepatoscintigraphy and the patterns contribute to the differential diagnosis of constitutional jaundice. (author)

  14. Development and Validation of a Constitutive Model for Dental Composites during the Curing Process

    Science.gov (United States)

    Wickham Kolstad, Lauren

    Debonding is a critical failure of a dental composites used for dental restorations. Debonding of dental composites can be determined by comparing the shrinkage stress of to the debonding strength of the adhesive that bonds it to the tooth surface. It is difficult to measure shrinkage stress experimentally. In this study, finite element analysis is used to predict the stress in the composite during cure. A new constitutive law is presented that will allow composite developers to evaluate composite shrinkage stress at early stages in the material development. Shrinkage stress and shrinkage strain experimental data were gathered for three dental resins, Z250, Z350, and P90. Experimental data were used to develop a constitutive model for the Young's modulus as a function of time of the dental composite during cure. A Maxwell model, spring and dashpot in series, was used to simulate the composite. The compliance of the shrinkage stress device was also taken into account by including a spring in series with the Maxwell model. A coefficient of thermal expansion was also determined for internal loading of the composite by dividing shrinkage strain by time. Three FEA models are presented. A spring-disk model validates that the constitutive law is self-consistent. A quarter cuspal deflection model uses separate experimental data to verify that the constitutive law is valid. Finally, an axisymmetric tooth model is used to predict interfacial stresses in the composite. These stresses are compared to the debonding strength to check if the composite debonds. The new constitutive model accurately predicted cuspal deflection data. Predictions for interfacial bond stress in the tooth model compare favorably with debonding characteristics observed in practice for dental resins.

  15. Simulating sympathetic detonation using the hydrodynamic models and constitutive equations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Hoon; Kim, Min Sung; Yoh, Jack J. [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Sun, Tae Boo [Hanwha Corporation Defense Rand D Center, Daejeon (Korea, Republic of)

    2016-12-15

    A Sympathetic detonation (SD) is a detonation of an explosive charge by a nearby explosion. Most of times it is unintended while the impact of blast fragments or strong shock waves from the initiating donor explosive is the cause of SD. We investigate the SD of a cylindrical explosive charge (64 % RDX, 20 % Al, 16 % HTPB) contained in a steel casing. The constitutive relations for high explosive are obtained from a thermo-chemical code that provides the size effect data without the rate stick data typically used for building the rate law and equation of state. A full size SD test of eight pallet-packaged artillery shells is performed that provides the pressure data while the hydrodynamic model with proper constitutive relations for reactive materials and the fragmentation model for steel casing is conducted to replicate the experimental findings. The work presents a novel effort to accurately model and reproduce the sympathetic detonation event with a reduced experimental effort.

  16. Constitutional Politics, Constitutional Texts and Democratic Variety in Central and Eastern Europe

    OpenAIRE

    Blokker, Paul

    2008-01-01

    In the paper, it is argued that democratization in Central and Eastern Europe involves important forms of differentiation of democracy, rather than merely convergence to a singular – liberal-democratic, constitutional - model. One way of taking up democratic differentiation in post-communist societies is by analysing the constitutional documents of the new democratic orders, and the constitutional politics leading to the foundational documents. In a first step, the paper analyses constitution...

  17. A fractal derivative constitutive model for three stages in granite creep

    Directory of Open Access Journals (Sweden)

    R. Wang

    Full Text Available In this paper, by replacing the Newtonian dashpot with the fractal dashpot and considering damage effect, a new constitutive model is proposed in terms of time fractal derivative to describe the full creep regions of granite. The analytic solutions of the fractal derivative creep constitutive equation are derived via scaling transform. The conventional triaxial compression creep tests are performed on MTS 815 rock mechanics test system to verify the efficiency of the new model. The granite specimen is taken from Beishan site, the most potential area for the China’s high-level radioactive waste repository. It is shown that the proposed fractal model can characterize the creep behavior of granite especially in accelerating stage which the classical models cannot predict. The parametric sensitivity analysis is also conducted to investigate the effects of model parameters on the creep strain of granite. Keywords: Beishan granite, Fractal derivative, Damage evolution, Scaling transformation

  18. The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models

    Science.gov (United States)

    Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain

    2014-05-01

    The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail

  19. Modelling of NSTX hot vertical displacement events using M 3 D -C 1

    Science.gov (United States)

    Pfefferlé, D.; Ferraro, N.; Jardin, S. C.; Krebs, I.; Bhattacharjee, A.

    2018-05-01

    The main results of an intense vertical displacement event (VDE) modelling activity using the implicit 3D extended MHD code M3D-C1 are presented. A pair of nonlinear 3D simulations are performed using realistic transport coefficients based on the reconstruction of a so-called NSTX frozen VDE where the feedback control was purposely switched off to trigger a vertical instability. The vertical drift phase is solved assuming axisymmetry until the plasma contacts the first wall, at which point the intricate evolution of the plasma, decaying to large extent in force-balance with induced halo/wall currents, is carefully resolved via 3D nonlinear simulations. The faster 2D nonlinear runs allow to assess the sensitivity of the simulations to parameter changes. In the limit of perfectly conducting wall, the expected linear relation between vertical growth rate and wall resistivity is recovered. For intermediate wall resistivities, the halo region contributes to slowing the plasma down, and the characteristic VDE time depends on the choice of halo temperature. The evolution of the current quench and the onset of 3D halo/eddy currents are diagnosed in detail. The 3D simulations highlight a rich structure of toroidal modes, penetrating inwards from edge to core and cascading from high-n to low-n mode numbers. The break-up of flux-surfaces results in a progressive stochastisation of field-lines precipitating the thermalisation of the plasma with the wall. The plasma current then decays rapidly, inducing large currents in the halo region and the wall. Analysis of normal currents flowing in and out of the divertor plate reveals rich time-varying patterns.

  20. Floodplain simulation for Musi River using integrated 1D/2D hydrodynamic model

    Directory of Open Access Journals (Sweden)

    Al Amin Muhammad B.

    2017-01-01

    Full Text Available This paper presents the simulation of floodplain at Musi River using integrated 1D and 2D hydrodynamic model. The 1D flow simulation was applied for the river channel with flow hydrograph as upstream boundary condition. The result of 1D flow simulation was integrated into 2D flow simulation in order to know the area and characteristics of flood inundation. The input data of digital terrain model which was used in this research had grid resolution of 10m×10m, but for 2D simulation the resolution was with grid resolution 50 m × 50 m so as to limit simulation time since the model size was big enough. The result of the simulation showed that the inundated area surrounding Musi River is about 107.44 km2 with maximum flood depth is 3.24 m, water surface velocity ranges from 0.00 to 0.83 m/s. Most of floodplain areas varied from middle to high flood hazard level, and only few areas had very high level of flood hazard especially on river side. The structural flood control measurement to be recommended to Palembang is to construct flood dike and flood gate. The non structural measurement one is to improve watershed management and socialization of flood awareness.

  1. MINI-TRAC code: a driver program for assessment of constitutive equations of two-fluid model

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Abe, Yutaka; Ohnuki, Akira; Murao, Yoshio

    1991-05-01

    MINI-TRAC code, a driver program for assessment of constitutive equations of two-fluid model, has been developed to perform assessment and improvement of constitutive equations of two-fluid model widely and efficiently. The MINI-TRAC code uses one-dimensional conservation equations for mass, momentum and energy based on the two-fluid model. The code can work on a personal computer because it can be operated with a core memory size less than 640 KB. The MINI-TRAC code includes constitutive equations of TRAC-PF1/MOD1 code, TRAC-BF1 code and RELAP5/MOD2 code. The code is modulated so that one can easily change constitutive equations to perform a test calculation. This report is a manual of the MINI-TRAC code. The basic equations, numerics, constitutive, equations included in the MINI-TRAC code will be described. The user's manual such as input description will be presented. The program structure and contents of main variables will also be mentioned in this report. (author)

  2. Constitutive modelling of stainless steels for cryogenic applications. Strain induced martensitic transformation

    CERN Document Server

    Garion, C

    2001-01-01

    The 300-series stainless steels are metastable austenitic alloys: martensitic transformation occurs at low temperatures and/or when plastic strain fields develop in the structures. The transformation influences the mechanical properties of the material. The present note aims at proposing a set of constitutive equations describing the plastic strain induced martensitic transformation in the stainless steels at cryogenic temperatures. The constitutive modelling shall create a bridge between the material sciences and the structural analysis. For the structures developing and accumulating plastic deformations at sub-zero temperatures, it is of primary importance to be able to predict the intensity of martensitic transformation and its effect on the material properties. In particular, the constitutive model has been applied to predict the behaviour of the components of the LHC interconnections, the so-called bellows expansion joints (the LHC mechanical compensation system).

  3. Héritage industriel et mémoire sensible : observations sur la constitution d'un "patrimoine sensoriel"

    OpenAIRE

    Simonnot, Nathalie; Siret, Daniel

    2014-01-01

    International audience; Through a variety of events and exhibitions, the concept of “sensory heritage” has appeared in several forms of expression of the cities’ industrial memory. It relies on the assumption that there would exist sensory aspects of a city related to its past or present activities, which would constitute its identity and therefore be subject to a particular conservation and diffusion. This paper will discuss the connection between these two apparently opposite notions. In a ...

  4. A constitutive law for dense granular flows.

    Science.gov (United States)

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  5. Development of an artificial neural network model integrated with constitutive and FEM models

    International Nuclear Information System (INIS)

    Kong, L.X.; Hodgson, P.D.

    2000-01-01

    Although the standard error of IPANN model developed by Kong and Hodgson is lower than the constitutive model, it is found that the prediction of reaction force and torque during rolling with FEM is less accurate for IPANN model in some deformation regions. It is the summation of the product of the strain and stress in the deformation range, which contributes most to the precise prediction. An ANN model is therefore, developed in this work by integrating both the IPANN and FEM models. It is found that the integrated IPANN and FEM model is the most accurate model. (author)

  6. Elements of Constitutive Modelling and Numerical Analysis of Frictional Soils

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    of a constitutive model for soil is based on a profound knowledge of the soil behaviour upon loading. In the present study it is attempted to get a better understanding of the soil behaviour bv performing a number of triaxial compression tests on sand. The stress-strain behaviour of sand depends strongly......This thesis deals with elements of elasto-plastic constitutive modelling and numerical analysis of frictional soils. The thesis is based on a number of scientific papers and reports in which central characteristics of soil behaviour and applied numerical techniques are considered. The development...... and subsequently dilates during shear. The change in the volumetric behaviour of the soil skeleton is commonly referred to as the characteristic state. The stress ratio corresponding to the characteristic state is independent of the mean normal effective stress and the relative density, but depends on the stress...

  7. 77 FR 29692 - Segun M. Rasaki, M.D.; Decision and Order

    Science.gov (United States)

    2012-05-18

    ... CFR 1316.67. Dated: May 4, 2012. Michele M. Leonhart, Administrator. Paul E. Soeffing, Esq., for the... reinstatement.'' Stuart A. Bergman, M.D., 70 Fed. Reg. 33,193 (DEA 2005); Roger A. Rodriguez, M.D., 70 Fed. Reg...

  8. PHOBOS AS A D-TYPE CAPTURED ASTEROID, SPECTRAL MODELING FROM 0.25 TO 4.0 μm

    Energy Technology Data Exchange (ETDEWEB)

    Pajola, M.; Magrin, S.; Bertini, I.; Barbieri, C. [Center of Studies and Activities for Space, CISAS, ' G. Colombo' , University of Padova, I-35131 Padova (Italy); Lazzarin, M.; La Forgia, F. [Department of Physics and Astronomy, University of Padova, I-35131 Padova (Italy); Dalle Ore, C. M. [Carl Sagan Center, SETI Institute, Mountain View, CA 94043 (United States); Cruikshank, D. P.; Roush, T. L., E-mail: maurizio.pajola@studenti.unipd.it, E-mail: maurizio.pajola@gmail.com, E-mail: Maurizio.Pajola@jpl.nasa.gov [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-11-10

    This paper describes the spectral modeling of the surface of Phobos in the wavelength range between 0.25 and 4.0 μm. We use complementary data to cover this spectral range: the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System on board the ESA Rosetta spacecraft) reflectance spectrum that Pajola et al. merged with the VSK-KRFM-ISM (Videospectrometric Camera (VSK)-Combined Radiometer and Photometer for Mars (KRFM)-Imaging Spectrometer for Mars (ISM) on board the USSR Phobos 2 spacecraft) spectra by Murchie and Erard and the IRTF (NASA Infrared Telescope Facility, Hawaii, USA) spectra published by Rivkin et al. The OSIRIS data allow the characterization of an area of Phobos covering from 86.°8 N to 90° S in latitude and from 126° W to 286° W in longitude. This corresponds chiefly to the trailing hemisphere, but with a small sampling of the leading hemisphere as well. We compared the OSIRIS results with the Trojan D-type asteroid 624 Hektor and show that the overall slope and curvature of the two bodies over the common wavelength range are very similar. This favors Phobos being a captured D-type asteroid as previously suggested. We modeled the OSIRIS data using two models, the first one with a composition that includes organic carbonaceous material, serpentine, olivine, and basalt glass, and the second one consisting of Tagish Lake meteorite and magnesium-rich pyroxene glass. The results of these models were extended to longer wavelengths to compare the VSK-KRFM-ISM and IRTF data. The overall shape of the second model spectrum between 0.25 and 4.0 μm shows curvature and an albedo level that match both the OSIRIS and Murchie and Erard data and the Rivkin et al. data much better than the first model. The large interval fit is encouraging and adds weight to this model, making it our most promising fit for Phobos. Since Tagish Lake is commonly used as a spectral analog for D-type asteroids, this provides additional support for compositional

  9. PHOBOS AS A D-TYPE CAPTURED ASTEROID, SPECTRAL MODELING FROM 0.25 TO 4.0 μm

    International Nuclear Information System (INIS)

    Pajola, M.; Magrin, S.; Bertini, I.; Barbieri, C.; Lazzarin, M.; La Forgia, F.; Dalle Ore, C. M.; Cruikshank, D. P.; Roush, T. L.

    2013-01-01

    This paper describes the spectral modeling of the surface of Phobos in the wavelength range between 0.25 and 4.0 μm. We use complementary data to cover this spectral range: the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System on board the ESA Rosetta spacecraft) reflectance spectrum that Pajola et al. merged with the VSK-KRFM-ISM (Videospectrometric Camera (VSK)-Combined Radiometer and Photometer for Mars (KRFM)-Imaging Spectrometer for Mars (ISM) on board the USSR Phobos 2 spacecraft) spectra by Murchie and Erard and the IRTF (NASA Infrared Telescope Facility, Hawaii, USA) spectra published by Rivkin et al. The OSIRIS data allow the characterization of an area of Phobos covering from 86.°8 N to 90° S in latitude and from 126° W to 286° W in longitude. This corresponds chiefly to the trailing hemisphere, but with a small sampling of the leading hemisphere as well. We compared the OSIRIS results with the Trojan D-type asteroid 624 Hektor and show that the overall slope and curvature of the two bodies over the common wavelength range are very similar. This favors Phobos being a captured D-type asteroid as previously suggested. We modeled the OSIRIS data using two models, the first one with a composition that includes organic carbonaceous material, serpentine, olivine, and basalt glass, and the second one consisting of Tagish Lake meteorite and magnesium-rich pyroxene glass. The results of these models were extended to longer wavelengths to compare the VSK-KRFM-ISM and IRTF data. The overall shape of the second model spectrum between 0.25 and 4.0 μm shows curvature and an albedo level that match both the OSIRIS and Murchie and Erard data and the Rivkin et al. data much better than the first model. The large interval fit is encouraging and adds weight to this model, making it our most promising fit for Phobos. Since Tagish Lake is commonly used as a spectral analog for D-type asteroids, this provides additional support for compositional

  10. Direct test of a nonlinear constitutive equation for simple turbulent shear flows using DNS data

    Science.gov (United States)

    Schmitt, François G.

    2007-10-01

    Several nonlinear constitutive equations have been proposed to overcome the limitations of the linear eddy-viscosity models to describe complex turbulent flows. These nonlinear equations have often been compared to experimental data through the outputs of numerical models. Here we perform a priori analysis of nonlinear eddy-viscosity models using direct numerical simulation (DNS) of simple shear flows. In this paper, the constitutive equation is directly checked using a tensor projection which involves several invariants of the flow. This provides a 3 terms development which is exact for 2D flows, and a best approximation for 3D flows. We provide the quadratic nonlinear constitutive equation for the near-wall region of simple shear flows using DNS data, and estimate their coefficients. We show that these coefficients have several common properties for the different simple shear flow databases considered. We also show that in the central region of pipe flows, where the shear rate is very small, the coefficients of the constitutive equation diverge, indicating the failure of this representation for vanishing shears.

  11. A nonlinear magneto-thermo-elastic coupled hysteretic constitutive model for magnetostrictive alloys

    International Nuclear Information System (INIS)

    Jin Ke; Kou Yong; Zheng Xiaojing

    2012-01-01

    This paper presents a general hysteretic constitutive law of nonlinear magneto-thermo-elastic coupling for magnetostrictive alloys. The model considered here is thermodynamically motivated and based on the Gibbs free energy function. A nonlinear part of the elastic strain arising from magnetic domain rotation induced by the pre-stress is taken into account. Furthermore, the movement of the domain walls is incorporated to describe hysteresis based on Jiles–Atherton's model. Then a set of closed and analytical expressions of the constitutive law for the magnetostrictive rods and films are obtained, and the parameters appearing in the model can be determined by those measurable experiments in mechanics and physics. Comparing this model with other existing models in this field, the quantitative results show that the relationships obtained here are more effective to describe the effects of the pre-stress or in-plane residual stress and ambient temperature on the magnetization or the magnetostriction hysteresis loops. - Highlights: ► A general hysteretic constitutive law of nonlinear magneto-thermo-elastic coupling for magnetostrictive materials is proposed. ► Model is thermodynamically motivated and the reversible magnetic domain rotation and irreversible domain wall motion are taken. ► The predictions are in good accordance with the experimental data including both rods and films. ► Magnetostrictive alloys are sensitive to environment temperature and pre-stress or residual stress.

  12. Polynomial constitutive model for shape memory and pseudo elasticity

    International Nuclear Information System (INIS)

    Savi, M.A.; Kouzak, Z.

    1995-01-01

    This paper reports an one-dimensional phenomenological constitutive model for shape memory and pseudo elasticity using a polynomial expression for the free energy which is based on the classical Devonshire theory. This study identifies the main characteristics of the classical theory and introduces a simple modification to obtain better results. (author). 9 refs., 6 figs

  13. Comparison of physically based constitutive models characterizing armor steel over wide temperature and strain rate ranges

    International Nuclear Information System (INIS)

    Xu, Zejian; Huang, Fenglei

    2012-01-01

    Both descriptive and predictive capabilities of five physically based constitutive models (PB, NNL, ZA, VA, and RK) are investigated and compared systematically, in characterizing plastic behavior of the 603 steel at temperatures ranging from 288 to 873 K, and strain rates ranging from 0.001 to 4500 s −1 . Determination of the constitutive parameters is introduced in detail for each model. Validities of the established models are checked by strain rate jump tests performed under different loading conditions. The results show that the RK and NNL models have better performance in the description of material behavior, especially the work-hardening effect, while the PB and VA models predict better. The inconsistency that is observed between the capabilities of description and prediction of the models indicates the existence of the minimum number of required fitting data, reflecting the degree of a model's requirement for basic data in parameter calibration. It is also found that the description capability of a model is dependent to a large extent on both its form and the number of its constitutive parameters, while the precision of prediction relies largely on the performance of description. In the selection of constitutive models, the experimental data and the constitutive models should be considered synthetically to obtain a better efficiency in material behavior characterization

  14. Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Sun Mingyue, E-mail: mysun@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Luhan, Hao; Shijian, Li; Dianzhong, Li; Yiyi, Li [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2011-11-15

    Highlights: > A series of flow stress constitutive equations for SA508-3 steel were successfully established. > The experimental results under different conditions have validated the constitutive equations. > An industrial application of the model was present to simulate a large conical shell forging process. - Abstract: Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.

  15. 78 FR 47412 - Tyson D. Quy, M.D.; Decision and Order

    Science.gov (United States)

    2013-08-05

    ... Green, Jr., M.D., 59 FR 51,453 (DEA 1994); David E. Trawick, D.D.S., 53 FR 5,326 (DEA 1988). Here, the...) (ten years); Norman Alpert, M.D., 58 FR 67,420, 67,421 (DEA 1993) (seven years). Here, the conditions...

  16. Establishment and comparison of four constitutive relationships of PC/ABS from low to high uniaxial strain rates

    Science.gov (United States)

    Wang, Haitao; Zhang, Yun; Huang, Zhigao; Tang, Zhongbin; Wang, Yanpei; Zhou, Huamin

    2017-10-01

    The objective of this paper is to accurately predict the rate/temperature-dependent deformation of a polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) blend at low, moderate, and high strain rates for various temperatures. Four constitutive models have been employed to predict stress-strain responses of PC/ABS under these conditions, including the DSGZ model, the original Mulliken-Boyce (M-B) model, the modified M-B model, and an adiabatic model named the Wang model. To more accurately capture the large deformation of PC/ABS under the high strain rate loading, the original M-B model is modified by allowing for the evolution of the internal shear strength. All of the four constitutive models above have been implemented in the finite element software ABAQUS/Explicit. A comparison of prediction accuracies of the four constitutive models over a wide range of strain rates and temperatures has been presented. The modified M-B model is observed to be more accurate in predicting the deformation of PC/ABS at high strain rates for various temperatures than the original M-B model, and the Wang model is demonstrated to be the most accurate in simulating the deformation of PC/ABS at low, moderate, and high strain rates for various temperatures.

  17. Consistent constitutive modeling of metallic target penetration using empirical, analytical, and numerical penetration models

    Directory of Open Access Journals (Sweden)

    John (Jack P. Riegel III

    2016-04-01

    Full Text Available Historically, there has been little correlation between the material properties used in (1 empirical formulae, (2 analytical formulations, and (3 numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014 to show how the Effective Flow Stress (EFS strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN (Anderson and Walker, 1991 and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D = 10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a

  18. The constitutive distributed parameter model of multicomponent chemical processes in gas, fluid and solid phase

    International Nuclear Information System (INIS)

    Niemiec, W.

    1985-01-01

    In the literature of distributed parameter modelling of real processes is not considered the class of multicomponent chemical processes in gas, fluid and solid phase. The aim of paper is constitutive distributed parameter physicochemical model, constructed on kinetics and phenomenal analysis of multicomponent chemical processes in gas, fluid and solid phase. The mass, energy and momentum aspects of these multicomponent chemical reactions and adequate phenomena are utilized in balance operations, by conditions of: constitutive invariance for continuous media with space and time memories, reciprocity principle for isotropic and anisotropic nonhomogeneous media with space and time memories, application of definitions of following derivative and equation of continuity, to the construction of systems of partial differential constitutive state equations, in the following derivative forms for gas, fluid and solid phase. Couched in this way all physicochemical conditions of multicomponent chemical processes in gas, fluid and solid phase are new form of constitutive distributed parameter model for automatics and its systems of equations are new form of systems of partial differential constitutive state equations in sense of phenomenal distributed parameter control

  19. An engineering, multiscale constitutive model for fiber-forming collagen in tension.

    Science.gov (United States)

    Annovazzi, Lorella; Genna, Francesco

    2010-01-01

    This work proposes a nonlinear constitutive model for a single collagen fiber. Fiber-forming collagen can exhibit different hierarchies of basic units, called fascicles, bundles, fibrils, microfibrils, and so forth, down to the molecular (tropocollagen) level. Exploiting the fact that at each hierarchy level the microstructure can be seen, at least approximately, as that of a wavy, or crimped, extensible cable, the proposed stress-strain model considers a given number of levels, each of which contributes to the overall mechanical behavior according to its own geometrical features (crimp, or waviness), as well as to the basic mechanical properties of the tropocollagen. The crimp features at all levels are assumed to be random variables, whose statistical integration furnishes a stress-strain curve for a collagen fiber. The soundness of this model-the first, to the Authors' knowledge, to treat a single collagen fiber as a microstructured nonlinear structural element-is checked by its application to collagen fibers for which experimental results are available: rat tail tendon, periodontal ligament, and engineered ones. Here, no attempt is made to obtain a stress-strain law for generic collagenous tissues, which exhibit specific features, often much more complex than those of a single fiber. However, it is trivial to observe that the availability of a sound, microstructurally based constitutive law for a single collagen fiber (but applicable at any sub-level, or to any other material with a similar microstructure) is essential for assembling complex constitutive models for any collagenous fibrous tissue.

  20. Comparison Between 2D and 3D Simulations of Rate Dependent Friction Using DEM

    Science.gov (United States)

    Wang, C.; Elsworth, D.

    2017-12-01

    Rate-state dependent constitutive laws of frictional evolution have been successful in representing many of the first- and second- order components of earthquake rupture. Although this constitutive law has been successfully applied in numerical models, difficulty remains in efficient implementation of this constitutive law in computationally-expensive granular mechanics simulations using discrete element methods (DEM). This study introduces a novel approach in implementing a rate-dependent constitutive relation of contact friction into DEM. This is essentially an implementation of a slip-weakening constitutive law onto local particle contacts without sacrificing computational efficiency. This implementation allows the analysis of slip stability of simulated fault gouge materials. Velocity-stepping experiments are reported on both uniform and textured distributions of quartz and talc as 3D analogs of gouge mixtures. Distinct local slip stability parameters (a-b) are assigned to the quartz and talc, respectively. We separately vary talc content from 0 to 100% in the uniform mixtures and talc layer thickness from 1 to 20 particles in the textured mixtures. Applied shear displacements are cycled through velocities of 1μm/s and 10μm/s. Frictional evolution data are collected and compared to 2D simulation results. We show that dimensionality significantly impacts the evolution of friction. 3D simulation results are more representative of laboratory observed behavior and numerical noise is shown at a magnitude of 0.01 in terms of friction coefficient. Stability parameters (a-b) can be straightforwardly obtained from analyzing velocity steps, and are different from locally assigned (a-b) values. Sensitivity studies on normal stress, shear velocity, particle size, local (a-b) values, and characteristic slip distance (Dc) show that the implementation is sensitive to local (a-b) values and relations between (Dc) and particle size.

  1. Application of symbolic computations to the constitutive modeling of structural materials

    Science.gov (United States)

    Arnold, Steven M.; Tan, H. Q.; Dong, X.

    1990-01-01

    In applications involving elevated temperatures, the derivation of mathematical expressions (constitutive equations) describing the material behavior can be quite time consuming, involved and error-prone. Therefore intelligent application of symbolic systems to faciliate this tedious process can be of significant benefit. Presented here is a problem oriented, self contained symbolic expert system, named SDICE, which is capable of efficiently deriving potential based constitutive models in analytical form. This package, running under DOE MACSYMA, has the following features: (1) potential differentiation (chain rule), (2) tensor computations (utilizing index notation) including both algebraic and calculus; (3) efficient solution of sparse systems of equations; (4) automatic expression substitution and simplification; (5) back substitution of invariant and tensorial relations; (6) the ability to form the Jacobian and Hessian matrix; and (7) a relational data base. Limited aspects of invariant theory were also incorporated into SDICE due to the utilization of potentials as a starting point and the desire for these potentials to be frame invariant (objective). The uniqueness of SDICE resides in its ability to manipulate expressions in a general yet pre-defined order and simplify expressions so as to limit expression growth. Results are displayed, when applicable, utilizing index notation. SDICE was designed to aid and complement the human constitutive model developer. A number of examples are utilized to illustrate the various features contained within SDICE. It is expected that this symbolic package can and will provide a significant incentive to the development of new constitutive theories.

  2. Material constitutive model for jointed rock mass behavior

    International Nuclear Information System (INIS)

    Thomas, R.K.

    1980-11-01

    A material constitutive model is presented for jointed rock masses which exhibit preferred planes of weakness. This model is intended for use in finite element computations. The immediate application is the thermomechanical modelling of a nuclear waste repository in hard rock, but the model seems appropriate for a variety of other static and dynamic geotechnical problems as well. Starting with the finite element representations of a two-dimensional elastic body, joint planes are introduced in an explicit manner by direct modification of the material stiffness matrix. A novel feature of this approach is that joint set orientations, lengths and spacings are readily assigned through the sampling of a population distribution statistically determined from field measurement data. The result is that the fracture characteristics of the formations have the same statistical distribution in the model as is observed in the field. As a demonstration of the jointed rock mass model, numerical results are presented for the example problem of stress concentration at an underground opening

  3. Towards a Simple Constitutive Model for Bread Dough

    Science.gov (United States)

    Tanner, Roger I.

    2008-07-01

    Wheat flour dough is an example of a soft solid material consisting of a gluten (rubbery) network with starch particles as a filler. The volume fraction of the starch filler is high-typically 60%. A computer-friendly constitutive model has been lacking for this type of material and here we report on progress towards finding such a model. The model must describe the response to small strains, simple shearing starting from rest, simple elongation, biaxial straining, recoil and various other transient flows. A viscoelastic Lodge-type model involving a damage function. which depends on strain from an initial reference state fits the given data well, and it is also able to predict the thickness at exit from dough sheeting, which has been a long-standing unsolved puzzle. The model also shows an apparent rate-dependent yield stress, although no explicit yield stress is built into the model. This behaviour agrees with the early (1934) observations of Schofield and Scott Blair on dough recoil after unloading.

  4. D Reconstruction of Ancient Egyptian Rock-Cut Tombs: the Case of M.I.D.A.N.05.

    Science.gov (United States)

    Nabil, M.; Betrò, M.; Metwally, M. N.

    2013-07-01

    In this paper we present an on-going work to reconstruct a 3D model of M.I.D.A.N.05., an ancient Egyptian tomb located in Luxor. The reconstruction aims at producing a high quality 3D model of the tomb to help in archaeological investigation and other scientific uses. We present details about the different stages of the used reconstruction pipeline, the results so far, and the evaluation of the results in view of the project objectives.

  5. Constitutive basis of the MDCF model for rock salt

    International Nuclear Information System (INIS)

    Fossum, A.F.; Munson, D.E.; Chan, K.S.; Bodner, S.R.

    1996-01-01

    All valid constitutive equations must satisfy two general invariance principles as well several other principles. In this paper the MDCF (Multimechanism Deformation Coupled Fracture) model for rock salt is shown to be thermodynamically consistent, coordinate invariant, frame indifferent, and physically admissible. Additionally, the stress rates used in the formulation are shown to be kinematically consistent with the Cauchy stress rates

  6. Application of Gurson–Tvergaard–Needleman Constitutive Model to the Tensile Behavior of Reinforcing Bars with Corrosion Pits

    Science.gov (United States)

    Xu, Yidong; Qian, Chunxiang

    2013-01-01

    Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson–Tvergaard–Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process. PMID:23342140

  7. Lagrangian viscoelastic flow computations using the Rivlin-Sawyers constitutive model

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    2000-01-01

    convected Maxwell fluid to a fluid described by an integral constitutive equation of the Rivlin-Sawyers type. This includes the K-BKZ model. The convergence of the method is demonstrated on the axisymmetric problem of the inflation of a polymeric membrane only restricted by a clamping ring....

  8. Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Sun Mingyue; Hao Luhan; Li Shijian; Li Dianzhong; Li Yiyi

    2011-01-01

    Highlights: → A series of flow stress constitutive equations for SA508-3 steel were successfully established. → The experimental results under different conditions have validated the constitutive equations. → An industrial application of the model was present to simulate a large conical shell forging process. - Abstract: Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.

  9. A comparison of elastic-plastic and variable modulus-cracking constitutive models for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Anderson, C.A.; Smith, P.D.

    1979-01-01

    Numerical prediction of the behavior of prestressed concrete reactor vessels (PCRVs) under static, dynamic and long term loadings is complicated by the currently ill-defined behavior of concrete under stress and the three-dimensional nature of PCRVs. Which constitutive model most closely approximates the behavior of concrete in PCRVs under load has not yet been decided. Many equations for accurately modeling the three-dimensional behavior of PCRVs tax the capability of a most up-to-date computing system. The main purpose of this paper is to compare the characteristics of two constitutive models which have been proposed for concrete, variable modulus cracking model and elastic-plastic model. Moreover, the behavior of typical concrete structures was compared, the materials of which obey these constitutive laws. The response to internal pressure of PCRV structure, the constitutive models for concrete, the test problems using a thick-walled concrete ring and a rectangular concrete plate, and the analysis of an axisymmetric concrete pressure vessel PV-26 using the variable modulus cracking model of the ADINA code are explained. The variable modulus cracking model can predict the behavior of reinforced concrete structures well into the range of nonlinear behavior. (Kako, I.)

  10. A phenomenological two-phase constitutive model for porous shape memory alloys

    KAUST Repository

    El Sayed, Tamer S.; Gurses, Ercan; Siddiq, Amir Mohammed

    2012-01-01

    , application of the presented constitutive model has been presented by performing finite element simulations of the deformation and failure in unaixial dog-bone shaped specimen and compact tension (CT) test specimen. Results show a good agreement

  11. Metal-Matrix Composites and Porous Materials: Constitute Models, Microstructure Evolution and Applications

    National Research Council Canada - National Science Library

    Castafieda, P

    2000-01-01

    Constitutive models were developed and implemented numerically to account for the evolution of microstructure and anisotropy in finite-deformation processes involving porous and composite materials...

  12. Microstructural Evolution and Constitutive Relationship of M350 Grade Maraging Steel During Hot Deformation

    Science.gov (United States)

    Chakravarthi, K. V. A.; Koundinya, N. T. B. N.; Narayana Murty, S. V. S.; Nageswara Rao, B.

    2017-03-01

    Maraging steels exhibit extraordinary strength coupled with toughness and are therefore materials of choice for critical structural applications in defense, aerospace and nuclear engineering. Thermo-mechanical processing is an important step in the manufacture of these structural components. This process assumes significance as these materials are expensive and the mechanical properties obtained depend on the microstructure evolved during thermo-mechanical processing. In the present study, M350 grade maraging steel specimens were hot isothermally compressed in the temperature range of 900-1200 °C and in the strain rate range of 0.001-100 s-1, and true stress-true strain curves were generated. The microstructural evolution as a function of strain rate and temperature in the deformed compression specimens was studied. The effect of friction between sample and compression dies was evaluated, and the same was found to be low. The measured flow stress data was used for the development of a constitutive model to represent the hot deformation behavior of this alloy. The proposed equation can be used as an input in the finite element analysis to obtain the flow stress at any given strain, strain rate, and temperature useful for predicting the flow localization or fracture during thermo-mechanical simulation. The activation energy for hot deformation was calculated and is found to be 370.88 kJ/mol, which is similar to that of M250 grade maraging steel.

  13. Development of a temperature-dependent cyclic plasticity constitutive model for SUS304 steel

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1990-01-01

    Development of an accurate inelastic constitutive model is required to improve the accuracy of inelastic analysis for structural components used in the inelastic region. Based on two fundamental assumptions derived from physical interpretation of temperature dependency of the plastic deformation behavior of type 304 stainless steel, a temperature-dependent cyclic plastic constitutive model is constructed here. Particular emphasis is placed on the modeling of enhanced hardening caused by the dynamic strain aging effect observed in some temperature regimes. Constants and functions involved in the model are determined based on the deformation characteristics observed in the low-cycle fatigue tests conducted at room temperature through 600degC. Several comparisons of model predictions with experimental data show the effectiveness of the present model in non-isothermal condition as well as in isothermal condition between room temperature and 600degC. (author)

  14. Constitutive properties and material model development for marine sediments in support of the subseabed disposal program

    International Nuclear Information System (INIS)

    Baladi, G.Y.; Akers, S.A.

    1981-01-01

    The purpose of the theoretical investigation was to develop an appropriate elastic-plastic effective-stress constitutive model and the necessary numerical algorithms for seabed sediments for use in computer code simulations of both early-time dynamic penetration of waste canisters and late-time hole closure. The purpose of the experimental program was to provide high-pressure dynamic stress-strain and strength properties for seabed sediments of interest, which in conjunction with data provided by the University of Rhode Island (URI), could be used to guide the development and verification of a constitutive model for such materials. The results of the theoretical program are documented in Part I of this report, which contains four chapters. The fundamental basis of elastic-plastic constitutive models is presented in Chapter 1. The numerical implementation of the elastic-plastic models is discussed in Chapter 2. The development of the effective-stress constitutive model for seabed sediments is presented in Chapter 3. The behavior of this effective-stress model under hydrostatic and triaxial compression test conditions is illustrated in Chapter 4. Part II deals with the experimental program and includes five chapters. Chapter 1 deals with background geotechnical information regarding the physical properties of seabed sediments and presents the scope of the experimental program. Testing equipment and specimen preparation are described in Chapter 2. Chapter 3 outlines test procedures and techniques. Test results are presented in Chapter 4. Representative constitutive properties for Pacific illite are given in Chapter 5. Comparison of the final effective-stress constitutive model fits with laboratory test data are presented in Part III. The numerical values of the material model constants for Pacific illite are also summarized therein. Part IV contains a summary and recommendations for future work

  15. Constitutive modeling of quench-hardenable boron steel with tailored properties

    NARCIS (Netherlands)

    Eller, Tom K.; Greve, Lars; Anders, Michael T.; Medricky, Miloslav; Hatscher, Ansgar; Meinders, Timo; van den Boogaard, Ton; Volk, W.

    2013-01-01

    In this work, a material model is presented that predicts the crash-relevant constitutive behavior of quench-hardenable boron steel 22MnB5 as function of material hardness. Three sets of sheets of 22MnB5 are heat treated such that their as-treated microstructures are close to fully martensitic,

  16. An anisotropic elastoplastic constitutive formulation generalised for orthotropic materials

    Science.gov (United States)

    Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.

    2018-03-01

    This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill's yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic-plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic-plastic constitutive model is the introduction of anisotropic effect in the Mie-Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie-Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \\varvec{ψ} tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic-plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and {895 ms}^{-1} impact velocities is performed. A good agreement is obtained in each test.

  17. 3D RECONSTRUCTION OF ANCIENT EGYPTIAN ROCK-CUT TOMBS: THE CASE OF M.I.D.A.N.05.

    OpenAIRE

    Nabil, M.; Betrò, M.; Metwally, M. N.

    2013-01-01

    In this paper we present an on-going work to reconstruct a 3D model of M.I.D.A.N.05., an ancient Egyptian tomb located in Luxor. The reconstruction aims at producing a high quality 3D model of the tomb to help in archaeological investigation and other scientific uses. We present details about the different stages of the used reconstruction pipeline, the results so far, and the evaluation of the results in view of the project objectives.

  18. 3D RECONSTRUCTION OF ANCIENT EGYPTIAN ROCK-CUT TOMBS: THE CASE OF M.I.D.A.N.05.

    Directory of Open Access Journals (Sweden)

    M. Nabil

    2013-07-01

    Full Text Available In this paper we present an on-going work to reconstruct a 3D model of M.I.D.A.N.05., an ancient Egyptian tomb located in Luxor. The reconstruction aims at producing a high quality 3D model of the tomb to help in archaeological investigation and other scientific uses. We present details about the different stages of the used reconstruction pipeline, the results so far, and the evaluation of the results in view of the project objectives.

  19. [Study on the flavanone constitutes of Buddleja davidii].

    Science.gov (United States)

    Peng, Xue-Jing; Li, Chong

    2011-10-01

    To study the chemical constitutes of Buddleja davidii. The constitutes were isolated and purified by silica gel column chromatography, polyamide column chromatography and macroporous absorption resin and their structures were elucidated by spectroscopic analysis. Seven compounds including Apigenin (1), Apigenin-7-O-beta-D-glucoside (2), Acacetin (3), Acacetin-7-O-beta-D-glucoside(4), Acacetin-7-O-alpha-L-rhamnopyranosyl-(1-6)-beta-D-glucopyranoside (5), Luteolin (6), Luteolin-7-O-beta-D-glueoside (7). All these compounds are obtained from this plant for the first time.

  20. Implementation of a Unified Constitutive Model into the ABAQUS Finite Element Package

    National Research Council Canada - National Science Library

    Wescott, R

    1999-01-01

    Unified constitutive models have previously been developed at AMRL and implemented into the PAFEC and ABAQUS Finite Element packages to predict the stress-strain response of structures that undergo...

  1. Studies of spherical tori, stellarators and anisotropic pressure with M3D

    International Nuclear Information System (INIS)

    Sugiyama, L.E.; Park, W.; Hudson, S.; Tang, X.-Z.; Strauss, H.R.; Stutman, D.

    2001-01-01

    The M3D (Multi-level 3D) project simulates plasmas using multiple levels of physics, geometry, and grid models in one code package. The M3D code has been extended to fundamentally nonaxisymmetric and small aspect ratio, R/a>or∼1, configurations. Applications include the nonlinear stability of the NSTX spherical torus and the spherical pinch, and the relaxation of stellarator equilibria. The fluid-level physics model has been extended to evolve the anisotropic pressures p jparallel and p jperpendicular for the ion and electron species. Results show that when the density evolves, other terms in addition to the neoclassical collisional parallel viscous force, such as B· ∇p e in the Ohm's law, can be strongly destabilizing for nonlinear magnetic islands. (author)

  2. Endochronic constitutive model for general hysteretic response of soils. Final report

    International Nuclear Information System (INIS)

    Read, H.E.; Valanis, K.C.

    1979-01-01

    A new endochronic theory of plasticity is presented which can accurately describe the mechanical response of hysteretic materials to complex, three-dimensional deformation histories, including cyclic deformation. The theory is based on several new advancements in the endochronic framework, which broaden its predictive scope. Various features of the resulting model are illustrated, including its ability to describe (1) cyclic simple shear of dry sand and wet clay over many cycles of deformation, (2) response of a real soil (McCormick Ranch soil) to the standard laboratory soil tests, and (3) response of McCormick Ranch soil to cyclic triaxial tests. It is believed that this is the first constitutive model that has demonstrated the capability to realistically describe, for a given soil, both standard laboratory tests and cyclic response under three-dimensional loading conditions. The constitutive model presented here should allow more meaningful analyses to be made in many areas of soil response, particularly for ground motion and soil-structure interaction due to to other seimsic disturbances. The proposed model also has wide application to other materials, such as metals, and could provide improved descriptions of the response of various metallic components under transient loads

  3. Numerical model for verification of constitutive laws of blood vessel wall

    Czech Academy of Sciences Publication Activity Database

    Macková, H.; Chlup, Hynek; Žitný, R.

    -, 2/1 (2007), s. 66-66 ISSN 1880-9863 Institutional research plan: CEZ:AV0Z20760514 Keywords : constitutive law * numerical model * pulse wave velocity Subject RIV: BK - Fluid Dynamics http://www.jstage.jst.go.jp/browse/jbse/2/Suppl.1/_contents

  4. La légitimité de la Constitution dans la doctrine constitutionnelle japonaise The Legality of the Constitution in the Japanese constitutional Doctrine

    Directory of Open Access Journals (Sweden)

    Simon Serverin

    2010-07-01

    Full Text Available La Constitution japonaise, promulguée en novembre 1946 et entrée en vigueur en mai 1947, pose à la théorie constitutionnelle un certain nombre de problèmes qui ne sont toujours pas résolus. Adoptée sous occupation américaine, rédigée par les services du GHQ dirigés par le général MacArthur, la Constitution a en outre été promulguée comme une simple révision de la Charte impériale de 1889, dite Constitution de Meiji, alors que par les principes démocratiques nouveaux qu’elle instaurait, elle p...

  5. T-duality of Green-Schwarz superstrings on AdS_d×S"d×M"1"0"−"2"d

    International Nuclear Information System (INIS)

    Abbott, Michael C.; Murugan, Jeff; Penati, Silvia; Pittelli, Antonio; Sorokin, Dmitri; Sundin, Per; Tarrant, Justine; Wolf, Martin; Wulff, Linus

    2015-01-01

    We verify the self-duality of Green-Schwarz supercoset sigma models on AdS_d×S"d backgrounds (d=2,3,5) under combined bosonic and fermionic T-dualities without gauge fixing kappa symmetry. We also prove this property for superstrings on AdS_d×S"d×S"d(d=2,3) described by supercoset sigma models with the isometries governed by the exceptional Lie supergroups D(2,1;α) (d=2) and D(2,1;α)×D(2,1;α) (d=3), which requires an additional T-dualisation along one of the spheres. Then, by taking into account the contribution of non-supercoset fermionic modes (up to the second order), we provide evidence for the T-self-duality of the complete type IIA and IIB Green-Schwarz superstring theory on AdS_d×S"d×T"1"0"−"2"d (d=2,3) backgrounds with Ramond-Ramond fluxes. Finally, applying the Buscher-like rules to T-dualising supergravity fields, we prove the T-self-duality of the whole class of the AdS_d×S"d×M"1"0"−"2"d superbackgrounds with Ramond-Ramond fluxes in the context of supergravity.

  6. Modeling of 3D Aluminum Polycrystals during Large Deformations

    International Nuclear Information System (INIS)

    Maniatty, Antoinette M.; Littlewood, David J.; Lu Jing; Pyle, Devin

    2007-01-01

    An approach for generating, meshing, and modeling 3D polycrystals, with a focus on aluminum alloys, subjected to large deformation processes is presented. A Potts type model is used to generate statistically representative grain structures with periodicity to allow scale-linking. The grain structures are compared to experimentally observed grain structures to validate that they are representative. A procedure for generating a geometric model from the voxel data is developed allowing for adaptive meshing of the generated grain structure. Material behavior is governed by an appropriate crystal, elasto-viscoplastic constitutive model. The elastic-viscoplastic model is implemented in a three-dimensional, finite deformation, mixed, finite element program. In order to handle the large-scale problems of interest, a parallel implementation is utilized. A multiscale procedure is used to link larger scale models of deformation processes to the polycrystal model, where periodic boundary conditions on the fluctuation field are enforced. Finite-element models, of 3D polycrystal grain structures will be presented along with observations made from these simulations

  7. Instrumented anvil-on-rod impact experiments for validating constitutive strength model for simulating transient dynamic deformation response of metals

    International Nuclear Information System (INIS)

    Martin, M.; Shen, T.; Thadhani, N.N.

    2008-01-01

    Instrumented anvil-on-rod impact experiments were performed to access the applicability of this approach for validating a constitutive strength model for dynamic, transient-state deformation and elastic-plastic wave interactions in vanadium, 21-6-9 stainless steel, titanium, and Ti-6Al-4V. In addition to soft-catching the impacted rod-shaped samples, their transient deformation states were captured by high-speed imaging, and velocity interferometry was used to record the sample back (free) surface velocity and monitor elastic-plastic wave interactions. Simulations utilizing AUTODYN-2D hydrocode with Steinberg-Guinan constitutive equation were used to generate simulated free surface velocity traces and final/transient deformation profiles for comparisons with experiments. The simulations were observed to under-predict the radial strain for bcc vanadium and fcc steel, but over-predict the radial strain for hcp titanium and Ti-6Al-4V. The correlations illustrate the applicability of the instrumented anvil-on-rod impact test as a method for providing robust model validation based on the entire deformation event, and not just the final deformed state

  8. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran; El Sayed, Tamer S.

    2012-01-01

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer

  9. Experimental investigation and constitutive model for lime mudstone.

    Science.gov (United States)

    Wang, Junbao; Liu, Xinrong; Zhao, Baoyun; Song, Zhanping; Lai, Jinxing

    2016-01-01

    In order to investigate the mechanical properties of lime mudstone, conventional triaxial compression tests under different confining pressures (0, 5, 15 and 20 MPa) are performed on lime mudstone samples. The test results show that, from the overall perspective of variation law, the axial peak stress, axial peak strain and elastic modulus of lime mudstone tend to gradually increase with increasing confining pressure. In the range of tested confining pressure, the variations in axial peak stress and elastic modulus with confining pressure can be described with linear functions; while the variation in axial peak strain with confining pressure can be reflected with a power function. To describe the axial stress-strain behavior in failure process of lime mudstone, a new constitutive model is proposed, with the model characteristics analyzed and the parameter determination method put forward. Compared with Wang' model, only one parameter n is added to the new model. The comparison of predicted curves from the model and test data indicates that the new model can preferably simulate the strain softening property of lime mudstone and the axial stress-strain response in rock failure process.

  10. Seeing red; the development of pON.mCherry, a broad-host range constitutive expression plasmid for Gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Michael J Gebhardt

    Full Text Available The development of plasmid-mediated gene expression control in bacteria revolutionized the field of bacteriology. Many of these expression control systems rely on the addition of small molecules, generally metabolites or non-metabolized analogs thereof, to the growth medium to induce expression of the genes of interest. The paradigmatic example of an expression control system is the lac system from Escherichia coli, which typically relies on the Ptac promoter and the Lac repressor, LacI. In many cases, however, constitutive gene expression is desired, and other experimental approaches require the coordinated control of multiple genes. While multiple systems have been developed for use in E. coli and its close relatives, the utility and/or functionality of these tools does not always translate to other species. For example, for the Gram-negative pathogen, Legionella pneumophila, a causative agent of Legionnaires' Disease, the aforementioned Ptac system represents the only well-established expression control system. In order to enhance the tools available to study bacterial gene expression in L. pneumophila, we developed a plasmid, pON.mCherry, which confers constitutive gene expression from a mutagenized LacI binding site. We demonstrate that pON.mCherry neither interferes with other plasmids harboring an intact LacI-Ptac expression system nor alters the growth of Legionella species during intracellular growth. Furthermore, the broad-host range plasmid backbone of pON.mCherry allows constitutive gene expression in a wide variety of Gram-negative bacterial species, making pON.mCherry a useful tool for the greater research community.

  11. A phenomenological variational multiscale constitutive model for intergranular failure in nanocrystalline materials

    KAUST Repository

    Siddiq, A.; El Sayed, Tamer S.

    2013-01-01

    We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline

  12. Constitutive behavior of reconsolidating crushed salt

    International Nuclear Information System (INIS)

    Callahan, G.D.; Mellegard, K.D.; Hansen, F.D.

    1998-02-01

    The constitutive model used to describe deformation of crushed salt is presented in this paper. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--are combined to form the basis for the constitutive model governing deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Recently completed creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant (WIPP) and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from shear consolidation tests and a combination of shear and hydrostatic tests produces two sets of material parameter values for the model. Changes in material parameter values from test group to test group indicate the empirical nature of the model but show significant improvement over earlier work. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on fitting statistics and ability of the model to predict test data, the model appears to capture the creep consolidation behavior of crushed salt quite well

  13. Dynamic Plasticity and Fracture in High Density Polycrystals: Constitutive Modeling and Numerical Simulation

    National Research Council Canada - National Science Library

    Clayton, J. D

    2006-01-01

    Presented is a constitutive framework for modeling the dynamic response of polycrystalline microstructures, posed in a thermodynamically consistent manner and accounting for finite deformation, strain...

  14. A 3D Model of the Thermoelectric Microwave Power Sensor by MEMS Technology

    Directory of Open Access Journals (Sweden)

    Zhenxiang Yi

    2016-06-01

    Full Text Available In this paper, a novel 3D model is proposed to describe the temperature distribution of the thermoelectric microwave power sensor. In this 3D model, the heat flux density decreases from the upper surface to the lower surface of the GaAs substrate while it was supposed to be a constant in the 2D model. The power sensor is fabricated by a GaAs monolithic microwave integrated circuit (MMIC process and micro-electro-mechanical system (MEMS technology. The microwave performance experiment shows that the S11 is less than −26 dB over the frequency band of 1–10 GHz. The power response experiment demonstrates that the output voltage increases from 0 mV to 27 mV, while the incident power varies from 1 mW to 100 mW. The measured sensitivity is about 0.27 mV/mW, and the calculated result from the 3D model is 0.28 mV/mW. The relative error has been reduced from 7.5% of the 2D model to 3.7% of the 3D model.

  15. Ortho-aminoazotoluene activates mouse constitutive androstane receptor (mCAR) and increases expression of mCAR target genes

    International Nuclear Information System (INIS)

    Smetanina, Mariya A.; Pakharukova, Mariya Y.; Kurinna, Svitlana M.; Dong, Bingning; Hernandez, Juan P.; Moore, David D.; Merkulova, Tatyana I.

    2011-01-01

    2'-3-dimethyl-4-aminoazobenzene (ortho-aminoazotoluene, OAT) is an azo dye and a rodent carcinogen that has been evaluated by the International Agency for Research on Cancer (IARC) as a possible (class 2B) human carcinogen. Its mechanism of action remains unclear. We examined the role of the xenobiotic receptor Constitutive Androstane Receptor (CAR, NR1I3) as a mediator of the effects of OAT. We found that OAT increases mouse CAR (mCAR) transactivation in a dose-dependent manner. This effect is specific because another closely related azo dye, 3'-methyl-4-dimethyl-aminoazobenzene (3'MeDAB), did not activate mCAR. Real-time Q-PCR analysis in wild-type C57BL/6 mice revealed that OAT induces the hepatic mRNA expression of the following CAR target genes: Cyp2b10, Cyp2c29, Cyp3a11, Ugt1a1, Mrp4, Mrp2 and c-Myc. CAR-null (Car -/- ) mice showed no increased expression of these genes following OAT treatment, demonstrating that CAR is required for their OAT dependent induction. The OAT-induced CAR-dependent increase of Cyp2b10 and c-Myc expression was confirmed by Western blotting. Immunohistochemistry analysis of wild-type and Car -/- livers showed that OAT did not acutely induce hepatocyte proliferation, but at much later time points showed an unexpected CAR-dependent proliferative response. These studies demonstrate that mCAR is an OAT xenosensor, and indicate that at least some of the biological effects of this compound are mediated by this nuclear receptor. - Highlights: → The azo dye and mouse carcinogen OAT is a very effective mCAR activator. → OAT increases mCAR transactivation in a dose-dependent manner. → OAT CAR-dependently increases the expression of a specific subset of CAR target genes. → OAT induces an unexpectedly deferred, but CAR-dependent hepatocyte proliferation.

  16. Triaxial constitutive model for plain and reinforced concrete behavior

    Science.gov (United States)

    Kang, Hong Duk

    Inelastic failure analysis of concrete structures has been one of the central issues in concrete mechanics. Especially, the effect of confinement has been of great importance to capture the transition from brittle to ductile fracture of concrete under triaxial loading scenarios. Moreover, it has been a difficult task to implement numerically material descriptions which are susceptible to loss of stability and localization. Consequently, it has been a challenge to develop comprehensive material formulations of concrete, which consider the full spectrum of loading histories which the material in a real structure is subjected to. A new triaxial constitutive model of concrete is presented that not only describes the hardening/softening behavior of concrete in tension and low confined compression, but also captures the transition from brittle to ductile failure under high confinement. The concrete model is based on a loading surface that is Csp1-continuous, and that closes smoothly in equitriaxial compression, while the deviatoric trace expands from a triangular to a circular shape with increasing confinement. The plastic potential has a different curvature from the plastic loading function for non-associativity in order to reduce excessive inelastic dilatancy. In the thesis, the results of deformation and localization analyses for various loading histories are presented in the constitutive study. In addition, studies of associativity and non-associativity, and two-invariant versus three-invariant formulations are performed. At the structural level the triaxial concrete model is used to predict the nonlinear response behavior of a reinforced concrete column subject to axial and lateral loadings.

  17. A constitutive rheological model for agglomerating blood derived from nonequilibrium thermodynamics

    Science.gov (United States)

    Tsimouri, Ioanna Ch.; Stephanou, Pavlos S.; Mavrantzas, Vlasis G.

    2018-03-01

    Red blood cells tend to aggregate in the presence of plasma proteins, forming structures known as rouleaux. Here, we derive a constitutive rheological model for human blood which accounts for the formation and dissociation of rouleaux using the generalized bracket formulation of nonequilibrium thermodynamics. Similar to the model derived by Owens and co-workers ["A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow," J. Fluid Mech. 617, 327-354 (2008)] through polymer network theory, each rouleau in our model is represented as a dumbbell; the corresponding structural variable is the conformation tensor of the dumbbell. The kinetics of rouleau formation and dissociation is treated as in the work of Germann et al. ["Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions," J. Non-Newton. Fluid Mech. 196, 51-57 (2013)] by assuming a set of reversible reactions, each characterized by a forward and a reverse rate constant. The final set of evolution equations for the microstructure of each rouleau and the expression for the stress tensor turn out to be very similar to those of Owens and co-workers. However, by explicitly considering a mechanism for the formation and breakage of rouleaux, our model further provides expressions for the aggregation and disaggregation rates appearing in the final transport equations, which in the kinetic theory-based network model of Owens were absent and had to be specified separately. Despite this, the two models are found to provide similar descriptions of experimental data on the size distribution of rouleaux.

  18. Formulation and integration of constitutive models describing large deformations in thermoplasticity and thermoviscoplasticity

    International Nuclear Information System (INIS)

    Jansohn, W.

    1997-10-01

    This report deals with the formulation and numerical integration of constitutive models in the framework of finite deformation thermomechanics. Based on the concept of dual variables, plasticity and viscoplasticity models exhibiting nonlinear kinematic hardening as well as nonlinear isotropic hardening rules are presented. Care is taken that the evolution equations governing the hardening response fulfill the intrinsic dissipation inequality in every admissible process. In view of the development of an efficient numerical integration procedure, simplified versions of these constitutive models are supposed. In these versions, the thermoelastic strains are assumed to be small and a simplified kinematic hardening rule is considered. Additionally, in view of an implementation into the ABAQUS finite element code, the elasticity law is approximated by a hypoelasticity law. For the simplified onstitutive models, an implicit time-integration algorithm is developed. First, in order to obtain a numerical objective integration scheme, use is made of the HUGHES-WINGET-Algorithm. In the resulting system of ordinary differential equations, it can be distinguished between three differential operators representing different physical effects. The structure of this system of differential equations allows to apply an operator split scheme, which leads to an efficient integration scheme for the constitutive equations. By linearizing the integration algorithm the consistent tangent modulus is derived. In this way, the quadratic convergence of Newton's method used to solve the basic finite element equations (i.e. the finite element discretization of the governing thermomechanical field equations) is preserved. The resulting integration scheme is implemented as a user subroutine UMAT in ABAQUS. The properties of the applied algorithm are first examined by test calculations on a single element under tension-compression-loading. For demonstrating the capabilities of the constitutive theory

  19. Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model

    International Nuclear Information System (INIS)

    Baladi, G.Y.

    1978-01-01

    The numerical implementation of a transverse-isotropic inelastic, work-hardening plastic constitutive model is documented. A brief review of the model is presented first to facilitate the understanding of its numerical implementation. This model is formulated in terms of 'pseudo' stress invariants, so that the incremental stress-strain relationship can be readily incorporated into existing finite-difference or infinite-element computer codes. The anisotropic model reduces to its isotropic counterpart without any changes in the mathematical formulation or in the numerical implementation (algorithm) of the model. A typical example of the model and its behavior in uniaxial strain and triaxial compression is presented. (Auth.)

  20. Selected Constitutive Models for Simulating the Hygromechanical Response of Wood

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund

    , the boundary conditions are discussed based on discrepancies found for similar research on moisture transport in paper stacks. Paper III: A new sorption hysteresis model suitable for implementation into a numerical method is developed. The prevailing so-called scanning curves are modeled by closed......-form expressions, which only depend on the current relative humidity of the air and current moisture content of the wood. Furthermore, the expressions for the scanning curves are formulated independent of the temperature and species-dependent boundary curves. Paper IV: The sorption hysteresis model developed...... are discussed. The constitutive moisture transport models are coupled with a heat transport model yielding terms that describe the so-called Dufour and Sorret effects, however, with multiple phases and hysteresis included. Paper VII: In this paper the modeling of transverse couplings in creep of wood...

  1. The road to democracy: The development of constitutionalism in Serbia 1869-1903

    Directory of Open Access Journals (Sweden)

    Bataković Dušan T.

    2007-01-01

    Full Text Available After the swiftly abolished liberal Constitution of 1835 and the imposed 'Turkish' one of 1838 (imposed by the Russians and Ottomans, guarantors of Serbia's autonomy granted in 1830, to limit the princely power, the development of constitutionalism in modern Serbia went through several phases. As elsewhere in the Balkans, constitutions usually resulted from a compromise between the ruler and the elites rather than from the will of the people. The 1868 Constitution drew to an extent upon the early nineteenth-century German constitutional monarchies, but, under pressure from the politically mobilized population, the 1888 Constitution, proposed by the Radical Party in response to the egalitarian aspirations of the nation's agrarian majority, adopted a French constitutional model - with a unicameral system and frequent coalition governments. Shaped on the model of the Belgian Constitution of 1831, which in its turn was a modified version of the French Charte of 1830, it restored a French influence, expressed for the first time in the 1835 Constitution. The 1888 Constitution was passed by the Grand National Assembly with its five-sixth majority of Radicals, representatives of the agrarian majority. It was soon annulled by the coup d'état of 1894 and the Court-imposed Constitution of 1869 was reinstituted. The Constitution of 1901 was an attempt to introduce a bicameral system as a means of upholding the influential role of the ruler, while limiting that of the Radical Party, which had enjoyed an ample electoral support since the 1888 Constitution. After the assassination in 1903 of the last Obrenović ruler king Alexander, and his wife, queen Draga, the liberal Constitution of 1888 with minor modifications was reinstituted. Under this Constitution - which is commonly known as the 1903 Constitution and which, during the democratic reign of king Peter I Karđorđević, was no longer challenged - Serbian democracy remained fragile, because there was no

  2. Elastic-Plastic Endochronic Constitutive Model of 0Crl7Ni4Cu4Nb Stainless Steels

    Directory of Open Access Journals (Sweden)

    Jinquan Guo

    2016-01-01

    Full Text Available We presented an elastic-plastic endochronic constitutive model of 0Crl7Ni4Cu4Nb stainless steel based on the plastic endochronic theory (which does not need the yield surface and experimental stress-strain curves. The key feature of the model is that it can precisely describe the relation of stress and strain under various loading histories, including uniaxial tension, cyclic loading-unloading, cyclic asymmetric-stress axial tension and compression, and cyclic asymmetric-stress axial tension and compression. The effects of both mean stress and amplitude of stress on hysteresis loop based on the elastic-plastic endochronic constitutive model were investigated. Compared with the experimental and calculated results, it is demonstrated that there was a good agreement between the model and the experiments. Therefore, the elastic-plastic endochronic constitutive model provides a method for the accurate prediction of mechanical behaviors of 0Crl7Ni4Cu4Nb stainless steel subjected to various loadings.

  3. Essential Medicines in National Constitutions

    Science.gov (United States)

    Toebes, Brigit; Hogerzeil, Hans

    2016-01-01

    Abstract A constitutional guarantee of access to essential medicines has been identified as an important indicator of government commitment to the progressive realization of the right to the highest attainable standard of health. The objective of this study was to evaluate provisions on access to essential medicines in national constitutions, to identify comprehensive examples of constitutional text on medicines that can be used as a model for other countries, and to evaluate the evolution of constitutional medicines-related rights since 2008. Relevant articles were selected from an inventory of constitutional texts from WHO member states. References to states’ legal obligations under international human rights law were evaluated. Twenty-two constitutions worldwide now oblige governments to protect and/or to fulfill accessibility of, availability of, and/or quality of medicines. Since 2008, state responsibilities to fulfill access to essential medicines have expanded in five constitutions, been maintained in four constitutions, and have regressed in one constitution. Government commitments to essential medicines are an important foundation of health system equity and are included increasingly in state constitutions. PMID:27781006

  4. Global analyses of historical masonry buildings: Equivalent frame vs. 3D solid models

    Science.gov (United States)

    Clementi, Francesco; Mezzapelle, Pardo Antonio; Cocchi, Gianmichele; Lenci, Stefano

    2017-07-01

    The paper analyses the seismic vulnerability of two different masonry buildings. It provides both an advanced 3D modelling with solid elements and an equivalent frame modelling. The global structural behaviour and the dynamic properties of the compound have been evaluated using the Finite Element Modelling (FEM) technique, where the nonlinear behaviour of masonry has been taken into account by proper constitutive assumptions. A sensitivity analysis is done to evaluate the effect of the choice of the structural models.

  5. R.M. Solow Adjusted Model of Economic Growth

    Directory of Open Access Journals (Sweden)

    Ion Gh. Rosca

    2007-05-01

    Full Text Available Besides the models of M. Keynes, R.F. Harrod, E. Domar, D. Romer, Ramsey-Cass-Koopmans etc., the R.M. Solow model is part of the category which characterizes the economic growth. The paper proposes the study of the R.M. Solow adjusted model of economic growth, while the adjustment consisting in the model adaptation to the Romanian economic characteristics. The article is the first one from a three paper series dedicated to the macroeconomic modelling theme, using the R.M. Solow model, such as: “Measurement of the economic growth and extensions of the R.M. Solow adjusted model” and “Evolution scenarios at the Romanian economy level using the R.M. Solow adjusted model”. The analysis part of the model is based on the study of the equilibrium to the continuous case with some interpretations of the discreet one, by using the state diagram. The optimization problem at the economic level is also used; it is built up of a specified number of representative consumers and firms in order to reveal the interaction between these elements.

  6. Examination of constitutive model for evaluating long-term behavior of buffer. Document prepared by other institute, based on the trust contract

    International Nuclear Information System (INIS)

    Shigeno, Yoshimasa; Namikawa, Tsutomu; Takaji, Kazuhiko

    2002-02-01

    On the R and D of the high-level radioactive waste repository, it is essential that Engineered Barrier System (EBS) is stable mechanically over a long period of time for maintaining ability required to EBS. After closing the repository, the external force is affected to buffer for a long period of time. So, it is necessary to make clear the mechanical deformation behavior of buffer to the external force, because of carrying out safety assessment of EBS accurately. In this report, the applicable constitutive model have been narrowed down from within many one for clay proposed up to the present, from the viewpoint of adoption possibility to the evaluation of the long-term mechanical behavior for buffer. To put it concretely, the investigation of constitutive models for clay, the applicability confirmation of the representative model by analysis using test data, and the proposal of experimental method available for simulation analysis is carried out. The results of the elemental test simulations using Adachi-Oka model and Sekiguchi-Ohta model as the representative model of ''Over stress model'' and Flow surface model'' are as follows. Both of the models are not make much difference. A limited part of the test results is expressed suitably according to the appropriate decision of viscous parameters, but the blanket behavior of each tests is not expressed suitably in either model. (author)

  7. A modified parallel constitutive model for elevated temperature flow behavior of Ti-6Al-4V alloy based on multiple regression

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jun; Shi, Jiamin; Wang, Kuaishe; Wang, Wen; Wang, Qingjuan; Liu, Yingying [Xi' an Univ. of Architecture and Technology, Xi' an (China). School of Metallurgical Engineering; Li, Fuguo [Northwestern Polytechnical Univ., Xi' an (China). School of Materials Science and Engineering

    2017-07-15

    Constitutive analysis for hot working of Ti-6Al-4V alloy was carried out by using experimental stress-strain data from isothermal hot compression tests. A new kind of constitutive equation called a modified parallel constitutive model was proposed by considering the independent effects of strain, strain rate and temperature. The predicted flow stress data were compared with the experimental data. Statistical analysis was introduced to verify the validity of the developed constitutive equation. Subsequently, the accuracy of the proposed constitutive equations was evaluated by comparing with other constitutive models. The results showed that the developed modified parallel constitutive model based on multiple regression could predict flow stress of Ti-6Al-4V alloy with good correlation and generalization.

  8. Comparison of Transport Calculation Between 2D/1D synthesis and RAPTOR-M3G at Core Barrel of Korea Standard Nuclear Plant(KSNP), OPR-1000

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, Young Jae; Kim, Byoung Chul; Lim, Mi Joung; Kim, Kyung Sik; Jeon, Young Kyou [Korea Reactor Integrity Surveillance Technology, Daejeon (Korea, Republic of); Yoo, Chun Sung [Korea Atomic Energy Research Institutes, Daejeon (Korea, Republic of)

    2013-10-15

    The DORT code for 2D/1D synthesis has been actively applied to calculate the fast neutron (E>1.0MeV) fluence exposure of RPV. RAPTOR-M3G code is also applied for the comparison of 2D/1D synthesis, and it was found that 2D/1D synthesis method generally provided more conservative results than RAPTOR-M3G at both RPV and surveillance capsule locations. As a result, definitely RAPTOR-M3G for 3D calculation must apply for accurate evaluation of the integrity and ageing of RPV and internal structures. Therefore, the purpose of this paper is to compare the differences in terms of geometric aspect of KSNP model between 2D/1D synthesis and RAPTOR-M3G at core barrel area. 2D/1D synthesis method shows still higher results at the shortest distance of bypass water region. The reason is that 2D/1D synthesis method has excessive conservatism because of having just one model of R-θ and R-Z separately. Angles (5, 25, 45, 65 and 90 degrees) that RAPTOR-M3G results are higher than 2D/1D synthesis results seem to have almost regular interval. The reason can be that neutron flux to reach to barrel is affected by the nearest core definitely and all of near core areas including bypass water. RAPTOR-M3G performing 3D calculation can be applied to various reactor structures, because the code can simulate the model realistically and reasonably in geometric view points. Understanding the phenomenon that 45 degree shows downward peak, in spite of baffle corner location, remains.

  9. Comparison of Transport Calculation Between 2D/1D synthesis and RAPTOR-M3G at Core Barrel of Korea Standard Nuclear Plant(KSNP), OPR-1000

    International Nuclear Information System (INIS)

    Maeng, Young Jae; Kim, Byoung Chul; Lim, Mi Joung; Kim, Kyung Sik; Jeon, Young Kyou; Yoo, Chun Sung

    2013-01-01

    The DORT code for 2D/1D synthesis has been actively applied to calculate the fast neutron (E>1.0MeV) fluence exposure of RPV. RAPTOR-M3G code is also applied for the comparison of 2D/1D synthesis, and it was found that 2D/1D synthesis method generally provided more conservative results than RAPTOR-M3G at both RPV and surveillance capsule locations. As a result, definitely RAPTOR-M3G for 3D calculation must apply for accurate evaluation of the integrity and ageing of RPV and internal structures. Therefore, the purpose of this paper is to compare the differences in terms of geometric aspect of KSNP model between 2D/1D synthesis and RAPTOR-M3G at core barrel area. 2D/1D synthesis method shows still higher results at the shortest distance of bypass water region. The reason is that 2D/1D synthesis method has excessive conservatism because of having just one model of R-θ and R-Z separately. Angles (5, 25, 45, 65 and 90 degrees) that RAPTOR-M3G results are higher than 2D/1D synthesis results seem to have almost regular interval. The reason can be that neutron flux to reach to barrel is affected by the nearest core definitely and all of near core areas including bypass water. RAPTOR-M3G performing 3D calculation can be applied to various reactor structures, because the code can simulate the model realistically and reasonably in geometric view points. Understanding the phenomenon that 45 degree shows downward peak, in spite of baffle corner location, remains

  10. A crystallographic constitutive model for Ni3Al (L12) intermetallics

    International Nuclear Information System (INIS)

    Choi, Y.S.; Dimiduk, D.M.; Uchic, M.D.; Parthasarathy, T.A.

    2005-01-01

    A constitutive model was developed in order to capture the unique thermo-mechanical flow behavior of L1 2 -structured Ni 3 (Al, X) alloys. This model utilized a framework for flow-stress partitioning, which was previously proposed by Ezz and Hirsch, and incorporated a model for exhaustion hardening proposed by Caillard. The simulation results well represent the major aspects of the thermo-mechanical flow behavior of Ni 3 (Al, X) alloys, such as a flow-stress anomaly, its strain dependence and a work-hardening rate anomaly. Selected limitations are discussed along with our current efforts toward extending the present model

  11. Constitutive model of creep in polycrystalline halite based on workhardening and recovery

    International Nuclear Information System (INIS)

    Munson, D.E.

    1993-01-01

    A multimechanism constitutive model of creep has been developed which incorporates the workhardening and recovery transient creep behavior. This model has been applied to the creep of polycrystalline halite. The specific application of the model is in the calculation of the closure of underground rooms in layered salt deposits. Through the use of finite element calculations, this model, with appropriate laboratory material parameters and a Tresca flow potential, has predicted the measured closure of a number of large in situ experimental rooms

  12. Spherocylindrical microplane constitutive model for shale and other anisotropic rocks

    Science.gov (United States)

    Li, Cunbao; Caner, Ferhun C.; Chau, Viet T.; Bažant, Zdeněk P.

    2017-06-01

    Constitutive equations for inelastic behavior of anisotropic materials have been a challenge for decades. Presented is a new spherocylindrical microplane constitutive model that meets this challenge for the inelastic fracturing behavior of orthotropic materials, and particularly the shale, which is transversely isotropic and is important for hydraulic fracturing (aka fracking) as well as many geotechnical structures. The basic idea is to couple a cylindrical microplane system to the classical spherical microplane system. Each system is subjected to the same strain tensor while their stress tensors are superposed. The spherical phase is similar to the previous microplane models for concrete and isotropic rock. The integration of stresses over spherical microplanes of all spatial orientations relies on the previously developed optimal Gaussian integration over a spherical surface. The cylindrical phase, which is what creates the transverse isotropy, involves only microplanes that are normal to plane of isotropy, or the bedding layers, and enhance the stiffness and strength in that plane. Unlike all the microplane models except the spectral one, the present one can reproduce all the five independent elastic constants of transversely isotropic shales. Vice versa, from these constants, one can easily calculate all the microplane elastic moduli, which are all positive if the elastic in-to-out-of plane moduli ratio is not too big (usually less than 3.75, which applies to all shales). Oriented micro-crack openings, frictional micro-slips and bedding plane behavior can be modeled more intuitively than with the spectral approach. Data fitting shows that the microplane resistance depends on the angle with the bedding layers non-monotonically, and compressive resistance reaches a minimum at 60°. A robust algorithm for explicit step-by-step structural analysis is formulated. Like all microplane models, there are many material parameters, but they can be identified sequentially

  13. Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects

    Science.gov (United States)

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-01-01

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue “Lamassu”. Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883–859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm. PMID:24670718

  14. Minimal camera networks for 3D image based modeling of cultural heritage objects.

    Science.gov (United States)

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-03-25

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue "Lamassu". Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883-859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm.

  15. M1-transitions in the MIT bag model

    International Nuclear Information System (INIS)

    Hackman, R.H.; Deshpande, N.G.; Dicus, D.A.; Teplitz, V.L.

    1977-03-01

    In the MIT bag model, the M1-transitions of low lying hadrons are investigated. The following calculations are performed: 32 hadron masses are recomputed with a choice of bag parameters designed to give the correct values for the proton magnetic moment, μ/sub p/, and several masses, M/sub rho/ M/sub ω/ M/sub Δ/ M/sub Ω/, and M/sub D/; (2) eta, eta', eta/sub c/ mixing is computed in an untrustworthy approximation; and the widths for 38 M1-transitions are computed

  16. Constitutive models for concrete and finite element analysis of prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Smith, P.D.; Anderson, C.A.

    1977-01-01

    Two constitutive models for concrete are discussed. For short-term loads, the orthotropic variable modulus model is described, and for long-term loads a viscoelastic model utilizing a Dirichlet series approximation for the creep compliance function is summarized. The orthotropic variable modulus model is demonstrated in an analysis of a PCRV head with penetrations. The viscoelastic model is illustrated with a simulation of a prestressed concrete cylinder subject to non-uniform temperatures

  17. Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts

    OpenAIRE

    Tourchi, Saeed; Hamidi, Amir

    2015-01-01

    A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existing model for saturated clays originally proposed by the authors. The saturated clays model was formulated in the framework of critical state soil mechanics and modified Cam-clay model. The existing model has been generalized to simulate the experimentally observed behavior of unsaturated clays by introducing Bishop's stress and suction as independent stress parameters and modifying the hardening rul...

  18. Hot Deformation Behavior and a Two-Stage Constitutive Model of 20Mn5 Solid Steel Ingot during Hot Compression

    Directory of Open Access Journals (Sweden)

    Min Liu

    2018-03-01

    Full Text Available 20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft forging due to its strength, toughness, and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under a high temperature were not studied. For this article, hot compression experiments under temperatures of 850–1200 °C and strain rates of 0.01 s−1–1 s−1 were conducted using a Gleeble-1500D thermo-mechanical simulator. Flow stress-strain curves and microstructure after hot compression were obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relationship and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 solid steel ingot.

  19. Constitutive equations for two-phase flows

    International Nuclear Information System (INIS)

    Boure, J.A.

    1974-12-01

    The mathematical model of a system of fluids consists of several kinds of equations complemented by boundary and initial conditions. The first kind equations result from the application to the system, of the fundamental conservation laws (mass, momentum, energy). The second kind equations characterize the fluid itself, i.e. its intrinsic properties and in particular its mechanical and thermodynamical behavior. They are the mathematical model of the particular fluid under consideration, the laws they expressed are so called the constitutive equations of the fluid. In practice the constitutive equations cannot be fully stated without reference to the conservation laws. Two classes of model have been distinguished: mixture model and two-fluid models. In mixture models, the mixture is considered as a single fluid. Besides the usual friction factor and heat transfer correlations, a single constitutive law is necessary. In diffusion models, the mixture equation of state is replaced by the phasic equations of state and by three consitutive laws, for phase change mass transfer, drift velocity and thermal non-equilibrium respectively. In the two-fluid models, the two phases are considered separately; two phasic equations of state, two friction factor correlations, two heat transfer correlations and four constitutive laws are included [fr

  20. Multipole induced splitting of metal-cage vibrations in crystalline endohedral D2d-M2@C84 dimetallofullerenes.

    Science.gov (United States)

    Krause, M; Popov, V N; Inakuma, M; Tagmatarchis, N; Shinohara, H; Georgi, P; Dunsch, L; Kuzmany, H

    2004-01-22

    Metal-carbon cage vibrations of crystalline endohedral D2d-M2@C84 (M=Sc,Y,Dy) dimetallofullerenes were analyzed by temperature dependent Raman scattering and a dynamical force field model. Three groups of metal-carbon cage modes were found at energies of 35-200 cm(-1) and assigned to metal-cage stretching and deformation vibrations. They exhibit a textbook example for the splitting of molecular vibrations in a crystal field. Induced dipole-dipole and quadrupole-quadrupole interactions account quantitatively for the observed mode splitting. Based on the metal-cage vibrational structure it is demonstrated that D2d-Y2@C84 dimetallofullerene retains a monoclinic crystal structure up to 550 K and undergoes a transition from a disordered to an ordered orientational state at a temperature of approximately 150 K.

  1. Jonathan's Constitutional Conference in Nigeria

    African Journals Online (AJOL)

    ian

    2013-10-01

    Oct 1, 2013 ... Adeniyi S. Basiru is an independent researcher and a PhD candidate ... constitution-making are fundamentally the exclusive reserve of the elites, ..... agenda must be situated against the background of events that heralded his.

  2. M3D (Media 3D): a new programming language for web-based virtual reality in E-Learning and Edutainment

    Science.gov (United States)

    Chakaveh, Sepideh; Skaley, Detlef; Laine, Patricia; Haeger, Ralf; Maad, Soha

    2003-01-01

    Today, interactive multimedia educational systems are well established, as they prove useful instruments to enhance one's learning capabilities. Hitherto, the main difficulty with almost all E-Learning systems was latent in the rich media implementation techniques. This meant that each and every system should be created individually as reapplying the media, be it only a part, or the whole content was not directly possible, as everything must be applied mechanically i.e. by hand. Consequently making E-learning systems exceedingly expensive to generate, both in time and money terms. Media-3D or M3D is a new platform independent programming language, developed at the Fraunhofer Institute Media Communication to enable visualisation and simulation of E-Learning multimedia content. M3D is an XML-based language, which is capable of distinguishing between the3D models from that of the 3D scenes, as well as handling provisions for animations, within the programme. Here we give a technical account of M3D programming language and briefly describe two specific application scenarios where M3D is applied to create virtual reality E-Learning content for training of technical personnel.

  3. The TLR4 D299G and T399I SNPs are constitutively active to up-regulate expression of Trif-dependent genes.

    Directory of Open Access Journals (Sweden)

    Georgina L Hold

    Full Text Available Dysregulated Toll-Like Receptor (TLR signalling and genetic polymorphisms in these proteins are linked to many human diseases. We investigated TLR4 functional variants D299G and T399I to assess the impact on LPS-induced responsiveness in comparison to wild-type TLR4. The mechanism by which this occurs in unclear as these SNPs do not lie within the lipid A binding domain or dimerisation sites of the LPS-TLR4/MD2 receptor complexes. Transfection of TLR4D299G, TLR4T399I or TLR4D299G. T399I into HEK cells resulted in constitutive activation of an NF-κB reporter gene and a blunting of the LPS-induced reporter activation compared to WT-TLR4. Unstimulated human monocyte/macrophages, from patients with the D299G and T399I SNPs demonstrated a downregulation of many genes, particularly Tram/Trif signalling pathway constitutents compared to the TLR4 wild-type subjects supporting the concept of basal receptor activity. Monocyte/macrophages from carriers of the TLR4 D299G and T399I polymorphisms stimulated with LPS showed >6 fold lower levels of NF-κB and ∼12 fold higher IFN-β gene expression levels compared to wild-type subjects (P<0.05; MWU test and dramatically altered resultant cytokine profiles. We conclude that these TLR4 SNPs affect constitutive receptor activity which impacts on the hosts ability to respond to LPS challenge leading to a dysregulated sub-optimal immune response to infection.

  4. New mesoscopic constitutive model for deformation of pearlitic steels up to moderate strains

    Science.gov (United States)

    Alkorta, J.; Martínez-Esnaola, J. M.; de Jaeger, P.; Gil Sevillano, J.

    2017-07-01

    A new constitutive model for deformation of pearlitic steels has been developed that describes the mechanical behaviour and microstructural evolution of lamellar multi-colony pearlite. The model, a two-phase continuum model, considers the plastic anisotropy of ferrite derived from its lamellar structure but ignores any anisotropy associated with cementite and does not consider the crystal structure of either constituent. The resulting plastic constitutive equation takes into account a dependence on both the pearlitic spacing (arising from the confined slip of dislocations in the lamellae) and on strengthening from the evolving intra-lamellar dislocation density. A Kocks-Mecking strain hardening/recovery model is used for the lamellar ferrite, whereas perfect-plastic behaviour is assumed for cementite. The model naturally captures the microstructural evolution and the internal micro-stresses developed due to the different mechanical behaviour of both phases. The model is also able to describe the lamellar evolution (orientation and interlamellar spacing) with good accuracy. The role of plastic anisotropy in the ferritic phase has also been studied, and the results show that anisotropy has an important impact on both microstructural evolution and strengthening of heavily drawn wires.

  5. A physically based constitutive model for a V-4Cr-4Ti alloy

    International Nuclear Information System (INIS)

    Donahue, E.G.; Odette, G.R.; Lucas, G.E.

    2000-01-01

    A constitutive model for low-to-intermediate temperatures, strains, and strain rates is developed for the program heat of V-4Cr-4Ti. The basic form of the model is derived from more general dislocation-based models of yield stress and strain hardening. The physically based forms are fit to a database derived from tensile tests carried out over a wide range of temperatures and strain rates. Yield and post-yield strain-hardening contributions to the flow stress are additive. The yield stress has both thermally activated and athermal components. The former is described by a two-mechanism activated dislocation slip model, with contributions that appear to arise from both lattice friction (at lower temperatures) and dislocation pinning by interstitial impurities (at higher temperatures). The yield stress data can be correlated using a strain rate-compensated temperature. The model uses a temperature-weighted average of the two mechanisms. Post-yield strain hardening was found to be approximately athermal. Strain hardening is fit to a two-component modified Voce-type saturating flow stress model. The constitutive model is also used to determine the flow stability limits as estimates of uniform tensile strains. The relatively compact, but mechanism-based, semi-empirical model has a number of both fundamental and practical advantages that are briefly outlined

  6. Implicit constitutive models with a thermodynamic basis: a study of stress concentration

    Science.gov (United States)

    Bridges, C.; Rajagopal, K. R.

    2015-02-01

    Motivated by the recent generalization of the class of elastic bodies by Rajagopal (Appl Math 48:279-319, 2003), there have been several recent studies that have been carried out within the context of this new class. Rajagopal and Srinivasa (Proc R Soc Ser A 463:357-367, 2007, Proc R Soc Ser A: Math Phys Eng Sci 465:493-500, 2009) provided a thermodynamic basis for such models and appealing to the idea that rate of entropy production ought to be maximized they developed nonlinear rate equations of the form where T is the Cauchy stress and D is the stretching tensor as well as , where S is the Piola-Kirchhoff stress tensor and E is the Green-St. Venant strain tensor. We follow a similar procedure by utilizing the Gibb's potential and the left stretch tensor V from the Polar Decomposition of the deformation gradient, and we show that when the displacement gradient is small one arrives at constitutive relations of the form . This is, of course, in stark contrast to traditional elasticity wherein one obtains a single model, Hooke's law, when the displacement gradient is small. By solving a classical boundary value problem, with a particular form for f( T), we show that when the stresses are small, the strains are also small which is in agreement with traditional elasticity. However, within the context of our model, when the stress blows up the strains remain small, unlike the implications of Hooke's law. We use this model to study boundary value problems in annular domains to illustrate its efficacy.

  7. Predicting the mixed-mode I/II spatial damage propagation along 3D-printed soft interfacial layer via a hyperelastic softening model

    Science.gov (United States)

    Liu, Lei; Li, Yaning

    2018-07-01

    A methodology was developed to use a hyperelastic softening model to predict the constitutive behavior and the spatial damage propagation of nonlinear materials with damage-induced softening under mixed-mode loading. A user subroutine (ABAQUS/VUMAT) was developed for numerical implementation of the model. 3D-printed wavy soft rubbery interfacial layer was used as a material system to verify and validate the methodology. The Arruda - Boyce hyperelastic model is incorporated with the softening model to capture the nonlinear pre-and post- damage behavior of the interfacial layer under mixed Mode I/II loads. To characterize model parameters of the 3D-printed rubbery interfacial layer, a series of scarf-joint specimens were designed, which enabled systematic variation of stress triaxiality via a single geometric parameter, the slant angle. It was found that the important model parameter m is exponentially related to the stress triaxiality. Compact tension specimens of the sinusoidal wavy interfacial layer with different waviness were designed and fabricated via multi-material 3D printing. Finite element (FE) simulations were conducted to predict the spatial damage propagation of the material within the wavy interfacial layer. Compact tension experiments were performed to verify the model prediction. The results show that the model developed is able to accurately predict the damage propagation of the 3D-printed rubbery interfacial layer under complicated stress-state without pre-defined failure criteria.

  8. Preliminary Development of a Unified Viscoplastic Constitutive Model for Alloy 617 with Special Reference to Long Term Creep Behavior

    International Nuclear Information System (INIS)

    Sham, Sam; Walker, Kevin P.

    2008-01-01

    The expected service life of the Next Generation Nuclear Plant is 60 years. Structural analyses of the Intermediate Heat Exchanger (IHX) will require the development of unified viscoplastic constitutive models that address the material behavior of Alloy 617, a construction material of choice, over a wide range of strain rates. Many unified constitutive models employ a yield stress state variable which is used to account for cyclic hardening and softening of the material. For low stress values below the yield stress state variable these constitutive models predict that no inelastic deformation takes place which is contrary to experimental results. The ability to model creep deformation at low stresses for the IHX application is very important as the IHX operational stresses are restricted to very small values due to the low creep strengths at elevated temperatures and long design lifetime. This paper presents some preliminary work in modeling the unified viscoplastic constitutive behavior of Alloy 617 which accounts for the long term, low stress, creep behavior and the hysteretic behavior of the material at elevated temperatures. The preliminary model is presented in one-dimensional form for ease of understanding, but the intent of the present work is to produce a three-dimensional model suitable for inclusion in the user subroutines UMAT and USERPL of the ABAQUS and ANSYS nonlinear finite element codes. Further experiments and constitutive modeling efforts are planned to model the material behavior of Alloy 617 in more detail

  9. Finite element implementation of a thermo-damage-viscoelastic constitutive model for hydroxyl-terminated polybutadiene composite propellant

    Science.gov (United States)

    Xu, Jinsheng; Han, Long; Zheng, Jian; Chen, Xiong; Zhou, Changsheng

    2017-11-01

    A thermo-damage-viscoelastic model for hydroxyl-terminated polybutadiene (HTPB) composite propellant with consideration for the effect of temperature was implemented in ABAQUS. The damage evolution law of the model has the same form as the crack growth equation for viscoelastic materials, and only a single damage variable S is considered. The HTPB propellant was considered as an isotropic material, and the deviatoric and volumetric strain-stress relations are decoupled and described by the bulk and shear relaxation moduli, respectively. The stress update equations were expressed by the principal stresses σ_{ii}R and the rotation tensor M, the Jacobian matrix in the global coordinate system J_{ijkl} was obtained according to the fourth-order tensor transformation rules. Two models having complex stress states were used to verify the accuracy of the constitutive model. The test results showed good agreement with the strain responses of characteristic points measured by a contactless optical deformation test system, which illustrates that the thermo-damage-viscoelastic model perform well at describing the mechanical properties of an HTPB propellant.

  10. Theoretical and experimental study of resonant 3d X-ray photoemission and resonant L3M45M45 Auger transition of PdO

    International Nuclear Information System (INIS)

    Uozumi, Takayuki; Kotani, Akio

    2000-01-01

    The observed 3d X-ray photoemission spectra (XPS), resonant 3dXPS (RXPS) at the L 3 edge and resonant L 3 M 45 M 45 Auger electron spectra (RAES) of 4d transition metal oxide PdO are successfully analyzed by means of an impurity Anderson model. The importance of Pd 4d-O 2p hybridization effect is especially emphasized in the interpretation of observed spectra. It causes charge transfer satellites in 3dXPS and L 3 M 45 M 45 RAES and mainly determines the structure of resonance enhancements in 3dRXPS. From the analysis of spectra, 4d-2p charge transfer energy Δ, 4d correlation energy U dd and 4d-2p transfer integral pdσ are estimated to be 5.5 eV, 4.5 eV and 2.1 eV, respectively. The character of the insulating energy gap PdO is also theoretically investigated: PdO is classified as an intermediate-type insulator due to the strong 4d-2p hybridization. (author)

  11. A Constitutive Model for Superelastic Shape Memory Alloys Considering the Influence of Strain Rate

    Directory of Open Access Journals (Sweden)

    Hui Qian

    2013-01-01

    Full Text Available Shape memory alloys (SMAs are a relatively new class of functional materials, exhibiting special thermomechanical behaviors, such as shape memory effect and superelasticity, which enable their applications in seismic engineering as energy dissipation devices. This paper investigates the properties of superelastic NiTi shape memory alloys, emphasizing the influence of strain rate on superelastic behavior under various strain amplitudes by cyclic tensile tests. A novel constitutive equation based on Graesser and Cozzarelli’s model is proposed to describe the strain-rate-dependent hysteretic behavior of superelastic SMAs at different strain levels. A stress variable including the influence of strain rate is introduced into Graesser and Cozzarelli’s model. To verify the effectiveness of the proposed constitutive equation, experiments on superelastic NiTi wires with different strain rates and strain levels are conducted. Numerical simulation results based on the proposed constitutive equation and experimental results are in good agreement. The findings in this paper will assist the future design of superelastic SMA-based energy dissipation devices for seismic protection of structures.

  12. Supplement to CCM.D-K4 'Hydrometer' report: linkage of EURAMET.M.D-K4 comparison, SIM.M.D-K4 comparison and the supplementary SIM.M.D-S2 to CCM.D-K4 'Hydrometer'

    Science.gov (United States)

    Lorefice, S.; Becerra, L. O.

    2017-01-01

    Evaluation of different types of comparisons to a common set of reference values of a CIPM key comparison is essential to satisfy the concept of the CIPM Mutual Recognition Arrangement (CIPM MRA), where the DoEs of any participant who took part in comparisons should be within the Calibration and Measurement Capability (CMC) section of the CIPM MRA Key Comparison Data Base. The subject of this supplementary report is therefore to present the equivalence of each National Metrological Institute (NMI) participant in the CCM.D-K4 'Hydrometer' key comparison, which was performed in the density range 600 kg/m3 to 2000 kg/m3 at the temperature of 20 °C, and the linkage of the European and Inter-American NMI results performed in the RMO.M.D-K4 comparisons as well as those of the supplementary SIM.M.D-S2 to the common set of KCRVs of the CCM.D-K4 'Hydrometer'. The linking procedure has been obtained by numerical simulation, based on the Monte Carlo method, in which the differences in the results of the different comparison between the intended laboratory and one or more linking laboratory/ies, which took part in both comparisons, are correlated with a continuous function describing the DoEs of the linking laboratory/ies with respect to the common set of KCRVs of the CCM.D-K4. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  13. Improved Large-Scale Inundation Modelling by 1D-2D Coupling and Consideration of Hydrologic and Hydrodynamic Processes - a Case Study in the Amazon

    Science.gov (United States)

    Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.

    2015-12-01

    Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple

  14. Application of thermodynamics-based rate-dependent constitutive models of concrete in the seismic analysis of concrete dams

    Directory of Open Access Journals (Sweden)

    Leng Fei

    2008-09-01

    Full Text Available This paper discusses the seismic analysis of concrete dams with consideration of material nonlinearity. Based on a consistent rate-dependent model and two thermodynamics-based models, two thermodynamics-based rate-dependent constitutive models were developed with consideration of the influence of the strain rate. They can describe the dynamic behavior of concrete and be applied to nonlinear seismic analysis of concrete dams taking into account the rate sensitivity of concrete. With the two models, a nonlinear analysis of the seismic response of the Koyna Gravity Dam and the Dagangshan Arch Dam was conducted. The results were compared with those of a linear elastic model and two rate-independent thermodynamics-based constitutive models, and the influences of constitutive models and strain rate on the seismic response of concrete dams were discussed. It can be concluded from the analysis that, during seismic response, the tensile stress is the control stress in the design and seismic safety evaluation of concrete dams. In different models, the plastic strain and plastic strain rate of concrete dams show a similar distribution. When the influence of the strain rate is considered, the maximum plastic strain and plastic strain rate decrease.

  15. Constitutional changes and the dilemmas of constitutionalism

    Directory of Open Access Journals (Sweden)

    Arsen Bačić

    2009-01-01

    Full Text Available The need to develop constitutional mechanisms whose aim is to resolve fundamental relations in society demands the widest possible inclusion of all of society’s active participants in the discussion on the need to adopt or revise the Constitution. The opening of every new round of constitutional changes is of great importance because it always unlocks certain new and important questions. The answers to those questions should be offered by state authority (policy and civil society including science and its disciplines. In this paper, the author mentions several topics which are of interest in the current discussion on the significance of current constitutional changes for the future of the development of constitutionalism and democracy in the Republic of Croatia. These are above all topics of political and legal constitutionalism and suggestions linked to strengthening the independence of judicial powers. The author advocates consistent application of constitutional control and check mechanisms which exclude all insularity of judicial powers in relation to democratic control.

  16. A constitutive model for magnetostriction based on thermodynamic framework

    International Nuclear Information System (INIS)

    Ho, Kwangsoo

    2016-01-01

    This work presents a general framework for the continuum-based formulation of dissipative materials with magneto–mechanical coupling in the viewpoint of irreversible thermodynamics. The thermodynamically consistent model developed for the magnetic hysteresis is extended to include the magnetostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well as magnetization is derived from thermodynamic and dissipative potentials in accordance with the general principles of thermodynamics. It is then demonstrated that the constitutive model is competent to describe the magneto-mechanical behavior by comparing simulation results with the experimental data reported in the literature. - Highlights: • A thermodynamically consistent model is proposed to describe the magneto-mechanical coupling effect. • Internal state variables are introduced to capture the dissipative material response. • The evolution rate of the magnetostrictive strain is derived through thermodynamic and dissipation potentials.

  17. Amylose primitive médiastinale d'aspect pseudotumoral

    Science.gov (United States)

    Mahfoudhi, Madiha; Mamlouk, Habiba; Turki, Sami; Kheder, Adel

    2015-01-01

    L'amylose primitive médiastinale isolée est rare et de diagnostic difficile. Nous rapportons l'observation d'un patient âgé de 41 ans ayant présenté une dyspnée et des crachats hémoptoïques. A l'examen physique il n'avait pas d'hypotension orthostatique. Les aires ganglionnaires périphériques étaient libres. La tomodensitométrie thoracique a objectivé un magma d'adénopathies médiastinales réalisant une masse de 45 mm x 60 mm. L'examen anatomopathologique d'une biopsie ganglionnaire guidée par médiastinoscopie a conclut a une amylose médiastinale de type AL. Il n'avait pas d'autres localisations amyloïdes. Un myélome multiple a été éliminé. Le diagnostic d'amylose primitive médiastinale de type AL a été retenu. Le traitement s'est basé sur des cures de Melphalan-prednisone. La chirurgie était évitée vu le risque hémorragique élevé. L’évolution était marquée par l'amélioration de la dyspnée, la disparition de l'hémoptysie et la diminution de la taille de la masse ganglionnaire devenant 25 mm x 20 mm. PMID:26308913

  18. Constitutive modeling for uniaxial time-dependent ratcheting of SS304 stainless steel

    International Nuclear Information System (INIS)

    Kan Qianhua; Kang Guozheng; Zhang Juan

    2007-01-01

    Based on the experimental results of uniaxial time-dependent ratcheting behavior of SS304 stainless steel at room temperature and 973K, a new time-dependent constitutive model was proposed. The model describes the time-dependent ratcheting by adding a static/thermal recovery into the Abdel-Karim-Ohno non-linear kinematic hardening rule. The capability of the model to describe the time-dependent ratcheting was discussed by comparing the simulations with the corresponding experimental results. It is shown that the revised unified viscoplastic model can simulate the time-dependent ratcheting reasonably both at room and high temperatures. (authors)

  19. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A unified elasto-viscoplastic constitutive model

    International Nuclear Information System (INIS)

    Chen, Ming-Song; Lin, Y.C.; Li, Kuo-Kuo; Chen, Jian

    2016-01-01

    In authors' previous work (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0371-6, 2016), the nonlinear unloading behavior of a typical Ni-based superalloy was investigated by hot compressive experiments with intermediate unloading-reloading cycles. The characters of unloading curves were discussed in detail, and a new elasto-viscoplastic constitutive model was proposed to describe the nonlinear unloading behavior of the studied Ni-based superalloy. Still, the functional relationships between the deformation temperature, strain rate, pre-strain and the parameters of the proposed constitutive model need to be established. In this study, the effects of deformation temperature, strain rate and pre-strain on the parameters of the new constitutive model proposed in authors' previous work (Chen et al. 2016) are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate and pre-strain. (orig.)

  20. Homogenised constitutive model dedicated to reinforced concrete plates subjected to seismic solicitations

    International Nuclear Information System (INIS)

    Combescure, Christelle

    2013-01-01

    Safety reassessments are periodically performed on the EDF nuclear power plants and the recent seismic reassessments leaded to the necessity of taking into account the non-linear behaviour of materials when modeling and simulating industrial structures of these power plants under seismic solicitations. A large proportion of these infrastructures is composed of reinforced concrete buildings, including reinforced concrete slabs and walls, and literature seems to be poor on plate modeling dedicated to seismic applications for this material. As for the few existing models dedicated to these specific applications, they present either a lack of dissipation energy in the material behaviour, or no micromechanical approach that justifies the parameters needed to properly describe the model. In order to provide a constitutive model which better represents the reinforced concrete plate behaviour under seismic loadings and whose parameters are easier to identify for the civil engineer, a constitutive model dedicated to reinforced concrete plates under seismic solicitations is proposed: the DHRC (Dissipative Homogenised Reinforced Concrete) model. Justified by a periodic homogenisation approach, this model includes two dissipative phenomena: damage of concrete matrix and internal sliding at the interface between steel rebar and surrounding concrete. An original coupling term between damage and sliding, resulting from the homogenisation process, induces a better representation of energy dissipation during the material degradation. The model parameters are identified from the geometric characteristics of the plate and a restricted number of material characteristics, allowing a very simple use of the model. Numerical validations of the DHRC model are presented, showing good agreement with experimental behaviour. A one dimensional simplification of the DHRC model is proposed, allowing the representation of reinforced concrete bars and simplified models of rods and wire mesh

  1. Hyper-elastic modeling and mechanical behavior investigation of porous poly-D-L-lactide/nano-hydroxyapatite scaffold material.

    Science.gov (United States)

    Han, Quan Feng; Wang, Ze Wu; Tang, Chak Yin; Chen, Ling; Tsui, Chi Pong; Law, Wing Cheung

    2017-07-01

    Poly-D-L-lactide/nano-hydroxyapatite (PDLLA/nano-HA) can be used as the biological scaffold material in bone tissue engineering as it can be readily made into a porous composite material with excellent performance. However, constitutive modeling for the mechanical response of porous PDLLA/nano-HA under various stress conditions has been very limited so far. In this work, four types of fundamental compressible hyper-elastic constitutive models were introduced for constitutive modeling and investigation of mechanical behaviors of porous PDLLA/nano-HA. Moreover, the unitary expressions of Cauchy stress tensor have been derived for the PDLLA/nano-HA under uniaxial compression (or stretch), biaxial compression (or stretch), pure shear and simple shear load by using the theory of continuum mechanics. The theoretical results determined from the approach based on the Ogden compressible hyper-elastic constitutive model were in good agreement with the experimental data from the uniaxial compression tests. Furthermore, this approach can also be used to predict the mechanical behaviors of the porous PDLLA/nano-HA material under the biaxial compression (or stretch), pure shear and simple shear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. PC (programmable controller) 'HISEC 04-M/D, DG for industrial plant control

    International Nuclear Information System (INIS)

    Takakura, Mitsuro; Tennichi, Yasuhiro; Kato, Takayoshi; Yamaoka, Hiromasa

    1986-01-01

    While the decentralization and total digitization of control system have advanced, programmable controllers that electric control engineers can easily handle have developed in their function and performance. Besides, recent control system became large scale and complex, on the other hand, the needs of improving product quality and productivity increased, accordingly, the programmable controllers which can meet higher function and rapid control and realize the minimum interface in both hardware and software have been demanded. Hitachi Ltd. has completed the programmable controller ''HISEC 04-M/OG'', in which the heightening of performance was planned, the multiple controller system having process input and output equipments in common can be made, and the economical efficiency was pursued by adopting optical multiple transmission system, so as to be able to build up an optimum decentralized system. In this report, the outline of HISEC 04-M/D, DG and the function, a typical system constitution, and the function of a programming and debugging tool are described. When high reliability is required, a tripled system is offered. In this case, a multiport process input/output equipment is connected to three CPUs. (Kako, I.)

  3. A Prospect and Challenges for Adopting Constitutional Complaint and Constitutional Question in the Indonesian Constitutional Court

    OpenAIRE

    Faiz, Pan Mohamad

    2016-01-01

    A jurisdiction of the Indonesian Constitutional Court concerning constitutional adjudication is only limited to review the constitutionality of national law. There is no mechanism for challenging any decision or action made by public authorities that violate fundamental rights enshrined in the Indonesian Constitution. This article argues that constitutional complaint and constitutional question might be adopted as new jurisdictions of the Indonesian Constitutional Court in order to strengthen...

  4. Testing constitutive relations by running and walking on cornstarch and water suspensions

    Science.gov (United States)

    Mukhopadhyay, Shomeek; Allen, Benjamin; Brown, Eric

    2018-05-01

    The ability of a person to run on the surface of a suspension of cornstarch and water has fascinated scientists and the public alike. However, the constitutive relation obtained from traditional steady-state rheology of cornstarch and water suspensions has failed to explain this behavior. In another paper we presented an averaged constitutive relation for impact rheology consisting of an effective compressive modulus of a system-spanning dynamically jammed structure [R. Maharjan et al., this issue, Phys. Rev. E 97, 052602 (2018), 10.1103/PhysRevE.97.052602]. Here we show that this constitutive model can be used to quantitatively predict, for example, the trajectory and penetration depth of the foot of a person walking or running on cornstarch and water. The ability of the constitutive relation to predict the material behavior in a case with different forcing conditions and flow geometry than it was obtained from suggests that the constitutive relation could be applied more generally. We also present a detailed calculation of the added mass effect to show that while it may be able to explain some cases of people running or walking on the surface of cornstarch and water for pool depths H >1.2 m and foot impact velocities VI>1.7 m/s, it cannot explain observations of people walking or running on the surface of cornstarch and water for smaller H or VI.

  5. The development of 99mTc-d, 1-HM-PAO

    International Nuclear Information System (INIS)

    Bai Lanqin; Huang Jinjie; Fan Li; Bai Suzhen; Li Guoli; Jing Hui; Xiao Lun

    1991-12-01

    The 99m Tc-d,1-HM-PAO is an ideal radiopharmaceutical for regional cerebral blood perfusion imaging. The improvement of synthesis and separation of diastereoisomers leads to obtain high purity (>99%) of d, 1-HM-PAO and meso-HM-PAO. During separation H NMR spectroscopy was used to monitor the relative composition of these two diastereoisomers that can ensure the purity of pligand of d,1-HM-PAO. The intravenous injection of 99m Tc-d,1-HM-PAO was formed by adding fresh 99m Tc washing liquor into a sterile. Pyrogen-free and freeze-dried vial. The radiochemical purity (RCP) of 99m Tc-d,1-HM-PAO was greater than 80%. From the experiments of 99m Tc-d,1-HM-PAO in mice, after two minutes of intravenously (I>V>) administration about 2.24% of injected dose (I.D.)appeared in the brain, and after 24 hours about 72% of radioactivity of injected dose still left in the brain. But for the 99m Tc-meso-HM-PAO after two minutes of i.v. administration, about 1.93% of I.D. appeared in the brain, and 24 hours later, 25% of radioactivity of I.D. was in the brain. This result shows that in the brain the radioactivity of 99m Tc-meso-HM-PAO declines faster than that of 99m Td-d,1-HM-PAO

  6. Computational analysis and modeling of cleavage by the immunoproteasome and the constitutive proteasome

    Directory of Open Access Journals (Sweden)

    Lafuente Esther M

    2010-09-01

    Full Text Available Abstract Background Proteasomes play a central role in the major histocompatibility class I (MHCI antigen processing pathway. They conduct the proteolytic degradation of proteins in the cytosol, generating the C-terminus of CD8 T cell epitopes and MHCI-peptide ligands (P1 residue of cleavage site. There are two types of proteasomes, the constitutive form, expressed in most cell types, and the immunoproteasome, which is constitutively expressed in mature dendritic cells. Protective CD8 T cell epitopes are likely generated by the immunoproteasome and the constitutive proteasome, and here we have modeled and analyzed the cleavage by these two proteases. Results We have modeled the immunoproteasome and proteasome cleavage sites upon two non-overlapping sets of peptides consisting of 553 CD8 T cell epitopes, naturally processed and restricted by human MHCI molecules, and 382 peptides eluted from human MHCI molecules, respectively, using N-grams. Cleavage models were generated considering different epitope and MHCI-eluted fragment lengths and the same number of C-terminal flanking residues. Models were evaluated in 5-fold cross-validation. Judging by the Mathew's Correlation Coefficient (MCC, optimal cleavage models for the proteasome (MCC = 0.43 ± 0.07 and the immunoproteasome (MCC = 0.36 ± 0.06 were obtained from 12-residue peptide fragments. Using an independent dataset consisting of 137 HIV1-specific CD8 T cell epitopes, the immunoproteasome and proteasome cleavage models achieved MCC values of 0.30 and 0.18, respectively, comparatively better than those achieved by related methods. Using ROC analyses, we have also shown that, combined with MHCI-peptide binding predictions, cleavage predictions by the immunoproteasome and proteasome models significantly increase the discovery rate of CD8 T cell epitopes restricted by different MHCI molecules, including A*0201, A*0301, A*2402, B*0702, B*2705. Conclusions We have developed models that are specific

  7. [Constitutional mismatch repair deficiency syndrome

    NARCIS (Netherlands)

    Jongmans, M.C.J.; Gidding, C.E.M.; Loeffen, J.; Wesseling, P.; Mensenkamp, A.; Hoogerbrugge, N.

    2015-01-01

    BACKGROUND: Constitutional mismatch repair deficiency (CMMR-D) syndrome is characterised by a significantly increased risk for developing cancer in childhood. It arises when both parents have a mutation in the same mismatch repair gene and pass it on to their child. CASE DESCRIPTION: An 8-year-old

  8. 2D electromagnetic modelling of superconductors

    International Nuclear Information System (INIS)

    Morandi, Antonio

    2012-01-01

    Some issues concerning the numerical analysis of superconductors are discussed and a novel approach to 2D modelling is proposed. Both axial and translational symmetric as well as current driven and voltage driven systems are examined in detail. The E–J power law is chosen instead of the critical state model as a constitutive relation of the material and the need to modify this relation in order to account for the normal state transition at high currents is discussed. A linear space reconstruction of the current density by means of nodal shape functions is used in order to build the finite dimensional model. A method to relax the tangential continuity of the current density, which is inherent to the discretization method used, is discussed. The performance of the proposed approach, both in terms of current distribution and AC loss, is evaluated with reference to some cases of practical interest involving composite materials. The role of the electric field as a natural state variable for superconducting problems is also pointed out. The use of the method as an alternative to the circuit approach or edge elements for modelling the superconductors is finally discussed. (paper)

  9. A new constitutive model for prediction of springback in sheet metal forming

    International Nuclear Information System (INIS)

    Appiah, E.; Jain, M.

    2004-01-01

    With advances in computer capabilities, cost of sheet metal forming has being reducing mainly due to the reduction of trial and error approaches. At the moment, a complete process can be simulated on computer and appropriate forming conditions optimized before actual industrial forming process is carried out. While formability predictions have improved, the problem of springback exhibited by most metal, including aluminum alloy AA6111-T4, after forming persist and often leads to significant part fit-up problems during assembly. There are a number of factors that affect springback and perhaps the most significant one is constitutive equation. In this paper springback predicted by six advanced kinematic models are evaluated. In addition an improved constitutive kinematic model is presented. It is shown that by adding stress correction term (SCT) to Armstrong-Frederick model a relatively simple and yet accurate stress prediction could be obtained. The SCT was developed with the assumption that the yield surface remains convex, yield center depends on translation, size and shape variations of the yield surface. The model is implemented in a commercial finite element code (ABAQUS/Standard) via its user material interface (UMAT). Numerical simulations of U-bending were performed using automotive aluminum sheet material (AA6111-T4). It was noted that springback has inverse relationship with residual stress

  10. A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part II - Validation and localization analysis

    Science.gov (United States)

    Das, Arghya; Tengattini, Alessandro; Nguyen, Giang D.; Viggiani, Gioacchino; Hall, Stephen A.; Einav, Itai

    2014-10-01

    We study the mechanical failure of cemented granular materials (e.g., sandstones) using a constitutive model based on breakage mechanics for grain crushing and damage mechanics for cement fracture. The theoretical aspects of this model are presented in Part I: Tengattini et al. (2014), A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables, Part I - Theory (Journal of the Mechanics and Physics of Solids, 10.1016/j.jmps.2014.05.021). In this Part II we investigate the constitutive and structural responses of cemented granular materials through analyses of Boundary Value Problems (BVPs). The multiple failure mechanisms captured by the proposed model enable the behavior of cemented granular rocks to be well reproduced for a wide range of confining pressures. Furthermore, through comparison of the model predictions and experimental data, the micromechanical basis of the model provides improved understanding of failure mechanisms of cemented granular materials. In particular, we show that grain crushing is the predominant inelastic deformation mechanism under high pressures while cement failure is the relevant mechanism at low pressures. Over an intermediate pressure regime a mixed mode of failure mechanisms is observed. Furthermore, the micromechanical roots of the model allow the effects on localized deformation modes of various initial microstructures to be studied. The results obtained from both the constitutive responses and BVP solutions indicate that the proposed approach and model provide a promising basis for future theoretical studies on cemented granular materials.

  11. Translational Modeling in Schizophrenia: Predicting Human Dopamine D2 Receptor Occupancy.

    Science.gov (United States)

    Johnson, Martin; Kozielska, Magdalena; Pilla Reddy, Venkatesh; Vermeulen, An; Barton, Hugh A; Grimwood, Sarah; de Greef, Rik; Groothuis, Geny M M; Danhof, Meindert; Proost, Johannes H

    2016-04-01

    To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs. A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information. To predict the passive transport across the human blood-brain barrier, apparent permeability values were scaled based on rat and human brain endothelial surface area. Active efflux clearance in brain was scaled from rat to human using both human brain endothelial surface area and MDR1 expression. Binding constants at the D2 receptor were scaled based on the differences between in vitro and in vivo systems of the same species. The predictive power of this physiology-based approach was determined by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at clinically relevant doses. Predicted human D2RO was in good agreement with clinically observed D2RO for five antipsychotics. Models using in vitro information predicted human D2RO well for most of the compounds evaluated in this analysis. However, human D2RO was under-predicted for haloperidol. The rat hybrid PBPKPD model structure, integrated with in vitro information and human pharmacokinetic and physiological information, constitutes a scientific basis to predict the time course of D2RO in man.

  12. Constitutional Models of Semi-Presidential Systems of Government in Russia and Poland

    Directory of Open Access Journals (Sweden)

    Davor Boban

    2006-01-01

    Full Text Available The establishment of new political systems in Central and Eastern Europe after the collapse of communist regimes implied a decision on a new system of government instead of the earlier proclaimed assembly system. The position of the framers of the Constitution on the need for a strong institution of state presidency during the transition process, and the correlation of forces between diff erent actors in the political arena, have resulted in the establishment of the semi-presidential system in many of these countries. In Russia and Poland, with the fi rst modifi cations of their Constitutions, some elements of semi-presidentialism were adopted, and then the whole concept of semi-presidentialism has been accepted. The constitutional models in the two countries are compatible with the criteria of semi-presidential systems – they have a dual structure of the executive branch of government and a fi xed term of the state president elected on the general elections and politically unaccountable to the parliament. The political practice in these countries during the last fi fteen years has shown diff erent eff ects of the established system. In Russia, the state president dominated so much over the political system that the system was virtually presidential, while in Poland the constitutional changes in 1990, 1992 and 1997 have resulted in the change of the correlation of forces within the dual structure of the executive branch of government.

  13. Modeling the Radial Color Profile of M31

    Directory of Open Access Journals (Sweden)

    Semionov D.

    2003-12-01

    Full Text Available We present a preliminary study of a fragment of the radial color profile of the spiral galaxy M 31 in terms of 2-D model accounting for internal extinction in the disk. The two stellar population disk model was assumed. The old dust-free disk population is represented by the double exponential law, and the young disk population, well mixed with the dust, resides in spiral arms of various scale-heights. We find a good agreement among the radial color B-R profiles produced by this simple model and the profile measured around the spiral arm S4 of M 31.

  14. Viscoplastic behaviour including damage for deep argillaceous rocks: from in situ observations to constitutives equations

    International Nuclear Information System (INIS)

    Souley, Mountaka; Ghoreychi, Mehdi; Armand, Gilles

    2010-01-01

    viscoplastic model which aims to improve the viscoplastic strain prediction in the EDZ (Excavated Damaged Zone) is proposed by introducing damage variable in Lemaitre's model. The mains characteristics of the model are: (a) the short-term behaviour is based on a generalized Hoek-Brown model; (b) the long-term behaviour is based on the modified Lemaitre's model, the changes of viscoplastic strain rates due to damage (in pre peak phase) and failure (post-peak and residual phases) are taken into account by varying the creep activation energy and the strain-hardening as a function of the current damage rate. In addition, in order to prevent the overestimation of volumetric strain the associated flow rule initially assumed is revisited for the short term behaviour. The proposed model is implemented in FLAC3D C . In order to verify both constitutive equations and their implementations, several simulations of classical laboratory tests (uniaxial/triaxial, mono/multi stage creep and relaxation) are performed. As practical applications, the proposed model has been used to predict the behaviour of two galleries of the laboratory (at -490 m level): parallel and perpendicular to the major horizontal stress. Comparison between predicted results and the in situ measurements are then presented and discussed Finally the model limitations as well as possible improvements are discussed in this paper. (authors)

  15. Empirical study of 99Tcm-HYNIC-A(D) A(D) APRPG in rabbit model of inflammation and VX2 tumor xenografted

    International Nuclear Information System (INIS)

    Liu Ciyi; Song Shaoli; Xie Wenhui; Cai Xiaojia; Zhang Lihua; Huang Gang

    2011-01-01

    Objective: To investigate the uptake of 99 Tc m -hydrazinonicotinamide-D-alanine- D-alanine-alanine-proline-arginine-proline-glycine (HYNIC-A(D) A(D) APRPG) in rabbit models of inflammation and VX2 tumor xenografted, so as to evaluate its use as a new tracer for tumor angiogenesis. Methods: Ten rabbit models of xenoplanted VX2 tumor and inflammation were randomly divided into two groups which were injected with different injected tracers, 99 Tc m -HYNIC-A(D) A (D)APRPG 99 Tc m -RGD, followed by serial Gamma images at various time points. The first group underwent 18 F-FDG PET ahead of 99 Tc m -HYNICA(D)A (D) APRPG SPECT. Analysis of variance and t-test were performed with SPSS 10.0. Results: 99 Tc m -HYNIC-A(D) A (D)APRPG scan showed negative uptake at inflammation focus but positive uptake at tumor. Pathological examination confirmed high 99 Tc m -HYNIC-A(D)A(D) APRPG accumulation in tumor cells, with the highest tumor/inflammation ratio (3.25±0.171) at 2 h post-injection, which was significantly higher than that of 99 Tc m -RGD (2.37±0.076) (F = 15.63, P 99 Tc m -HYNIC-A(D)A(D)APRPG, 99 Tc m -RGD, 18 F-FDG were significantly different at 0.5, 1, 2, 3, 6 h (F=13.83∼26.41; t =23.84, 12.75; all P 99 Tc m -HYNIC-A (D) A (D)APRPG can be used as a potential tracer for tumor angiogenesis. (authors)

  16. Validation of a New Elastoplastic Constitutive Model Dedicated to the Cyclic Behaviour of Brittle Rock Materials

    Science.gov (United States)

    Cerfontaine, B.; Charlier, R.; Collin, F.; Taiebat, M.

    2017-10-01

    Old mines or caverns may be used as reservoirs for fuel/gas storage or in the context of large-scale energy storage. In the first case, oil or gas is stored on annual basis. In the second case pressure due to water or compressed air varies on a daily basis or even faster. In both cases a cyclic loading on the cavern's/mine's walls must be considered for the design. The complexity of rockwork geometries or coupling with water flow requires finite element modelling and then a suitable constitutive law for the rock behaviour modelling. This paper presents and validates the formulation of a new constitutive law able to represent the inherently cyclic behaviour of rocks at low confinement. The main features of the behaviour evidenced by experiments in the literature depict a progressive degradation and strain of the material with the number of cycles. A constitutive law based on a boundary surface concept is developed. It represents the brittle failure of the material as well as its progressive degradation. Kinematic hardening of the yield surface allows the modelling of cycles. Isotropic softening on the cohesion variable leads to the progressive degradation of the rock strength. A limit surface is introduced and has a lower opening than the bounding surface. This surface describes the peak strength of the material and allows the modelling of a brittle behaviour. In addition a fatigue limit is introduced such that no cohesion degradation occurs if the stress state lies inside this surface. The model is validated against three different rock materials and types of experiments. Parameters of the constitutive laws are calibrated against uniaxial tests on Lorano marble, triaxial test on a sandstone and damage-controlled test on Lac du Bonnet granite. The model is shown to reproduce correctly experimental results, especially the evolution of strain with number of cycles.

  17. A comparative study of the constitutive models for silicon carbide

    Science.gov (United States)

    Ding, Jow-Lian; Dwivedi, Sunil; Gupta, Yogendra

    2001-06-01

    Most of the constitutive models for polycrystalline silicon carbide were developed and evaluated using data from either normal plate impact or Hopkinson bar experiments. At ISP, extensive efforts have been made to gain detailed insight into the shocked state of the silicon carbide (SiC) using innovative experimental methods, viz., lateral stress measurements, in-material unloading measurements, and combined compression shear experiments. The data obtained from these experiments provide some unique information for both developing and evaluating material models. In this study, these data for SiC were first used to evaluate some of the existing models to identify their strength and possible deficiencies. Motivated by both the results of this comparative study and the experimental observations, an improved phenomenological model was developed. The model incorporates pressure dependence of strength, rate sensitivity, damage evolution under both tension and compression, pressure confinement effect on damage evolution, stiffness degradation due to damage, and pressure dependence of stiffness. The model developments are able to capture most of the material features observed experimentally, but more work is needed to better match the experimental data quantitatively.

  18. On the constitutive description of the microinteractions concept in steam explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Yuen, W.W.; Theofanous, T.G. [Univ. of California, Santa Barbara, CA (United States)

    1995-09-01

    This paper elaborates on the constitutive description of the {open_quotes}microinteraction{close_quotes} model used by the computer code ESPROSE.m to simulate the propagation phase of steam explosions. The approach is based on a series of experiments, in the SIGMA-2000 facility, involving molten drops of tin made to explode under sustained pressure fields; an environment similar to that of a fully-developed large-scale detonation. The experimental ranges cover shock pressures of up to 204 bar, melt temperatures of up to 1800{degrees}C, and series of isothermal runs, using gallium drops, are also included. The results indicate that, to a first approximation, the basic form of the constitutive laws hypothesized in the original formulation of ESPROSE.m is appropriate. Moreover, through detailed comparison of data with numerical experiments, certain parameters appearing in these laws could be identified quantitatively.

  19. Constitutive Modelling and Deformation Band Angle Predictions for High Porosity Sandstones

    Science.gov (United States)

    Richards, M. C.; Issen, K. A.; Ingraham, M. D.

    2017-12-01

    The development of a field-scale deformation model requires a constitutive framework that is capable of representing known material behavior and able to be calibrated using available mechanical response data. This work employs the principle of hyperplasticity (e.g., Houlsby and Puzrin, 2006) to develop such a constitutive framework for high porosity sandstone. Adapting the works of Zimmerman et al. (1986) and Collins and Houlsby (1997), the mechanical data set of Ingraham et al. (2013 a, b) was used to develop a specific constitutive framework for Castlegate sandstone, a high porosity fluvial-deposited reservoir analog rock. Using the mechanical data set of Ingraham et al. (2013 a, b), explicit expressions and material parameters of the elastic moduli and strain tensors were obtained. With these expressions, analytical and numerical techniques were then employed to partition the total mechanical strain into elastic, coupled, and plastic strain components. With the partitioned strain data, yield surfaces in true-stress space, coefficients of internal friction, dilatancy factors, along with the theorectical predictions of the deformation band angles were obtained. These results were also evaluated against band angle values obtained from a) measurements on specimen jackets (Ingraham et al., 2013a), b) plane fits through located acoustic emissions (AE) events (Ingraham et al. 2013b), and c) X-ray micro-computed tomography (micro-CT) calculations.

  20. Examination of constitutive model for evaluating long-term mechanical behavior of buffer (II). Document prepared by other organization, based on the trust contract

    International Nuclear Information System (INIS)

    Shigeno, Yoshimasa; Namikawa, Tsutomu; Takaji, Kazuhiko

    2003-02-01

    On the R and D of the high-level radioactive waste repository, it is essential that Engineered Barrier System (EBS) is stable mechanically over a long period of time for maintaining each ability required to EBS. After closing the repository, the various external forces will be affected to buffer intricately for a long period of time. So, to make clear the mechanical deformation behavior of buffer against the external force is important, because of carrying out safety assessment of EBS accurately. In this report, reversal sets of parameters are chosen for the previously selected constitutive models, Sekiguchi-Ohta model and Adachi-Oka model and the element tests are simulated using these parameters. Through the simulation, applicability of the constitutive models and these parameters is examined. Using these parameters, sensitivity analysis of prototype EBS model is also done. Analysis is carried out with two cases. 1: Settlement of the over with no corrosion expansion. 2: Settlement of the over pack with corrosion expansion. The results of the analysis area as follows. Settlement by the weight is mainly affected by the viscous parameters. The whole destruction of the EBS does not occur with any set of applicable parameters. Viscous parameters are important to evaluate the effect of the over pack expansion on surrounding rocks. (author)

  1. A constitutive model of nanocrystalline metals based on competing grain boundary and grain interior deformation mechanisms

    KAUST Repository

    Gurses, Ercan; El Sayed, Tamer S.

    2011-01-01

    In this work, a viscoplastic constitutive model for nanocrystalline metals is presented. The model is based on competing grain boundary and grain interior deformation mechanisms. In particular, inelastic deformations caused by grain boundary

  2. Modeling the Constitutive Relationship of Al–0.62Mg–0.73Si Alloy Based on Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Ying Han

    2017-03-01

    Full Text Available In this work, the hot deformation behavior of 6A02 aluminum alloy was investigated by isothermal compression tests conducted in the temperature range of 683–783 K and strain-rate range of 0.001–1 s−1. According to the obtained true stress–true strain curves, the constitutive relationship of the alloy was revealed by establishing the Arrhenius-type constitutive model and back-propagation (BP neural network model. It is found that the flow characteristic of 6A02 aluminum alloy is closely related to deformation temperature and strain rate, and the true stress decreases with increasing temperatures and decreasing strain rates. The hot deformation activation energy is calculated to be 168.916 kJ mol−1. The BP neural network model with one hidden layer and 20 neurons in the hidden layer is developed. The accuracy in prediction of the Arrhenius-type constitutive model and BP neural network model is eveluated by using statistics analysis method. It is demonstrated that the BP neural network model has better performance in predicting the flow stress.

  3. Modelling of constitutive behavior of sand in the low stress regime: an implementation of SANISAND

    DEFF Research Database (Denmark)

    Latini, Chiara; Zania, Varvara; Tamagnini, Claudio

    2017-01-01

    The paper provides background information for the modification of SANISAND (2004) constitutive model in order to capture the mechanical behavior of sand in the low stress regime. In the implementation of this model in finite element programs, computational difficulties arise due to the gradient...

  4. Constitutive relation of concrete containing meso-structural characteristics

    Directory of Open Access Journals (Sweden)

    Li Guo

    Full Text Available A constitutive model of concrete is proposed based on the mixture theory of porous media within thermodynamic framework. By treating concrete as a multi-phase multi-component mixture, we constructed the constitutive functions for elastic, interfacial, and plastic strain energy respectively. A constitutive law of concrete accommodating internal micro-cracks and interfacial boundaries was established. The peak stress predicted with the developed model depends primarily on the volume ratio of aggregate, and the results explain very well reported experimental phenomena. The strain-stress curve under uniaxial loading was found in a good agreement with experimental data for concrete with three different mixing proportions. Keywords: Constitutive model of concrete, Mixture theory of porous media, Meso-structure, Interfacial energy

  5. A constitutive model for representing coupled creep, fracture, and healing in rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Bodner, S.R.; Munson, D.E.; Fossum, A.F.

    1996-01-01

    The development of a constitutive model for representing inelastic flow due to coupled creep, damage, and healing in rock salt is present in this paper. This model, referred to as Multimechanism Deformation Coupled Fracture model, has been formulated by considering individual mechanisms that include dislocation creep, shear damage, tensile damage, and damage healing. Applications of the model to representing the inelastic flow and fracture behavior of WIPP salt subjected to creep, quasi-static loading, and damage healing conditions are illustrated with comparisons of model calculations against experimental creep curves, stress-strain curves, strain recovery curves, time-to-rupture data, and fracture mechanism maps

  6. Constitutive Models

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Piccolo, Chiara; Heitzig, Martina

    2011-01-01

    covered, illustrating several models such as the Wilson equation and NRTL equation, along with their solution strategies. A section shows how to use experimental data to regress the property model parameters using a least squares approach. A full model analysis is applied in each example that discusses...... the degrees of freedom, dependent and independent variables and solution strategy. Vapour-liquid and solid-liquid equilibrium is covered, and applications to droplet evaporation and kinetic models are given....

  7. Direct measurement of α_Q_E_D(m_Z"2) at the FCC-ee

    International Nuclear Information System (INIS)

    Janot, Patrick

    2016-01-01

    When the measurements from the FCC-ee become available, an improved determination of the standard-model “input' parameters will be needed to fully exploit the new precision data towards either constraining or fitting the parameters of beyond-the-standard-model theories. Among these input parameters is the electromagnetic coupling constant estimated at the Z mass scale, α_Q_E_D(m_Z"2). The measurement of the muon forward-backward asymmetry at the FCC-ee, just below and just above the Z pole, can be used to make a direct determination of α_Q_E_D(m_Z"2) with an accuracy deemed adequate for an optimal use of the FCC-ee precision data.

  8. 4D modeling of salt-sediment interactions during diapir evolution

    Energy Technology Data Exchange (ETDEWEB)

    Callot, J.P.; Rondon, D.; Letouzey, J. [IFP, Rueil Malmaison (France); Krajewski, P. [Gaz de France-PEG, Lingen (Germany); Rigollet, C. [Gaz de France, St. Denis la Plaine (France)

    2007-09-13

    We performed sand/silicon models imaged with X-ray tomography and reconstructed by 3D geomodelling for the study of (1) the interaction between host rock and salt diapir during diapir growth, and (2) the evolution of intra salt brittle rocks during diapir ascent. X-ray tomography is a non destructive imaging technique which allows us to follow the 4D evolution of the analogue model. Salt is modelled by Newtonian silicone putty and the internal rock layer, as well as the sedimentary host rock, by a granular Mohr-Coulomb material, generally coryndon. The analogue models are then compared to natural examples, the evolution of which is obtained through 3D restoration of the structures. (1) A 4D evolutionary scenario for a salt diapir development was originally proposed by Trusheim (1960) and discussed later on by Vendeville (1999) among others (Ge et al., 1997; Zirngast et al., 1996). This scenario is reproduced through analogue models to test the relative importance of (1) extensional tectonics, (2) sediment progradations, and (3) source layer depletion and rim-syncline touchdown, in the evolution of a diapir. The comparison of our results with the restored natural analogue shows that the main parameter remains (1) the rim-syncline touchdown and (2) the unloading of the diapir due to erosion. The latter accounts for a drop in strength necessary to allow for the flank rotation and down building of the diapir. Extensional stresses and sediment progradations will also amplify the halokinesis. (2) Salt diapirs from the Middle East or in Southern Permian Basin petroleum province show exotic blocks at outcrop and in salt mines, known as 'stringers' in subsurface data, usually composed of anhydrite, dolomite, marls or carbonates. These stringers, which constitute major structures inside the salt diapir, can reach a few km in size and originate from pre-existing brittle rock layers embedded in the salt layer. Stringers of the Ara carbonate within the Precambrian

  9. Constitutive equations for extensional flow of wormlike micelles : stability analysis of the Bautista-Manero model

    NARCIS (Netherlands)

    Boek, E.S.; Padding, J.T.; Anderson, V.J.; Tardy, P.M.J.; Crawshaw, J.P.; Pearson, J.R.A.

    2005-01-01

    We carry out a stability analysis of the Bautista-Manero (B-M) constitutive equations for extensional flow of wormlike micelles. We show that all solutions for the steady-state extensional viscosity ¿E are unstable when the elongational rates e exceed some critical value. In some cases the only real

  10. Constitutive Theories of Self-Knowledge and the Regress Problem ...

    African Journals Online (AJOL)

    ... on the other hand, hold that self-knowledge is constitutive of intentional states. That is, self-ascription is a necessary condition for being in a particular mental state. Akeel Bilgrami is a defender of the constitutive model. I argue that the constitutive model gives rise to a regress problem. This paper will focus on that problem ...

  11. A multiphase constitutive model of reinforced soils accounting for soil-inclusion interaction behaviour

    OpenAIRE

    BENNIS, M; DE BUHAN, P

    2003-01-01

    A two-phase continuum description of reinforced soil structures is proposed in which the soil mass and the reinforcement network are treated as mutually interacting superposed media. The equations governing such a model are developed in the context of elastoplasticity, with special emphasis put on the soil/reinforcement interaction constitutive law. As shown in an illustrative example, such a model paves the way for numerically efficient design methods of reinforced soil structures.

  12. Positronium formation and hydrated positron reactions in H2O, D2O, 1.74 M PPS/H2O and 1.74 M PPS/D2O solutions of Cl−, Br− and I−

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Pedersen, Niels Jørgen

    1986-01-01

    Angular correlation of annihilation photons were measured for H2O, D2O, 1.74 M PPS/H2O and 1.74 M PPS/D2O solutions of Cl−, Br− and I−. The three components of the angular correlation spectra for D2O and H2O were nearly identical in shape. The positronium (Ps) yields for the H2O and D2O solutions...... before annihilation (lifetime 400 ps) was determined for the three halides in the four solvents. Simple kinetic equations (“trapping model”) with time dependent rate constant, solved analytically, could explain the [X−, e+] formation in H2O fairly well for concentrations below 0.03 M X−, if a diffusion...... controlled reaction with positron diffusion constant D = 5 × 10−5 cm2/s and reaction radius R = 1 nm were assumed. The three halides gave roughly identical [X−, e+] formation below 0.03 M X−. The difference between the four solutions could be explained partly only in terms of viscosity change for the model...

  13. Constitutive modeling of the passive inflation-extension behavior of the swine colon.

    Science.gov (United States)

    Patel, Bhavesh; Chen, Huan; Ahuja, Aashish; Krieger, Joshua F; Noblet, Jillian; Chambers, Sean; Kassab, Ghassan S

    2018-01-01

    In the present work, we propose the first structural constitutive model of the passive mechanical behavior of the swine colon that is validated against physiological inflation-extension tests, and accounts for residual strains. Sections from the spiral colon and the descending colon were considered to investigate potential regional variability. We found that the proposed constitutive model accurately captures the passive inflation-extension behavior of both regions of the swine colon (coefficient of determination R 2 =0.94±0.02). The model revealed that the circumferential muscle layer does not provide significant mechanical support under passive conditions and the circumferential load is actually carried by the submucosa layer. The stress analysis permitted by the model showed that the colon tissue can distend up to 30% radially without significant increase in the wall stresses suggesting a highly compliant behavior of the tissue. This is in-line with the requirement for the tissue to easily accommodate variable quantities of fecal matter. The analysis also showed that the descending colon is significantly more compliant than the spiral colon, which is relevant to the storage function of the descending colon. Histological analysis showed that the swine colon possesses a four-layer structure similar to the human colon, where the longitudinal muscle layer is organized into bands called taeniae, a typical feature of the human colon. The model and the estimated parameters can be used in a Finite Element framework to conduct simulations with realistic geometry of the swine colon. The resulting computational model will provide a foundation for virtual assessment of safe and effective devices for the treatment of colonic diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. 3D BUILDING MODELING IN LOD2 USING THE CITYGML STANDARD

    Directory of Open Access Journals (Sweden)

    D. Preka

    2016-10-01

    Full Text Available Over the last decade, scientific research has been increasingly focused on the third dimension in all fields and especially in sciences related to geographic information, the visualization of natural phenomena and the visualization of the complex urban reality. The field of 3D visualization has achieved rapid development and dynamic progress, especially in urban applications, while the technical restrictions on the use of 3D information tend to subside due to advancements in technology. A variety of 3D modeling techniques and standards has already been developed, as they gain more traction in a wide range of applications. Such a modern standard is the CityGML, which is open and allows for sharing and exchanging of 3D city models. Within the scope of this study, key issues for the 3D modeling of spatial objects and cities are considered and specifically the key elements and abilities of CityGML standard, which is used in order to produce a 3D model of 14 buildings that constitute a block at the municipality of Kaisariani, Athens, in Level of Detail 2 (LoD2, as well as the corresponding relational database. The proposed tool is based upon the 3DCityDB package in tandem with a geospatial database (PostgreSQL w/ PostGIS 2.0 extension. The latter allows for execution of complex queries regarding the spatial distribution of data. The system is implemented in order to facilitate a real-life scenario in a suburb of Athens.

  15. Does HDR Pre-Processing Improve the Accuracy of 3D Models Obtained by Means of two Conventional SfM-MVS Software Packages? The Case of the Corral del Veleta Rock Glacier

    Directory of Open Access Journals (Sweden)

    Álvaro Gómez-Gutiérrez

    2015-08-01

    Full Text Available The accuracy of different workflows using Structure-from-Motion and Multi-View-Stereo techniques (SfM-MVS is tested. Twelve point clouds of the Corral del Veleta rock glacier, in Spain, were produced with two different software packages (123D Catch and Agisoft Photoscan, using Low Dynamic Range images and High Dynamic Range compositions (HDR for three different years (2011, 2012 and 2014. The accuracy of the resulting point clouds was assessed using benchmark models acquired every year with a Terrestrial Laser Scanner. Three parameters were used to estimate the accuracy of each point cloud: the RMSE, the Cloud-to-Cloud distance (C2C and the Multiscale-Model-to-Model comparison (M3C2. The M3C2 mean error ranged from 0.084 m (standard deviation of 0.403 m to 1.451 m (standard deviation of 1.625 m. Agisoft Photoscan overcome 123D Catch, producing more accurate and denser point clouds in 11 out 12 cases, being this work, the first available comparison between both software packages in the literature. No significant improvement was observed using HDR pre-processing. To our knowledge, this is the first time that the geometrical accuracy of 3D models obtained using LDR and HDR compositions are compared. These findings may be of interest for researchers who wish to estimate geomorphic changes using SfM-MVS approaches.

  16. Potential constitutive models for salt: Survey of phenomenology, micromechanisms, and equations

    International Nuclear Information System (INIS)

    Senseny, P.E.; Hansen, F.D.

    1987-12-01

    Results are given of a literature survey performed to document the thermomechanical phenomena and micromechanical processes observed for salt over the ranges of stress and temperature of interest for a high-level nuclear repository. The elastic and thermal expansion behavior of salt can be readily modeled by the generalized Duhamel Neumann form of Hooke's law with temperature-dependent elastic constants and coefficient of thermal expansion. Inelastic deformation is primarily viscoplastic, but also has a brittle component. The observed phenomenological behavior of salt occurs because of micromechanical processes. To the extent that these processes have been studied, a summary of deformation mechanisms in natural salt is included in this report. Eight constitutive models that appear to be capable of modeling the viscoplastic deformation have been selected from the literature. Two models have been selected to model brittle deformation. Insufficient data are available to develop a model for failure. 92 refs., 39 figs., 6 tabs

  17. Constitutional judges (guarantee of the Constitution and responsibility

    Directory of Open Access Journals (Sweden)

    Francisco Javier Ansuátegui Roig

    2012-06-01

    Full Text Available My aim in this paper is to propose a reflection on the position and the importance that the constitutional judge has in the legal systems of contemporary constitutionalism. The figure of the judge responsible of protecting the Constitution is a key institution, without which we cannot understand the laws of constitutional democracies, their current lines of development, and the guarantee of rights and freedoms that constitute the normative core of these systems. Moreover, the reflection on the exercise of the powers of the judge, its scope and its justification is an important part of contemporary legal discussion, still relevant, albeit not exclusively - in the field of legal philosophy. The object of attention of my reflection is the judge who has the power of judicial review, in a scheme of defense of the Constitution, regardless the specific ways of this defense.

  18. Structural characterization and viscoelastic constitutive modeling of skin.

    Science.gov (United States)

    Sherman, Vincent R; Tang, Yizhe; Zhao, Shiteng; Yang, Wen; Meyers, Marc A

    2017-04-15

    A fascinating material, skin has a tensile response which exhibits an extended toe region of minimal stress up to nominal strains that, in some species, exceed 1, followed by significant stiffening until a roughly linear region. The large toe region has been attributed to its unique structure, consisting of a network of curved collagen fibers. Investigation of the structure of rabbit skin reveals that it consists of layers of wavy fibers, each one with a characteristic orientation. Additionally, the existence of two preferred layer orientations is suggested based on the results of small angle X-ray scattering. These observations are used to construct a viscoelastic model consisting of collagen in two orientations, which leads to an in-plane anisotropic response. The structure-based model presented incorporates the elastic straightening and stretching of fibrils, their rotation towards the tensile axis, and the viscous effects which occur in the matrix of the skin due to interfibrillar and interlamellar sliding. The model is shown to effectively capture key features which dictate the mechanical response of skin. Examination by transmission and scanning electron microscopy of rabbit dermis enabled the identification of the key elements in its structure. The organization of collagen fibrils into flat fibers was identified and incorporated into a constitutive model that reproduces the mechanical response of skin. This enhanced quantitative predictive capability can be used in the design of synthetic skin and skin-like structures. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. A thermodynamically and microscopically motivated constitutive model for piezoceramics

    International Nuclear Information System (INIS)

    Kamlah, M.; Wang, Z.

    2003-07-01

    This progress report presents a thermodynamically and microscopically motivated constitutive model for piezoceramics within the framework of a research project supported by the Deutsche Forschungsgemeinschaft. This project is aimed at developing a finite element tool for the analysis of piezoceramic components taking into account the full range of large signal electromechanical hysteresis effects exhibited by these materials. Such a tool is necessary for the stress analysis being the basis for a reliability assessment of piezoceramic devices subject to domain switching processes. In a first step, the hysteresis phenomena of piezoceramics and their microscopic origin were discussed, and the phenomena to be described were selected. Concerning the balance laws, the simplest form consisting of balance of momentum and Gauss' Law was derived by physically motivated assumptions step by step from nonlinear thermomechanics and Maxwell's Equations. Revision of the current literature revealed that a commonly accepted thermodynamic framework for phenomenological modeling has been established in the international scientific discussion. (orig.)

  20. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran

    2012-11-09

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.

  1. Quantitative LC-MS Provides No Evidence for m6 dA or m4 dC in the Genome of Mouse Embryonic Stem Cells and Tissues.

    Science.gov (United States)

    Schiffers, Sarah; Ebert, Charlotte; Rahimoff, René; Kosmatchev, Olesea; Steinbacher, Jessica; Bohne, Alexandra-Viola; Spada, Fabio; Michalakis, Stylianos; Nickelsen, Jörg; Müller, Markus; Carell, Thomas

    2017-09-04

    Until recently, it was believed that the genomes of higher organisms contain, in addition to the four canonical DNA bases, only 5-methyl-dC (m 5 dC) as a modified base to control epigenetic processes. In recent years, this view has changed dramatically with the discovery of 5-hydroxymethyl-dC (hmdC), 5-formyl-dC (fdC), and 5-carboxy-dC (cadC) in DNA from stem cells and brain tissue. N 6 -methyldeoxyadenosine (m 6 dA) is the most recent base reported to be present in the genome of various eukaryotic organisms. This base, together with N 4 -methyldeoxycytidine (m 4 dC), was first reported to be a component of bacterial genomes. In this work, we investigated the levels and distribution of these potentially epigenetically relevant DNA bases by using a novel ultrasensitive UHPLC-MS method. We further report quantitative data for m 5 dC, hmdC, fdC, and cadC, but we were unable to detect either m 4 dC or m 6 dA in DNA isolated from mouse embryonic stem cells or brain and liver tissue, which calls into question their epigenetic relevance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ab-initio study of the stability of the D8{sub m}-Nb{sub 5}Sn{sub 2}Ga and D8{sub m}-Ta{sub 5}SnGa{sub 2} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Colinet, Catherine, E-mail: ccolinet@simap.grenoble-inp.fr [Science et Ingénierie des Matériaux et Procédés, Grenoble INP, UJF, CNRS, 38402 Saint Martin d’Hères Cedex (France); Tedenac, Jean-Claude [Institut de Chimie Moléculaire et des Matériaux I.C.G., UMR-CNRS 5253, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5 (France)

    2015-03-15

    Graphical abstract: Thermodynamic data along the sections Ta{sub 5}Sn{sub 3}–Ta{sub 5}Ga{sub 3} at low and high temperature. - Highlights: • First principles calculations were performed along sections V{sub 5}Sn{sub 3}–V{sub 5}Ga{sub 3}, Nb{sub 5}Sn{sub 3}–Nb{sub 5}Ga{sub 3}, and Ta{sub 5}Sn{sub 3}–Ta{sub 5}Ga{sub 3}. • The ternary compound D8{sub m}-Nb{sub 5}Sn{sub 2}Ga is stable. • The phase D8{sub m}-Ta{sub 5}SnGa{sub 2} is stable in the D8{sub m} structure. • In this phase, the Sn and Ga atoms share the 8h sites. - Abstract: First principles calculations have been performed in the T–Sn–Ga (T = V, Nb, Ta) systems along the section x{sub T} = 0.625. The enthalpies of formation of the binary and ternary D8{sub m}, D8{sub 1}, and D8{sub 8} structures have been calculated. In the V–Sn–Ga system, no ternary structure is stable in the section. In the Nb–Sn–Ga system, the ternary compound D8{sub m}-Nb{sub 5}Sn{sub 2}Ga is stable. In the Ta–Sn–Ga system, a combination of the ab-initio calculations and Gibbs energy calculations using the sublattice model allows the show that the phase D8{sub m}-Ta{sub 5}(Sn,Ga){sub 2}Ga with a mixed occupancy of the 8h sites of the structure by Ga and Sn atoms is stable at high temperature due to the configurational entropy. These results are in agreement with the experimental determinations previously published in the literature.

  3. A constitutive model for the forces of a magnetic bearing including eddy currents

    Science.gov (United States)

    Taylor, D. L.; Hebbale, K. V.

    1993-01-01

    A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.

  4. Finite Element Implementation of a Structurally-Motivated Constitutive Relation for the Human Abdominal Aortic Wall with and without Aneurysms

    DEFF Research Database (Denmark)

    Enevoldsen, Marie Sand; Henneberg, Kaj-Åge; Lönn, L

    2011-01-01

    aneurysm (AAA) patients. Next the constitu-tive model is implemented in an anisotropic 3D FEM formula-tion for future simulation of intact aortic geometries. The 2D simulations of the biaxial test experiment show good agree-ment with experimental data with a standard deviation below 0.5% in all cases...

  5. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Brian T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-19

    A new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. As a result through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.

  6. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-19

    Here, a new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.

  7. Modélisation du champ magnétique d'un propulseur M.H.D. annulaire

    Science.gov (United States)

    Kom, C. H.; Brunet, Y.

    1995-01-01

    Stray fields have to be as small as possible to reduce the magnetic signature of the vessel in M.H.D. propulsion where the magnetic field has to be very high. The calculation of the magnetic field of an angular M.H.D. thruster is presented. The field is produced by a distribution of superconducting magnets in the shape of sectors. An analytical formulation of the field can be used in the active zone, outside the coil ends. An analytical method using a Fourier development of the current sheets is employed for an inductor in cylindrical sectors, and a direct method is used for a massive inductor. Numerical and analytical results are compared. Pour des raisons de discrétion, les champs de fuite doivent être minimisés en propulsion M.H.D. où les champs magnétiques doivent être intenses. Le calcul du champ magnétique d'un propulseur M.H.D. naval annulaire, constitué de secteurs inducteurs supraconducteurs est représenté. Dans la zone active, hors des têtes de bobines, une formulation analytique peut être utilisée. Une méthode analytique utilisant le développemment en série de Fourier du courant est adoptée pour les industeurs cylindriques, et une méthode directe pour les inducteurs massifs. Les résultats numériques sont comparés à ceux obtenus avec un logiciel d'éléments finis 2D.

  8. 2D numerical comparison between S{sub n} and M{sub 1} radiation transport methods

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Matthias [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, calle Jose Gutierrez Abascal 2, 28006 Madrid (Spain)], E-mail: matthias@din.upm.es; Garcia-Fernandez, Carlos [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, calle Jose Gutierrez Abascal 2, 28006 Madrid (Spain)], E-mail: carlos@din.upm.es; Velarde, Pedro [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, calle Jose Gutierrez Abascal 2, 28006 Madrid (Spain)], E-mail: velarde@din.upm.es

    2009-07-15

    In this article we study the accuracy of the M{sub 1} method to solve some relevant radiation transport problems in 2D. We compare two radiation models (S{sub n} and M{sub 1}) with analytical and numerical tests to highlight the strengths and limitations of each method. These methods give comparable results except when sharp geometry effects are present. We have used these methods in a test that mimics, without fluid motion or electron heat conduction, the cone-target interaction relevant to inertial confinement fusion physics. In this case, we show that S{sub n} and M{sub 1} models agree with a quite good accuracy but shows differences in the temperature profiles and heating times inside the target. These results point out that M{sub 1} is a possible alternative candidate for 3D simulations, where full energy transport methods are extremely computer time consuming.

  9. Failure Behavior and Constitutive Model of Weakly Consolidated Soft Rock

    Directory of Open Access Journals (Sweden)

    Wei-ming Wang

    2013-01-01

    Full Text Available Mining areas in western China are mainly located in soft rock strata with poor bearing capacity. In order to make the deformation failure mechanism and strength behavior of weakly consolidated soft mudstone and coal rock hosted in Ili No. 4 mine of Xinjiang area clear, some uniaxial and triaxial compression tests were carried out according to the samples of rocks gathered in the studied area, respectively. Meanwhile, a damage constitutive model which considered the initial damage was established by introducing a damage variable and a correction coefficient. A linearization process method was introduced according to the characteristics of the fitting curve and experimental data. The results showed that samples under different moisture contents and confining pressures presented completely different failure mechanism. The given model could accurately describe the elastic and plastic yield characteristics as well as the strain softening behavior of collected samples at postpeak stage. Moreover, the model could precisely reflect the relationship between the elastic modulus and confining pressure at prepeak stage.

  10. Modélisation du champ magnétique d'un propulseur M.H.D. annulaire

    OpenAIRE

    Kom , C.; Brunet , Y.

    1995-01-01

    Pour des raisons de discrétion, les champs de fuite doivent être minimisés en propulsion M.H.D. où les champs magnétiques doivent être intenses. Le calcul du champ magnétique d'un propulseur M.H.D. naval annulaire, constitué de secteurs inducteurs supraconducteurs est représenté. Dans la zone active, hors des têtes de bobines, une formulation analytique peut être utilisée. Une méthode analytique utilisant le développemment en série de Fourier du courant est adoptée pour les industeurs cylindr...

  11. Digital Geological Model (DGM): a 3D raster model of the subsurface of the Netherlands

    NARCIS (Netherlands)

    Gunnink, J.L.; Maljers, D.; Gessel, S.F. van; Menkovic, A.; Hummelman, H.J.

    2013-01-01

    A 3D geological raster model has been constructed of the onshore of the Netherlands. The model displays geological units for the upper 500 m in 3D in an internally consistent way. The units are based on the lithostratigraphical classification of the Netherlands. This classification is used to

  12. Analysis of 3D models of octopus estrogen receptor with estradiol: evidence for steric clashes that prevent estrogen binding.

    Science.gov (United States)

    Baker, Michael E; Chandsawangbhuwana, Charlie

    2007-09-28

    Relatives of the vertebrate estrogen receptor (ER) are found in Aplysia californica, Octopus vulgaris, Thais clavigera, and Marisa cornuarietis. Unlike vertebrate ERs, invertebrate ERs are constitutively active and do not bind estradiol. To investigate the molecular basis of the absence of estrogen binding, we constructed a 3D model of the putative steroid-binding domain on octopus ER. Our 3D model indicates that binding of estradiol to octopus ER is prevented by steric clashes between estradiol and amino acids in the steroid-binding pocket. In this respect, octopus ER resembles vertebrate estrogen-related receptors (ERR), which have a ligand-binding pocket that cannot accommodate estradiol. Like ERR, octopus ER also may have the activation function 2 domain (AF2) in a configuration that can bind to coactivators in the absence of estrogens, which would explain constitutive activity of octopus ER.

  13. 3D vadose zone modeling using geostatistical inferences

    International Nuclear Information System (INIS)

    Knutson, C.F.; Lee, C.B.

    1991-01-01

    In developing a 3D model of the 600 ft thick interbedded basalt and sediment complex that constitutes the vadose zone at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL) geostatistical data were captured for 12--15 parameters (e.g. permeability, porosity, saturation, etc. and flow height, flow width, flow internal zonation, etc.). This two scale data set was generated from studies of subsurface core and geophysical log suites at RWMC and from surface outcrop exposures located at the Box Canyon of the Big Lost River and from Hell's Half Acre lava field all located in the general RWMC area. Based on these currently available data, it is possible to build a 3D stochastic model that utilizes: cumulative distribution functions obtained from the geostatistical data; backstripping and rebuilding of stratigraphic units; an ''expert'' system that incorporates rules based on expert geologic analysis and experimentally derived geostatistics for providing: (a) a structural and isopach map of each layer, (b) a realization of the flow geometry of each basalt flow unit, and (c) a realization of the internal flow parameters (eg permeability, porosity, and saturation) for each flow. 10 refs., 4 figs., 1 tab

  14. [Learning and Memory Capacity and NMDA Receptor Expression in Shen Deficiency Constitution Rats].

    Science.gov (United States)

    Sun, Yu-ru; Sun, Yao-guang; Zhang, Qi; Wang, Xiao-di; Wang, Xing; Sun, Li-jun

    2016-05-01

    To explore material bases and neurobiological mechanisms of "Shen storing will" by observing learning and memory capacities and N-methyl-D-aspartic acid (NMDA) receptor expressions in Shen deficiency constitution (SDC) rats. Totally 40 SD rats were randomly divided into the model group, the Zuogui Pill (ZP) group, the Yougui Pill (YP) group, the blank control group (consisting of normal pregnant rats), 10 in each group. SDC young rat model (inherent deficiency and postnatal malnutrition) was prepared by the classic way of "cat scaring rat". Medication started when they were scared by cat. Rats in the ZP group and the YP group were administered by gastrogavage with ZP suspension 0.1875 g/mL and YP suspension 0.0938 g/mL respectively. Equal volume of normal saline was administered to rats in the blank control group and the model group by gastrogavage. All medication was given once per day, 5 days in a week for 2 consecutive months. Learning and memory capacities were detected by Morris water maze test. Expressions of NMDA receptor subunits NR2A and NR2B in hippocamus were detected by immunohistochemical method. Compared with the blank control group, the latency period, total distance in Morris water maze test were longer in the model group (P learning and memory capacities and lowered NMDA receptor expressions. ZP and YP could up-regulate learning and memory capacities and NMDA receptor expressions, thereby improving deterioration of brain functions in SDC rats.

  15. Constitutive modeling of strain rate effects in nanocrystalline and ultrafine grained polycrystals

    KAUST Repository

    Gurses, Ercan

    2011-05-01

    We present a variational two-phase constitutive model capable of capturing the enhanced rate sensitivity in nanocrystalline (nc) and ultrafine-grained (ufg) fcc metals. The nc/ufg-material consists of a grain interior phase and a grain boundary affected zone (GBAZ). The behavior of the GBAZ is described by a rate-dependent isotropic porous plasticity model, whereas a rate-independent crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The scale bridging from a single grain to a polycrystal is done by a Taylor-type homogenization. It is shown that the enhanced rate sensitivity caused by the grain size refinement is successfully captured by the proposed model. © 2011 Elsevier Ltd. All rights reserved.

  16. Constitutive modeling of strain rate effects in nanocrystalline and ultrafine grained polycrystals

    KAUST Repository

    Gurses, Ercan; El Sayed, Tamer S.

    2011-01-01

    We present a variational two-phase constitutive model capable of capturing the enhanced rate sensitivity in nanocrystalline (nc) and ultrafine-grained (ufg) fcc metals. The nc/ufg-material consists of a grain interior phase and a grain boundary affected zone (GBAZ). The behavior of the GBAZ is described by a rate-dependent isotropic porous plasticity model, whereas a rate-independent crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The scale bridging from a single grain to a polycrystal is done by a Taylor-type homogenization. It is shown that the enhanced rate sensitivity caused by the grain size refinement is successfully captured by the proposed model. © 2011 Elsevier Ltd. All rights reserved.

  17. Constitutive modelling of sandvik 1RK91

    NARCIS (Netherlands)

    Datta, K.; Datta, K.; Hommes, M.; Post, J.; Geijselaers, Hubertus J.M.; Huetink, Han; Beyer, J.; Onate, E; Owen, D.R.J

    2003-01-01

    A physically based constitutive equation is being developed for the maraging stainless steel Sandvik 1RK91. The steel is used to make precision parts. These parts are formed through multistage forming operations and heat treatments from cold rolled and annealed sheets. The specific alloy is designed

  18. National constitutional courts in the European Constitutional Democracy

    DEFF Research Database (Denmark)

    Komárek, Jan

    2014-01-01

    This article critically assesses the transformation of national constitutional courts’ place in the law and politics of the EU and its member states. This process eliminates the difference between constitutional and ordinary national courts, which is crucial for the institutional implementation...... of the discourse theory of law and democracy. It also disrupts the symbiotic relationship between national constitutional democracies established after World War II and European integration. The article argues that maintaining the special place of national constitutional courts is in the vital interest of both...... the EU and its member states, understood together as the European Constitutional Democracy—the central notion developed in this article in order to support an argument that should speak to both EU lawyers and national constitutionalists....

  19. Towards Viscoplastic Constitutive Models for Cosserat Rods

    Directory of Open Access Journals (Sweden)

    Dörlich Vanessa

    2016-06-01

    Full Text Available Flexible, slender structures like cables, hoses or wires can be described by the geometrically exact Cosserat rod theory. Due to their complex multilayer structure, consisting of various materials, viscoplastic behavior has to be expected for cables under load. Classical experiments like uniaxial tension, torsion or three-point bending already show that the behavior of e.g. electric cables is viscoplastic. A suitable constitutive law for the observed load case is crucial for a realistic simulation of the deformation of a component. Consequently, this contribution aims at a viscoplastic constitutive law formulated in the terms of sectional quantities of Cosserat rods. Since the loading of cables in applications is in most cases not represented by these mostly uniaxial classical experiments, but rather multiaxial, new experiments for cables have to be designed. They have to illustrate viscoplastic effects, enable access to (viscoplastic material parameters and account for coupling effects between different deformation modes. This work focuses on the design of such experiments.

  20. Constitutive model of friction stir weld with consideration of its inhomogeneous mechanical properties

    Science.gov (United States)

    Zhang, Ling; Min, Junying; Wang, Bin; Lin, Jianping; Li, Fangfang; Liu, Jing

    2016-03-01

    In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.

  1. A unified dislocation density-dependent physical-based constitutive model for cold metal forming

    Science.gov (United States)

    Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.

    2017-10-01

    Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.

  2. Inelastic constitutive models for the simulation of a cyclic softening behavior of modified 9Cr-lMo steel at elevated temperatures

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, Jae Han

    2007-01-01

    In this paper, the inelastic constitutive models for the simulations of the cyclic softening behavior of the modified 9Cr-1Mo steel, which has a significant cyclic softening characteristic especially in elevated temperature regions, are investigated in detail. To do this, the plastic modulus, which primarily governs the calculation scheme of the plasticity, is formulated for the inelastic constitutive models such as the Armstrong-Frederick model, Chaboche model, and Ohno-Wang model. By implementing the extracted plastic modulus and the consistency conditions into the computer program, the inelastic constitutive parameters are identified to present the best fit of the uniaxial cyclic test data by strain-controlled simulations. From the computer simulations by using the obtained constitutive parameters, it is found that the Armstrong-Frederick model is simple to use but it causes significant overestimated strain results when compared with the Chaboche and the Ohno-Wang models. And from the ratcheting simulation results, it is found that the cyclic softening behavior of the modified 9Cr-1Mo steel can invoke a ratcheting instability when the applied cyclic loads exceed a certain level of the ratchet loading condition

  3. Constitutional orders in multinational firms

    DEFF Research Database (Denmark)

    Hull Kristensen, Peer; Morgan, Glenn

    Multinationals are faced with the problem of how to coordinate different actors and stop `fiefdoms' emerging that inhibits the achievement of transnational cooperation? We identify this as a problem of `constitutional ordering' in the firm. Drawing on Varieties of Capitalism approaches, we explore...... how multinationals from different contexts seek to create constitutional orders. We argue that the models which exist appear to be destructive of coordination. We explore the implications for MNCs....

  4. 3D finite element modelling of sheet metal blanking process

    Science.gov (United States)

    Bohdal, Lukasz; Kukielka, Leon; Chodor, Jaroslaw; Kulakowska, Agnieszka; Patyk, Radoslaw; Kaldunski, Pawel

    2018-05-01

    The shearing process such as the blanking of sheet metals has been used often to prepare workpieces for subsequent forming operations. The use of FEM simulation is increasing for investigation and optimizing the blanking process. In the current literature a blanking FEM simulations for the limited capability and large computational cost of the three dimensional (3D) analysis has been largely limited to two dimensional (2D) plane axis-symmetry problems. However, a significant progress in modelling which takes into account the influence of real material (e.g. microstructure of the material), physical and technological conditions can be obtained by using 3D numerical analysis methods in this area. The objective of this paper is to present 3D finite element analysis of the ductile fracture, strain distribution and stress in blanking process with the assumption geometrical and physical nonlinearities. The physical, mathematical and computer model of the process are elaborated. Dynamic effects, mechanical coupling, constitutive damage law and contact friction are taken into account. The application in ANSYS/LS-DYNA program is elaborated. The effect of the main process parameter a blanking clearance on the deformation of 1018 steel and quality of the blank's sheared edge is analyzed. The results of computer simulations can be used to forecasting quality of the final parts optimization.

  5. Flood Inundation Modelling in the Kuantan River Basin using 1D-2D Flood Modeller coupled with ASTER-GDEM

    Science.gov (United States)

    Ng, Z. F.; Gisen, J. I.; Akbari, A.

    2018-03-01

    Topography dataset is an important input in performing flood inundation modelling. However, it is always difficult to obtain high resolution topography that provide accurate elevation information. Fortunately, there are some open source topography datasets available with reasonable resolution such as SRTM and ASTER-GDEM. In Malaysia particularly in Kuantan, the modelling research on the floodplain area is still lacking. This research aims to: a) to investigate the suitability of ASTER-GDEM to be applied in the 1D-2D flood inundation modelling for the Kuantan River Basin; b) to generate flood inundation map for Kuantan river basin. The topography dataset used in this study is ASTER-GDEM to generate physical characteristics of watershed in the basin. It is used to perform rainfall runoff modelling for hydrological studies and to delineate flood inundation area in the Flood Modeller. The results obtained have shown that a 30m resolution ASTER-GDEM is applicable as an input for the 1D-2D flood modelling. The simulated water level in 2013 has NSE of 0.644 and RSME of 1.259. As a conclusion, ASTER-GDEM can be used as one alternative topography datasets for flood inundation modelling. However, the flood level obtained from the hydraulic modelling shows low accuracy at flat urban areas.

  6. Modelling the seasonal variation of vitamin D due to sun exposure.

    Science.gov (United States)

    Diffey, B L

    2010-06-01

    The current interest in vitamin D as a preventive agent in many chronic diseases has led to a reappraisal of adequate sun exposure. Yet just what constitutes adequacy remains to be clearly defined and validated. To do this requires an understanding of how behaviour outdoors during the year translates into seasonal changes in vitamin D status. To develop a model for estimating the changes in serum 25-hydroxyvitamin D [25(OH)D] levels as a consequence of sun exposure throughout the year. A novel mathematical model is described that incorporates the changes in serum 25(OH)D following a single, whole-body exposure to solar ultraviolet radiation with daily sun exposure in order to estimate the annual variation in serum 25(OH)D. The model yields results that agree closely with measured data from a large population-based study. Application of the model showed that current advice about 10-20 min of daily sun exposure during the summer months does little in the way of boosting overall 25(OH)D levels, while sufficient sun exposure that could achieve a worthwhile benefit would compromise skin health. There is little in the way of public health advice concerning the benefits of sun exposure that can be given as an effective means of maintaining adequate vitamin D levels throughout the year. Instead it would seem safer and more effective to fortify more foods with vitamin D and/or to consider the use of supplements during the winter months. Messages concerning sun exposure should remain focused on the detrimental effects of excessive sun exposure and should avoid giving specific advice on what might be 'optimal' sun exposure. © 2010 The Authors. Journal Compilation © 2010 British Association of Dermatologists.

  7. Constitutive model for a stress- and thermal-induced phase transition in a shape memory polymer

    International Nuclear Information System (INIS)

    Guo, Xiaogang; Liu, Liwu; Liu, Yanju; Zhou, Bo; Leng, Jinsong

    2014-01-01

    Recently, increasing applications of shape memory polymers have pushed forward the development of appropriate constitutive models for smart materials such as the shape memory polymer. During the heating process, the phase transition, which is a continuous time-dependent process, happens in the shape memory polymer, and various individual phases will form at different configuration temperatures. In addition, these phases can generally be divided into two parts: the frozen and active phase (Liu Y et al 2006 Int. J. Plast. 22 279–313). During the heating or cooling process, the strain will be stored or released with the occurring phase transition between these two parts. Therefore, a shape memory effect emerges. In this paper, a new type of model was developed to characterize the variation of the volume fraction in a shape memory polymer during the phase transition. In addition to the temperature variation, the applied stress was also taken as a significant influence factor on the phase transition. Based on the experimental results, an exponential equation was proposed to describe the relationship between the stress and phase transition temperature. For the sake of describing the mechanical behaviors of the shape memory polymer, a three-dimensional constitutive model was established. Also, the storage strain, which was the key factor of the shape memory effect, was also discussed in detail. Similar to previous works, we first explored the effect of applied stress on storage strain. Through comparisons with the DMA and the creep experimental results, the rationality and accuracy of the new phase transition and constitutive model were finally verified. (paper)

  8. Studies on mechanical behavior of bentonite for development of the constitutive model

    International Nuclear Information System (INIS)

    Sasakura, Tsuyoshi; Kuroyanagi, Mikio; Okamoto, Michitaka

    2002-02-01

    To integrate the system for evaluation of long-term hydraulic condition in near field of TRU waste disposal, series of laboratory tests were conducted to investigate the effect of (1) cation exchange of Na-bentonite for Ca ion, and (2) the swelling behavior of bentonite, on its mechanical and hydraulic properties. For the purpose of this study, same lot of bentonite was used in a series of tests to obtain consistent data. A constitutive model of clayey materials, called Cam-clay model, was expanded conceptually to express the effects mentioned above. The research results of this year are summarized below; 1) Some basic properties such as cation exchange capacity, particle density, grain size distribution, compaction-characteristics and water content were obtained. To examine the effect of previous swelling history of bentonite on its swelling characteristics and hydraulic and mechanical properties, specimens, which generated swelling deformation to various volumetric strain levels, were specially prepared and used in the following tests. Swelling pressure tests, swelling deformation tests, permeability tests were conducted to observe one dimensional swelling characteristics and hydraulic properties of Na-bentonite and Ca-bentonite. High-pressured triaxial consolidated-undrained (CU) compression tests and high-pressured consolidation tests were also carried out to investigate the compression, swelling, and shearing behavior of each type of bentonite. 2) As indicated in previous studies, two important phenomena (1) bentonite possesses remarkable swelling capacity, (2) cation exchange of Na-bentonite for Ca-ion lead increasing of hydraulic conductivity, were confirmed in the test results. From the swelling deformation test results and published data, it was found that swelling capacity of bentonite has no dependency on previous swelling history and it could be easily expressed as a function of void ratio e. It was also confirmed that swelling pressure and water

  9. Thermal constitutive matrix applied to asynchronous electrical machine using the cell method

    Science.gov (United States)

    Domínguez, Pablo Ignacio González; Monzón-Verona, José Miguel; Rodríguez, Leopoldo Simón; Sánchez, Adrián de Pablo

    2018-03-01

    This work demonstrates the equivalence of two constitutive equations. One is used in Fourier's law of the heat conduction equation, the other in electric conduction equation; both are based on the numerical Cell Method, using the Finite Formulation (FF-CM). A 3-D pure heat conduction model is proposed. The temperatures are in steady state and there are no internal heat sources. The obtained results are compared with an equivalent model developed using the Finite Elements Method (FEM). The particular case of 2-D was also studied. The errors produced are not significant at less than 0.2%. The number of nodes is the number of the unknowns and equations to resolve. There is no significant gain in precision with increasing density of the mesh.

  10. A 3D City Model with Dynamic Behaviour Based on Geospatial Managed Objects

    DEFF Research Database (Denmark)

    Kjems, Erik; Kolář, Jan

    2014-01-01

    of a geographic data representation of the world. The combination of 3D city models and real time information based systems though can provide a whole new setup for data fusion within an urban environment and provide time critical information preserving our limited resources in the most sustainable way. Using 3D......One of the major development efforts within the GI Science domain are pointing at real time information coming from geographic referenced features in general. At the same time 3D City models are mostly justified as being objects for visualization purposes rather than constituting the foundation...... occasions we have been advocating for a new and advanced formulation of real world features using the concept of Geospatial Managed Objects (GMO). This chapter presents the outcome of the InfraWorld project, a 4 million Euro project financed primarily by the Norwegian Research Council where the concept...

  11. P.D.M.S. a cad software for the design of new power plants

    International Nuclear Information System (INIS)

    Le Lous, Y.

    1982-01-01

    P.D.M.S. (''Plant Design Management System'') is a computer based management system designed to assist the engineer, with no previous computer knowledge, to solve the problems associated with plant and piping design. The essential feature of P.D.M.S. is that it provides the user with the ability to create a 3D model of his complete plant, by making use of a graphic terminal connected to a computer. The system gives the engineer the powerful advantage over existing techniques that any part of the plant information, which may be required for a specific function, may be retrieved and presented to him in the form most suited to his requirements (i.e. lists of items or fully annotated drawings). P.D.M.S. incorporates advanced facilities to enable engineers to analyse the information for design accuracy and consistency. The project manager can ensure that no errors in the total design due to integration of disciplines within the project, or due to the amalgamation of the work of many designers, who possibly operate in different design centres. P.D.M.S., implemented on an IBM machine of the computer center of Clamart, is being used by the equipment Direction of EDF for the design of new power plants [fr

  12. 75 FR 49994 - James Stephen Ferguson, D.M.D.; Revocation of Registration

    Science.gov (United States)

    2010-08-16

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration [Docket No. 09-64] James Stephen Ferguson, D.M.D.; Revocation of Registration On July 24, 2009, the Deputy Assistant Administrator, Office of Diversion Control, Drug Enforcement Administration (DEA), issued an Order to Show Cause to James Stephen...

  13. Stohastic Properties of Plasticity Based Constitutive Law for Concrete

    DEFF Research Database (Denmark)

    Frier, Christian; Sørensen, John Dalsgaard

    1998-01-01

    The purpose of this paper is to obtain a stochastic model for the parameters in a constitutive model for concrete based on associated plasticity theory and with emphasis placed on the pre-failure range. The constitutive model is based on a Drucker Prager yield surface augmented by a Rankine cut-o...

  14. Stochastic Properties of Plasticity Based Constitutive Law for Concrete

    DEFF Research Database (Denmark)

    Frier, Christian; Sørensen, John Dalsgaard

    The purpose of this paper is to obtain a stochastic model for the parameters in a constitutive model for concrete based on associated plasticity theory and with emphasis placed on the pre-failure range. The constitutive model is based on a Drucker Prager yield surface augmented by a Rankine cut-o...

  15. Kv7 channels can function without constitutive calmodulin tethering.

    Directory of Open Access Journals (Sweden)

    Juan Camilo Gómez-Posada

    Full Text Available M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC, a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function.

  16. On constitutive modelling and information for phenomenal distributed parameter control of multicomponent chemical processes in fluid- and solidphase

    International Nuclear Information System (INIS)

    Niemiec, W.

    1985-01-01

    The problem under consideration is to find common physicochemical conditions of kinetics and phenomena of multicomponent chemical processes in fluid- and solidphase, deciding yield and quality of final products of these processes. The paper is devoted to the construction of a fundamental distributed parameter constitutive theory of physicochemical modelling of these chemical processes treated from the view of isotropic and anisotropic nonhomogeneous media with space and time memories. On the basis of definition of derivative and constitutive equations of continuity, original system of partial differential constitutive state equations are deduced

  17. Seismic fragility of RC shear walls in nuclear power plant Part 1: Characterization of uncertainty in concrete constitutive model

    International Nuclear Information System (INIS)

    Syed, Sammiuddin; Gupta, Abhinav

    2015-01-01

    Highlights: • A framework is proposed for seismic fragility assessment of Reinforced Concrete structures. • Experimentally validated finite element models are used to conduct nonlinear simulations. • Critical parameters in concrete constitutive model are identified to conduct nonlinear simulations. • Uncertainties in model parameters of concrete damage plasticity model is characterized. • Closed form expressions are used to compute the damage variables and plasticity. - Abstract: This two part manuscript proposes a framework for seismic fragility assessment of reinforced concrete structures in nuclear energy facilities. The novelty of the proposed approach lies in the characterization of uncertainties in the parameters of the material constitutive model. Concrete constitutive models that comprehensively address different damage states such as tensile cracking, compression failure, stiffness degradation, and recovery of degraded stiffness due to closing of previously formed cracks under dynamic loading are generally defined in terms of a large number of variables to characterize the plasticity and damage at material level. Over the past several years, many different studies have been presented on evaluation of fragility for reinforced concrete structures using nonlinear time history simulations. However, almost all of these studies do not consider uncertainties in the parameters of a comprehensive constitutive model. Part-I of this two-part manuscript presents a study that is used to identify uncertainties associated with the critical parameters in nonlinear concrete damage plasticity model proposed by Lubliner et al. (1989. Int. J. Solids Struct., 25(3), 299) and later modified by Lee and Fenves (1998a. J. Eng. Mech., ASCE, 124(8), 892) and Lee and Fenves (1998b. Earthquake Eng. Struct. Dyn., 27(9), 937) for the purpose of seismic fragility assessment. The limitations in implementation of the damage plasticity model within a finite element framework and

  18. Seismic fragility of RC shear walls in nuclear power plant Part 1: Characterization of uncertainty in concrete constitutive model

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Sammiuddin [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 426 Mann Hall, Campus Box 7908, Raleigh, NC 27695-7908 (United States); Gupta, Abhinav, E-mail: agupta1@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 413 Mann Hall, Campus Box 7908, Raleigh, NC 27695-7908 (United States)

    2015-12-15

    Highlights: • A framework is proposed for seismic fragility assessment of Reinforced Concrete structures. • Experimentally validated finite element models are used to conduct nonlinear simulations. • Critical parameters in concrete constitutive model are identified to conduct nonlinear simulations. • Uncertainties in model parameters of concrete damage plasticity model is characterized. • Closed form expressions are used to compute the damage variables and plasticity. - Abstract: This two part manuscript proposes a framework for seismic fragility assessment of reinforced concrete structures in nuclear energy facilities. The novelty of the proposed approach lies in the characterization of uncertainties in the parameters of the material constitutive model. Concrete constitutive models that comprehensively address different damage states such as tensile cracking, compression failure, stiffness degradation, and recovery of degraded stiffness due to closing of previously formed cracks under dynamic loading are generally defined in terms of a large number of variables to characterize the plasticity and damage at material level. Over the past several years, many different studies have been presented on evaluation of fragility for reinforced concrete structures using nonlinear time history simulations. However, almost all of these studies do not consider uncertainties in the parameters of a comprehensive constitutive model. Part-I of this two-part manuscript presents a study that is used to identify uncertainties associated with the critical parameters in nonlinear concrete damage plasticity model proposed by Lubliner et al. (1989. Int. J. Solids Struct., 25(3), 299) and later modified by Lee and Fenves (1998a. J. Eng. Mech., ASCE, 124(8), 892) and Lee and Fenves (1998b. Earthquake Eng. Struct. Dyn., 27(9), 937) for the purpose of seismic fragility assessment. The limitations in implementation of the damage plasticity model within a finite element framework and

  19. The mARM3D spatially distributed soil evolution model: Three-dimensional model framework and analysis of hillslope and landform responses

    Science.gov (United States)

    Cohen, Sagy; Willgoose, Garry; Hancock, Greg

    2010-10-01

    We present a three-dimensional landscape-pedogenesis model, mARM3D (matrices ARMOUR 3D), which simulates soil evolution as a function of erosion and pedogenic processes. The model simulates the discretized soil profile for points on a spatial grid. The approach, using transition matrices, is computationally efficient and allows the simulation of large-scale spatial coupling and long-term soil evolution. We study the effect of the depth-dependent soil-weathering rate (i.e., the rate of soil particle breakdown) and bedrock-lowering rate (i.e., the rate of conversion of bedrock to soil). The difference in depth-dependent weathering functions has a significant effect on the in-profile soil properties through depth, specifically particle size grading. However, the depth dependency has a relatively minor effect on the surface properties of the soil profile, with all weathering functions generating very similar surface properties. The surface properties were a function of the cumulative amount of weathering (i.e., the integral of the weathering function over exhumation) with finer surface grading for higher weathering rates. Soil thickness could be estimated without explicitly modeling soil thickness. Thickness was negatively correlated with surface median grain size. As thickness decreases, the surface grading coarsens. This was driven by surface erosion, where as surface grading coarsens, erosion decreases and the soil deepens. Weathering and erosion interact to spatially organize the surface soil grading with a log-log relationship between surface grading, contributing area, and local slope. This relationship was independent of the weathering function. This relationship might be useful for the spatial description of soil properties in digital soil mapping.

  20. A Modified Constitutive Model for Tensile Flow Behaviors of BR1500HS Ultra-High-Strength Steel at Medium and Low Temperature Regions

    Science.gov (United States)

    Zhao, Jun; Quan, Guo-Zheng; Pan, Jia; Wang, Xuan; Wu, Dong-Sen; Xia, Yu-Feng

    2018-01-01

    Constitutive model of materials is one of the most requisite mathematical model in the finite element analysis, which describes the relationships of flow behaviors with strain, strain rate and temperature. In order to construct such constitutive relationships of ultra-high-strength BR1500HS steel at medium and low temperature regions, the true stress-strain data over a wide temperature range of 293-873 K and strain rate range of 0.01-10 s-1 were collected from a series of isothermal uniaxial tensile tests. The experimental results show that stress-strain relationships are highly non-linear and susceptible to three parameters involving temperature, strain and strain rate. By considering the impacts of strain rate and temperature on strain hardening, a modified constitutive model based on Johnson-Cook model was proposed to characterize flow behaviors in medium and low temperature ranges. The predictability of the improved model was also evaluated by the relative error (W(%)), correlation coefficient (R) and average absolute relative error (AARE). The R-value and AARE-value for modified constitutive model at medium and low temperature regions are 0.9915 & 1.56 % and 0.9570 & 5.39 %, respectively, which indicates that the modified constitutive model can precisely estimate the flow behaviors for BR1500HS steel in the medium and low temperature regions.

  1. Calculation of Tsunami Damage and preparation of Inundation Maps by 2D and 3D numerical modeling in Göcek, Turkey

    Science.gov (United States)

    Ozer Sozdinler, C.; Arikawa, T.; Necmioglu, O.; Ozel, N. M.

    2016-12-01

    The Aegean and its surroundings form the most active part of the Africa-Eurasia collision zone responsible for the high level of seismicity in this region. It constitutes more than 60% of the expected seismicity in Europe up to Mw=8.2 (Moratto et al., 2007; Papazachos, 1990). Shaw and Jackson (2010) argued that the existing system of Hellenic Arc subduction-zone is capable of allowing very large but rare earthquakes on splay faults, such as the one occurred in 365, together with the contribution of small earthquakes. Based on an extensive earthquake generated tsunami scenario database, Necmioğlu and Özel (2015) showed that maximum wave heights in the Eastern Mediterranean for shallow earthquakes defined is >3 m in locations in, around and orthogonal to the Hellenic Arc. Considering the seismicity and the tsunami potential in Eastern Mediterranean, the investigation and monitoring of earthquake and tsunami hazard, and the preparation of mitigation strategies and national resilience plans would become inevitable in Turkey. Gocek town, as one of the Tsunami Forecast Points having a unique geography with many small bays and islands and a very popular touristic destination especially for yachtsmen, is selected in this study for the tsunami modeling by using high resolution bathymetric and topographic data with less than 4m grid size. The tsunami analyses are performed by the numerical codes NAMIDANCE (NAMIDANCE,2011) for 2D modeling and STOC-CADMAS (Arikawa,2014) for 3D modeling for the calculations of tsunami hydrodynamic parameters. Froude numbers, as one of the most important indicators for tsunami damage (Ozer, 2012) and the directions of current velocities inside marinas are solved by NAMIDANCE while STOC-CADMAS determines the tsunami pressure and force exerted onto the sea and land structures with 3D and non-hydrostatic approaches. The results are then used to determine the tsunami inundation and structural resilience and establish the tsunami preparedness and

  2. Fully-coupled hydro-mechanical modelling of the D-holes and validation drift inflow

    International Nuclear Information System (INIS)

    Monsen, K.; Barton, N.; Makurat, A.

    1992-02-01

    This report presents the results from fully-coupled hydro-mechanical modelling of the D-hole and drift inflows. Joints represented in Harwells stochastically generated 8m x 8m x 8m cubes were used to select two possible joint geometries for two-dimensional rock mechanics simulations of the 2.8 x 2.2m validation drift, and the rock mass response to its excavation. The joints intersecting the four end faces of these cubes were set up in distinct element UDEC-BB models and loaded with boundary stresses of 10 MPa vertically and 14 MPa horizontally. In numerical models 5 and 8, which were run first as mechanical response (M) models (TR 91-05), full H-M coupling was performed, with calculations of inflow. In general, response to excavation was a little stronger than in hte un-coupled mechanical response (M) modelling. In the D-hole simulations, however, channel development int he disturbed zone could not occur due to less displacement taking place in the rock mass. For this reason, the stress levels were also generally much more moderate, preventing the joints from closing as much as in the drift simulations. Consequently, the D-hole model had a much better radial connectivity. It was possible to observe that the radial inflow to the D-holes was significantly higher than the flow into the drift models. However, due to the extremely small joint apertures involved (<1μm), time steps and calculation times were very slow in the H-M models, and although mechanical behaviour appeared to have reached equilibrium, there was evidence of continued transients in some of the flow regions. The drift excavation caused nearly total closing of critical joints due to local normal stress inceases. Near-blockage of fluid transportation routes was demonstrated. (au)

  3. CONSTITUTIVE MODEL OF STEEL FIBRE REINFORCED CONCRETE SUBJECTED TO HIGH TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Lukas Blesak

    2016-12-01

    Full Text Available Research on structural load-bearing systems exposed to elevated temperatures is an active topic in civil engineering. Carrying out a full-size experiment of a specimen exposed to fire is a challenging task considering not only the preparation labour but also the necessary costs. Therefore, such experiments are simulated using various software and computational models in order to predict the structural behaviour as exactly as possible. In this paper such a procedure, focusing on software simulation, is described in detail. The proposed constitutive model is based on the stress-strain curve and allows predicting SFRC material behaviour in bending at ambient and elevated temperature. SFRC material is represented by the initial linear behaviour, an instantaneous drop of stress after the initial crack occurs and its consequent specific ductility, which influences the overall modelled specimen behaviour under subjected loading. The model is calibrated with ATENA FEM software using experimental results.

  4. Measurement of the Economic Growth and Add-on of the R.M. Solow Adjusted Model

    Directory of Open Access Journals (Sweden)

    Ion Gh. Rosca

    2007-08-01

    Full Text Available Besides the models of M. Keynes, R.F. Harrod, E. Domar, D. Romer, Ramsey-Cass-Koopmans model etc., the R.M. Solow model is part of the category which characterizes the economic growth.The paper aim is the economic growth measurement and add-on of the R.M. Solow adjusted model.

  5. 76 FR 48898 - Robert Leigh Kale, M.D., Decision and Order

    Science.gov (United States)

    2011-08-09

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Robert Leigh Kale, M.D., Decision and Order... Enforcement Administration, issued an Order to Show Cause to Robert Leigh Kale, M.D. (Registrant), of Fort... Certificate of Registration, BK9514375, issued to Robert Leigh Kale, M.D., be, and it hereby is, revoked. I...

  6. Parameterizations of Chromospheric Condensations in dG and dMe Model Flare Atmospheres

    Science.gov (United States)

    Kowalski, Adam F.; Allred, Joel C.

    2018-01-01

    The origin of the near-ultraviolet and optical continuum radiation in flares is critical for understanding particle acceleration and impulsive heating in stellar atmospheres. Radiative-hydrodynamic (RHD) simulations in 1D have shown that high energy deposition rates from electron beams produce two flaring layers at T ∼ 104 K that develop in the chromosphere: a cooling condensation (downflowing compression) and heated non-moving (stationary) flare layers just below the condensation. These atmospheres reproduce several observed phenomena in flare spectra, such as the red-wing asymmetry of the emission lines in solar flares and a small Balmer jump ratio in M dwarf flares. The high beam flux simulations are computationally expensive in 1D, and the (human) timescales for completing NLTE models with adaptive grids in 3D will likely be unwieldy for some time to come. We have developed a prescription for predicting the approximate evolved states, continuum optical depth, and emergent continuum flux spectra of RHD model flare atmospheres. These approximate prescriptions are based on an important atmospheric parameter: the column mass ({m}{ref}) at which hydrogen becomes nearly completely ionized at the depths that are approximately in steady state with the electron beam heating. Using this new modeling approach, we find that high energy flux density (>F11) electron beams are needed to reproduce the brightest observed continuum intensity in IRIS data of the 2014 March 29 X1 solar flare, and that variation in {m}{ref} from 0.001 to 0.02 g cm‑2 reproduces most of the observed range of the optical continuum flux ratios at the peak of M dwarf flares.

  7. Dynamic nanoplatforms in biosensor and membrane constitutional systems.

    Science.gov (United States)

    Mahon, Eugene; Aastrup, Teodor; Barboiu, Mihail

    2012-01-01

    Molecular recognition in biological systems occurs mainly at interfacial environments such as membrane surfaces, enzyme active sites, or the interior of the DNA double helix. At the cell membrane surface, carbohydrate-protein recognition principles apply to a range of specific non-covalent interactions including immune response, cell proliferation, adhesion and death, cell-cell interaction and communication. Protein-protein recognition meanwhile accounts for signalling processes and ion channel structure. In this chapter we aim to describe such constitutional dynamic interfaces for biosensing and membrane transport applications. Constitutionally adaptive interfaces may mimic the recognition capabilities intrinsic to natural recognition processes. We present some recent examples of 2D and 3D constructed sensors and membranes of this type and describe their sensing and transport capabilities.

  8. 76 FR 20032 - Thomas E. Mitchell, M.D.; Dismissal of Proceeding

    Science.gov (United States)

    2011-04-11

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration [Docket No. 10-7] Thomas E. Mitchell, M.D... Control, Drug Enforcement Administration, issued an Order to Show Cause to Thomas E. Mitchell, M.D....100(b) and 0.104, I hereby order that the Order to Show Cause issued to Thomas E. Mitchell, M.D., be...

  9. Waiting time distribution in M/D/1 queueing systems

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk; Staalhagen, Lars

    1999-01-01

    The well-known formula for the waiting time distribution of M/D/1 queueing systems is numerically unsuitable when the load is close to 1.0 and/or the results for a large waiting time are required. An algorithm for any load and waiting time is presented, based on the state probabilities of M/D/1...

  10. 77 FR 7182 - Scott W. Houghton, M.D.; Decision and Order

    Science.gov (United States)

    2012-02-10

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration [Docket No. 12-09] Scott W. Houghton, M.D... CFR 0.100(b), I order that DEA Certificate of Registration BH8796077, issued to Scott W. Houghton, M.D., be, and it hereby is, revoked. I further order that any pending application of Scott W. Houghton, M.D...

  11. Towards an M5-brane model I: A 6d superconformal field theory

    Science.gov (United States)

    Sämann, Christian; Schmidt, Lennart

    2018-04-01

    We present an action for a six-dimensional superconformal field theory containing a non-abelian tensor multiplet. All of the ingredients of this action have been available in the literature. We bring these pieces together by choosing the string Lie 2-algebra as a gauge structure, which we motivated in previous work. The kinematical data contains a connection on a categorified principal bundle, which is the appropriate mathematical description of the parallel transport of self-dual strings. Our action can be written down for each of the simply laced Dynkin diagrams, and each case reduces to a four-dimensional supersymmetric Yang-Mills theory with corresponding gauge Lie algebra. Our action also reduces nicely to an M2-brane model which is a deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) model. While this action is certainly not the desired M5-brane model, we regard it as a key stepping stone towards a potential construction of the (2, 0)-theory.

  12. Direct Detection of Unnatural DNA Nucleotides dNaM and d5SICS using the MspA Nanopore.

    Directory of Open Access Journals (Sweden)

    Jonathan M Craig

    Full Text Available Malyshev et al. showed that the four-letter genetic code within a living organism could be expanded to include the unnatural DNA bases dNaM and d5SICS. However, verification and detection of these unnatural bases in DNA requires new sequencing techniques. Here we provide proof of concept detection of dNaM and d5SICS in DNA oligomers via nanopore sequencing using the nanopore MspA. We find that both phi29 DNA polymerase and Hel308 helicase are capable of controlling the motion of DNA containing dNaM and d5SICS through the pore and that single reads are sufficient to detect the presence and location of dNaM and d5SICS within single molecules.

  13. Essential Medicines in National Constitutions: Progress Since 2008.

    Science.gov (United States)

    Katrina Perehudoff, S; Toebes, Brigit; Hogerzeil, Hans

    2016-06-01

    A constitutional guarantee of access to essential medicines has been identified as an important indicator of government commitment to the progressive realization of the right to the highest attainable standard of health. The objective of this study was to evaluate provisions on access to essential medicines in national constitutions, to identify comprehensive examples of constitutional text on medicines that can be used as a model for other countries, and to evaluate the evolution of constitutional medicines-related rights since 2008. Relevant articles were selected from an inventory of constitutional texts from WHO member states. References to states' legal obligations under international human rights law were evaluated. Twenty-two constitutions worldwide now oblige governments to protect and/or to fulfill accessibility of, availability of, and/or quality of medicines. Since 2008, state responsibilities to fulfill access to essential medicines have expanded in five constitutions, been maintained in four constitutions, and have regressed in one constitution. Government commitments to essential medicines are an important foundation of health system equity and are included increasingly in state constitutions.

  14. A New Material Constitutive Model for Predicting Cladding Failure

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Joe; Dunham, Robert [ANATECH Corp., San Diego, CA (United States); Rashid, Mark [University of California Davis, Davis, CA (United States); Machiels, Albert [EPRI, Palo Alto, CA (United States)

    2009-06-15

    An important issue in fuel performance and safety evaluations is the characterization of the effects of hydrides on cladding mechanical response and failure behavior. The hydride structure formed during power operation transforms the cladding into a complex multi-material composite, with through-thickness concentration profile that causes cladding ductility to vary by more than an order of magnitude between ID and OD. However, current practice of mechanical property testing treats the cladding as a homogeneous material characterized by a single stress-strain curve, regardless of its hydride morphology. Consequently, as irradiation conditions and hydrides evolution change, new material property testing is required, which results in a state of continuous need for valid material property data. A recently developed constitutive model, treats the cladding as a multi-material composite in which the metal and the hydride platelets are treated as separate material phases with their own elastic-plastic and fracture properties and interacting at their interfaces with appropriate constraint conditions between them to ensure strain and stress compatibility. An essential feature of the model is a multi-phase damage formulation that models the complex interaction between the hydride phases and the metal matrix and the coupled effect of radial and circumferential hydrides on cladding stress-strain response. This gives the model the capability of directly predicting cladding failure progression during the loading event and, as such, provides a unique tool for constructing failure criteria analytically where none could be developed by conventional material testing. Implementation of the model in a fuel behavior code provides the capability to predict in-reactor operational failures due to PCI or missing pellet surfaces (MPS) without having to rely on failure criteria. Even, a stronger motivation for use of the model is in the transportation accidents analysis of spent fuel

  15. Constitutive equations for Zr1Nb. II

    International Nuclear Information System (INIS)

    Novak, J.

    1986-01-01

    Based on existing knowledge and constitutive equations for non-irradiated material, constitutive equations were written for Zr1Nb irradiated at 573 K at deformation in the direction of forming. Constitutive equations express the following material characteristics: dependence of shear strength on fast neutron fluence, superposition of deformation hardening and subsequent radiation hardening, the effect of stress on deformation rate, and for fluences above ca. 10 24 n.m -2 (E>1 MeV) the course of the deformation curve for various fluence levels. The values apply for temperatures and rates of deformation which are characteristic of transient processes during changes in the power output of fuel elements of pressurized water reactors. (J.B.)

  16. Integrating surrogate models into subsurface simulation framework allows computation of complex reactive transport scenarios

    Science.gov (United States)

    De Lucia, Marco; Kempka, Thomas; Jatnieks, Janis; Kühn, Michael

    2017-04-01

    Reactive transport simulations - where geochemical reactions are coupled with hydrodynamic transport of reactants - are extremely time consuming and suffer from significant numerical issues. Given the high uncertainties inherently associated with the geochemical models, which also constitute the major computational bottleneck, such requirements may seem inappropriate and probably constitute the main limitation for their wide application. A promising way to ease and speed-up such coupled simulations is achievable employing statistical surrogates instead of "full-physics" geochemical models [1]. Data-driven surrogates are reduced models obtained on a set of pre-calculated "full physics" simulations, capturing their principal features while being extremely fast to compute. Model reduction of course comes at price of a precision loss; however, this appears justified in presence of large uncertainties regarding the parametrization of geochemical processes. This contribution illustrates the integration of surrogates into the flexible simulation framework currently being developed by the authors' research group [2]. The high level language of choice for obtaining and dealing with surrogate models is R, which profits from state-of-the-art methods for statistical analysis of large simulations ensembles. A stand-alone advective mass transport module was furthermore developed in order to add such capability to any multiphase finite volume hydrodynamic simulator within the simulation framework. We present 2D and 3D case studies benchmarking the performance of surrogates and "full physics" chemistry in scenarios pertaining the assessment of geological subsurface utilization. [1] Jatnieks, J., De Lucia, M., Dransch, D., Sips, M.: "Data-driven surrogate model approach for improving the performance of reactive transport simulations.", Energy Procedia 97, 2016, p. 447-453. [2] Kempka, T., Nakaten, B., De Lucia, M., Nakaten, N., Otto, C., Pohl, M., Chabab [Tillner], E., Kühn, M

  17. Dynamic restoration mechanism and physically based constitutive model of 2050 Al–Li alloy during hot compression

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ruihua; Liu, Qing [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Jinfeng, E-mail: lijinfeng@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Xiang, Sheng [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Chen, Yonglai; Zhang, Xuhu [Aerospace Research Institute of Materials and Processing Technology, Beijing 100076 (China)

    2015-11-25

    Dynamic restoration mechanism of 2050 Al–Li alloy and its constitutive model were investigated by means of hot compression simulation in the deformation temperature ranging from 340 to 500 °C and at strain rates of 0.001–10 s{sup −1}. The microstructures of the compressed samples were observed using optical microscopy and transmission electron microscopy. On the base of dislocation density theory and Avrami kinetics, a physically based constitutive model was established. The results show that dynamic recovery (DRV) and dynamic recrystallization (DRX) are co-responsible for the dynamic restoration during the hot compression process under all compression conditions. The dynamic precipitation (DPN) of T1 and σ phases was observed after the deformation at 340 °C. This is the first experimental evidence for the DPN of σ phase in Al–Cu–Li alloys. The particle stimulated nucleation of DRX (PSN-DRX) due to the large Al–Cu–Mn particle was also observed. The error analysis suggests that the established constitutive model can adequately describe the flow stress dependence on strain rate, temperature and strain during the hot deformation process. - Highlights: • The experimental evidence for the DPN of σ phase in Al–Cu–Li alloys was found. • The PSN-DRX due to the large Al–Cu–Mn particle was observed. • A novel method was proposed to calculated the stress multiplier α.

  18. 77 FR 68149 - Karen Paul Holley, M.D.; Decision and Order

    Science.gov (United States)

    2012-11-15

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration [Docket No. 12-51] Karen Paul Holley, M.D... revoke the DEA Certificate of Registration (COR), Number BH8988339, of Karen Paul Holley, M.D....D., 74 FR 17528, 174529 (2009); John B. Freitas, D.O., 74 FR 17524, 17525 (2009); Roger A. Rodriguez...

  19. Development of a viscoplastic constitutive model for deep rocks: concepts And application to the MHM argillite

    International Nuclear Information System (INIS)

    Silvestre, Alexandra; Laigle, Francois

    2012-01-01

    Document available in extended abstract form only. With its long experience in applied numerical modeling, EDF-CIH initiated, ten years ago, the development of a specific constitutive model to reproduce the rock's mechanical behavior during underground cavity excavation. However, this model is not only dedicated to underground openings behavior simulation but it is also established on classical concepts admitted in soils and rocks mechanic. The need to develop this constitutive model, called L and K, first appeared in finding that modeling usually applied by engineers and research units to design underground openings were not be able to find physical behavior and phenomena observed on openings and sites, such as: - The state of stress influence on the development of particular ultimate mechanisms (spalling or squeezing), - The difficulty to identify interpretation criteria for considering, with a pragmatic point of view, the opening security level, according to a stability criterion, - The difficulty to understand and to find delayed degradation and rupture, - The difficulty to simulate the behavior of supports, like grouted bolting, for which the behavior is highly linked to the massif's one. This model was the subject of three thesis: two consecutive ones to establish the concepts and the mathematical formulation, and a third one destined to apply the model in and Hydro-Mechanical configuration. From a conceptual point of view, the constitutive model has to reproduce 'reference' behaviour, characteristic of rock mass, observed on laboratory tests or on feedback from openings. These types of behaviour are mainly: - A non-linear maximum strength threshold, with a friction and dilation angle depending on the state of stress, - The specific evolution of the dilation angle, with a maximal value corresponding to a stress threshold physically linked to the initiation of a bifurcation mode, - The total cancellation of the cohesion for high strains, - The total

  20. Structure and Calibration of Constitutive Equations for Granular Soils

    Directory of Open Access Journals (Sweden)

    Sawicki Andrzej

    2015-02-01

    Full Text Available The form of incremental constitutive equations for granular soils is discussed for the triaxial configuration. The classical elasto-plastic approach and the semi-empirical model are discussed on the basis of constitutive relations determined directly from experimental data. First, the general structure of elasto-plastic constitutive equations is presented. Then, the structure of semiempirical constitutive equations is described, and a method of calibrating the model is presented. This calibration method is based on a single experiment, performed in the triaxial apparatus, which also involves a partial verification of the model, on an atypical stress path. The model is shown to give reasonable predictions. An important feature of the semi-empirical incremental model is the definition of loading and unloading, which is different from that assumed in elasto-plasticity. This definition distinguishes between spherical and deviatoric loading/unloading. The definition of deviatoric loading/unloading has been subject to some criticism. It was therefore discussed and clarified in this paper on the basis of the experiment presented.

  1. Constitutive Relation of Engineering Material Based on SIR Model and HAM

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2014-01-01

    Full Text Available As an epidemic mathematical model, the SIR model represents the transition of the Susceptible, Infected, and Recovered. The profound implication of the SIR model is viewed as the propagation and dynamic evolutionary process of the different internal components and the characteristics in a complex system subject to external effect. The uniaxial stress-strain curve of engineering material represents the basic constitutive relation, which also represents the damage propagation in the units of the damaged member. Hence, a novel dynamic stress-strain model is established based on the SIR model. The analytical solution and the approximate solution for the proposed model are represented according to the homotopy analysis method (HAM, and the relationship of the solution and the size effect and the strain rate is discussed. In addition, an experiment on the size effect of confined concrete is carried out and the solution of SIR model is suitable for simulation. The results show that the mechanical mechanism of the parameters of the uniaxial stress-strain model proposed in this paper reflects the actual characteristics of the materials. The solution of the SIR model can fully and accurately show the change of the mechanical performance and the influence of the size effect and the strain rate.

  2. Creep constitutive equation of dual phase 9Cr-ODS steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Ukai, Shigeharu; Tamura, Manabu; Ohtsuka, Satoshi; Tanigawa, Hiroyasu; Ogiwara, Hiroyuki; Kohyama, Akira; Fujiwara, Masayuki

    2008-01-01

    9Cr-ODS (oxide dispersion strengthened) steels developed by JAEA (Japan Atomic Energy Agency) have superior creep properties compared with conventional heat resistant steels. The ODS steels can enormously contribute to practical applications of fast breeder reactors and more attractive fusion reactors. Key issues are developments of material processing procedures for mass production and creep life prediction methods in present R and D. In this study, formulation of creep constitutive equation was performed against the backdrop. The 9Cr-ODS steel displaying an excellent creep property is a dual phase steel. The ODS steel is strengthened by the δ ferrite which has a finer dispersion of oxide particles and shows a higher hardness than the α' martensite. The δ ferrite functions as a reinforcement in the dual phase 9Cr-ODS steel. Its creep behavior is very unique and cannot be interpreted by conventional theories of heat resistant steels. Alternative qualitative model of creep mechanism was formulated at the start of this study using the results of microstructural observations. Based on the alternative creep mechanism model, a novel creep constitutive equation was formulated using the exponential type creep equation extended by a law of mixture

  3. Constitutive modeling of the rheological behavior of platelet suspensions

    Science.gov (United States)

    Sommer, Drew E.

    Compression molding of chopped fiber composites is used to manufacture complex 3D geometries with high fiber volume fractions of 50-60% and long, discontinuous fibers and thermoplastic matrices. When prepreg, chopped into platelets, is used as a charge material, the individual platelets remain intact during the molding process and flow relative to one another, as experimental observations show. Heterogeneity of the platelet/resin suspension cannot be considered at the structural scale of molding simulation. Instead, the suspension should be idealized into the homogenized anisotropic and viscous system which obeys the prescribed anisotropic stress-strain rate constitutive relation. The viscosity tensor of the aforementioned constitutive law was analytically evaluated in this work through the representative volume element (RVE) based analysis. An idealized microstructure of platelets was developed to perform such an analysis. The platelets were aligned and arranged in a planar configuration with periodic boundary conditions. Analytic expressions for the effective, anisotropic viscosities were derived by micromechanical analysis for the idealized microstructure of rigid platelets. In this analysis, the load transfer mechanisms and their contribution to the viscosity of the platelet assembly were investigated. The kinematic assumption of linear velocity distributions consistent with the mechanism of shearing rate was adopted. While the platelets were assumed to be rigid, the resin was taken as an incompressible, isotropic fluid which provided for the platelet-to-platelet load transfer. Strain rate and temperature dependence were included by modeling the polymer matrix as a Carreau fluid. Shear strain in the resin was developed due to the relative motion of adjacent platelets. The resin shear strain rate was expressed in terms of the corresponding platelet velocities. Equilibrium of the platelet was used to relate the applied far-field stress to the average strain rate

  4. A continuum mechanics constitutive framework for transverse isotropic soft tissues

    Science.gov (United States)

    Garcia-Gonzalez, D.; Jérusalem, A.; Garzon-Hernandez, S.; Zaera, R.; Arias, A.

    2018-03-01

    In this work, a continuum constitutive framework for the mechanical modelling of soft tissues that incorporates strain rate and temperature dependencies as well as the transverse isotropy arising from fibres embedded into a soft matrix is developed. The constitutive formulation is based on a Helmholtz free energy function decoupled into the contribution of a viscous-hyperelastic matrix and the contribution of fibres introducing dispersion dependent transverse isotropy. The proposed framework considers finite deformation kinematics, is thermodynamically consistent and allows for the particularisation of the energy potentials and flow equations of each constitutive branch. In this regard, the approach developed herein provides the basis on which specific constitutive models can be potentially formulated for a wide variety of soft tissues. To illustrate this versatility, the constitutive framework is particularised here for animal and human white matter and skin, for which constitutive models are provided. In both cases, different energy functions are considered: Neo-Hookean, Gent and Ogden. Finally, the ability of the approach at capturing the experimental behaviour of the two soft tissues is confirmed.

  5. Constitutive modeling of two-phase metallic composites with application to tungsten-based composite 93W–4.9Ni–2.1Fe

    International Nuclear Information System (INIS)

    Lu, W.R.; Gao, C.Y.; Ke, Y.L.

    2014-01-01

    The two-phase metallic composites, composed by the metallic particulate reinforcing phase and the metallic matrix phase, have attracted a lot of attention in recent years for their excellent material properties. However, the constitutive modeling of two-phase metallic composites is still lacking currently. Most used models for them are basically oriented for single-phase homogeneous metallic materials, and have not considered the microstructural evolution of the components in the composite. This paper develops a new constitutive model for two-phase metallic composites based on the thermally activated dislocation motion mechanism and the volume fraction evolution. By establishing the relation between microscopic volume fraction and macroscopic state variables (strain, strain rate and temperature), the evolution law of volume fraction during the plastic deformation in two-phase composites is proposed for the first time and introduced into the new model. Then the new model is applied to a typical two-phase tungsten-based composite – 93W–4.9Ni–2.1Fe tungsten heavy alloy. It has been found that our model can effectively describe the plastic deformation behaviors of the tungsten-based composite, because of the introduction of volume fraction evolution and the connecting of macroscopic state variables and micromechanical characteristics in the constitutive model. The model's validation by experimental data indicates that our new model can provide a satisfactory prediction of flow stress for two-phase metallic composites, which is better than conventional single-phase homogeneous constitutive models including the Johnson–Cook (JC), Khan–Huang–Liang (KHL), Nemat-Nasser–Li (NNL), Zerilli–Armstrong (ZA) and Voyiadjis–Abed (VA) models

  6. Political governance and constitution-making in Kenya : in search of popular participation. / J.M. Mukuna.

    OpenAIRE

    Mukuna, J M

    2012-01-01

    This thesis examines the evolving ideal of popular participation in the context of Kenya's experience in the intertwined areas of political governance and constitution-making. The thesis is primarily motivated by the spirit and intent of the country's constitution-making initiatives which commenced in earnest after the 2007 post-election violence in which about 1,300 precious lives were lost, over 300,000 people displaced and property destroyed. The study adopts a qualitative a...

  7. A constitutive model for AS4/PEEK thermoplastic composites under cyclic loading

    Science.gov (United States)

    Rui, Yuting; Sun, C. T.

    1990-01-01

    Based on the basic and essential features of the elastic-plastic response of the AS4/PEEK thermoplastic composite subjected to off-axis cyclic loadings, a simple rate-independent constitutive model is proposed to describe the orthotropic material behavior for cyclic loadings. A one-parameter memory surface is introduced to distinguish the virgin deformation and the subsequent deformation process and to characterize the loading range effect. Cyclic softening is characterized by the change of generalized plastic modulus. By the vanishing yield surface assumption, a yield criterion is not needed and it is not necessary to consider loading and unloading separately. The model is compared with experimental results and good agreement is obtained.

  8. Verification and Validation of a Three-Dimensional Orthotropic Plasticity Constitutive Model Using a Unidirectional Composite

    Directory of Open Access Journals (Sweden)

    Canio Hoffarth

    2017-03-01

    Full Text Available A three-dimensional constitutive model has been developed for modeling orthotropic composites subject to impact loads. It has three distinct components—a deformation model involving elastic and plastic deformations; a damage model; and a failure model. The model is driven by tabular data that is generated either using laboratory tests or via virtual testing. A unidirectional composite—T800/F3900, commonly used in the aerospace industry, is used in the verification and validation tests. While the failure model is under development, these tests indicate that the implementation of the deformation and damage models in a commercial finite element program, LS-DYNA, is efficient, robust and accurate.

  9. [Constitutional mismatch repair-deficiency syndrome (CMMR-D) - a case report of a family with biallelic MSH6 mutation].

    Science.gov (United States)

    Ilenčíková, D

    2012-01-01

    This work gives comprehensive information about new recessively inherited syndrome characterized by development of childhood malignancies. Behind this new described syndrome, called Constitutional mismatch repair-deficiency syndrome (CMMR-D), there are biallelic mutations in genes, which cause adult cancer syndrom termed Lynch syndrom (Hereditary non-polyposis cancer syndrom-HNPCC) if they are heterozygous mutations. Biallelic germline mutations of genes MLH1, MSH2, MSH6 and PMS2 in CMMR-D are characterized by increased risk of hematological malignancies, atypical brain tumors and early onset of colorectal cancers. An accompanying manifestation of the disease are skin spots with diffuse margins and irregular pigmentation reminiscent of Café au lait spots of NF1. This paper reports a case of a family with CMMR-D caused by novel homozygous MSH6 mutations leading to gliomatosis cerebri, T-ALL in an 11-year-old female and glioblastoma multiforme in her 10-year-old brother, both with rapid progression of the diseases. A literature review of brain tumors in CMMR-D families shows that they are treatment-resistant and lead to early death. Therefore, this work highlights the importance of early identification of patients with CMMR-D syndrome - in terms of initiation of a screening program for early detection of malignancies as well as early surgical intervention.

  10. Methodology and application of the WIMS-D4M fission product data

    International Nuclear Information System (INIS)

    Mo, S.C.

    1995-01-01

    The WIMS-D4 code has been modified (WIMS-D4m) to generate burn-up dependent microscopic cross sections for use in full core depletion calculations. The calculation of neutron absorption by fission products can be obtained from a reduced fission-product-chain model that includes the 135 Xe and 149 Sm chains, and a lumped fission product to account for the absorption by fission products not explicitly treated. Burn-up calculations were performed for the ANS MEU core using WIMS and EPRI-CELL cross sections. The calculated eigenvalues and material loadings are in good agreements

  11. Constitutive NADPH-Dependent Electron Transferase Activity of the Nox4 Dehydrogenase Domain?

    OpenAIRE

    Nisimoto, Yukio; Jackson, Heather M.; Ogawa, Hisamitsu; Kawahara, Tsukasa; Lambeth, J. David

    2010-01-01

    NADPH oxidase 4 (Nox4) is constitutively active, while Nox2 requires the cytosolic regulatory subunits p47 phox and p67 phox and activated Rac with activation by phorbol 12-myristate 13-acetate (PMA). This study was undertaken to identify the domain on Nox4 that confers constitutive activity. Lysates from Nox4-expressing cells exhibited constitutive NADPH- but not NADH-dependent hydrogen peroxide production with a K m for NADPH of 55 ? 10 ?M. The concentration of Nox4 in cell lysates was esti...

  12. [Constitutional mismatch repair deficiency syndrome].

    Science.gov (United States)

    Jongmans, Marjolijn C; Gidding, Corrie E; Loeffen, Jan; Wesseling, Pieter; Mensenkamp, Arjen; Hoogerbrugge, Nicoline

    2015-01-01

    Constitutional mismatch repair deficiency (CMMR-D) syndrome is characterised by a significantly increased risk for developing cancer in childhood. It arises when both parents have a mutation in the same mismatch repair gene and pass it on to their child. An 8-year-old girl was diagnosed with CMMR-D syndrome after she developed a brain tumour at the age of 4 and a T-cell non-Hodgkin lymphoma at the age of 6. She had multiple hyperpigmented skin lesions and died of myelodysplastic syndrome at the age of 11. In children with cancer CMMR-D syndrome can be recognized particularly if there are multiple primary malignancies and skin hyperpigmentations and hypopigmentations. The parents of these children are at high risk for colorectal and endometrial cancer (Lynch syndrome), amongst others.

  13. Associations of ACE I/D, AGT M235T gene polymorphisms with pregnancy induced hypertension in Chinese population: a meta-analysis.

    Science.gov (United States)

    Zhu, Ming; Zhang, Jie; Nie, Shaofa; Yan, Weirong

    2012-09-01

    There have been many studies concerning the associations of angiotensin-converting enzyme (ACE) I/D, angiotensinogen (AGT) M235T polymorphisms with pregnancy induced hypertension (PIH) among Chinese populations. However, the results were inconsistent, prompting the necessity of meta-analysis. Studies published in English and Chinese were mainly searched in EMbase, PubMed and CBM up to January 2012. Twenty-three studies with 3,551 subjects for ACE I/D and seven studies with 1,296 subjects for AGT M235T were included. Significant associations were found between ACE I/D and PIH under dominant, recessive and allelic models. A separate analysis confined to preeclampsia suggested that ACE I/D was associated with preeclampsia under recessive model and allelic model, but not dominant model. Stratified analyses were conducted as meta-regression analysis indicated that the sample size of case group was a significant source of heterogeneity, which suggested no significant association between ACE I/D and PIH in the subgroup of more than 100 cases. Associations were found between AGT M235T and PIH under dominant genetic model (OR = 1.59; 95 %CI: 1.04-2.42), recessive genetic model (OR = 1.60; 95 %CI: 1.07-2.40), and allelic model (OR = 1.40; 95 %CI: 1.17-1.68). No publication bias was found in either meta-analysis. The present meta-analysis suggested significant associations between ACE I/D, AGT M235T and PIH in Chinese populations. However, no significant association was found between ACE I/D and PIH in the subgroup of more than 100 cases. Studies with larger sample sizes are necessary to investigate the associations between gene polymorphisms and PIH in Chinese populations.

  14. Modelling Dynamic Behaviour and Spall Failure of Aluminium Alloy AA7010

    Science.gov (United States)

    Ma'at, N.; Nor, M. K. Mohd; Ismail, A. E.; Kamarudin, K. A.; Jamian, S.; Ibrahim, M. N.; Awang, M. K.

    2017-10-01

    A finite strain constitutive model to predict the dynamic deformation behaviour of Aluminium Alloy 7010 including shockwaves and spall failure is developed in this work. The important feature of this newly hyperelastic-plastic constitutive formulation is a new Mandel stress tensor formulated using new generalized orthotropic pressure. This tensor is combined with a shock equation of state (EOS) and Grady spall failure. The Hill’s yield criterion is adopted to characterize plastic orthotropy by means of the evolving structural tensors that is defined in the isoclinic configuration. This material model was developed and integration into elastic and plastic parts. The elastic anisotropy is taken into account through the newly stress tensor decomposition of a generalized orthotropic pressure. Plastic anisotropy is considered through yield surface and an isotropic hardening defined in a unique alignment of deviatoric plane within the stress space. To test its ability to describe shockwave propagation and spall failure, the new material model was implemented into the LLNL-DYNA3D code of UTHM’s. The capability of this newly constitutive model were compared against published experimental data of Plate Impact Test at 234m/s, 450m/s and 895m/s impact velocities. A good agreement is obtained between experimental and simulation in each test.

  15. 3D Modelling and Printing Technology to Produce Patient-Specific 3D Models.

    Science.gov (United States)

    Birbara, Nicolette S; Otton, James M; Pather, Nalini

    2017-11-10

    A comprehensive knowledge of mitral valve (MV) anatomy is crucial in the assessment of MV disease. While the use of three-dimensional (3D) modelling and printing in MV assessment has undergone early clinical evaluation, the precision and usefulness of this technology requires further investigation. This study aimed to assess and validate 3D modelling and printing technology to produce patient-specific 3D MV models. A prototype method for MV 3D modelling and printing was developed from computed tomography (CT) scans of a plastinated human heart. Mitral valve models were printed using four 3D printing methods and validated to assess precision. Cardiac CT and 3D echocardiography imaging data of four MV disease patients was used to produce patient-specific 3D printed models, and 40 cardiac health professionals (CHPs) were surveyed on the perceived value and potential uses of 3D models in a clinical setting. The prototype method demonstrated submillimetre precision for all four 3D printing methods used, and statistical analysis showed a significant difference (p3D printed models, particularly using multiple print materials, were considered useful by CHPs for preoperative planning, as well as other applications such as teaching and training. This study suggests that, with further advances in 3D modelling and printing technology, patient-specific 3D MV models could serve as a useful clinical tool. The findings also highlight the potential of this technology to be applied in a variety of medical areas within both clinical and educational settings. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  16. A constitutive framework for modelling thin incompressible viscoelastic materials under plane stress in the finite strain regime

    Science.gov (United States)

    Kroon, M.

    2011-11-01

    Rubbers and soft biological tissues may undergo large deformations and are also viscoelastic. The formulation of constitutive models for these materials poses special challenges. In several applications, especially in biomechanics, these materials are also relatively thin, implying that in-plane stresses dominate and that plane stress may therefore be assumed. In the present paper, a constitutive model for viscoelastic materials in the finite strain regime and under the assumption of plane stress is proposed. It is assumed that the relaxation behaviour in the direction of plane stress can be treated separately, which makes it possible to formulate evolution laws for the plastic strains on explicit form at the same time as incompressibility is fulfilled. Experimental results from biomechanics (dynamic inflation of dog aorta) and rubber mechanics (biaxial stretching of rubber sheets) were used to assess the proposed model. The assessment clearly indicates that the model is fully able to predict the experimental outcome for these types of material.

  17. A constitutive model for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures

    Directory of Open Access Journals (Sweden)

    Song Wei-Dong

    2013-01-01

    Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.

  18. Using the D-DANP-mV Model to Explore the Continuous System Improvement Strategy for Sustainable Development of Creative Communities.

    Science.gov (United States)

    Xiong, Lei; Teng, Cheng-Lein; Zhu, Bo-Wei; Tzeng, Gwo-Hshiung; Huang, Shan-Lin

    2017-10-27

    With globalization, the notion of "creative city" has become a core concept of many cities in the world development policies, with real properties being upgraded or used to change, renewal is being conducted, and creative industries are emerging. This trend has reached its peak in the past decade, with different forms and scales gathering global development momentum among the creative communities to promote the development of creative economies. In recent years, however, there was still skepticism about the sustainability of the current creative communities. Many scholars have pointed out that signs of unsustainability have begun to appear in many creative communities. To overcome these obstacles, the development of rational and highly effective improvement strategy requires a dynamic thinking process. Therefore, this study employs the DEMATEL-based ANP with modified VIKOR (D-DANP-mV) model in presenting an assessment framework for the sustainability of creative communities. This system is used to assess the sustainability of current creative communities and determine how to solve their problems. Thus, continuous and systemic improvement strategies can be developed to achieve the aim of sustainable development. Two creative communities in Taiwan, Taichung Cultural and Creative Industries Park (TCCIP), and Shen-Ji New Village (SJNV), are used as case studies in this study. Based on the concept of systematic improvement from fundamental issues, the results indicate that the improvement priorities can be determined by applying the D-DANP-mV model. This approach is different from those found by a conventional method with the hypothesis of independent criteria (e.g., diversification of creative talents in TCCIP), and cannot use for performance improvement (e.g., only can be used for ranking and selection among alternatives). Considering these points, unreasonable premises, biased errors, and lack of some real application functions in the process of resource allocation

  19. Micro-thermomechanical constitutive model of transformation induced plasticity and its application on armour steel

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.Y. [School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: suncy@me.ustb.edu.cn; Fang, G.; Lei, L.P.; Zeng, P. [Key Laboratory of Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2009-01-15

    Based on the crystallographic theory of martensitic transformation and internal variable constitutive theory, a micromechanical constitutive model of martensitic transformation induced plasticity was developed. Plastic strains of product and parent phases as well as the volume fraction of each martensitic variant were considered as internal variables describing the microstructure evolution. The plasticity flow both in austenite and martensitic variants domain is described by J{sub 2} flow theory. The thermodynamic driving force acting on these internal variables was obtained through the determination of the intrinsic dissipation due to plastic flow and the growth of martensitic domains. The evolution laws of the internal variables are derived, furthermore macroscopic response due to the change of internal variables is obtained. Thermomechanical behavior of armour steel under uniaxial loading was tested which showed a good agreement with experimental results.

  20. Micro-thermomechanical constitutive model of transformation induced plasticity and its application on armour steel

    International Nuclear Information System (INIS)

    Sun, C.Y.; Fang, G.; Lei, L.P.; Zeng, P.

    2009-01-01

    Based on the crystallographic theory of martensitic transformation and internal variable constitutive theory, a micromechanical constitutive model of martensitic transformation induced plasticity was developed. Plastic strains of product and parent phases as well as the volume fraction of each martensitic variant were considered as internal variables describing the microstructure evolution. The plasticity flow both in austenite and martensitic variants domain is described by J 2 flow theory. The thermodynamic driving force acting on these internal variables was obtained through the determination of the intrinsic dissipation due to plastic flow and the growth of martensitic domains. The evolution laws of the internal variables are derived, furthermore macroscopic response due to the change of internal variables is obtained. Thermomechanical behavior of armour steel under uniaxial loading was tested which showed a good agreement with experimental results

  1. Group I mGluR antagonist rescues the deficit of D1-induced LTP in a mouse model of fragile X syndrome

    Directory of Open Access Journals (Sweden)

    Xu Zhao-Hui

    2012-05-01

    Full Text Available Abstract Background Fragile X syndrome (FXS is caused by the absence of the mRNA-binding protein Fragile X mental retardation protein (FMRP, encoded by the Fmr1 gene. Overactive signaling by group 1 metabotropic glutamate receptor (Grp1 mGluR could contribute to slowed synaptic development and other symptoms of FXS. Our previous study has identified that facilitation of synaptic long-term potentiation (LTP by D1 receptor is impaired in Fmr1 knockout (KO mice. However, the contribution of Grp1 mGluR to the facilitation of synaptic plasticity by D1 receptor stimulation in the prefrontal cortex has been less extensively studied. Results Here we demonstrated that DL-AP3, a Grp1 mGluR antagonist, rescued LTP facilitation by D1 receptor agonist SKF81297 in Fmr1KO mice. Grp1 mGluR inhibition restored the GluR1-subtype AMPA receptors surface insertion by D1 activation in the cultured Fmr1KO neurons. Simultaneous treatment of Grp1 mGluR antagonist with D1 agonist recovered the D1 receptor signaling by reversing the subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2 in the Fmr1KO neurons. Treatment of SKF81297 alone failed to increase the phosphorylation of NR2B-containing N-methyl D-aspartate receptors (NMDARs at Tyr-1472 (p-NR2B-Tyr1472 in the cultures from KO mice. However, simultaneous treatment of DL-AP3 could rescue the level of p-NR2B-Tyr1472 by SKF81297 in the cultures from KO mice. Furthermore, behavioral tests indicated that simultaneous treatment of Grp1 mGluR antagonist with D1 agonist inhibited hyperactivity and improved the learning ability in the Fmr1KO mice. Conclusion The findings demonstrate that mGluR1 inhibition is a useful strategy to recover D1 receptor signaling in the Fmr1KO mice, and combination of Grp1 mGluR antagonist and D1 agonist is a potential drug therapy for the FXS.

  2. THERMAL TEXTURE GENERATION AND 3D MODEL RECONSTRUCTION USING SFM AND GAN

    Directory of Open Access Journals (Sweden)

    V. V. Kniaz

    2018-05-01

    Full Text Available Realistic 3D models with textures representing thermal emission of the object are widely used in such fields as dynamic scene analysis, autonomous driving, and video surveillance. Structure from Motion (SfM methods provide a robust approach for the generation of textured 3D models in the visible range. Still, automatic generation of 3D models from the infrared imagery is challenging due to an absence of the feature points and low sensor resolution. Recent advances in Generative Adversarial Networks (GAN have proved that they can perform complex image-to-image transformations such as a transformation of day to night and generation of imagery in a different spectral range. In this paper, we propose a novel method for generation of realistic 3D models with thermal textures using the SfM pipeline and GAN. The proposed method uses visible range images as an input. The images are processed in two ways. Firstly, they are used for point matching and dense point cloud generation. Secondly, the images are fed into a GAN that performs the transformation from the visible range to the thermal range. We evaluate the proposed method using real infrared imagery captured with a FLIR ONE PRO camera. We generated a dataset with 2000 pairs of real images captured in thermal and visible range. The dataset is used to train the GAN network and to generate 3D models using SfM. The evaluation of the generated 3D models and infrared textures proved that they are similar to the ground truth model in both thermal emissivity and geometrical shape.

  3. A phenomenological variational multiscale constitutive model for intergranular failure in nanocrystalline materials

    KAUST Repository

    Siddiq, A.

    2013-09-01

    We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary affected zone (GBAZ). A crystal plasticity model that accounts for the transition from partial dislocation to full dislocation mediated plasticity is used for the grain interior. Isotropic porous plasticity model with further extension to account for failure due to the void coalescence was used for the GBAZ. The extended model contains all the deformation phases, i.e. elastic deformation, plastic deformation including deviatoric and volumetric plasticity (void growth) followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. Lastly we show the model\\'s ability to predict the damage and fracture of a dog-bone shaped specimen as observed experimentally. © 2013 Elsevier B.V.

  4. Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy

    Science.gov (United States)

    Zhang, Yi; Sun, Huili; Volinsky, Alex A.; Wang, Bingjie; Tian, Baohong; Liu, Yong; Song, Kexing

    2018-02-01

    Hot compressive deformation behavior of the Cu-Zr-Ce alloy has been investigated according to the hot deformation tests in the 550-900 °C temperature range and 0.001-10 s-1 strain rate range. Based on the true stress-true strain curves, the flow stress behavior of the Cu-Zr-Ce alloy was investigated. Microstructure evolution was observed by optical microscopy. Based on the experimental results, a constitutive equation, which reflects the relationships between the stress, strain, strain rate and temperature, has been established. Material constants n, α, Q and ln A were calculated as functions of strain. The equation predicting the flow stress combined with these materials constants has been proposed. The predicted stress is consistent with experimental stress, indicating that developed constitutive equation can adequately predict the flow stress of the Cu-Zr-Ce alloy. Dynamic recrystallization critical strain was determined using the work hardening rate method. According to the dynamic material model, the processing maps for the Cu-Zr and Cu-Zr-Ce alloy were obtained at 0.4 and 0.5 strain. Based on the processing maps and microstructure observations, the optimal processing parameters for the two alloys were determined, and it was found that the addition of Ce can promote the hot workability of the Cu-Zr alloy.

  5. Experimental evaluation of a constitutive model for inelastic flow and damage evolution in solids subjected to triaxial compression

    International Nuclear Information System (INIS)

    Fossum, A.F.; Brodsky, N.S.; Chan, K.S.; Munson, D.E.

    1992-01-01

    Recent concern over the potential for creep induced development of a damaged rock zone adjacent to shafts and rooms at the Waste Isolation Pilot Plant (WIPP) has motivated the formulation of a coupled constitutive description of continuum salt creep and damage. This constitutive model gives time-dependent inelastic flow and pressure-sensitive damage in crystalline solids. Initially the constitutive model was successfully used to simulate multiaxial, i.e. true triaxial, experiments obtained at relatively high, 2.5 to 20 MPa, confining pressures. Predictions of the complete creep curve, including the heretofore unmodeled tertiary creep, were also demonstrated. However, comparisons of model predictions with data were hampered because the bulk of the creep data existing on WIPP salt was intentionally obtained under confining pressures typically greater than 15 MPa, in an attempt to match the underground in situ lithostatic pressure level. It was realized that the high confining pressures suppressed tertiary creep and resulted in better defined steady state creep responses. To address the tertiary creep process directly, a number of creep tests were conducted at lower confining pressures for the explicit purpose of creating dilatant behavior

  6. 76 FR 17673 - Bienvenido Tan, M.D.; Denial of Application

    Science.gov (United States)

    2011-03-30

    ... (alprazolam) to help him sleep. Id. at 64. R.E. opted to buy the drugs from Respondent's dispensary and... DEPARTMENT OF JUSTICE Drug Enforcement Administration [Docket No. 09-12] Bienvenido Tan, M.D... Control, Drug Enforcement Administration, issued an Order to Show Cause to Bienvenido Tan, M.D...

  7. Territory in the Constitutional Standards of Unitary States

    Directory of Open Access Journals (Sweden)

    Marina V. Markhgeym

    2017-06-01

    Full Text Available The article is based on the analysis of the constitutions of seven European countries (Albania, Hungary, Greece, Spain, Malta, Poland, Sweden. The research allows to reveal general and specific approaches to consolidation of norms on territories in a state and give the characteristic of the corresponding constitutional norms. Given the authors ' comprehensive approach to the definition of the territory of the state declared constitutional norms were assessed from the perspective of the fundamental principles and constituent elements of the territory. Considering the specifics of the constitutional types of state territories authors suggest typical and variative models and determine the constitutions of unitary states, distinguished by their originality in the declared group of legal relations. The original constitutional language areas associated with the introduction at the state level, these types of areas that are not typical for other countries.

  8. Estimating material parameters of a structurally based constitutive relation for skin mechanics

    KAUST Repository

    Jor, Jessica W. Y.

    2010-11-25

    This paper presents a structurally based modeling framework to characterize the structure-function relation in skin tissues, based upon biaxial tensile experiments performed in vitro on porcine skin. Equi-axial deformations were imposed by stretching circular skin specimens uniformly along twelve directions, and the resultant loads at the membrane attachment points were measured. Displacement fields at each deformation step were tracked using an image 2D cross-correlation technique. A modeling framework was developed to simulate the experiments, whereby measured forces were applied to finite element models that were created to represent the geometry and structure of the tissue samples. Parameters of a structurally based constitutive relation were then identified using nonlinear optimization. Results showed that the ground matrix stiffness ranged from 5 to 32 kPa, fiber orientation mean from 2 to 13. from the torso midline, fiber undulation mean from 1.04 to 1.34 and collagen fiber stiffness from 48 to 366 MPa. It was concluded that the objective function was highly sensitive to the mean orientation and that a priori information about fiber orientation mean was important for the reliable identification of constitutive parameters. © Springer-Verlag 2010.

  9. Constitutive model of discontinuous plastic flow at cryogenic temperatures

    CERN Document Server

    Skoczen, B; Bielski, J; Marcinek, D

    2010-01-01

    FCC metals and alloys are frequently used in cryogenic applications, nearly down to the temperature of absolute zero, because of their excellent physical and mechanical properties including ductility. Some of these materials, often characterized by the low stacking fault energy (LSFE), undergo at low temperatures three distinct phenomena: dynamic strain ageing (DSA), plastic strain induced transformation from the parent phase (gamma) to the secondary phase (alpha) and evolution of micro-damage. The constitutive model presented in the paper is focused on the discontinuous plastic flow (serrated yielding) and takes into account the relevant thermodynamic background. The discontinuous plastic flow reflecting the DSA effect is described by the mechanism of local catastrophic failure of Lomer-Cottrell (LC) locks under the stress fields related to the accumulating edge dislocations (below the transition temperature from the screw dislocations to the edge dislocations mode T-1). The failure of LC locks leads to mass...

  10. Probabilistic estimation of the constitutive parameters of polymers

    Directory of Open Access Journals (Sweden)

    Siviour C.R.

    2012-08-01

    Full Text Available The Mulliken-Boyce constitutive model predicts the dynamic response of crystalline polymers as a function of strain rate and temperature. This paper describes the Mulliken-Boyce model-based estimation of the constitutive parameters in a Bayesian probabilistic framework. Experimental data from dynamic mechanical analysis and dynamic compression of PVC samples over a wide range of strain rates are analyzed. Both experimental uncertainty and natural variations in the material properties are simultaneously considered as independent and joint distributions; the posterior probability distributions are shown and compared with prior estimates of the material constitutive parameters. Additionally, particular statistical distributions are shown to be effective at capturing the rate and temperature dependence of internal phase transitions in DMA data.

  11. DEVELOPMENTS IN THE CONSTITUTIONAL REVIEW. CONSTITUTIONAL COURT BETWEEN THE STATUS OF NEGATIVE LEGISLATOR AND THE STATUS OF POSITIVE CO-LEGISLATOR

    Directory of Open Access Journals (Sweden)

    Marieta Safta

    2012-11-01

    Full Text Available The study wants to emphasize that Constitutional Courts belonging to the European model depart from their traditional role as ”negative legislator” – which refers to the effect of their acts consisting in removal from the legal system of those rules contrary to the Basic Law -, becoming, to a certain extent, a ”positive legislator”. Official interpreters of the Constitution, Constitutional Courts assume, sometimes, a role of co-legislators, creating provisions they deduct from the Constitution - when controlling the absence of legislation or legislative omissions -, and revealing the content of constitutional and even infraconstitutional rules accordingly with the Constitution in their case-law, whose effects are nothing but specific forms of „impulse” or „coercion” of the legislator to proceed in a certain sense, and whose continuous development guides the evolution of the entire legal system. Case – law selected presents ways in which the Constitutional Court of Romania is associated to law-making activity. Without minimizing in any way its traditional role as "negative legislator", the study refers mainly to acts and situations that give expression to the creative role of the Constitutional Court of Romania.

  12. Integration of 3D photogrammetric outcrop models in the reservoir modelling workflow

    Science.gov (United States)

    Deschamps, Remy; Joseph, Philippe; Lerat, Olivier; Schmitz, Julien; Doligez, Brigitte; Jardin, Anne

    2014-05-01

    3D outcrop data, including geostatistical modelling and fluid flow simulations The case study is a turbidite reservoir analog in Northern Spain (Ainsa). In this case study, we can compare reservoir models that have been built with conventional data set (1D pseudowells), and reservoir model built from 3D outcrop data directly used to constrain the reservoir architecture. This approach allows us to assess the benefits of integrating geotagged 3D outcrop data into reservoir models. References: HODGETTS, D., (2013): Laser scanning and digital outcrop geology in the petroleum industry : a review. Marine and Petroleum Geology, 46, 335-354. McCAFFREY, K.J.W., JONES, R.R., HOLDSWORTH, R.E., WILSON, R.W., CLEGG, P., IMBER, J., HOLLIMAN, N., TRINKS, I., (2005): Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork. Journal of the Geological Society 162, 927-938 PRINGLE, J.K., HOWELL, J.A., HODGETTS, D., WESTERMAN, A.R., HODGSON, D.M., 2006. Virtual outcrop models of petroleum reservoir analogues: a review of the current state-of-the-art. First Break 24, 33-42.

  13. Towards Viscoplastic Constitutive Models for Cosserat Rods

    OpenAIRE

    Dörlich Vanessa; Linn Joachim; Scheffer Tobias; Diebels Stefan

    2016-01-01

    Flexible, slender structures like cables, hoses or wires can be described by the geometrically exact Cosserat rod theory. Due to their complex multilayer structure, consisting of various materials, viscoplastic behavior has to be expected for cables under load. Classical experiments like uniaxial tension, torsion or three-point bending already show that the behavior of e.g. electric cables is viscoplastic. A suitable constitutive law for the observed load case is crucial for a realistic simul...

  14. 75 FR 49992 - Peter W.S. Grigg, M.D.; Revocation of Registration

    Science.gov (United States)

    2010-08-16

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Peter W.S. Grigg, M.D.; Revocation of... Order to Show Cause and Immediate Suspension of Registration to Peter W.S. Grigg, M.D. (Respondent), of... Registration, BG2107856, issued to Peter W.S. Grigg, M.D., be, and it hereby is, revoked. This Order is...

  15. IBM model M keyboard

    CERN Multimedia

    1985-01-01

    In 1985, the IBM Model M keyboard was created. This timeless classic was a hit. IBM came out with several varients of the model M. They had the space saver 104 key which is the one most seen today and many international versions of that as well. The second type, and rarest is the 122 key model M which has 24 extra keys at the very top, dubbed the “programmers keyboard”. IBM manufactured these keyboards until 1991. The model M features “caps” over the actual keys that can be taken off separately one at a time for cleaning or to replace them with colored keys or keys of another language, that was a very cost effective way of shipping out internationally the keyboards.

  16. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ortega-Legaspi J Manuel

    2011-12-01

    Full Text Available Abstract Background The anterior cingulate cortex (ACC has been related to the affective component of pain. Dopaminergic mesocortical circuits, including the ACC, are able to inhibit neuropathic nociception measured as autotomy behaviour. We determined the changes in dopamine D1 and D2 (D1R and D2R receptor expression in the ACC (cg1 and cg2 in an animal model of neuropathic pain. The neuropathic group had noxious heat applied in the right hind paw followed 30 min. later by right sciatic denervation. Autotomy score (AS was recorded for eight days and subsequently classified in low, medium and high AS groups. The control consisted of naïve animals. A semiquantitative RT-PCR procedure was done to determine mRNA levels for D1R and D2R in cg1 and cg2, and protein levels were measured by Western Blot. Results The results of D1R mRNA in cg1 showed a decrease in all groups. D2R mRNA levels in cg1 decreased in low AS and increased in medium and high AS. Regarding D1R in cg2, there was an increase in all groups. D2R expression levels in cg2 decreased in all groups. In cg1, the D2R mRNA correlated positively with autotomy behaviour. Protein levels of D2R in cg1 increased in all groups but to a higher degree in low AS. In cg2 D2R protein only decreased discretely. D1R protein was not found in either ACC region. Conclusions This is the first evidence of an increase of inhibitory dopaminergic receptor (D2R mRNA and protein in cg1 in correlation with nociceptive behaviour in a neuropathic model of pain in the rat.

  17. A supersymmetric D4 model for μ-τ symmetry

    Science.gov (United States)

    Adulpravitchai, A.; Blum, A.; Hagedorn, C.

    2009-03-01

    We construct a supersymmeterized version of the model presented by Grimus and Lavoura (GL) in \\cite{GL1} which predicts θ23 maximal and θ13 = 0 in the lepton sector. For this purpose, we extend the flavor group, which is D4 × Z2(aux) in the original model, to D4 × Z5. An additional difference is the absence of right-handed neutrinos. Despite these changes the model is the same as the GL model, since θ23 maximal and θ13 = 0 arise through the same mismatch of D4 subgroups, D2 in the charged lepton and Z2 in the neutrino sector. In our setup D4 is solely broken by gauge singlets, the flavons. We show that their vacuum structure, which leads to the prediction of θ13 and θ23, is a natural result of the scalar potential. We find that the neutrino mass matrix only allows for inverted hierarchy, if we assume a certain form of spontaneous CP violation. The quantity |mee|, measured in neutrinoless double beta decay, is nearly equal to the lightest neutrino mass m3. The Majorana phases phi1 and phi2 are restricted to a certain range for m3lesssim0.06 eV. We discuss the next-to-leading order corrections which give rise to shifts in the vacuum expectation values of the flavons. These induce deviations from maximal atmospheric mixing and vanishing θ13. It turns out that these deviations are smaller for θ23 than for θ13.

  18. Simplicity constraints: A 3D toy model for loop quantum gravity

    Science.gov (United States)

    Charles, Christoph

    2018-05-01

    In loop quantum gravity, tremendous progress has been made using the Ashtekar-Barbero variables. These variables, defined in a gauge fixing of the theory, correspond to a parametrization of the solutions of the so-called simplicity constraints. Their geometrical interpretation is however unsatisfactory as they do not constitute a space-time connection. It would be possible to resolve this point by using a full Lorentz connection or, equivalently, by using the self-dual Ashtekar variables. This leads however to simplicity constraints or reality conditions which are notoriously difficult to implement in the quantum theory. We explore in this paper the possibility of using completely degenerate actions to impose such constraints at the quantum level in the context of canonical quantization. To do so, we define a simpler model, in 3D, with similar constraints by extending the phase space to include an independent vielbein. We define the classical model and show that a precise quantum theory by gauge unfixing can be defined out of it, completely equivalent to the standard 3D Euclidean quantum gravity. We discuss possible future explorations around this model as it could help as a stepping stone to define full-fledged covariant loop quantum gravity.

  19. Functional analysis of the murine cytomegalovirus chemokine receptor homologue M33: ablation of constitutive signaling is associated with an attenuated phenotype in vivo

    DEFF Research Database (Denmark)

    Case, Ruth; Sharp, Emma; Benned-Jensen, Tau

    2007-01-01

    the salivary glands. In this study, we probed N- and C-terminal regions of M33 as well as known 7TMR signature motifs in transmembrane (TM) II and TM III to determine the impact on cell surface expression, constitutive signaling, and in vivo phenotype. The region between amino acids R(340) and A(353) of the C...

  20. Interacting partners of M-PMV nucleocapsid-dUTPase

    Czech Academy of Sciences Publication Activity Database

    Németh-Pongrácz, V.; Snášel, Jan; Rumlová, Michaela; Pichová, Iva; Vértessy, B. G.

    2006-01-01

    Roč. 25, č. 9/11 (2006), s. 1197-1200 ISSN 1525-7770 R&D Projects: GA MŠk 1M0508; GA ČR GP203/05/P557 Institutional research plan: CEZ:AV0Z40550506 Keywords : dUTPase * nucleocapsid * fusion protein * preintegration complex Subject RIV: CE - Biochemistry Impact factor: 0.671, year: 2006

  1. DsrA regulatory RNA represses both hns and rbsD mRNAs through distinct mechanisms in Escherichia coli.

    Science.gov (United States)

    Lalaouna, David; Morissette, Audrey; Carrier, Marie-Claude; Massé, Eric

    2015-10-01

    The 87 nucleotide long DsrA sRNA has been mostly studied for its translational activation of the transcriptional regulator RpoS. However, it also represses hns mRNA, which encodes H-NS, a major regulator that affects expression of nearly 5% of Escherichia coli genes. A speculative model previously suggested that DsrA would block hns mRNA translation by binding simultaneously to start and stop codon regions of hns mRNA (coaxial model). Here, we show that DsrA efficiently blocked translation of hns mRNA by base-pairing immediately downstream of the start codon. In addition, DsrA induced hns mRNA degradation by actively recruiting the RNA degradosome complex. Data presented here led to a model of DsrA action on hns mRNA, which supports a canonical mechanism of sRNA-induced mRNA degradation by binding to the translation initiation region. Furthermore, using MS2-affinity purification coupled with RNA sequencing technology (MAPS), we also demonstrated that DsrA targets rbsD mRNA, involved in ribose utilization. Surprisingly, DsrA base pairs far downstream of rbsD start codon and induces rapid degradation of the transcript. Thus, our study enables us to draw an extended DsrA targetome. © 2015 John Wiley & Sons Ltd.

  2. M-estimator for the 3D symmetric Helmert coordinate transformation

    Science.gov (United States)

    Chang, Guobin; Xu, Tianhe; Wang, Qianxin

    2018-01-01

    The M-estimator for the 3D symmetric Helmert coordinate transformation problem is developed. Small-angle rotation assumption is abandoned. The direction cosine matrix or the quaternion is used to represent the rotation. The 3 × 1 multiplicative error vector is defined to represent the rotation estimation error. An analytical solution can be employed to provide the initial approximate for iteration, if the outliers are not large. The iteration is carried out using the iterative reweighted least-squares scheme. In each iteration after the first one, the measurement equation is linearized using the available parameter estimates, the reweighting matrix is constructed using the residuals obtained in the previous iteration, and then the parameter estimates with their variance-covariance matrix are calculated. The influence functions of a single pseudo-measurement on the least-squares estimator and on the M-estimator are derived to theoretically show the robustness. In the solution process, the parameter is rescaled in order to improve the numerical stability. Monte Carlo experiments are conducted to check the developed method. Different cases to investigate whether the assumed stochastic model is correct are considered. The results with the simulated data slightly deviating from the true model are used to show the developed method's statistical efficacy at the assumed stochastic model, its robustness against the deviations from the assumed stochastic model, and the validity of the estimated variance-covariance matrix no matter whether the assumed stochastic model is correct or not.

  3. The Starobinsky model from superconformal D-term inflation

    International Nuclear Information System (INIS)

    Buchmuller, W.; Domcke, V.; Kamada, K.

    2013-06-01

    We point out that in the large field regime, the recently proposed superconformal D-term inflation model coincides with the Starobinsky model. In this regime, the inflaton field dominates over the Planck mass in the gravitational kinetic term in the Jordan frame. Slow-roll inflation is realized in the large field regime for sufficiently large gauge couplings. The Starobinsky model generally emerges as an effective description of slow-roll inflation if a Jordan frame exists where, for large inflaton field values, the action is scale invariant and the ratio λ of the inflaton self-coupling and the nonminimal coupling to gravity is tiny. The interpretation of this effective coupling is different in different models. In superconformal D-term inflation it is determined by the scale of grand unification, λ∝(Λ GUT /M P ) 4 .

  4. 2D and 3D modelling of magnetic and resistivity data from Aespoe

    International Nuclear Information System (INIS)

    Mattsson, Haakan

    2011-05-01

    This report presents results from modelling of geophysical data. Ground magnetic and geo electric data were collected in 1988 as part of the pre-investigations carried out before the construction of the Aespoe Hard Rock Laboratory (HRL). The work presented in this report is an evaluation of the magnetic and geo electric data with the focus on estimating variations in geometry and dip of some of the possible deformation zones indicated in lineament interpretations presented earlier. This was done by 2D forward magnetic modelling, 2D forward resistivity modelling and 3D inversion of the magnetic data. The specific aims of this work are: 1. Produce magnetic 2D forward models across 12 selected linked lineaments. 2. Produce a 3D susceptibility model of the entire data set of Aespoe. 3. Use 2D forward resistivity modelling to produce electric anomaly response diagrams for a dipole-dipole survey across low resistivity zones with various dips. The results of the modelling work will mainly be used as supportive information for deterministic geological modelling of deformation zones and rock units in the vicinity of the Aespoe HRL. The results of the 2D forward modelling of magnetic data show geologically reasonable solutions, and in most cases it is possible to make reliable estimates of the width and orientation of the cause of the targeted lineament. The possible deformation zones generally dip steeply (80 deg-90 deg) and have a width of c. 30-50 m. In some cases the modelled lineament has a diffuse character with low amplitude, which makes the model solution uncertain. Two 3D susceptibility models were created by use of inversion of the ground magnetic data; one coarse model of the entire Island of Aespoe and one more detailed model of the south-eastern peninsula of the Island, covering the volume of the Aespoe HRL. The two models fit nicely to the measured data and they are geologically realistic. It is possible to identify well-defined bodies (rock volumes) of

  5. The comparative constitutional law on national constitutional system: with regard to the IX World Congress of Constitutional Law

    OpenAIRE

    Landa Arroyo, César

    2015-01-01

    From  the  process  of  globalization  of  law,  the  comparative constitutional law has gained a leading role for a better understanding and solving old and new constitutional national and international challenges. Therefore, some assumptions and considerations to take into account are presented for the development of the national constitutional order within the framework of the comparative constitutional law, such as universality and relativism of human rights; the concept of power and cons...

  6. Evaluation of inelastic constitutive models under plasticity-creep interaction for 2 1/4 Cr-1 Mo steel: Results of joint work (A)

    International Nuclear Information System (INIS)

    Inoue, T.; Ohno, N.; Suzuki, A.; Igari, T.

    1987-01-01

    The authorization of constitutive models under plasticity-creep condition and life estimation methods in fatigue-creep regime is expected to be achieved from the viewpoint of design purposes of high temperature components of reactor structures. The present Subcommittee has performed the cooperative project consisting of the following two parts: (A) To review and evaluate inelastic constitutive models relevant to the material response under plasticity-creep interaction and (B) to recommend some adequate methods to estimate material life under fatigue-creep interaction by taking account of the effect of plasticity-creep interaction on the stress-strain hysteresis loops. The material treated is normalized and tempered 2 1/4 Cr-1Mo steel at 600 0 C. The part (A) plays a preliminary role for the part (B), since the constitutive models examined in the part (A) were used to describe the stress-strain hysteresis loops necessary to predict analytically the lives under fatigue-creep interaction. In the part (A), thererfore, it is important to check how accurately the constitutive models simulate the stress-strain hysteresis loops especially by taking account of the effect of plasticity-creep interaction. (orig./GL)

  7. On relating multiple M2 and D2-branes

    International Nuclear Information System (INIS)

    Gran, U.; Nilsson, B.E.W; Petersson, C.

    2008-01-01

    Due to the difficulties of finding superconformal Lagrangian theories for multiple M2-branes, we will in this paper instead focus on the field equations. By relaxing the requirement of a Lagrangian formulation we can explore the possibility of having structure constants f ABC D satisfying the fundamental identity but which are not totally antisymmetric. We exemplify this discussion by making use of an explicit choice of a non-antisymmetric f ABC D constructed from the Lie algebra structure constants f ab c of an arbitrary gauge group. Although this choice of f ABC D does not admit an obvious Lagrangian description, it does reproduce the correct SYM theory for a stack of N D2-branes to leading order in g YM -1 upon reduction and, moreover, it sheds new light on the centre of mass coordinates for multiple M2-branes.

  8. Mechanical tests for validation of seismic isolation elastomer constitutive models

    International Nuclear Information System (INIS)

    Kulak, R.F.; Hughes, T.H.

    1992-01-01

    High damping laminated elastomeric bearings are becoming the preferred device for seismic isolation of large buildings and structures, such as nuclear power plants. The key component of these bearings is a filled natural rubber elastomer. This material exhibits nonlinear behavior within the normal design range. The material damping cannot be classified as either viscous or hysteritic, but it seems to fall somewhere in between. This paper describes a series of tests that can be used to characterize the mechanical response of these elastomers. The tests are designed to determine the behavior of the elastomer in the time scale of the earthquake, which is typically from 30 to 60 seconds. The test results provide data for use in determining the material parameters associated with nonlinear constitutive models. 4 refs

  9. Solving the dynamic rupture problem with different numerical approaches and constitutive laws

    Science.gov (United States)

    Bizzarri, A.; Cocco, M.; Andrews, D.J.; Boschi, Enzo

    2001-01-01

    We study the dynamic initiation, propagation and arrest of a 2-D in-plane shear rupture by solving the elastodynamic equation by using both a boundary integral equation method and a finite difference approach. For both methods we adopt different constitutive laws: a slip-weakening (SW) law, with constant weakening rate, and rate- and state-dependent friction laws (Dieterich-Ruina). Our numerical procedures allow the use of heterogeneous distributions of constitutive parameters along the fault for both formulations. We first compare the two solution methods with an SW law, emphasizing the required stability conditions to achieve a good resolution of the cohesive zone and to avoid artificial complexity in the solutions. Our modelling results show that the two methods provide very similar time histories of dynamic source parameters. We point out that, if a careful control of resolution and stability is performed, the two methods yield identical solutions. We have also compared the rupture evolution resulting from an SW and a rate- and state-dependent friction law. This comparison shows that despite the different constitutive formulations, a similar behaviour is simulated during the rupture propagation and arrest. We also observe a crack tip bifurcation and a jump in rupture velocity (approaching the P-wave speed) with the Dieterich-Ruina (DR) law. The rupture arrest at a barrier (high strength zone) and the barrier-healing mechanism are also reproduced by this law. However, this constitutive formulation allows the simulation of a more general and complex variety of rupture behaviours. By assuming different heterogeneous distributions of the initial constitutive parameters, we are able to model a barrier-healing as well as a self-healing process. This result suggests that if the heterogeneity of the constitutive parameters is taken into account, the different healing mechanisms can be simulated. We also study the nucleation phase duration Tn, defined as the time

  10. Ultima Ratio as a Constitutional Principle

    Directory of Open Access Journals (Sweden)

    Kaarlo Tuori

    2013-01-01

    Full Text Available The paper argues the criminal law notion of ultima ratio is an instance of a broader constitutional law principle of proportionality. However, ultima ratio is not the only principle relevant in a constitutional assessment of criminalization. The role of ultima ratio is to impose limitations on criminalization. But constitutional doctrines also exist which call for criminalization and might even be seen as establishing a criminalization obligation. The paper examines three constitutional counter weights to ultima ratio. The first of these is discussed in the context of state constitutions. This is the cluster of the interrelated constitutional doctrines of the horizontal effect of fundamental rights and the protective duty of the state, as well as the understanding of collective security as a basic right. These doctrines are analysed in the light of the praxis of the German Constitutional Court and the Finnish Constitutional Law Committee. The two other constitutional counterweights are discussed at the level of the transnational, European constitution. These are the principles of precaution and effectiveness. Este artículo defiende que el concepto de ultima ratio es una instancia más amplia del principio de proporcionalidad dentro del derecho constitucional. Sin embargo, el ultima ratio no es el único principio relevante en la valoración constitucional de la criminalización. El papel del ultima ratio es imponer límites a la criminalización. Pero también existen doctrinas constitucionales que exigen la criminalización e incluso dan pie a entender que obligan a establecer una pena. El documento examina tres contrapesos constitucionales al ultima ratio. En primer lugar, se analiza en el contexto de las constituciones estatales. Este es el conjunto de las doctrinas constitucionales interrelacionadas entre el efecto horizontal de los derechos fundamentales y el deber de protección del Estado, así como la asunción de la seguridad colectiva

  11. 77 FR 35021 - Kwan Bo Jin, M.D.; Decision and Order

    Science.gov (United States)

    2012-06-12

    ...] DEA registration is not appropriate.'' Anibal P. Herrera, M.D., 61 FR 65,075, 65,078 (DEA 1996); see... ``there were serious questions as to the integrity of the registrant.'' Anibal P. Herrera, M.D., 61 FR 65...

  12. MODEL SPECTRA OF THE FIRST POTENTIALLY HABITABLE SUPER-EARTH-Gl581d

    International Nuclear Information System (INIS)

    Kaltenegger, Lisa; Segura, AntIgona; Mohanty, Subhanjoy

    2011-01-01

    Gl581d has a minimum mass of 7 M Earth and is the first detected potentially habitable rocky Super-Earth. Our models confirm that a habitable atmosphere can exist on Gl581d. We derive spectroscopic features for atmospheres assuming an Earth-like composition for this planet, from high-oxygen atmosphere analogous to Earth's to high-CO 2 atmospheres with and without biotic oxygen concentrations. We find that a minimum CO 2 partial pressure of about 7 bar, in an atmosphere with a total surface pressure of 7.6 bar, is needed to maintain a mean surface temperature above freezing on Gl581d. We model transmission and emergent synthetic spectra from 0.4 μm to 40 μm and show where indicators of biological activities in such a planet's atmosphere could be observed by future ground- and space-based telescopes. The model we present here only represents one possible nature-an Earth-like composition-of a planet like Gl581d in a wide parameter space. Future observations of atmospheric features can be used to examine if our concept of habitability and its dependence on the carbonate-silicate cycle is correct, and assess whether Gl581d is indeed a habitable Super-Earth.

  13. Constitutional compatibility of energy systems

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1983-01-01

    The paper starts from the results of the Enquiry Commission on 'Future Nuclear Energy Policy' of the 8th Federal German Parliament outlining technically feasible energy futures in four 'pathways'. For the purpose of the project, which was to establish the comparative advantages and disadvantages of different energy systems, these four scenarios were reduced to two alternatives: cases K (= nuclear energy) and S (= solar energy). The question to Ge put is: Which changes within our legal system will be ushered in by certain technological developments and how do these changes relate to the legal condition intended so far. Proceeding in this manner will not lead to the result of a nuclear energy system or a solar energy system being in conformity or in contradiction with the constitutional law, but will provide a catalogue of implications orientated to the aims of legal standards: a person deciding in favour of a nuclear energy system or a solar energy system supports this or that development of constitutional policy, and a person purishing this or that aim of legal policy should be consistent and decide in favour of this or that energy system. The investigation of constitutional compatibility leads to the question what effects different energy systems will have on the forms of political intercourse laid down in the constitutional law, which are orientated to models of a liberal constitutional tradition of citizens. (orig./HSCH) [de

  14. [Impacts of the formula of Suoquanwan(SQW) on expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency].

    Science.gov (United States)

    Cao, Hong-Ying; Wu, Qing-He; Huang, Ping; He, Jin-Yang

    2009-06-01

    To observe the impacts of the formula of Suoquanwan (SQW) on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency. The model rats were induced by adenine (250 mg/kg) for 4 weeks, then treated respectively with SQW or dDAVP. The expression of AQP-2 mRNA and AVPR-V2 mRNA in kidney of Yang-deficiency model by realtime fluorescence quantitative PCR method were investigated. In model rats, the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney decreased, dDAVP and SQW high dose could increased the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. The others had no influence on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. SQW can increase the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency.

  15. UNDERSTANDING INFORMAL CONSTITUTIONAL CHANGE

    Directory of Open Access Journals (Sweden)

    Stephen M. Griffin

    2016-01-01

    Full Text Available Amid much recent American work on the problem of informal constitutional change, this article stakes out a distinctive position. I argue that theories of constitutional change in the US must address the question of the relationship between the “small c” and “big C” Constitution and treat seriously the possibility of conflict between them. I stress the unavoidable role the text of the Constitution and structural doctrines of federalism and separation of powers play in this relationship and thus in constitutional change, both formal and informal. I therefore counsel against theories that rely solely on a practice-based approach or analogies between “small c” constitutional developments and British or Commonwealth traditions of the “unwritten” constitution and constitutional “conventions.” The alternative I advocate is to approach constitutional change from a historicist perspective that focuses attention on state building and the creation of new institutional capacities. This approach will allow us to make progress by highlighting that there can be multiple constitutional orders in a given historical era, thus accounting for the conflictual nature of contemporary constitutional development in the US.

  16. M2 to D2

    International Nuclear Information System (INIS)

    Mukhi, Sunil; Papageorgakis, Constantinos

    2008-01-01

    We examine the recently proposed ''3-algebra'' field theory for multiple M2-branes and show that when a scalar field valued in the 3-algebra develops a vacuum expectation value, the resulting Higgs mechanism has the novel effect of promoting topological (Chern-Simons) to dynamical (Yang-Mills) gauge fields. This leads to a precise derivation of the maximally supersymmetric Yang-Mills theory on multiple D2-branes and thereby provides a relationship between 3-algebras and Yang-Mills theories. We discuss the physical interpretation of this result.

  17. Transnational Constitutional Law

    NARCIS (Netherlands)

    Zumbansen, P (Peer); K.I. Bhatt (Kinnari)

    2018-01-01

    textabstractThis chapter provides an overview of the emerging field of transnational constitutional law (TCL). Whilst questions of constitutional law are typically discussed in the context of a specific domestic legal setting, a salient strategy of TCL is to understand constitutional law and its

  18. The Air Force Officer and the Constitution

    Science.gov (United States)

    2010-02-17

    2. Enumerated Powers 3. Separation of Powers and Checks and Balances C. Ways to amend the U.S. Constitution D. The elements of the U.S...the courts ▪ judicial 14. What stops one branch of government from becoming too powerful? ▪ checks and balances ▪ separation of powers 15. Who

  19. Constitutive relations for nuclear reactor core materials

    International Nuclear Information System (INIS)

    Zaverl, F. Jr.; Lee, D.

    1978-01-01

    A strain rate dependent constitutive equation is proposed which is capable of describing inelastic deformation behavior of anisotropic metals, such as Zircaloys, under complex loading conditions. The salient features of the constitutive equations are that they describe history dependent inelastic deformation behaviour of anisotropic metals under three-dimensional stress states in the presence of fast neutron flux. It is shown that the general form of the constitutive relations is consistent with experimental observations made under both unirradiated and irradiated conditions. The utility of the model is demonstrated by examining the analytical results obtained for a segment of tubing undergoing different loading histories in a reactor. (Auth.)

  20. Connectomes as constitutively epistemic objects: Critical perspectives on modeling in current neuroanatomy.

    Science.gov (United States)

    Haueis, Philipp; Slaby, Jan

    2017-01-01

    The term "connectome" is commonly taken to describe a complete map of neural connections in a nervous system of a given species. This chapter provides a critical perspective on the role of connectomes in neuroscientific practice and asks how the connectomic approach fits into a larger context in which network thinking permeates technology, infrastructure, social life, and the economy. In the first part of this chapter, we argue that, seen from the perspective of ongoing research, the notion of connectomes as "complete descriptions" is misguided. Our argument combines Rachel Ankeny's analysis of neuroanatomical wiring diagrams as "descriptive models" with Hans-Jörg Rheinberger's notion of "epistemic objects," i.e., targets of research that are still partially unknown. Combining these aspects we conclude that connectomes are constitutively epistemic objects: there just is no way to turn them into permanent and complete technical standards because the possibilities to map connection properties under different modeling assumptions are potentially inexhaustible. In the second part of the chapter, we use this understanding of connectomes as constitutively epistemic objects in order to critically assess the historical and political dimensions of current neuroscientific research. We argue that connectomics shows how the notion of the "brain as a network" has become the dominant metaphor of contemporary brain research. We further point out that this metaphor shares (potentially problematic) affinities to the form of contemporary "network societies." We close by pointing out how the relation between connectomes and networks in society could be used in a more fruitful manner. © 2017 Elsevier B.V. All rights reserved.

  1. The retention of [99mTc]-d,l-HM-PAO in the human brain after intracarotid bolus injection

    DEFF Research Database (Denmark)

    Lassen, N A; Andersen, A R; Friberg, L

    1988-01-01

    [99mTc]-d,l-HM-PAO (HM-PAO) was injected rapidly into the internal carotid artery and its retention in the brain was recorded by external scintillation cameras in eight human subjects. A model is described based on three compartments: the lipophilic tracer in the blood pool of the brain, the lipo......[99mTc]-d,l-HM-PAO (HM-PAO) was injected rapidly into the internal carotid artery and its retention in the brain was recorded by external scintillation cameras in eight human subjects. A model is described based on three compartments: the lipophilic tracer in the blood pool of the brain...

  2. Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling

    Science.gov (United States)

    Hu, G. F.; Damanpack, A. R.; Bodaghi, M.; Liao, W. H.

    2017-12-01

    The main objective of this paper is to introduce a 4D printing method to program shape memory polymers (SMPs) during fabrication process. Fused deposition modeling (FDM) as a filament-based printing method is employed to program SMPs during depositing the material. This method is implemented to fabricate complicated polymeric structures by self-bending features without need of any post-programming. Experiments are conducted to demonstrate feasibility of one-dimensional (1D)-to 2D and 2D-to-3D self-bending. It is shown that 3D printed plate structures can transform into masonry-inspired 3D curved shell structures by simply heating. Good reliability of SMP programming during printing process is also demonstrated. A 3D macroscopic constitutive model is established to simulate thermo-mechanical features of the printed SMPs. Governing equations are also derived to simulate programming mechanism during printing process and shape change of self-bending structures. In this respect, a finite element formulation is developed considering von-Kármán geometric nonlinearity and solved by implementing iterative Newton-Raphson scheme. The accuracy of the computational approach is checked with experimental results. It is demonstrated that the theoretical model is able to replicate the main characteristics observed in the experiments. This research is likely to advance the state of the art FDM 4D printing, and provide pertinent results and computational tool that are instrumental in design of smart materials and structures with self-bending features.

  3. Constitutive equation of butter at static loading

    Directory of Open Access Journals (Sweden)

    Šárka Nedomová

    2008-01-01

    Full Text Available This study focuses on the constitutive modelling of finite deformation in the commercially obtained butter (composition is 83 % of milk fat at the temperature 17–20 °C. The specimens from the butter (height L0=14.6 mm and diameter 20 mm have been compressed between two parallel metal plates at a fixed crosshead speed 20 mm/min using of the testing device TIRA TEST. The force F and the deformation ∆L are measured during compression and both quantities are recorded. The experimental records force F – displacement (deformation were obtained. These records have been transformed into stress–strain dependences and into true stress–true strain. The basic data on the strain behaviour of a butter under low strain rates have been obtained. Experimental results show that the behaviour of butter can be described by a hyperelastic material model. In this model, the quasi–static response is defined by compressible hyperelasticity, whereby the strain energy potential is assumed to be representable by a newly proposed polynomial series with three independent parameters. The material parameters in the constitutive model are determined from compression test. A comparison of predictions based on the proposed constitutive equation with experiments shows that the model is able to describe the strain behaviour of the butter examined.

  4. 3d Modeling of Combustion for Di-Si Engines Modélisation 3D de la combustion dans les moteurs à injection directe d'essence

    Directory of Open Access Journals (Sweden)

    Duclos J. P.

    2006-12-01

    Full Text Available Direct injection of gasoline is a promising concept to reduce fuel consumption of SI engines. The development of GDI engines is difficult and 3D CFD is a way to support its design. It requires models able to describe the spray and its evaporation and combustion. This paper presents a model, the ECFM, that enables to compute combustion for stratified load in the GDI engines. This model is a development of the Coherent Flame Model which includes thermal expansion effects, and is coupled with a burnt/unburnt gases conditionnal thermodynamic properties description. The model is validated by comparing measurements and computations on the GDI Mitsubishi engine in production. L'injection directe d'essence (IDE est un concept prometteur pour les moteurs à allumage commandé. La mise au point de ce type de moteur est néanmoins délicate, et le calcul 3D des chambres de combustion est un moyen d'aider à leur conception. Ceci nécessite cependant de disposer de modèles adaptés, à même de décrire le jet d'essence, son évaporation et la combustion du mélange créé. Cet article présente un modèle ECFM de simulation de la combustion dans les moteurs IDE, y compris en fonctionnement stratifié. C'est un développement du modèle flamme cohérente qui comprend des effets d'expansion thermique et est couplé avec une description conditionnelle gaz frais/gaz brûlés des grandeurs thermodynamiques. Ce modèle a été validé par rapprochement de mesures et simulations sur le moteur GDI Mitsubishi.

  5. FY17 Status Report on the Initial Development of a Constitutive Model for Grade 91 Steel

    Energy Technology Data Exchange (ETDEWEB)

    Messner, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Phan, V. -T. [Argonne National Lab. (ANL), Argonne, IL (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-07-01

    Grade 91 is a candidate structural material for high temperature advanced reactor applications. Existing ASME Section III, Subsection HB, Subpart B simplified design rules based on elastic analysis are setup as conservative screening tools with the intent to supplement these screening rules with full inelastic analysis when required. The Code provides general guidelines for suitable inelastic models but does not provide constitutive model implementations. This report describes the development of an inelastic constitutive model for Gr. 91 steel aimed at fulfilling the ASME Code requirements and being included into a new Section III Code appendix, HBB-Z. A large database of over 300 experiments on Gr. 91 was collected and converted to a standard XML form. Five families of Gr. 91 material models were identified in the literature. Of these five, two are potentially suitable for use in the ASME code. These two models were implemented and evaluated against the experimental database. Both models have deficiencies so the report develops a framework for developing and calibrating an improved model. This required creating a new modeling method for representing changes in material rate sensitivity across the full ASME allowable temperature range for Gr. 91 structural components: room temperature to 650° C. On top of this framework for rate sensitivity the report describes calibrating a model for work hardening and softening in the material using genetic algorithm optimization. Future work will focus on improving this trial model by including tension/compression asymmetry observed in experiments and necessary to capture material ratcheting under zero mean stress and by improving the optimization and analysis framework.

  6. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  7. Right Product, Wrong Packaging: Not 'Constitution', but 'Constitutional Charter'

    Directory of Open Access Journals (Sweden)

    John Law

    2007-05-01

    Full Text Available The article seeks to locate the principal cause of Europe’s prevailing ratification crisis in the inappropriate title arrived at in the European Convention, Treaty Establishing a Constitution for Europe. This over-ambitious styling led the media to characterise the text as simply an ‘EU Constitution’. Yet, the text was not a Constitution as we traditionally understand the term, i.e. the founding document of a State: scholars are agreed that the EU is not, and will not become upon ratification, a State.In terms of substance, whilst the text certainly strengthened some emerging constitutional aspects, it was not a major departure from the status quo like the Single European Act and Treaty on European Union had been; and it remained technically a treaty like all its predecessors. Arguably, therefore, it did not require referenda to ratify. However, confusion over the scale and importance of what was proposed, stemming from ambiguity in the title, pushed politicians down this unfortunate path.The article identifies a high level of consensus among commentators as to the true nature of the text: most are happy designating it a treaty (noun with constitutional (adjective aspects. The early proposed title Constitutional Treaty for Europe was arguably, therefore, the correct one; but it is now too late to choose this option, as the terms Constitution and Constitutional Treaty have already been muddled in debate. A more distinctive change is required. One idea could be to follow the principle employed elsewhere in the text of codifying the generally accepted but presently unwritten legal concepts of the European Court of Justice, as was done for example for ‘primacy’ and ‘direct effect’. The Court has characterised the EU treaties as a ‘constitutional charter’ for over twenty years now, and on this basis a modified title could read Treaty Establishing a Constitutional Charter for Europe. Importantly, the term ‘charter’ is recognised

  8. Simulation Of Seawater Intrusion With 2D And 3D Models: Nauru Island Case Study

    Science.gov (United States)

    Ghassemi, F.; Jakeman, A. J.; Jacobson, G.; Howard, K. W. F.

    1996-03-01

    With the advent of large computing capacities during the past few decades, sophisticated models have been developed for the simulation of seawater intrusion in coastal and island aquifers. Currently, several models are commercially available for the simulation of this problem. This paper describes the mathematical basis and application of the SUTRA and HST3D models to simulate seawater intrusion in Nauru Island, in the central Pacific Ocean. A comparison of the performance and limitations of these two models in simulating a real problem indicates that three-dimensional simulation of seawater intrusion with the HST3D model has the major advantage of being able to specify natural boundary conditions as well as pumping stresses. However, HST3D requires a small grid size and short time steps in order to maintain numerical stability and accuracy. These requirements lead to solution of a large set of linear equations that requires the availability of powerful computing facilities in terms of memory and computing speed. Combined results of the two simulation models indicate a safe pumping rate of 400 m3/d for the aquifer on Nauru Island, where additional fresh water is presently needed for the rehabilitation of mined-out land.

  9. The emerging international constitutional order: the implications of ...

    African Journals Online (AJOL)

    This vision of an international constitutional model is inspired by the intensification in the shift of public decision-making away from the nation state towards international actors of a regional (for example EU) or functional (for example WTO, UN) nature, and its eroding impact on the notion of a “total” constitutional order, ...

  10. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    Science.gov (United States)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    The study of volcanic domes growth (e.g. St. Helens, Unzen, Montserrat) shows that it is often characterized by a succession of extrusion phases, dome explosions and collapse events. Lava dome eruptive activity may last from days to decades. Therefore, their internal structure, at the end of the eruption, is complex and includes massive extrusions and lava lobes, talus and pyroclastic deposits as well as hydrothermal alteration. The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for volcano structure imaging. Because a large range of resistivity values is often observed in volcanic environments, the method is well suited to study the internal structure of volcanic edifices. We performed an ERT survey on an 11ka years old trachytic lava dome, the Puy de Dôme volcano (French Massif Central). The analysis of a recent high resolution DEM (LiDAR 0.5 m), as well as other geophysical data, strongly suggest that the Puy de Dôme is a composite dome. 11 ERT profiles have been carried out, both at the scale of the entire dome (base diameter of ~2 km and height of 400 m) on the one hand, and at a smaller scale on the summit part on the other hand. Each profile is composed of 64 electrodes. Three different electrode spacing have been used depending on the study area (35 m for the entire dome, 10 m and 5 m for its summit part). Some profiles were performed with half-length roll-along acquisitions, in order to keep a good trade-off between depth of investigation and resolution. Both Wenner-alpha and Wenner-Schlumberger protocols were used. 2-D models of the electrical resistivity distribution were computed using RES2DINV software. In order to constrain inversion models interpretation, the depth of investigation (DOI) method was applied to those results. It aims to compute a sensitivity index on inversion results, illustrating how the data influence the model and constraining models

  11. Therapeutic response assessment using 3D ultrasound for hepatic metastasis from colorectal cancer: Application of a personalized, 3D-printed tumor model using CT images.

    Directory of Open Access Journals (Sweden)

    Ye Ra Choi

    Full Text Available To evaluate accuracy and reliability of three-dimensional ultrasound (3D US for response evaluation of hepatic metastasis from colorectal cancer (CRC using a personalized 3D-printed tumor model.Twenty patients with liver metastasis from CRC who underwent baseline and after chemotherapy CT, were retrospectively included. Personalized 3D-printed tumor models using CT were fabricated. Two radiologists measured volume of each 3D printing model using 3D US. With CT as a reference, we compared difference between CT and US tumor volume. The response evaluation was based on Response Evaluation Criteria in Solid Tumors (RECIST criteria.3D US tumor volume showed no significant difference from CT volume (7.18 ± 5.44 mL, 8.31 ± 6.32 mL vs 7.42 ± 5.76 mL in CT, p>0.05. 3D US provided a high correlation coefficient with CT (r = 0.953, r = 0.97 as well as a high inter-observer intraclass correlation (0.978; 0.958-0.988. Regarding response, 3D US was in agreement with CT in 17 and 18 out of 20 patients for observer 1 and 2 with excellent agreement (κ = 0.961.3D US tumor volume using a personalized 3D-printed model is an accurate and reliable method for the response evaluation in comparison with CT tumor volume.

  12. Separation of powers and constitutional loyalty

    Directory of Open Access Journals (Sweden)

    Marieta SAFTA

    2013-06-01

    Full Text Available The complexity and dynamics of political life leads to developments and reconsiderations in terms of classical theories of constitutional law. Such a process occurs also in the case of separation of powers. Many factors have a bearing on how this theory is currently translated into practice, which requires additional perspectives of analysis in order to develop improved models of cooperation and balance of powers, according to new political realities. This study aims at examining the principle of separation and balance of powers in terms of mutual respect and loyal cooperation between institutions, or, in a broader sense, of constitutional loyalty, an intrinsic value-principle of all constitutions, without which no fundamental law, no matter of how democratic it might be, could function properly2. Based on examination of concrete cases drawn from the case-law of the Constitutional Court of Romania, the study demonstrates that, in lack of constitutional loyalty, the objective pursued by enshrining the principle of separation of powers cannot be achieved effectively, i.e. compliance of public authorities and political actors with constitutional provisions is purely formal and the alleged collaboration between them is a "dialogue of the deaf" at the expense of democracy. The seriousness of the consequences of this type of behaviour requires identification of remedies. What are the limits and what solutions can be identified in this regard are questions that also we aim to answer.

  13. The Starobinsky model from superconformal D-term inflation

    Energy Technology Data Exchange (ETDEWEB)

    Buchmuller, W.; Domcke, V.; Kamada, K.

    2013-06-15

    We point out that in the large field regime, the recently proposed superconformal D-term inflation model coincides with the Starobinsky model. In this regime, the inflaton field dominates over the Planck mass in the gravitational kinetic term in the Jordan frame. Slow-roll inflation is realized in the large field regime for sufficiently large gauge couplings. The Starobinsky model generally emerges as an effective description of slow-roll inflation if a Jordan frame exists where, for large inflaton field values, the action is scale invariant and the ratio {lambda} of the inflaton self-coupling and the nonminimal coupling to gravity is tiny. The interpretation of this effective coupling is different in different models. In superconformal D-term inflation it is determined by the scale of grand unification, {lambda}{proportional_to}({Lambda}{sub GUT}/M{sub P}){sup 4}.

  14. COMPLETE SUPPRESSION OF THE m=2/n-1 NEOCLASSICAL TEARING MODE USING ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D

    International Nuclear Information System (INIS)

    PETTY, CC; LAHAYE, LA; LUCE, TC; HUMPHREYS, DA; HYATT, AW; PRATER, R; STRAIT, EJ; WADE, MR

    2003-01-01

    A271 COMPLETE SUPPRESSION OF THE M=2/N-1 NEOCLASSICAL TEARING MODE USING ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D. The first suppression of the important and deleterious m=2/n=1 neoclassical tearing mode (NTM) is reported using electron cyclotron current drive (ECCD) to replace the ''missing'' bootstrap current in the island O-point. Experiments on the DIII-D tokamak verify the maximum shrinkage of the m=2/n=1 island occurs when the ECCD location coincides with the q = 2 surface. The DIII-D plasma control system is put into search and suppress mode to make small changes in the toroidal field to find and lock onto the optimum position, based on real time measurements of dB θ /dt, for complete m=2/n=1 NTM suppression by ECCD. The requirements on the ECCD for complete island suppression are well modeled by the modified Rutherford equation for the DIII-D plasma conditions

  15. ROSAT X-ray luminosity functions of the Hyades dK and dM stars

    Science.gov (United States)

    Pye, John P.; Hodgkin, Simon T.; Stern, Robert A.; Stauffer, John R.

    1994-02-01

    Long-duration ROSAT PSPC pointed observations of the Hyades open star cluster are performed. The Hyades dK and XLFs from the present observations are compared with published Einstein dK/dM XLFs. The Hyades dK binaries have significantly higher L(X) than the Hyades dK stars. However, all these binaries have relatively long periods (greater than about 1 yr), and hence the L(X) levels cannot be attributed to the enhanced activity expected in short-period, 'BY Dra-type' systems. It is also shown that the effect cannot be due simply to the summed luminosities of the component stars.

  16. Using the D-DANP-mV Model to Explore the Continuous System Improvement Strategy for Sustainable Development of Creative Communities

    Science.gov (United States)

    Xiong, Lei; Teng, Cheng-Lein; Zhu, Bo-Wei; Tzeng, Gwo-Hshiung; Huang, Shan-Lin

    2017-01-01

    With globalization, the notion of “creative city” has become a core concept of many cities in the world development policies, with real properties being upgraded or used to change, renewal is being conducted, and creative industries are emerging. This trend has reached its peak in the past decade, with different forms and scales gathering global development momentum among the creative communities to promote the development of creative economies. In recent years, however, there was still skepticism about the sustainability of the current creative communities. Many scholars have pointed out that signs of unsustainability have begun to appear in many creative communities. To overcome these obstacles, the development of rational and highly effective improvement strategy requires a dynamic thinking process. Therefore, this study employs the DEMATEL-based ANP with modified VIKOR (D-DANP-mV) model in presenting an assessment framework for the sustainability of creative communities. This system is used to assess the sustainability of current creative communities and determine how to solve their problems. Thus, continuous and systemic improvement strategies can be developed to achieve the aim of sustainable development. Two creative communities in Taiwan, Taichung Cultural and Creative Industries Park (TCCIP), and Shen-Ji New Village (SJNV), are used as case studies in this study. Based on the concept of systematic improvement from fundamental issues, the results indicate that the improvement priorities can be determined by applying the D-DANP-mV model. This approach is different from those found by a conventional method with the hypothesis of independent criteria (e.g., diversification of creative talents in TCCIP), and cannot use for performance improvement (e.g., only can be used for ranking and selection among alternatives). Considering these points, unreasonable premises, biased errors, and lack of some real application functions in the process of resource

  17. Using the D-DANP-mV Model to Explore the Continuous System Improvement Strategy for Sustainable Development of Creative Communities

    Directory of Open Access Journals (Sweden)

    Lei Xiong

    2017-10-01

    Full Text Available With globalization, the notion of “creative city” has become a core concept of many cities in the world development policies, with real properties being upgraded or used to change, renewal is being conducted, and creative industries are emerging. This trend has reached its peak in the past decade, with different forms and scales gathering global development momentum among the creative communities to promote the development of creative economies. In recent years, however, there was still skepticism about the sustainability of the current creative communities. Many scholars have pointed out that signs of unsustainability have begun to appear in many creative communities. To overcome these obstacles, the development of rational and highly effective improvement strategy requires a dynamic thinking process. Therefore, this study employs the DEMATEL-based ANP with modified VIKOR (D-DANP-mV model in presenting an assessment framework for the sustainability of creative communities. This system is used to assess the sustainability of current creative communities and determine how to solve their problems. Thus, continuous and systemic improvement strategies can be developed to achieve the aim of sustainable development. Two creative communities in Taiwan, Taichung Cultural and Creative Industries Park (TCCIP, and Shen-Ji New Village (SJNV, are used as case studies in this study. Based on the concept of systematic improvement from fundamental issues, the results indicate that the improvement priorities can be determined by applying the D-DANP-mV model. This approach is different from those found by a conventional method with the hypothesis of independent criteria (e.g., diversification of creative talents in TCCIP, and cannot use for performance improvement (e.g., only can be used for ranking and selection among alternatives. Considering these points, unreasonable premises, biased errors, and lack of some real application functions in the process of

  18. Etude des mécanismes d'interopérabilité des systèmes d'information ...

    African Journals Online (AJOL)

    MECHERI KARIMA

    le problème d'hétérogénéité est pallié à l'aide d'une infrastructure de ... des langages orientés objets construits à partir d‟une analyse des .... sont : le service de médiation de données, le service de médiation fonctionnelle et le service de.

  19. Evolution Scenarios at the Romanian Economy Level, Using the R.M. Solow Adjusted Model

    Directory of Open Access Journals (Sweden)

    Stelian Stancu

    2008-06-01

    Full Text Available Besides the models of M. Keynes, R.F. Harrod, E. Domar, D. Romer, Ramsey-Cass-Koopmans model etc., the R.M. Solow model is part of the category which characterizes the economic growth. The paper proposes the presentation of the R.M. Solow adjusted model with specific simulation characteristics and economic growth scenario. Considering these aspects, there are presented the values obtained at the economy level, behind the simulations, about the ratio Capital on the output volume, Output volume on employee, equal with the current labour efficiency, as well as the Labour efficiency value.

  20. Are there reliable constitutive laws for dynamic friction?

    Science.gov (United States)

    Woodhouse, Jim; Putelat, Thibaut; McKay, Andrew

    2015-09-28

    Structural vibration controlled by interfacial friction is widespread, ranging from friction dampers in gas turbines to the motion of violin strings. To predict, control or prevent such vibration, a constitutive description of frictional interactions is inevitably required. A variety of friction models are discussed to assess their scope and validity, in the light of constraints provided by different experimental observations. Three contrasting case studies are used to illustrate how predicted behaviour can be extremely sensitive to the choice of frictional constitutive model, and to explore possible experimental paths to discriminate between and calibrate dynamic friction models over the full parameter range needed for real applications. © 2015 The Author(s).

  1. Coupled 1D-2D hydrodynamic inundation model for sewer overflow: Influence of modeling parameters

    Directory of Open Access Journals (Sweden)

    Adeniyi Ganiyu Adeogun

    2015-10-01

    Full Text Available This paper presents outcome of our investigation on the influence of modeling parameters on 1D-2D hydrodynamic inundation model for sewer overflow, developed through coupling of an existing 1D sewer network model (SWMM and 2D inundation model (BREZO. The 1D-2D hydrodynamic model was developed for the purpose of examining flood incidence due to surcharged water on overland surface. The investigation was carried out by performing sensitivity analysis on the developed model. For the sensitivity analysis, modeling parameters, such as mesh resolution Digital Elevation Model (DEM resolution and roughness were considered. The outcome of the study shows the model is sensitive to changes in these parameters. The performance of the model is significantly influenced, by the Manning's friction value, the DEM resolution and the area of the triangular mesh. Also, changes in the aforementioned modeling parameters influence the Flood characteristics, such as the inundation extent, the flow depth and the velocity across the model domain. Keywords: Inundation, DEM, Sensitivity analysis, Model coupling, Flooding

  2. A Comparison of Curing Process-Induced Residual Stresses and Cure Shrinkage in Micro-Scale Composite Structures with Different Constitutive Laws

    Science.gov (United States)

    Li, Dongna; Li, Xudong; Dai, Jianfeng; Xi, Shangbin

    2018-02-01

    In this paper, three kinds of constitutive laws, elastic, "cure hardening instantaneously linear elastic (CHILE)" and viscoelastic law, are used to predict curing process-induced residual stress for the thermoset polymer composites. A multi-physics coupling finite element analysis (FEA) model implementing the proposed three approaches is established in COMSOL Multiphysics-Version 4.3b. The evolution of thermo-physical properties with temperature and degree of cure (DOC), which improved the accuracy of numerical simulations, and cure shrinkage are taken into account for the three models. Subsequently, these three proposed constitutive models are implemented respectively in a 3D micro-scale composite laminate structure. Compared the differences between these three numerical results, it indicates that big error in residual stress and cure shrinkage generates by elastic model, but the results calculated by the modified CHILE model are in excellent agreement with those estimated by the viscoelastic model.

  3. Sensitive analysis and modifications to reflood-related constitutive models of RELAP5

    International Nuclear Information System (INIS)

    Li Dong; Liu Xiaojing; Yang Yanhua

    2014-01-01

    Previous system code calculation reveals that the cladding temperature is underestimated and quench front appears too early during reflood process. To find out the parameters shows important effect on the results, sensitive analysis is performed on parameters of constitutive physical models. Based on the phenomenological and theoretical analysis, four parameters are selected: wall to vapor film boiling heat transfer coefficient, wall to liquid film boiling heat transfer coefficient, dry wall interfacial friction coefficient and minimum droplet diameter. In order to improve the reflood simulation ability of RELAP5 code, the film boiling heat transfer model and dry wall interfacial friction model which are corresponding models of those influential parameters are studied. Modifications have been made and installed into RELAP5 code. Six tests of FEBA are simulated by RELAP5 to study the predictability of reflood-related physical models. A dispersed flow film boiling heat transfer (DFFB) model is applied when void fraction is above 0.9. And a factor is multiplied to the post-CHF drag coefficient to fit the experiment better. Finally, the six FEBA tests are calculated again so as to assess the modifications. Better results are obtained which prove the advantage of the modified models. (author)

  4. Rodinný dům s kanceláří

    OpenAIRE

    Srpek, Stanislav

    2013-01-01

    Bakalářská práce ,, Rodinný dům s kanceláří “. Objekt je situován v obci Libčany. Stavba je navržena jako dvou-podlažní, částečně podsklepený rodinný dům. Stavba má plochou střechu, nad kanceláří je terasa a nad rodinným je domem plochá střecha s říčním kamenivem. Bachelor´s thesis ,, Detached house with office “. The building is situated in village Libčany. The building is designed as 2-floor, partial basement detached house. The building has got flat roof, over the office is terrace and ...

  5. Constitutional Rights in Indonesia

    OpenAIRE

    Judhariksawan

    2018-01-01

    The constitution is fundamental to the life of the modern state as a major foothold in state governance. Includes the guarantee of constitutional rights of citizens. The The constitution is the basis of state organizers to be implemented so that the state is obliged to guarantee the fulfillment of citizens' constitutional rights. Human rights have become an important part of the modern constitution. This study will describe how human rights guarantees become part of consti...

  6. Modelling deuterium release during thermal desorption of D{sup +}-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M. [University of Toronto Institute for Aerospace Studies, Toronto, ON, M3H 5T6 (Canada); Haasz, A.A. [University of Toronto Institute for Aerospace Studies, Toronto, ON, M3H 5T6 (Canada)], E-mail: tonyhaasz@utias.utoronto.ca; Davis, J.W. [University of Toronto Institute for Aerospace Studies, Toronto, ON, M3H 5T6 (Canada)

    2008-03-15

    Thermal desorption profiles were modelled based on SIMS measurements of implantation profiles and using the multi-trap diffusion code TMAP7 [G.R. Longhurst, TMAP7: Tritium Migration Analysis Program, User Manual, Idaho National Laboratory, INEEL/EXT-04-02352 (2004)]. The thermal desorption profiles were the result of 500 eV/D{sup +} irradiations on single crystal tungsten at 300 and 500 K to fluences of 10{sup 22}-10{sup 24} D{sup +}/m{sup 2}. SIMS depth profiling was performed after irradiation to obtain the distribution of trapped D within the top 60 nm of the surface. Thermal desorption spectroscopy (TDS) was performed subsequently to obtain desorption profiles and to extract the total trapped D inventory. The SIMS profiles were calibrated to give D concentrations. To account for the total trapped D inventory measured by TDS, SIMS depth distributions were used in the near-surface (surface to 30 nm), NRA measurements [V.Kh. Alimov, J. Roth, M. Mayer, J. Nucl. Mater. 337-339 (2005) 619] were used in the range 1-7 {mu}m, and a linear drop in the D distribution was assumed in the intermediate sub-surface region ({approx}30 nm to 1 {mu}m). Traps were assumed to be saturated so that the D distribution also represented the trap distribution. Three trap energies, 1.07 {+-} 0.03, 1.34 {+-} 0.03 and 2.1 {+-} 0.05 eV were required to model the 520, 640 and 900 K desorption peaks, respectively. The 1.34 and 1.07 eV traps correspond to trapping of a first and second D atom at a vacancy, respectively, while the 2.1 eV trap corresponds to atomic D trapping at a void. A fourth trap energy of 0.65 eV was used to fit the 400 K desorption peak observed by Quastel et al. [A.D. Quastel, J.W. Davis, A.A. Haasz, R.G. Macaulay-Newcombe, J. Nucl. Mater. 359 (2006) 8].

  7. A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part I-Theory

    Science.gov (United States)

    Tengattini, Alessandro; Das, Arghya; Nguyen, Giang D.; Viggiani, Gioacchino; Hall, Stephen A.; Einav, Itai

    2014-10-01

    This is the first of two papers introducing a novel thermomechanical continuum constitutive model for cemented granular materials. Here, we establish the theoretical foundations of the model, and highlight its novelties. At the limit of no cement, the model is fully consistent with the original Breakage Mechanics model. An essential ingredient of the model is the use of measurable and micro-mechanics based internal variables, describing the evolution of the dominant inelastic processes. This imposes a link between the macroscopic mechanical behavior and the statistically averaged evolution of the microstructure. As a consequence this model requires only a few physically identifiable parameters, including those of the original breakage model and new ones describing the cement: its volume fraction, its critical damage energy and bulk stiffness, and the cohesion.

  8. Presse triaxiale permettant de quantifier les modes de déformation lors d'essais mécaniques

    OpenAIRE

    Reuschle , Thierry

    2010-01-01

    Presse triaxiale permettant de quantifier les modes de déformation lors d'essais mécaniques : modes de rupture ou d'endommagement, et localisation de la déformation, sur des roches volcaniques, argilites, grès ou carbonates.

  9. Unravelling earth flow dynamics with 3-D time series derived from UAV-SfM models

    Science.gov (United States)

    Clapuyt, François; Vanacker, Veerle; Schlunegger, Fritz; Van Oost, Kristof

    2017-12-01

    Accurately assessing geo-hazards and quantifying landslide risks in mountainous environments are gaining importance in the context of the ongoing global warming. For an in-depth understanding of slope failure mechanisms, accurate monitoring of the mass movement topography at high spatial and temporal resolutions remains essential. The choice of the acquisition framework for high-resolution topographic reconstructions will mainly result from the trade-off between the spatial resolution needed and the extent of the study area. Recent advances in the development of unmanned aerial vehicle (UAV)-based image acquisition combined with the structure-from-motion (SfM) algorithm for three-dimensional (3-D) reconstruction make the UAV-SfM framework a competitive alternative to other high-resolution topographic techniques. In this study, we aim at gaining in-depth knowledge of the Schimbrig earthflow located in the foothills of the Central Swiss Alps by monitoring ground surface displacements at very high spatial and temporal resolution using the efficiency of the UAV-SfM framework. We produced distinct topographic datasets for three acquisition dates between 2013 and 2015 in order to conduct a comprehensive 3-D analysis of the landslide. Therefore, we computed (1) the sediment budget of the hillslope, and (2) the horizontal and (3) the three-dimensional surface displacements. The multitemporal UAV-SfM based topographic reconstructions allowed us to quantify rates of sediment redistribution and surface movements. Our data show that the Schimbrig earthflow is very active, with mean annual horizontal displacement ranging between 6 and 9 m. Combination and careful interpretation of high-resolution topographic analyses reveal the internal mechanisms of the earthflow and its complex rotational structure. In addition to variation in horizontal surface movements through time, we interestingly showed that the configuration of nested rotational units changes through time. Although

  10. Unravelling earth flow dynamics with 3-D time series derived from UAV-SfM models

    Directory of Open Access Journals (Sweden)

    F. Clapuyt

    2017-12-01

    Full Text Available Accurately assessing geo-hazards and quantifying landslide risks in mountainous environments are gaining importance in the context of the ongoing global warming. For an in-depth understanding of slope failure mechanisms, accurate monitoring of the mass movement topography at high spatial and temporal resolutions remains essential. The choice of the acquisition framework for high-resolution topographic reconstructions will mainly result from the trade-off between the spatial resolution needed and the extent of the study area. Recent advances in the development of unmanned aerial vehicle (UAV-based image acquisition combined with the structure-from-motion (SfM algorithm for three-dimensional (3-D reconstruction make the UAV-SfM framework a competitive alternative to other high-resolution topographic techniques. In this study, we aim at gaining in-depth knowledge of the Schimbrig earthflow located in the foothills of the Central Swiss Alps by monitoring ground surface displacements at very high spatial and temporal resolution using the efficiency of the UAV-SfM framework. We produced distinct topographic datasets for three acquisition dates between 2013 and 2015 in order to conduct a comprehensive 3-D analysis of the landslide. Therefore, we computed (1 the sediment budget of the hillslope, and (2 the horizontal and (3 the three-dimensional surface displacements. The multitemporal UAV-SfM based topographic reconstructions allowed us to quantify rates of sediment redistribution and surface movements. Our data show that the Schimbrig earthflow is very active, with mean annual horizontal displacement ranging between 6 and 9 m. Combination and careful interpretation of high-resolution topographic analyses reveal the internal mechanisms of the earthflow and its complex rotational structure. In addition to variation in horizontal surface movements through time, we interestingly showed that the configuration of nested rotational units changes through

  11. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    Science.gov (United States)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  12. The Constitutional Amendment Process

    Science.gov (United States)

    Chism, Kahlil

    2005-01-01

    This article discusses the constitutional amendment process. Although the process is not described in great detail, Article V of the United States Constitution allows for and provides instruction on amending the Constitution. While the amendment process currently consists of six steps, the Constitution is nevertheless quite difficult to change.…

  13. Constant strain rate experiments and constitutive modeling for a class of bitumen

    Science.gov (United States)

    Reddy, Kommidi Santosh; Umakanthan, S.; Krishnan, J. Murali

    2012-08-01

    The mechanical properties of bitumen vary with the nature of the crude source and the processing methods employed. To understand the role of the processing conditions played in the mechanical properties, bitumen samples derived from the same crude source but processed differently (blown and blended) are investigated. The samples are subjected to constant strain rate experiments in a parallel plate rheometer. The torque applied to realize the prescribed angular velocity for the top plate and the normal force applied to maintain the gap between the top and bottom plate are measured. It is found that when the top plate is held stationary, the time taken by the torque to be reduced by a certain percentage of its maximum value is different from the time taken by the normal force to decrease by the same percentage of its maximum value. Further, the time at which the maximum torque occurs is different from the time at which the maximum normal force occurs. Since the existing constitutive relations for bitumen cannot capture the difference in the relaxation times for the torque and normal force, a new rate type constitutive model, incorporating this response, is proposed. Although the blended and blown bitumen samples used in this study correspond to the same grade, the mechanical responses of the two samples are not the same. This is also reflected in the difference in the values of the material parameters in the model proposed. The differences in the mechanical properties between the differently processed bitumen samples increase further with aging. This has implications for the long-term performance of the pavement.

  14. Active learning of constitutive relation from mesoscopic dynamics for macroscopic modeling of non-Newtonian flows

    Science.gov (United States)

    Zhao, Lifei; Li, Zhen; Caswell, Bruce; Ouyang, Jie; Karniadakis, George Em

    2018-06-01

    We simulate complex fluids by means of an on-the-fly coupling of the bulk rheology to the underlying microstructure dynamics. In particular, a continuum model of polymeric fluids is constructed without a pre-specified constitutive relation, but instead it is actively learned from mesoscopic simulations where the dynamics of polymer chains is explicitly computed. To couple the bulk rheology of polymeric fluids and the microscale dynamics of polymer chains, the continuum approach (based on the finite volume method) provides the transient flow field as inputs for the (mesoscopic) dissipative particle dynamics (DPD), and in turn DPD returns an effective constitutive relation to close the continuum equations. In this multiscale modeling procedure, we employ an active learning strategy based on Gaussian process regression (GPR) to minimize the number of expensive DPD simulations, where adaptively selected DPD simulations are performed only as necessary. Numerical experiments are carried out for flow past a circular cylinder of a non-Newtonian fluid, modeled at the mesoscopic level by bead-spring chains. The results show that only five DPD simulations are required to achieve an effective closure of the continuum equations at Reynolds number Re = 10. Furthermore, when Re is increased to 100, only one additional DPD simulation is required for constructing an extended GPR-informed model closure. Compared to traditional message-passing multiscale approaches, applying an active learning scheme to multiscale modeling of non-Newtonian fluids can significantly increase the computational efficiency. Although the method demonstrated here obtains only a local viscosity from the polymer dynamics, it can be extended to other multiscale models of complex fluids whose macro-rheology is unknown.

  15. Cardinal principle and application practice of 3D digital model design for nuclear power plant

    International Nuclear Information System (INIS)

    Wang Ruobing; Wu Yan

    2005-01-01

    The practical application of 3D digital model design at nuclear power plants was introduced in detail in the paper. The whole process for system choice, program constitution, model design and project practice were also summarized. By demonstrating the cardinal principal and application practice of 3D digital model design as an important sub-project of CGNPC Digital Plant, the paper validates the rationality and validity of the major architecture system and program configuration of the digital plant, carries out beneficial attempt and study in the overall power plant life engineering management and site practice, and has achieved significant engineering and social benefits. The success of practices in the project accelerates the extended and extensive application of Digital Plant in the operation and maintenance simulation of Daya Bay and Ling'ao Nuclear Power Plants, and the engineering design management for Ling'ao II and III of CGNPC on a consolidated basis. (authors)

  16. CONSTITUTIONAL TRANSPLANT IN THE PEOPLE’S REPUBLIC OF CHINA: THE INFLUENCE OF THE SOVIET MODEL AND CHALLENGES IN THE GLOBALIZATION ERA

    Directory of Open Access Journals (Sweden)

    J. Fan

    2015-01-01

    Full Text Available In this essay, I mainly focus on the constitutional transplantation in the People’s Republic of China. Firstly, I briefly present the Chinese constitution-making process from the Qing dynasty to the Republic of China to show that both regimes had transplanted more or less liberal constitutional principles, rules and institutions into their domestic constitutional document. Then, because China and the Former Soviet Union shared the Marxism-Leninism, China’s 1954 Constitution borrowed almost all the constitutional articles to various extents from the 1936 Soviet constitutional code. Though few articles of the 1977 Soviet Constitution have been imported into China’s present 1982 Constitution, China’s Constitution is still influenced by the Soviet model of constitution in many aspects related to the political and legal reform in the post-Mao era. Globalization brings many challenges to present-day China’s Soviet- featured constitutional system. With China’s accession to the WTO, a qualified judicial review mechanism is required to be established by the other Member States. However, China seems not to satisfy this obligation under the framework of the present legal system. In addition, a constitutional review mechanism is still absent in China. Besides, the modern Chinese legal system keeps silent on the domestic implementation of the UN international human rights treaties in view of the fact that Chinese international law theory was molded by Soviet’s which took highly concerned on protection of its state sovereignty. Chinese authorities, on the other hand, take a vague attitude to universal human rights standards. They sometimes prefer to observe them, while in other cases, they are not willing to follow them. Besides that, the domestic effects of international law also depend on the outcomes of the struggle and compromise between the reformist and Chinese Marxist conservative.

  17. Time-Delay Effects on Constitutive Gene Expression*

    International Nuclear Information System (INIS)

    Feng Yan-Ling; Wang Dan; Tang Xu-Lei; Dong Jian-Min

    2017-01-01

    The dynamics of constitutive gene expression with delayed mRNA degradation is investigated, where the intrinsic noise caused by the small number of reactant molecules is introduced. It is found that the oscillatory behavior claimed in previous investigations does not appear in the approximation of small time delay, and the steady state distribution still follows the Poisson law. Furthermore, we introduce the extrinsic noise induced by surrounding environment to explore the effects of this noise and time delay on the Fano factor. Based on a delay Langevin equation and the corresponding Fokker–Planck equation, the distribution of mRNA copy-number is achieved analytically. The time delay and extrinsic noise play similar roles in the gene expression system, that is, they are able to result in the deviation of the Fano factor from 1 evidently. The measured Fano factor for constitutive gene expression is slightly larger than 1, which is perhaps attributed to the time-delay effect. (paper)

  18. European constitution and EURATOM treaty

    International Nuclear Information System (INIS)

    Heller, W.

    2003-01-01

    The European Council held in Laeken in December 2001 had decided to call a convention preparing the next conference of the heads of state and government which, among other topics, was to deliberate the question of a fully formulated European constitution. Under the presidency of Giscard d'Estaing, all delegates to the European Convention on July 10, 2003 signed the draft treaty for a European constitution. This final document is the basis of the conference of the heads of state and government to begin in October 2003. On this occasion, the draft of a separate chapter on energy could well come up again for examination. This chapter had been introduced only at the end of the deliberations of the convention and adds to the competences of the EU institutions. Also the Euratom Treaty was a topic of the convention preparing the constitution. As the presidency felt that no specific issues had been raised in the Laeken declaration, it is proposed to adapt the Euratom Treaty to the new provisions of the constitution by adding a protocol. This would mean that the European Atomic Energy Community, for the time being, would retain its independent legal status. The contents would have to be examined at some later date. Consequently, the real discussion of the Euratom Treaty is yet to come. Also, the speedy completion of the single market for electricity would make it desirable for the Community to adopt a uniform, positive stance in the use of nuclear power at the best possible safety standards so as to ensure a level playing field. Current events entailing power failures in the United States and the United Kingdom have alerted the public to the problem of the continuity of power supply. This could well be the beginning of a new, unbiased, balanced energy discussion in a bigger Europe. (orig.)

  19. Tomographic Validation of the AWSoM Model of the Inner Corona During Solar Minima

    Science.gov (United States)

    Manchester, W.; Vásquez, A. M.; Lloveras, D. G.; Mac Cormack, C.; Nuevo, F.; Lopez-Fuentes, M.; Frazin, R. A.; van der Holst, B.; Landi, E.; Gombosi, T. I.

    2017-12-01

    Continuous improvement of MHD three-dimensional (3D) models of the global solar corona, such as the Alfven Wave Solar Model (AWSoM) of the Space Weather Modeling Framework (SWMF), requires testing their ability to reproduce observational constraints at a global scale. To that end, solar rotational tomography based on EUV image time-series can be used to reconstruct the 3D distribution of the electron density and temperature in the inner solar corona (r used to validate steady-state 3D MHD simulations of the inner corona using the latest version of the AWSoM model. We perform the study for selected rotations representative of solar minimum conditions, when the global structure of the corona is more axisymmetric. We analyse in particular the ability of the MHD simulation to match the tomographic results across the boundary region between the equatorial streamer belt and the surrounding coronal holes. The region is of particular interest as the plasma flow from that zone is thought to be related to the origin of the slow component of the solar wind.

  20. Evaluation of inelastic constitutive models under plasticity-creep interaction for 2 1/4 Cr-1Mo steel: Results of joint work (A)

    International Nuclear Information System (INIS)

    Inoue, T.; Ohno, N.; Suzuki, A.; Igari, T.

    1987-01-01

    In order to evaluate the validity of existing inelastic constitutive models under the condition of plasticity-creep interaction, ten kinds of constitutive models were applied to sixteen bench mark problems of four categories, and the calculated results were compared with the experiments of 2 1/4Cr-1Mo steel at 600 0 C. The present bench mark project provides the following remarks: (1) The strain rate effect on the stress-strain relation can be represented, in some degree, even by a simple superposition model of classical type, and some of unified models describe the saturation of increase in flow stress with higher strain rate. (2) The characteristics of the plasticity-creep interaction were predicted by the modified superposition model as well as by unified ones in the actual calculations for the propounded problems. (3) Although the sophisticated unified constitutive models tend to give qualitatively better results, the complicated procedures in determining material parameters from the data of conventional tests need some improvements. The subcommittee has been reorganized to focus her attention in applying thus developed results under uniaxial stress state to multiaxial one, and the out-put will be expected to report in a couple of years

  1. Sensitivity of technetium-99m-d,1-HMPAO to radiolysis in aqueous solutions

    International Nuclear Information System (INIS)

    Tubergen, K.; Corlija, M.; Volkert, W.A.; Holmes, R.A.

    1991-01-01

    The sensitivity of technetium-99m- (99mTc) d,l-HMPAO to radiolytically induced dissociation in aqueous solutions was investigated. It was found that cobalt-60 (60Co) gamma irradiation of solutions containing 99mTc-d,l-HMPAO with only 1600 cGy reduced the lipophilic chelates' radiochemical purity (RCP) to 50%-60%. The radiolytic sensitivity of 99mTc-meso-HMPAO is significantly lower. The results indicate that radiolytically produced intermediates limit the in vitro stability of 99mTc-d,l-HMPAO

  2. Mechanical properties and electronic structure of anti-ReO3 structured cubic nitrides, M3N, of d block transition metals M: An ab initio study

    International Nuclear Information System (INIS)

    Zhou, Xiuquan; Gall, Daniel; Khare, Sanjay V.

    2014-01-01

    Highlights: • We use DFT to model the anti-ReO 3 structured transition metal nitrides M 3 N. • We predict their lattice constants, electronic structures and mechanical properties. • We correlate the metal d and nitrogen 2p orbitals with stability and hardness. • We established a high-throughput database for materials design. - Abstract: We report a systematic study of the anti-ReO 3 structured transition metal nitrides, M 3 N, using ab initio density functional theory computations in the local density approximation. Here M denotes all the 3d, 4d and 5d transition metals. Our calculations indicate that all M 3 N compounds except V 3 N of group 5 and Zn 3 N and Hg 3 N of group 12 are mechanically stable. For the stable M 3 N compounds, we report a database of predictions for their lattice constants, electronic properties and mechanical properties including bulk modulus, Young’s modulus, shear modulus, ductility, hardness and Debye temperature. It is found that most M 3 N compounds exhibit ductility with Vickers hardness between 0.4 GPa and 11.2 GPa. Our computed lattice constant for Cu 3 N, the only M 3 N compound where experiments exist, agrees well with the experimentally reported values. We report ratios of the melting points of all M 3 N compounds to that of Cu 3 N. The local density of states for all M 3 N compounds are obtained, and electronic band gaps are observed only for M of group 11 (Cu, Ag and Au) while the remaining M 3 N compounds are metallic without band gaps. Valence electron density along with the hybridization of the metal d and nitrogen 2p orbitals play an important role in determining the stability and hardness of different compounds. Our high-throughput databases for the cubic anti-ReO 3 structured transition metal nitrides should motivate future experimental work and shorten the time to their discovery

  3. A constitutive law for degrading bioresorbable polymers.

    Science.gov (United States)

    Samami, Hassan; Pan, Jingzhe

    2016-06-01

    This paper presents a constitutive law that predicts the changes in elastic moduli, Poisson's ratio and ultimate tensile strength of bioresorbable polymers due to biodegradation. During biodegradation, long polymer chains are cleaved by hydrolysis reaction. For semi-crystalline polymers, the chain scissions also lead to crystallisation. Treating each scission as a cavity and each new crystal as a solid inclusion, a degrading semi-crystalline polymer can be modelled as a continuum solid containing randomly distributed cavities and crystal inclusions. The effective elastic properties of a degrading polymer are calculated using existing theories for such solid and the tensile strength of the degrading polymer is predicted using scaling relations that were developed for porous materials. The theoretical model for elastic properties and the scaling law for strength form a complete constitutive relation for the degrading polymers. It is shown that the constitutive law can capture the trend of the experimental data in the literature for a range of biodegradable polymers fairly well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A framework for the automated data-driven constitutive characterization of composites

    Science.gov (United States)

    J.G. Michopoulos; John Hermanson; T. Furukawa; A. Iliopoulos

    2010-01-01

    We present advances on the development of a mechatronically and algorithmically automated framework for the data-driven identification of constitutive material models based on energy density considerations. These models can capture both the linear and nonlinear constitutive response of multiaxially loaded composite materials in a manner that accounts for progressive...

  5. Application of Characterization, Modeling, and Analytics Towards Understanding Process Structure Linkages in Metallic 3D Printing (Postprint)

    Science.gov (United States)

    2017-08-01

    METALLIC 3D PRINTING (POSTPRINT) M.A. Groeber, E. Schwalbach, S. Donegan, K. Chaput, T. Butler, and J. Miller AFRL/RX 27 JULY...MODELING, AND ANALYTICS TOWARDS UNDERSTANDING PROCESS- STRUCTURE LINKAGES IN METALLIC 3D PRINTING (POSTPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b...characterization, modelling, and analytics towards understanding process-structure linkages in metallic 3D printing M A Groeber, E Schwalbach, S Donegan, K

  6. Constitutive modeling of fiber-reinforced cement composites

    Science.gov (United States)

    Boulfiza, Mohamed

    a diffused damage is more appropriate in the pre-peak regime whereas, NLFM is more suitable in the post-peak stage where the opening and propagation of a major crack will control the response of the material and not a deformation in a continuum sense as opposed to the pre-cracking zone. Tensile and compressive tests have been carried out for the sole purpose of calibrating the constitutive models proposed and/or developed in this thesis for FRC materials. The suitability of the models in predicting the response of different structural members has been performed by comparing the models' forecasts with experimental results carried out by the author, as well as experimental results from the literature. The different models proposed in this thesis have the possibility to account for the presence of fibers in the matrix, and give fairly good results for both high fiber volume fractions (vsb{f}≥2%) and low fiber volume fractions (vsb{f}concrete substrate-FRC repair materials by the introduction of a zero thickness layer of interface elements to account for the interface properties which usually control the effectiveness of the repair material. ftnsp1NLFM: Non Linear Fracture Mechanics.

  7. Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues - II: prediction of reaction force history of meniscal cartilage specimens.

    Science.gov (United States)

    Taylor, Zeike A; Kirk, Thomas B; Miller, Karol

    2007-10-01

    The theoretical framework developed in a companion paper (Part I) is used to derive estimates of mechanical response of two meniscal cartilage specimens. The previously developed framework consisted of a constitutive model capable of incorporating confocal image-derived tissue microstructural data. In the present paper (Part II) fibre and matrix constitutive parameters are first estimated from mechanical testing of a batch of specimens similar to, but independent from those under consideration. Image analysis techniques which allow estimation of tissue microstructural parameters form confocal images are presented. The constitutive model and image-derived structural parameters are then used to predict the reaction force history of the two meniscal specimens subjected to partially confined compression. The predictions are made on the basis of the specimens' individual structural condition as assessed by confocal microscopy and involve no tuning of material parameters. Although the model does not reproduce all features of the experimental curves, as an unfitted estimate of mechanical response the prediction is quite accurate. In light of the obtained results it is judged that more general non-invasive estimation of tissue mechanical properties is possible using the developed framework.

  8. Mergers and Acquisitions (M&AS by R&D Intensive Firms

    Directory of Open Access Journals (Sweden)

    Shantanu Dutta

    2009-12-01

    Full Text Available In this study, we evaluate the impact of R&D intensity on acquiring firms’ abnormal returns by examining 925 Canadian completed deals between 1993 and 2002 that have information on R&D expenditures. While examining the returns to acquiring firm shareholders in the R&D intensive firms we evaluate two competing hypotheses: ‘growth potential hypothesis’ and ‘integration failure hypothesis’. According to the ‘growth potential hypothesis’, in light of the growth potential of the targets acquired by R&D intensive firms, investors are likely to react positively. ‘Integration failure hypothesis’ focuses on integration difficulties of a target by an R&D intensive firms and suggests that investor might be skeptical of such acquisitions and react negatively. Our results show that R&D intensity (i.e. R&D expenditure by sales has a positive and significant effect on cumulative abnormal returns of the acquiring firms around the announcement dates. This implies that market generally favors the M&A deals by R&D intensive firms. An analysis of the differentiating characteristics reveal that R&D firms have a significantly higher growth potential and undertake more stock financed deals compared to the non R&D firms. Further, our results show that there is no significant change in long-term operating performance subsequent to the M&A deals for both R&D firms and non R&D firms. In general, our results show support for ‘growth potential hypothesis’.

  9. Differential cross-sections of a double spin-flip In d + d reactions and supermultiplet potential model of the interaction of clusters

    CERN Document Server

    Lebedev, V M; Struzhko, B G

    2002-01-01

    The experimental two-dimensional proton-proton coincidence spectra of the four-particle reaction d + d -> p + p + n + n are simulated with regard to dominant quasi-binary processes, viz. a quasi-free scattering of protons and final-state interaction of nucleons. Differential cross-sections d sigma (nu,E)/d OMEGA of a deuteron charge exchange sup 2 H(d, sup 2 n) sup 2 p reaction (0,57 +- 0.03 mb/sr at THETA sub c sub m 62,5 degree, 1,01 +- 0,05 mb /sr at THETA sub c sub m = 79,6 degree, E sub c sub m = 11,6 MeV) and spin-isospin flip sup 2 H(d,d sup *)d sup * one (1,1 +- 0,3 mb /sr at THETA sub c sub m = 90 degree E sub c sub m 23,4 MeV) are defined. They are compared to the cross-sections calculated in the approach of generalized (supermultiplet) potential model where the problem of the interaction of clusters A and B can be reduced to a set of one-channel scattering problems with potentials V sup [ f], where [f] are the allowed Young schemes for the system A + B. This is important for channels with minimum t...

  10. Pharmacological inhibition of dynamin II reduces constitutive protein secretion from primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Maaike Kockx

    Full Text Available Dynamins are fission proteins that mediate endocytic and exocytic membrane events and are pharmacological therapeutic targets. These studies investigate whether dynamin II regulates constitutive protein secretion and show for the first time that pharmacological inhibition of dynamin decreases secretion of apolipoprotein E (apoE and several other proteins constitutively secreted from primary human macrophages. Inhibitors that target recruitment of dynamin to membranes (MiTMABs or directly target the GTPase domain (Dyngo or Dynole series, dose- and time- dependently reduced the secretion of apoE. SiRNA oligo's targeting all isoforms of dynamin II confirmed the involvement of dynamin II in apoE secretion. Inhibition of secretion was not mediated via effects on mRNA or protein synthesis. 2D-gel electrophoresis showed that inhibition occurred after apoE was processed and glycosylated in the Golgi and live cell imaging showed that inhibited secretion was associated with reduced post-Golgi movement of apoE-GFP-containing vesicles. The effect was not restricted to macrophages, and was not mediated by the effects of the inhibitors on microtubules. Inhibition of dynamin also altered the constitutive secretion of other proteins, decreasing the secretion of fibronectin, matrix metalloproteinase 9, Chitinase-3-like protein 1 and lysozyme but unexpectedly increasing the secretion of the inflammatory mediator cyclophilin A. We conclude that pharmacological inhibitors of dynamin II modulate the constitutive secretion of macrophage apoE as a class effect, and that their capacity to modulate protein secretion may affect a range of biological processes.

  11. Implementation of 3D models in the Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Lopes, Vivaldo; Millian, Felix M.; Guevara, Maria Victoria M.; Garcia, Fermin; Sena, Isaac; Menezes, Hugo

    2009-01-01

    On the area of numerical dosimetry Applied to medical physics, the scientific community focuses on the elaboration of new hybrids models based on 3D models. But different steps of the process of simulation with 3D models needed improvement and optimization in order to expedite the calculations and accuracy using this methodology. This project was developed with the aim of optimize the process of introduction of 3D models within the simulation code of radiation transport by Monte Carlo (MCNP). The fast implementation of these models on the simulation code allows the estimation of the dose deposited on the patient organs on a more personalized way, increasing the accuracy with this on the estimates and reducing the risks to health, caused by ionizing radiations. The introduction o these models within the MCNP was made through a input file, that was constructed through a sequence of images, bi-dimensional in the 3D model, generated using the program '3DSMAX', imported by the program 'TOMO M C' and thus, introduced as INPUT FILE of the MCNP code. (author)

  12. Constitutive representation of damage development and healing in WIPP salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Bodner, S.R.; Fossum, A.F.; Munson, D.E.

    1994-01-01

    There has been considerable interest in characterizing and modeling the constitutive behavior of rock salt with particular reference to long-term creep and creep failure. The interest is motivated by the projected use of excavated rooms in salt rock formations as repositories for nuclear waste. It is presumed that closure of those rooms by creep ultimately would encapsulate the waste material, resulting in its effective isolation. A continuum mechanics approach for treating damage healing is formulated as part of a constitutive model for describing coupled creep, fracture, and healing in rock salt. Formulation of the healing term is, described and the constitutive model is evaluated against experimental data of rock salt from the Waste Isolation Pilot Plant (WIPP) site. The results indicate that healing anistropy in WIPP salt can be modeled with an appropriate power-conjugate equivalent stress, kinetic equation, and evolution equation for damage healing

  13. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms

    KAUST Repository

    Sánchez, Marcelo

    2016-11-30

    Gas hydrate bearing sediments (HBS) are natural soils formed in permafrost and sub-marine settings where the temperature and pressure conditions are such that gas hydrates are stable. If these conditions shift from the hydrate stability zone, hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical behavior of HBS is very complex and its modeling poses great challenges. This paper presents a new geomechanical model for hydrate bearing sediments. The model incorporates the concept of partition stress, plus a number of inelastic mechanisms proposed to capture the complex behavior of this type of soil. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. The model was applied and validated against experimental data from triaxial and oedometric tests conducted on manufactured and natural specimens involving different hydrate saturation, hydrate morphology, and confinement conditions. Particular attention was paid to model the HBS behavior during hydrate dissociation under loading. The model performance was highly satisfactory in all the cases studied. It managed to properly capture the main features of HBS mechanical behavior and it also assisted to interpret the behavior of this type of sediment under different loading and hydrate conditions.

  14. Deformation Characteristic and Constitutive Modeling of 2707 Hyper Duplex Stainless Steel under Hot Compression

    Directory of Open Access Journals (Sweden)

    Huabing Li

    2016-09-01

    Full Text Available Hot deformation behavior and microstructure evolution of 2707 hyper duplex stainless steel (HDSS were investigated through hot compression tests in the temperature range of 900–1250 °C and strain rate range of 0.01–10 s−1. The results showed that the flow behavior strongly depended on strain rate and temperature, and flow stress increased with increasing strain rate and decreasing temperature. At lower temperatures, many precipitates appeared in ferrite and distributed along the deformation direction, which could restrain processing of discontinuous dynamic recrystallization (DRX because of pinning grain boundaries. When the temperature increased to 1150 °C, the leading softening behaviors were dynamic recovery (DRV in ferrite and discontinuous DRX in austenite. When the temperature reached 1250 °C, softening behavior was mainly DRV in ferrite. The increase of strain rate was conducive to the occurrence of discontinuous DRX in austenite. A constitutive equation at peak strain was established and the results indicated that 2707 HDSS had a higher Q value (569.279 kJ·mol−1 than other traditional duplex stainless steels due to higher content of Cr, Mo, Ni, and N. Constitutive modeling considering strain was developed to model the hot deformation behavior of 2707 HDSS more accurately, and the correlation coefficient and average absolute relative error were 0.992 and 5.22%, respectively.

  15. Transnational Constitutional Law

    OpenAIRE

    Zumbansen, P (Peer); Bhatt, Kinnari

    2018-01-01

    textabstractThis chapter provides an overview of the emerging field of transnational constitutional law (TCL). Whilst questions of constitutional law are typically discussed in the context of a specific domestic legal setting, a salient strategy of TCL is to understand constitutional law and its values by placing them ‘in context’ with existing and evolving cultural norms and political, social and economic discourses and struggles. Drawing on socio-legal investigations into the relationships ...

  16. 43 CFR 1.5 - Signature to constitute certificate.

    Science.gov (United States)

    2010-10-01

    ..., or otherwise, while so employed and, if a period of one year has not passed since the termination of... representative capacity signs a paper in practice before the Department, his signature shall constitute his... officer or employee of the Government; and (d) That he has read the paper; that to the best of his...

  17. CAN THE MUSLIM WORLD BORROW FROM INDONESIAN CONSTITUTIONAL REFORM? A Comparative Constitutional Approach

    Directory of Open Access Journals (Sweden)

    Nadirsyah Hosen

    2007-06-01

    Full Text Available This paper attempts to analytically examine the possibility of constitutional borrowing for the Muslim world regardless the differences in history, system, culture, language, and cha­racteristics. It discusses this issue by looking at the arguments put forth by the oppo­nents of comparative cons­titutional interpre­tation and their counter arguments. It will consider materials from Canada, USA, South Africa, Singapore, Malaysia, and Hungary, taking the position that constitutional borrowing can be justified. The paper argues that the 1999-2002 Indonesian constitutional reform should be taken into account by other Muslim countries in undertaking their constitutional reform. The substantive approach of the Shari‘ah that has been used in Indonesia has shown that Muslim world can reform its constitutions without the “assistance” of Western foreign policy. Indo­nesian constitutional reform has demonstrated that Islamic constitutionalism comes from within Islamic teaching and the Islamic community itself; it is a home grown product.

  18. PLUME-MoM 1.0: a new 1-D model of volcanic plumes based on the method of moments

    Science.gov (United States)

    de'Michieli Vitturi, M.; Neri, A.; Barsotti, S.

    2015-05-01

    In this paper a new mathematical model for volcanic plumes, named PlumeMoM, is presented. The model describes the steady-state 1-D dynamics of the plume in a 3-D coordinate system, accounting for continuous variability in particle distribution of the pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging from a few microns up to several centimeters and more. Proper description of such a multiparticle nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore, for better characterization of source conditions of ash dispersal models. The new model is based on the method of moments, which allows description of the pyroclastic mixture dynamics not only in the spatial domain but also in the space of properties of the continuous size-distribution of the particles. This is achieved by formulation of fundamental transport equations for the multiparticle mixture with respect to the different moments of the grain-size distribution. Different formulations, in terms of the distribution of the particle number, as well as of the mass distribution expressed in terms of the Krumbein log scale, are also derived. Comparison between the new moments-based formulation and the classical approach, based on the discretization of the mixture in N discrete phases, shows that the new model allows the same results to be obtained with a significantly lower computational cost (particularly when a large number of discrete phases is adopted). Application of the new model, coupled with uncertainty quantification and global sensitivity analyses, enables investigation of the response of four key output variables (mean and standard deviation (SD) of the grain-size distribution at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to changes in the main input parameters (mean and SD) characterizing the pyroclastic mixture at the base of the plume

  19. Stochastic equivalent linearization in 3-D hysteretic frames

    International Nuclear Information System (INIS)

    Casciati, F.; Faravelli, L.

    1987-01-01

    Stochastic equivalent linearization technique for hysteretic systems is extended to study the dynamic response of 3-D frames with hysteretic constitutive laws in the potential plastic hinges. The constitutive law is idealized by an appropriate endochronic model. A general purpose finite element code is adopted in order to generate the matrices by which the equations of motion to be linearized are built. (orig./HP)

  20. Constitutive and life modeling of single crystal blade alloys for root attachment analysis

    Science.gov (United States)

    Meyer, T. G.; Mccarthy, G. J.; Favrow, L. H.; Anton, D. L.; Bak, Joe

    1988-01-01

    Work to develop fatigue life prediction and constitutive models for uncoated attachment regions of single crystal gas turbine blades is described. At temperatures relevant to attachment regions, deformation is dominated by slip on crystallographic planes. However, fatigue crack initiation and early crack growth are not always observed to be crystallographic. The influence of natural occurring microporosity will be investigated by testing both hot isostatically pressed and conventionally cast PWA 1480 single crystal specimens. Several differnt specimen configurations and orientations relative to the natural crystal axes are being tested to investigate the influence of notch acuity and the material's anisotropy. Global and slip system stresses in the notched regions were determined from three dimensional stress analyses and will be used to develop fatigue life prediction models consistent with the observed lives and crack characteristics.

  1. Un procédé de validation des métamodèles par les métadonnées

    OpenAIRE

    Plantec , Alain; Ribaud , Vincent

    2005-01-01

    International audience; La norme STEP a pour objet de standardiser des modèles de données par métier. Ce standard a développé un procédé de validation de la conformité des modèles dans lequel l'instanciation est un composant essentiel : un modèle est valide si un ensemble d'instances conformes au modèle est jugé sémantiquement correct par un expert du domaine. Appliqué à la métamodélisation, cette approche permet de construire et de valider les métamodèles par ranements successifs. Cette méth...

  2. Extended constitutive laws for lamellar phases

    Directory of Open Access Journals (Sweden)

    Chi-Deuk Yoo

    2013-10-01

    Full Text Available Classically, stress and strain rate in linear viscoelastic materials are related by a constitutive relationship involving the viscoelastic modulus G(t. The same constitutive law, within Linear Response Theory, relates currents of conserved quantities and gradients of existing conjugate variables, and it involves the autocorrelation functions of the currents in equilibrium. We explore the consequences of the latter relationship in the case of a mesoscale model of a block copolymer, and derive the resulting relationship between viscous friction and order parameter diffusion that would result in a lamellar phase. We also explicitly consider in our derivation the fact that the dissipative part of the stress tensor must be consistent with the uniaxial symmetry of the phase. We then obtain a relationship between the stress and order parameter autocorrelation functions that can be interpreted as an extended constitutive law, one that offers a way to determine them from microscopic experiment or numerical simulation.

  3. Constitutional Issues--Watergate and the Constitution. Teaching with Documents.

    Science.gov (United States)

    National Archives and Records Administration, Washington, DC.

    When U.S. President Richard Nixon resigned in 1974 in the wake of the Watergate scandal, it was only the second time that impeachment of a president had been considered. Although the U.S. Constitution has provisions for a person removed from office to be indicted, there are no guidelines in the Constitution about a President who has resigned. The…

  4. 76 FR 71369 - Robert G. Crummie, M.D.; Decision and Order

    Science.gov (United States)

    2011-11-17

    ... agencies to perform meaningless tasks. See Layfe Robert Anthony, M.D., 67 FR 35582 (DEA 2002); Michael G.... Kirk v. Mullen, 749 F.2d 297 (6th Cir. 1984); Puerto Rico Aqueduct and Sewer Auth. v. EPA, 35 F.3d 600...

  5. Higher Order Lagrange Finite Elements In M3D

    International Nuclear Information System (INIS)

    Chen, J.; Strauss, H.R.; Jardin, S.C.; Park, W.; Sugiyama, L.E.; Fu, G.; Breslau, J.

    2004-01-01

    The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles

  6. The South African Constitutional Court Experience: Reasoning Patterns Based on Foreign Law

    Directory of Open Access Journals (Sweden)

    Andrea Lollini

    2012-05-01

    Full Text Available This article aims to analyse the phenomenon of the diffusion of interpretive paradigms or argumentation models between constitutional courts. This phenomenon involves the importation of parameters - defined here as extra-systemic to a specific legal system - and the use of the comparative method in applying constitutional texts.The main subject of this study is the analysis of the first 11 years of South African constitutional jurisprudence, which is a convenient scenario since a constitutional provision enables the Constitutional Court to 'consider foreign law' when interpreting the Bill of Rights. In fact, this led to the wide use of foreign jurisprudence and legislation (from which were extracted argumentation models, patterns of balancing between principles and sometimes actual normative 'meanings': in other words, extra-systemic legal inferences. This article shows the existence of several patterns of legal argumentation based on foreign law which were developed by the South African Constitutional Court.

  7. A modified elastic foundation contact model for application in 3D models of the prosthetic knee.

    Science.gov (United States)

    Pérez-González, Antonio; Fenollosa-Esteve, Carlos; Sancho-Bru, Joaquín L; Sánchez-Marín, Francisco T; Vergara, Margarita; Rodríguez-Cervantes, Pablo J

    2008-04-01

    Different models have been used in the literature for the simulation of surface contact in biomechanical knee models. However, there is a lack of systematic comparisons of these models applied to the simulation of a common case, which will provide relevant information about their accuracy and suitability for application in models of the implanted knee. In this work a comparison of the Hertz model (HM), the elastic foundation model (EFM) and the finite element model (FEM) for the simulation of the elastic contact in a 3D model of the prosthetic knee is presented. From the results of this comparison it is found that although the nature of the EFM offers advantages when compared with that of the HM for its application to realistic prosthetic surfaces, and when compared with the FEM in CPU time, its predictions can differ from FEM in some circumstances. These differences are considerable if the comparison is performed for prescribed displacements, although they are less important for prescribed loads. To solve these problems a new modified elastic foundation model (mEFM) is proposed that maintains basically the simplicity of the original model while producing much more accurate results. In this paper it is shown that this new mEFM calculates pressure distribution and contact area with accuracy and short computation times for toroidal contacting surfaces. Although further work is needed to confirm its validity for more complex geometries the mEFM is envisaged as a good option for application in 3D knee models to predict prosthetic knee performance.

  8. Elevation of D4 dopamine receptor mRNA in postmortem schizophrenic brain.

    Science.gov (United States)

    Stefanis, N C; Bresnick, J N; Kerwin, R W; Schofield, W N; McAllister, G

    1998-01-01

    The D4 dopamine (DA) receptor has been proposed to be a target for the development of a novel antipsychotic drug based on its pharmacological and distribution profile. There is much interest in whether D4 DA receptor levels are altered in schizophrenia, but the lack of an available receptor subtype-specific radioligand made this difficult to quantitate. In this study, we examined whether D4 mRNA levels are altered in different brain regions of schizophrenics compared to controls. Ribonuclease protection assays were carried out on total RNA samples isolated postmortem from frontal cortex and caudate brain regions of schizophrenics and matched controls. 32P-labelled RNA probes to the D4 DA receptor and to the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), were hybridised with the RNA samples, digested with ribonucleases to remove unhybridised probe, and separated on 6% sequencing gels. Densitometer analysis on the subsequent autoradiogams was used to calculate the relative optical density of D4 mRNA compared to G3PDH mRNA. Statistical analysis of the data revealed a 3-fold higher level (P<0.011) of D4 mRNA in the frontal cortex of schizophrenics compared to controls. No increase was seen in caudate. D4 receptors could play a role in mediating dopaminergic activity in frontal cortex, an activity which may be malfunctioning in schizophrenia.

  9. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  10. The Causes of Failure of the European Constitution From the Perspective of the Constitution-Making Process

    Directory of Open Access Journals (Sweden)

    Robert Podolnjak

    2006-01-01

    Full Text Available The basic argument of the article is that the main causes of failure of the European Constitution stem from an inadequate preparation and implementation of a complex procedure of constitution-making for a federation of countries on a continental scale. This process includes the issues of temporal aspects of constitutionmaking, the subject of constitution-making, the text of the constitution, the strategy of constitutional ratifi cation and the constitution-makers themselves. The principal causes of failure of the European Constitution will be presented in the form of certain preliminary assumptions, which will then be examined in the light of certain comparative experiences of constitution-making in two federal systems – the American and the Swiss system. The primary mistakes of the European constitution-making are refl ected in the lack of an appropriate moment for making the constitution, in the vagueness of the document in terms of its constitutional or contractual quality, in the creation of a text of the Constitution which is completely incomprehensible to the average citizen, in the making of the Constitution without a vision or ambition, in the complete lack of any strategy of ratifi cation of the Constitution, in the insistence on the direct participation of the people in the adoption of the Constitution, which is legally and politically considered primarily an international treaty, and in badly managed media presentation and defence of the Constitution before the European public. The most important mistakes, crucial to the failure of the Constitution, are the ambivalent approach of the European constitutionmakers to the mode of ratifi cation of the Constitution, and their disregard of the constitution-making experience of other federal countries.

  11. The choice of a constitutive formulation for modeling limb flexion-induced deformations and stresses in the human femoropopliteal arteries of different ages.

    Science.gov (United States)

    Desyatova, Anastasia; MacTaggart, Jason; Poulson, William; Deegan, Paul; Lomneth, Carol; Sandip, Anjali; Kamenskiy, Alexey

    2017-06-01

    Open and endovascular treatments for peripheral arterial disease are notorious for high failure rates. Severe mechanical deformations experienced by the femoropopliteal artery (FPA) during limb flexion and interactions between the artery and repair materials play important roles and may contribute to poor clinical outcomes. Computational modeling can help optimize FPA repair, but these simulations heavily depend on the choice of constitutive model describing the arterial behavior. In this study finite element model of the FPA in the standing (straight) and gardening (acutely bent) postures was built using computed tomography data, longitudinal pre-stretch and biaxially determined mechanical properties. Springs and dashpots were used to represent surrounding tissue forces associated with limb flexion-induced deformations. These forces were then used with age-specific longitudinal pre-stretch and mechanical properties to obtain deformed FPA configurations for seven age groups. Four commonly used invariant-based constitutive models were compared to determine the accuracy of capturing deformations and stresses in each age group. The four-fiber FPA model most accurately portrayed arterial behavior in all ages, but in subjects younger than 40 years, the performance of all constitutive formulations was similar. In older subjects, Demiray (Delfino) and classic two-fiber Holzapfel-Gasser-Ogden formulations were better than the Neo-Hookean model for predicting deformations due to limb flexion, but both significantly overestimated principal stresses compared to the FPA or Neo-Hookean models.

  12. Determination of brazed joint constitutive law by inverse method

    International Nuclear Information System (INIS)

    Lovato, G.; Moret, F.; Gallo, P. le; Cailletaud, G.; Pilvin, P.

    1993-01-01

    An important parameter often neglected for the calculation of residual stresses in brazed ceramic/metal assemblies is the joint constitutive law. In situ camber measurements on a model system (axisymmetric TZM/InCuSil ABA/316L samples) performed using a special vertical dilatometer during the whole brazing thermal cycle are compared with results of FEM calculations based on published filler metal constitutive laws. A strong disagreement is observed. Actual constitutive law of the joint is determined from these measurements using a numerical inverse method. Calculated displacements are fully consistent with experimental ones. True solidification temperature of the joint is determined. The identified constitutive law of the joint exhibits a low flow stress from solidification temperature to 320 C. (orig.)

  13. Uncertainty analysis of a one-dimensional constitutive model for shape memory alloy thermomechanical description

    DEFF Research Database (Denmark)

    Oliveira, Sergio A.; Savi, Marcelo A.; Santos, Ilmar F.

    2014-01-01

    The use of shape memory alloys (SMAs) in engineering applications has increased the interest of the accuracy analysis of their thermomechanical description. This work presents an uncertainty analysis related to experimental tensile tests conducted with shape memory alloy wires. Experimental data...... are compared with numerical simulations obtained from a constitutive model with internal constraints employed to describe the thermomechanical behavior of SMAs. The idea is to evaluate if the numerical simulations are within the uncertainty range of the experimental data. Parametric analysis is also developed...

  14. Development of 3D Oxide Fuel Mechanics Models

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Casagranda, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pitts, S. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-27

    This report documents recent work to improve the accuracy and robustness of the mechanical constitutive models used in the BISON fuel performance code. These developments include migration of the fuel mechanics models to be based on the MOOSE Tensor Mechanics module, improving the robustness of the smeared cracking model, implementing a capability to limit the time step size based on material model response, and improving the robustness of the return mapping iterations used in creep and plasticity models.

  15. ECHR and national constitutional courts

    Directory of Open Access Journals (Sweden)

    Nastić Maja

    2015-01-01

    Full Text Available Comprising fundamental rights and freedoms and establishing the effective control system, the European Convention on Human Rights (ECHR encroaches upon the area that is traditional reserved for constitutional law. Although built on the doctrine reserved for international treaty law, the Convention goes beyond the traditional boundaries that exist between international and constitutional law. It has gradually infiltrated into the national legal systems. Constitutional courts have had the crucial role in this process. This paper will focus on the applicability of the ECHR in proceedings before national constitutional courts. Having in mind the jurisdiction of the national constitutional court, the ECHR may be applied in two ways: first, in the process of constitutional review by national constitutional courts and, second, in the process of deciding on constitutional complaints.

  16. Constitutive Behavior and Deep Drawability of Three Aluminum Alloys Under Different Temperatures and Deformation Speeds

    Science.gov (United States)

    Panicker, Sudhy S.; Prasad, K. Sajun; Basak, Shamik; Panda, Sushanta Kumar

    2017-08-01

    In the present work, uniaxial tensile tests were carried out to evaluate the stress-strain response of AA2014, AA5052 and AA6082 aluminum alloys at four temperatures: 303, 423, 523 and 623 K, and three strain rates: 0.0022, 0.022 and 0.22 s-1. It was found that the Cowper-Symonds model was not a robust constitutive model, and it failed to predict the flow behavior, particularly the thermal softening at higher temperatures. Subsequently, a comparative study was made on the capability of Johnson-Cook (JC), modified Zerilli-Armstrong (m-ZA), modified Arrhenius (m-ARR) and artificial neural network (ANN) for modeling the constitutive behavior of all the three aluminum alloys under the mentioned strain rates and temperatures. Also, the improvement in formability of the materials was evaluated at an elevated temperature of 623 K in terms of cup height and maximum safe strains by conducting cylindrical cup deep drawing experiments under two different punch speeds of 4 and 400 mm/min. The cup heights increased during warm deep drawing due to thermal softening and increase in failure strains. Also, a small reduction in cup height was observed when the punch speed increased from 4 to 400 mm/min at 623 K. Hence, it was suggested to use high-speed deformation at elevated temperature to reduce both punch load and cycle time during the deep drawing process.

  17. Guidelines for surveillance of individuals with constitutional mismatch repair-deficiency proposed by the European Consortium "Care for CMMR-D" (C4CMMR-D).

    Science.gov (United States)

    Vasen, H F A; Ghorbanoghli, Z; Bourdeaut, F; Cabaret, O; Caron, O; Duval, A; Entz-Werle, N; Goldberg, Y; Ilencikova, D; Kratz, C P; Lavoine, N; Loeffen, J; Menko, F H; Muleris, M; Sebille, G; Colas, C; Burkhardt, B; Brugieres, L; Wimmer, K

    2014-05-01

    Lynch syndrome (LS) is an autosomal dominant disorder caused by a defect in one of the DNA mismatch repair genes: MLH1, MSH2, MSH6 and PMS2. In the last 15 years, an increasing number of patients have been described with biallelic mismatch repair gene mutations causing a syndrome referred to as 'constitutional mismatch repair-deficiency' (CMMR-D). The spectrum of cancers observed in this syndrome differs from that found in LS, as about half develop brain tumours, around half develop digestive tract cancers and a third develop haematological malignancies. Brain tumours and haematological malignancies are mainly diagnosed in the first decade of life, and colorectal cancer (CRC) and small bowel cancer in the second and third decades of life. Surveillance for CRC in patients with LS is very effective. Therefore, an important question is whether surveillance for the most common CMMR-D-associated cancers will also be effective. Recently, a new European consortium was established with the aim of improving care for patients with CMMR-D. At a workshop of this group held in Paris in June 2013, one of the issues addressed was the development of surveillance guidelines. In 1968, criteria were proposed by WHO that should be met prior to the implementation of screening programmes. These criteria were used to assess surveillance in CMMR-D. The evaluation showed that surveillance for CRC is the only part of the programme that largely complies with the WHO criteria. The values of all other suggested screening protocols are unknown. In particular, it is questionable whether surveillance for haematological malignancies improves the already favourable outcome for patients with these tumours. Based on the available knowledge and the discussions at the workshop, the European consortium proposed a surveillance protocol. Prospective collection of all results of the surveillance is needed to evaluate the effectiveness of the programme.

  18. INTEGRATED SFM TECHNIQUES USING DATA SET FROM GOOGLE EARTH 3D MODEL AND FROM STREET LEVEL

    Directory of Open Access Journals (Sweden)

    L. Inzerillo

    2017-08-01

    Full Text Available Structure from motion (SfM represents a widespread photogrammetric method that uses the photogrammetric rules to carry out a 3D model from a photo data set collection. Some complex ancient buildings, such as Cathedrals, or Theatres, or Castles, etc. need to implement the data set (realized from street level with the UAV one in order to have the 3D roof reconstruction. Nevertheless, the use of UAV is strong limited from the government rules. In these last years, Google Earth (GE has been enriched with the 3D models of the earth sites. For this reason, it seemed convenient to start to test the potentiality offered by GE in order to extract from it a data set that replace the UAV function, to close the aerial building data set, using screen images of high resolution 3D models. Users can take unlimited “aerial photos” of a scene while flying around in GE at any viewing angle and altitude. The challenge is to verify the metric reliability of the SfM model carried out with an integrated data set (the one from street level and the one from GE aimed at replace the UAV use in urban contest. This model is called integrated GE SfM model (i-GESfM. In this paper will be present a case study: the Cathedral of Palermo.

  19. Effet de la pollution métallique littorale : effets pathologiques et mécanismes de détoxication chez des poissons marins d'intérêt commercial

    OpenAIRE

    Duquesne, Sabine

    1989-01-01

    Le but de cette étude (constituant la première partie d'un projet de recherche) est de démontrer si différentes espèces de poissons marins soumis à une pollution métallique littorale, assurent ou non leur détoxification par des métallothionéines (MTH). En effet, la présence de ce type de protéines, qui complexe les métaux, n'a été observée que chez quelques espèces de poissons marins; de plus, dans la plupart des cas, ces poissons ont été intoxiqués au laboratoire. (BOUQUEGNEAU et al., 1975 O...

  20. Modalités de collaboration entre étudiants et constitution d'une communauté dans une activité à distance Students' collaborative processes and community building during an online activity

    Directory of Open Access Journals (Sweden)

    Charlotte Dejean-Thircuir

    2008-06-01

    Full Text Available Cette étude s'inscrit dans le champ de la communication pédagogique médiatisée par ordinateur et s'intéresse aux échanges entre étudiants engagés dans la réalisation d'une tâche collaborative, dans le cadre d'un master 2 professionnel de didactique des langues, à distance. L'analyse des interactions d'un groupe d'étudiants, au moyen d'outils issus de la pragmatique linguistique interactionniste et de l'analyse conversationnelle, permet d'identifier certaines pratiques langagières et formes d'activités communicationnelles qui soutiennent le processus collaboratif et favorisent la constitution d'une communauté en ligne. En se focalisant sur l'étude d'un groupe particulièrement collaboratif, il s'agit de mieux comprendre les processus de collaboration afin de proposer des pistes de réflexion pour les concepteurs et tuteurs de ce type d'activité en ligne.This study belongs to the field of computer mediated pedagogical communication and focuses on students' interactions while engaged in a collaborative task as part of a professional master 2 program in online language education. Using a set of analytic tools grounded on a pragmatic and an interactionist framework, the researcher identified some linguistic practices and communicative activities that foster the collaborative process and support the construction of an online community. By focusing on a particularly collaborative group, the researcher had a better understanding of the collaborative processes involved in the completion of such tasks and was able to suggest directions for further reflection to designers and instructors of similar online activities.

  1. The SF3M approach to 3-D photo-reconstruction for non-expert users: application to a gully network

    Science.gov (United States)

    Castillo, C.; James, M. R.; Redel-Macías, M. D.; Pérez, R.; Gómez, J. A.

    2015-04-01

    3-D photo-reconstruction (PR) techniques have been successfully used to produce high resolution elevation models for different applications and over different spatial scales. However, innovative approaches are required to overcome some limitations that this technique may present in challenging scenarios. Here, we evaluate SF3M, a new graphical user interface for implementing a complete PR workflow based on freely available software (including external calls to VisualSFM and CloudCompare), in combination with a low-cost survey design for the reconstruction of a several-hundred-meters-long gully network. SF3M provided a semi-automated workflow for 3-D reconstruction requiring ~ 49 h (of which only 17% required operator assistance) for obtaining a final gully network model of > 17 million points over a gully plan area of 4230 m2. We show that a walking itinerary along the gully perimeter using two light-weight automatic cameras (1 s time-lapse mode) and a 6 m-long pole is an efficient method for 3-D monitoring of gullies, at a low cost (about EUR 1000 budget for the field equipment) and time requirements (~ 90 min for image collection). A mean error of 6.9 cm at the ground control points was found, mainly due to model deformations derived from the linear geometry of the gully and residual errors in camera calibration. The straightforward image collection and processing approach can be of great benefit for non-expert users working on gully erosion assessment.

  2. Institute of constitutional revision in the Constitution of the Republic of Albania, comparative view

    Directory of Open Access Journals (Sweden)

    Makbule Çeço

    2014-07-01

    Full Text Available In its very dynamic essence, a democratic society bears the need for continuous reformation and perfection, and that is why the application of reforms represents an inseparable feature for this type of society. The consolidation of the rule of law, the institutional independence, and the cause of justice itself comprise, inter alia, the need for constitutional revision. This study puts forward a theoretical-historical comparative view of the relevant and dynamic issue of the institute of constitutional revision in the framework of the Constitution of the Republic of Albania, as a complex process accompanied by limitations on constitutional revision. The historical evolution of constitutional drafting, modern constitutions, relevant issues, political and social circumstances as well as drafting and adoption procedures, dynamism of constitutions to cope with the course of time achieved by revisions for the purpose of their stability as well as consolidation of the role of constitutions as a factor that facilitates and precedes social development, comprise the pillar of this study addressed in a comparative point of view.

  3. Comparison between a coupled 1D-2D model and a fully 2D model for supercritical flow simulation in crossroads

    KAUST Repository

    Ghostine, Rabih

    2014-12-01

    In open channel networks, flow is usually approximated by the one-dimensional (1D) Saint-Venant equations coupled with an empirical junction model. In this work, a comparison in terms of accuracy and computational cost between a coupled 1D-2D shallow water model and a fully two-dimensional (2D) model is presented. The paper explores the ability of a coupled model to simulate the flow processes during supercritical flows in crossroads. This combination leads to a significant reduction in the computational time, as a 1D approach is used in branches and a 2D approach is employed in selected areas only where detailed flow information is essential. Overall, the numerical results suggest that the coupled model is able to accurately simulate the main flow processes. In particular, hydraulic jumps, recirculation zones, and discharge distribution are reasonably well reproduced and clearly identified. Overall, the proposed model leads to a 30% reduction in run times. © 2014 International Association for Hydro-Environment Engineering and Research.

  4. Cyclic creep, mechanical ratchetting and amplitude history dependence of modified 9Cr-1Mo steel and evaluation of unified constitutive models

    International Nuclear Information System (INIS)

    Tanaka, Eiichi; Yamada, Hiroshi

    1993-01-01

    The purpose of the present paper is to elucidate inelastic behavior of modified 9Cr-1Mo steel as a candidate material for the next-generation fast breeder reactor and to provide the information for the formulation of a unified constitutive model. For this purpose, cyclic creep, mechanical ratchetting and amplitude history dependence of cyclic hardening were first examined at 550degC. As a result, systematic cyclic creep and mechanical ratchetting behavior were observed under various loading conditions, and little amplitude history dependence was found. Then these results were simulated by three unified constitutive models, i.e. the Chaboche, Bodner-Partom and modified Chaboche models. The simulated results show that these models cannot describe the cyclic creep and mechanical ratchetting behavior with high accuracy, but succeed in describing the inelastic behavior of amplitude variation experiments. (author)

  5. Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector

    CERN Document Server

    Giugliarelli, Gilberto; The ATLAS collaboration

    2018-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment. They constitute the part of ATLAS closest to the interaction point and for this reason they will be exposed – over their lifetime – to a significant amount of radiation: prior to the HL-LHC, the innermost layers will receive a fluence of 10^15 neq/cm2 and their HL–LHC upgrades will have to cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  6. Anisotropic Constitutive Model of Strain-induced Phenomena in Stainless Steels at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2004-01-01

    A majority of the thin-walled components subjected to intensive plastic straining at cryogenic temperatures are made of stainless steels. The examples of such components can be found in the interconnections of particle accelerators, containing the superconducting magnets, where the thermal contraction is absorbed by thin-walled, axisymetric shells called bellows expansion joints. The stainless steels show three main phenomena induced by plastic strains at cryogenic temperatures: serrated (discontinuous) yielding, gamma->alpha' phase transformation and anisotropic ductile damage. In the present paper, a coupled constitutive model of gamma->alpha' phase transformation and orthotropic ductile damage is presented. A kinetic law of phase transformation, and a kinetic law of evolution of orthotropic damage are presented. The model is extended to anisotropic plasticity comprising a constant anisotropy (texture effect), which can be classically taken into account by the Hill yield surface, and plastic strain induced ...

  7. Constitutive modeling of void-growth-based tensile ductile failures with stress triaxiality effects

    KAUST Repository

    Mora Cordova, Angel

    2014-07-01

    In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood to be the most important factor that controls the initiation of ductile fracture. We include sensitivity of stress triaxiality in a variational porous plasticity model, which was originally derived from hydrostatic expansion. Under loading conditions rather than hydrostatic deformation, we allow the critical pressure for voids to be exceeded so that the growth due to plasticity becomes dependent on the stress triaxiality. The limitations of the spherical void growth assumption are investigated. Our improved constitutive model is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is also indicated by a numerical simulation of a compact tensile (CT) test. © 2013 Elsevier Inc.

  8. 1.5D quasilinear model and its application on beams interacting with Alfven eigenmodes in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Ghantous, K.; Gorelenkov, N. N. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543-0451 (United States); Berk, H. L. [Institute for Fusion Studies, University of Texas, 2100 San Jacinto Blvd., Austin, Texas 78712-1047 (United States); Heidbrink, W. W. [Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697 (United States); Van Zeeland, M. A. [General Atomics, PO Box 85608, San Diego, California 92186-560 (United States)

    2012-09-15

    We propose a model, denoted here by 1.5D, to study energetic particle (EP) interaction with toroidal Alfvenic eigenmodes (TAE) in the case where the local EP drive for TAE exceeds the stability limit. Based on quasilinear theory, the proposed 1.5D model assumes that the particles diffuse in phase space, flattening the pressure profile until its gradient reaches a critical value where the modes stabilize. Using local theories and NOVA-K simulations of TAE damping and growth rates, the 1.5D model calculates the critical gradient and reconstructs the relaxed EP pressure profile. Local theory is improved from previous study by including more sophisticated damping and drive mechanisms such as the numerical computation of the effect of the EP finite orbit width on the growth rate. The 1.5D model is applied on the well-diagnosed DIII-D discharges no. 142111 [M. A. Van Zeeland et al., Phys. Plasmas 18, 135001 (2011)] and no. 127112 [W. W. Heidbrink et al., Nucl. Fusion. 48, 084001 (2008)]. We achieved a very satisfactory agreement with the experimental results on the EP pressure profiles redistribution and measured losses. This agreement of the 1.5D model with experimental results allows the use of this code as a guide for ITER plasma operation where it is desired to have no more than 5% loss of fusion alpha particles as limited by the design.

  9. Mechanism of constitution liquid film migration

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Hongjun [Univ. of Alabama, Birmingham, AL (United States)

    1999-06-01

    Liquid film migration (LFM) in liquid phase sintering classically involves a large metastable liquid volume adjacent to solid, and migration occurs at an isolated solid-liquid (S-L) interface. Constitutional liquid film migration (CLFM), discovered in alloy 718, has major characteristics similar to those of LFM, except that the metastable liquid is from the constitutional liquation of precipitates on the grain boundary. The similarity between LFM and CLFM has led to the theory that coherency lattice strain responsible for LFM is also responsible for CLFM. The coherency strain hypothesis was tested in this study by evaluating whether the Hillert model of LFM would also apply for CLFM. Experimental results of CLFM in alloy 718 showed that migration velocity followed the trend predicted by the Hillert model. This indicates that the coherency strain hypothesis of LFM also applies for CLFM and that the coherency lattice strain responsible for LFM is also the driving force for CLFM.

  10. Activated sludge model No. 2d, ASM2d

    DEFF Research Database (Denmark)

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs......). This extension of ASM2 allows for improved modeling of the processes, especially with respect to the dynamics of nitrate and phosphate. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  11. Evaluation of kidney repair capacity using 99mTc-DMSA in ischemia/reperfusion injury models.

    Science.gov (United States)

    Kwak, Wonjung; Jang, Hee-Seong; Belay, Takele; Kim, Jinu; Ha, Yeong Su; Lee, Sang Woo; Ahn, Byeong-Cheol; Lee, Jaetae; Park, Kwon Moo; Yoo, Jeongsoo

    2011-03-04

    Quantitative (99m)Tc-DMSA renal uptake was studied in different renal ischemia/reperfusion (I/R) mice models for the assessment of renal repair capacity. Mice models of nephrectomy, uni- and bi-lateral I/R together with sham-operated mice were established. At 1h, 1d, 4d, 1, 2 and 3 wk after I/R, (99m)Tc-DMSA (27.7 ± 1.3 MBq) was injected via tail vein and after 3h post-injection, the mice were scanned for 30 min with pinhole equipped gamma camera. Higher uptake of (99m)Tc-DMSA was measured in normal kidneys of uni-lateral I/R model and nephrectomized kidney I/R model at 3 wk post-surgery. Comparing the restoration capacities of the affected kidneys of nephrectomy, uni- and bi-lateral I/R models, higher repair capacity was observed in the nephrectomized model followed by bi-lateral then uni-lateral models. The normal kidney may retard the restoration of damaged kidney in uni-lateral I/R model. Moreover, 3 wk after Uni-I/R, the size of injured kidney was significantly smaller than non-ischemic contralateral and sham operated kidneys, while nephrectomy I/R kidneys were significantly enlarged compared to all others at 3 wk post-surgery. Very strong correlation between (99m)Tc-DMSA uptake and weight of dissected kidneys in I/R models was observed. Consistent with (99m)Tc-DMSA uptake results, all histological results indicate that kidney recovery after injury is correlated with the amount of intact tubules and kidney sizes. In summary, our study showed good potentials of (99m)Tc-DMSA scan as a promising non-invasive method for evaluation of kidney restoration after I/R injuries. Interestingly, mice with Bi-I/R injury showed faster repair capacity than those with uni-I/R. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. The South African Constitutional Court Experience: Reasoning Patterns Based on Foreign Law

    OpenAIRE

    Andrea Lollini

    2012-01-01

    This article aims to analyse the phenomenon of the diffusion of interpretive paradigms or argumentation models between constitutional courts. This phenomenon involves the importation of parameters - defined here as extra-systemic to a specific legal system - and the use of the comparative method in applying constitutional texts.The main subject of this study is the analysis of the first 11 years of South African constitutional jurisprudence, which is a convenient scenario since a constitution...

  13. D. P. M. Botes, Marcel Duchamp, die Europese avant-garde en 'n ...

    African Journals Online (AJOL)

    D. P. M. Botes, Marcel Duchamp, the avantgarde and a literary definition of plagiarism. This article attempts to widen the literary critical perspective on plagiarism by focussing on an early example of plagiarism in Afrikaans literature associated with the name of D.P.M. Botes and the little magazine Wurm. Botes's supposed ...

  14. Identification of constitutive theory parameters using a tensile machine for deposited filaments of microcrystalline ink by the direct-write method

    International Nuclear Information System (INIS)

    Lourdel, N; Therriault, D; Lévesque, M

    2009-01-01

    A custom-designed tensile machine is developed to characterize the mechanical properties of ink micro-filaments deposited by the direct-write method. The direct-write method has been used for the fabrication of a wide variety of micro-systems such as microvascular networks, chaotic mixers and laboratory on chips. The tensile machine was used to measure the induced force in ink filaments during tensile and tension-relaxation tests as a function of the applied strain rate, the ink composition and the filament diameter. Experimental data were fitted by a linearly viscoelastic model using a data reduction procedure in order to identify the constitutive theory parameters of the deposited ink filaments. The model predictions based on the linearly viscoelastic model and the defined constitutive theory parameters give a close approximation of all experimental data generated in this study. Such models will be useful for the development and optimization of future 3D complex structures made by the direct-write method

  15. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  16. The "American" (North American) Model of Constitutional Review: Historical Background and Early Development

    Science.gov (United States)

    Klishas, Andrey A.

    2016-01-01

    The paper explores the impact of the continental system exerted on the constitutional and political evolution of both the United States and individual states and tries to characterize the development of constitutional review phenomenon within the framework of the continental legal system and the Anglo-Saxon legal system. The research stands on the…

  17. A 3D resistivity model derived from the transient electromagnetic data observed on the Araba fault, Jordan

    Science.gov (United States)

    Rödder, A.; Tezkan, B.

    2013-01-01

    72 inloop transient electromagnetic soundings were carried out on two 2 km long profiles perpendicular and two 1 km and two 500 m long profiles parallel to the strike direction of the Araba fault in Jordan which is the southern part of the Dead Sea transform fault indicating the boundary between the African and Arabian continental plates. The distance between the stations was on average 50 m. The late time apparent resistivities derived from the induced voltages show clear differences between the stations located at the eastern and at the western part of the Araba fault. The fault appears as a boundary between the resistive western (ca. 100 Ωm) and the conductive eastern part (ca. 10 Ωm) of the survey area. On profiles parallel to the strike late time apparent resistivities were almost constant as well in the time dependence as in lateral extension at different stations, indicating a 2D resistivity structure of the investigated area. After having been processed, the data were interpreted by conventional 1D Occam and Marquardt inversion. The study using 2D synthetic model data showed, however, that 1D inversions of stations close to the fault resulted in fictitious layers in the subsurface thus producing large interpretation errors. Therefore, the data were interpreted by a 2D forward resistivity modeling which was then extended to a 3D resistivity model. This 3D model explains satisfactorily the time dependences of the observed transients at nearly all stations.

  18. Pre-salt new regulatory mark and the economic order: constitutionality analysis

    International Nuclear Information System (INIS)

    Pinheiro, Marcela Brasil Pedrosa; Araujo, Mayara de Carvalho; Xavier, Yanko Marcius; Guimaraes, Patricia Borba Vilar

    2010-01-01

    The discovery of vast reserves of hydrocarbons in the pre-salt layer that extends from Espirito Santo to Santa Catarina, added with the economic and strategic value of oil and natural gas, has brought discussion about the reasonableness of the regulatory model adopted so far. Would be prudent to explore these resources through the concession model? From detailed analysis of the doctrinal and bills that aim to inaugurate the new regulatory bills, we sought to answer this question, based majorly on the principles of economic activity applied in our constitutional system. Motivated by the analysis of these constitutional principles proposed, the State is seen as a regulating agent of the economic activities, fulfilling its role to supervise, encourage and plan the direction of national economic system. The sharing model gives greater state involvement and is able to convert the wealth of pre-salt in citizenship, but only if well implemented. Thus, based on constitutional principles and the notion of development as freedom, the conclusion of this paperwork is for the constitutionality of the new regulatory bills. (author)

  19. Integrated 3D geology modeling constrained by facies and horizontal well data for Block M of the Orinoco heavy oil belt

    Energy Technology Data Exchange (ETDEWEB)

    Longxin, M.; Baojun, X.; Shancheng, Z.; Guoqing, H. [CNPC America Ltd., Caracas (Venezuela)

    2008-10-15

    Horizontal well drilling with cold production were used to develop most of heavy oil fields in Venezuela's Orinoco heavy oil belt. This study interpreted the horizontal well logs of Block M of the Orinoco heavy oil belt in an effort to improve production from this highly porous and permeable reservoir. The reservoir is comprised primarily of non-consolidated sandstones. A porosity calculation formula for the horizontal well without porosity logs was established based on the study of horizontal well logging data of block M in the Orinoco heavy oil belt. A high quality 3-D simulation tool was used to separate the block into several different sections. A set of methods were presented in order to identify if the well track was approaching an adjacent formation, to estimate the distance between the well track and the adjacent formation, and to correct the deep resistivity of the horizontal section affected by the adjacent formation. A set of interpretation techniques were established, based on the combination of well logging data, seismic data and the oilfield development performance data. It was concluded that the development of the precise 3D geological model helped to establish a solid foundation for guiding the well position design and the drilling of the horizontal well. It also contributed to the reservoir numerical simulation and the effective development of the oil field. 6 refs., 2 tabs., 14 figs.

  20. Rock salt constitutive modeling

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1980-01-01

    The Serata model is the best operational model available today because it incorporates: (1) a yield function to demarcate between viscoelastic and viscoplastic behavior of rock salt; (2) a pressure and temperature dependence for yield stresses; and (3) a standard linear solid, which can be readily extended into the non-linear regime, to represent creep behavior. Its only deficiencies appear to be the lack of secondary creep behavior (a free dashpot) and some unsettling arbitrariness about the Poisson's ratio (ν → 0.5) argument for viscoplasticity. The Sandia/WIPP model will have good primary and secondary creep capability, but lacks the viscoplastic behavior. In some cases, estimated inelastic strains may be underpredicted. If a creep acceleration mechanism associated with brine inclusions is observed, this model may require extensive revision. Most of the other models available (SAI, RE-SPEC, etc.) are only useful for short-term calculations, because they employ temporal power law (t/sup n/) primary creep representations. These models are unsatisfactory because they cannot represent dual mechanisms with differing characteristic times. An approach based upon combined creep and plasticity is recommended in order to remove the remaining deficiency in the Serata model. DOE/Sandia/WIPP should be encouraged to move aggressively in this regard