WorldWideScience

Sample records for m-3 total particle

  1. Toxicity of inhaled 239PuO2 in Beagle dogs. A. Monodisperse 0.75 μm AD particles. B. Monodisperse 1.5 μm AD particles. C. Monodisperse 3.0 μm AD particles. II

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Guilmette, R.A.; Hahn, F.F.; McClellan, R.O.; Mauderly, J.L.; Mewhinney, J.A.; Pickrell, J.A.; Boecker, B.B.

    1978-01-01

    Studies on the metabolism, dosimetry and biological effects of inhaled particles of 239 PuO 2 have been initiated in Beagle dogs. To obtain information on the relative importance of homogeneity of radiation doses to the lung, dogs have been exposed to particles of monodisperse aerosols (sigma/sub g/ 239 PuO 2 ; 40 dogs to the 0.75 μm AD particles, 72 dogs to the 1.5 μm AD particles and 60 dogs to the 3.0 μm AD particles. The exposures have resulted in graded ILB's, which range from 0.0002 to 2.6 μCi/kg body weight. Twenty-nine dogs were exposed to the aerosol diluent and serve as controls. Five dogs have died 336 to 561 days after exposure in the 1.5 μm AD study. Four dogs have died 116 to 589 days after exposure in the 3.0 μm AD study. These dogs had radiation pneumonitis and pulmonary fibrosis at death. The remaining dogs have survived up to 634 days after exposure. It is anticipated that the other dogs planned for these studies will be exposed over the next 12 months

  2. Toxicity of inhaled 239PuO2 in Beagle dogs. A. Monodisperse 0.75 μm AMAD particles. B. Monodisperse 1.5 μm AMAD particles. C. Monodisperse 3.0 μm AMAD particles. V

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Guilmette, R.A.; Hahn, F.F.; Boecker, B.B.; McClellan, R.O.; Mauderly, J.L.; Pickrell, J.A.

    1982-01-01

    Studies on the metabolism, dosimetry and biological effects of inhaled particles of 239 PuO 2 in Beagle dogs are in progress. To obtain information on the relative importance of homogeneity versus nonhomogeneity of radiation doses to the lung, dogs have been exposed to monodisperse aerosols of 239 PuO 2 of 0.75, 1.5 or 3.0 μm activity median aerodynamic diameter (AMAD). The exposures have resulted in graded initial lung burdens ranging from 0.0002 to 2.6 μCi 239 Pu per kilogram body weight. Other dogs were exposed to the aerosol diluent to serve as controls. Ten dogs have died in the study with 0.75 μm AMAD particles, 40 dogs have died in the study with 1.5 μm AMAD particles and 35 dogs have died in the study with 3.0 μm AMAD particles of 239 PuO 2 . Dogs have died with radiation pneumonitis and pulmonary fibrosis and carcinomas of the lung. The remaining dogs have survived up to 2100 days after inhalation exposure and are being observed for the remainder of their life span

  3. Single particle transfer for quantitative analysis with total-reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Esaka, Fumitaka; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu; Watanabe, Kazuo

    2006-01-01

    The technique of single particle transfer was applied to quantitative analysis with total-reflection X-ray fluorescence (TXRF) spectrometry. The technique was evaluated by performing quantitative analysis of individual Cu particles with diameters between 3.9 and 13.2 μm. The direct quantitative analysis of the Cu particle transferred onto a Si carrier gave a discrepancy between measured and calculated Cu amounts due to the absorption effects of incident and fluorescent X-rays within the particle. By the correction for the absorption effects, the Cu amounts in individual particles could be determined with the deviation within 10.5%. When the Cu particles were dissolved with HNO 3 solution prior to the TXRF analysis, the deviation was improved to be within 3.8%. In this case, no correction for the absorption effects was needed for quantification

  4. Toxicity of inhaled 238PuO2 in beagle dogs. A. Monodisperse 1.5 μm 238PuO2. B. Monodisperse 3.0 μm 238PuO2 particles. III

    International Nuclear Information System (INIS)

    Lustgarten, C.S.; Mewhinney, J.A.; Hobbs, C.H.; Halliwell, W.H.; Jones, R.K.; Mauderly, J.L.; McClellan, R.O.; Mo, T.; Pickrell, J.A.

    1976-01-01

    To obtain essential information on the importance of the homogeneity or non-homogeneity of the radiation dose to lung (the hot particle question), Beagle dogs have been exposed to monodisperse aerosols (sigma/sub g/ 238 PuO 2 of either 1.5 μm or 3.0 μm aerodynamic diameter (AD). By using monodisperse particles of these two sizes, the average dose to lung is held constant for a given initial lung burden, but the local alpha dose around the two sizes of particles varies by a factor of about ten. All exposures have been completed with 72 days exposed to each of the two particle sizes of 238 PuO 2 (total of 144 dogs) resulting in graded initial lung burdens which range from .005 to 2.2 μCi/kg of body weight. Twenty-four dogs exposed to the diluent aerosol are serving as controls. The animals will be studied over their total life span. Two exposed dogs have died from pulmonary injury: Dog 710C (with an initial lung burden of 2.0 μCi/kg) died at 631 days after inhalation of 3.0 μm AD aerosol. The cause of death was radiation pneumonitis and pulmonary fibrosis, Dog 746B (with an initial lung burden of 1.3 μCi/kg) died at 791 days after inhalation of 1.5 μm AD aerosol. Death was attributed to intrapulmonic hemorrhage resulting from a degenerative vasculitis. One control dog (721A) was euthanized at 820 days after exposure due to a meningitis and encephalomalacia that caused a severe central nervous system disorder that made the dog difficult to handle.A leukopenia in exposed dogs to date has occurred earlier and to a greater degree in dogs exposed to 3.0 μm AD particles than in dogs that recevied 1.5 μm AD particles. One hundred forty-two exposed and 23 control dogs are surviving at 175 to 1024 days after exposure

  5. Numerical Study of Charged Inertial Particles in Turbulence using a Coupled Fluid-P3M Approach

    Science.gov (United States)

    Yao, Yuan; Capecelatro, Jesse

    2017-11-01

    Non-trivial interactions between charged particles and turbulence play an important role in many engineering and environmental flows, including clouds, fluidized bed reactors, charged hydrocarbon sprays and dusty plasmas. Due to the long-range nature of electrostatic forces, Coulomb interactions in systems with many particles must be handled carefully to avoid O(N2) computations. The particle-mesh (PM) method is typically employed in Eulerian-Lagrangian (EL) simulations as it avoids computing direct pairwise sums, but it fails to capture short-range interactions that are anticipated to be important when particles cluster. In this presentation, the particle-particle-particle-mesh (P3M) method that scales with O(NlogN) is implemented within a EL framework to simulate charged particles accurately in a tractable manner. The EL-P3M method is used to assess the competition between drag and Coulomb forces for a range of Stokes numbers and charges. Simulations of like- and oppositely-charged particles suspended in a two-dimensional Taylor-Green vortex and three-dimensional homogeneous isotropic turbulence are reported. One-point and two-point statistics obtained using PM and P3M are compared to assess the effect of added accuracy on collision rate and clustering.

  6. Total internal conversion coefficient of the 260. 9 keV (7/sup +/->3/sup -/) transition in sup(198m)Tl

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, N.; Suryanarayana, C.; Narayana, D.G.S.; Bhuloka Reddy, S.; Satynarayana, G.; Sastry, D.L.; Chintalapudi, S.N.

    1986-02-21

    The 1.87 hours 543.7 keV (7/sup +/) isomeric state in /sup 198/Tl is produced via /sup 197/Au(..cap alpha.., 3n)sup(198m)Tl (Esub(..cap alpha..) = 35 MeV) reaction. The total conversion coefficient of 260.9 keV (7/sup +/ -> 3/sup -/) is determined for the first time by the intensity balance method. The value of ..cap alpha..sub(T)(260.9 keV) is found to be 40.1 +- 8.6 which is in good agreement with the theoretical value of Hager and Seltzer for pure M4 transition. The gamma transition probability of the 260.9 keV (M4) is calculated using the present value of ..cap alpha..sub(T) and compared with the single-particle estimate.

  7. Theoretical analysis of the distribution of isolated particles in totally asymmetric exclusion processes: Application to mRNA translation rate estimation

    Science.gov (United States)

    Dao Duc, Khanh; Saleem, Zain H.; Song, Yun S.

    2018-01-01

    The Totally Asymmetric Exclusion Process (TASEP) is a classical stochastic model for describing the transport of interacting particles, such as ribosomes moving along the messenger ribonucleic acid (mRNA) during translation. Although this model has been widely studied in the past, the extent of collision between particles and the average distance between a particle to its nearest neighbor have not been quantified explicitly. We provide here a theoretical analysis of such quantities via the distribution of isolated particles. In the classical form of the model in which each particle occupies only a single site, we obtain an exact analytic solution using the matrix ansatz. We then employ a refined mean-field approach to extend the analysis to a generalized TASEP with particles of an arbitrary size. Our theoretical study has direct applications in mRNA translation and the interpretation of experimental ribosome profiling data. In particular, our analysis of data from Saccharomyces cerevisiae suggests a potential bias against the detection of nearby ribosomes with a gap distance of less than approximately three codons, which leads to some ambiguity in estimating the initiation rate and protein production flux for a substantial fraction of genes. Despite such ambiguity, however, we demonstrate theoretically that the interference rate associated with collisions can be robustly estimated and show that approximately 1% of the translating ribosomes get obstructed.

  8. Toxicity of inhaled 239PuO2 in Beagle dogs: A. Monodisperse 0.75-μm AMAD particles. B. Monodisperse 1.5-μm AMAD particles. C. Monodisperse 3.0--μm AMAD particles. XI

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Guilmette, R.A.; Hahn, F.F.; Boecker, B.B.; McClellan, R.O.

    1988-01-01

    Beagle dogs were exposed to monodisperse aerosols of 239 PuO 2 of 0.75, 1.5, or 30 μm activity median aerodynamic diameter (AMAD) to obtain information on the relative importance of homogeneity of alpha irradiation doses to the lung in producing biological effects. The dogs' initial pulmonary burdens (IPB) ranged from 0.0002-2.0 μCi (0.0074 to 74 kBq) 239 Pu/kg of body mass. Thirty-six dogs were exposed to the aerosol diluent as controls. Forty-two of 48 dogs exposed to 0.75 μm AMAD particles have died; 67 of 96 have died in the study involving 1.5 μm AMAD particles; and 62 of 72 have died in the study involving the 3.0 μm AMAD particles. Seven of 36 control dogs have died. Most dogs exposed to 239 Pu that have failed to survive have died with radiation pneumonitis and fibrosis and/or lung cancer. Surviving dogs have lived up to 4300 days after exposure. The data obtained to date indicate that the degree of uniformity of dose to the lung does not significantly modify the risk of lung cancer. (author)

  9. No difference in in vivo polyethylene wear particles between oxidized zirconium and cobalt-chromium femoral component in total knee arthroplasty.

    Science.gov (United States)

    Minoda, Yukihide; Hata, Kanako; Iwaki, Hiroyoshi; Ikebuchi, Mitsuhiko; Hashimoto, Yusuke; Inori, Fumiaki; Nakamura, Hiroaki

    2014-03-01

    Polyethylene wear particle generation is one of the most important factors affecting mid- to long-term results of total knee arthroplasties. Oxidized zirconium was introduced as a material for femoral components to reduce polyethylene wear generation. However, an in vivo advantage of oxidized zirconium on polyethylene wear particle generation is still controversial. The purpose of this study was to compare in vivo polyethylene wear particles between oxidized zirconium total knee prosthesis and conventional cobalt-chromium (Co-Cr) total knee prosthesis. Synovial fluid was obtained from the knees of 6 patients with oxidized zirconium total knee prosthesis and from 6 patients with conventional cobalt-chromium (Co-Cr) total knee prosthesis 12 months after the operation. Polyethylene particles were isolated and examined using a scanning electron microscope and image analyser. Total number of particles in each knee was 3.3 ± 1.3 × 10(7) in the case of oxidized zirconium (mean ± SD) and 3.4 ± 1.2 × 10(7) in that of Co-Cr (n.s.). The particle size (equivalent circle diameter) was 0.8 ± 0.3 μm in the case of oxidized zirconium and 0.6 ± 0.1 μm in that of Co-Cr (n.s.). The particle shape (aspect ratio) was 1.4 ± 0.0 in the case of oxidized zirconium and 1.4 ± 0.0 in that of metal Co-Cr (n.s). Although newly introduced oxidized zirconium femoral component did not reduce the in vivo polyethylene wear particles in early clinical stage, there was no adverse effect of newly introduced material. At this moment, there is no need to abandon oxidized zirconium femoral component. However, further follow-up of polyethylene wear particle generation should be performed to confirm the advantage of the oxidized zirconium femoral component. Therapeutic study, Level III.

  10. Recovery of infective virus particles in ion-exchange and hydrophobic interaction monolith chromatography is influenced by particle charge and total-to-infective particle ratio.

    Science.gov (United States)

    Sviben, Dora; Forcic, Dubravko; Ivancic-Jelecki, Jelena; Halassy, Beata; Brgles, Marija

    2017-06-01

    Viral particles are used in medical applications as vaccines or gene therapy vectors. In order to obtain product of high purity, potency and safety for medical use purification of virus particles is a prerequisite, and chromatography is gaining increased attention to meet this aim. Here, we report on the use of ion-exchange and hydrophobic interaction chromatography on monolithic columns for purification of mumps virus (MuV) and measles virus (MeV). Efficiency of the process was monitored by quantification of infective virus particles (by 50% cell culture infective dose assay) and total virus particles, and monitoring of their size (by Nanoparticle Tracking Analysis). Ion-exchange chromatography was shown to be inefficient for MuV and best results for MeV were obtained on QA column with recovery around 17%. Purification of MuV and MeV by hydrophobic interaction chromatography resulted in recoveries around 60%. Results showed that columns with small channels (d=1.4μm) are not suitable for MuV and MeV, although their size is below 400nm, whereas columns with large channels (6μm) showed to be efficient and recoveries independent on the flow rate up to 10mL/min. Heterogeneity of the virus suspension and its interday variability mostly regarding total-to-infective particle ratio was observed. Interestingly, a trend in recovery depending on the day of the harvest was also observed for both viruses, and it correlated with the total-to-infective particle ratio, indicating influence of the virus sample composition on the chromatography results. Copyright © 2017. Published by Elsevier B.V.

  11. Totally asymmetric exclusion processes with particles of arbitrary size

    CERN Document Server

    Lakatos, G

    2003-01-01

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or ...

  12. Volume distribution for particles between 3.5 to 2000 μm in the upper 200 m region of the South Pacific Gyre

    Directory of Open Access Journals (Sweden)

    L. Stemmann

    2008-03-01

    Full Text Available The French JGOFS BIOSOPE cruise crossed the South Pacific Gyre (SPG on a transect between the Marquesas Islands and the Chilean coast on a 7500 km transect (8° S–34° S and 8° W–72° W. The number and volume distributions of small (3.5<d<30 μm and large particles (d>100 μm were analysed combining two instruments, the HIAC/Royco Counter (for the small particles and the Underwater Video Profiler (UVP, for the large particles. For the HIAC analysis, samples were collected from 12 L CTD Rosette bottles and immediately analysed on board while the UVP provided an estimate of in situ particle concentrations and size in a continuous profile. Out of 76 continuous UVP and 117 discrete HIAC vertical profiles, 25 had both sets of measurements, mostly at a site close to the Marquesas Islands (site MAR and one in the center of the gyre (site GYR. At GYR, the particle number spectra from few μm to few mm were fit with power relationships having slopes close to −4. At MAR, the high abundance of large objects, probably living organisms, created a shift in the full size spectra of particles such that a single slope was not appropriate. The small particle pool at both sites showed a diel pattern while the large did not, implying that the movement of mass toward the large particles does not take place at daily scale in the SPG area. Despite the relatively simple nature of the number spectra, the volume spectra were more variable because what were small deviations from the straight line in a log-log plot were large variations in the volume estimates. In addition, the mass estimates from the size spectra are very sensitive to crucial parameters such as the fractal dimension and the POC/Dry Weight ratio. Using consistent values for these parameters, we show that the volume of large particles can equal the volume of the smaller particles. However the proportion of material in large particles decreased from the mesotrophic conditions at the

  13. Fractionation and characterization of particles simulating wear of total joint replacement (TJR) following ASTM standards.

    Science.gov (United States)

    Saha, Subrata; Musib, Mrinal

    2011-01-01

    Reactions of bone cells to orthopedic wear debris produced by the articulating motion of total joint replacements (TJRs) are largely responsible for the long-term failure of such replacements. Metal and polyethylene (PE) wear particles isolated from fluids from total joint simulators, as well as particles that are fabricated by other methods, are widely used to study such in vitro cellular response. Prior investigations have revealed that cellular response to wear debris depends on the size, shape, and dose of the particles. Hence, to have a better understanding of the wear-mediated osteolytic process it is important that these particles are well characterized and clinically relevant, both qualitatively, and quantitatively. In this study we have fractionated both ultra-high molecular weight polyethylene (UHMWPE) and Ti particles, into micron (1.0-10.0 μm), submicron (0.2-1.0 μm), and nanoparticle (0.01-0.2 μm) fractions, and characterized them based on the following size-shape descriptors as put forth in ASTM F1877: i) equivalent circle diameter (ECD), ii) aspect ratio (AR), iii) elongation (E), iv) roundness (R), and v) form factor (FF). The mean (± SD) ECDs (in μm) for micron, submicron, and nanoparticles of UHMWPE were 1.652 ± 0.553, 0.270 ± 0.180, and 0.061 ± 0.035, respectively, and for Ti were 1.894 ± 0.667, 0.278 ± 0.180, and 0.055 ± 0.029, respectively. The values for other descriptors were similar (no statistically significant difference). The nanofraction particles were found to be more sphere-like (higher R and FF values, and lower E and AR values) as compared to larger particles. Future experiments will involve use of these well characterized particles for in vitro studies.

  14. Totally asymmetric exclusion processes with particles of arbitrary size

    International Nuclear Information System (INIS)

    Lakatos, Greg; Chou, Tom

    2003-01-01

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean-field approach to find apparently exact expressions for the steady-state currents, boundary densities, and phase diagrams of the d ≥ 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean-field results

  15. Totally asymmetric exclusion processes with particles of arbitrary size

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Greg; Chou, Tom [Department of Biomathematics and Institute for Pure and Applied Mathematics, UCLA, Los Angeles, CA 90095 (United States)

    2003-02-28

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean-field approach to find apparently exact expressions for the steady-state currents, boundary densities, and phase diagrams of the d {>=} 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean-field results.

  16. Some constructions on total labelling of m triangles

    International Nuclear Information System (INIS)

    Voon, Chen Huey; Hui, Liew How; How, Yim Kheng

    2016-01-01

    Let mK_3 = (V_m, E_m) be a finite disconnected graph consisting of m disjoint triangles K_3, where V_m is the set of vertices, E_m is the set of edges and both V_m and E_m are of the same size 3m. A total labelling of mK_3 is a function f which maps the elements in V_m and E_m to positive integer values, i.e. f : V_m ∪ E_m → {1, 2, 3,···}. Let c be a positive integer. A triangle is said have a c-Erdősian triangle labelling if it is a total labelling f : V_m ∪ E_m → {c, c + 1, ···, c + 6m − 1} such that f (x) + f (y) = f (xy) for any x, y ∈ V_m and an edge xy ∈ E_m joining them. In order to find all the c-Erdősian triangle labelling, a straightforward is to use the exhaustive search. However, the exhaustive search is only able to find c-Erdősian triangle labelling for m ≤ 5 due to combinatorial explosion. By studying the constant sum of vertex labels, we propose a strong permutation approach, which allows us to generate a certain classes of c-Erdősian triangle labelling up until m = 8.

  17. A quasi-particle description of the M(3,p) models

    International Nuclear Information System (INIS)

    Jacob, P.; Mathieu, P.

    2006-01-01

    The M(3,p) minimal models are reconsidered from the point of view of the extended algebra whose generators are the energy-momentum tensor and the primary field φ 2,1 of dimension (p-2)/4. Within this framework, we provide a quasi-particle description of these models, in which all states are expressed solely in terms of the φ 2,1 -modes. More precisely, we show that all the states can be written in terms of φ 2,1 -type highest-weight states and their φ 2,1 -descendants. We further demonstrate that the conformal dimension of these highest-weight states can be calculated from the φ 2,1 commutation relations, the highest-weight conditions and associativity. For the simplest models (p=5,7), the full spectrum is explicitly reconstructed along these lines. For p odd, the commutation relations between the φ 2,1 modes take the form of infinite sums, i.e., of generalized commutation relations akin to parafermionic models. In that case, an unexpected operator, generalizing the Witten index, is unraveled in the OPE of φ 2,1 with itself. A quasi-particle basis formulated in terms of the sole φ 2,1 modes is studied for all allowed values of p. We argue that it is governed by jagged-type partitions further subject a difference 2 condition at distance 2. We demonstrate the correctness of this basis by constructing its generating function, from which the proper fermionic expression of the combination of the Virasoro irreducible characters χ 1,s and χ 1,p-s (for 1=3]+1) are recovered. As an aside, a practical technique for implementing associativity at the level of mode computations is presented, together with a general discussion of the relation between associativity and the Jacobi identities

  18. Seasonal to hour variation scales in abundance and production of total and particle-attached bacteria in the open NW Mediterranean Sea (0–1000 m

    Directory of Open Access Journals (Sweden)

    G. Mével

    2008-11-01

    Full Text Available We present the vertical and temporal dynamics of total vs. particle-attached bacterial abundance and activity over a 5 week period under summer to autumn transition in NW Mediterranean Sea. At a weekly time scale, total bacterial biomass and production in the euphotic layers was significantly correlated with phytoplanktonic biomass. At an hourly time scale, total bacterial biomass responded very rapidly to chlorophyll a fluctuations, suggesting a tight coupling between phytoplankton and bacteria for resource partitioning during the summer-autumn transition. In contrast, no influence of diel changes on bacterial parameters was detected. Episodic events such as coastal water intrusions had a significant positive effect on total bacterial abundance and production, whereas we could not detect any influence of short wind events whatever the magnitude. Finally, we show that particle-attached bacteria can represent a large proportion (up to 49% of the total bacterial activity in the euphotic layer but display rapid and sporadic changes at hourly time scales. In the mesopelagic layers, bacterial abundance and production linearly decreased with depth, except some production peaks at 400–750 m. This study underlines the value of large datasets covering different temporal scales to clarify the biogeochemical role of bacteria in the cycling of organic matter in open seawater.

  19. Some constructions on total labelling of m triangles

    Energy Technology Data Exchange (ETDEWEB)

    Voon, Chen Huey, E-mail: chenhv@utar.edu.my; Hui, Liew How, E-mail: liewhh@utar.edu.my; How, Yim Kheng, E-mail: tidusyimhome@hotmail.com [Department of Mathematical and Actuarial Sciences, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor (Malaysia)

    2016-06-02

    Let mK{sub 3} = (V{sub m}, E{sub m}) be a finite disconnected graph consisting of m disjoint triangles K{sub 3}, where V{sub m} is the set of vertices, E{sub m} is the set of edges and both V{sub m} and E{sub m} are of the same size 3m. A total labelling of mK{sub 3} is a function f which maps the elements in V{sub m} and E{sub m} to positive integer values, i.e. f : V{sub m} ∪ E{sub m} → {1, 2, 3,···}. Let c be a positive integer. A triangle is said have a c-Erdősian triangle labelling if it is a total labelling f : V{sub m} ∪ E{sub m} → {c, c + 1, ···, c + 6m − 1} such that f (x) + f (y) = f (xy) for any x, y ∈ V{sub m} and an edge xy ∈ E{sub m} joining them. In order to find all the c-Erdősian triangle labelling, a straightforward is to use the exhaustive search. However, the exhaustive search is only able to find c-Erdősian triangle labelling for m ≤ 5 due to combinatorial explosion. By studying the constant sum of vertex labels, we propose a strong permutation approach, which allows us to generate a certain classes of c-Erdősian triangle labelling up until m = 8.

  20. Live Imaging of Cellular Internalization of Single Colloidal Particle by Combined Label-Free and Fluorescence Total Internal Reflection Microscopy.

    Science.gov (United States)

    Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana

    2015-11-02

    In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.

  1. Exposure assessment of workplace manufacturing titanium dioxide particles

    International Nuclear Information System (INIS)

    Xu, Huadong; Zhao, Lin; Chen, Zhangjian; Zhou, Jingwen; Tang, Shichuan; Kong, Fanling; Li, Xinwei; Yan, Ling; Zhang, Ji; Jia, Guang

    2016-01-01

    With the widespread use of titanium dioxide (TiO 2 ) human exposure is inevitable, but the exposure data on TiO 2 are still limited. This study adopted off-line filter-based sampling combined with real-time activity-based monitoring to measure the concentrations in a workplace manufacturing TiO 2 (primary diameter: 194 ± 108 nm). Mass concentrations (MCs) of aerosol particles in the packaging workshop (total dust: 3.17 mg/m 3 , nano dust: 1.22 mg/m 3 ) were much higher than those in the milling workshop (total dust: 0.79 mg/m 3 , nano dust: 0.31 mg/m 3 ) and executive office (total dust: 0.44 mg/m 3 , nano dust: 0.19 mg/m 3 ). However, the MCs of TiO 2 were at a relatively low level in the packaging workshop (total TiO 2 : 46.4 μg/m 3 , nano TiO 2 : 16.7 μg/m 3 ) and milling workshop (total TiO 2 : 39.4 μg/m 3 , nano TiO 2 : 19.4 μg/m 3 ) by ICP-MS. The number concentration (NC), surface area concentration (SAC) of aerosol particles potentially deposited in alveolar (SAC A ), and tracheobronchial (SAC TB ) regions of lungs in the packaging workshop were (1.04 ± 0.89) × 10 5 particles/cm 3 , 414.49 ± 395.07, and 86.01 ± 83.18 μm 2 /cm 3 , respectively, which were all significantly higher than those of the milling workshop [(0.12 ± 0.40) × 10 5 particles/cm 3 , 75.38 ± 45.23, and 17.60 ± 9.22 μm 2 /cm 3 , respectively] as well as executive office and outdoor background (p < 0.05). Activity-related characteristics were found in both workshops, and the time-variant characteristics showed very similar trends for 3 days in the packaging workshop. Our study provides important data of TiO 2 particles exposure in the workplace.

  2. Total deposition of inhaled particles related to age: comparison with age-dependent model calculations

    International Nuclear Information System (INIS)

    Becquemin, M.H.; Bouchikhi, A.; Yu, C.P.; Roy, M.

    1991-01-01

    To compare experimental data with age-dependent model calculations, total airway deposition of polystyrene aerosols (1, 2.05 and 2.8 μm aerodynamic diameter) was measured in ten adults, twenty children aged 12 to 15 years, ten children aged 8 to 12, and eleven under 8 years old. Ventilation was controlled, and breathing patterns were appropriate for each age, either at rest or at light exercise. Individually, deposition percentages increased with particle size and also from rest to exercise, except in children under 12 years, in whom they decreased from 20-21.5 to 14-14.5 for 1 μm particles and from 36.8-36.9 to 32.2-33.1 for 2.05 μm particles. Comparisons with the age-dependent model showed that, at rest, the observed data concerning children agreed with those predicted and were close to the adults' values, when the latter were higher than predicted. At exercise, child data were lower than predicted and lower than adult experimental data, when the latter agreed fairly well with the model. (author)

  3. Total suspended particles (TSP) and breathable particles (PM10) in Aburra Valley, Colombia

    International Nuclear Information System (INIS)

    Saldarriaga Molina, Julio Cesar; Echeverri Londono, Carlos Alberto; Molina Perez Francisco Jose

    2004-01-01

    In the Aburra's valley, nor-western region of Colombia, inhabited by 3 million people, crossed by 400,000 vehicles; with the presence of establishments of industrial sectors: textile, foods and metal-mechanical; The concentrations of total suspended particles (PST) and breathable particles (PM 1 0) were evaluated, during the period: December of 2000 to June of 2001. The determinations of PST and PM 1 0 were performed in ten stations, distributed of north to the south, covering urban and rural zones with the municipalities of: Girardota, Bello, Medellin, Itagui, Sabaneta and Caldas. When analyzing relation PM 1 0/PST, was that the best statistical correlations are located in the zones center and the south of the valley. In addition the increasing tendency in relation PM 1 0/PST was observed, from 0.527 for the rural station Girardota (North), to 0.813 in the urban station Caldas (South). This gradient in relation PM 1 0/PST apparently this related to the wind regime that predominates in the Valley of Aburra with direction the north-south, which causes that the fine particles migrate of north to the south, increasing relation PM 1 0/PST in the same direction

  4. Evaluation of total renal function from 99mTc-MAG3 scintigraphy in children

    International Nuclear Information System (INIS)

    Andersson, L.G.; Bratteby, L.E.; Takalo, R.; Svensson, L.

    2002-01-01

    Aim: The aim of the present study was to evaluate the usefulness of dynamic scintigraphy in the assessment of total renal function in children. The Patlak slope of 99m Tc-MAG3 renography curves were compared to the plasma clearance values of 51Cr-EDTA. Material and methods: The study sample consisted of 53 boys and 33 girls with various nephrologic disorders, referred for routine clinical reasons. The median age of the subjects was 5.1 years (range 0.3 - 14.1 years). Imaging procedure. In supine position, the patient received a bolus injection of 1 MBq/kg, (minimum 10 MBq) 99m Tc-MAG3 and a posterior dynamic gamma camera registration was performed for 21 min using 1 frame per second during the first minute and thereafter 10 seconds frames. Data analysis. Time-activity curves were generated from manually drawn heart and renal regions of interest. The MAG3 uptake was calculated from the Patlak-Rutland plot of each kidney by linear curve fitting until the beginning of the excretory phase. A sum of the slope values was used as a measure of total renal MAG3 uptake. Cr-EDTA clearance. Glomerular filtration rate (GFR) was measured from the plasma clearance of 51 Cr-EDTA using single injection, multiple-sample technique. After intravenous injection of 51 Cr-EDTA (74 kBq/kg for children up to 7 years, 37 kBq/kg for children older than 7 years), blood samples were drawn at 5, 10, 15, 45, 60, 120 and 180 min for radioactivity measurement. The GFR was calculated according to Broechner-Mortensen and expressed in ml/min. Results: The absolute 51 Cr-EDTA clearance varied from 9 to 143 ml/min. There was a close linear relationship between 51 Cr-EDTA clearance and MAG3 uptake (Fig). The correlation coefficient was 0.90 and the regression equation (y=43.5 x + 664). Conclusions: In the present study, there was a good correlation between plasma clearance of 51 Cr-EDTA and the sum of the Patlak slopes. The regression equation can be utilised to transform the 99m Tc-MAG3 uptake to an

  5. Exposure assessment of workplace manufacturing titanium dioxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huadong; Zhao, Lin; Chen, Zhangjian [Peking University, Department of Occupational and Environmental Health Sciences, School of Public Health (China); Zhou, Jingwen [Jinan Center for Disease Control and Prevention (China); Tang, Shichuan [Beijing Municipal Institute of Labor Protection, Beijing Key Laboratory of Occupational Safety and Health (China); Kong, Fanling [Shandong Center for Disease Control and Prevention (China); Li, Xinwei; Yan, Ling; Zhang, Ji, E-mail: zhangji1967@163.com [Jinan Center for Disease Control and Prevention (China); Jia, Guang, E-mail: jiaguangjia@bjmu.edu.cn [Peking University, Department of Occupational and Environmental Health Sciences, School of Public Health (China)

    2016-10-15

    With the widespread use of titanium dioxide (TiO{sub 2}) human exposure is inevitable, but the exposure data on TiO{sub 2} are still limited. This study adopted off-line filter-based sampling combined with real-time activity-based monitoring to measure the concentrations in a workplace manufacturing TiO{sub 2} (primary diameter: 194 ± 108 nm). Mass concentrations (MCs) of aerosol particles in the packaging workshop (total dust: 3.17 mg/m{sup 3}, nano dust: 1.22 mg/m{sup 3}) were much higher than those in the milling workshop (total dust: 0.79 mg/m{sup 3}, nano dust: 0.31 mg/m{sup 3}) and executive office (total dust: 0.44 mg/m{sup 3}, nano dust: 0.19 mg/m{sup 3}). However, the MCs of TiO{sub 2} were at a relatively low level in the packaging workshop (total TiO{sub 2}: 46.4 μg/m{sup 3}, nano TiO{sub 2}: 16.7 μg/m{sup 3}) and milling workshop (total TiO{sub 2}: 39.4 μg/m{sup 3}, nano TiO{sub 2}: 19.4 μg/m{sup 3}) by ICP-MS. The number concentration (NC), surface area concentration (SAC) of aerosol particles potentially deposited in alveolar (SAC{sub A}), and tracheobronchial (SAC{sub TB}) regions of lungs in the packaging workshop were (1.04 ± 0.89) × 10{sup 5} particles/cm{sup 3}, 414.49 ± 395.07, and 86.01 ± 83.18 μm{sup 2}/cm{sup 3}, respectively, which were all significantly higher than those of the milling workshop [(0.12 ± 0.40) × 10{sup 5} particles/cm{sup 3}, 75.38 ± 45.23, and 17.60 ± 9.22 μm{sup 2}/cm{sup 3}, respectively] as well as executive office and outdoor background (p < 0.05). Activity-related characteristics were found in both workshops, and the time-variant characteristics showed very similar trends for 3 days in the packaging workshop. Our study provides important data of TiO{sub 2} particles exposure in the workplace.

  6. Anthropogenic Influence on Secondary Aerosol Formation and Total Water-Soluble Carbon on Atmospheric Particles

    Science.gov (United States)

    Gioda, Adriana; Mateus, Vinicius; Monteiro, Isabela; Taira, Fabio; Esteves, Veronica; Saint'Pierre, Tatiana

    2013-04-01

    species. The secondary aerosol represented an important fraction of total compounds in PM2.5 ranged from 16 to 18% for (NH4)2SO4 and 6 to 8% for NH4NO3. The values for TWSC ranged from 0.28 to 6.35 μg/m3 in the industrial area and 0.12 to 7.49 μg/m3 for rural area. The similarity between the areas regarding secondary aerosols formation and water-soluble carbon compounds is probably due to the particle size.

  7. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1-3

    Science.gov (United States)

    Kinsey, John S.; Dong, Yuanji; Williams, D. Craig; Logan, Russell

    2010-06-01

    The fine particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine for PM mass and number concentration, particle size distribution, and total volatile matter using both time-integrated and continuous sampling techniques. The experimental results showed a PM mass emission index (EI) ranging from 10 to 550 mg kg -1 fuel depending on engine type and test parameters as well as a characteristic U-shaped curve of the mass EI with increasing fuel flow for the turbofan engines tested. Also, the Teflon filter sampling indicated that ˜40-80% of the total PM mass on a test-average basis was comprised of volatile matter (sulfur and organics) for most engines sampled. The number EIs, on the other hand, varied from ˜10 15 to 10 17 particles kg -1 fuel with the turbofan engines exhibiting a logarithmic decay with increasing fuel flow. Finally, the particle size distributions of the emissions exhibited a single primary mode that were lognormally distributed with a minor accumulation mode also observed at higher powers for all engines tested. The geometric (number) mean particle diameter ranged from 9.4 to 37 nm and the geometric standard deviation ranged from 1.3 to 2.3 depending on engine type, fuel flow, and test conditions.

  8. Chemical composition modulates the adverse effects of particles on the mucociliary epithelium

    Directory of Open Access Journals (Sweden)

    Regiani Carvalho-Oliveira

    2015-10-01

    Full Text Available OBJECTIVE:We compared the adverse effects of two types of real ambient particles; i.e., total suspended particles from an electrostatic precipitator of a steel mill and fine air particles from an urban ambient particulate matter of 2.5 µm, on mucociliary clearance.METHOD:Mucociliary function was quantified by mucociliary transport, ciliary beating frequency and the amount of acid and neutral mucous in epithelial cells through morphometry of frog palate preparations. The palates were immersed in one of the following solutions: total suspended particles (0.1 mg/mL, particulate matter 2.5 µm 0.1 mg/mL (PM0.1 or 3.0 mg/mL (PM3.0 and amphibian Ringer’s solution (control. Particle chemical compositions were determined by X-ray fluorescence and gas chromatography/mass spectrometry.RESULTS:Exposure to total suspended particles and PM3.0 decreased mucociliary transport. Ciliary beating frequency was diminished by total suspended particles at all times during exposure, while particulate matter of 2.5 µm did not elicit changes. Particulate matter of 2.5 µm reduced epithelial mucous and epithelium thickness, while total suspended particles behaved similarly to the control group. Total suspended particles exhibited a predominance of Fe and no organic compounds, while the particulate matter 2.5 µm contained predominant amounts of S, Fe, Si and, to a lesser extent, Cu, Ni, V, Zn and organic compounds.CONCLUSION:Our results showed that different compositions of particles induced different airway epithelial responses, emphasizing that knowledge of their individual characteristics may help to establish policies aimed at controlling air pollution.

  9. Kinetic investigation of narrow-bore columns packed with prototype sub-2 μm superficially porous particles with various shell thickness.

    Science.gov (United States)

    Gritti, Fabrice; Omamogho, Jesse; Guiochon, Georges

    2011-10-07

    The recent successful breakthrough of sub-3 μm shell particles in HPLC has triggered considerable research efforts toward the design of new brands of core-shell particles. We investigated the mass transfer mechanism of a few analytes in narrow-bore columns packed with prototype 1.7 μm shell particles, made of 1.0, 1.2, and 1.4 μm solid nonporous cores surrounded by porous shells 350, 250, and 150 nm thick, respectively. Three probe solutes, uracil, naphthalene, and insulin, were chosen to assess the kinetic performance of these columns. Inverse size exclusion chromatography, peak parking experiments, and the numerical integration of the experimental peak profiles were carried out in order to measure the external, internal, and total column porosities, the true bulk diffusion coefficients of these analytes, the height equivalent to a theoretical plate, the longitudinal diffusion term, and the trans-particle mass transfer resistance term. The residual eddy diffusion term was measured by difference. The results show the existence of important trans-column velocity biases (7%) possibly due to the presence of particle multiplets in the slurry mixture used during the packing process. Our results illustrates some of the difficulties encountered by scientists preparing and packing shell particles into narrow-bore columns. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Particle-based optical pressure sensors for 3D pressure mapping.

    Science.gov (United States)

    Banerjee, Niladri; Xie, Yan; Chalaseni, Sandeep; Mastrangelo, Carlos H

    2015-10-01

    This paper presents particle-based optical pressure sensors for in-flow pressure sensing, especially for microfluidic environments. Three generations of pressure sensitive particles have been developed- flat planar particles, particles with integrated retroreflectors and spherical microballoon particles. The first two versions suffer from pressure measurement dependence on particles orientation in 3D space and angle of interrogation. The third generation of microspherical particles with spherical symmetry solves these problems making particle-based manometry in microfluidic environment a viable and efficient methodology. Static and dynamic pressure measurements have been performed in liquid medium for long periods of time in a pressure range of atmospheric to 40 psi. Spherical particles with radius of 12 μm and balloon-wall thickness of 0.5 μm are effective for more than 5 h in this pressure range with an error of less than 5%.

  11. M3D project for simulation studies of plasmas

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.; Sugiyama, L.E.

    1998-01-01

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes

  12. Ice Particle Transport Analysis With Phase Change for the E(sup 3) Turbofan Engine Using LEWICE3D Version 3.2

    Science.gov (United States)

    Bidwell, Colin, S.

    2012-01-01

    Ice Particle trajectory calculations with phase change were made for the Energy Efficient Engine (E(sup 3)) using the LEWICE3D Version 3.2 software. The particle trajectory computations were performed using the new Glenn Ice Particle Phase Change Model which has been incorporated into the LEWICE3D Version 3.2 software. The E(sup 3) was developed by NASA and GE in the early 1980 s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The E(sup 3) flow field was calculated using the NASA Glenn ADPAC turbomachinery flow solver. Computations were performed for the low pressure compressor of the E(sup 3) for a Mach 0.8 cruise condition at 11,887 m assuming a standard warm day for ice particle sizes of 5, 20, and 100 microns and a free stream particle concentration of 0.3 g/cu m. The impingement efficiency results showed that as particle size increased average impingement efficiencies and scoop factors increased for the various components. The particle analysis also showed that the amount of mass entering the inner core decreased with increased particle size because the larger particles were less able to negotiate the turn into the inner core due to particle inertia. The particle phase change analysis results showed that the larger particles warmed less as they were transported through the low pressure compressor. Only the smallest 5 micron particles were warmed enough to produce melting and the amount of melting was relatively small with a maximum average melting fraction of 0.836. The results also showed an appreciable amount of particle sublimation and evaporation for the 5 micron particles entering the engine core (22 percent).

  13. The Biologic Response to Polyetheretherketone (PEEK) Wear Particles in Total Joint Replacement: A Systematic Review.

    Science.gov (United States)

    Stratton-Powell, Ashley A; Pasko, Kinga M; Brockett, Claire L; Tipper, Joanne L

    2016-11-01

    Polyetheretherketone (PEEK) and its composites are polymers resistant to fatigue strain, radiologically transparent, and have mechanical properties suitable for a range of orthopaedic applications. In bulk form, PEEK composites are generally accepted as biocompatible. In particulate form, however, the biologic response relevant to joint replacement devices remains unclear. The biologic response to wear particles affects the longevity of total joint arthroplasties. Particles in the phagocytozable size range of 0.1 µm to 10 µm are considered the most biologically reactive, particularly particles with a mean size of PEEK-based wear debris from total joint arthroplasties. (1) What are the quantitative characteristics of PEEK-based wear particles produced by total joint arthroplasties? (2) Do PEEK wear particles cause an adverse biologic response when compared with UHMWPE or a similar negative control biomaterial? (3) Is the biologic response affected by particle characteristics? Embase and Ovid Medline databases were searched for studies that quantified PEEK-based particle characteristics and/or investigated the biologic response to PEEK-based particles relevant to total joint arthroplasties. The keyword search included brands of PEEK (eg, MITCH, MOTIS) or variations of PEEK types and nomenclature (eg, PAEK, CFR-PEEK) in combination with types of joint (eg, hip, knee) and synonyms for wear debris or immunologic response (eg, particles, cytotoxicity). Peer-reviewed studies, published in English, investigating total joint arthroplasty devices and cytotoxic effects of PEEK particulates were included. Studies investigating devices without articulating bearings (eg, spinal instrumentation devices) and bulk material or contact cytotoxicity were excluded. Of 129 studies, 15 were selected for analysis and interpretation. No studies were found that isolated and characterized PEEK wear particles from retrieved periprosthetic human tissue samples. In the four studies that

  14. Micrometer-scale 3-D shape characterization of eight cements: Particle shape and cement chemistry, and the effect of particle shape on laser diffraction particle size measurement

    International Nuclear Information System (INIS)

    Erdogan, S.T.; Nie, X.; Stutzman, P.E.; Garboczi, E.J.

    2010-01-01

    Eight different portland cements were imaged on a synchrotron beam line at Brookhaven National Laboratory using X-ray microcomputed tomography at a voxel size of about 1 μm per cubic voxel edge. The particles ranged in size roughly between 10 μm and 100 μm. The shape and size of individual particles were computationally analyzed using spherical harmonic analysis. The particle shape difference between cements was small but significant, as judged by several different quantitative shape measures, including the particle length, width, and thickness distributions. It was found that the average shape of cement particles was closely correlated with the volume fraction of C 3 S (alite) and C 2 S (belite) making up the cement powder. It is shown that the non-spherical particle shape of the cements strongly influence laser diffraction results, at least in the sieve size range of 20 μm to 38 μm. Since laser diffraction particle size measurement is being increasingly used by the cement industry, while cement chemistry is always a main factor in cement production, these results could have important implications for how this kind of particle size measurement should be understood and used in the cement industry.

  15. Wear particles and osteolysis in patients with total wrist arthroplasty

    DEFF Research Database (Denmark)

    Boeckstyns, Michel E H; Toxværd, Anders; Bansal, Manjula

    2014-01-01

    PURPOSE: To determine whether the amount of polyethylene debris in the interphase tissue between prosthesis and bone in patients with total wrist arthroplasty correlated with the degree of periprosthetic osteolysis (PPO); and to investigate the occurrence of metal particles in the periprosthetic...... tissue, the level of chrome and cobalt ions in the blood, and the possible role of infectious or rheumatoid activity in the development of PPO. METHODS: Biopsies were taken from the implant-bone interphase in 13 consecutive patients with total wrist arthroplasty and with at least 3 years' follow......-up. Serial annual radiographs were performed prospectively for the evaluation of PPO. We collected blood samples for white blood cell count, C-reactive protein, and metallic ion level. RESULTS: A radiolucent zone of greater than 2 mm was observed juxta-articular to the radial component in 4 patients...

  16. Preparation of rod-like β-Si3N4 single crystal particles

    International Nuclear Information System (INIS)

    Hirao, K.; Tsuge, A.; Brito, M.E.; Kanzaki, S.

    1994-01-01

    The use of β-Si 3 N 4 particles as a seed material has been demonstrated to be effective for development of a self-reinforcing microstructure in sintered silicon nitride ceramics. We have confirmed the seeding effect and arrived at a concept that seed particles should consist of rod-like single crystals free from defects and with a large diameter. The present work describes our attempts to produce such particles with a controlled morphology and in high amount. β-Si 3 N 4 particles with a diameter of 1μm and length of 5μm were obtained by heating a mixture of α-Si 3 N 4 , SiO 2 and Y 2 O 3 , followed by acid rinse treatments to remove residual glassy phase. (orig.)

  17. Atmospheric Ice Nucleating Particle measurements at the high mountain observatory Mt. Cimone (2165 m a.s.l., Italy)

    Science.gov (United States)

    Rinaldi, M.; Santachiara, G.; Nicosia, A.; Piazza, M.; Decesari, S.; Gilardoni, S.; Paglione, M.; Cristofanelli, P.; Marinoni, A.; Bonasoni, P.; Belosi, F.

    2017-12-01

    Measurement campaigns at the high mountain Observatory Mt. Cimone (CMN; 2165 m a.s.l.) were performed during May 2014 and October 2015. The concentration of Ice Nucleating Particles (INPs) were measured offline with a dynamic filter processing chamber (DFPC), in the deposition and condensation mode, after collecting PM1 and PM10 aerosol samples. Presented INP data are the first ever published for a high mountain site in the Mediterranean basin. During the May campaign, parallel INP measurements were also carried out at San Pietro Capofiume (SPC), a low altitude rural background area within the Po Valley basin, by the same offline technique. The average INPPM10 concentration at CMN was 86 m-3 (saturation ratio Sw = 1.01; T = -18 °C) during the May 2014 campaign, while it was 171 m-3 at SPC, in the same period. A lower average INPPM10 concentration was observed at CMN during October 2015 (43 m-3). A significantly higher activated fraction (AF) characterized the October 2015 campaign, suggesting that the seasonal changes in the aerosol sources have an impact on the INP efficiency of the aerosol at CMN. Super-micrometer INP contributed for ∼30% of total INP in the May 2014 campaign, at both sites, and for ∼70% in the October 2015 campaign, showing the importance of coarse particles in the INP population. The analysis of meteorological parameters, gaseous tracers concentrations and backwards trajectories suggests that the INP population at CMN is contributed by transport processes occurring at diverse spatial scales, from the local to the synoptic scale. During the Saharan Dust transport Event observed in May 2014, a reduction of the AF was observed, suggesting, for this case, a limited ice nucleating activity for Saharan dust particles. This may be due to physico-chemical aging of the Saharan dust particles during transport or to the relatively high activation temperature at which the experiments were performed in this study.

  18. Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument

    Science.gov (United States)

    Stockwell, Chelsea E.; Kupc, Agnieszka; Witkowski, Bartłomiej; Talukdar, Ranajit K.; Liu, Yong; Selimovic, Vanessa; Zarzana, Kyle J.; Sekimoto, Kanako; Warneke, Carsten; Washenfelder, Rebecca A.; Yokelson, Robert J.; Middlebrook, Ann M.; Roberts, James M.

    2018-05-01

    The chemical composition of aerosol particles is a key aspect in determining their impact on the environment. For example, nitrogen-containing particles impact atmospheric chemistry, air quality, and ecological N deposition. Instruments that measure total reactive nitrogen (Nr = all nitrogen compounds except for N2 and N2O) focus on gas-phase nitrogen and very few studies directly discuss the instrument capacity to measure the mass of Nr-containing particles. Here, we investigate the mass quantification of particle-bound nitrogen using a custom Nr system that involves total conversion to nitric oxide (NO) across platinum and molybdenum catalysts followed by NO-O3 chemiluminescence detection. We evaluate the particle conversion of the Nr instrument by comparing to mass-derived concentrations of size-selected and counted ammonium sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3), ammonium chloride (NH4Cl), sodium nitrate (NaNO3), and ammonium oxalate ((NH4)2C2O4) particles determined using instruments that measure particle number and size. These measurements demonstrate Nr-particle conversion across the Nr catalysts that is independent of particle size with 98 ± 10 % efficiency for 100-600 nm particle diameters. We also show efficient conversion of particle-phase organic carbon species to CO2 across the instrument's platinum catalyst followed by a nondispersive infrared (NDIR) CO2 detector. However, the application of this method to the atmosphere presents a challenge due to the small signal above background at high ambient levels of common gas-phase carbon compounds (e.g., CO2). We show the Nr system is an accurate particle mass measurement method and demonstrate its ability to calibrate particle mass measurement instrumentation using single-component, laboratory-generated, Nr-containing particles below 2.5 µm in size. In addition we show agreement with mass measurements of an independently calibrated online particle-into-liquid sampler directly coupled to the

  19. Seasonal variations of total suspended particles (TSP) and heavy metals under tropical conditions in Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    Pfeiffer, W.C.; Trindade, H.A.; Costa-Ribeiro, C.; Londres, H.; Oliveira, A.E.

    The total suspended particle (TSP) and heavy metal concentrations are studied in Rio de Janeiro, Brazil from 1974 until 1981. The principal aims are to determine how these things vary in two different areas and how meteorological parameters responsible for the transport and dilution of atmospheric pollutants affect these areas. (M.A.C.) [pt

  20. Hawking tunneling and boomerang behaviour of massive particles with E < m

    Science.gov (United States)

    Jannes, Gil; Philbin, Thomas G.; Rousseaux, Germain

    2012-07-01

    Massive particles are radiated from black holes through the Hawking mechanism together with the more familiar radiation of massless particles. For E >= m, the emission rate is identical to the massless case. But E boomerang. The tunneling formalism is used to calculate the probability for detecting such E < m particles, for a Schwarzschild black hole of astrophysical size or in an analogue gravity experiment, as a function of the distance from the horizon and the energy of the particle.

  1. The role of dust storms in total atmospheric particle concentrations at two sites in the western U.S.

    Science.gov (United States)

    Neff, Jason C.; Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Belnap, Jayne

    2013-01-01

    Mineral aerosols are produced during the erosion of soils by wind and are a common source of particles (dust) in arid and semiarid regions. The size of these particles varies widely from less than 2 µm to larger particles that can exceed 50 µm in diameter. In this study, we present two continuous records of total suspended particle (TSP) concentrations at sites in Mesa Verde and Canyonlands National Parks in Colorado and Utah, USA, respectively, and compare those values to measurements of fine and coarse particle concentrations made from nearby samplers. Average annual concentrations of TSP at Mesa Verde were 90 µg m−3 in 2011 and at Canyonlands were 171 µg m−3 in 2009, 113 µg m−3 in 2010, and 134 µg m−3 in 2011. In comparison, annual concentrations of fine (diameter of 2.5 µm and below) and coarse (2.5–10 µm diameter) particles at these sites were below 10 µg m−3 in all years. The high concentrations of TSP appear to be the result of regional dust storms with elevated concentrations of particles greater than 10 µm in diameter. These conditions regularly occur from spring through fall with 2 week mean TSP periodically in excess of 200 µg m−3. Measurement of particles on filters indicates that the median particle size varies between approximately 10 µm in winter and 40 µm during the spring. These persistently elevated concentrations of large particles indicate that regional dust emission as dust storms and events are important determinants of air quality in this region.

  2. [Are inhaled dust particles harmful for our lungs?].

    Science.gov (United States)

    Brändli, O

    1996-12-14

    Particles with diameters ranging from less than 0.02 to more than 100 microns and in concentration up to 120 micrograms/m3 daily average TSP (total suspended particles) are measurable in the air of Swiss cities and responsible for the decrease of visibility on the Swiss Plateau and south of the Alps. The particle size shows a typical distribution: the coarse particles (> 2.5 microns mass median diameter) are mostly of natural origin (plants, pollen, earth particles) and are deposited in the upper airways. The fine particles (PM2.5 annual concentrations of 14-53 micrograms/m3 TSP or 10-33 micrograms/m3 PM10, well below the national standard (annual mean TSP 70 micrograms/m3) have been measured in rural and urban areas. Even at these concentrations an increase in respiratory symptoms and a decrease in lung function, without evidence for a "safe" threshold, have been observed in the Swiss study of air pollution and lung diseases in adults (SAPALDIA). Although the noxious effects of the particles cannot be clearly separated from the effect of other pollutants (e.g. NOx, SO2, ozone) in complex pollutant mixtures, the emission standards and national standards for ambient air should be revised, in particular by adding a standard for fine particles (e.g. PM10 or PM2.5).

  3. Experimental technique for study on three-particle reactions in kinematically total experiments with usage of the two-processor complex on the M-400 computer basis

    International Nuclear Information System (INIS)

    Berezin, F.N.; Kisurin, V.A.; Nemets, O.F.; Ofengenden, R.G.; Pugach, V.M.; Pavlenko, Yu.N.; Patlan', Yu.V.; Savrasov, S.S.

    1981-01-01

    Experimental technique for investigation of three-particle nuclear reactions in kinematically total experiments is described. The technique provides the storage of one-dimensional and two- dimensional energy spectra from several detectors. A block diagram of the measuring system, using this technique, is presented. The measuring system consists of analog equipment for rapid-slow coincidences and of a two-processor complex on the base of the M-400 computer with a general bus. Application of a two-processor complex, each computer of which has a possibility of direct access to memory of another computer, permits to separate functions of data collection and data operational presentation and to perform necessary physical calculations. Software of the measuring complex which includes programs written using the ASSEMBLER language for the first computer and functional programs written using the BASIC language for the second computer, is considered. Software of the first computer includes the DISPETCHER dialog control program, driver package for control of external devices, of applied program package and system modules. The technique, described, is tested in experiment on investigation of d+ 10 B→α+α+α three- particle reaction at deutron energy of 13.6 MeV. The two-dimensional energy spectrum reaction obtained with the help of the technique described is presented [ru

  4. The influence of powder particle size on properties of Cu-Al2O3 composites

    Directory of Open Access Journals (Sweden)

    Rajković V.

    2009-01-01

    Full Text Available Inert gas atomized prealloyed copper powder containing 2 wt.% Al (average particle size ≈ 30 μm and a mixture consisting of copper (average particle sizes ≈ 15 μm and 30 μm and 4 wt.% of commercial Al2O3 powder particles (average particle size ≈ 0.75 μm were milled separately in a high-energy planetary ball mill up to 20 h in air. Milling was performed in order to strengthen the copper matrix by grain size refinement and Al2O3 particles. Milling in air of prealloyed copper powder promoted formation of finely dispersed nano-sized Al2O3 particles by internal oxidation. On the other side, composite powders with commercial micro-sized Al2O3 particles were obtained by mechanical alloying. Following milling, powders were treated in hydrogen at 400 0C for 1h in order to eliminate copper oxides formed on their surface during milling. Hot-pressing (800 0C for 3 h in argon at pressure of 35 MPa was used for compaction of milled powders. Hot-pressed composite compacts processed from 5 and 20 h milled powders were additionally subjected to high temperature exposure (800°C for 1 and 5h in argon in order to examine their thermal stability. The results were discussed in terms of the effects of different size of starting powders, the grain size refinement and different size of Al2O3 particles on strengthening, thermal stability and electrical conductivity of copper-based composites.

  5. PEG and mPEG-anthracene induce DNA condensation and particle formation.

    Science.gov (United States)

    Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A

    2011-08-18

    In this study, we investigated the binding of DNA with poly(ethylene glycol) (PEG) of different sizes and compositions such as PEG 3350, PEG 6000, and mPEG-anthracene in aqueous solution at physiological conditions. The effects of size and composition on DNA aggregation and condensation as well as conformation were determined using Fourier transform infrared (FTIR), UV-visible, CD, fluorescence spectroscopic methods and atomic force microscopy (AFM). Structural analysis showed moderate complex formation for PEG 3350 and PEG 6000 and weaker interaction for mPE-anthracene-DNA adducts with both hydrophilic and hydrophobic contacts. The order of ± stability of the complexes formed is K(PEG 6000) = 1.5 (±0.4) × 10(4) M(-1) > K(PEG 3350) = 7.9 (±1) × 10(3) M(-1) > K(m(PEG-anthracene))= 3.6 (±0.8) × 10(3) M(-1) with nearly 1 bound PEG molecule per DNA. No B-DNA conformational changes were observed, while DNA condensation and particle formation occurred at high PEG concentration.

  6. The number of elementary particles in a fractal M-theory of 11.2360667977 dimensions

    International Nuclear Information System (INIS)

    He, J.-H.

    2007-01-01

    It is generally accepted that there are 60 experimentally found particles. The standard model strongly predicts two more hypothetical particles, the Higgs and the graviton. This paper reveals other possible scenario for predicting 69 particles at different energy scales in 11+φ 3 fractal dimensions of a fractal M theory, where φ=(5-1)/2. A modified Newton's law is suggested to experimentally verify our predictions at extremely small quantum scales. The modified Newton's law is in harmony with Heisenberg's uncertainty principle

  7. [Relationship between atmospheric particles and rain water chemistry character].

    Science.gov (United States)

    Huo, Ming-Qun; Sun, Qian; Xie, Peng; Bai, Yu-Hua; Liu, Zhao-Rong; Li, Ji-Long; Lu, Si-Hua

    2009-11-01

    Rain and atmospheric particle samples were collected in the rural area of Taian and Shenzhen in 2007, respectively. Rain sampling was carried out during the precipitation process and several samples were got from the beginning of one precipitation to the end. The chemical character changes during precipitation and the changes of concentration of particles before and after rain were studied in this research to understand the contribution of particles on the rain chemical character and the rain-out effect for particles. The volume-weighted mean pH of rainwater in Taian was 5.97 and the total concentration of ions was 1 187.96 microeq x L(-1). The mass concentration of PM10 in Taian was 131.76 microg/m3 and that of PM2.5 was 103.84 microg/m3. The volume-weighted mean pH of rainwater in Shenzhen was 4.72 and the total concentration of ions was 175.89 microeq x L(-1). The mass concentration of PM10 in Shenzhen was 56.66 microg/m3 and that of PM2.5 was 41.52 microg/m3. During precipitation process pH and ion concentration of rain decrease and it is shown the neutralizing effect happens. The difference between rainwater of Taian and Shenzhen is due to cloud water acidity, atmospheric particles character and atmospheric acid-basic gases concentration. The clean-up effect of Na+ and Ca2+ by rain is high and which of NH4+ and NO3- is low. The clean-up effect for mass concentration, ions concentration and element concentration of particles by rain are significant.

  8. Hydroxyapatite particles as carriers for "2"2"3Ra

    International Nuclear Information System (INIS)

    Vasiliev, A.N.

    2017-01-01

    Systematic investigation of optimal conditions for preparation and in vitro stability of HAP particles labeled with "2"2"3Ra, that could be considered as promising candidates for targeted α-therapy, has been carried out. Two different approaches to HAP labelling were tested: sorption of Ra"2"+ on pre-synthesized HAP-particles and incorporation of Ra"2"+ into the structure of HAP during its synthesis. Two textural forms of HAP particles were used-nanoparticles and particles with the diameter of 350 ± 20 μm. Kinetics of "2"2"3Ra sorption on HAP of different particle size and desorption in 0.9 % NaCl solution were studied. The influence of solution acidity and solid to liquid phase ratio on sorption of Ra was evaluated and the sorption yield up to 98 % was achieved. It was found that the optimal conditions for the sorption included synthesis of HAP nanoparticles in the presence of "2"2"3Ra at pH values of 4-7 followed by annealing at 900 deg C. In this case subsequent cumulative desorption of Ra was <5 % of initial activity. (author)

  9. Influence of fixed and moving bed biofilters on micro particle dynamics in a recirculating aquaculture system

    DEFF Research Database (Denmark)

    Fernandes, Paulo; Pedersen, Lars-Flemming; Pedersen, Per Bovbjerg

    2017-01-01

    (Oncorhynchus mykiss), and operatedunder constant feed loading conditions (1 kg feed/m3of make-up water) for more than three months.Production or removal of micro particles according to biofilter mode of operation (FBB vs. MBB) wasassessed by operating all biofilters simultaneously as well as separately...... particle concentration also represented a 10% reduction in total particle surface area and particlevolume. In MBB, a 10% increase in particle concentration also represented a 10% increase in total particlesurface area, but had no effect on total particle volume. A volumetric reduction of particles >100 m...... due to disintegration of particles inMBB. In the RAS, ammonia and nitrite were observed at concentrations below 0.20 mg N/L throughoutthe majority of the experiment. However, during the phase where only MBB were in operation, TAN(Total Ammonia Nitrogen) and nitrite levels increased significantly...

  10. Calculation of the total potential between two deformed heavy ion nuclei using the Monte Carlo method and M3Y nucleon-nucleon forces

    International Nuclear Information System (INIS)

    Ghodsi, O. N.; Zanganeh, V.

    2009-01-01

    In the current study, a simulation technique has been employed to calculate the total potential between two deformed nuclei. It has been shown that this simulation technique is an efficient one for calculating the total potential for all possible orientations between the symmetry axes of the interacting nuclei using the realistic nuclear matter density and the M3Y nucleon-nucleon effective forces. The analysis of the results obtained for the 48 Ca+ 238 U, 46 Ti+ 46 Ti, and 27 Al+ 70 Ge reactions reveal that considering the density dependent effects in the M3Y forces causes the nuclear potential to drop by an amount of 0.4 MeV.

  11. γγ → M{sup +}M{sup -}(M = π, K) processes with twist-3 corrections in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cong [Southwest University, School of Physical Science and Technology, Chongqing (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Zhou, Ming-Zhen; Chen, Hong [Southwest University, School of Physical Science and Technology, Chongqing (China)

    2017-04-15

    We study the γγ → M{sup +}M{sup -}(M = π, K) processes with the contributions from the two-particle twist-2 and twist-3 distribution amplitudes of pion and kaon mesons on BHL prescription in the standard hard-scattering approach. The results show that the contributions from twist-3 parts are actually not power suppressed compared with the leading-twist contributions in the low energy region. The cross sections with twist-3 corrections agree well with the experimental data in the two-photon center-of-mass energy W > 2.8 GeV and we also predict the cross section ratio σ{sub 0}(K{sup +}K{sup -})/σ{sub 0}(π{sup +}π{sup -}), which is compatible with the experimental data from TPC and Belle. (orig.)

  12. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    Science.gov (United States)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  13. Particle Trajectory and Icing Analysis of the E(sup 3) Turbofan Engine Using LEWICE3D Version 3

    Science.gov (United States)

    Bidwell, Colin S.

    2011-01-01

    Particle trajectory and ice shape calculations were made for the Energy Efficient Engine (E(sup 3)) using the LEWICE3D Version 3 software. The particle trajectory and icing computations were performed using the new "block-to-block" collection efficiency method which has been incorporated into the LEWICE3D Version 3 software. The E(sup 3) was developed by NASA and GE in the early 1980 s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The E(sup 3) flow field was calculated using the NASA Glenn ADPAC turbomachinery flow solver. Computations were performed for the low pressure compressor of the E(sup 3) for a Mach 0.8 cruise condition at 11,887 m assuming a standard warm day for three drop sizes and two drop distributions typically used in aircraft design and certification. Particle trajectory computations were made for water drop sizes of 5, 20, and 100 microns. Particle trajectory and ice shape predictions were made for a 20 micron Langmuir-D distribution and for a 92 mm Super-cooled Large Droplet (SLD) distribution with and without splashing effects for a Liquid Water Content (LWC) of 0.3 g/cu m and an icing time of 30 min. The E3 fan and spinner combination proved to be an effective ice removal mechanism as they removed greater than 36 percent of the mass entering the inlet for the icing cases. The maximum free stream catch fraction for the fan and spinner combination was 0.60 while that on the elements downstream of the fan was 0.03. The non-splashing trajectory and collection efficiency results showed that as drop size increased impingement rates increased on the spinner and fan leaving less mass to impinge on downstream components. The SLD splashing case yielded more mass downstream of the fan than the SLD non-splashing case due to mass being splashed from the upstream inlet lip, spinner and fan components. The ice shapes generated downstream of the fan were either small or nonexistent due to the small available mass

  14. Processing tetramethylammonium-carbonate-coprecipitated slurries to obtain small-particle-size YBa2Cu3O7

    International Nuclear Information System (INIS)

    Spencer, N.D.; Peders, T.S.; Baer, M.B.

    1991-01-01

    The effect of different drying and calcination methods on the ultimate particle size of YBa 2 Cu 3 O 7 (Y-123) has been investigated. The starting material was a tetramethylammonium (TMA) carbonate-precipitated slurry. Spray-drying the slurry after filtering and reslurrying (to remove residual TMA), was most effective in the ultimate formation of finely divided Y-123. The morphology of the spray-dried powder could be preserved by calcining in very low total pressures of flowing oxygen. When a slurry with 0.16% solids content was spray dried, and this powder calcined at 750 degree C in 2 Torr of flowing oxygen, a Y-123 powder of mean particle size 0.74 μm (66% submicron) was obtained

  15. Discontinuous movement of mRNP particles in nucleoplasmic regions devoid of chromatin

    Science.gov (United States)

    Siebrasse, Jan Peter; Veith, Roman; Dobay, Akos; Leonhardt, Heinrich; Daneholt, Bertil; Kubitscheck, Ulrich

    2008-01-01

    Messenger ribonucleoprotein particles (mRNPs) move randomly within nucleoplasm before they exit from the nucleus. To further understand mRNP trafficking, we have studied the intranuclear movement of a specific mRNP, the BR2 mRNP, in salivary gland cells in Chironomus tentans. Their polytene nuclei harbor giant chromosomes separated by vast regions of nucleoplasm, which allows us to study mRNP mobility without interference of chromatin. The particles were fluorescently labeled with microinjected oligonucleotides (DNA or RNA) complementary to BR2 mRNA or with the RNA-binding protein hrp36, the C. tentans homologue of hnRNP A1. Using high-speed laser microscopy, we followed the intranuclear trajectories of single mRNPs and characterized their motion within the nucleoplasm. The Balbiani ring (BR) mRNPs moved randomly, but unexpectedly, in a discontinuous manner. When mobile, they diffused with a diffusion coefficient corresponding to their size. Between mobile phases, the mRNPs were slowed down 10-to 250-fold but were never completely immobile. Earlier electron microscopy work has indicated that BR particles can attach to thin nonchromatin fibers, which are sometimes connected to discrete fibrogranular clusters. We propose that the observed discontinuous movement reflects transient interactions between freely diffusing BR particles and these submicroscopic structures. PMID:19074261

  16. Big Bang Day: 5 Particles - 3. The Anti-particle

    CERN Multimedia

    Franck Close

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  17. Simulating Marine New Particle Formation and Growth Using the M7 Modal Aerosol Dynamics Modal

    Directory of Open Access Journals (Sweden)

    Ciaran Monahan

    2010-01-01

    Full Text Available A modal atmospheric aerosol model (M7 is evaluated in terms of predicting marine new particle formation and growth. Simulations were carried out for three different nucleation schemes involving (1 kinetic self-nucleation of OIO (2 nucleation via OIO activation by H2SO4 and (3 nucleation via OIO activation by H2SO4 plus condensation of a low-volatility organic vapour. Peak OIO and H2SO4 vapour concentrations were both limited to 6×106 molecules cm-3 at noontime while the peak organic vapour concentration was limited to 12×106 molecules cm-3. All simulations produced significant concentrations of new particles in the Aitken mode. From a base case particle concentration of 222 cm-3 at radii >15 nm, increases in concentrations to 366 cm-3 were predicted from the OIO-OIO case, 722 cm-3 for the OIO-H2SO4 case, and 1584 cm-3 for the OIO-H2SO4 case with additional condensing organic vapours. The results indicate that open ocean new particle production is feasible for clean conditions; however, new particle production becomes most significant when an additional condensable organic vapour is available to grow the newly formed particles to larger sizes. Comparison to sectional model for a typical case study demonstrated good agreement and the validity of using the modal model.

  18. Total conversion coefficient of the 185 keV (10--7+) transition in sup(182m)Ta

    International Nuclear Information System (INIS)

    Suryanarayana, Ch.; Venkateswara Rao, N.; Raghavaiah, C.V.; Bhuloka Reddy, S.; Satyanarayana, G.; Sastry, D.L.

    1988-01-01

    The total conversion coefficient of the 185 keV (E3) isomeric transition in 182 Ta was measured for the first time using gamma intensity balance method. The experimental αsub(T) was obtained as 3.4 ± 0.2 consistent with the theoretical value (3.272) due to Rosel et al. The E3 transition probability was found to be hindered by a factor of 5.07x10 4 when compared to the single particle estimate. (author). 13 refs

  19. Relativistic local quantum field theory for m=0 particles

    International Nuclear Information System (INIS)

    Morales Villasevil, A.

    1965-01-01

    A method is introduced ta deal with relativistic quantum field theory for particles with m=0. Two mappings I and J, giving rise respectively to particle and anti particle states, are defined between a test space and the physical Hilbert space. The intrinsic field operator is then defined as the minimal causal linear combinations of operators belonging to the annihilation-creation algebra associated to the germ and antigerm parts of the element. Local elements are introduced as improper test elements and local field operators are constructed in the same way as the intrinsic ones. Commutation rules are given. (Author) 17 refs

  20. Measurement of the atmospheric aerosol particle size distribution in a highly polluted mega-city in Southeast Asia (Dhaka-Bangladesh)

    Science.gov (United States)

    Salam, Abdus; Mamoon, Hassan Al; Ullah, Md. Basir; Ullah, Shah M.

    2012-11-01

    Aerosol particle size distribution was measured with an aerodynamic particle sizer (APS) spectrometer continuously from January 21 to April 24, 2006 in Dhaka, Bangladesh. Particles number, surface and mass distributions data were stored automatically with Aerosol Instrument Manager (AIM) software on average every half an hour in a computer attached to the APS. The grand total average of number, surface and mass concentrations were 8.2 × 103 ± 7.8 × 103 particles cm-3, 13.3 × 103 ± 11.8 × 103 μm2 cm-3 and 3.04 ± 2.10 mg m-3, respectively. Fine particles with diameter smaller than 1.0 μm aerodynamic diameter (AD) dominated the number concentration, accounted for 91.7% of the total particles indicating vehicular emissions were dominating in Dhaka air either from fossil fuel burning or compressed natural gas (CNGs). The surface and mass concentrations between 0.5 and 1.0 μm AD were about 56.0% and 26.4% of the total particles, respectively. Remarkable seasonal differences were observed between winter and pre-monsoon seasons with the highest monthly average in January and the lowest in April. Aerosol particles in winter were 3.79 times higher for number, 3.15 times for surface and 2.18 times for mass distributions than during the pre-monsoon season. Weekends had lower concentrations than weekdays due to less vehicular traffic in the streets. Aerosol particles concentrations were about 15.0% (ranging from 9.4% to 17.3%) higher during traffic peak hours (6:00am-8:00pm) than off hours (8:00pm-6:00am). These are the first aerosol size distribution measurements with respect to number, surface and mass concentrations in real time at Dhaka, Bangladesh.

  1. Total dissolved atmospheric nitrogen deposition in the anoxic Cariaco basin

    Science.gov (United States)

    Rasse, R.; Pérez, T.; Giuliante, A.; Donoso, L.

    2018-04-01

    Atmospheric deposition of total dissolved nitrogen (TDN) is an important source of nitrogen for ocean primary productivity that has increased since the industrial revolution. Thus, understanding its role in the ocean nitrogen cycle will help assess recent changes in ocean biogeochemistry. In the anoxic Cariaco basin, the place of the CARIACO Ocean Time-Series Program, the influence of atmospherically-deposited TDN on marine biogeochemistry is unknown. In this study, we measured atmospheric TDN concentrations as dissolved organic (DON) and inorganic (DIN) nitrogen (TDN = DIN + DON) in atmospheric suspended particles and wet deposition samples at the northeast of the basin during periods of the wet (August-September 2008) and dry (March-April 2009) seasons. We evaluated the potential anthropogenic N influences by measuring wind velocity and direction, size-fractionated suspended particles, chemical traces and by performing back trajectories. We found DIN and DON concentration values that ranged between 0.11 and 0.58 μg-N m-3 and 0.11-0.56 μg-N m-3 in total suspended particles samples and between 0.08 and 0.54 mg-N l-1 and 0.02-1.3 mg-N l-1 in wet deposition samples, respectively. Continental air masses increased DON and DIN concentrations in atmospheric suspended particles during the wet season. We estimate an annual TDN atmospheric deposition (wet + particles) of 3.6 × 103 ton-N year-1 and concluded that: 1) Atmospheric supply of TDN plays a key role in the C and N budget of the basin because replaces a fraction of the C (20% by induced primary production) and N (40%) removed by sediment burial, 2) present anthropogenic N could contribute to 30% of TDN atmospheric deposition in the basin, and 3) reduced DON (gas + particles) should be a significant component of bulk N deposition.

  2. Aerosol fluxes and particle growth above managed grassland

    Directory of Open Access Journals (Sweden)

    E. Nemitz

    2009-08-01

    Full Text Available Particle deposition velocities (11–3000 nm diameter measured above grassland by eddy covariance during the EU GRAMINAE experiment in June 2000 averaged 0.24 and 0.03 mm s−1 to long (0.75 m and short (0.07 m grass, respectively. After fertilisation with 108 kg N ha−1 as calcium ammonium nitrate, sustained apparent upward fluxes of particles were observed. Analysis of concentrations and fluxes of potential precursor gases, including NH3, HNO3, HCl and selected VOCs, shows that condensation of HNO3 and NH3 on the surface of existing particles is responsible for this effect. A novel approach is developed to derive particle growth rates at the field scale, from a combination of measurements of vertical fluxes and particle size-distributions. For the first 9 days after fertilization, growth rates of 11 nm particles of 7.04 nm hr−1 and 1.68 nm hr−1 were derived for day and night-time conditions, respectively. This implies total NH4NO3 production rates of 1.11 and 0.44 μg m3 h−1, respectively. The effect translates into a small error in measured ammonia fluxes (0.06% day, 0.56% night and a large error in NH4+ and NO3 aerosol fluxes of 3.6% and 10%, respectively. By converting rapidly exchanged NH3 and HNO3 into slowly depositing NH4NO3, the reaction modifies the total N budget, though this effect is small (<1% for the 10 days following fertilization, as NH3 emission dominates the net flux. It is estimated that 3.8% of the fertilizer N was volatilised as NH3, of which 0.05% re-condensed to form NH4NO3 particles within the lowest 2 m of the surface layer. This surface induced process would at least scale up to a global NH4NO3 formation of ca. 0.21 kt N yr

  3. 3D scanning particle tracking velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Klaus; Holzner, Markus; Guala, Michele; Liberzon, Alexander; Kinzelbach, Wolfgang [Swiss Federal Institut of Technology Zurich, Institut fuer Hydromechanik und Wasserwirtschaft, Zuerich (Switzerland); Luethi, Beat [Risoe National Laboratory, Roskilde (Denmark)

    2005-11-01

    In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements. (orig.)

  4. Particle trajectories in full 3D flow field of turbomachinery

    International Nuclear Information System (INIS)

    Ling, Z.G.; Huang, S.L.

    1986-01-01

    Particle trajectory prediction is important for particulate laden flow turbomachinery as it helps to understand the cause of erosion phenomena and to improve the design of blade passages. In this paper, on the basis of previous works, particle trajectories in turbine stages are predicted in connection with full 3D gas flow field solved by time marching method. The secondary flow effect is also partially considered by assuming a total pressure distribution at the inlet of the moving blade row. The results show that passage vortex due to secondary flow will cause upward and downward divergence of particle trajectories at the rear part of near blade pressure surface which is evidenced by the real appearance of eroded trace on turbine blade after long period of operation

  5. Preparation of ZnO-Al2O3 Particles in a Premixed Flame

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2000-01-01

    Zinc oxide (ZnO) and alumina (Al2O3) particles are synthesized by the combustion of their volatilized acetylacetonate precursors in a premixed air-methane flame reactor. The particles are characterized by XRD, transmission electron microscopy, scanning mobility particle sizing and by measurement...... temperature and a decreasing precursor vapour pressure. The combustion of precursor mixtures leads to composite particles consisting of zinc aluminate ZnAl2O4 intermixed with either ZnO or Al2O3 phases. The zinc aluminate particles are dendritic aggregates, resembling the alumina particles, and are evidently...... synthesized to the full extent allowed by the overall precursor composition. The addition of even small amounts of alumina to ZnO increases the specific surface area of the composites significantly, for e.g. zinc aluminate particles to approximately 150 m2/g. The gas-to-particle conversion is initiated...

  6. Total Particle Number Emissions from Modern Diesel, Natural Gas, and Hybrid Heavy-Duty Vehicles During On-Road Operation.

    Science.gov (United States)

    Wang, Tianyang; Quiros, David C; Thiruvengadam, Arvind; Pradhan, Saroj; Hu, Shaohua; Huai, Tao; Lee, Eon S; Zhu, Yifang

    2017-06-20

    Particle emissions from heavy-duty vehicles (HDVs) have significant environmental and public health impacts. This study measured total particle number emission factors (PNEFs) from six newly certified HDVs powered by diesel and compressed natural gas totaling over 6800 miles of on-road operation in California. Distance-, fuel- and work-based PNEFs were calculated for each vehicle. Distance-based PNEFs of vehicles equipped with original equipment manufacturer (OEM) diesel particulate filters (DPFs) in this study have decreased by 355-3200 times compared to a previous retrofit DPF dynamometer study. Fuel-based PNEFs were consistent with previous studies measuring plume exhaust in the ambient air. Meanwhile, on-road PNEF shows route and technology dependence. For vehicles with OEM DPFs and Selective Catalytic Reduction Systems, PNEFs under highway driving (i.e., 3.34 × 10 12 to 2.29 × 10 13 particles/mile) were larger than those measured on urban and drayage routes (i.e., 5.06 × 10 11 to 1.31 × 10 13 particles/mile). This is likely because a significant amount of nucleation mode volatile particles were formed when the DPF outlet temperature reached a critical value, usually over 310 °C, which was commonly achieved when vehicle speed sustained over 45 mph. A model year 2013 diesel HDV produced approximately 10 times higher PNEFs during DPF active regeneration events than nonactive regeneration.

  7. (1→3)-β-d-Glucan and Galactomannan for Differentiating Chemical "Black Particles" and Fungal Particles Inside Peritoneal Dialysis Tubing.

    Science.gov (United States)

    Leelahavanichkul, Asada; Pongpirul, Krit; Thongbor, Nisa; Worasilchai, Navaporn; Petphuak, Kwanta; Thongsawang, Bussakorn; Towannang, Piyaporn; Lorvinitnun, Pichet; Sukhontasing, Kanya; Katavetin, Pisut; Praditpornsilpa, Kearkiat; Eiam-Ong, Somchai; Chindamporn, Ariya; Kanjanabuch, Talerngsak

    2016-01-01

    ♦ Aseptic, sheet-like foreign bodies observed inside Tenckhoff (TK) catheter lumens (referred to as "black particles") are, on gross morphology, hardly distinguishable from fungal colonization because these contaminants adhere tightly to the catheter. Detection of fungal cell wall components using (1→3)-β-d-glucan (BG) and galactomannan index (GMI) might be an alternative method for differentiating the particles. ♦ Foreign particles retrieved from TK catheters in 19 peritoneal dialysis patients were examined microscopically and cultured for fungi and bacteria. Simultaneously, a Fungitell test (Associates of Cape Cod, Falmouth, MA, USA) and a Platelia Aspergillus ELISA assay (Bio-Rad Laboratories, Marnes-La-Coquette, France) were used to test the spent dialysate for BG and GMI respectively. ♦ Of the 19 patients, 9 had aseptic black particles and 10 had fungal particles in their tubing. The fungal particles looked grainy, were tightly bound to the catheter, and appeared more "colorful" than the black particles, which looked sheet-like and could easily be removed by milking the tubing. Compared with effluent from patients having aseptic particles, effluent from patients with fungal particles had significantly higher levels of BG (501 ± 70 pg/mL vs. 46 ± 10 pg/mL) and GMI (10.98 ± 2.17 vs. 0.25 ± 0.05). Most of the fungi that formed colonies inside the catheter lumen were molds not usually found in clinical practice, but likely from water or soil, suggesting environmental contamination. Interestingly, in all 10 patients with fungal colonization, visualization of black particles preceded a peritonitis episode and TK catheter removal by approximately 1-3 weeks; in patients with aseptic particles, a 17-week onset to peritonitis was observed. ♦ In all patients with particle-coated peritoneal dialysis tubing, spent dialysate should be screened for BG and GMI. Manipulation of the TK catheter by squeezing, hard flushing, or even brushing to dislodge black

  8. First passage times in homogeneous nucleation: Dependence on the total number of particles

    International Nuclear Information System (INIS)

    Yvinec, Romain; Bernard, Samuel; Pujo-Menjouet, Laurent; Hingant, Erwan

    2016-01-01

    Motivated by nucleation and molecular aggregation in physical, chemical, and biological settings, we present an extension to a thorough analysis of the stochastic self-assembly of a fixed number of identical particles in a finite volume. We study the statistics of times required for maximal clusters to be completed, starting from a pure-monomeric particle configuration. For finite volumes, we extend previous analytical approaches to the case of arbitrary size-dependent aggregation and fragmentation kinetic rates. For larger volumes, we develop a scaling framework to study the first assembly time behavior as a function of the total quantity of particles. We find that the mean time to first completion of a maximum-sized cluster may have a surprisingly weak dependence on the total number of particles. We highlight how higher statistics (variance, distribution) of the first passage time may nevertheless help to infer key parameters, such as the size of the maximum cluster. Finally, we present a framework to quantify formation of macroscopic sized clusters, which are (asymptotically) very unlikely and occur as a large deviation phenomenon from the mean-field limit. We argue that this framework is suitable to describe phase transition phenomena, as inherent infrequent stochastic processes, in contrast to classical nucleation theory

  9. Particle and heat balance analysis in scrape-off and divertor regions of the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Nagashima, K.; Shoji, T.; Tamai, H.; Miura, Y.; Takenaga, H.; Maeda, H.

    1995-01-01

    Particle and heat balance in the scrape-off layer and the divertor region were studied in the JFT-2M tokamak. Using particle and energy conservation laws, particle and heat diffusivities perpendicular to the flux surface were evaluated just outside the magnetic separatrix. It was found that the particle diffusivity decreases with increasing electron density in the scrape-off layer and decreases by a factor of 2-3 in the H-mode phase as compared with that in L-mode. The heat diffusivity has almost the same dependence on the electron density. The ratio of the heat diffusivity to the particle diffusivity is about 2. ((orig.))

  10. Improvements in in-situ filter test methods using a total light-scattering detector

    International Nuclear Information System (INIS)

    Marshall, M.; Stevens, D.C.

    1986-01-01

    This paper presents research aimed at providing useful data on a commonly used technique; a DOP (di-2-ethylhexyl phthalate) aerosol and a total light-scattering photometer. Methods of increasing the sensitivity of this technique are described. Alternative methods of in-situ filter testing are also considered. The sensitivity of a typical, modern, total light-scattering photometer, as a function of particle diameter, has a broad maximum in mass terms between 0.1 and 0.4 um. At its maximum usable sensitivity the instrument can detect approx. 1 particle/cm 3 . This response can be explained by light scattering theory and particle loss in the instrument inlet. The mass median diameter of the aerosols produced by various DOP generators varies from 0.2 to 1.0μm. Experiments with good quality HEPA filters indicate a maximum penetration for particles of 0.15 - 0.2μm. Details of the studies are given and the consequences discussed. It is shown that filter penetration of -3 % can be measured in-situ with existing equipment. Methods of extending the sensitivity to measure a penetration of approx.10 -5 % are described. (author)

  11. Synthesis of BaTiO3 nanoparticles from TiO2-coated BaCO3 particles derived using a wet-chemical method

    Directory of Open Access Journals (Sweden)

    Yuuki Mochizuki

    2014-03-01

    Full Text Available BaCO3 particles coated with amorphous TiO2 precursor are prepared by a wet chemical method to produce BaTiO3 nanoparticles at low temperatures. Subsequently, we investigate the formation behavior of BaTiO3 particles and the particle growth behavior when the precursor is subjected to heat treatment. The state of the amorphous TiO2 coating on the surface of BaCO3 particles depends on the concentration of NH4HCO3, and the optimum concentration is found to be in the range 0.5–1.0 M. Thermogravimetric curves of the BaCO3 particles coated with the TiO2 precursor, prepared from BaCO3 particles of various sizes, show BaTiO3 formation occurring mainly at 550–650 °C in the case of fine BaCO3 particles. However, as evidenced from the curves, the temperature of formation of BaTiO3 shifts to higher values with an increase in the size of the BaCO3 particles. The average particle size of single phase BaTiO3 at heat-treatment temperature of 650–900 °C is observed to be in the range 60–250 nm.

  12. Factors contributing to airborne particle dispersal in the operating room.

    Science.gov (United States)

    Noguchi, Chieko; Koseki, Hironobu; Horiuchi, Hidehiko; Yonekura, Akihiko; Tomita, Masato; Higuchi, Takashi; Sunagawa, Shinya; Osaki, Makoto

    2017-07-06

    Surgical-site infections due to intraoperative contamination are chiefly ascribable to airborne particles carrying microorganisms. The purpose of this study is to identify the actions that increase the number of airborne particles in the operating room. Two surgeons and two surgical nurses performed three patterns of physical movements to mimic intraoperative actions, such as preparing the instrument table, gowning and donning/doffing gloves, and preparing for total knee arthroplasty. The generation and behavior of airborne particles were filmed using a fine particle visualization system, and the number of airborne particles in 2.83 m 3 of air was counted using a laser particle counter. Each action was repeated five times, and the particle measurements were evaluated through one-way analysis of variance multiple comparison tests followed by Tukey-Kramer and Bonferroni-Dunn multiple comparison tests for post hoc analysis. Statistical significance was defined as a P value ≤ .01. A large number of airborne particles were observed while unfolding the surgical gown, removing gloves, and putting the arms through the sleeves of the gown. Although numerous airborne particles were observed while applying the stockinet and putting on large drapes for preparation of total knee arthroplasty, fewer particles (0.3-2.0 μm in size) were detected at the level of the operating table under laminar airflow compared to actions performed in a non-ventilated preoperative room (P airborne particles near a sterile area and that laminar airflow has the potential to reduce the incidence of bacterial contamination.

  13. Measurements of radiation exposure on commercial aircraft with the LIULIN-3M instrument

    International Nuclear Information System (INIS)

    Stassinopoulos, E.G.; Stauffer, C.A.; Dachev, T.P.; Tomov, B.T.; Dimitrov, P.G.; Brucker, G.J.

    1999-01-01

    The LIULIN-3M evolved from an international cooperative project by a group of Bulgarian, Russian, German, and American scientists. The radiometer is a low power, small size, light weight, and low cost instrument composed of a solid state detector (SSD) with supporting electronics that enable it to operate as a pulse height analyzer of energy deposited in the detector, and to obtain from these measurements the total dose or the dose rate produced by charged particles. The instrument has also been used as a low-LET radiation spectrometer for measuring biological doses of potential human exposures. A flash memory allows self-storage of data during flights and post flight retrieval. Results will be presented and discussed. (author)

  14. Amperometric detection of morphine based on poly(3,4-ethylenedioxythiophene) immobilized molecularly imprinted polymer particles prepared by precipitation polymerization

    International Nuclear Information System (INIS)

    Ho, K.-C.; Yeh, W.-M.; Tung, T.-S.; Liao, J.-Y.

    2005-01-01

    Molecular imprinting is a novel technique used for chiral separation, artificial antibodies, sensors, and assays. Typically, molecular imprinted polymers (MIPs) are monoliths with irregular shapes. However, microspherical shapes with more uniform size can be obtained by the method of precipitation polymerization, which offers a higher active surface area by manipulating its compositions. In this study, MIP particles for the target molecule, morphine, were synthesized using a precipitation polymerization method that is more facile than the previous one that produced a thermally polymerized bulk. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was utilized to immobilize the MIP particles onto the indium tin oxide (ITO) glass as a MIP/PEDOT-modified electrode. The sensitivity for the MIP/PEDOT-modified electrode with MIP particles was 41.63 μA/cm 2 mM, which is more sensitive than that with non-MIP particles or that of a single PEDOT film with no incorporated particles in detecting morphine ranging from 0.1 to 2 mM. The detection limit was 0.3 mM (S/N = 3). In addition, we presented that the modified electrode can discriminate codeine that plays an interfering species

  15. Simultaneous measurements of particle number size distributions at ground level and 260 m on a meteorological tower in urban Beijing, China

    Science.gov (United States)

    Du, Wei; Zhao, Jian; Wang, Yuying; Zhang, Yingjie; Wang, Qingqing; Xu, Weiqi; Chen, Chen; Han, Tingting; Zhang, Fang; Li, Zhanqing; Fu, Pingqing; Li, Jie; Wang, Zifa; Sun, Yele

    2017-06-01

    Despite extensive studies into the characterization of particle number size distributions at ground level, real-time measurements above the urban canopy in the megacity of Beijing have never been performed to date. Here we conducted the first simultaneous measurements of size-resolved particle number concentrations at ground level and 260 m in urban Beijing from 22 August to 30 September. Our results showed overall similar temporal variations in number size distributions between ground level and 260 m, yet periods with significant differences were also observed. Particularly, accumulation-mode particles were highly correlated (r2 = 0. 85) at the two heights, while Aitken-mode particles presented more differences. Detailed analysis suggests that the vertical differences in number concentrations strongly depended on particle size, and particles with a mobility diameter between 100 and 200 nm generally showed higher concentrations at higher altitudes. Particle growth rates and condensation sinks were also calculated, which were 3.2 and 3.6 nm h-1, and 2.8 × 10-2 and 2.9 × 10-2 s-1, at ground level and 260 m, respectively. By linking particle growth with aerosol composition, we found that organics appeared to play an important role in the early stage of the growth (09:00-12:00 LT) while sulfate was also important during the later period. Positive matrix factorization of size-resolved number concentrations identified three common sources at ground level and 260 m, including a factor associated with new particle formation and growth events (NPEs), and two secondary factors that represent photochemical processing and regional transport. Cooking emission was found to have a large contribution to small particles and showed much higher concentration at ground level than 260 m in the evening. These results imply that investigation of NPEs at ground level in megacities needs to consider the influences of local cooking emissions. The impacts of regional emission controls on

  16. Aerosol trace metals, particle morphology and total gaseous mercury in the atmosphere of Oxford, UK

    Science.gov (United States)

    Witt, M. L. I.; Meheran, N.; Mather, T. A.; de Hoog, J. C. M.; Pyle, D. M.

    2010-04-01

    An investigation of atmospheric trace metals was conducted in Oxford, UK, a small city ˜60 miles northwest of London, in 2007 and 2008. Concentrations of Sr, Mo, Cd, Pb, V, Cr, Mn, Fe, Co, Ni, Cu and Zn in aerosol were measured in bulk and size segregated samples. In addition, total gaseous mercury (TGM) concentrations were monitored semi-continuously by cold vapour-atomic fluorescence spectroscopy. Metal concentrations in Oxford were intermediate between previously reported levels of UK rural and urban areas for most metals studied and levels of Cd, Ni and Pb were within European guidelines. Metal concentrations appeared to be influenced by higher traffic volume on a timescale of hours. The influence of traffic on the aerosols was also suggested by the observation of carbonaceous particles via scanning electron microscopy (SEM). Air mass back trajectories suggest air masses arriving in Oxford from London and mainland Europe contained the highest metal concentrations. Aerosol samples collected over Bonfire Weekend, a period of intense firework use and lighting of bonfires in the UK, showed metal concentrations 6-46 times higher than at other times. Strontium, a tracer of firework release, was present at higher concentrations and showed a change in its size distribution from the coarse to fine mode over Bonfire Weekend. The presence of an abundance of spherical Sr particles was also confirmed in SEM images. The average TGM concentration in Oxford was 3.17 ng m -3 (st. dev. 1.59) with values recorded between 1.32 and 23.2 ng m -3. This is a higher average value than reported from nearby rural locations, although during periods when air was arriving from the west, similar concentrations to these rural areas were seen in Oxford. Comparison to meteorological data suggests that TGM in Oxford's air is highest when wind is arriving from the east/southeast. This may be due to emissions from London/mainland Europe with a possible contribution from emissions from a local

  17. Measuring the 3D motion of particles in microchannel acoustophoresis using astigmatism particle tracking velocimetry

    DEFF Research Database (Denmark)

    Augustsson, P.; Barnkob, Rune; Bruus, Henrik

    2012-01-01

    We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis are exami...... relative to the influence from the acoustic radiation force. The current study opens the route to optimized acoustophoretic system design and operation to enable manipulation of small biological components such as spores, bacteria and viruses.......We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis...... are examined in three dimensions. We have quantified the velocity of particles driven by the primary acoustic radiation force and acoustic streaming, respectively, using 0.5-μm and 5-μm particles. Increased ultrasound frequency and lowered viscosity of the medium reduced the influence of acoustic streaming...

  18. The effects of cultivation on the organic matter of total soil and in the different soil particle size separates using radiocarbon dating

    International Nuclear Information System (INIS)

    Gazineu, M.H.P.

    1982-07-01

    The effects of cultivation on the organic matter and nutrients in the total soil and in five particle size separates were studied through chemical analyses and radiocarbon dating. Samples were taken from the A and B horizons of an uncultivated field and of fields cultivated during 5,60 and 90 years which had never received treatment with fertilizers. (M.A.) [pt

  19. Acute effects of total suspended particles and sulfur dioxides on preterm delivery: a community-based cohort study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X.P.; Ding, H.; Wang, X.B. [Harvard University, Boston, MA (United States). Dept. of Environmental Health

    1995-11-01

    The acute effects of air pollution on preterm delivery were examined in a prospective cohort in Beijing, China. From early pregnancy until delivery in 1988, we followed all registered pregnant women who lived in four residential areas of Beijing. Information for both mothers and infants was collected. Daily air pollution and meteorological data were obtained independently. The sample for analysis included 25 370 resident women who gave first live births in 1988. Multiple linear regression and logistic regression were used to estimate the effects of air pollution on gestational age and preterm delivery (i.e. {lt} 37 wk), with adjustment for outdoor temperature and humidity, day of the week, season, maternal age, gender of child, and residential area. Very high concentrations of ambient sulfur dioxide (mean = 102 {mu}g/m{sup 3}), (maximum = 630 {mu}g/m{sup 3}) and total suspended particulates (mean = 375 {mu}g/m{sup 3}), (maximum =1 003 {mu}g/m{sup 3}) were observed in these areas. There was a significant dose-dependent association between gestational age and sulfur dioxide and total suspended particulate concentrations. The estimated reduced duration of gestation was 0.075 wk (12.6 h) and 0.042 wk (7.1 h) for each 100 {mu}g/m{sup 3} increase in sulfur dioxide and total suspended particulates 7-d lagged moving average, respectively. We concluded that high levels of total suspended particulates and sulfur dioxide, or of a more complex pollution mixture associated with these pollutants, appear to contribute to excess risk of preterm delivery in this population. Further work needs to be carried out, with more detailed information on personal exposure and effect modifiers.

  20. Sub-micron particle number size distribution characteristics at two urban locations in Leicester

    Science.gov (United States)

    Hama, Sarkawt M. L.; Cordell, Rebecca L.; Kos, Gerard P. A.; Weijers, E. P.; Monks, Paul S.

    2017-09-01

    The particle number size distribution (PNSD) of atmospheric particles not only provides information about sources and atmospheric processing of particles, but also plays an important role in determining regional lung dose. Owing to the importance of PNSD in understanding particulate pollution two short-term campaigns (March-June 2014) measurements of sub-micron PNSD were conducted at two urban background locations in Leicester, UK. At the first site, Leicester Automatic Urban Rural Network (AURN), the mean number concentrations of nucleation, Aitken, accumulation modes, the total particles, equivalent black carbon (eBC) mass concentrations were 2002, 3258, 1576, 6837 # cm-3, 1.7 μg m-3, respectively, and at the second site, Brookfield (BF), were 1455, 2407, 874, 4737 # cm-3, 0.77 μg m-3, respectively. The total particle number was dominated by the nucleation and Aitken modes, with both consisting of 77%, and 81% of total number concentrations at AURN and BF sites, respectively. This behaviour could be attributed to primary emissions (traffic) of ultrafine particles and the temporal evolution of mixing layer. The size distribution at the AURN site shows bimodal distribution at 22 nm with a minor peak at 70 nm. The size distribution at BF site, however, exhibits unimodal distribution at 35 nm. This study has for the first time investigated the effect of Easter holiday on PNSD in UK. The temporal variation of PNSD demonstrated a good degree of correlation with traffic-related pollutants (NOX, and eBC at both sites). The meteorological conditions, also had an impact on the PNSD and eBC at both sites. During the measurement period, the frequency of NPF events was calculated to be 13.3%, and 22.2% at AURN and BF sites, respectively. The average value of formation and growth rates of nucleation mode particles were 1.3, and 1.17 cm-3 s-1 and 7.42, and 5.3 nm h-1 at AURN, and BF sites, respectively. It can suggested that aerosol particles in Leicester originate mainly

  1. CYP3A5 mRNA degradation by nonsense-mediated mRNA decay.

    Science.gov (United States)

    Busi, Florent; Cresteil, Thierry

    2005-09-01

    The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.

  2. 3D Rainbow Particle Tracking Velocimetry

    Science.gov (United States)

    Aguirre-Pablo, Andres A.; Xiong, Jinhui; Idoughi, Ramzi; Aljedaani, Abdulrahman B.; Dun, Xiong; Fu, Qiang; Thoroddsen, Sigurdur T.; Heidrich, Wolfgang

    2017-11-01

    A single color camera is used to reconstruct a 3D-3C velocity flow field. The camera is used to record the 2D (X,Y) position and colored scattered light intensity (Z) from white polyethylene tracer particles in a flow. The main advantage of using a color camera is the capability of combining different intensity levels for each color channel to obtain more depth levels. The illumination system consists of an LCD projector placed perpendicularly to the camera. Different intensity colored level gradients are projected onto the particles to encode the depth position (Z) information of each particle, benefiting from the possibility of varying the color profiles and projected frequencies up to 60 Hz. Chromatic aberrations and distortions are estimated and corrected using a 3D laser engraved calibration target. The camera-projector system characterization is presented considering size and depth position of the particles. The use of these components reduces dramatically the cost and complexity of traditional 3D-PTV systems.

  3. The Structure of Nuclei Joint Analysis of Elastic, Inelastic Scattering and Total Reactions Cross-Sections for ^{90,94}Zr-Particles Data

    CERN Document Server

    Duysebaev, A D; Kuchtina, I N; Sadykov, B M; Slusarenko, L I; Tokarevsky, V V; Fayans, S A

    2001-01-01

    A complex analysis of experimental data of elastic, inelastic scattering and total reactions cross-sections of alpha-particles on ^{90,94}Zr nuclei is performed. Values of the deformation lengths and neutron-proton multipole matrix elements relations for 2_{1}^{+}- and 3_{1}^{+}-states of ^{90,92,94,96}Zr nuclei for different types of particles are obtained. A comparative analysis is made. Experimental data for inelastic scattering of 35.4, 40.0, 50.1 and 65.0 MeV alpha-particles on ^{90,94}Zr nuclei are analysed for understanding the phase shifts in frames of the unified approach.

  4. Particle Dynamics around Weakly Magnetized Reissner-Nordström Black Hole

    International Nuclear Information System (INIS)

    Jamil, Mubasher; Majeed, Bushra; Hussain, Saqib

    2015-01-01

    Considering the geometry of Reissner-Nordström (RN) black hole immersed in magnetic field, we have studied the dynamics of neutral and charged particles. A collision of particles in the inner stable circular orbit is considered and the conditions for the escape of colliding particles from the vicinity of black hole are given. The trajectories of the escaping particle are discussed. Also, the velocity required for this escape is calculated. It is observed that there is more than one stable region if magnetic field is present in the accretion disk of black hole, so the stability of ISCO increases in the presence of magnetic field. Effect of magnetic field on the angular motion of neutral and charged particles is observed graphically.

  5. Characterization of winter airborne particles at Emperor Qin's Terra-cotta Museum, China

    International Nuclear Information System (INIS)

    Hu, Tafeng; Lee, Shuncheng; Cao, Junji; Chow, Judith C.; Watson, John G.; Ho, Kinfai; Ho, Wingkei; Rong, Bo; An, Zhisheng

    2009-01-01

    Daytime and nighttime total suspended particulate matters (TSP) were collected inside and outside Emperor Qin's Terra-cotta Museum, the most popular on-site museum in China, in winter 2008. The purpose of this study was to investigate the contribution of visitors to indoor airborne particles in two display halls with different architectural and ventilating conditions, including Exhibition Hall and Pit No.1. Morphological and elemental analyses of 7-day individual particle samples were performed with scanning electron microscopy and energy dispersive X-ray spectrometer (SEM-EDX). Particle mass concentrations in Exhibition Hall and Pit No.1 were in a range of 54.7-291.7 μg m -3 and 95.3-285.4 μg m -3 with maximum diameters of 17.5 μm and 26.0 μm, respectively. In most sampling days, daytime/nighttime particle mass ratios in Exhibition Hall (1.30-3.12) were higher than those in Pit No.1 (0.96-2.59), indicating more contribution of the tourist flow in Exhibition Hall than in Pit No. 1. The maximum of particle size distributions were in a range of 0.5-1.0 μm, with the highest abundance (43.4%) occurred in Exhibition Hall at night. The majority of airborne particles at the Museum was composed of soil dust, S-containing particles, and low-Z particles like soot aggregate and biogenic particles. Both size distributions and particle types were found to be associated with visitor numbers in Exhibition Hall and with natural ventilation in Pit No.1. No significant influence of visitors on indoor temperature and relative humidity (RH) was found in either display halls. Those baseline data on the nature of the airborne particles inside the Museum can be incorporated into the maintenance criteria, display management, and ventilation strategy by conservators of the museum.

  6. An unaccounted fraction of marine biogenic CaCO3 particles.

    Directory of Open Access Journals (Sweden)

    Mikal Heldal

    Full Text Available Biogenic production and sedimentation of calcium carbonate in the ocean, referred to as the carbonate pump, has profound implications for the ocean carbon cycle, and relate both to global climate, ocean acidification and the geological past. In marine pelagic environments coccolithophores, foraminifera and pteropods have been considered the main calcifying organisms. Here, we document the presence of an abundant, previously unaccounted fraction of marine calcium carbonate particles in seawater, presumably formed by bacteria or in relation to extracellular polymeric substances. The particles occur in a variety of different morphologies, in a size range from 100 µm, and in a typical concentration of 10(4-10(5 particles L(-1 (size range counted 1-100 µm. Quantitative estimates of annual averages suggests that the pure calcium particles we counted in the 1-100 µm size range account for 2-4 times more CaCO(3 than the dominating coccolithophoride Emiliania huxleyi and for 21% of the total concentration of particulate calcium. Due to their high density, we hypothesize that the particles sediment rapidly, and therefore contribute significantly to the export of carbon and alkalinity from surface waters. The biological and environmental factors affecting the formation of these particles and possible impact of this process on global atmospheric CO(2 remains to be investigated.

  7. Exposure to carbon monoxide, fine particle mass, and ultrafine particle number in Jakarta, Indonesia: effect of commute mode.

    Science.gov (United States)

    Both, Adam F; Westerdahl, Dane; Fruin, Scott; Haryanto, Budi; Marshall, Julian D

    2013-01-15

    We measured real-time exposure to PM(2.5), ultrafine PM (particle number) and carbon monoxide (CO) for commuting workers school children, and traffic police, in Jakarta, Indonesia. In total, we measured exposures for 36 individuals covering 93 days. Commuters in private cars experienced mean (st dev) exposures of 22 (9.4) ppm CO, 91 (38) μg/m(3)PM(2.5), and 290 (150)×10(3) particles cm(-3). Mean concentrations were higher in public transport than in private cars for PM(2.5) (difference in means: 22%) and particle counts (54%), but not CO, likely reflecting in-vehicle particle losses in private cars owing to air-conditioning. However, average commute times were longer for private car commuters than public transport commuters (in our sample, 24% longer: 3.0 vs. 2.3 h per day). Commute and traffic-related exposures experienced by Jakarta residents are among the highest in the world, owing to high on-road concentrations and multi-hour commutes. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The Total Mass of the Early-Type Galaxy NGC 4649 (M60

    Directory of Open Access Journals (Sweden)

    Ćirković, M. M.

    2008-12-01

    Full Text Available In this paper the problem of the total mass and the total mass-to-light ratio of the early-type galaxy NGC~4649 (M60 is analyzed. Use is made of two independent techniques: the X-ray methodology which is based on the temperature of the X-ray halo of NGC~4649 and the tracer mass estimator (TME which uses globular clusters (GCs observed in this galaxy. The mass is calculated in Newtonian and MOdified Newtonian Dynamics (MOND approaches and it is found that inside 3 effective radii ($R_e$ there is no need for large amounts of dark matter. Beyond $3R_e$ the dark matter starts to play important dynamical role. The possible reasons for the discrepancy between the estimates of the total mass based on X-rays and TME in the outer regions of NGC~4649 are also discussed.

  9. Particle transport in 3He-rich events: wave-particle interactions and particle anisotropy measurements

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2002-04-01

    Full Text Available Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths lW - P are calculated using the measured wave intensities, polarizations, and k directions. The values of lW - P are found to be ~ 5 times less than the value of lHe , the latter derived from He intensity and anisotropy time profiles. It is demonstrated by computer simulation that scattering rates through a 90° pitch angle are lower than that of other pitch angles, and that this is a possible explanation for the discrepancy between the lW - P and lHe values. At this time the scattering mechanism(s is unknown. We suggest a means where a direct comparison between the two l values could be made. Computer simulations indicate that although scattering through 90° is lower, it still occurs. Possibilities are either large pitch angle scattering through resonant interactions, or particle mirroring off of field compression regions. The largest solar proton events are analyzed to investigate the possibilities of local wave generation at 1 AU. In accordance with the results of a previous calculation (Gary et al., 1985 of beam stability, proton beams at 1 AU are found to be marginally stable. No evidence for substantial wave amplitude was found. Locally generated waves, if present, were less than 10-3 nT 2 Hz-1 at the leading

  10. Particle transport in 3He-rich events: wave-particle interactions and particle anisotropy measurements

    Directory of Open Access Journals (Sweden)

    T. Hada

    Full Text Available Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths lW - P are calculated using the measured wave intensities, polarizations, and k directions. The values of lW - P are found to be ~ 5 times less than the value of lHe , the latter derived from He intensity and anisotropy time profiles. It is demonstrated by computer simulation that scattering rates through a 90° pitch angle are lower than that of other pitch angles, and that this is a possible explanation for the discrepancy between the lW - P and lHe values. At this time the scattering mechanism(s is unknown. We suggest a means where a direct comparison between the two l values could be made. Computer simulations indicate that although scattering through 90° is lower, it still occurs. Possibilities are either large pitch angle scattering through resonant interactions, or particle mirroring off of field compression regions. The largest solar proton events are analyzed to investigate the possibilities of local wave generation at 1 AU. In accordance with the results of a previous calculation (Gary et al., 1985 of beam stability, proton beams at 1 AU are found to be marginally stable. No evidence for substantial wave amplitude was found. Locally generated waves, if present, were less than 10-3 nT 2 Hz-1 at the leading

  11. An optimised set-up for total reflection particle induced X-ray emission

    International Nuclear Information System (INIS)

    Kan, J.A. van; Vis, R.D.

    1997-01-01

    MeV proton beams at small angles of incidence (0-35 mrad) are used to analyse trace elements on flat surfaces such as Si wafers or quartz substrates. In these experiments, the particle induced X-ray emission (PIXE) signal is used in a new optimized set-up. This set-up is constructed in such a way that the X-ray detector can reach very large solid angles, larger than 1 sr. Use of these large detector solid angles, combined with the reduction of bremsstrahlung background, affords limits of detection (LOD) of the order of 10 10 at cm -2 using total reflection particle induced X-ray emission (TPIXE). The LODs from earlier TPIXE measurements in a non-optimized set-up are used to estimate LODs in the new TPIXE set-up. Si wafers with low surface concentrations of V, Ni, Cu and Ag are used as standards to calibrate the LODs found with this set-up. The metal concentrations are determined by total reflection X-ray fluorescence (TXRF). The TPIXE measurements are compared with TXRF measurements on the same wafers. (Author)

  12. Physical characterization of aerosol particles during the Chinese New Year’s firework events

    Science.gov (United States)

    Zhang, Min; Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Wang, Tao; Yang, Xin; Gong, Youguo; Geng, Fuhai; Chen, Changhong

    2010-12-01

    Measurements for particles 10 nm to 10 μm were taken using a Wide-range Particle Spectrometer during the Chinese New Year (CNY) celebrations in 2009 in Shanghai, China. These celebrations provided an opportunity to study the number concentration and size distribution of particles in an especial atmospheric pollution situation due to firework displays. The firework activities had a clear contribution to the number concentration of small accumulation mode particles (100-500 nm) and PM 1 mass concentration, with a maximum total number concentration of 3.8 × 10 4 cm -3. A clear shift of particles from nucleation and Aitken mode to small accumulation mode was observed at the peak of the CNY firework event, which can be explained by reduced atmospheric lifetimes of smaller particles via the concept of the coagulation sink. High particle density (2.7 g cm -3) was identified as being particularly characteristic of the firework aerosols. Recalculated fine particles PM 1 exhibited on average above 150 μg m -3 for more than 12 hours, which was a health risk to susceptible individuals. Integral physical parameters of firework aerosols were calculated for understanding their physical properties and further model simulation.

  13. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit

    Science.gov (United States)

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J.; Banfield, Jillian F.; Nazaroff, William W.

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses’ station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3–1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3–10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37–81%. Near-room indoor emissions and outdoor sources contributed 18–59% and 1–5%, respectively. Airborne particle levels in the size range 1–10 μm showed strong dependence on human activities, indicating the importance of indoor

  14. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit.

    Directory of Open Access Journals (Sweden)

    Dusan Licina

    Full Text Available Premature infants in neonatal intensive care units (NICUs have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses' station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3-1 μm particles. The mean indoor particle mass concentrations averaged across the size range 0.3-10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3. Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37-81%. Near-room indoor emissions and outdoor sources contributed 18-59% and 1-5%, respectively. Airborne particle levels in the size range 1-10 μm showed strong dependence on human activities, indicating the importance of indoor

  15. Uncleaved ApoM signal peptide is required for formation of large ApoM/sphingosine 1-phosphate (S1P)-enriched HDL particles.

    Science.gov (United States)

    Liu, Mingxia; Allegood, Jeremy; Zhu, Xuewei; Seo, Jeongmin; Gebre, Abraham K; Boudyguina, Elena; Cheng, Dongmei; Chuang, Chia-Chi; Shelness, Gregory S; Spiegel, Sarah; Parks, John S

    2015-03-20

    Apolipoprotein M (apoM), a plasma sphingosine 1-phosphate (S1P) carrier, associates with plasma HDL via its uncleaved signal peptide. Hepatocyte-specific apoM overexpression in mice stimulates formation of both larger nascent HDL in hepatocytes and larger mature apoM/S1P-enriched HDL particles in plasma by enhancing hepatic S1P synthesis and secretion. Mutagenesis of apoM glutamine 22 to alanine (apoM(Q22A)) introduces a functional signal peptidase cleavage site. Expression of apoM(Q22A) in ABCA1-expressing HEK293 cells resulted in the formation of smaller nascent HDL particles compared with wild type apoM (apoM(WT)). When apoM(Q22A) was expressed in vivo, using recombinant adenoviruses, smaller plasma HDL particles and decreased plasma S1P and apoM were observed relative to expression of apoM(WT). Hepatocytes isolated from both apoM(WT)- and apoM(Q22A)-expressing mice displayed an equivalent increase in cellular levels of S1P, relative to LacZ controls; however, relative to apoM(WT), apoM(Q22A) hepatocytes displayed more rapid apoM and S1P secretion but minimal apoM(Q22A) bound to nascent lipoproteins. Pharmacologic inhibition of ceramide synthesis increased cellular sphingosine and S1P but not medium S1P in both apoM(WT) and apoM(Q22A) hepatocytes. We conclude that apoM secretion is rate-limiting for hepatocyte S1P secretion and that its uncleaved signal peptide delays apoM trafficking out of the cell, promoting formation of larger nascent apoM- and S1P-enriched HDL particles that are probably precursors of larger apoM/S1P-enriched plasma HDL. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. From the SEM (IAEA) to the SIMS (ITU): Re-location experiment of μm-size particles - first results

    International Nuclear Information System (INIS)

    Admon, U.; Donohue, D.; Aigner, H.; Tamborini, G.; Bildstein, O.; Betti, M.

    2002-01-01

    Full text: Nuclear forensic analysis of individual radioactive particles in the μm-size range can be performed in two steps: in the first, an automated SEM screening of the loaded sample holder, particles of interest (POIs) are located and classified according to their elemental composition and size. In the second, the sample is transferred to a mass spectrometer (usually a SIMS), and individual POIs are re-located and further analyzed for their isotopic composition. Alternatively, selected POIs can be extracted after SEM screening or fission track analysis, and then analyzed in a TIMS or ICPMS. In the SIMS, which has imaging capability of its own, the whole sample is manipulated to bring specific POIs to the ion-beam point of impingement. In all these cases, including re-visiting POIs in the SEM itself, a precise relocation method is essential. The re-location of POIs in the SIMS after they have been identified as such in the SEM is based on the triangulation method. A set of reference marks are 'printed' by vacuum-deposition of metallic thin-film patterns on the sample holder, a flat-polished graphite planchet. These marks, easily recognizable and precisely measurable by both instruments, serve as inherent coordinate system for each sample. The SEM screening provides a list of POIs, each with a data profile comprising stage coordinates, composition, and size. Having measured the stage coordinates of at least 3 linearly-independent reference marks in the SEM and in the SIMS allows predicting the SIMS stage coordinates where the POIs can be found. This paper describes a joint IAEA-ITU experiment aimed at testing the feasibility of the relocation method in two separate laboratories. A flat-polished graphite planchet was loaded with a small number (a few hundreds) of μm-size uranium particles using the NIST method [3] in the ITU clean laboratory. The sample was sent to the IAEA clean laboratory, where the reference marks pattern was 'printed' by vacuum

  17. The carbide M7C3 in low-temperature-carburized austenitic stainless steel

    International Nuclear Information System (INIS)

    Ernst, Frank; Li, Dingqiang; Kahn, Harold; Michal, Gary M.; Heuer, Arthur H.

    2011-01-01

    Prolonged low-temperature gas-phase carburization of AISI 316L-type austenitic stainless steel can cause intragranular precipitation of the carbide M 7 C 3 (M: randomly dispersed Fe, Cr, Ni). Transmission electron microscopy revealed that the carbide particles have the shape of needles. They grow by a ledge-migration mechanism and in a crystallographic orientation relationship to the austenite matrix that enables highly coherent interphase interfaces. A small solubility limit of Ni in the carbide and restricted Ni diffusivity at the processing temperature leads to Ni pileup around the particles and may explain the extreme aspect ratio of the particle shape. These characteristics closely resemble what has been observed earlier for precipitates of M 5 C 2 under slightly different processing conditions and can be rationalized by considering the particular constraints imposed by carburization at low temperature.

  18. Deposition of 0.1 μm chain aggregate aerosols in beagle dogs

    International Nuclear Information System (INIS)

    Wolff, R.K.; Kanapilly, G.M.; DeNee, P.B.; McClellan, R.O.

    1981-01-01

    Deposition and retention of ultrafine chain aggregate particles were studied in 20 beagle dogs. Aggregated particles of insoluble 67 Ga 2 O 3 in the 0.1 μm size range were generated by heat treatment of 67 Ga tetramethylheptanedione. Size characterization was done using electron microscopy, diffusion battery and electrical aerosol analyzer measurements. The average equivalent diffusion diameter of the aerosol was 0.07 μm and the volume median diameter (electrical mobility measurement) was 0.10 μm with a geometric standard deviation of 1.6. Primary particles from which the aggregates were formed were 0.01 to 0.02 μm in diameter. Whole-body counting and gamma camera imaging were used to measure deposition. Total deposition in the whole body was 33 +- 16 % (mean +-S.D.) of the inhaled particles; 82 +- 13 % of this material was deposited in the lung. Retention studies showed that 77 +- 3 % of the material deposited in the lung was in the pulmonary region. Thus, 21 % of the inhaled particles were deposited beyond ciliated airways in alveolar areas. (author)

  19. [Pollution characteristics of organic acids in atmospheric particles during haze periods in autumn in Guangzhou].

    Science.gov (United States)

    Tan, Ji-hua; Zhao, Jing-ping; Duan, Jing-chun; Ma, Yong-liang; He, Ke-bin; Yang, Fu-mo

    2013-05-01

    Total suspended particles (TSP), collected during a typical haze period in Guangzhou, were analyzed for the fatty acids (C12-C30) and low molecular weight dicarboxylic acids (C3-C9) using gas chromatography/mass spectrometry (GC/MS). The results showed that the concentration of total fatty and carboxylic acids was pretty high during the haze episode. The ratios of fatty acids and carboxylic acids in haze to those in normal days were 1.9 and 2.5, respectively. During the episode of the increasing pollution, the fatty acids and carboxylic acids at night (653 ng x m(-3)) was higher than that (487 ng x m(-3)) in days. After that, the level of fatty acids and carboxylic acids in days (412 ng x m(-3)) was higher than that (336 ng x m(-3)) at night. In general, the time-series of fatty acids and carboxylic acids was similar to that of the air particle and carbonaceous species, however, the trend of the ratio of fatty acids and carboxylic acids to organic carbon was opposite to that of air particle and carbonaceous species. This ratio decreased with the increase of the concentration of air particle and after the night of 27th, the ratio increased with the decrease in the concentration of air particle. The results showed that haze pollution had a significant inhibitory effect on the enrichment of fatty and carboxylic acids. Based on the ratio of malonate to succinate (C3/C4), it could be found that primary sources contribute more to the atmospheric fatty and carboxylic acids during the autumn haze pollution periods in Guangzhou.

  20. Synthesis of MSnO{sub 3} (M = Ba, Sr) nanoparticles by reverse micelle method and particle size distribution analysis by whole powder pattern modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Jahangeer; Blakely, Colin K.; Bruno, Shaun R. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Poltavets, Viktor V., E-mail: poltavets@chemistry.msu.edu [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)

    2012-09-15

    Highlights: ► BaSnO{sub 3} and SrSnO{sub 3} nanoparticles synthesized using the reverse micelle method. ► Particle size and size distribution studied by whole powder pattern modeling. ► Nanoparticles are of optimal size for investigation in dye-sensitized solar cells. -- Abstract: Light-to-electricity conversion efficiency in dye-sensitized solar cells critically depends not only on the dye molecule, semiconducting material and redox shuttle selection but also on the particle size and particle size distribution of the semiconducting photoanode. In this study, nanocrystalline BaSnO{sub 3} and SrSnO{sub 3} particles have been synthesized using the microemulsion method. Particle size distribution was studied by whole powder pattern modeling which confirmed narrow particle size distribution with an average size of 18.4 ± 8.3 nm for SrSnO{sub 3} and 15.8 ± 4.2 nm for BaSnO{sub 3}. These values are in close agreement with results of transmission electron microscopy. The prepared materials have optimal microstructure for successive investigation in dye-sensitized solar cells.

  1. Characteristics of particle-bound polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in atmosphere used in carbon black feeding process at a tire manufacturing plant.

    Science.gov (United States)

    Chuang, Kuen-Yuan; Lai, Chia-Hsiang; Peng, Yen-Ping; Yen, Ting-Yu

    2015-12-01

    Concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were estimated for different particle size distributions in a carbon black feeding process at a tire manufacturing plant on 15 days in March and April of 2014. A total of 75 integrated air samples were collected using a micro-orifice uniform deposition impactor (MOUDI). Particle-bound PCDD/Fs were analyzed using a high-resolution gas chromatograph/high-resolution mass spectrometer (HRGC/HRMS). Concentrations of thoracic particles and total particles produced in the carbon black feeding process of a tire manufacturing plant were measured in ranges of 0.19-2.61 and 0.28-4.22 mg/m(3), respectively. On all sampling days, the three most abundant species of PCDD/Fs were OCDD, 1,2,3,4,6,7,8-HpCDF, and OCDF. The mean concentrations of total PCDD/Fs were 0.74-6.83 pg/m(3) within five particle size ranges. Total I-TEQ in particulate matter (PM)18 and PM2.5-10, respectively. However, the total I-TEQ of thoracic PM contributed approximately 74 % of the total I-TEQ of total PM. The assessment of health risk indicates that exposure to fractions of thoracic PM by inhalation poses a significant cancer risk (>10(-6)).

  2. Effect of PEG and mPEG-anthracene on tRNA aggregation and particle formation.

    Science.gov (United States)

    Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A

    2012-01-09

    Poly(ethylene glycol) (PEG) and its derivatives are synthetic polymers with major applications in gene and drug delivery systems. Synthetic polymers are also used to transport miRNA and siRNA in vitro. We studied the interaction of tRNA with several PEGs of different compositions, such as PEG 3350, PEG 6000, and mPEG-anthracene under physiological conditions. FTIR, UV-visible, CD, and fluorescence spectroscopic methods as well as atomic force microscopy (AFM) were used to analyze the PEG binding mode, the binding constant, and the effects of polymer complexation on tRNA stability, aggregation, and particle formation. Structural analysis showed that PEG-tRNA interaction occurs via RNA bases and the backbone phosphate group with both hydrophilic and hydrophobic contacts. The overall binding constants of K(PEG 3350-tRNA)= 1.9 (±0.5) × 10(4) M(-1), K(PEG 6000-tRNA) = 8.9 (±1) × 10(4) M(-1), and K(mPEG-anthracene)= 1.2 (±0.40) × 10(3) M(-1) show stronger polymer-RNA complexation by PEG 6000 and by PEG 3350 than the mPEG-anthracene. AFM imaging showed that PEG complexes contain on average one tRNA with PEG 3350, five tRNA with PEG 6000, and ten tRNA molecules with mPEG-anthracene. tRNA aggregation and particle formation occurred at high polymer concentrations, whereas it remains in A-family structure.

  3. Properties of copper matrix reinforced with nano- and micro-sized Al2O3 particles

    International Nuclear Information System (INIS)

    Rajkovic, Viseslava; Bozic, Dusan; Jovanovic, Milan T.

    2008-01-01

    The mixture of electrolytic copper powder with 5 wt.% of commercial Al 2 O 3 powder (average particle size: 15 and 0.75 μm, respectively) and the inert gas atomized prealloyed copper powder (average particle size: 30 μm) containing 2.5 wt.% aluminum were separately milled in air up to 20 h in the planetary ball mill. During milling aluminum in the prealloyed copper powders was oxidized in situ by internal oxidation with oxygen from the air forming very fine nano-sized Al 2 O 3 particles. The internal oxidation of 2.5 wt.% aluminum generated 4.7 wt.% of Al 2 O 3 in the copper matrix. Powders and compacts were characterized by light and scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and X-ray diffraction analysis. Microhardness and electrical conductivity were also included in measurements. The microhardness of Cu-2.5 wt.% Al compacts was 3.6 times higher than that of compacts processed from electrolytic copper powder. This increase in microhardness is a consequence of a fine dispersion of Al 2 O 3 particles and refined grain structure. The average values of electrical conductivity of compacts processed from Cu-5 wt.% Al 2 O 3 and Cu-2.5 wt.% Al powders previously milled for 20 h and were 88% and 70% IACS, respectively, which is a rather significant increase if compared with values of 60% and 23% IACS of compacts processed from as-received and non-milled powders. The microhardness of 20-h milled compacts decreases with the heat treatment at 800 deg. C. Due to the effect of nano-sized Al 2 O 3 particles Cu-2.5 wt.% Al compacts show lower decrease in microhardness. The results are discussed in terms of the effect of Al 2 O 3 particle size and fine grain structure on the reinforcing of the copper matrix

  4. Comparison of Alcian blue and total carbohydrate assays for quantitation of transparent exopolymer particles (TEP) in biofouling studies.

    Science.gov (United States)

    Li, Xu; Skillman, Lucy; Li, Dan; Ela, Wendell P

    2018-04-15

    Transparent exopolymer particles (TEP) and their precursors are gel-like acidic polysaccharide particles. Both TEP precursors and TEP have been identified as causal factors in fouling of desalination and water treatment systems. For comparison between studies, it is important to accurately measure the amount and fouling capacity of both components. However, the accuracy and recovery of the currently used Alcian blue based TEP measurement of different surrogates and different size fractions are not well understood. In this study, we compared Alcian blue based TEP measurements with a total carbohydrate assay method. Three surrogates; xanthan gum, pectin and alginic acid; were evaluated at different salinities. Total carbohydrate concentrations of particulates (>0.4 μm) and their precursors (10 kDa) varied depending on water salinity and method of recovery. As xanthan gum is the most frequently used surrogate in fouling studies, TEP concentration is expressed as xanthan gum equivalents (mg XG eq /L) in this study. At a salinity of 35 mg/L sea salt, total carbohydrate assays showed a much higher particulate TEP fraction for alginic acid (38%) compared to xanthan gum (9%) and pectin (12%). The concentrations of particulate TEP therefore may only represent ∼10% of the total mass; while precursor TEP represents ∼80% of the total TEP. This highlights the importance of reporting both particulate and precursor TEP for membrane biofouling studies. The calculated concentrations of TEP and their precursors in seawater samples are also highly dependent on type of surrogate and resulting calibration factor. A linear correlation between TEP recovery and calibration factor was demonstrated in this study for all three surrogates. The relative importance and accuracy of measurement method, particulate size, surrogate type, and recovery are described in detail in this study. Copyright © 2017. Published by Elsevier Ltd.

  5. Micromagnetic simulations of spinel ferrite particles

    International Nuclear Information System (INIS)

    Dantas, Christine C.; Gama, Adriana M.

    2010-01-01

    This paper presents the results of simulations of the magnetization field ac response (at 2-12 GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed here by M 1 - n Zn n Fe 2 O 4 (where M stands for a divalent metal), and the parameters chosen were the following: (a) for n=0: M={Fe, Mn, Co, Ni, Mg, Cu }; (b) for n=0.1: M = {Fe, Mg} (mixed ferrites). These runs represent full 3D micromagnetic (one-particle) ferrite simulations. We find evidences of confined spin waves in all simulations, as well as a complex behavior nearby the main resonance peak in the case of the M = {Mg, Cu} ferrites. A comparison of the n=0 and n=0.1 cases for fixed M reveals a significant change in the spectra in M = Mg ferrites, but only a minor change in the M=Fe case. An additional larger scale simulation of a 3 by 3 particle array was performed using similar conditions of the Fe 3 O 4 (magnetite; n=0, M = Fe) one-particle simulation. We find that the main resonance peak of the Fe 3 O 4 one-particle simulation is disfigured in the corresponding 3 by 3 particle simulation, indicating the extent to which dipolar interactions are able to affect the main resonance peak in that magnetic compound.

  6. Characterization of winter airborne particles at Emperor Qin's Terra-cotta Museum, China

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tafeng, E-mail: hutafeng@hotmail.com [Department of Environmental Science and Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an, 710075 (China); Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Lee, Shuncheng [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Cao, Junji [Department of Environmental Science and Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an, 710075 (China); Chow, Judith C.; Watson, John G. [SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an, 710075 (China); Division of Atmospheric Sciences, Desert of Research Institute, Reno (United States); Ho, Kinfai; Ho, Wingkei [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Rong, Bo [Emperor Qin' s Terra-cotta Warriors and Horses Museum, Xi' an (China); An, Zhisheng [SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an, 710075 (China)

    2009-10-01

    Daytime and nighttime total suspended particulate matters (TSP) were collected inside and outside Emperor Qin's Terra-cotta Museum, the most popular on-site museum in China, in winter 2008. The purpose of this study was to investigate the contribution of visitors to indoor airborne particles in two display halls with different architectural and ventilating conditions, including Exhibition Hall and Pit No.1. Morphological and elemental analyses of 7-day individual particle samples were performed with scanning electron microscopy and energy dispersive X-ray spectrometer (SEM-EDX). Particle mass concentrations in Exhibition Hall and Pit No.1 were in a range of 54.7-291.7 {mu}g m{sup -3} and 95.3-285.4 {mu}g m{sup -3} with maximum diameters of 17.5 {mu}m and 26.0 {mu}m, respectively. In most sampling days, daytime/nighttime particle mass ratios in Exhibition Hall (1.30-3.12) were higher than those in Pit No.1 (0.96-2.59), indicating more contribution of the tourist flow in Exhibition Hall than in Pit No. 1. The maximum of particle size distributions were in a range of 0.5-1.0 {mu}m, with the highest abundance (43.4%) occurred in Exhibition Hall at night. The majority of airborne particles at the Museum was composed of soil dust, S-containing particles, and low-Z particles like soot aggregate and biogenic particles. Both size distributions and particle types were found to be associated with visitor numbers in Exhibition Hall and with natural ventilation in Pit No.1. No significant influence of visitors on indoor temperature and relative humidity (RH) was found in either display halls. Those baseline data on the nature of the airborne particles inside the Museum can be incorporated into the maintenance criteria, display management, and ventilation strategy by conservators of the museum.

  7. Seasonal cycle and modal structure of particle number size distribution at Dome C, Antarctica

    Directory of Open Access Journals (Sweden)

    E. Järvinen

    2013-08-01

    Full Text Available We studied new particle formation and modal behavior of ultrafine aerosol particles on the high East Antarctic plateau at the Concordia station, Dome C (75°06' S, 123°23' E. Aerosol particle number size distributions were measured in the size range 10–600 nm from 14 December 2007 to 7 November 2009. We used an automatic algorithm for fitting up to three modes to the size distribution data. The total particle number concentration was low with the median of 109 cm−3. There was a clear seasonal cycle in the total particle number and the volume concentrations. The concentrations were at their highest during the austral summer with the median values of 260 cm−3 and 0.086 μm3 cm−3, and at their lowest during the austral winter with corresponding values of 15 cm−3 and 0.009 μm3 cm−3. New particle formation events were determined from the size distribution data. During the measurement period, natural new particle formation was observed on 60 days and for 15 of these days the particle growth rates from 10 to 25 nm in size could be determined. The median particle growth rate during all these events was 2.5 nm h−1 and the median formation rate of 10 nm particles was 0.023 cm−3 s−1. Most of the events were similar to those observed at other continental locations, yet also some variability in event types was observed. Exceptional features in Dome C were the winter events that occurred during dark periods, as well as the events for which the growth could be followed during several consecutive days. We called these latter events slowly growing events. This paper is the first one to analyze long-term size distribution data from Dome C, and also the first paper to show that new particle formation events occur in central Antarctica.

  8. Bioimaging of M1 cells using ceramic nanophosphors: Synthesis and toxicity assay of Y2O3 nanoparticles

    International Nuclear Information System (INIS)

    Venkatachalam, N; Soga, K; Tsuji, T; Okumura, Y; Fukuda, R

    2009-01-01

    Er 3+ doped Y 2 O 3 nanoparticles were synthesized by enzymatic and polymer-assisted homogeneous co-precipitation methods. Resultant particle size is about 30-40 nm with narrow size distribution whereas the particle size is smaller than those acquired by conventional homogeneous and alkali precipitation methods. The particles shows bright green (550 nm) and red (660 nm) upconversion (UC) as well as near infrared (NIR) fluorescence (1550 nm) under 980 nm excitation. Bioimaging of M1 cells using the nanoparticles were successfully attempted. It is observed that 0.5 mg/ml of nanoparticles is the nominal concentration for bioimaging of M1 cells under the physiological conditions. The cellular uptake of nanoparticles is evidenced from bright field, UC and NIR fluorescence images of live M1 cells. Our studies suggest that lower concentration of nanoparticles is sufficient for imaging when the particles are taken in the M1 cells and also the concentration can keep the cells alive. Further it was demonstrated that under the physiological conditions, Y 2 O 3 nanoparticles emit UC and NIR fluorescence in M1 cells even after the surface modification with PEG-b-PAAc polymer. Moreover, surface modified nanoparticles shows lower toxic effect in M1 cells while compare to bare nanoparticles.

  9. Wide aperture multipole magnets of the kinematic separator COMBAS. Correcting pair of multipole magnets M3M4 (M5M6) with compensation for higher order aberrations

    International Nuclear Information System (INIS)

    Artyukh, A.G.; Gridnev, G.F.; Teterev, Yu.G.

    1999-01-01

    The high-resolving large aperture separator COMBAS has been created and commissioned. The magneto-optical structure of the separator is based on the strong focusing principle. The separator consists of eight wide aperture multipole magnets M1-M8. The magnets M1, M2, M7, M8 forming the 1 st order optics together with some higher order optical corrections and M3-M6 being dedicated to higher order corrections of the chromatic and spherical aberrations at the intermediate and exit foci of the separator. The multipole correctors M3-M6 contain the dipolar, sextupole and octupole components in their magnetic field distributions. It was the use of the rectangular dipoles M3-M6 as carriers of sextupole and octupole field components that let achieve high values of the separator angular and momentum acceptances. Measurements of the magnetic field distributions in the median planes of the pairs of magnets M3M6 (M4M5) have been performed. These measurements allowed one to analyze the magnets manufacturing quality. Based on the analysis, shimming of pole pieces of the pair of magnets M3M6 have been done. Pole surface correcting coils for the magnets M4M5 have been foreseen to compensate for small deviations (within a few percents) of the 2 nd and 3 rd order field components from the design values, which are probable due to manufacturing errors in all the magnets M1-M8. The measured magnetic field distributions are supposed to be used for particle trajectory simulations throughout the entire separator

  10. Bone turnover markers are correlated with total skeletal uptake of 99mTc-methylene diphosphonate (99mTc-MDP)

    International Nuclear Information System (INIS)

    Lenora, Janaka; Norrgren, Kristina; Thorsson, Ola; Wollmer, Per; Obrant, Karl J; Ivaska, Kaisa K

    2009-01-01

    Skeletal uptake of 99m Tc labelled methylene diphosphonate ( 99m Tc-MDP) is used for producing images of pathological bone uptake due to its incorporation to the sites of active bone turnover. This study was done to validate bone turnover markers using total skeletal uptake (TSU) of 99m Tc-MDP. 22 postmenopausal women (52–80 years) volunteered to participate. Scintigraphy was performed by injecting 520 MBq of 99m Tc-MDP and taking whole body images after 3 minutes, and 5 hours. TSU was calculated from these two images by taking into account the urinary loss and soft tissue uptake. Bone turnover markers used were bone specific alkaline phosphatase (S-Bone ALP), three different assays for serum osteocalcin (OC), tartrate resistant acid phosphatase 5b (S-TRACP5b), serum C-terminal cross-linked telopeptides of type I collagen (S-CTX-I) and three assays for urinary osteocalcin (U-OC). The median TSU of 99m Tc-MDP was 23% of the administered activity. All bone turnover markers were significantly correlated with TSU with r-values from 0.52 (p = 0.013) to 0.90 (p < 0.001). The two resorption markers had numerically higher correlations (S-TRACP5b r = 0.90, S-CTX-I r = 0.80) than the formation markers (S-Total OC r = 0.72, S-Bone ALP r = 0.66), but the difference was not statistically significant. TSU did not correlate with age, weight, body mass index or bone mineral density. In conclusion, bone turnover markers are strongly correlated with total skeletal uptake of 99m Tc-MDP. There were no significant differences in correlations for bone formation and resorption markers. This should be due to the coupling between formation and resorption

  11. Superselective Particle Embolization Enhances Efficacy of Radiofrequency Ablation: Effects of Particle Size and Sequence of Action

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Isfort, Peter; Braunschweig, Till; Westphal, Saskia; Woitok, Anna; Penzkofer, Tobias; Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas; Mahnken, Andreas H.

    2013-01-01

    Purpose. To evaluate the effects of particle size and course of action of superselective bland transcatheter arterial embolization (TAE) on the efficacy of radiofrequency ablation (RFA). Methods. Twenty pigs were divided into five groups: group 1a, 40-μm bland TAE before RFA; group 1b, 40-μm bland TAE after RFA; group 2a, 250-μm bland TAE before RFA; group 2b, 250-μm bland TAE after RFA and group 3, RFA alone. A total of 40 treatments were performed with a combined CT and angiography system. The sizes of the treated zones were measured from contrast-enhanced CTs on days 1 and 28. Animals were humanely killed, and the treated zones were examined pathologically. Results. There were no complications during procedures and follow-up. The short-axis diameter of the ablation zone in group 1a (mean ± standard deviation, 3.19 ± 0.39 cm) was significantly larger than in group 1b (2.44 ± 0.52 cm; P = 0.021), group 2a (2.51 ± 0.32 cm; P = 0.048), group 2b (2.19 ± 0.44 cm; P = 0.02), and group 3 (1.91 ± 0.55 cm; P 3 ). At histology, 40-μm microspheres were observed to occlude smaller and more distal arteries than 250-μm microspheres. Conclusion. Bland TAE is more effective before RFA than postablation embolization. The use of very small 40-μm microspheres enhances the efficacy of RFA more than the use of larger particles.

  12. Characterization of airborne particles in an open pit mining region.

    Science.gov (United States)

    Huertas, José I; Huertas, María E; Solís, Dora A

    2012-04-15

    We characterized airborne particle samples collected from 15 stations in operation since 2007 in one of the world's largest opencast coal mining regions. Using gravimetric, scanning electron microscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) analysis the samples were characterized in terms of concentration, morphology, particle size distribution (PSD), and elemental composition. All of the total suspended particulate (TSP) samples exhibited a log-normal PSD with a mean of d=5.46 ± 0.32 μm and σ(ln d)=0.61 ± 0.03. Similarly, all particles with an equivalent aerodynamic diameter less than 10 μm (PM(10)) exhibited a log-normal type distribution with a mean of d=3.6 ± 0.38 μm and σ(ln d)=0.55 ± 0.03. XPS analysis indicated that the main elements present in the particles were carbon, oxygen, potassium, and silicon with average mass concentrations of 41.5%, 34.7%, 11.6%, and 5.7% respectively. In SEM micrographs the particles appeared smooth-surfaced and irregular in shape, and tended to agglomerate. The particles were typically clay minerals, including limestone, calcite, quartz, and potassium feldspar. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk

    DEFF Research Database (Denmark)

    Saber, Anne Thoustrup; Lamson, Jacob Stuart; Jacobsen, Nicklas Raun

    2013-01-01

    We analysed the mRNA expression of Serum Amyloid A (Saa3) in lung tissue from female C57BL/6J mice exposed to different particles including nanomaterials (carbon black and titanium dioxide nanoparticles, multi- and single walled carbon nanotubes), diesel exhaust particles and airborne dust collected...... at a biofuel plant. Mice were exposed to single or multiple doses of particles by inhalation or intratracheal instillation and pulmonary mRNA expression of Saa3 was determined at different time points of up to 4 weeks after exposure. Also hepatic mRNA expression of Saa3, SAA3 protein levels in broncheoalveolar...... lavage fluid and in plasma and high density lipoprotein levels in plasma were determined in mice exposed to multiwalled carbon nanotubes. Results Pulmonary exposure to particles strongly increased Saa3 mRNA levels in lung tissue and elevated SAA3 protein levels in broncheoalveolar lavage fluid and plasma...

  14. Quantification of differences between occupancy and total monitoring periods for better assessment of exposure to particles in indoor environments

    Science.gov (United States)

    Wierzbicka, A.; Bohgard, M.; Pagels, J. H.; Dahl, A.; Löndahl, J.; Hussein, T.; Swietlicki, E.; Gudmundsson, A.

    2015-04-01

    For the assessment of personal exposure, information about the concentration of pollutants when people are in given indoor environments (occupancy time) are of prime importance. However this kind of data frequently is not reported. The aim of this study was to assess differences in particle characteristics between occupancy time and the total monitoring period, with the latter being the most frequently used averaging time in the published data. Seven indoor environments were selected in Sweden and Finland: an apartment, two houses, two schools, a supermarket, and a restaurant. They were assessed for particle number and mass concentrations and number size distributions. The measurements using a Scanning Mobility Particle Sizer and two photometers were conducted for seven consecutive days during winter in each location. Particle concentrations in residences and schools were, as expected, the highest during occupancy time. In the apartment average and median PM2.5 mass concentrations during the occupancy time were 29% and 17% higher, respectively compared to total monitoring period. In both schools, the average and medium values of the PM2.5 mass concentrations were on average higher during teaching hours compared to the total monitoring period by 16% and 32%, respectively. When it comes to particle number concentrations (PNC), in the apartment during occupancy, the average and median values were 33% and 58% higher, respectively than during the total monitoring period. In both houses and schools the average and median PNC were similar for the occupancy and total monitoring periods. General conclusions on the basis of measurements in the limited number of indoor environments cannot be drawn. However the results confirm a strong dependence on type and frequency of indoor activities that generate particles and site specificity. The results also indicate that the exclusion of data series during non-occupancy periods can improve the estimates of particle concentrations and

  15. The removal of nitric acid to atmospheric particles during a wintertime field study

    Science.gov (United States)

    Dasch, Jean Muhlbaier; Cadle, Steven H.

    A field was conducted in Warren, MI, during the 1987/88 winter period to examined the reaction of HNO 3 with particulate salt from road deicing. Samples of gases and particles were collected on a daily basis over a 4-month period. If HNO 3 reacts with particulate salt, particles of sodium nitrate will be formed and gaseous hydrochloric acid will be released. Thus, during the periods of high salt concentrations, one would expect increases in HCl and particulate NO 3- and a decrease in HNO 3. The effect was observed, although the total amount of NaNO 3 formed was not large. The increase in particulate NO 3- did not appear in the large particle mode. Although more than 40% of the salt was present as very large particles (> 8 μm), most of the surface area was associated with small particles. Since the reaction occurred at the particle surface, the NO 3- appeared in the small particle mode. Large-particle nitrate has been observed in association with sea salt and crustal particles and has also been attributed to reactions with HNO 3. These cases will be reconsidered based on the road salt results.

  16. ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid

    International Nuclear Information System (INIS)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan; Li, Lei

    2016-01-01

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO 3 -layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn 2+ ions of Zn-Al-CO 3 -LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO 3 -LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO 3 -LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO 3 groups in ANTS-anchored on the surface of Zn-Al-CO 3 -LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO 3 -LDH particles can afford a very sensitive system for the sensing FA in aqueous solution. - Highlights: • A novel fluorescent nanosensor has been developed. • The sensor exhibited highly sensitive and selective response to FA. • The fluorescence quenching was fitted to Stern–Volmer equation. • The linear response range was 1–200 μM with a limit of detection of 0.1 μM.

  17. M2e-displaying virus-like particles with associated RNA promote T helper 1 type adaptive immunity against influenza A.

    Directory of Open Access Journals (Sweden)

    Lorena Itatí Ibañez

    Full Text Available The ectodomain of influenza A matrix protein 2 (M2e is a candidate for a universal influenza A vaccine. We used recombinant Hepatitis B core antigen to produce virus-like particles presenting M2e (M2e-VLPs. We produced the VLPs with and without entrapped nucleic acids and compared their immunogenicity and protective efficacy. Immunization of BALB/c mice with M2e-VLPs containing nucleic acids induced a stronger, Th1-biased antibody response compared to particles lacking nucleic acids. The former also induced a stronger M2e-specific CD4(+ T cell response, as determined by ELISPOT. Mice vaccinated with alum-adjuvanted M2e-VLPs containing the nucleic acid-binding domain were better protected against influenza A virus challenge than mice vaccinated with similar particles lacking this domain, as deduced from the loss in body weight following challenge with X47 (H3N2 or PR/8 virus. Challenge of mice that had been immunized with M2e-VLPs with or without nucleic acids displayed significantly lower mortality, morbidity and lung virus titers than control-immunized groups. We conclude that nucleic acids present in M2e-VLPs correlate with improved immune protection.

  18. High resolution 3D confocal microscope imaging of volcanic ash particles.

    Science.gov (United States)

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM 10 s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Guideline for Sampling and Analysis of Tar and Particles in Biomass Producer Gases. Version 3.3

    Energy Technology Data Exchange (ETDEWEB)

    Neeft, J.P.A.; Knoef, H.A.M.; Zielke, U.; Sjoestroem, K.; Hasler, P.; Simell, P.A.; Dorrington, M.A.; Thomas, L.; Abatzoglou, N.; Deutch, S.; Greil, C.; Buffinga, G.J.; Brage, C.; Suomalainen, M.

    2002-07-01

    This Guideline provides a set of procedures for the measurement of organic contaminants and particles in producer gases from biomass gasifiers. The procedures are designed to cover different gasifier types (updraft or downdraft fixed bed or fluidised bed gasifiers), operating conditions (0 - 900C and 0.6-60 bars) and concentration ranges (1 mg/m{sub n}{sup 3} to 300 g/m{sub n}{sup 3}). The Guideline describes a modular sampling train, and a set of procedures, which include: planning and preparation of the sampling, sampling and post-sampling, analysis, calculations, error analysis and reporting. The modular sampling train consists of 4 modules. Module 1 is a preconditioning module for isokinetic sampling and gas cooling. Module 2 is a particle collection module including a heated filter. Module 3 is a tar collection module with a gas quench (optionally by circulating a liquid), impinger bottles and a backup adsorber. Module 4 is a volume-sampling module consisting of a pump, a rotameter, a gas flow meter and pressure and temperature indicators. The equipment and materials that are required for procuring this modular sampling train are given in the Guideline. The sampling procedures consist of a description for isokinetic sampling, a leakage test prior to sampling, the actual sampling and its duration, how the equipment is cleaned after the sampling, and how the samples are prepared and stored. Analysis of the samples is performed via three procedures. Prior to these procedures, the sample is prepared by Soxhlet extraction of the tars on the particle filter and by collection of all tars in one bulk solution. The first procedure describes the weighing of the particle filter to obtain the concentration of particles in the biomass producer gas. The bulk tar solution is used for two purposes: for determination of gravimetric tar and for analysis of individual compounds. The second procedure describes how to determine the gravimetric tar mass from the bulk solution. The

  20. Exposure assessment and heart rate variability monitoring in workers handling titanium dioxide particles: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Sahoko [Mie University, Graduate School of Regional Innovation Studies (Japan); Li, Weihua [WHO Collaborating Centre for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research (China); Omura, Seiichi [Tokyo Institute of Technology (Japan); Fujitani, Yuji [National Institute for Environmental Studies (Japan); Liu, Ying; Wang, Qiangyi [WHO Collaborating Centre for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research (China); Hiraku, Yusuke [Mie University Graduate School of Medicine, Department of Environmental and Molecular Medicine (Japan); Hisanaga, Naomi [Aichi Gakusen University, Faculty of Human Science and Design (Japan); Wakai, Kenji [Nagoya University Graduate School of Medicine, Department of Preventive Medicine (Japan); Ding, Xuncheng [WHO Collaborating Centre for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research (China); Kobayashi, Takahiro, E-mail: takakoba@airies.or.jp [Association for International Research Initiatives for Environmental Studies (Japan); Ichihara, Gaku, E-mail: gak@rs.tus.ac.jp [Tokyo University of Science, Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences (Japan)

    2016-03-15

    Titanium dioxide (TiO{sub 2}) particles are used for surface coating and in a variety of products such as inks, fibers, food, and cosmetics. The present study investigated possible respiratory and cardiovascular effects of TiO{sub 2} particles in workers exposed to this particle at high concentration in a factory in China. The diameter of particles collected on filters was measured by scanning electron microscopy. Real-time size-dependent particle number concentration was monitored in the nostrils of four workers using condensation particle counter and optical particle counter. Electrocardiogram was recorded using Holter monitors for the same four workers to record heart rate variability. Sixteen workers underwent assessment of the respiratory and cardiovascular systems. Mass-based individual exposure levels were also measured with personal cascade impactors. The primary particle diameter ranged from 46 to 562 nm. Analysis of covariance of the pooled data of the four workers showed that number of particles with a diameter <300 nm was associated positively with total number of N–N and negatively with total number of increase or decrease in successive RR intervals greater than 50 ms (RR50+/−) or percentage of RR 50+/− that were parameters of parasympathetic function. The total mass concentration was 9.58–30.8 mg/m{sup 3} during work, but significantly less before work (0.36 mg/m{sup 3}). The clear abnormality in respiratory function was not observed in sixteen workers who had worked for 10 months to 13 years in the factory. The study showed that exposure to particles with a diameter <300 nm might affect HRV in workers handling TiO{sub 2} particles. The results highlight the need to investigate the possible impact of exposure to nano-scaled particles on the autonomic nervous system.

  1. Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size

    International Nuclear Information System (INIS)

    Matarrubia, J; García-Cabañes, A; Plaza, J L; Agulló-López, F; Carrascosa, M

    2014-01-01

    The role of light modulation m and particle size on the morphology and spatial resolution of nano-particle patterns obtained by photovoltaic tweezers on Fe : LiNbO 3 has been investigated. The impact of m when using spherical as well as non-spherical (anisotropic) nano-particles deposited on the sample surface has been elucidated. Light modulation is a key parameter determining the particle profile contrast that is optimum for spherical particles and high-m values (m ∼ 1). The minimum particle periodicities reachable are also investigated obtaining periodic patterns up to 3.5 µm. This is a value at least one order of magnitude shorter than those obtained in previous reported experiments. Results are successfully explained and discussed in light of the previous reported models for photorefraction including nonlinear carrier transport and dielectrophoretic trapping. From the results, a number of rules for particle patterning optimization are derived. (paper)

  2. Coating of Si3N4 fine particles with AlN by fluidized bed-CVD; Ryudoso CVD ho ni yoru Si3N4 biryushi no AlN hifuku

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, S.; Oyama, Y. [Hokkaido National Industrial Research Institute, Sapporo (Japan); Harima, K.; Kondo, K.; Shinohara, K. [Hokkaido University, Sapporo (Japan)

    1996-03-10

    Agglomerates of 100-250 {mu}m consisting of Si3N4 primary particles of 0.76 {mu}m were made with a rotary vibrating sieve. Si3N4 fine particles were coated with AlN by gas phase reaction with AlCl3 and NH3 in some fluidized beds of the agglomerates. The cross sectional distribution of AlN in the agglomerate was measured by EPMA analysis. As a result, uniform deposition of AlN was obtained at a relatively low reaction temperature and low gas velocity. 4 refs., 3 figs.

  3. Characterizing gas-particle interactions of phthalate plasticizer emitted from vinyl flooring.

    Science.gov (United States)

    Benning, Jennifer L; Liu, Zhe; Tiwari, Andrea; Little, John C; Marr, Linsey C

    2013-03-19

    Phthalates are widely used as plasticizers, and improved ability to predict emissions of phthalates is of interest because of concern about their health effects. An experimental chamber was used to measure emissions of di-2-ethylhexyl-phthalate (DEHP) from vinyl flooring, with ammonium sulfate particles introduced to examine their influence on the emission rate and to measure the partitioning of DEHP onto airborne particles. When particles were introduced to the chamber at concentrations of 100 to 245 μg/m(3), the total (gas + particle) DEHP concentrations increased by a factor of 3 to 8; under these conditions, emissions were significantly enhanced compared to the condition without particles. The measured DEHP partition coefficient to ammonium sulfate particles with a median diameter of 45 ± 5 nm was 0.032 ± 0.003 m(3)/μg (95% confidence interval). The DEHP-particle sorption equilibration time was demonstrated to be less than 1 min. Both the partition coefficient and equilibration time agree well with predictions from the literature. This study represents the first known measurements of the particle-gas partition coefficient for DEHP. Furthermore, the results demonstrate that the emission rate of DEHP is substantially enhanced in the presence of particles. The particles rapidly sorb DEHP from the gas phase, allowing more to be emitted from the source, and also appear to enhance the convective mass-transfer coefficient itself. Airborne particles can influence SVOC fate and transport in the indoor environment, and these mechanisms must be considered in evaluating exposure and human health.

  4. Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA.

    Science.gov (United States)

    Wahba, Amy; Ryan, Michael C; Shankavaram, Uma T; Camphausen, Kevin; Tofilon, Philip J

    2018-01-02

    Alternative splicing is a critical event in the posttranscriptional regulation of gene expression. To investigate whether this process influences radiation-induced gene expression we defined the effects of ionizing radiation on the generation of alternative transcripts in total cellular mRNA (the transcriptome) and polysome-bound mRNA (the translatome) of the human glioblastoma stem-like cell line NSC11. For these studies, RNA-Seq profiles from control and irradiated cells were compared using the program SpliceSeq to identify transcripts and splice variations induced by radiation. As compared to the transcriptome (total RNA) of untreated cells, the radiation-induced transcriptome contained 92 splice events suggesting that radiation induced alternative splicing. As compared to the translatome (polysome-bound RNA) of untreated cells, the radiation-induced translatome contained 280 splice events of which only 24 were overlapping with the radiation-induced transcriptome. These results suggest that radiation not only modifies alternative splicing of precursor mRNA, but also results in the selective association of existing mRNA isoforms with polysomes. Comparison of radiation-induced alternative transcripts to radiation-induced gene expression in total RNA revealed little overlap (about 3%). In contrast, in the radiation-induced translatome, about 38% of the induced alternative transcripts corresponded to genes whose expression level was affected in the translatome. This study suggests that whereas radiation induces alternate splicing, the alternative transcripts present at the time of irradiation may play a role in the radiation-induced translational control of gene expression and thus cellular radioresponse.

  5. The carbide M{sub 7}C{sub 3} in low-temperature-carburized austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Frank, E-mail: frank.ernst@cwru.edu [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States); Li, Dingqiang; Kahn, Harold; Michal, Gary M.; Heuer, Arthur H. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States)

    2011-04-15

    Prolonged low-temperature gas-phase carburization of AISI 316L-type austenitic stainless steel can cause intragranular precipitation of the carbide M{sub 7}C{sub 3} (M: randomly dispersed Fe, Cr, Ni). Transmission electron microscopy revealed that the carbide particles have the shape of needles. They grow by a ledge-migration mechanism and in a crystallographic orientation relationship to the austenite matrix that enables highly coherent interphase interfaces. A small solubility limit of Ni in the carbide and restricted Ni diffusivity at the processing temperature leads to Ni pileup around the particles and may explain the extreme aspect ratio of the particle shape. These characteristics closely resemble what has been observed earlier for precipitates of M{sub 5}C{sub 2} under slightly different processing conditions and can be rationalized by considering the particular constraints imposed by carburization at low temperature.

  6. Simulation of VANAM M3 test using MELCOR 1.8.3

    International Nuclear Information System (INIS)

    Cho, Sung Won; Kim, Hee Dong

    1996-07-01

    A standard problem is defined as a comparison between experimental and analytical results in the field of reactor safety research. The detailed comparison of the data permits conclusions for the reliability and precision of computer simulations of postulated accidents and contributions to the development and improvement of reactor safety computer codes. Following a suggestion of the Federal Republic of Germany, the OECD-CSNI agreed to offer the experiment VANAM M3 at the Battelle Model Containment (BMC), an experiment on thermohydraulics and aerosol behavior in a containment, as International Standard Problem No. 37 (ISP 37). The general objectives of the ISP 37 are to analyse the thermohydraulics of a containment atmosphere and the distribution and settlement of aerosol after a high pressure path with depressurization by pressurizer relief valve discharge. Steam condensation at the aerosol particles(condensation in volume) is enhanced by the hygroscopic properties of the aerosol materials, even in case of limited steam supply. The originally small, low-density NaOH particles are converted to solution droplets by steam condensation, the increasing droplet mass significantly enhancing aerosol depletion by gravity settlement. As a result, higher depletion rate have been obtained for the NaOH aerosol than for the SnO 2 aerosol in M2. The MELCOR code, version 1.8.3, has been used for the simulation of this experiment, and the results are compared with the results of other calculations at GRS. The objectives of this report are to contribute to the efficient use of MELCOR code and understanding of the aerosol behavior. 12 tabs., 19 figs., 11 refs. (Author)

  7. Direct U isotope analysis in μm-sized particles by LA-MC-ICPMS

    International Nuclear Information System (INIS)

    Kappel, S.; Boulyga, S.F.; Prohaska, T.

    2009-01-01

    Full text: The knowledge of the isotopic composition of individual μm-sized hot particles is of great interest especially for strengthened nuclear safeguards in order to identify undeclared nuclear activities. We present the potential of a 'Nu Plasma HR' MC-ICPMS coupled to a New Wave 'UP 193' laser ablation (LA) system for the direct analysis of U isotope abundance ratios in individual μm-sized particles. The ability to determine 234 U/ 238 U and 235 U/ 238 U isotope ratios was successfully demonstrated in the NUSIMEP-6 interlaboratory comparison, which was organized by the IRMM (Geel, Belgium). (author)

  8. Microporous polystyrene particles for selective carbon dioxide capture.

    Science.gov (United States)

    Kaliva, Maria; Armatas, Gerasimos S; Vamvakaki, Maria

    2012-02-07

    This study presents the synthesis of microporous polystyrene particles and the potential use of these materials in CO(2) capture for biogas purification. Highly cross-linked polystyrene particles are synthesized by the emulsion copolymerization of styrene (St) and divinylbenzene (DVB) in water. The cross-link density of the polymer is varied by altering the St/DVB molar ratio. The size and the morphology of the particles are characterized by scanning and transmission electron microscopy. Following supercritical point drying with carbon dioxide or lyophilization from benzene, the polystyrene nanoparticles exhibit a significant surface area and permanent microporosity. The dried particles comprising 35 mol % St and 65 mol % DVB possess the largest surface area, ∼205 m(2)/g measured by Brunauer-Emmett-Teller and ∼185 m(2)/g measured by the Dubinin-Radushkevich method, and a total pore volume of 1.10 cm(3)/g. Low pressure measurements suggest that the microporous polystyrene particles exhibit a good separation performance of CO(2) over CH(4), with separation factors in the range of ∼7-13 (268 K, CO(2)/CH(4) = 5/95 gas mixture), which renders them attractive candidates for use in gas separation processes.

  9. Estado oxidante/antioxidante total em recém-nascidos ictéricos antes e depois da fototerapia

    OpenAIRE

    Aycicek,Ali; Erel,Ozcan

    2007-01-01

    OBJETIVO: Avaliar o efeito da fototerapia no estado oxidante e antioxidante no soro de recém-nascidos a termo com hiperbilirrubinemia. MÉTODO: Trinta e quatro recém-nascidos a termo com idades entre 3 e 10 dias submetidos a fototerapia foram avaliados. O estado antioxidante do soro foi determinado pela capacidade antioxidante total e por componentes antioxidantes individuais: vitamina C, ácido úrico, albumina, concentração de tiol e bilirrubina total. O estado oxidante foi avaliado através do...

  10. Cross-linked polyethylene does not reduce wear in total knee arthroplasty.

    Science.gov (United States)

    Lasurt-Bachs, S; Torner, P; Maculé, F; Prats, E; Menéndez-García, F; Ríos-Guillermo, J; Torrents, A

    To compare two different types of inserts: Ultra-high molecular weight polyethylene (UHMWPE) and cross-linked polyethylene with a quantitative and qualitative study of polyethylene wear particles in synovial fluid 3 years after total knee arthroplasty. A prospective, randomized, controlled cohort study with blinded evaluation was carried out on 25 patients undergoing staged bilateral total knee replacement, 6 months apart. Knee arthrocentesis was performed on 12 patients 3 years after surgery, and the polyethylene particles were analyzed. No significant differences were found in the number of particles generated by the two different types of inserts at 3 years from total knee arthroplasty (3,000×: x¯ cross-linked=849.7; x¯ UHMWPE=796.9; P=.63; 20,000×: x¯ cross-linked=66.3; x¯ UHMWPE=73.1; P=.76). Likewise, no differences in the probability of finding elongated (χ 2 =0.19; P=.66) or rounded (χ 2 =1.44; P=.23) particles in both types of inserts were observed. However, the probability of finding fibrillar particles is 3.08 times greater in UHMWPE. Cross-linked polyethylene does not significantly reduce the generation of polyethylene particles in patients with total knee arthroplasty, 3 years after the surgical procedure. Copyright © 2018 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  12. 3D Simulations of Space Charge Effects in Particle Beams

    International Nuclear Information System (INIS)

    Adelmann, A.

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density (∼ 10 9 protons/cm 3 ) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  13. Effect of M{sub 3}C on the precipitation behavior of M{sub 23}C{sub 6} phase during early stage of tempering in T91 ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chenxi; Liu, Yongchang; Zhang, Dantian; Ning, Baoqun; Yan, Zesheng [School of Material Science and Engineering, Tianjin Key Laboratory of Advanced Jointing Technology, Tianjin University, Tianjin (China)

    2011-12-15

    Tempered martensitic structure is the service condition of T91 ferritic steel after adopting the austenitizing followed by tempering. Needle-like M{sub 3}C particles are precipitated during air cooling after austenization, while the precipitation of M{sub 3}C is suppressed during the water cooling. The effect of existence of M{sub 3}C on the precipitation behaviors of M{sub 23}C{sub 6} during the early stage of tempering, as nucleation site, number density and size distribution, was investigated by means of TEM observation. The TEM results indicate that, upon the same tempering time, the size of M{sub 23}C{sub 6} is smaller and its number density is higher in the sample pre-existing M{sub 3}C than in the sample without M{sub 3}C. This can be explained that existence of M{sub 3}C results in more M{sub 23}C{sub 6} precipitates forming inside of grain, where a relatively low self-diffusion coefficient of alloy element leads to M{sub 23}C{sub 6} hardly coarsening. However, with the prolongation of tempering time, this effect becomes weaken. Microhardness results indicate that the existence of M{sub 3}C phase results in the increase of hardness after tempering due to the precipitation of finer and denser M{sub 23}C{sub 6} particles. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Identification of hydrodynamic forces around 3D surrogates using particle image velocimetry in a microfluidic channel

    Science.gov (United States)

    Afshar, Sepideh; Nath, Shubhankar; Demirci, Utkan; Hasan, Tayyaba; Scarcelli, Giuliano; Rizvi, Imran; Franco, Walfre

    2018-02-01

    Previous studies have demonstrated that flow-induced shear stress induces a motile and aggressive tumor phenotype in a microfluidic model of 3D ovarian cancer. However, the magnitude and distribution of the hydrodynamic forces that influence this biological modulation on the 3D cancer nodules are not known. We have developed a series of numerical and experimental tools to identify these forces within a 3D microchannel. In this work, we used particle image velocimetry (PIV) to find the velocity profile using fluorescent micro-spheres as surrogates and nano-particles as tracers, from which hydrodynamic forces can be derived. The fluid velocity is obtained by imaging the trajectory of a range of florescence nano-particles (500-800 μm) via confocal microscopy. Imaging was done at different horizontal planes and with a 50 μm bead as the surrogate. For an inlet current rate of 2 μl/s, the maximum velocity at the center of the channel was 51 μm/s. The velocity profile around the sphere was symmetric which is expected since the flow is dominated by viscous forces as opposed to inertial forces. The confocal PIV was successfully employed in finding the velocity profile in a microchannel with a nodule surrogate; therefore, it seems feasible to use PIV to investigate the hydrodynamic forces around 3D biological models.

  15. Motion of charged particle in Reissner-Nordström spacetime: a Jacobi-metric approach

    Science.gov (United States)

    Das, Praloy; Sk, Ripon; Ghosh, Subir

    2017-11-01

    The present work discusses motion of neutral and charged particles in Reissner-Nordström spacetime. The constant energy paths are derived in a variational principle framework using the Jacobi metric which is parameterized by conserved particle energy. Of particular interest is the case of particle charge and Reissner-Nordström black hole charge being of same sign, since this leads to a clash of opposing forces—gravitational (attractive) and Coulomb (repulsive). Our paper aims to complement the recent work of Pugliese et al. (Eur Phys J C 77:206. arXiv:1304.2940, 2017; Phys Rev D 88:024042. arXiv:1303.6250, 2013). The energy dependent Gaussian curvature (induced by the Jacobi metric) plays an important role in classifying the trajectories.

  16. A Study Of Physical Properties Of Matrix Graphite Particle's Distribution As Ras Materials On 900oC Baking Stage Temperature

    International Nuclear Information System (INIS)

    Sajekti, Kasilani Noor; Dahroni, Imam; Nawangsih, Endang

    2000-01-01

    To aim's the physical characteristic of matrix graphite materials the physical basic characteristics were necessary prepared. Investigation of calsine cokes particle size distribution effect on 900 o C temperature baking stage had been done. The calsine coke and tar pitch were crushed and sieved, to get a particle size 63; 90; 106 and 125 μm, making pellet by mixed with 33% weight of tar pitch, than grilled at 900 o C during 30 minutes. Grilled products: physical (bulk density, electrical resistivity), mechanics (hardness, compressive strength) and micro's (surface area, total and pore radius) were analyzed. From the 9 samples, 3 samples in fulfilled condition with mixed particle size of calsine cokes 63 and 106 μm and the best weight ratio between calsine coke and tar pitch were 2/3:4/3 to 1. The physical properties yield were 1.19 g/mL bulk density, the electrical resistivity 2.63 Ωcm, the hardness 5.90 kg/mm 2 , the compressive strength 1600 Newton, the density (N 2 adsorbate) 2.89 g/mL, the specific surface area 8.08 mm 2 /g,the total pore /volume 1.48% and the average pore radius 12.60 Angstrom

  17. ANTS-anchored Zn-Al-CO{sub 3}-LDH particles as fluorescent probe for sensing of folic acid

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Lei, E-mail: lilei@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China)

    2016-09-15

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO{sub 3}-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn{sup 2+} ions of Zn-Al-CO{sub 3}-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO{sub 3}-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO{sub 3} groups in ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO{sub 3}-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution. - Highlights: • A novel fluorescent nanosensor has been developed. • The sensor exhibited highly sensitive and selective response to FA. • The fluorescence quenching was fitted to Stern–Volmer equation. • The linear response range was 1–200 μM with a limit of detection of 0.1 μM.

  18. Differences in particle size distributions collected by two wood dust samplers: preliminary findings

    International Nuclear Information System (INIS)

    Campopiano, A.; Olori, A.; Basili, F.; Ramires, D.; Zakrzewska, A.M.

    2008-01-01

    The International Agency for Research on Cancer (IARC) classification of wood dust as carcinogenic to humans, and the threshold limit value (TLV) of 5 mg/m 3 weighted over an 8-hour work day as defined by Italian legislation, have raised the issue of dust risk assessments in all woodworking environments. The aim is to characterize the particle size distribution for wood particles collected by two samplers used for collecting the inhalable fraction: the IOM sampler (Institute of Occupational Medicine, Edinburgh, Scotland) and the conical sampler also known in Italy as conetto. These two sampling heads were chosen mainly because the Italian conical sampler, used in the past for total dust sampling, is the most widely used by the Italian Prevention Services and analysis laboratories in general, whereas the IOM sampler was specifically designed to collect the inhalable fraction of airborne particles. The devices were placed side by side within the worker's breathing zone. In addition, another IOM sampler not connected to the personal sampling pump was placed on the same worker, thus functioning as a passive sampler capable of collecting projectile particles normally produced during processing. A Scanning Electron Microscope (SEM) coupled with energy dispersive X-ray spectrometry (EDAX) was used to count the number of particles collected on the sampling filters. The size of each particle identified by the SEM was determined by measuring its mean diameter. The SEM analysis revealed that the average size of the largest particles collected by the conetto sampler did not exceed 150 μm, whereas the size of particles collected by the IOM sampler was up to 350 μm. Indeed, the analysis of the filters of the passive IOM samplers showed that particles with mean diameters larger than 100 μm were collected, although the calculated percentage was very low (on average, approximately 1%). This does not mean that their gravimetric contribution is negligible; indeed, the weight of

  19. Occupational exposure to 99mTc and 131I in a radiopharmacy room

    International Nuclear Information System (INIS)

    Valle, Bruna P.; Cunha, Kenya Dias da; Sa, Lidia Vasconcellos de; Souza, Wanderson; Santos, Maristela; Medeiras, Geiza; Conceicao, Cirilo S.

    2009-01-01

    Brazil has about 310 nuclear medicine services and 90% of these services use Molybdenum/Technetium generators to prepare several radiopharmaceuticals to diagnostics; about 70% use also 131 I for diagnosis and therapy. These radionuclides are associated to compounds in liquid form and during the manipulation to prepare and administer the patient dose some radioactive airborne particle can be generated. As consequence the workers can be exposed to airborne particles in the respirable fraction containing 99m Tc and 131 I. The aim of this study is develop a simple and rapid method to verify if the exhaust systems installed in the SMN are efficient in preventing the inhalation of radionuclides airborne particles by workers. In order to estimate the occupational exposure a nuclear medicine service was selected and aerosol samples were collected using personal air sampler with a cyclone. The samples were analyzed using a germanium detector system and the 99m Tc and 131 I average concentrations were obtained as 16,6 ± 14,34 mBq/m 3 and 0.72 ± 0.36 mBq/m 3 , respectively. It was not observed a correlation among air concentration and total activity processed in laboratory. These results show that the worker inhales airborne particles containing 99m Tc and 131 I. (author)

  20. Impact Strength of Composite Materials Based on EN AC-44200 Matrix Reinforced with Al2O3 Particles

    OpenAIRE

    Kurzawa A.; Kaczmar J.W.

    2017-01-01

    The paper presents the results of research of impact strength of aluminum alloy EN AC-44200 based composite materials reinforced with alumina particles. The research was carried out applying the materials produced by the pressure infiltration method of ceramic preforms made of Al2O3 particles of 3-6μm with the liquid EN AC-44200 Al alloy. The research was aimed at determining the composite resistance to dynamic loads, taking into account the volume of reinforcing particles (from 10 to 40% by ...

  1. The 10 μm amorphous silicate feature of fractal aggregates and compact particles with complex shapes

    NARCIS (Netherlands)

    Min, M.; Dominik, C.; Hovenier, J.W.; de Koter, A.; Waters, L.B.F.M.

    2006-01-01

    We model the 10 μm absorption spectra of nonspherical particles composed of amorphous silicate. We consider two classes of particles, compact ones and fractal aggregates composed of homogeneous spheres. For the compact particles we consider Gaussian random spheres with various degrees of

  2. Occurrence and gas/particle partitioning of short- and medium-chain chlorinated paraffins in the atmosphere of Fildes Peninsula of Antarctica

    Science.gov (United States)

    Ma, Xindong; Zhang, Haijun; Zhou, Hongqiang; Na, Guangshui; Wang, Zhen; Chen, Chen; Chen, Jingwen; Chen, Jiping

    2014-06-01

    Chlorinated paraffins (CPs) were measured in air samples at a remote air monitoring site established in Georgia King Island, Fildes Peninsula of Antarctica (Great Wall Station, China) to study the long-range atmospheric transport of these anthropogenic pollutants to the Antarctic. Gas- and particle-phase CPs were collected using polyurethane foam plugs (PUF) and glass fiber filters (GFF) respectively during summertime of 2012. The total atmospheric levels of SCCPs and MCCPs ranged from 9.6 to 20.8 pg m-3 (average: 14.9 pg m-3) and 3.7-5.2 pg m-3 (average: 4.5 pg m-3), respectively. C10 and C11 carbon chain homologues with Cl5 and Cl6 chlorine atoms predominated in SCCP formula groups both in gas- and particle-phase. Significant linear correlation was found between gas/particle partition coefficients (KP) and sub-cooled liquid vapor pressures (pL°) (R2 = 0.437, p chlorinated CPs and overestimate the sorption of highly chlorinated CPs.

  3. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, U.E.A. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: ursula.fittschen@chemie.uni-hamburg.de; Meirer, F. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: fmeirer@ati.ac.at; Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: streli@ati.ac.at; Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: wobi@ati.ac.at; Thiele, J. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: Julian.Thiele@gmx.de; Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany)], E-mail: falkenbe@mail.desy.de; Pepponi, G. [ITC-irst, Via Sommarive 18, 38050 Povo (Trento) (Italy)], E-mail: pepponi@itc.it

    2008-12-15

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 {mu}m, 8.0-2.0 {mu}m, 2.0-0.13 {mu}m 0.13-0.015 {mu}m (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 {mu}m, 1-2 {mu}m, 2-4 {mu}m, 4-8 {mu}m, 8-16 {mu}m. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in

  4. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    International Nuclear Information System (INIS)

    Fittschen, U.E.A.; Meirer, F.; Streli, C.; Wobrauschek, P.; Thiele, J.; Falkenberg, G.; Pepponi, G.

    2008-01-01

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 μm, 8.0-2.0 μm, 2.0-0.13 μm 0.13-0.015 μm (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 μm, 1-2 μm, 2-4 μm, 4-8 μm, 8-16 μm. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in all particle size fractions

  5. Aerosols from biomass combustion. Particle formation, relevance on air quality, and measures for particle reduction

    International Nuclear Information System (INIS)

    Nussbaumer, Thomas

    2005-01-01

    Biomass combustion is a relevant source of particle emissions. In Switzerland, wood combustion contributes with 2% to the energy supply but with more than 4% to Particulate Matter smaller 10 microns (PM 10) in the ambient air. In areas with high density of residential wood heating (e.g. in the south of Chile), wood particles are the dominant source of PM 10 resulting in heavy local smog situations. Since combustion particles are regarded as health relevant and since immission limit values on PM 10 are widely exceeded, measures for particle reduction from biomass combustion are of high priority. With respect to aerosols from biomass combustion, two sources of particles are distinguished: 1. an incomplete combustion can lead to soot and organic matter contained in the particles, 2. ash constituents in the fuel lead to the formation of inorganic fly ash particles mainly consisting of salts such as chlorides and oxides. The theory of aerosol formation from fuel constituents is described and two hypotheses to reduce inorganic particles from biomass combustion are proposed: 1. a reduced oxygen content in the solid fuel conversion zone (glow bed in a fixed bed combustion) is assumed to reduce the particle mass concentration due to three mechanisms: a) reduced oxidation of fuel constituents to compounds with higher volatility, b) reduced local temperature for solid fuel conversion, c) a reduced entrainmed of fuel constituents 2. a reduced total excess air can reduce the particle number due to enhanced coagulation. The proposed low-particle concept has been implemented for an automatic furnace for wood pellets in the size range from 100 kW to 500 kW. Furthermore, the furnace design was optimised to enable a part load operation without increased emissions of carbon monoxide (CO) and particles. In a 100 kW prototype furnace the low-particle conditions resulted in particle emissions between 6 mg/m n 3 to 11 mg/m n 3 at 13 vol.-% O2 and CO emissions below 70 mg/m n 3 in the

  6. 3D imaging and characterisation of strengthening particles in inconel 718 using FIB tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kruk, Adam; Gruszczynski, Adam; Czyrska-Filemonowicz, Aleksandra [AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland)

    2011-07-01

    The Inconel 718 is a commercial nickel-base superalloy, widely used for critical pieces in turbine engines. Its microstructure consists of the {gamma} matrix and strengthening coherent nanoparticles {gamma}' and {gamma}''. In the present work FIB tomography technique was used for imaging and characterisation of strengthening particles. FIB tomography is based on a serial sectioning procedure using a FIB/SEM dual beam workstation. Repeated removal of layers as thin as several nm for some hundred times allows to investigate at total a volume of some {mu}m3 with a voxel size as 2.5 nm x 2.5 nm x 2.5 nm. 3D mapping of nanoparticles with high Z-resolution by serial FIB slicing (in a distance of about 2.5 nm) and SEM imaging was performed. Ga ion beam at 30 kV was used to perform a precise in-situ milling. The SEM images at accelerating voltage 1.5 kV were taken with using ESB detector. The real 3D-data of precipitates obtained by FIB tomography, open a new possibility for microstructure analysis of materials for industrial applications.

  7. Appearance of newly formed mRNA and rRNA as ribonucleoprotein-particles in the cytoplasmic subribosomal fraction of pea embryos

    International Nuclear Information System (INIS)

    Takahashi, Noribumi; Takaiwa, Fumio; Fukuei, Keisuke; Sakamaki, Tadashi; Tanifuji, Shigeyuki

    1977-01-01

    Incorporation studies with 3 H-uridine or 3 H-adenosine showed that germinating pea embryos synthesize all types of poly A(+) RNA, rRNA and 4-5S RNA at the early stage of germination. After the pulse labeling for 30 min, only heterodisperse RNA and 4-5S RNA appeared in the cytoplasm as labeled RNA species. At this time the radioactivity was associated with cytoplasmic structures heavier than 80S and RNP particles of 68-70S, 52-55S, 36-38S and 20-22S which are presumed to be free mRNP particles in plants. When the pulse-labeled embryos were incubated for a further 60 min in an isotope-free medium, the labeled 17S and 25S rRNA emerged in the cytoplasm, together with labeled heterodisperse and 4-5S RNAs. More radioactivity accumulated in the regions of the polysome, 62-65S and 38-42S particles. The results of analysis of RNAs extracted from the whole cytoplasm, polysome or subribosomal fractions indicated that small subunits of newly formed ribosomes appear more rapidly in the cytoplasm than new large subunits, which accumulate for a while as free particles in the cytoplasm than are incorporated into polysomes. The actinomycin treatment which caused preferential inhibition of rRNA synthesis reduced the accumulation of free, newly formed ribosome subunits and partially permitted detection of the presumed mRNP particles in the subribosomal region even after the chase treatment. (auth.)

  8. Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures

    International Nuclear Information System (INIS)

    Zheng, Kezhi; Liu, Zhenyu; Liu, Ye; Song, Weiye; Qin, Weiping

    2013-01-01

    Spherical SiO 2 particles with different sizes (30, 80, 120, and 180 nm) have been coated with Gd 2 O 3 :Yb 3+ /Er 3+ layers by a heterogeneous precipitation method, leading to the formation of core-shell structural Gd 2 O 3 :Yb 3+ /Er 3+ @SiO 2 particles. The samples were characterized by using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, upconversion (UC) emission spectra, and fluorescent dynamical analysis. The obtained core-shell particles have perfect spherical shape with narrow size distribution. Under the excitation of 980 nm diode laser, the core-shell samples showed size-dependent upconversion luminescence (UCL) properties. The inner SiO 2 cores in core-shell samples were proved to have limited effect on the total UCL intensities of Er 3+ ions. The UCL intensities of core-shell particles were demonstrated much higher than the values obtained in pure Gd 2 O 3 :Yb 3+ /Er 3+ with the same phosphor volume. The dependence of the specific area of a UCL shell on the size of its inner SiO 2 particle was calculated and analyzed for the first time. It was confirmed that the surface effect came from the outer surfaces of emitting shells is dominant in influencing the UCL property in the core-shell samples. Three-photon UC processes for the green emissions were observed in the samples with small sizes of SiO 2 cores. The results of dynamical analysis illustrated that more nonradiative relaxation occurred in the core-shell samples with smaller SiO 2 core sizes

  9. Comparison of Model Systems (M+n·[CrX63−] and M3CrX6 + 18MX Based on Quantum-Chemical Calculations (X: F, Cl

    Directory of Open Access Journals (Sweden)

    Vyacheslav Kremenetsky

    2016-01-01

    Full Text Available On the basis of quantum-chemical calculations the most stable particle compositions are estimated in such model systems as (M+n·[CrCl6] and M3CrCl6 + 18MCl (M = Na, K, and Cs. In all systems these particles are positively charged. For systems (M+n·[CrCl6], (M+n·[CrF6], M3CrF6 + 18MCl, M3CrF6 + 18MF, and M3CrCl6 + 18MCl (M = Na, K, and Cs a number of energy parameters characterizing the state of the system before and after electron transfer are calculated. The results indicate the possibility of electron transfer from the cathode to the melt system, which is in the initial state. However, this possibility cannot be realized in systems where LUMOs (lowest unoccupied molecular orbitals have purely ligand character. In this case, the preliminary deformation of a cationic shell of electroactive species is required; it transforms the initial system to the transition state. However, in all considered systems the search of the transition state should be carried close to the initial state Pi. This greatly simplifies a problem and transforms it from a purely theoretical sphere to the field of practical tasks that do not require exceptional cost of computer time.

  10. Investigating the dynamics of Vulcanian explosions: scaled laboratory experiments of particle-laden puffs

    Science.gov (United States)

    Clarke, A. B.; Phillips, J. C.; Chojnicki, K. N.

    2006-12-01

    Scaled laboratory experiments analogous to Vulcanian eruptions were conducted, producing particle-laden jets and plumes. A reservoir of a mixture of water and isopropanol plus solid particles (kaolin or Ballotini glass spheres) was pressurized and suddenly released via a rapid-release valve into a 2 ft by 2 ft by 4 ft plexiglass tank containing fresh water. The duration of the subsequent flow was limited by the potential energy associated with the pressurized fluid rather than by the available volume of fluid or by the duration of the valve opening. Particle size (4 &45 microns) and concentration (0 to 10 vol%) were varied in order to change particle settling characteristics and control bulk mixture density (960 kg m-3 to 1060 kg m-3). Water and isopropanol in varying proportions created a light interstitial fluid to simulate buoyant volcanic gases in erupted mixtures. Variations in reservoir pressure and vent size allowed exploration of controlling source parameters; total momentum injected (M) and total buoyancy injected (B). Mass flux at the vent was measured by an in-line Coriolis flowmeter sampling at 100 Hz, allowing rapidly varying M and B to be recorded. The velocity-height relationship of each experiment was measured from high-speed video footage, permitting classification into the following groups: long continuously accelerating jets; accelerating jets transitioning to plumes; and collapsing fountains which generated density currents. Field-documented Vulcanian explosions exhibit this same wide range of behavior, demonstrating that regimes obtained in the laboratory are relevant to natural systems. A generalized framework of results was defined as follows. Increasing M/B for small particles (4 microns; settling time>>experiment duration) pushes the system from collapsing fountains to low-energy plumes to high-energy, continuously accelerating jets; increasing M/B for large particles (45 microns; settling time non-dimensional groups were combined to

  11. Dragon kings of the deep sea: marine particles deviate markedly from the common number-size spectrum.

    Science.gov (United States)

    Bochdansky, Alexander B; Clouse, Melissa A; Herndl, Gerhard J

    2016-03-04

    Particles are the major vector for the transfer of carbon from the upper ocean to the deep sea. However, little is known about their abundance, composition and role at depths greater than 2000 m. We present the first number-size spectrum of bathy- and abyssopelagic particles to a depth of 5500 m based on surveys performed with a custom-made holographic microscope. The particle spectrum was unusual in that particles of several millimetres in length were almost 100 times more abundant than expected from the number spectrum of smaller particles, thereby meeting the definition of "dragon kings." Marine snow particles overwhelmingly contributed to the total particle volume (95-98%). Approximately 1/3 of the particles in the dragon-king size domain contained large amounts of transparent exopolymers with little ballast, which likely either make them neutrally buoyant or cause them to sink slowly. Dragon-king particles thus provide large volumes of unique microenvironments that may help to explain discrepancies in deep-sea biogeochemical budgets.

  12. Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08

    Directory of Open Access Journals (Sweden)

    J. A. Huffman

    2012-12-01

    Full Text Available As a part of the AMAZE-08 campaign during the wet season in the rainforest of central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS was operated for continuous measurements of fluorescent biological aerosol particles (FBAP. In the coarse particle size range (> 1 μm the campaign median and quartiles of FBAP number and mass concentration were 7.3 × 104 m3 (4.0–13.2 × 104 m3 and 0.72 μg m3 (0.42–1.19 μg m3, respectively, accounting for 24% (11–41% of total particle number and 47% (25–65% of total particle mass. During the five-week campaign in February–March 2008 the concentration of coarse-mode Saharan dust particles was highly variable. In contrast, FBAP concentrations remained fairly constant over the course of weeks and had a consistent daily pattern, peaking several hours before sunrise, suggesting observed FBAP was dominated by nocturnal spore emission. This conclusion was supported by the consistent FBAP number size distribution peaking at 2.3 μm, also attributed to fungal spores and mixed biological particles by scanning electron microscopy (SEM, light microscopy and biochemical staining. A second primary biological aerosol particle (PBAP mode between 0.5 and 1.0 μm was also observed by SEM, but exhibited little fluorescence and no true fungal staining. This mode may have consisted of single bacterial cells, brochosomes, various fragments of biological material, and small Chromalveolata (Chromista spores. Particles liquid-coated with mixed organic-inorganic material constituted a large fraction of observations, and these coatings contained salts likely from primary biological origin. We provide key support for the suggestion that real-time laser-induce fluorescence (LIF techniques using 355 nm excitation provide size-resolved concentrations of FBAP as a lower limit for the atmospheric abundance of biological particles in a pristine

  13. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    International Nuclear Information System (INIS)

    Gong Chunye; Liu Jie; Chi Lihua; Huang Haowei; Fang Jingyue; Gong Zhenghu

    2011-01-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates (S n ) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  14. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    Science.gov (United States)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu

    2011-07-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  15. Summer-winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting.

    Science.gov (United States)

    Wang, Thanh; Han, Shanlong; Yuan, Bo; Zeng, Lixi; Li, Yingming; Wang, Yawei; Jiang, Guibin

    2012-12-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9-33.0 ng/m(3) during wintertime. Significantly higher levels were found during the summer (range 112-332 ng/m(3)). The average fraction of total SCCPs in the particle phase (ϕ) was 0.67 during wintertime but decreased significantly during the summer (ϕ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol-air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge-Pankow adsorption and K(oa)-based absorption models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Production of ultrafine particles of high-temperature tetragonal WO3 by dc arc discharge in Ar-O2 gases

    International Nuclear Information System (INIS)

    Guo Yumei; Murata, Norihiko; Ono, Kazuya; Okazaki, Tsugio

    2005-01-01

    Ultrafine particles of WO 3 are successfully produced by dc arc discharge in Ar-O 2 gases. Particle sizes are distributed from 10 nm to 1 μm depending on production conditions: gas pressure, collection position and discharge current. Observations of the cooled particles by electron microscopy indicate that the WO 3 particles are tetragonal, a phase that is usually only stable above 725 deg. C. The octahedral crystals are bounded by eight {1 0 1} faces and occasionally truncated by {1 0 0} and/or {0 0 1} faces. This method of producing WO 3 by dc arc discharge therefore affords a high-temperature phase that is preserved upon cooling to room temperature

  17. 3D Lagrangian Model of Particle Saltation in an Open Channel Flow with Emphasis on Particle-Particle Collisions

    Science.gov (United States)

    Moreno, P. A.; Bombardelli, F. A.

    2012-12-01

    -dimensional (HR3D) velocity field can be used as a representation of near bed open-channel flows. Both approaches are used to simulate saltating sediment particles using a 3D Lagrangian particle tracking model. This tracking model is composed by generalized sub-models for particle collision with the bed, bed-roughness representation, and particle free-flight between wall collisions. We analyze the hydrodynamic forces (drag, virtual mass, lift, Basset, Magnus and buoyancy) involved in particle saltation. For validation purposes, we compare our simulation results with experimental data from Niño and García (1998) and Lee and Hsu (1994). Finally we use the logarithmic velocity profile to analyze the importance of particle-particle collision using a sub-model based on the conservation of linear and angular momentum during collision. We analyze simulation results with different particle sizes within the sand range, different flow intensities, and different particle concentrations, in terms of particle diffusion and changes in velocity, rotation and trajectory during collision. To identify the importance of particle-particle collisions, simulations with and without collision among particles were carried out.

  18. Automatic particle-size analysis of HTGR recycle fuel

    International Nuclear Information System (INIS)

    Mack, J.E.; Pechin, W.H.

    1977-09-01

    An automatic particle-size analyzer was designed, fabricated, tested, and put into operation measuring and counting HTGR recycle fuel particles. The particle-size analyzer can be used for particles in all stages of fabrication, from the loaded, uncarbonized weak acid resin up to fully-coated Biso or Triso particles. The device handles microspheres in the range of 300 to 1000 μm at rates up to 2000 per minute, measuring the diameter of each particle to determine the size distribution of the sample, and simultaneously determining the total number of particles. 10 figures

  19. On the Measurements of Particles Smaller than 20 μM by Global Rainbow Refractometry

    Science.gov (United States)

    Saengkaew, S.; Bonin, D.; Gréh, G.

    2007-06-01

    The measurement of the thermo-chemical characteristics of particles under evaporation or cooling is a challenge. Among others techniques, Global Rainbow Refractometry (GRR) is potentially applicable to a large variety of realistic media. This paper is focused on refractive index measurements of particles smaller than 20 μm which are especially important to extract droplet temperature in spray combustion.

  20. Ageing kinetics and strength of airborne-particle abraded 3Y-TZP ceramics.

    Science.gov (United States)

    Cotič, Jasna; Jevnikar, Peter; Kocjan, Andraž

    2017-07-01

    The combined effects of alumina airborne-particle abrasion and prolonged in vitro ageing on the flexural strength of 3Y-TZP ceramic have been studied. The aim was to identify the different effects on the surface and subsurface regions that govern the performance of this popular bioceramic known for its susceptibility to low-temperature degradation (LTD). As-sintered or airborne-particle abraded 3Y-TZP discs were subjected to ageing at 134°C for up to 480h. Biaxial flexural strength was measured and the relative amount of monoclinic phase determined using X-ray diffraction. The transformed zone depth (TZD) was observed on cross-sections with scanning electron microscopy coupled with a focused ion beam. Segmented linear regression was used to analyze the flexural strength and TZD as functions of the ageing time. A two-step linear ageing kinetics was detected in airborne-particle abraded specimens, reflecting the different microstructures through which the LTD proceeds into the bulk. A 10μm thick altered zone under the abraded surface was involved in both the surface strengthening and the increased ageing resistance. When the zone was annihilated by the LTD, the strength of the ceramic specimens and the speed of LTD returned to the values measured before abrasion. Even at prolonged ageing times, the strength of abraded groups was not lower than that of as-sintered groups. Both the ageing kinetics and the flexural strength were prominently affected by airborne-particle abrasion, which altered the subsurface microstructure and phase composition. Airborne-particle abrasion was not harmful to the 3Y-TZP ceramics' stability. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Influence of suspended particles on the emission of organophosphate flame retardant from insulation boards.

    Science.gov (United States)

    Lazarov, Borislav; Swinnen, Rudi; Poelmans, David; Spruyt, Maarten; Goelen, Eddy; Covaci, Adrian; Stranger, Marianne

    2016-09-01

    The influence of the presence of the so-called seed particles on the emission rate of Tris (1-chloroisopropyl) phosphate (TCIPP) from polyisocyanurate (PIR) insulation boards was investigated in this study. Two Field and Laboratory Emission Test cells (FLEC) were placed on the surface of the same PIR board and respectively supplied with clean air (reference FLEC) and air containing laboratory-generated soot particles (test FLEC). The behavior of the area-specific emission rates (SER A ) over a time period of 10 days was studied by measuring the total (gas + particles) concentrations of TCIPP at the exhaust of each FLEC. The estimated SER A of TCIPP from the PIR board at the quasi-static equilibrium were found to be 0.82 μg m(-2) h(-1) in the absence of seed particles, while the addition of soot particles led to SER A of 2.16 μg m(-2) h(-1). This indicates an increase of the SER A of TCIPP from the PIR board with a factor of 3 in the presence of soot particles. The TCIPP partition coefficient to soot particles at the quasi-static equilibrium was 0.022 ± 0.012 m(3) μg(-1). In the next step, the influence of real-life particles on TCIPP emission rates was investigated by supplying the test FLEC with air from a professional kitchen where mainly frying and baking activities took place. Similar to the reference FLEC outcomes, SER A was also found to increase in this real-life experiment over a time period of 20 days by a factor 3 in the presence of particles generated during cooking activities. The median value of estimated particle-gas coefficient for this test was 0.062 ± 0.037 m(3) μg(-1).

  2. Synthesis of flower-like BaTiO3/Fe3O4 hierarchically structured particles and their electrorheological and magnetic properties.

    Science.gov (United States)

    Wang, Baoxiang; Yin, Yichao; Liu, Chenjie; Yu, Shoushan; Chen, Kezheng

    2013-07-21

    Flower-like BaTiO3/Fe3O4 hierarchically structured particles composed of nano-scale structures on micro-scale materials were synthesized by a simple solvothermal approach and characterized by the means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), magnetic testing and rotary viscometer. The influences on the morphology and structure of solvothermal times, type and amount of surfactant, EG : H2O ratio, etc. were studied. Magnetic testing results show that the samples have strong magnetism and they exhibit superparamagnetic behavior, as evidenced by no coercivity and the remanence at room temperature, due to their very small sizes, observed on the M-H loop. The saturation magnetization (M(s)) value can achieve 18.3 emu g(-1). The electrorheological (ER) effect was investigated using a suspension of the flower-like BaTiO3/Fe3O4 hierarchically structured particles dispersed in silicone oil. We can observe a slight shear-thinning behavior of shear viscosity at a low shear rate region even at zero applied electric field and a Newtonian fluid behavior at high shear rate regions.

  3. 234Th-based measurements of particle flux in surface water of the Bransfield Strait, western Antarctica

    International Nuclear Information System (INIS)

    Gulin, S.B.; National Academy of Sciences of Ukraine, Sevastopol, Autonomous Republic of Crimea

    2014-01-01

    Measurements of particulate and dissolved 234 Th were carried out in March 2002 in the Bransfield Strait located between the Antarctic Peninsula and the South Shetland Islands. The 234 Th/ 238 U disequilibrium found in the upper water column has allowed evaluation of downward particle fluxes across a frontal zone, which divides water masses coming from the Bellingshausen Sea and the Weddell Sea. The highest particle flux has been found in this mixing zone, where it was 3-5 times greater than in the adjacent waters. Total mass fluxes in the upper 150-m water column were estimated as about 2.2 g m -2 day -1 in the eastern part of the Strait and 3.1 g m -2 day -1 in the western area. (author)

  4. Charged particle scintillation mass spectrometer

    International Nuclear Information System (INIS)

    Baranov, P.S.; Zhuravlev, E.E.; Nafikov, A.A.; Osadchi , A.I.; Raevskij, V.G.; Smirnov, P.A.; Cherepnya, S.N.; Yanulis, Yu.P.

    1982-01-01

    A scintillation mass-spectrometer for charged particle identification by the measured values of time-of-flight and energy operating on line with the D-116 computer is described. Original time detectors with 100x100x2 mm 3 and 200x2 mm 2 scintillators located on the 1- or 2 m path length are used in the spectrometer. The 200x200x200 mm 3 scintillation unit is used as a E-counter. Time-of-flight spectra of the detected particles on the 2 m path length obtained in spectrometer test in the beam of charged particles escaping from the carbon target at the angle of 130 deg under 1.2 GeV bremsstrahlung beam of the ''Pakhra'' PIAS synchrotron are presented. Proton and deuteron energy spectra as well as mass spectrum of all the particles detected by the spectrometer are given. Mass resolution obtained on the 2 m path length for π-mesons is +-25%, for protons is +-5%, for deuterons is +-3%

  5. Semileptonic decays of pseudoscalar particles (M→M'+l+ν(l)) and short-distance behaviour of quantum chromodynamics

    International Nuclear Information System (INIS)

    Bourrely, C.; Machet, B.; Rafael, E. de.

    1980-12-01

    The form factors which govern the semileptonic decays of pseudoscalar particles (M→M'+l+ν(l)) are constrained by the knowledge of the two-point function PIsup(μv)(q) in the deep euclidean region. We derive the precise constrains from a QCD calculation of PIsup(μv) which includes perturbative contributions to two-loops as well as leading non-perturbative contributions. Applications to PIl 3 , Kl 3 and D + →antiK 0 e + νe decays are discussed

  6. Indoor emission, dispersion and exposure of total particle-bound polycyclic aromatic hydrocarbons during cooking

    Science.gov (United States)

    Gao, Jun; Jian, Yating; Cao, Changsheng; Chen, Lei; Zhang, Xu

    2015-11-01

    Cooking processes highly contribute to indoor polycyclic aromatic hydrocarbon (PAH) pollution. High molecular weight and potentially carcinogenic PAHs are generally found attached to small particles, i.e., particulate phase PAHs (PPAHs). Due to the fact that indoor particle dynamics have been clear, describing the indoor dynamics of cooking-generated PPAHs within a specific time span is possible. This paper attempted to quantify the dynamic emission rate, simultaneous spatial dispersion and individual exposure of PPAHs using a cooking source. Experiments were conducted in a real-scale kitchen chamber to elucidate the time-resolved emission and effect of edible oil temperature and mass. Numerical simulations based on indoor particle dynamics were performed to obtain the spatial dispersion and individual inhalation intake of PPAHs under different emission and ventilation conditions. The present work examined the preheating cooking stage, at which edible oil is heated up to beyond its smoke point. The dynamic emission rate peak point occurred much earlier than the oil heating temperature. The total PPAH emission ranged from 2258 to 6578 ng upon heating 40-85 g of edible oil. The overall intake fraction by an individual within a period of 10 min, including 3 min for heating and 7 min for natural cooling, was generally ∼1/10,000. An important outcome of this work was that the overall intake fraction could be represented by multiplying the range hood escape efficiency by the inhalation-to-ventilation rate ratio, which would be no greater than the same ratio. The methodology and results of this work were extendible for the number-based assessment of PPAHs. This work is expected to help us understand the health risks due to inhalation exposure to cooking-generated PPAHs in the kitchen.

  7. Abundant plankton-sized microplastic particles in shelf waters of the northern Gulf of Mexico.

    Science.gov (United States)

    Di Mauro, Rosana; Kupchik, Matthew J; Benfield, Mark C

    2017-11-01

    Accumulation of marine debris is a global problem that affects the oceans on multiple scales. The majority of floating marine debris is composed of microplastics: plastic particles up to 5 mm in diameter. With similar sizes and appearances to natural food items, these small fragments pose potential risks to many marine organisms including zooplankton and zooplanktivores. Semi-enclosed seas are reported to have high concentrations of microplastics, however, the distribution and concentration of microplastics in one such system, the Gulf of Mexico, remains unknown. Our study documented and characterized microplastics in continental shelf waters off the Louisiana coast in the northern Gulf of Mexico, using bongo nets, neuston nets, and Niskin bottles. Additionally, we compared the size distributions of microplastics and zooplankton collected using the nets. Plastics were manually sorted from the samples, documented, and measured using digital microscopy. Confirmation of putative plastics was carried out by hydrofluoric acid digestion and a subsample was analyzed using FTIR microscopy. Estimated concentrations of microplastics collected on the inner continental shelf during this study are among the highest reported globally. Total microplastic concentrations ranged from 4.8 to 8.2 particles m -3 and 5.0-18.4 particles m -3 for the bongo and neuston samples, respectively. Niskin bottles collected smaller plastic particles than the nets and indicated total microplastic concentrations (primarily fibers) from 6.0E4 - 15.7E4 particles m -3 . Microplastic concentrations were greater than the abundances of all but four of the five most abundant taxa from bongo nets and were not statistically different from the abundances of any of the most numerous taxa from neuston nets. Sizes of microplastics and zooplankton partially or completely overlapped, suggesting the potential for confusion with natural prey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Structure and phase transition of BiFeO3 cubic micro-particles prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Zhou, Jian-Ping; Yang, Ruo-Lin; Xiao, Rui-Juan; Chen, Xiao-Ming; Deng, Chao-Yong

    2012-01-01

    Graphical abstract: Bismuth ferrite (BiFeO 3 ) cubic micro-particles with smooth surfaces were synthesized. BiFeO 3 has a hexagonal perovskite structure with a space group R3c below 370 °C and rhombohedral perovskite structure with a space group R3m below 755 °C, undergoes a phase transition in the temperature range of 755–817 °C to a cubic structure, then decompose to liquid and Fe 2 O 3 above 939 °C. Highlights: ► BiFeO 3 micro-particles with smooth surface were synthesized by hydrothermal method. ► BiFeO 3 enjoys hexagonal structure with well element ratio and chemical valence. ► BiFeO 3 transition from rhombohedral phase to cubic phase lasts 60 °C. -- Abstract: Single-phase bismuth ferrite (BiFeO 3 ) powders were synthesized with a hydrothermal method by controlling the experimental conditions carefully. The powder structure, morphology and composition were characterized by using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscope, Raman measurement and X-ray photoelectron spectroscopy. The particles change from irregular agglomerations to regular cubes with increasing KOH concentration. The large BiFeO 3 cubic particles enjoy much smooth surfaces with well-matched element ratio (Bi:Fe:O = 1:1:3) and chemical valence (Bi 3+ , Fe 3+ and O 2− ). The high temperature XRD and differential scanning calorimetry show that BiFeO 3 powders have a hexagonal perovskite structure with a space group R3c below 370 °C and a rhombohedral structure with a space group R3m below 755 °C. BiFeO 3 undergoes a phase transition in the temperature range of 755–817 °C from rhombohedral structure to a cubic phase, then decomposes to liquid and Fe 2 O 3 above 939 °C.

  9. Health effects assessment of exposure to particles from wood smoke

    DEFF Research Database (Denmark)

    Nielsen, Elsa

    2007-01-01

    distribution of wood smoke particles, essentially all will be contained in the PM2.5 fraction. In Denmark, recent results indicate that about 10,000 tonnes PM2.5 per year, about half of the total particle emission in Denmark, come from residential wood combustion. Based on a few measurement campaigns conducted...... in Denmark in selected residential areas with different kinds of heating, the annual average PM2.5 exposure from wood smoke can be estimated at 0.4–2 mg/m3 as a preliminary estimate for the whole Danish population. Epidemiological studies evaluating adverse health effects from ambient air pollution...

  10. Dependence of the quasipotential on the total energy of a two-particle system

    International Nuclear Information System (INIS)

    Kapshai, V.N.; Savrin, V.I.; Skachkov, N.B.

    1987-01-01

    For a system of two relativistic particles described in the Logunov-Tavkhelidze one-time approach the dependence of the quasipotential of one-boson exchange on the total energy of the system is calculated. It is shown that despite the nonlocal form of the obtained quasipotential the three-dimensional equations for the waves function can be reduced by a partial expansion to one-dimensional equations. The influence of the energy dependence of the quasipotential on its behavior in the coordinate representation is discussed

  11. Fractional activation of accumulation-mode particles in warm continental stratiform clouds

    International Nuclear Information System (INIS)

    Gillani, N.V.; Daum, P.H.; Schwartz, S.E.; Leaitch, W.R.; Strapp, J.W.; Isaac, G.A.

    1991-07-01

    The degree of activation of accumulation-mode particles (AMP) in clouds has been studied using continuous (1 second average) aircraft measurements of the number concentrations of cloud droplets (N cd , 2 to 35 μm diameter) and of unactivated AMP (N amp , 0.17 to 2.07 μm diameter) in cloud interstitial air. The magnitude and spatial variation of the activated fraction (F) of all measured particles (defined as F triple-bond N cd /N tot , where N tot = N cd + N amp ) are investigated, based on measurements made during ten aircraft flights in non-precipitating warm continental stratiform clouds near Syracuse NY in the fall of 1984. Based on instantaneous observations throughout the clouds, the spatial distribution of F was found to be quite nonuniform. In general, F was low in cloud edges and where total particle loading was high and/or cloud convective activity was low. In the interior of clouds, the value of F exceeded 0.9 for 36% of the data, but was below 0.6 for 28%. Factors influencing F the most were the total particle loading (N tot ) and the thermal stability of the cloud layer. The dependence of F on N tot in cloud interior was characterized by two distinct regimes. For N tot -3 , F was generally close to unity and relatively insensitive to N tot . For N tot > 800 cm -3 , F tended to decrease with increasing N tot . This decrease was greatest in a stable stratus deck embedded in a warm moist airmass. The results suggest that, in warm continental stratiform clouds, the process of particle activation becomes nonlinear and self-limiting at high particle loading. The degree of this nonlinearity depends on cloud convective activity (thermal instability)

  12. Effect of in-situ formed Al3Ti particles on the microstructure and mechanical properties of 6061 Al alloy

    Science.gov (United States)

    Gupta, Rahul; Chaudhari, G. P.; Daniel, B. S. S.

    2018-03-01

    In this study, in situ Titanium-tri-aluminide (Al3Ti) particles reinforced Al 6061 alloy matrix composites were fabricated by the reaction of potassium hexafluorotitanate (K2TiF6) inorganic salt with molten Al 6061 alloy via liquid metallurgy route. The development of in-situ Al3Ti particles and their effects on the mechanical properties such as yield strength (YS), ductility, ultimate tensile strength (UTS) and hardness, and microstructure of Al 6061 alloy were studied. It was observed from the results that in-situ formed Al3Ti particles were blocky in morphology whose average size was around 2.6 ± 1.1 μm. Microstructure studies showed that grain size of Al matrix was reduced due to the nucleating effect of Al3Ti particles. It was observed from the mechanical properties analysis that when the volume fraction of Al3Ti particles was increased, the hardness, UTS and YS of the composites were also increased as compared to that of Al 6061 alloy. An improvement in ductility was observed with the dispersion of Al3Ti particles in base alloy which is contrary to many other composites.

  13. Single-particle characterization of summertime Antarctic aerosols collected at King George Island using quantitative energy-dispersive electron probe X-ray microanalysis and attenuated total reflection Fourier transform-infrared imaging techniques.

    Science.gov (United States)

    Maskey, Shila; Geng, Hong; Song, Young-Chul; Hwang, Heejin; Yoon, Young-Jun; Ahn, Kang-Ho; Ro, Chul-Un

    2011-08-01

    Single-particle characterization of Antarctic aerosols was performed to investigate the impact of marine biogenic sulfur species on the chemical compositions of sea-salt aerosols in the polar atmosphere. Quantitative energy-dispersive electron probe X-ray microanalysis was used to characterize 2900 individual particles in 10 sets of aerosol samples collected between March 12 and 16, 2009 at King Sejong Station, a Korean scientific research station located at King George Island in the Antarctic. Two size modes of particles, i.e., PM(2.5-10) and PM(1.0-2.5), were analyzed, and four types of particles were identified, with sulfur-containing sea-salt particles being the most abundant, followed by genuine sea-salt particles without sulfur species, iron-containing particles, and other species including CaCO(3)/CaMg(CO(3))(2), organic carbon, and aluminosilicates. When a sulfur-containing sea-salt particle showed an atomic concentration ratio of sulfur to sodium of >0.083 (seawater ratio), it is regarded as containing nonsea-salt sulfate (nss-SO(4)(2-)) and/or methanesulfonate (CH(3)SO(3)(-)), which was supported by attenuated total reflection Fourier transform-infrared imaging measurements. These internal mixture particles of sea-salt/CH(3)SO(3)(-)/SO(4)(2-) were very frequently encountered. As nitrate-containing particles were not encountered, and the air-masses for all of the samples originated from the Pacific Ocean (based on 5-day backward trajectories), the oxidation of dimethylsulfide (DMS) emitted from phytoplanktons in the ocean is most likely to be responsible for the formation of the mixed sea-salt/CH(3)SO(3)(-)/SO(4)(2-) particles.

  14. Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes

    Science.gov (United States)

    Yue, D. L.; Hu, M.; Wu, Z. J.; Guo, S.; Wen, M. T.; Nowak, A.; Wehner, B.; Wiedensohler, A.; Takegawa, N.; Kondo, Y.; Wang, X. S.; Li, Y. P.; Zeng, L. M.; Zhang, Y. H.

    2010-10-01

    In order to characterize the features of particulate pollution in the Pearl River Delta (PRD) in the summer, continuous measurements of particle number size distributions and chemical compositions were simultaneously performed at Guangzhou urban site (GZ) and Back-garden downwind regional site (BG) in July 2006. Particle number concentration from 20 nm to 10 μm at BG was (1.7±0.8)×104 cm-3, about 40% lower than that at GZ, (2.9±1.1)×104 cm-3. The total particle volume concentration at BG was 94±34 μm3 cm-3, similar to that at GZ, 96±43 μm3 cm-3. More 20-100 nm particles, significantly affected by the traffic emissions, were observed at GZ, while 100-660 nm particle number concentrations were similar at both sites as they are more regional. PM2.5 values were similar at GZ (69±43 μg m-3) and BG (69±58 μg m-3) with R2 of 0.71 for the daily average PM2.5 at these two sites, indicating the fine particulate pollution in the PRD region to be regional. Two kinds of pollution episodes, the accumulation pollution episode and the regional transport pollution episode, were observed. Fine particles over 100 nm dominated both number and volume concentrations of total particles during the late periods of these pollution episodes. Accumulation and secondary transformation are the main reasons for the nighttime accumulation pollution episode. SO42-, NO3- accounted for about 60% in 100-660 nm particle mass and PM2.5 increase. When south or southeast wind prevailed in the PRD region, regional transport of pollutants took place. Regional transport contributed about 30% to fine particulate pollution at BG during a regional transport case. Secondary transformation played an important role during regional transport, causing higher increase rates of secondary ions in PM1.0 than other species and shifting the peaks of sulfate and ammonium mass size distributions to larger sizes. SO42-, NO3-, and NH4+ accounted for about 70% and 40% of PM1.0 and PM2.5, respectively.

  15. Photocatalytic performances of BiFeO3 particles with the average size in nanometer, submicrometer, and micrometer

    International Nuclear Information System (INIS)

    Hao, Chunxue; FushengWen,; Xiang, Jianyong; Hou, Hang; Lv, Weiming; Lv, Yifei; Hu, Wentao; Liu, Zhongyuan

    2014-01-01

    Highlights: • Three different synthesis routes have been taken to successfully prepare the BiFeO 3 particles with the different morphologies and average size in 50, 500 nm, and 15 μm. • For photodegradation of dyes under visible irradiation in the presence of BiFeO 3 , the photocatalytic efficiency increases quickly with the decrease in size. • The enhanced photocatalytic efficiency of BiFeO 3 nanoparticles may attribute to more surface active catalytic-sites and shorter distances carriers have to migrate to the surface reaction sites. - Abstract: Three different synthesis routes were taken to successfully prepare the BiFeO 3 particles with the different morphologies and average size in 50, 500 nm, and 15 μm, respectively. The crystal structure was recognized to be a distorted rhombohedral one with the space group R3c. With the decrease in particle size, obvious decrease in peak intensity and redshift in peak position were observed for the Raman active bands. The narrow band gap was determined from the UV–vis absorption spectra, indicating the semiconducting nature of the BiFeO 3 . For photodegradation of dyes under visible irradiation in the presence of BiFeO 3 , the photocatalytic efficiency increased quickly with the decrease in size which may attribute to more surface active catalytic-sites and shorter distances carriers had to migrate to the surface reaction sites

  16. Effect of Particle Size and Operating Conditions on Pt3Co PEMFC Cathode Catalyst Durability

    Directory of Open Access Journals (Sweden)

    Mallika Gummalla

    2015-05-01

    Full Text Available The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC cathodes with Pt3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes with the smallest Pt3Co particle size was the highest and that of the largest Pt3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s, the relative improvement in performance of the cathode based on 8.1 nm Pt3Co over the 4.9 nm Pt3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA of the decayed membrane-electrode assembly (MEA showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.

  17. Rational Degenerations of M-Curves, Totally Positive Grassmannians and KP2-Solitons

    Science.gov (United States)

    Abenda, Simonetta; Grinevich, Petr G.

    2018-03-01

    We establish a new connection between the theory of totally positive Grassmannians and the theory of M-curves using the finite-gap theory for solitons of the KP equation. Here and in the following KP equation denotes the Kadomtsev-Petviashvili 2 equation [see (1)], which is the first flow from the KP hierarchy. We also assume that all KP times are real. We associate to any point of the real totally positive Grassmannian Gr^{tp} (N,M) a reducible curve which is a rational degeneration of an M-curve of minimal genus {g=N(M-N)} , and we reconstruct the real algebraic-geometric data á la Krichever for the underlying real bounded multiline KP soliton solutions. From this construction, it follows that these multiline solitons can be explicitly obtained by degenerating regular real finite-gap solutions corresponding to smooth M-curves. In our approach, we rule the addition of each new rational component to the spectral curve via an elementary Darboux transformation which corresponds to a section of a specific projection Gr^{tp} (r+1,M-N+r+1)\\mapsto Gr^{tp} (r,M-N+r).

  18. [Diagnosis and therapy of particle disease in total hip arthroplasty].

    Science.gov (United States)

    Müller, M; Wassilew, G; Perka, C

    2015-04-01

    Particle disease is caused by periarticular accumulation of attrition particles and the inflammatory reaction of the body's tissue. This process may result in osteolysis or soft tissue transformation which presents itself symptomless in the beginning and can proceed to aseptic implant loosening, fracture, implant breaking as a result of the inappropriate osseous support and to algetic and destructive soft tissue reactions as well. Attrition particles originate from tribological pairing, and the extent of the attrition or the particle concentration depend on different factors as there are the tribological pairing's material, the head size, the patient's level of activity, and the implant position. Attrition particles can also be found in the range of any modular connection. Particle disease and its resulting morphological alterations of the tribological pairing is one of the most frequent reasons for re-operation in hip endoprosthetics. Georg Thieme Verlag KG Stuttgart · New York.

  19. ) m /SrVO3 ( m = 5, 6) Superlattices

    KAUST Repository

    Dai, Qingqing; Lü ders, Ulrike; Fré sard, Raymond; Eckern, Ulrich; Schwingenschlö gl, Udo

    2018-01-01

    The (LaV3+O3)m/SrV4+O3 (m = 5, 6) superlattices are investigated by first principles calculations. While bulk LaVO3 is a C‐type antiferromagnetic semiconductor and bulk SrVO3 is a paramagnetic metal, semiconducting A‐type antiferromagnetic states

  20. CIRCUMSOLAR ENERGETIC PARTICLE DISTRIBUTION ON 2011 NOVEMBER 3

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Herrero, R.; Blanco, J.J.; Rodríguez-Pacheco, J. [SRG, Universidad de Alcalá, E-28871 Alcalá de Henares (Spain); Dresing, N.; Klassen, A.; Heber, B.; Banjac, S. [IEAP, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel (Germany); Lario, D. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Agueda, N. [Departament d' Astronomia i Meteorologia. Institut de Ciències del Cosmos. Universitat de Barcelona, E-08028 Barcelona (Spain); Malandraki, O. E., E-mail: raul.gomezh@uah.es [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece)

    2015-01-20

    Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1 AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours. We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event.

  1. Arsenic speciation in total contents and bioaccessible fractions in atmospheric particles related to human intakes

    International Nuclear Information System (INIS)

    Huang, Minjuan; Chen, Xunwen; Zhao, Yinge; Yu Chan, Chuen; Wang, Wei; Wang, Xuemei; Wong, Ming Hung

    2014-01-01

    Speciation of inorganic trivalent arsenicals (iAs III ), inorganic pentavalent arsenicals (iAs V ), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in total arsenic (As) content and its bioaccessible fractions contained in road dust, household air-conditioning (AC) filter dust and PM 2.5 was investigated. Inorganic As, especially iAs V , was observed as the dominant species. Physiologically based extraction test (PBET), an in-vitro gastrointestinal method, was used to estimate the oral As bioaccessibility in coarse particles and the species present in the oral bioaccessible fraction. A composite lung simulating serum was used to mimic the pulmonary condition to extract the respiratory bioaccessible As and its species in PM 2.5 . Reduction of iAs V to iAs III occurred in both in-vitro gastrointestinal and lung simulating extraction models. The inorganic As species was the exclusive species for absorption through ingestion and inhalation of atmospheric particles, which was an important exposure route to inorganic As, in addition to drinking water and food consumption. - Highlights: • Inorganic As species was the predominant species in dust and airborne particles. • Existence of iAs III in dust and airborne particles increases human health risks. • Reduction from iAs V to iAs III occurred through in-vitro gastrointestinal model. • Reduction from iAs V to iAs III occurred in the simulating pulmonary region. • Atmospheric particles were important exposure sources of inorganic As. - Atmospheric particles are important exposure sources of inorganic As, of which the bioaccessibility is dependent on the extraction phases and models used

  2. Bystander-induced apoptosis and premature differentiation in primary urothelial explants after charged particle microbeam irradiation

    International Nuclear Information System (INIS)

    Belyakov, O.V.; Folkard, M.; Mothersill, C.; Prise, K.M.; Michael, B.D.

    2002-01-01

    The ureter primary explant technique was developed to study bystander effects under in vivo like conditions where stem and differentiated cells are present. Irradiation was performed with a 3 He 2+ charged particle microbeam available at the Gray Cancer Institute, with high (∼2 μm) precision. Tissue sections from porcine ureters were pre-irradiated with the microbeam at a single location with 10 3 He 2+ particles (5 MeV; LET 70 keV.μm -1 ). After irradiation, the tissue section was incubated for 7 days, thus allowing the explant outgrowth to form. Total cellular damage (total fraction of micronucleated and apoptotic cells) was measured according to morphological criteria. Apoptosis was also assessed using a 3'-OH DNA end-labelling technique. Premature differentiation was estimated using antibodies to uroplakin III, a specific marker of terminal urothelial differentiation. Results of our experiments demonstrated a significant bystander-induced differentiation and a less significant increase in apoptotic and micronucleated cells. A hypothesis based on the protective nature of the bystander effect is proposed. (author)

  3. 3D Silicon Coincidence Avalanche Detector (3D-SiCAD) for charged particle detection

    Science.gov (United States)

    Vignetti, M. M.; Calmon, F.; Pittet, P.; Pares, G.; Cellier, R.; Quiquerez, L.; Chaves de Albuquerque, T.; Bechetoille, E.; Testa, E.; Lopez, J.-P.; Dauvergne, D.; Savoy-Navarro, A.

    2018-02-01

    Single-Photon Avalanche Diodes (SPADs) are p-n junctions operated in Geiger Mode by applying a reverse bias above the breakdown voltage. SPADs have the advantage of featuring single photon sensitivity with timing resolution in the picoseconds range. Nevertheless, their relatively high Dark Count Rate (DCR) is a major issue for charged particle detection, especially when it is much higher than the incoming particle rate. To tackle this issue, we have developed a 3D Silicon Coincidence Avalanche Detector (3D-SiCAD). This novel device implements two vertically aligned SPADs featuring on-chip electronics for the detection of coincident avalanche events occurring on both SPADs. Such a coincidence detection mode allows an efficient discrimination of events related to an incoming charged particle (producing a quasi-simultaneous activation of both SPADs) from dark counts occurring independently on each SPAD. A 3D-SiCAD detector prototype has been fabricated in CMOS technology adopting a 3D flip-chip integration technique, and the main results of its characterization are reported in this work. The particle detection efficiency and noise rejection capability for this novel device have been evaluated by means of a β- strontium-90 radioactive source. Moreover the impact of the main operating parameters (i.e. the hold-off time, the coincidence window duration, the SPAD excess bias voltage) over the particle detection efficiency has been studied. Measurements have been performed with different β- particles rates and show that a 3D-SiCAD device outperforms single SPAD detectors: the former is indeed capable to detect particle rates much lower than the individual DCR observed in a single SPAD-based detectors (i.e. 2 to 3 orders of magnitudes lower).

  4. First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain

    Directory of Open Access Journals (Sweden)

    X. J. Shen

    2011-02-01

    Full Text Available Atmospheric particle number size distributions (size range 0.003–10 μm were measured between March 2008 and August 2009 at Shangdianzi (SDZ, a rural research station in the North China Plain. These measurements were made in an attempt to better characterize the tropospheric background aerosol in Northern China. The mean particle number concentrations of the total particle, as well as the nucleation, Aitken, accumulation and coarse mode were determined to be 1.2 ± 0.9 × 104, 3.6 ± 7.9 × 103, 4.4 ± 3.4 × 103, 3.5 ± 2.8 × 103 and 2 ± 3 cm3, respectively. A general finding was that the particle number concentration was higher during spring compared to the other seasons. The air mass origin had an important effect on the particle number concentration and new particle formation events. Air masses from northwest (i.e. inner Asia favored the new particle formation events, while air masses from southeast showed the highest particle mass concentration. Significant diurnal variations in particle number were observed, which could be linked to new particle formation events, i.e. gas-to-particle conversion. During particle formation events, the number concentration of the nucleation mode rose up to maximum value of 104 cm3. New particle formation events were observed on 36% of the effective measurement days. The formation rate ranged from 0.7 to 72.7 cm3 s−1, with a mean value of 8.0 cm3 s−1. The value of the nucleation mode growth rate was in the range of 0.3–14.5 nm h−1, with a mean value of 4.3 nm h−1. It was an essential observation that on many occasions the nucleation mode was able to grow into the size of cloud condensation nuclei (CCN within a matter of several hours. Furthermore, the new particle formation was regularly followed by a measurable increase in particle mass

  5. ) m /SrVO3 ( m = 5, 6) Superlattices

    KAUST Repository

    Dai, Qingqing

    2018-05-04

    The (LaV3+O3)m/SrV4+O3 (m = 5, 6) superlattices are investigated by first principles calculations. While bulk LaVO3 is a C‐type antiferromagnetic semiconductor and bulk SrVO3 is a paramagnetic metal, semiconducting A‐type antiferromagnetic states for both superlattices are found due to epitaxial strain. At the interfaces, however, the V spins couple antiferromagnetically for m = 5 and ferromagnetically for m = 6 (m‐dependence of the magnetization). Electronic reconstruction in form of charge ordering is predicted to occur with V3+ and V4+ states arranged in a checkerboard pattern on both sides of the SrO layer. As compared to bulk LaVO3, the presence of V4+ ions introduces in‐gap states that strongly reduce the bandgap and influence the orbital occupation and ordering.

  6. TruSeq Stranded mRNA and Total RNA Sample Preparation Kits

    Science.gov (United States)

    Total RNA-Seq enabled by ribosomal RNA (rRNA) reduction is compatible with formalin-fixed paraffin embedded (FFPE) samples, which contain potentially critical biological information. The family of TruSeq Stranded Total RNA sample preparation kits provides a unique combination of unmatched data quality for both mRNA and whole-transcriptome analyses, robust interrogation of both standard and low-quality samples and workflows compatible with a wide range of study designs.

  7. Particle based 3D modeling of positive streamer inception

    NARCIS (Netherlands)

    H.J. Teunissen (Jannis)

    2012-01-01

    htmlabstractIn this report we present a particle based 3D model for the study of streamer inception near positive electrodes in air. The particle code is of the PIC-MCC type and an electrode is included using the charge simulation method. An algorithm for the adaptive creation of super-particles is

  8. Backscattering and negative polarization of agglomerate particles.

    Science.gov (United States)

    Zubko, Evgenij; Shkuratov, Yuriy; Hart, Matthew; Eversole, Jay; Videen, Gorden

    2003-09-01

    We used the discrete dipole approximation to study the backscattering of agglomerate particles consisting of oblong monomers. We varied the aspect ratio of the monomers from approximately 1 (sphere) to 4, while we kept the total particle volume equivalent to that of an x = 10 sphere for m = 1.59 + i0 and 1.50 + i0 and considered two values of agglomerate packing density: rho = 0.25 and rho = 0.1. We found that these particles do not display a prominent brightness opposition effect but do produce significant negative polarization over a range of near-backscattering angles. Increasing the monomers' aspect ratio can make the negative polarization much more prominent. We have noted also that decreasing m and p can reduce the amplitude of the negative polarization for these particles.

  9. Imaging of particles with 3D full parallax mode with two-color digital off-axis holography

    Science.gov (United States)

    Kara-Mohammed, Soumaya; Bouamama, Larbi; Picart, Pascal

    2018-05-01

    This paper proposes an approach based on two orthogonal views and two wavelengths for recording off-axis two-color holograms. The approach permits to discriminate particles aligned along the sight-view axis. The experimental set-up is based on a double Mach-Zehnder architecture in which two different wavelengths provides the reference and the object beams. The digital processing to get images from the particles is based on convolution so as to obtain images with no wavelength dependence. The spatial bandwidth of the angular spectrum transfer function is adapted in order to increase the maximum reconstruction distance which is generally limited to a few tens of millimeters. In order to get the images of particles in the 3D volume, a calibration process is proposed and is based on the modulation theorem to perfectly superimpose the two views in a common XYZ axis. The experimental set-up is applied to two-color hologram recording of moving non-calibrated opaque particles with average diameter at about 150 μm. After processing the two-color holograms with image reconstruction and view calibration, the location of particles in the 3D volume can be obtained. Particularly, ambiguity about close particles, generating hidden particles in a single-view scheme, can be removed to determine the exact number of particles in the region of interest.

  10. The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment.

    Science.gov (United States)

    Rösch, Carolin; Wissenbach, Dirk K; von Bergen, Martin; Franck, Ulrich; Wendisch, Manfred; Schlink, Uwe

    2015-09-01

    Atmospheric ozone-terpene reactions, which form secondary organic aerosol (SOA) particles, can affect indoor air quality when outdoor air mixes with indoor air during ventilation. This study, conducted in Leipzig, Germany, focused on limonene-induced particle formation in a genuine indoor environment (24 m(3)). Particle number, limonene and ozone concentrations were monitored during the whole experimental period. After manual ventilation for 30 min, during which indoor ozone levels reached up to 22.7 ppb, limonene was introduced into the room at concentrations of approximately 180 to 250 μg m(-3). We observed strong particle formation and growth within a diameter range of 9 to 50 nm under real-room conditions. Larger particles with diameters above 100 nm were less affected by limonene introduction. The total particle number concentrations (TPNCs) after limonene introduction clearly exceed outdoor values by a factor of 4.5 to 41 reaching maximum concentrations of up to 267,000 particles cm(-3). The formation strength was influenced by background particles, which attenuated the formation of new SOA with increasing concentration, and by ozone levels, an increase of which by 10 ppb will result in a six times higher TPNC. This study emphasizes indoor environments to be preferred locations for particle formation and growth after ventilation events. As a consequence, SOA formation can produce significantly higher amounts of particles than transported by ventilation into the indoor air.

  11. Structure and phase transition of BiFeO{sub 3} cubic micro-particles prepared by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian-Ping, E-mail: zhoujp@snnu.edu.cn [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Yang, Ruo-Lin; Xiao, Rui-Juan; Chen, Xiao-Ming [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Deng, Chao-Yong [Department of Electronic Science, Guizhou University, Guizhou Guiyang 550025 (China)

    2012-11-15

    Graphical abstract: Bismuth ferrite (BiFeO{sub 3}) cubic micro-particles with smooth surfaces were synthesized. BiFeO{sub 3} has a hexagonal perovskite structure with a space group R3c below 370 °C and rhombohedral perovskite structure with a space group R3m below 755 °C, undergoes a phase transition in the temperature range of 755–817 °C to a cubic structure, then decompose to liquid and Fe{sub 2}O{sub 3} above 939 °C. Highlights: ► BiFeO{sub 3} micro-particles with smooth surface were synthesized by hydrothermal method. ► BiFeO{sub 3} enjoys hexagonal structure with well element ratio and chemical valence. ► BiFeO{sub 3} transition from rhombohedral phase to cubic phase lasts 60 °C. -- Abstract: Single-phase bismuth ferrite (BiFeO{sub 3}) powders were synthesized with a hydrothermal method by controlling the experimental conditions carefully. The powder structure, morphology and composition were characterized by using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscope, Raman measurement and X-ray photoelectron spectroscopy. The particles change from irregular agglomerations to regular cubes with increasing KOH concentration. The large BiFeO{sub 3} cubic particles enjoy much smooth surfaces with well-matched element ratio (Bi:Fe:O = 1:1:3) and chemical valence (Bi{sup 3+}, Fe{sup 3+} and O{sup 2−}). The high temperature XRD and differential scanning calorimetry show that BiFeO{sub 3} powders have a hexagonal perovskite structure with a space group R3c below 370 °C and a rhombohedral structure with a space group R3m below 755 °C. BiFeO{sub 3} undergoes a phase transition in the temperature range of 755–817 °C from rhombohedral structure to a cubic phase, then decomposes to liquid and Fe{sub 2}O{sub 3} above 939 °C.

  12. Remarks on the differential algebraic approach to particle beam optics by M. Berz

    International Nuclear Information System (INIS)

    Garczynski, V.

    1992-01-01

    The underlying mathematical structure of the differential algebraic approach of M. Berz to particle beam optics is isomorphic to the familiar truncated polynomial algebra. Concrete examples of derivations in this algebra, consistent with the truncation operation, are given

  13. An active one-particle microrheometer: incorporating magnetic tweezers to total internal reflection microscopy.

    Science.gov (United States)

    Gong, Xiangjun; Hua, Li; Wu, Chi; Ngai, To

    2013-03-01

    We present a novel microrheometer by incorporating magnetic tweezers in the total internal reflection microscopy (TIRM) that enables measuring of viscoelastic properties of materials near solid surface. An evanescent wave generated by a solid∕liquid interface in the TIRM is used as the incident light source in the microrheometer. When a probe particle (of a few micrometers diameter) moves near the interface, it can interact with the evanescent field and reflect its position with respect to the interface by the scattered light intensity. The exponential distance dependence of the evanescent field, on the one hand, makes this technique extremely sensitive to small changes from z-fluctuations of the probe (with a resolution of several nanometers), and on the other, it does not require imaging of the probe with high lateral resolution. Another distinct advantage is the high sensitivity in determining the z position of the probe in the absence of any labeling. The incorporated magnetic tweezers enable us to effectively manipulate the distance of the embedded particle from the interface either by a constant or an oscillatory force. The force ramp is easy to implement through a coil current ramp. In this way, the local viscous and elastic properties of a given system under different confinements can therefore be measured by resolving the near-surface particle motion. To test the feasibility of applying this microrheology to soft materials, we measured the viscoelastic properties of sucrose and poly(ethylene glycol) solutions and compared the results to bulk rheometry. In addition, we applied this technique in monitoring the structure and properties of deformable microgel particles near the flat surface.

  14. Particle size distribution and total solids suspension in samples monitoring of capturing water for optimization of water injection filtration system; Monitoramento da quantidade de particulas e do total de solidos em suspensao em amostras de agua de captacao

    Energy Technology Data Exchange (ETDEWEB)

    Ramalhao, Adriano Gorga; Seno, Carlos Eduardo; Ribeiro, Alice [3M do Brasil, Sumare, SP (Brazil)

    2008-07-01

    There is a wide variation in the amount of particulate material in sea water by a great number of reasons. The most well-known contaminant is the organic material derived from seaweed or fish spawning causing seasonally sensitive variations in the water quality treated and injected for enhance oil recovery. This paper presents the results of one year the water monitoring form water sampled at 30 meters deep in the Roncador field, which is located 125 km from the coast with a depth of 1290 meters. It was observed the water seasonal variation with peaks in summer and winter. The monitoring was done through particle counting and distribution analysis and total solids in suspension. It was noted that even in peak with largest amount of particles and greater quantity of solid in suspension the particles had remained concentrated in the range bellow 25 {mu}m. For that reason the life of final filter elements may vary and pre-filters are many times ineffective and sometimes even bypassed due to frequent clogging and not to do the protecting job of the final filter. (author)

  15. Study of events with a high transverse momentum particle at proton-proton interactions with 63 GeV c.m. energy

    International Nuclear Information System (INIS)

    Panter, M.

    1982-01-01

    In proton-proton interactions at a c.m. energy of 63 GeV events with an identified high transverse momentum particle were studied. The inclusive invariant cross section for the production of charged pions was measured in the transverse momentum range from 3 to 13 GeV/c. (orig.) [de

  16. Ice in the Taurus molecular cloud: modelling of the 3m profile

    International Nuclear Information System (INIS)

    Bult, C.E.P.M. van de; Greenberg, J.M.; Whittet, D.C.B.

    1985-01-01

    Detailed calculations of the absorption by interstellar core-mantle particles with mantles of different compositions are compared with observations of the 3μm ice band in the Taurus molecular cloud. The strength and shape of the 3m band is shown to be a remarkably good diagnostic of the physical state and evolution of the dust in molecular clouds. The strength of the band is consistent with large fractional H 2 O mantle concentrations, in the range 60-70 per cent, as predicted by theoretical studies of cloud chemistry and as expected from the high oxygen abundance in pre-molecular clouds. (author)

  17. Theoretical descriptions of novel triplet germylenes M1-Ge-M2-M3 (M1 = H, Li, Na, K; M2 = Be, Mg, Ca; M3 = H, F, Cl, Br).

    Science.gov (United States)

    Kassaee, Mohamad Zaman; Ashenagar, Samaneh

    2018-02-06

    In a quest to identify new ground-state triplet germylenes, the stabilities (singlet-triplet energy differences, ΔE S-T ) of 96 singlet (s) and triplet (t) M 1 -Ge-M 2 -M 3 species were compared and contrasted at the B3LYP/6-311++G**, QCISD(T)/6-311++G**, and CCSD(T)/6-311++G** levels of theory (M 1  = H, Li, Na, K; M 2  = Be, Mg, Ca; M 3  = H, F, Cl, Br). Interestingly, F-substituent triplet germylenes (M 3  = F) appear to be more stable and linear than the corresponding Cl- or Br-substituent triplet germylenes (M 3  = Cl or Br). Triplets with M 1  = K (i.e., the K-Ge-M 2 -M 3 series) seem to be more stable than the corresponding triplets with M 1  = H, Li, or Na. This can be attributed to the higher electropositivity of potassium. Triplet species with M 3  = Cl behave similarly to those with M 3  = Br. Conversely, triplets with M 3  = H show similar stabilities and linearities to those with M 3  = F. Singlet species of formulae K-Ge-Ca-Cl and K-Ge-Ca-Br form unexpected cyclic structures. Finally, the triplet germylenes M 1 -Ge-M 2 -M 3 become more stable as the electropositivities of the α-substituents (M 1 and M 2 ) and the electronegativity of the β-substituent (M 3 ) increase.

  18. Complemento hemolítico total, C3 e taxa de conversão de C3 nas formas cardíaca e indeterminada da doença de Chagas Levels of hemolytic complement, total C3 and degree of conversion of native C3 in cardiac and indeterminate form of Chagas' disease

    Directory of Open Access Journals (Sweden)

    M. A. Shikanai-Yasuda

    1984-02-01

    Full Text Available Os valores de complemento hemolítico total, C3 total (nativo + produtos de degradação e o grau de conversão de C3 nativo foram estudados em dois subgrupos de pacientes chagásicos, nas formas cardíaca e indeterminada, e em um subgrupo de indivíduos não chagásicos, clinicamente sadios. Os níveis de C3 total e as taxas de conversão de C3 em seus produtos de degradação foram semelhantes nos três subgrupos. Os valores de complemento hemolítico total foram estatisticamente diferentes nos três subgrupos (nível de significância descritivo p = 0,0757, tendo sido observada média aritmética mais baixa no subgrupo de cardíacos e mais elevada no subgrupo de controles. Maior amplitude de variação dos níveis de complemento hemolítico total foi notada no subgrupo de cardíacos, no qual se encontraram os valores extremos (máximo e mínimo, considerando-se todos os subgrupos.The levels of hemolytic complement and total C3 (native C3 plus its degration products and the degree of conversion of native C3 into its breakdown products were studied in sera from two subgroups of chagasic patients (indeterminate and cardiac forms and from non chagasic individuals (control subgroup. The levels of total C3 and the degree of conversion of native C3 into its breakdown products were similar in the three subgroups. The levels of hemolytic complement were statistically different among the three subgroups. The lowest average was observed in the subgroup of cardiac patients and the highest average in the control subgroup of non chagasic individuals. The widest variation on levels of hemolytic complement was observed in the subgroup of cardiac patients in which we found the maximum and minimum values among all the subgroups.

  19. Particle resuspension due to human walking

    International Nuclear Information System (INIS)

    Mana, Zakaria

    2014-01-01

    In nuclear facilities, during normal operations in controlled areas, workers could be exposed to radioactive aerosols (1 μm ≤ dp ≤ 10 μm). One of the airborne contamination sources is particles that are initially seeded on the floor and could be removed by workers while they are walking. During the outage of EDF nuclear facilities, there is a resuspension of some radionuclides in aerosol form (1 μm ≤ dp ≤ 10 μm). Since the number of co-activity will increase in reactors buildings of EDF, it becomes important to understand particle resuspension due to the activity of the operators to reduce their radiation exposure. The purpose of this Ph.D thesis is to quantify the resuspension of particles due to the progress of operators on a contaminated soil. Thus, the approach is to combine an aerodynamic resuspension model with numerical calculations of flow under a shoe, and then to characterize experimentally some input parameters of the model (particle diameter, adhesion forces, shoes motion). The resuspension model Rock'n'Roll proposed by Reeks and Hall (2001) was chosen because it describes physically the resuspension mechanism and because it is based on the moment of forces applied to a particle. This model requires two input parameters such as friction velocity and adhesion forces distribution applied on each particle. Regarding the first argument, numerical simulations were carried on using the ANSYS CFX software applied to a safety shoe in motion (digitized by 3D CAO); the mapping of friction velocity shows values of about 1 m.s -1 for an angular average velocity of 200 degrees.s -1 . As regards the second parameter, AFM (Atomic Force Microscopy) measurements were carried out with alumina and cobalt oxide particles in contact with epoxy surfaces representative of those encountered in EDF power plants. AFM provides the distribution of adhesion forces and reveals a much lower value than what can be calculated theoretically using JKR model (Johnson

  20. Occupational exposure to {sup 99m}Tc and {sup 131}I in a radiopharmacy room

    Energy Technology Data Exchange (ETDEWEB)

    Valle, Bruna P.; Cunha, Kenya Dias da; Sa, Lidia Vasconcellos de; Souza, Wanderson; Santos, Maristela; Medeiras, Geiza; Conceicao, Cirilo S. [Universidade do Estado, Nova Friburgo, RJ (Brazil). Inst. Politecnico. Dept. de Modelagem Computacional], e-mail: brunapvalle@gmail.com, e-mail: kenya@ird.gov.br, e-mail: lidia@ird.gov.br, e-mail: wander@ird.gov.br, e-mail: mstela@ird.gov.br; Abrantes, Marcio Borges de [Centro de Medicina Nuclear Guanabara, Rio de Janeiro, RJ (Brazil)], e-mail: marcioabrantes@pop.com.br

    2009-07-01

    Brazil has about 310 nuclear medicine services and 90% of these services use Molybdenum/Technetium generators to prepare several radiopharmaceuticals to diagnostics; about 70% use also {sup 131}I for diagnosis and therapy. These radionuclides are associated to compounds in liquid form and during the manipulation to prepare and administer the patient dose some radioactive airborne particle can be generated. As consequence the workers can be exposed to airborne particles in the respirable fraction containing {sup 99m}Tc and {sup 131}I. The aim of this study is develop a simple and rapid method to verify if the exhaust systems installed in the SMN are efficient in preventing the inhalation of radionuclides airborne particles by workers. In order to estimate the occupational exposure a nuclear medicine service was selected and aerosol samples were collected using personal air sampler with a cyclone. The samples were analyzed using a germanium detector system and the {sup 99m}Tc and {sup 131}I average concentrations were obtained as 16,6 {+-} 14,34 mBq/m{sup 3} and 0.72 {+-} 0.36 mBq/m{sup 3}, respectively. It was not observed a correlation among air concentration and total activity processed in laboratory. These results show that the worker inhales airborne particles containing {sup 99m}Tc and {sup 131}I. (author)

  1. Total conversion coefficient of the 263 keV (21/sup 2//2->13/sup +//2) transition in sup(93m)Mo

    Energy Technology Data Exchange (ETDEWEB)

    Suryanaryana, C.; Venkateswara Rao, M.; Narayana, D.G.S.; Bhuloka Reddy, S.; Satyanarayana, G.; Sastry, D.L.; Chintalapudi, S.N.

    1985-01-01

    The total conversion coefficient of the 263 keV gamma transition in the decay scheme of sup(93m)Mo is measured by intensity balance method using a HP Ge spectrometer system. The experimental value of ..cap alpha..sub(T)(263 keV) is found to be 0.696 +- 0.05 which is in agreement with the theoretical values 0.72 and 0.7. The transition probability T(E4) is calculated using the present value of ..cap alpha..sub(T) and compared with the single-particle estimate. A good agreement is noted between the theory and the experiment for the value of T(E4).

  2. Concentration, size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou, China

    Science.gov (United States)

    Liu, Fengxian; Bi, Xinhui; Zhang, Guohua; Peng, Long; Lian, Xiufeng; Lu, Huiying; Fu, Yuzhen; Wang, Xinming; Peng, Ping'an; Sheng, Guoying

    2017-12-01

    Size-segregated PM10 samples were collected in Guangzhou, China during autumn of 2014. Nine amines, including seven aliphatic amines and two heterocyclic amines, were detected using a gas chromatography-mass spectrometer after derivatization by benzenesulfonyl chloride. The total concentration of the nine amines (Ʃamines) was 79.6-140.9 ng m-3 in PM10. The most abundant species was methylamine (MA), which had a concentration of 29.2-70.1 ng m-3. MA, dimethylamine (DMA), diethylamine (DEA) and dibutylamine (DBA) were the predominant amines in the samples and accounted for approximately 80% of Ʃamines in each size segment. Two heterocyclic amines, pyrrolidine (PYR) and morpholine (MOR), were detected in all samples and had average concentrations of 1.14 ± 0.37 and 1.89 ± 0.64 ng m-3, respectively, in particles with aerodynamic diameters ammonium ranged from 0.0068 to 0.0107 in particles with diameters <1.5 μm, and the maximum ratio occurred in the smallest particles (diameter< 0.49 μm). The average dry deposition flux and velocity of Ʃamines in PM10 were 7.9 ± 1.6 μg m-2 d-1 and 0.084 ± 0.0021 cm s-1, respectively. The results of this study provide essential information on the contribution of amines to secondary organic aerosols and dry removal mechanisms in urban areas.

  3. A monolithic pixel sensor (TRAPPISTe-2) for particle physics instrumentation in OKI 0.2μm SOI technology

    Science.gov (United States)

    Soung Yee, L.; Alvarez, P.; Martin, E.; Cortina, E.; Ferrer, C.

    2012-12-01

    A monolithic active pixel sensor for charged particle tracking has been developed within the frame of a research and development project called TRAPPISTe (Tracking Particles for Physics Instrumentation in SOI Technology). TRAPPISTe aims to study the feasibility of developing a monolithic pixel sensor with SOI technology. TRAPPISTe-2 is the second prototype in this series and was fabricated with an OKI 0.20μm fully depleted (FD-SOI) CMOS process. This device contains test transistors and amplifiers, as well as two pixel matrices with integrated 3-transistor and amplifier readout electronics. The results presented are based on the first electrical measurements performed on the test structures and laser measurements on the pixel matrices.

  4. BAG3 regulates total MAP1LC3B protein levels through a translational but not transcriptional mechanism.

    Science.gov (United States)

    Rodríguez, Andrea E; López-Crisosto, Camila; Peña-Oyarzún, Daniel; Salas, Daniela; Parra, Valentina; Quiroga, Clara; Morawe, Tobias; Chiong, Mario; Behl, Christian; Lavandero, Sergio

    2016-01-01

    Autophagy is mainly regulated by post-translational and lipid modifications of ATG proteins. In some scenarios, the induction of autophagy is accompanied by increased levels of certain ATG mRNAs such as MAP1LC3B/LC3B, ATG5 or ATG12. However, little is known about the regulation of ATG protein synthesis at the translational level. The cochaperone of the HSP70 system BAG3 (BCL2-associated athanogene 3) has been associated to LC3B lipidation through an unknown mechanism. In the present work, we studied how BAG3 controls autophagy in HeLa and HEK293 cells. Our results showed that BAG3 regulates the basal amount of total cellular LC3B protein by controlling its mRNA translation. This effect was apparently specific to LC3B because other ATG protein levels were not affected. BAG3 knockdown did not affect LC3B lipidation induced by nutrient deprivation or proteasome inhibition. We concluded that BAG3 maintains the basal amount of LC3B protein by controlling the translation of its mRNA in HeLa and HEK293 cells.

  5. Studying Of Preparation Silver Nano-Particles Using Spinning Disc Reactor

    International Nuclear Information System (INIS)

    Hoang Van Duc; Nguyen Thanh Chung; Tran Ngoc Ha; Ho Minh Quang; Nguyen Thi Thuc Phuong

    2014-01-01

    Preparation of silver nano-particles using spinning disc reactor has been investigated. The effects of technological factors and experimental conditions such as: concentrations of AgNO 3 , glucose, PVP, spinning speed, ect. on quality of nano-silver particles have been studied. With experimental conditions: rotation speed of 2000 rpm, weight rate of m PVP :m AgNO 3 = 1, AgNO 3 concentration of 0.01 M, glucose concentration of 0.02 M, silver particles of about 12 nm were obtained and the nano-silver solution were stable for more than 40 days. (author)

  6. Fe3O4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field.

    Science.gov (United States)

    Jiang, Pengfei; Zhang, Yixian; Zhu, Chaonan; Zhang, Wenjing; Mao, Zhengwei; Gao, Changyou

    2016-12-01

    Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe 3 O 4 /BSA) particles were prepared, which showed a spherical morphology with a diameter below 200 nm, negatively charged surface, and tunable magnetic property. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field, resulting in almost twice intracellular amount of the particles within 21 d compared to that of the magnetic field free control. Uptake of the Fe 3 O 4 /BSA particles enhanced significantly the osteogenic differentiation of MSCs under a static magnetic field, as evidenced by elevated alkaline phosphatase (ALP) activity, calcium deposition, and expressions of collagen type I and osteocalcin at both mRNA and protein levels. Therefore, uptake of the Fe 3 O 4 /BSA particles brings significant influence on the differentiation of MSCs under magnetic field, and thereby should be paid great attention for practical applications. Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe 3 O 4 /BSA) particles with a diameter below 200nm, negatively charged surface, tunable Fe 3 O 4 content and subsequently adjustable magnetic property were prepared. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field. Uptake of the Fe 3 O 4 /BSA particles enhanced significantly the osteogenic differentiation of MSCs under a constant static magnetic field, while the magnetic particles and external magnetic field alone do not influence significantly the

  7. M3 User's Manual. Version 3.0

    International Nuclear Information System (INIS)

    Laaksoharju, Marcus; Skaarman, Erik; Gomez, Javier B.

    2009-11-01

    This report describes the Multivariate Mixing and Mass balance calculations (M3). This new method and computer code is developed to trace the mixing and reaction processes in the groundwater. The aim of the M3 concept is to decode the often hidden and complex information gathered in the groundwater analytical data. The manual presents shortly the theory and practice behind the M3 method. The M3 computer code is also presented and emphasis is put on the reference manual. This includes detailed reference to the M3 program's abilities and limitations, installation procedures and all functions and operations that the program can perform. It also describes sample cases of how the program is used to analyse a test data set. This guide is part of the Help Files distributed together with M3. Two accompanying reports cover other aspects: - Concepts, Methods, and Mathematical Formulation, gives a complete description of the mathematical framework of M3 and introduces concepts and methods useful for the end user. - M3 version 3.0: Verification and Validation, gathers a collection of validation and verification exercises, designed to test each part of M3 code and to build confidence in its methodology. The M3 method has been tested and modified over several years. The development work has been supported by the Swedish Nuclear Fuel and Waste Management Company (SKB). The main test site for the model was the underground Aespoe Hard Rock Laboratory (HRL). The examples used in this manual are from a Aespoe international groundwater modelling co-operation project where one of the tools used was M3. The M3 concept has been applied on the data from SKB's site investigation programme and in data from Canada, Japan, Jordan, Gabon and Finland. The groundwater composition is a result of mixing processes and water-rock interaction. Standard groundwater models based on thermodynamic laws may not be applicable in a normal temperature groundwater system where equilibrium with many of the

  8. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    We have shown that high concentrations of fine particles of the order of 2-7x10{sup -7} particles per cm{sup 3} are being formed in all the combustion units studied. There was a higher difference between the units in terms of particle mass concentrations. While the largest differences was found for gas-phase constituents (CO and THC) and polyaromatic hydrocarbons. In 5 out of 7 studied units, multi-cyclones were the only measure for flue-gas separation. The multicyclones had negligible effect on the particle number concentration and a small effect on the mass of particles smaller than 5 {mu}m. The separation efficiency was much higher for the electrostatic precipitators. The boiler load had a dramatic influence on the coarse mode concentration during combustion of forest residue. PM0.8-6 increased from below 5 mg/m{sup 3} to above 50 mg/m{sup 3} even at a moderate change in boiler load from medium to high. A similar but less pronounced trend was found during combustion of dry wood. PM0.8-PM6 increased from 12 to 23 mg/m{sup 3} when the load was changed from low to high. When increasing the load, the primary airflow taken through the grate is increased; this itself may lead to a higher potential of the air stream to carry coarse particles away from the combustion zone. Measurements with APS-instrument with higher time-resolution showed a corresponding increase in coarse mode number concentration with load. Additional factor influencing observed higher concentration of coarse mode during combustion of forest residues, could be relatively high ash content in this type of fuel (2.2 %) in comparison to dry wood (0.3 %) and pellets (0.5 %). With increasing load we also found a decrease in PM1 during combustion of forest residue. Whether this is caused by scavenging of volatilized material by the high coarse mode concentration or a result of a different amount of volatilized material available for formation of fine particles needs to be shown in future studies. The

  9. Magnetic Particle Testing, RQA/M1-5330.16.

    Science.gov (United States)

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of classroom training handbooks, prepared by the U.S. space program, instructional material is presented in this volume concerning familiarization and orientation on magnetic particle testing. The subject is divided under the following headings: Introduction, Principles of Magnetic Particle Testing, Magnetic Particle Test…

  10. Tau mRNA 3'UTR-to-CDS ratio is increased in Alzheimer disease.

    Science.gov (United States)

    García-Escudero, Vega; Gargini, Ricardo; Martín-Maestro, Patricia; García, Esther; García-Escudero, Ramón; Avila, Jesús

    2017-08-10

    Neurons frequently show an imbalance in expression of the 3' untranslated region (3'UTR) relative to the coding DNA sequence (CDS) region of mature messenger RNAs (mRNA). The ratio varies among different cells or parts of the brain. The Map2 protein levels per cell depend on the 3'UTR-to-CDS ratio rather than the total mRNA amount, which suggests powerful regulation of protein expression by 3'UTR sequences. Here we found that MAPT (the microtubule-associated protein tau gene) 3'UTR levels are particularly high with respect to other genes; indeed, the 3'UTR-to-CDS ratio of MAPT is balanced in healthy brain in mouse and human. The tau protein accumulates in Alzheimer diseased brain. We nonetheless observed that the levels of RNA encoding MAPT/tau were diminished in these patients' brains. To explain this apparently contradictory result, we studied MAPT mRNA stoichiometry in coding and non-coding regions, and found that the 3'UTR-to-CDS ratio was higher in the hippocampus of Alzheimer disease patients, with higher tau protein but lower total mRNA levels. Our data indicate that changes in the 3'UTR-to-CDS ratio have a regulatory role in the disease. Future research should thus consider not only mRNA levels, but also the ratios between coding and non-coding regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ice nucleation properties of atmospheric aerosol particles collected during a field campaign in Cyprus

    Science.gov (United States)

    Yordanova, Petya; Maier, Stefanie; Lang-Yona, Naama; Tamm, Alexandra; Meusel, Hannah; Pöschl, Ulrich; Weber, Bettina; Fröhlich-Nowoisky, Janine

    2017-04-01

    Atmospheric aerosol particles, including desert and soil dust as well as marine aerosols, are well known to act as ice nuclei (IN) and thus have been investigated in numerous ice nucleation studies. Based on their cloud condensation nuclei potential and their impacts on radiative properties of clouds (via scattering and absorption of solar radiation), aerosol particles may significantly affect the cloud and precipitation development. Atmospheric aerosols of the Eastern Mediterranean have been described to be dominated by desert dust, but only little is known on their composition and ice nucleating properties. In this study we investigated the ice nucleating ability of total suspended particles (TSP), collected at the remote site Agia Marina Xyliatou on Cyprus during a field campaign in April 2016. Airborne TSP samples containing air masses of various types such as African (Saharan) and Arabian dust and European and Middle Eastern pollution were collected on glass fiber filters at 24 h intervals. Sampling was performed ˜5 m above ground level and ˜521 m above sea level. During the sampling period, two major dust storms (PM 10max 118 μg/m3 and 66 μg/m3) and a rain event (rainfall amount: 3.4 mm) were documented. Chemical and physical characterizations of the particles were analyzed experimentally through filtration, thermal, chemical and enzyme treatments. Immersion freezing experiments were performed at relatively high subzero temperatures (-1 to -15˚ C) using the mono ice nucleation array. Preliminary results indicate that highest IN particle numbers (INPs) occurred during the second dust storm event with lower particle concentrations. Treatments at 60˚ C lead to a gradual IN deactivation, indicating the presence of biological INPs, which were observed to be larger than 300 kDa. Additional results originating from this study will be shown. Acknowledgement: This work was funded by the DFG Ice Nuclei Research Unit (INUIT).

  12. Coordinate asymptotics of the (33) wave functions for a three charged particle system

    International Nuclear Information System (INIS)

    Merkur'ev, S.P.

    1977-01-01

    Coordinate asymptotics of the (33) wave functions for three particles system with Coulomb interaction in the scattering problem is plotted. (33) and (3 → 2) process cases are considered, when the particles are not connected at the initial state. For coordinate asymptotics plotting the basis functions are used which meet Schroedinger equation in the eikonal approximation. The wave functions coordinate asymptotics plotting method is described far from special directions. Wave function asymptotical form is studied in the range of special directions and (33) scattering amplitude singularities are described. All data are given in accordance with the system with 2 charged particles only. The model in question is of special interest because of the described ppn system the studying of which is of great importance in nuclear physics. Final formulae are discussed for the most general case of three charged particles. Boundary problems for Schroedinger equation are shown to give the only way of definition for the (33) wave functions. It is pointed out that in special directions wave function coordinate asymptotics is presented with accuracy that gives the possibility to set such a boundary problem

  13. Hybrid micro-/nano-particle image velocimetry for 3D3C multi-scale velocity field measurement in microfluidics

    International Nuclear Information System (INIS)

    Min, Young Uk; Kim, Kyung Chun

    2011-01-01

    The conventional two-dimensional (2D) micro-particle image velocimetry (micro-PIV) technique has inherent bias error due to the depth of focus along the optical axis to measure the velocity field near the wall of a microfluidics device. However, the far-field measurement of velocity vectors yields good accuracy for micro-scale flows. Nano-PIV using the evanescent wave of total internal reflection fluorescence microscopy can measure near-field velocity vectors within a distance of around 200 nm from the solid surface. A micro-/nano-hybrid PIV system is proposed to measure both near- and far-field velocity vectors simultaneously in microfluidics. A near-field particle image can be obtained by total internal reflection fluorescence microscopy using nanoparticles, and the far-field velocity vectors are measured by three-hole defocusing micro-particle tracking velocimetry (micro-PTV) using micro-particles. In order to identify near- and far-field particle images, lasers of different wavelengths are adopted and tested in a straight microchannel for acquiring the three-dimensional three-component velocity field. We found that the new technique gives superior accuracy for the velocity profile near the wall compared to that of conventional nano-PIV. This method has been successfully applied to precisely measure wall shear stress in 2D microscale Poiseulle flows

  14. Insights into particle cycling in the Sargasso Sea from lipid biomarkers in suspended particles: Seasonality and physical forcing

    Science.gov (United States)

    Pedrosa Pàmies, R.; Conte, M. H.; Weber, J.

    2017-12-01

    Lipid biomarkers elucidate organic material (OM) sources and cycling within the water column. Biomarker composition and bulk properties (organic carbon (OC), nitrogen (N), OC/N ratio, CaCO3 and stable isotopes) were determined in suspended particles (30-4400 m, 100 mab) collected at Oceanic Flux Program site offshore Bermuda in April/November 2015 and October 2016, three periods of contrasting oceanographic conditions. Key lipid biomarkers were used to evaluate the relative importance of phytoplankton-, bacterial- and zooplankton-OM sources, diagenetic reprocessing, and the impact of upper ocean environmental forcing on the carbon pump. Additionally, we assessed benthic remineralization by comparing particles above and within the nepheloid layer (4400 m). N-fatty acids, n-alcohols and sterols comprise up to 85%, 12% and 7%, respectively, of total extractable lipids. Higher lipid concentrations in April vs November 2015 mirror seasonality in primary production, while change in sterol composition reflect shifts in phytoplankton community structure. In the mesopelagic zone, increased cholesterol/phytosterol ratios and percentages of C16 and C18 n-alcohols, odd-chain and branched n-fatty acids document a transition from algal to animal OM sources as well as bacterial reprocessing of labile OM. The impact of Hurricane Nicole (October 2016) on the mixed layer and subsequent increases in production/flux was evident in higher concentrations as well as greater depth penetration of particulate N and fresh/labile algal biomarkers (e.g. 18:5 ω3 and 22:6 ω3 polyunsaturated fatty acids) in the upper 1000 m. Suspended particles in the nepheloid layer had higher concentrations of OC and N and were more depleted in d13C than particles at 4200 m for all dates. While nepheloid lipid composition was similar for all dates, lipid concentrations in April 2015 (seasonal production peak) and October 2016 (hurricane physical forcing) were higher than in November 2015, consistent with the

  15. Characteristics of the JRR-3M neutron guide tubes

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Ichikawa, Hiroki; Kawabata, Yuji.

    1993-01-01

    Large scale neutron guide tubes have been installed in the upgraded JRR-3 (Japan Research Reactor No.3, JRR-3M). The total length of the guide tubes is 232m. The neutron fluxes and spectra were measured at the end of the neutron guide tubes. The neutron fluxes of thermal neutron guide tubes with characteristic wavelength of 2A are 1.2 x 10 8 n/cm 2 · s. The neutron fluxes of cold guide tubes are 1.4 x 10 8 n/cm 2 · s with characteristic wavelength of 4A and 2.0 x 10 8 n/cm 2 · s with 6A when the cold neutron source is operated. The neutron spectra measured by time-of-flight method agree well with their designed ones. (author)

  16. Particle Agglomeration in Bipolar Barb Agglomerator Under AC Electric Field

    International Nuclear Information System (INIS)

    Huang Chao; Ma Xiuqin; Sun Youshan; Wang Meiyan; Zhang Changping; Lou Yueya

    2015-01-01

    The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious. To improve agglomeration effectiveness of fine particles, a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed. The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0 μm under applied AC electric field. An optimal condition for achieving better agglomeration effectiveness was found to be as follows: flue gas flow velocity of 3.00 m/s, particle concentration of 2.00 g/m 3 , output voltage of 35 kV and length of the barb of 16 mm. In addition, 4.0–6.0 μm particles have the best effectiveness with the variation of particle volume occupancy of −3.2. (paper)

  17. Particle Agglomeration in Bipolar Barb Agglomerator Under AC Electric Field

    Science.gov (United States)

    Huang, Chao; Ma, Xiuqin; Sun, Youshan; Wang, Meiyan; Zhang, Changping; Lou, Yueya

    2015-04-01

    The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious. To improve agglomeration effectiveness of fine particles, a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed. The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0 μm under applied AC electric field. An optimal condition for achieving better agglomeration effectiveness was found to be as follows: flue gas flow velocity of 3.00 m/s, particle concentration of 2.00 g/m3, output voltage of 35 kV and length of the barb of 16 mm. In addition, 4.0-6.0 μm particles have the best effectiveness with the variation of particle volume occupancy of -3.2. supported by the Key Technology R&D Program of Hebei, China (No. 13211207D)

  18. Wear behavior of A356/M{sub 7}C{sub 3} and A356/SiC particulate metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Turhan, H. [Univ. of Firat, Dept. of Metallurgy, Elazig (Turkey); Yilmaz, O. [Univ. of Firat, Dept. of Metallurgical Engineering, Elazig (Turkey)

    2002-06-01

    The stability of M{sub 7}C{sub 3} carbides as reinforcement for A356 materials for tribological applications has been investigated. For this purpose, A356/M{sub 7}C{sub 3}, A356/SiC and A356/M{sub 7}C{sub 3}/SiC composites were prepared by powder metallurgy and tested at room temperature against SAE 4620 steel ring and AISI 304 stainless steel counterfaces under loads of 10 - 150 N. For comparison, also unreinforced A356 specimens were processed and tested under the same conditions. The tribological behavior was evaluated by microstructural examination of the wear-effected zones and by weight loss measurements of the specimens and counterfaces. The wear behavior of A356/M{sub 7}C{sub 3} composite gave an excellent result as function of the applied load because the M{sub 7}C{sub 3} particles act as load-bearing elements due to their excellent bonding to the Al matrix, and their interfaces withtood the wear stresses even at the highest applied load. Moreover, the M{sub 7}C{sub 3} particles limited the incorporation of wear debris into the Al matrix and reduced the wear damage occasioned to the steel counterfaces compared to that of A356 Al alloy. (orig.)

  19. Qualification of the Lasentec M600P Particle Size Analyzer and the Red Valve Model 1151 Pressure Sensor

    International Nuclear Information System (INIS)

    JR Bontha; NG Colton; EA Daymo; TD Hylton; CK Bayne; TH May

    2000-01-01

    The Lasentec M600 in-line particle size analyzer was installed at Oak Ridge National Laboratory (ORNL) in August 1998 to support retrieval of the Gunite and Associated Tanks (GAAT). Before installation at ORNL, the sensor underwent validation testing at the Pacific Northwest National Laboratory (PNNL) Instrument Validation facility. Mechanically, the instrument worked well during validation testing and met all expectations. Operationally, much was learned about optimum ways to display and interpret the data. Slurry samples taken during the in-line tests at PNNL were shipped to the vendor for analysis with a benchtop Lasentec sensor. These experiments were performed to determine if off-line analyses yield particle size distributions similar to those generated by the in-line sensor. It was determined that the Lasentec sensor measures repeatable chord lengths as long as particles are ''presenter'' to the sensor window the same way. After the initial non-radioactive simulant testing at PNNL, the instrument was shipped for radioactive validation and acceptance testing in the Slurry Monitoring Test System (SMTS) connected to the Tank W-9 of the GAATs at ORNL. For all acceptance tests conducted at ORNL, the variation in the chord length distribution and the total particle count corresponded very well with the slurry density data as determined using an in-line Promass 63M Coriolis meter. Based on the performance results obtained, the Lasentec M600P FBRM is expected to meet the requirements for measuring the particle size distribution during the slurry transfer operations at Hanford and the Oak Ridge GAAT remediation project. The Red Valve pressure sensor was endorsed at the Hanford Site following instrument validation tests at PNNL and is currently in operation in the Tank 241-C-106 pump pit. While this instrument measures pressure within a transfer line, this type of pressure sensor could be configured to measure pressure drop over time. In turn, the status of a slurry

  20. Energetic particle physics in JT-60U and JFT-2M

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Takechi, M [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Ishikawa, M [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Kusama, Y [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Tsuzuki, K [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Urata, K [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Kawashima, H [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Tobita, K [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Fukuyama, A [Department of Nuclear Engineering, Kyoto University, 606-8501, (Japan); Cheng, C Z [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Darrow, D S [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Kramer, G J [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Gorelenkov, N N [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Nazikian, R [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Todo, Y [National Institute for Fusion Science, Oroshi-cho, Toki, Gifu, 509-5292, (Japan); Miura, Y [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Ozeki, T [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan)

    2004-07-01

    Recent energetic particle physics research in JT-60U and JFT-2M is reported. Alfven eigenmodes (AEs) are investigated in reversed-shear (RS) plasmas in JT-60U where frequency sweeping (FS) modes are observed to follow the q-profile evolution. The RS-induced AE model can explain the FS of the modes within the context of an evolving q-profile. Enhanced energetic ion transport is also investigated with the appearance of modes in the toroidicity-induced AE range of frequency in JT-60U using a multi-channel neutron profile monitor and in JFT-2M using a lost ion probe. Additionally, the ripple loss in the complex toroidal field ripple due to ferritic steel inserts in JFT-2M is shown and compared with model analysis. The simulation code developed to predict ripple loss in JFT-2M will be of use in estimating the heat flux in the complex ripple field of a future device such as ITER.

  1. Evaluation of the embolic effect of polyvinyl alcohol foam particles according to particle size on the cerebral artery of a cat, focusing on T2 weighted MR images and pathologic study after 24 hours

    International Nuclear Information System (INIS)

    Park, Man Soo; Woo, Don Hee; Chung, Haingsub R.; Kang Gil Hyun; Lee, Sang Youl; Ryu, Dae Sik; Lee, Yong Chul

    2000-01-01

    This study was designed to determine the embolic effect of PVA particles of various sizes on the cerebral artery of a cat and to determine the appropriate particle size for embolization. A total of 21 cats were divided into three groups according to the PVA particle size injected: group I (n=3D7), embolized with 45-150μm PVA; group II (n=3D7), with 150-250μm PVA; and group III (n=3D7), with 350-500μm PVA. PVA particles were slowly injected into the left common carotid artery of each cat, and T2-weighted coronal MR images were obtained 24 hours after injection. During histologic examination of brain sections we analyzed the size, number of occluded vessels, and the ischemic changes caused by the particles. On T2 weighted images, areas of high signal intensity (infarction) were observed in four of the seven cats (57%) in group I and in two of the seven (29%) II. High signal intensity was not found in group III. The mean percentage of areas of high signal intensity was 11.86 ± 1.37% in group I and 5.18 ± 1.77% in group II (P less than 0.05). During histologic examination, occlusion of the distal branches of the anterior cerebral (ACA) and/or the middle cerebral arteries (MCA) by PVA particles was observed in all seven cats (100%) in group I, and in four of the seven cats (57%) in group II, No group III cat showed occlusion of the distal branches of the ACA and/or MCA. The mean caliber of occluded vessels was 175μm in Group I and 258μm in Group II. The mean number of occluded vessels seen on all slide sections was 14 in Group I and 5 in Group II. Small PVA particles has a greater cerebral embolic effect than did those which were medium or large. For the induction of embolic infarction in cat brain, PVA particles 45-150μm in size are appropriate. (author)

  2. Maximum mass-particle velocities in Kantor's information mechanics

    International Nuclear Information System (INIS)

    Sverdlik, D.I.

    1989-01-01

    Kantor's information mechanics links phenomena previously regarded as not treatable by a single theory. It is used here to calculate the maximum velocities υ m of single particles. For the electron, υ m /c ∼ 1 - 1.253814 x 10 -77 . The maximum υ m corresponds to υ m /c ∼ 1 -1.097864 x 10 -122 for a single mass particle with a rest mass of 3.078496 x 10 -5 g. This is the fastest that matter can move. Either information mechanics or classical mechanics can be used to show that υ m is less for heavier particles. That υ m is less for lighter particles can be deduced from an information mechanics argument alone

  3. The characteristics and application of sludge-fly ash ceramic particles (SFCP) as novel filter media

    International Nuclear Information System (INIS)

    Han Shuxin; Yue Qinyan; Yue Min; Gao Baoyu; Li Qian; Yu Hui; Zhao Yaqin; Qi Yuanfeng

    2009-01-01

    Novel filter media-sludge-fly ash ceramic particles (SFCP) were prepared using dewatered sludge, fly ash and clay with a mass ratio of 1:1:1. Compared with commercial ceramic particles (CCP), SFCP had higher total porosity, larger total surface area and lower bulk and apparent density. Tests of heavy metal elements in lixivium proved that SFCP were safe for wastewater treatment. A lab-scale upflow anaerobic bioreactor was employed to ascertain the application of SFCP in denitrification process using acetate as carbon source. The results showed that SFCP reactor brought a relative superiority to CCP reactor in terms of total nitrogen (TN) removal at the optimum C/N ratio of 4.03 when volumetric loading rates (VLR) ranged from 0.33 to 3.69 kg TN (m 3 d) -1 . Therefore, SFCP application, as a novel process of treating wastes with wastes, provided a promising way in sludge and fly ash utilization.

  4. Dust particle removal efficiency of a venturi scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Mehboob, Khurram

    2013-01-01

    Highlights: ► Experimental and theoretical study of dust removal efficiency in venturi scrubber. ► Dust removal efficiency 99.5% is achieved at throat gas velocity 220 m/s. ► Results obtained from mathematical model concur well with experimental results. - Abstract: The venturi scrubber is one of the most efficient gas cleaning devices to remove the contaminated particles from gaseous stream during severe accident in nuclear power plant. This study is focused on the dust particle removal efficiency of the venturi scrubber experimentally and theoretically. The venturi scrubber encapsulates the dust particles in petite water droplets flowing into it. The water injected into the scrubber is in the form of water film. The study investigates the removal efficiency of venturi scrubber for throat gas velocities of 130, 165 and 200 m/s and liquid flow rates 0.3–1 m 3 /h, whereas dust concentration ranges between 0.1 and 1 g/m 3 . The hydrophobic titanium dioxide (TiO 2 ) particles having density 4.23 g/cm 3 and mean diameter of 1 μm are used as dust particles in this research. Filtration technique is used to measure the concentration of dust particles at inlet and outlet. Experimental results show that the removal efficiency is higher with the increase of throat gas velocity and liquid flow rate. A mathematical model is employed for the verification of experimental results. The model concurs well with the experimental results

  5. Measurement of the polarized neutron---polarized 3He total cross section

    International Nuclear Information System (INIS)

    Keith, C.D.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Huffman, P.R.; Roberson, N.R.; Tornow, W.; Wilburn, W.S.

    1995-01-01

    The first measurements of polarized neutron--polarized 3 He scattering in the few MeV energy region are reported. The total cross section difference Δσ T for transversely polarized target and beam has been measured for neutron energies between 1.9 and 7.5 MeV. Comparison is made to predictions of Δσ T using various descriptions of the 4 He continuum. A brute-force polarized target of solid 3 He has been developed for these measurements. The target is 4.3x10 22 atoms/cm 2 thick and is polarized to 38% at 7 Telsa and 12 mK. copyright 1995 American Institute of Physics

  6. On the dependence of quasipotential on the total energy of a two-particle system

    International Nuclear Information System (INIS)

    Kapshaj, V.N.; Savrin, V.I.

    1986-01-01

    For a system of two relativistic particles described in the framework of the Logunov-Tavkhelidze one-time approach the dependence is calculated of the one-boson exchange potential on the total energy of the system. It is shown that in spite of a nonlocal form of the quasipotential obtained, three-dimensional equations for the wave function are reduced to one-dimensional ones by means of partial expansion. Influence of the energy dependence of the quasipotential on its behaviour in the coordinate representation is discussed

  7. Z3 -vertex magic total labeling and Z3 -edge magic total labelingfor the extended duplicate graph of quadrilateral snake

    Science.gov (United States)

    Indira, P.; Selvam, B.; Thirusangu, K.

    2018-04-01

    Based on the works of Kotzig, Rosa and MacDougall et.al., we present algorithms and prove the existence of Z3-vertex magic total labeling and Z3-edge magic total labeling for the extended duplicate graph of quadrilateral snake.

  8. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China.

    Science.gov (United States)

    Lu, Senlin; Tan, Zhengying; Liu, Pinwei; Zhao, Hui; Liu, Dingyu; Yu, Shang; Cheng, Ping; Win, Myat Sandar; Hu, Jiwen; Tian, Linwei; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2017-11-01

    Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 μm, Fe-bearing particles range from 0.56 to 1.0 μm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 μm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A Critical Shock Mach Number for Particle Acceleration in the Absence of Pre-existing Cosmic Rays: M = √5

    NARCIS (Netherlands)

    Vink, J.; Yamazaki, R.

    2014-01-01

    It is shown that, under some generic assumptions, shocks cannot accelerate particles unless the overall shock Mach number exceeds a critical value M > √5. The reason is that for M ≤ √5 the work done to compress the flow in a particle precursor requires more enthalpy flux than the system can sustain.

  10. Particle emissions from compressed natural gas engines

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Morawska, L.; Hitchins, J.; Thomas, S.; Greenaway, C.; Gilbert, D.

    2000-01-01

    This paper presents the results of measurements conducted to determine particle and gas emissions from two large compressed natural gas (CNG) spark ignition (SI) engines. Particle size distributions in the range from 0.01-30 μm, and gas composition were measured for five power settings of the engines: 35, 50, 65, 80 and 100% of full power. Particle emissions in the size range between 0.5 and 30 μm, measured by the aerodynamic particle sizer (APS), were very low at a level below two particles cm -3 . These concentrations were comparable with average ambient concentration, and were not considered in the succeeding analysis. Both engines produce significant amounts of particles in the size range between 0.015 and 0.7 μm, measured by the scanning mobility particle size (SMPS). Maximum number of concentrations of about 1 x 10 7 particles cm -3 were very similar for both engines. The CMDs were in the range between 0.020 and 0.060 μm. The observed levels of particulate emission are in terms of number of the same order as emissions from heavy duty diesel engines (Morawska et al., Environ. Sci. Tech. 32, 2033-2042). On the other hand, emissions of CO and NO x of 5.53 and 3.33 g k W h -1 , respectively, for one of the tested engines, were considerably lower than set by the standards. According to the specifications for the gas emissions, provided by the US EPA (US EPA, 1997), this engine can be considered as a 'low-emission' engine, although emissions of submicrometer particles are of the same order as heavy-duty vehicles. (Author)

  11. Distribution of polyethylene wear debris and bone particles in granuloma tissue around total hip joint replacements

    Czech Academy of Sciences Publication Activity Database

    Zolotarevova, E.; Lapčíková, Monika; Šlouf, Miroslav; Entlicher, G.; Pokorný, D.; Veselý, F.; Sosna, A.

    2008-01-01

    Roč. 18, č. 2 (2008), s. 173-174 ISSN 1120-7000. [Domestic Meeting of the European Hip Society /8./. 11.06.2008-13.06.2008, Madrid] R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : wear debris * bone particles * total hip joint replacement Subject RIV: CD - Macromolecular Chemistry www. hip -int.com

  12. Mechanical Coating of Zinc Particles with Bi2O3-Li2O-ZnO Glasses as Anode Material for Rechargeable Zinc-Based Batteries

    Directory of Open Access Journals (Sweden)

    Tobias Michlik

    2018-02-01

    Full Text Available The electrochemical performance of zinc particles with 250 μm and 30 μm diameters, coated with Bi2O3-Li2O-ZnO glass is investigated and compared with noncoated zinc particles. Galvanostatic investigations were conducted in the form of complete discharge and charging cycles in electrolyte excess. Coated 30 μm zinc particles provide the best rechargeability after complete discharge. The coatings reached an average charge capacity over 20 cycles of 113 mAh/g compared to the known zero rechargeability of uncoated zinc particles. Proposed reasons for the prolonged cycle life are effective immobilization of discharge products in the glass layer and the formation of percolating metallic bismuth and zinc phases, forming a conductive network through the glass matrix. The coating itself is carried out by mechanical ball milling. Different coating parameters and the resulting coating quality as well as their influence on the passivation and on the rechargeability of zinc–glass composites is investigated. Optimized coating qualities with respect to adhesion, homogeneity and compactness of the glass layer are achieved at defined preparation conditions, providing a glass coating content of almost 5 wt % for 250 μm zinc particles and almost 11 wt % for 30 μm zinc particles.

  13. Physical and chemical characteristics including total and geochemical forms of phosphorus in sediment from the top 30 centimeters of cores collected in October 2006 at 26 sites in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Simon, Nancy S.; Ingle, Sarah N.

    2011-01-01

    μThis study of phosphorus (P) cycling in eutrophic Upper Klamath Lake (UKL), Oregon, was conducted by the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation. Lakebed sediments from the upper 30 centimeters (cm) of cores collected from 26 sites were characterized. Cores were sampled at 0.5, 1.5, 2.5, 3.5, 4.5, 10, 15, 20, 25, and 30 cm. Prior to freezing, water content and sediment pH were determined. After being freeze-dried, all samples were separated into greater than 63-micron (μm) particle-size (coarse) and less than 63-μm particle-size (fine) fractions. In the surface samples (0.5 to 4.5 cm below the sediment water interface), approximately three-fourths of the particles were larger than 63-μm. The ratios of the coarse particle-size fraction (>63 μm) and the fine particle-size fraction (determination of total concentrations of aluminum (Al), calcium (Ca), carbon (C), iron (Fe), poorly crystalline Fe, nitrogen (N), P, and titanium (Ti). Total Fe concentrations were the largest in sediment from the northern portion of UKL, Howard Bay, and the southern portion of the lake. Concentrations of total Al, Ca, and Ti were largest in sediment from the northern, central, and southernmost portions of the lake and in sediment from Howard Bay. Concentrations of total C and N were largest in sediment from the embayments and in sediment from the northern arm and southern portion of the lake in the general region of Buck Island. Concentrations of total C were larger in the greater than 63-μm particle-size fraction than in the less than 63-μm particle-size fraction. Sediments were sequentially extracted to determine concentrations of inorganic forms of P, including loosely sorbed P, P associated with poorly crystalline Fe oxides, and P associated with mineral phases. The difference between the concentration of total P and sum of the concentrations of inorganic forms of P is referred to as residual P. Residual P was the largest fraction of P in all

  14. Estado oxidante/antioxidante total em recém-nascidos ictéricos antes e depois da fototerapia Total oxidant/antioxidant status in jaundiced newborns before and after phototherapy

    Directory of Open Access Journals (Sweden)

    Ali Aycicek

    2007-08-01

    Full Text Available OBJETIVO: Avaliar o efeito da fototerapia no estado oxidante e antioxidante no soro de recém-nascidos a termo com hiperbilirrubinemia. MÉTODO: Trinta e quatro recém-nascidos a termo com idades entre 3 e 10 dias submetidos a fototerapia foram avaliados. O estado antioxidante do soro foi determinado pela capacidade antioxidante total e por componentes antioxidantes individuais: vitamina C, ácido úrico, albumina, concentração de tiol e bilirrubina total. O estado oxidante foi avaliado através do estado oxidante total, índice de estresse oxidativo e componentes oxidantes individuais: malondialdeído e níveis de hidroperóxido lipídico. RESULTADOS: As concentrações de vitamina C, ácido úrico, bilirrubina total e malondialdeído foram significativamente mais baixas, enquanto que o estado oxidante total, níveis de hidroperóxido lipídico e o índice de estresse oxidativo foram significativamente maiores após a fototerapia (p OBJECTIVE: To assess the effect of phototherapy on serum oxidant and antioxidant status in hyperbilirubinemic full-term newborns. METHOD: Thirty-four full-term infants from 3 to 10 days of age exposed to phototherapy were studied. The serum antioxidant status was assessed by measuring the total antioxidant capacity (TAC and individual antioxidant components: vitamin C, uric acid, albumin, thiol contents and total bilirubin. The oxidant status was assessed by determining the total oxidant status (TOS, oxidative stress index (OSI and individual oxidant components: malondialdehyde (MDA, and lipid hydroperoxide levels. RESULTS: Vitamin C, uric acid, total bilirubin and MDA concentration were significantly lower, whereas serum TOS, lipid hydroperoxide and OSI levels were significantly higher after phototherapy (p < 0.05. There were significant positive correlations between serum total bilirubin and MDA (r = 0.434, p = 0.001. CONCLUSIONS: Although the MDA level was reduced after phototherapy, phototherapy has a negative

  15. Summer–winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting

    International Nuclear Information System (INIS)

    Wang Thanh; Han Shanlong; Yuan Bo; Zeng Lixi; Li Yingming; Wang Yawei; Jiang Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9–33.0 ng/m 3 during wintertime. Significantly higher levels were found during the summer (range 112–332 ng/m 3 ). The average fraction of total SCCPs in the particle phase (φ) was 0.67 during wintertime but decreased significantly during the summer (φ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol–air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge–Pankow adsorption and K oa -based absorption models. - Highlights: ► Short chain chlorinated paraffins were investigated in air samples from Beijing. ► Higher levels of SCCPs were found in air during summertime than wintertime. ► Relevant physical–chemical properties were estimated by SPARC and EPI Suite. ► Obtained data were used to model the gas-particle partitioning of SCCPs. - Atmospheric levels and gas-particle partitioning of SCCPs in Beijing, China.

  16. The fine particle emissions of energy production in Finland

    International Nuclear Information System (INIS)

    Ohlstroem, M.

    1998-01-01

    The main purpose of this master's thesis was to define the fine particle (PM2.5, diameter under 2,5 μm) emissions of the energy production and to compare the calculated emission factors between different energy production concepts. The purpose was also to define what is known about fine particle emissions and what should still be studied/measured. The purpose was also to compare briefly the fine particle emissions of energy production and vehicle traffic, and their correlations to the fine particle concentrations of urban air. In the theory part of this work a literature survey was made about fine particles in energy production, especially how they form and how they are separated from the flue gas. In addition, the health effects caused by fine particles, and different measuring instruments were presented briefly. In the experimental part of this work, the aim was to find out the fine particle emissions of different energy production processes by calculating specific emission factors (mg/MJ fuel ) from powerplants' annual total particulate matter emissions (t/a), which were obtained from VAHTI-database system maintained by the Finnish Environmental Institute, and by evaluating the share of fine particles from total emissions with the help of existing measurement results. Only those energy production processes which produce significantly direct emissions of solid particles have been treated (pulverised combustion and oil burners from burner combustion, fluidized bed combustion processes, grate boilers, recovery boilers and diesel engines). The processes have been classified according to boiler type, size category, main fuel and also according to dust separation devices. To be able to compare different energy production processes, shared specific emission factor have been calculated for the similar subprocesses. The fine particle emissions depend strongest on the boiler size category and dust separation devices used. Spent fuel or combustion technique does not have

  17. Direct determination of highly size-resolved turbulent particle fluxes with the disjunct eddy covariance method and a 12 – stage electrical low pressure impactor

    Directory of Open Access Journals (Sweden)

    A. Schmidt

    2008-12-01

    Full Text Available During summer 2007, turbulent vertical particle mass and number fluxes were measured for a period of 98 days near the city centre of Münster in north-west Germany. For this purpose, a valve controlled disjunct eddy covariance system was mounted at 65 m a.g.l. on a military radio tower. The concentration values for 11 size bins with aerodynamic diameters (D50 from 0.03 to 10 μm were measured with an electrical low pressure impactor. After comparison with other fluxes obtained from 10 Hz measurements with the classical eddy covariance method, the loss of information concerning high frequent parts of the flux could be stated as negligible. The results offer an extended insight in the turbulent atmospheric exchange of aerosol particles by highly size-resolved particle fluxes covering 11 size bins and show that the city of Münster acts as a relevant source for aerosol particles.

    Significant differences occur between the fluxes of the various particle size classes. While the total particle number flux shows a pattern which is strictly correlated to the diurnal course of the turbulence regime and the traffic intensity, the total mass flux exhibits a single minimum in the evening hours when coarse particles start to deposit.

    As a result, a mean mass deposition of about 10 mg m−2 per day was found above the urban test site, covering the aerosol size range from 40 nm to 2.0 μm. By contrast, the half-hourly total number fluxes accumulated over the lower ELPI stages range from −4.29×107 to +1.44×108 particles m−2 s−1 and are clearly dominated by the sub-micron particle fraction of the impactor stages with diameters between 40 nm and 320 nm. The averaged number fluxes of particles with diameters between 2.0 and 6.4 μm show lower turbulent dynamics during daytime and partially remarkably high negative fluxes with mean deposition velocities of 2×103 m

  18. Indoor and Outdoor Levels and Sources of Submicron Particles (PM1) at Homes in Edmonton, Canada.

    Science.gov (United States)

    Bari, Md Aynul; Kindzierski, Warren B; Wallace, Lance A; Wheeler, Amanda J; MacNeill, Morgan; Héroux, Marie-Ève

    2015-06-02

    Exposure to submicron particles (PM1) is of interest due to their possible chronic and acute health effects. Seven consecutive 24-h PM1 samples were collected during winter and summer 2010 in a total of 74 nonsmoking homes in Edmonton, Canada. Median winter concentrations of PM1 were 2.2 μg/m(3) (interquartile range, IQR = 0.8-6.1 μg/m(3)) and 3.3 μg/m(3) (IQR = 1.5-6.9 μg/m(3)) for indoors and outdoors, respectively. In the summer, indoor (median 4.4 μg/m(3), IQR = 2.4-8.6 μg/m(3)) and outdoor (median 4.3 μg/m(3), IQR = 2.6-7.4 μg/m(3)) levels were similar. Positive matrix factorization (PMF) was applied to identify and apportion indoor and outdoor sources of elements in PM1 mass. Nine sources contributing to both indoor and outdoor PM1 concentrations were identified including secondary sulfate, soil, biomass smoke and environmental tobacco smoke (ETS), traffic, settled and mixed dust, coal combustion, road salt/road dust, and urban mixture. Three additional indoor sources were identified i.e., carpet dust, copper-rich, and silver-rich. Secondary sulfate, soil, biomass smoke and ETS contributed more than 70% (indoors: 0.29 μg/m(3), outdoors: 0.39 μg/m(3)) of measured elemental mass in PM1. These findings can aid understanding of relationships between submicron particles and health outcomes for indoor/outdoor sources.

  19. Level and Contamination Assessment of Environmentally Sensitive Elements in Smaller than 100 μm Street Dust Particles from Xining, China

    Directory of Open Access Journals (Sweden)

    Ni Zhao

    2014-02-01

    Full Text Available Concentrations of the environmentally sensitive elements (ESEs As, Co, Cu, Mn, Ni, Pb, V and Zn in smaller than 100 μm street dust particles from Xining were measured using X-ray fluorescence spectrometry and their contamination levels were assessed based on enrichment factor (EF, geoaccumulation index (Igeo and pollution load index (PLI. The concentrations of As, Co, Cu, Mn, Ni, Pb, V and Zn in smaller than 100 μm street dust particles from Xining are 0.1–0.8, 2.7–10.9, 0.7–5.2, 0.3–1.1, 0.6–2.5, 1.2–11.1, 0.7–1.3 and 0.4–2.9 times the background values of Qinghai soil, respectively. The calculated EF and Igeo values reveal the order Co > Pb > Cu > Zn > V > Ni > Mn > As. The EF and Igeo values of Co, Cu, Pb and Zn are higher indicating that there is considerable pollution by these elements in smaller than 100 μm street dust particles, especially for Co. The EF and Igeo of Mn, Ni and V are lower and the assessment results indicate an absence of distinct Mn, Ni and V pollution in the studied samples. The mean value of PLIsite is 1.14, indicating a slightly pollution in the whole city of Xining. The order of PLIarea for the five tested districts is Center District (CD > East District (ED > West District (WD > North District (ND > South District (SD, showing that ESEs pollution in the South District is the lightest while it is the highest in the Central District.

  20. The response of macrophages to titanium particles is determined by macrophage polarization.

    Science.gov (United States)

    Pajarinen, Jukka; Kouri, Vesa-Petteri; Jämsen, Eemeli; Li, Tian-Fang; Mandelin, Jami; Konttinen, Yrjö T

    2013-11-01

    Aseptic loosening of total joint replacements is driven by the reaction of macrophages to foreign body particles released from the implant. It was hypothesized that the macrophages' response to these particles is dependent, in addition to particle characteristics and contaminating biomolecules, on the state of macrophage polarization as determined by the local cytokine microenvironment. To test this hypothesis we differentiated M1 and M2 macrophages from human peripheral blood monocytes and compared their responses to titanium particles using genome-wide microarray analysis and a multiplex cytokine assay. In comparison to non-activated M0 macrophages, the overall chemotactic and inflammatory responses to titanium particles were greatly enhanced in M1 macrophages and effectively suppressed in M2 macrophages. In addition, the genome-wide approach revealed several novel, potentially osteolytic, particle-induced mediators, and signaling pathway analysis suggested the involvement of toll-like and nod-like receptor signaling in particle recognition. It is concluded that the magnitude of foreign body reaction caused by titanium particles is dependent on the state of macrophage polarization. Thus, by limiting the action of M1 polarizing factors, e.g. bacterial biofilm formation, in peri-implant tissues and promoting M2 macrophage polarization by biomaterial solutions or pharmacologically, it might be possible to restrict wear-particle-induced inflammation and osteolysis. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen; Joram, Christian; CERN. Geneva

    1991-01-01

    Lecture 5: Detector characteristics: ALEPH Experiment cut through the devices and events - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operartion and a few ideas on the future performance. Lecture 4-pt. b Following the Scintillators. Lecture 4-pt. a : Scintillators - Used for: -Timing (TOF, Trigger) - Energy Measurement (Calorimeters) - Tracking (Fibres) Basic scintillation processes- Inorganic Scintillators - Organic Scintil - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operation and a fiew ideas on future developpement session 3 - part. b Following Calorimeters lecture 3-pt. a Calorimeters - determine energy E by total absorption of charged or neutral particles - fraction of E is transformed into measurable quantities - try to acheive sig...

  2. Far-infrared laser interferometry measurements on the STP-3(M) reversed-field pinch

    International Nuclear Information System (INIS)

    Kubota, Shigeyuki; Nagatsu, Masaaki; Tsukishima, Takashige; Arimoto, Hideki; Sato, Koichi; Matsuoka, Akio.

    1993-09-01

    Far-infrared laser interferometry at 432 μm was carried out on the STP-3(M) reversed-field pinch. Measurements along two vertical chords showed a change from a parabolic-like to a flat-like electron density profile after field reversal. A density profile inversion and a correlated toroidal magnetic flux perturbation were also observed during the transition from the current rising to the current decay phase. Measurements of electron density fluctuations indicated relative fluctuation levels of ∼10% for both chords during the current rising phase and ∼5% and ∼15% during the current decay phase for the central and outer chords, respectively. Spectral analysis showed a ∼30 kHz mode consistent with poloidal mode number m=0 magnetic fluctuations, and a ∼90 kHz mode localized to the outer region of the plasma, which was strongly excited during the current decay phase and may be connected to particle and energy transport in STP-3(M). (author)

  3. Classification of acute myeloid leukemia subtypes M1, M2 and M3 using active contour without edge segmentation and momentum backpropagation artificial neural network

    Directory of Open Access Journals (Sweden)

    Harjoko Agus

    2018-01-01

    Full Text Available Acute Myeloid Leukemia (AML is a type of cancer which attacks white blood cells from myeloid. AML has eight subtypes, namely: M0, M1, M2, M3, M4, M5, M6, and M7. AML subtypes M1, M2 and M3 are affected by the same type of cells, myeloblast, making it needs more detailed analysis to distinguish. To overcome these obstacles, this research is applying digital image processing with Active Contour Without Edge (ACWE and Momentum Backpropagation artificial neural network for AML subtypes M1, M2 and M3 classification based on the type of the cell. Six features required as training parameters from every cell obtained by using feature extraction. The features are: cell area, perimeter, circularity, nucleus ratio, mean and standard deviation. The results show that ACWE can be used for segmenting white blood cells with 83.789% success percentage of 876 total cell objects. The whole AML slides had been identified according to the cell types predicted number through training with momentum backpropagation. Five times testing calibration with the best parameter generated averages value of 84.754% precision, 75.887% sensitivity, 95.090% specificity and 93.569% accuracy.

  4. Computationally efficient storage of 3D particle intensity and position data for use in 3D PIV and 3D PTV

    International Nuclear Information System (INIS)

    Atkinson, C; Buchmann, N A; Soria, J

    2013-01-01

    Three-dimensional (3D) volumetric velocity measurement techniques, such as tomographic or holographic particle image velocimetry (PIV), rely upon the computationally intensive formation, storage and localized interrogation of multiple 3D particle intensity fields. Calculation of a single velocity field typically requires the extraction of particle intensities into tens of thousands of 3D sub-volumes or discrete particle clusters, the processing of which can significantly affect the performance of 3D cross-correlation based PIV and 3D particle tracking velocimetry (PTV). In this paper, a series of popular and customized volumetric data formats are presented and investigated using synthetic particle volumes and experimental data arising from tomographic PIV measurements of a turbulent boundary layer. Results show that the use of a sub-grid ordered non-zero intensity format with a sub-grid size of 16 × 16 × 16 points provides the best performance for cross-correlation based PIV analysis, while a particle clustered non-zero intensity format provides the best format for PTV applications. In practical tomographic PIV measurements the sub-grid ordered non-zero intensity format offered a 29% improvement in reconstruction times, while providing a 93% reduction in volume data requirements and a 28% overall improvement in cross-correlation based velocity analysis and validation times. (paper)

  5. Comparison of three different C18 HPLC columns with different particle sizes for the optimization of aflatoxins analysis.

    Science.gov (United States)

    Medina, A; Magan, N

    2012-03-15

    In this work we compared the performance of chromatography columns with particles of 5 and 3 μm with the new 2.7 μm solid core particles for the analysis of aflatoxins B1, G1, B2, and G2 using trifluoroacetic acid pre-column derivatization. Three different columns have been used and chromatographic parameters as retention time, resolution, limit of detection (LOD), limit of quantification (LOQ) were obtained from all of them and compared. The results show that comparing with the traditional columns, shorter columns (100 mm × 4.6 mm) with the new solid core particles are suitable for the analysis of these mycotoxins and allowed the reduction of the analysis time by 45.5% and 33.3% with respect to columns with particle size 5 μm (150 mm × 4.6 mm) and 3 μm (150 mm × 4.6 mm) respectively, without any detrimental effect on performance. This leads to the reduction of the analysis costs by saving on organic solvents and increasing the total number of analyses per day. The capability of these columns for analyzing samples, in different culture media, was assessed by analyzing different samples from: yeasts extract sucrose medium, corn meal agar medium and fresh hazelnut media. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Dispersion of small particles in a tornado

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1975-05-01

    Based on 22 years of tornado statistics for South Carolina and Georgia, the probability of a tornado of Class F3 or greater striking a point at the Savannah River Plant is calculated to be approximately 14 x 10 -5 per year. These statistics show that Class F3 tornados (0.56-psi pressure drop and winds of 158 to 206 mph), are the most frequently occurring but cause only 23 percent of the damage compared with all classes of tornadoes. F4 tornadoes (1.10-psi pressure drop and winds of 207 to 260 mph) constitute only 20 percent of the total, but cause 63 percent of the damage. A Gaussian diffusion model is used to calculate the ground level concentration (ratio of concentration to source mass chi/Q) as a function of distance downwind should a tornado strike a point within the Savannah River Plant (SRP). The particles released to the atmosphere are assumed to be 1 to 3m diameter. For the calculations, two cases of possible small particle pickup are considered. In Case I a unit source of small particles is assumed to be injected into the tornado core and transported into the thunderstorm. In Case II, the cluster of particles is assumed to exit the side of the tornado core below the thunderstorm cloud. Several different stabilization heights within the thunderstorm, different horizontal wind speeds, and different turbulence dissipation rates are assumed for the calculations. (U.S.)

  7. Sharpening m{sub T2} cusps. The mass determination of semi-invisibly decaying particles from a resonance

    Energy Technology Data Exchange (ETDEWEB)

    Harland-Lang, Lucian A. [Durham Univ. (United Kingdom). Dept. of Physics; Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Kom, Chun-Hay [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Sakurai, Kazuki [King' s College London (United Kingdom). Theoretical Particle Physics and Cosmology Group; Tonini, Marco [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-12-15

    We revisit mass determination techniques for the minimum symmetric event topology, namely X pair production followed by X{yields}lN, where X and N are unknown particles with the masses to be measured, and N is an invisible particle. We consider separate scenarios, with different initial constraints on the invisible particle momenta, and present a systematic method to identify the kinematically allowed mass regions in the (m{sub N},m{sub X}) plane. These allowed regions exhibit a cusp structure at the true mass point, which is equivalent to the one observed in the m{sub T2} endpoints in certain cases. By considering the boundary of the allowed mass region we systematically define kinematical variables which can be used in measuring the unknown masses, and find a new expression for the m{sub T2} variable as well as its inverse. We explicitly apply our method to the case that X is pair produced from a resonance, and as a case study, we consider the process pp {yields} A {yields} {chi}{sup +}{sub 1}{chi}{sup -}{sub 1}, followed by {chi}{sup {+-}}{sub 1} {yields} l{nu}, in the minimal supersymmetric standard model and show that our method provides a precise measurement of the chargino and sneutrino masses, m{sub X} and m{sub N}, at 14 TeV LHC with 300 fb{sup -1} luminosity.

  8. Particle trapping in 3-D using a single fiber probe with an annular light distribution.

    Science.gov (United States)

    Taylor, R; Hnatovsky, C

    2003-10-20

    A single optical fiber probe has been used to trap a solid 2 ìm diameter glass bead in 3-D in water. Optical confinement in 2-D was produced by the annular light distribution emerging from a selectively chemically etched, tapered, hollow tipped metalized fiber probe. Confinement of the bead in 3-D was achieved by balancing an electrostatic force of attraction towards the tip and the optical scattering force pushing the particle away from the tip.

  9. Monitoring total endotoxin and (1 --> 3)-beta-D-glucan at the air exhaust of concentrated animal feeding operations.

    Science.gov (United States)

    Yang, Xufei; Wang, Xinlei; Zhang, Yuanhui; Lee, Jongmin; Su, Jingwei; Gates, Richard S

    2013-10-01

    Mitigation of bioaerosol emissions from concentrated animal feeding operations (CAFOs) demands knowledge of bioaerosol concentrations feeding into an end-of-pipe air treatment process. The aim of this preliminary study was to measure total endotoxin and (1 --> 3)-beta-glucan concentrations at the air exhaust of 18 commercial CAFOs and to examine their variability with animal operation type (swine farrowing, swine gestation, swine weaning, swine finishing, manure belt laying hen, and tom turkey) and season (cold, mild, and hot). The measured airborne concentrations of total endotoxin ranged from 98 to 23,157 endotoxin units (EU)/m3, and the airborne concentrations of total (1 --> 3)-beta-D-glucan ranged from 2.4 to 537.9 ng/m3. Animal operation type in this study had a significant effect on airborne concentrations of total endotoxin and (1 --> 3)-beta-D-glucan but no significant effect on their concentrations in total suspended particulate (TSP). Both endotoxin and (1 --> 3)-beta-D-glucan attained their highest airborne concentrations in visited tom turkey buildings. Comparatively, season had no significant effect on airborne concentrations of total endotoxin or (1 --> 3)-beta-D-glucan. Endotoxin and (1 --> 3)-beta-glucan concentrations in TSP dust appeared to increase as the weather became warmer, and this seasonal effect was significant in swine buildings. Elevated indoor temperatures in the hot season were considered to facilitate the growth and propagation of bacteria and fungi, thus leading to higher biocomponent concentrations in TSP.

  10. A Shift in ApoM/S1P Between HDL-Particles in Women With Type 1 Diabetes Mellitus Is Associated With Impaired Anti-Inflammatory Effects of the ApoM/S1P Complex.

    Science.gov (United States)

    Frej, Cecilia; Mendez, Armando J; Ruiz, Mario; Castillo, Melanie; Hughes, Thomas A; Dahlbäck, Björn; Goldberg, Ronald B

    2017-06-01

    Type 1 diabetes mellitus (T1D) patients have an increased risk of cardiovascular disease despite high levels of high-density lipoproteins (HDL). Apolipoprotein M (apoM) and its ligand sphingosine 1-phospate (S1P) exert many of the anti-inflammatory effects of HDL. We investigated whether apoM and S1P are altered in T1D and whether apoM and S1P are important for HDL functionality in T1D. ApoM and S1P were quantified in plasma from 42 healthy controls and 89 T1D patients. HDL was isolated from plasma and separated into dense, medium-dense, and light HDL by ultracentrifugation. Primary human aortic endothelial cells were challenged with tumor necrosis factor-α in the presence or absence of isolated HDL. Proinflammatory adhesion molecules E-selectin and vascular cellular adhesion molecule-1 were quantified by flow cytometry. Activation of the S1P 1 - receptor was evaluated by analyzing downstream signaling targets and receptor internalization. There were no differences in plasma levels of apoM and S1P between controls and T1D patients, but the apoM/S1P complexes were shifted from dense to light HDL particles in T1D. ApoM/S1P in light HDL particles from women were less efficient in inhibiting expression of vascular cellular adhesion molecule-1 than apoM/S1P in denser particles. The light HDL particles were unable to activate Akt, whereas all HDL subfractions were equally efficient in activating Erk and receptor internalization. ApoM/S1P in light HDL particles were inefficient in inhibiting tumor necrosis factor-α-induced vascular cellular adhesion molecule-1 expression in contrast to apoM/S1P in denser HDL particles. T1D patients have a higher proportion of light particles and hence more dysfunctional HDL, which could contribute to the increased cardiovascular disease risk associated with T1D. © 2017 American Heart Association, Inc.

  11. Atmospheric particles acting as ice forming nuclei in different size ranges and cloud condensation nuclei measurements

    International Nuclear Information System (INIS)

    Santachiara, G.; Di Matteo, L.; Belosi, F.; Prodi, F.

    2009-01-01

    Measurements of ice nuclei (I N) in different size classes of aerosol P M1, P M2.5, PM10, and total suspended particles (Tsp) were performed at a rural site (S.Pietro Capofiume, in the Po Valley, Italy). Simultaneous measurements of particle number concentrations were also made with a condensation nucleus counter (CN C-TSI), along with particle concentration in different size classes starting from diameter d > 0.3 μm (Optical Spectrometer Grimm, Mod.1.108). No correlation is observed between I N and the particle number concentration measured with the condensation nuclei counter, and there is only a weak correlation with the particle concentration measured using the optical counter, thus confirming the contribution of the accumulation and coarse aerosol fraction. A positive correlation is observed between supersaturation with respect to ice and water values and ice nuclei number concentration, and an exponential dependence of I N on temperature is found. In addition, cloud concentration nuclei (C CN) were measured. The present measurements reveal a diurnal trend, with lower values at about midday and higher ones during the night, a similar trend between C CN and the relative humidity, and opposite to the mixing layer height.

  12. Wintertime water-soluble aerosol composition and particle water content in Fresno, California

    Science.gov (United States)

    Parworth, Caroline L.; Young, Dominique E.; Kim, Hwajin; Zhang, Xiaolu; Cappa, Christopher D.; Collier, Sonya; Zhang, Qi

    2017-03-01

    The composition and concentrations of water-soluble gases and ionic aerosol components were measured from January to February 2013 in Fresno, CA, with a particle-into-liquid sampler with ion chromatography and annular denuders. The average (±1σ) ionic aerosol mass concentration was 15.0 (±9.4) µg m-3, and dominated by nitrate (61%), followed by ammonium, sulfate, chloride, potassium, nitrite, and sodium. Aerosol-phase organic acids, including formate and glycolate, and amines including methylaminium, triethanolaminium, ethanolaminium, dimethylaminium, and ethylaminium were also detected. Although the dominant species all came from secondary aerosol formation, there were primary sources of ionic aerosols as well, including biomass burning for potassium and glycolate, sea spray for sodium, chloride, and dimethylamine, and vehicles for formate. Particulate methanesulfonic acid was also detected and mainly associated with terrestrial sources. On average, the molar concentration of ammonia was 49 times greater than nitric acid, indicating that ammonium nitrate formation was limited by nitric acid availability. Particle water was calculated based on the Extended Aerosol Inorganics Model (E-AIM) thermodynamic prediction of inorganic particle water and κ-Köhler theory approximation of organic particle water. The average (±1σ) particle water concentration was 19.2 (±18.6) µg m-3, of which 90% was attributed to inorganic species. The fractional contribution of particle water to total fine particle mass averaged at 36% during this study and was greatest during early morning and night and least during the day. Based on aqueous-phase concentrations of ions calculated by using E-AIM, the average (±1σ) pH of particles in Fresno during the winter was estimated to be 4.2 (±0.2).

  13. Genotoxic effects of daily personal exposure to particle mass and number concentrations on buccal cells

    Science.gov (United States)

    de Almeida, Daniela S.; da Costa, Silvano César; Ribeiro, Marcos; Moreira, Camila A. B.; Beal, Alexandra; Squizzato, Rafaela; Rudke, Anderson Paulo; Rafee, Sameh Adib Abou; Martins, Jorge A.; Palioto, Graciana Freitas; Kumar, Prashant; Martins, Leila D.

    2018-03-01

    The aim of this study is to assess personal exposure to Particle Number Concentrations (PNC) in four size ranges between 0.3 and 10 μm, and particulate matter (PM1; PM2.5; PM4; PM10) in order to evaluate possible genotoxic effects through a comet assay in buccal cells. A convenience cohort of 30 individuals from a Brazilian medium-sized city was selected. These individuals aged between 20 and 61 and worked in typical job categories (i.e., administrative, commerce, education, general services and transport). They were recruited to perform personal exposure measurements during their typical daily routine activities, totaling 240 h of sampling. The 8-h average mass concentrations in air for volunteers ranged from 2.4 to 31.8 μg m-3 for PM1, 4.2-45.1 μg m-3 for PM2.5, 7.9-66.1 μg m-3 for PM4 and from 23.1 to 131.7 μg m-3 for PM10. The highest PNC variation was found for 0.3-0.5 range, between 14 and 181 particles cm-3, 1 to 14 particles cm-3 for the 0.5-1.0 range, 0.2 to 2 particles cm-3 for the 1.0-2.5 range, and 0.06 to 0.7 particles cm-3 for the 2.5-10 range. Volunteers in the 'education' category experienced the lowest inhaled dose of PM2.5, as opposed to those involved in 'commercial' activities with the highest doses for PM10 (1.63 μg kg-1 h-1) and PM2.5 (0.61 μg kg-1 h-1). The predominant cause for these high doses was associated with the proximity of the workplace to the street and vehicle traffic. The comet assay performed in buccal cells indicated that the volunteers in 'commerce' category experienced the highest damage to their DeoxyriboNucleic Acid (DNA) compared with the control category (i.e. 'education'). These results indicate the variability in personal exposure of the volunteers in different groups, and the potential damage to DNA was much higher for those spending time in close proximity to the vehicle sources (e.g. commercial services) leading to exposure to a higher fraction of fine particles. This study builds understanding on the exposure

  14. Co-formation of hydroperoxides and ultra-fine particles during the reactions of ozone with a complex VOC mixture under simulated indoor conditions

    DEFF Research Database (Denmark)

    Fan, Z.H.; Weschler, Charles J.; Han, IK

    2005-01-01

    In this study we examined the co-formation of hydrogen peroxide and other hydroperoxides (collectively presented as H2O2*) as well as submicron particles, including ultra-fine particles (UFP), resulting from the reactions of ozone (O-3) with a complex mixture of volatile organic compounds (VOCs...... higher than typical indoor levels. When O-3 was added to a 25-m(3) controlled environmental facility (CEF) containing the 23 VOC mixture, both H2O2* and submicron particles were formed. The 2-h average concentration of H2O2* was 1.89 +/- 0.30ppb, and the average total particle number concentration was 46...... to achieve saturated concentrations of the condensable organics. When the 2 terpenes were removed from the O-3/23 VOCs mixture, no H2O2* or particles were formed, indicating that the reactions of O-3 With the two terpenes were the key processes contributing to the formation of H2O2* and submicron particles...

  15. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    Science.gov (United States)

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  16. Particle size distribution and property of bacteria attached to carbon fines in drinking water treatment

    Directory of Open Access Journals (Sweden)

    Wang Leilei

    2008-06-01

    Full Text Available The quantitative change and size distribution of particles in the effluents from a sand filter and a granular activated carbon (GAC filter in a drinking water treatment plant were investigated. The average total concentration of particles in the sand filter effluent during a filter cycle was 148 particles/mL, 27 of which were larger than 2 µm in size. The concentration in the GAC effluent (561 particles/mL was significantly greater than that in the sand filter effluent. The concentration of particles larger than 2 µm in the GAC filter effluent reached 201 particles/mL, with the amount of particles with sizes between 2 µm and 15 µm increasing. The most probable number (MPN of carbon fines reached 43 unit/L after six hours and fines between 0.45 µm and 8.0 µm accounted for more than 50%. The total concentration of outflowing bacteria in the GAC filter effluent, 350 CFU (colony-forming units/mL, was greater than that in the sand filter effluent, 210 CFU/mL. The desorbed bacteria concentration reached an average of 310 CFU/mg fines. The disinfection efficiency of desorbed bacteria was lower than 40% with 1.5 mg/L of chlorine. The disinfection effect showed that the inactivation rate with 2.0 mg/L of chloramine (90% was higher than that with chlorine (70%. Experimental results indicated that the high particle concentration in raw water and sedimentation effluent led to high levels of outflowing particles in the sand filter effluent. The activated carbon fines in the effluent accounted for a small proportion of the total particle amount, but the existing bacteria attached to carbon fines may influence the drinking water safety. The disinfection efficiency of desorbed bacteria was lower than that of free bacteria with chlorine, and the disinfection effect on bacteria attached to carbon fines with chloramine was better than that with only chlorine.

  17. Generation of 1.3 μm and 1.5 μm high-energy Raman radiations in α-BaTeMo2O9 crystals

    Science.gov (United States)

    Liu, Shande; Zhang, Junjie; Gao, Zeliang; Wei, Lei; Zhang, Shaojun; He, Jingliang; Tao, Xutang

    2014-02-01

    The generations of high energy 2nd- and 3rd-order stimulated Raman scattering lasers based on the α-BaTeMo2O9 crystal were demonstrated for the first time. The Raman gain coefficient has been compared with that of the YVO4 crystal. A maximum total Stokes radiation energy of 27.3 mJ was obtained, containing 20.1 mJ 2nd-order Stokes energy at 1318 nm, together with 7.2 mJ 3rd-order Stokes energy at 1497 nm, giving an overall conversion efficiency of 35.9% and a slope efficiency of 54.5%. With an optical coating design, a total 3rd- and 4th-order Stokes energy of 16.5 mJ was generated. The maximum energy for 4th-order Stokes radiation at 1731 nm was 2 mJ. The pulse durations for the 2nd-, 3rd-, and 4th-order Stokes shift were 10 ns, 8.6 ns, and 5.2 ns, respectively. Our experimental results show that the α-BTM crystal is a promising Raman crystal for the generations of eye-safe radiations.

  18. Total and regional deposition of inhaled aerosols in supine healthy subjects and subjects with mild-to-moderate COPD

    Energy Technology Data Exchange (ETDEWEB)

    Darquenne, Chantal; Lamm, Wayne J.; Fine, Janelle M.; Corley, Richard A.; Glenny, Robb W.

    2016-09-01

    Despite substantial development of sophisticated subject-specific computational models of aerosol transport and deposition in human lungs, experimental validation of predic- tions from these new models is sparse. We collected aerosol retention and exhalation profiles in seven healthy volunteers and six subjects with mild-to-moderate COPD (FEV1 ¼ 50–80%predicted) in the supine posture. Total deposition was measured during continuous breathing of 1 and 2.9 mm-diameter particles (tidal volume of 1 L, flow rate of 0.3 L/s and 0.75 L/s). Bolus inhalations of 1 mm particles were performed to penetration volumes of 200, 500 and 800 mL (flow rate of 0.5 L/s). Aerosol bolus dispersion (H), deposition, and mode shift (MS) were calculated from these data. There was no significant difference in total deposition between healthy subjects and those with COPD. Total deposition increased with increasing particle size and also with increasing flow rate. Similarly, there was no significant difference in aerosol bolus deposition between subject groups. Yet, the rate of increase in dispersion and of decrease in MS with increasing penetration volume was higher in subjects with COPD than in healthy volunteers (H: 0.79870.205 vs. 0.52770.122 mL/mL, p¼ 0.01; MS: - 0.27170.129 vs. - 0.145 70.076 mL/mL, p¼ 0.05) indicating larger ventilation inhomogeneities (based on H) and increased flow sequencing (based on MS) in the COPD than in the healthy group. In conclusion, in the supine posture, deposition appears to lack sensitivity for assessing the effect of lung morphology and/or ventilation distribution alteration induced by mild-to- moderate lung disease on the fate of inhaled aerosols. However, other parameters such as aerosol bolus dispersion and mode shift may be more sensitive parameters for evaluating models of lungs with moderate disease.

  19. Total and size-resolved particle number and black carbon concentrations in urban areas near Schiphol airport (the Netherlands)

    NARCIS (Netherlands)

    Keuken, M.P.; Moerman, M.; Zandveld, P.; Henzing, J.S.; Hoek, G.

    2015-01-01

    The presence of black carbon, and size-resolved and total particle number concentrations (PNC) were investigated in the vicinity of Schiphol airport in the Netherlands, the fourth busiest airport in Europe. Continuous measurements were conducted between March and May 2014at Adamse Bos, located 7km

  20. A study of the behaviour of 0.5 μm aerosol particles in the human lung

    International Nuclear Information System (INIS)

    Subba Ramu, M.C.

    1974-01-01

    The evaluation of the tissue dose of inhaled aerosol particles (including radioactive particles) requires a study of the behaviour of particles in the human lung. Half-micron particles (unit density spheres) of di-2-ethyl hexyl subacate have been used for carrying out the study since their deposition is mostly in the pulmonary region and they are good tracers of air flow in the lung. The deposition measured is the lowest reported so far and is affected by physiological parameters like the tidal volume, the breathing frequency and the resting expiratory level. Steady-state and single-breath aerosol experiments show that the particles inhaled remain airborne in the lung during several breaths and support the view that mechanical mixing is completely absent in the alveolated airways of the lung. Studies of the effect of breath-holding on the deposition of 0.5 μm particles in the lung show that these particles may be used for the calculation of the diameter of the alveolar space in life. (author)

  1. A gold electrode modified with hemoglobin and the chitosan Fe3O4 nanocomposite particles for direct electrochemistry of hydrogen peroxide

    International Nuclear Information System (INIS)

    Wang, Yuan-Hong; Yu, Chun-Mei; Pan, Zhong-Qin; Wang, Yu-Fei; Guo, Jian-Wei; Gu, Hai-Ying

    2013-01-01

    We report on a novel electrochemical biosensor that was fabricated by immobilizing hemoglobin (Hb) onto the surface of a gold electrode modified with a chitosan Fe 3 O 4 nano-composite. The Fe 3 O 4 nanoparticles were prepared by co-precipitation and have an average size of 25 nm. They were dispersed in chitosan solution to obtain the chitosan Fe 3 O 4 nano-composite particles with an average diameter of 35 nm as verified by transmission electron microscopy. X-ray diffraction patterns and Fourier transform IR spectroscopy confirmed that the crystallite structure of the Fe 3 O 4 particles in the nano-composite has remained unchanged. At pH 7.0, Hb gives a pair of redox peaks with a potential of about −0.21 V and −0.36 V. The Hb on the film maintained its biological activity and displays good electrocatalytic reduction activity towards hydrogen peroxide. The linear range for the determination of H 2 O 2 is from 2.3 μM to 9.6 mM, with a detection limit at 1.1 μM concentration (at S/N = 3). The apparent Michaelis-Menten constant is 3.7 mM and indicates the high affinity of Hb for H 2 O 2 . This biosensor also exhibits good reproducibility and long-term stability. Thus, it is expected to possess potential applications in the development of the third-generation electrochemical biosensors (author)

  2. The attachment of radon daughters to submicron aerosol particles

    International Nuclear Information System (INIS)

    Grenier, M.G.; Bigu, J.

    1984-04-01

    A study of the effects of aerosol concentration, aerosol size distribution and relative humidity on the Working Level and the radon daughter concentration was conducted in a 3000 L radon environmental chamber. Typical values of the aerosol concentration varied in the 1 x 10 3 particles/cm 3 to 4.5 x 10 5 particles/cm 3 range. Various size distributions of aerosols that have mean diffusional aerodynamic diameters of .025 μm, .045 μm and .090 μm were tested. A good correlation was found between the Working Level and the aerosol concentration as well as the relative humidity. Most of the activity seems to be associated with particles of diameter between .05 μm and .2 μm. The results presented here are in agreement with work done by other investigators in the health physics field

  3. Activity, size, and flux of resuspended particles from Rocky Flats soil

    International Nuclear Information System (INIS)

    Langer, G.

    1982-01-01

    Wind erosion processes that resuspend soil from Rocky Flats (rf) sites known as the pad field and the east field were studied. The soil in these sites contains above background amounts of Pu and Am. The following five major areas of concern were studied: Pu levels in source area soil; total Pu activity and activity-particle size relationship in the wind resuspended dust; culpability of suspected source areas for Pu activity reported by the RF surveillance samplers; Pu activity in the respirable and coarse fraction of wind resuspended dust; Pu activity in resuspended dust from wind tunnel simulations of wind erosion. Results indicate that Pu attached to wind blown dust from the pad field and the east field at rf does not present a health hazard. The Pu carrying dust particles are too large (> 3 μm) to be respirable and most are above the inhalable size (> 10 μm). For the July 1981 to March 1982 period, 90% of the Pu collected by the surveillance samplers east of the pad field originated from this field. For those months 90% of the winds over 14 m/s originated from the two western quadrants. Winds over 14 m/s resuspend most of the dust. From April to June 1982 there were no winds over 14 m/s and Pu originated about equally from the pad and east field. Wind tunnel resuspension of dust varied as the 2.8 to 4.2 power of wind speed for a soil moisture range of 14 to 1% respectively. Above 14% moisture little dust was resuspended. No measurable respirable particles (< 3 μm) were resuspended

  4. Trimble M3 1” and South Nts-362R Total Station Angle Measurement Accuracy Analysis

    Directory of Open Access Journals (Sweden)

    Oleniacz Grzegorz

    2017-03-01

    Full Text Available The main purpose of this study was to obtain information about the actual precision of angle measurements with two instruments (Trimble M3 1 "and South NTS-362R, realizable in given measurement conditions. This object is achieved by using a simplified method of testing instruments contained in the PN-ISO 17123-3 standard [1]. This is a continuation of research described in [2], carried out on the same test base, but this time in a different, less favorable field conditions. The use of the same instrument has created an opportunity to compare and analyze the measurement results. The scope of work includes the measurement and results preparation along with statistical processing of the obtained results for both instruments.

  5. Recombinant albumin monolayers on latex particles.

    Science.gov (United States)

    Sofińska, Kamila; Adamczyk, Zbigniew; Kujda, Marta; Nattich-Rak, Małgorzata

    2014-01-14

    The adsorption of recombinant human serum albumin (rHSA) on negatively charged polystyrene latex micro-particles was studied at pH 3.5 and the NaCl concentration range of 10(-3) to 0.15 M. The electrophoretic mobility of latex monotonically increased with the albumin concentration in the suspension. The coverage of adsorbed albumin was quantitatively determined using the depletion method, where the residual protein concentration was determined by electrokinetic measurements and AFM imaging. It was shown that albumin adsorption was irreversible. Its maximum coverage on latex varied between 0.7 mg m(-2) for 10(-3) M NaCl to 1.3 mg m(-2) for 0.15 M NaCl. The latter value matches the maximum coverage previously determined for human serum albumin on mica using the streaming potential method. The increase in the maximum coverage was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. These facts confirm that albumin adsorption at pH 3.5 is governed by electrostatic interactions and proceeds analogously to colloid particle deposition. The stability of albumin monolayers was measured in additional experiments where changes in the latex electrophoretic mobility and the concentration of free albumin in solutions were monitored over prolonged time periods. Based on these experimental data, a robust procedure of preparing albumin monolayers on latex particles of well-controlled coverage and molecule distribution was proposed.

  6. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark Raymond [Univ. of California, Berkeley, CA (United States)

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 μm were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the

  7. Influence of fixed and moving bed biofilters on micro particle dynamics in a recirculating aquaculture system

    DEFF Research Database (Denmark)

    Fernandes, Paulo; Pedersen, Lars-Flemming; Pedersen, Per Bovbjerg

    2017-01-01

    (Oncorhynchus mykiss), and operatedunder constant feed loading conditions (1 kg feed/m3of make-up water) for more than three months.Production or removal of micro particles according to biofilter mode of operation (FBB vs. MBB) wasassessed by operating all biofilters simultaneously as well as separately...... due to disintegration of particles inMBB. In the RAS, ammonia and nitrite were observed at concentrations below 0.20 mg N/L throughoutthe majority of the experiment. However, during the phase where only MBB were in operation, TAN(Total Ammonia Nitrogen) and nitrite levels increased significantly...

  8. M3 version 3.0: Verification and validation

    International Nuclear Information System (INIS)

    Gomez, Javier B.; Laaksoharju, Marcus; Skaarman, Erik; Gurban, Ioana

    2009-01-01

    Hydrochemical evaluation is a complex type of work that is carried out by specialists. The outcome of this work is generally presented as qualitative models and process descriptions of a site. To support and help to quantify the processes in an objective way, a multivariate mathematical tool entitled M3 (Multivariate Mixing and Mass balance calculations) has been constructed. The computer code can be used to trace the origin of the groundwater, and to calculate the mixing proportions and mass balances from groundwater data. The M3 code is a groundwater response model, which means that changes in the groundwater chemistry in terms of sources and sinks are traced in relation to an ideal mixing model. The complexity of the measured groundwater data determines the configuration of the ideal mixing model. Deviations from the ideal mixing model are interpreted as being due to reactions. Assumptions concerning important mineral phases altering the groundwater or uncertainties associated with thermodynamic constants do not affect the modelling because the calculations are solely based on the measured groundwater composition. M3 uses the opposite approach to that of many standard hydrochemical models. In M3, mixing is evaluated and calculated first. The constituents that cannot be described by mixing are described by reactions. The M3 model consists of three steps: the first is a standard principal component analysis, followed by mixing and finally mass balance calculations. The measured groundwater composition can be described in terms of mixing proportions (%), while the sinks and sources of an element associated with reactions are reported in mg/L. This report contains a set of verification and validation exercises with the intention of building confidence in the use of the M3 methodology. At the same time, clear answers are given to questions related to the accuracy and the precision of the results, including the inherent uncertainties and the errors that can be made

  9. Statistical modeling of road contribution as emission sources to total suspended particles (TSP) under MCF model downtown Medellin - Antioquia - Colombia, 2004

    International Nuclear Information System (INIS)

    Gomez, Miryam; Saldarriaga, Julio; Correa, Mauricio; Posada, Enrique; Castrillon M, Francisco Javier

    2007-01-01

    Sand fields, constructions, carbon boilers, roads, and biologic sources are air-contaminant-constituent factors in down town Valle de Aburra, among others. the distribution of road contribution data to total suspended particles according to the source receptor model MCF, source correlation modeling, is nearly a gamma distribution. Chi-square goodness of fit is used to model statistically. This test for goodness of fit also allows estimating the parameters of the distribution utilizing maximum likelihood method. As convergence criteria, the estimation maximization algorithm is used. The mean of road contribution data to total suspended particles according to the source receptor model MCF, is straightforward and validates the road contribution factor to the atmospheric pollution of the zone under study

  10. Experimental investigation of blast mitigation and particle-blast interaction during the explosive dispersal of particles and liquids

    Science.gov (United States)

    Pontalier, Q.; Loiseau, J.; Goroshin, S.; Frost, D. L.

    2018-04-01

    The attenuation of a blast wave from a high-explosive charge surrounded by a layer of inert material is investigated experimentally in a spherical geometry for a wide range of materials. The blast wave pressure is inferred from extracting the blast wave velocity with high-speed video as well as direct measurements with pressure transducers. The mitigant consists of either a packed bed of particles, a particle bed saturated with water, or a homogeneous liquid. The reduction in peak blast wave overpressure is primarily dependent on the mitigant to explosive mass ratio, M/C, with the mitigant material properties playing a secondary role. Relative peak pressure mitigation reduces with distance and for low values of M/C (pressure levels in the mid-to-far field. Solid particles are more effective at mitigating the blast overpressure than liquids, particularly in the near field and at low values of M/C, suggesting that the energy dissipation during compaction, deformation, and fracture of the powders plays an important role. The difference in scaled arrival time of the blast and material fronts increases with M/C and scaled distance, with solid particles giving the largest separation between the blast wave and cloud of particles. Surrounding a high-explosive charge with a layer of particles reduces the positive-phase blast impulse, whereas a liquid layer has no influence on the impulse in the far field. Taking the total impulse due to the blast wave and material impact into account implies that the damage to a nearby structure may actually be augmented for a range of distances. These results should be taken into consideration in the design of explosive mitigant systems.

  11. Destabilization of Alfven eigenmodes by fast particles in W7-AS

    International Nuclear Information System (INIS)

    Zegenhagen, S.

    2006-02-01

    In the present thesis, a systematic study of beam driven Alfven eigenmodes in high-density and low-temperature plasmas of the W7-AS stellarator is performed. The goal of this thesis is twofold: (I) identification and description of fast particle driven Alfven instabilities in W7-AS, and (II) study of energetic particle losses induced by Alfven instabilities. A total of 133 different Alfven eigenmodes is studied in discharges from different experimental campaigns. The discharges are characterized by high density, n e =5 x 1019 m -3 to 2.5 x 1020 m -3 at relatively low temperatures of T e =T i =150..600 eV. Additional 13 events are found to have frequencies inside the EAE gap and could possibly be EAEs. Evidence for high-frequency Alfven eigenmodes (mirror- and helicity-induced Alfven eigenmodes) is seen, but can not be proven rigorously due to uncertain mode numbers and the complexity of the Alfven continuum. The remaining 41 Alfven eigenmodes can not be classified to be one of the above cases. (orig.)

  12. Destabilization of Alfven eigenmodes by fast particles in W7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Zegenhagen, S.

    2006-02-15

    In the present thesis, a systematic study of beam driven Alfven eigenmodes in high-density and low-temperature plasmas of the W7-AS stellarator is performed. The goal of this thesis is twofold: (I) identification and description of fast particle driven Alfven instabilities in W7-AS, and (II) study of energetic particle losses induced by Alfven instabilities. A total of 133 different Alfven eigenmodes is studied in discharges from different experimental campaigns. The discharges are characterized by high density, n{sub e}=5 x 1019 m{sup -3} to 2.5 x 1020 m{sup -3} at relatively low temperatures of T{sub e}=T{sub i}=150..600 eV. Additional 13 events are found to have frequencies inside the EAE gap and could possibly be EAEs. Evidence for high-frequency Alfven eigenmodes (mirror- and helicity-induced Alfven eigenmodes) is seen, but can not be proven rigorously due to uncertain mode numbers and the complexity of the Alfven continuum. The remaining 41 Alfven eigenmodes can not be classified to be one of the above cases. (orig.)

  13. The transition probability and the probability for the left-most particle's position of the q-totally asymmetric zero range process

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, Marko [Department of Mathematics and Statistics, University of Helsinki, FIN-00014 (Finland); Lee, Eunghyun [Centre de Recherches Mathématiques (CRM), Université de Montréal, Quebec H3C 3J7 (Canada)

    2014-01-15

    We treat the N-particle zero range process whose jumping rates satisfy a certain condition. This condition is required to use the Bethe ansatz and the resulting model is the q-boson model by Sasamoto and Wadati [“Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A 31, 6057–6071 (1998)] or the q-totally asymmetric zero range process (TAZRP) by Borodin and Corwin [“Macdonald processes,” Probab. Theory Relat. Fields (to be published)]. We find the explicit formula of the transition probability of the q-TAZRP via the Bethe ansatz. By using the transition probability we find the probability distribution of the left-most particle's position at time t. To find the probability for the left-most particle's position we find a new identity corresponding to identity for the asymmetric simple exclusion process by Tracy and Widom [“Integral formulas for the asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815–844 (2008)]. For the initial state that all particles occupy a single site, the probability distribution of the left-most particle's position at time t is represented by the contour integral of a determinant.

  14. Particle removal with pump limiters in ISX-B

    International Nuclear Information System (INIS)

    Mioduszewski, P.; Emerson, L.C.; Simpkins, J.E.

    1983-01-01

    First pump limiter experiments were performed on ISX-B. Two pump limiter modules were installed in the top and bottom of one toroidal sector of the tokamak. The modules consist of inertia cooled, TiC coated graphite heads and Zr-Al getter pumps each with a pumping speed of 1000 to 2000 l/s. The objective of the initial experiments was the demonstration of plasma particle control with pump limiters. The first set of experiments were performed in ohmic discharges (OH) in which the effect of the pump limiters on the plasma density was clearly demonstrated. In discharges characterized by: I/sub p/ = 110 kA, B/sub T/ = 15 kG, anti n/sub e/ = 1 - 5 x 10 13 cm -3 and t = 0.3 s the pressure rise in the pump limiters was typically 2 mTorr with the pumps off and 0.7 mTorr after activating the pumps. When the pumps were activated, the line-average plasma density decreased by up to a factor 2 at identical gas flow rates. The second set of measurements were performed in neutral beam heated discharges (NBI) with injected powers between 0.6 MW and 1.0 MW. Due to a cooling problem on one of the Zr-Al pumps the NBI experiments were carried out with one limiter only. The maximum pressure observed in NBI-discharges was 5 mTorr without activating the pumps, i.e., approximately twice as high as in OH-discharges. The exhaust efficiency, which is defined as the removed particle flux over the total particle flux in the scrape-off layer is estimated to be 5%

  15. Development of a field test method for total suspended solids analysis.

    Science.gov (United States)

    2013-11-01

    Total suspended solids (TSS) are all particles in water that will not pass through a glass fiber filter with a pore size less : than 2 m, including sediments, algae, nutrients, and metals. TSS is an important water quality parameter because of its ...

  16. Seasonal variations in aerosol particle composition at the puy-de-Dôme research station in France

    Directory of Open Access Journals (Sweden)

    E. J. Freney

    2011-12-01

    Full Text Available Detailed investigations of the chemical and microphysical properties of atmospheric aerosol particles were performed at the puy-de-Dôme (pdD research station (1465 m in autumn (September and October 2008, winter (February and March 2009, and summer (June 2010 using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS. Over the three campaigns, the average mass concentrations of the non-refractory submicron particles ranged from 10 μg m3 up to 27 μg m3. Highest nitrate and ammonium mass concentrations were measured during the winter and during periods when marine modified airmasses were arriving at the site, whereas highest concentrations of organic particles were measured during the summer and during periods when continental airmasses arrived at the site. The measurements reported in this paper show that atmospheric particle composition is strongly influenced by both the season and the origin of the airmass. The total organic mass spectra were analysed using positive matrix factorisation to separate individual organic components contributing to the overall organic particle mass concentrations. These organic components include a low volatility oxygenated organic aerosol particle (LV-OOA and a semi-volatile organic aerosol particle (SV-OOA. Correlations of the LV-OOA components with fragments of m/z 60 and m/z 73 (mass spectral markers of wood burning during the winter campaign suggest that wintertime LV-OOA are related to aged biomass burning emissions, whereas organic aerosol particles measured during the summer are likely linked to biogenic sources. Equivalent potential temperature calculations, gas-phase, and LIDAR measurements define whether the research site is in the planetary boundary layer (PBL or in the free troposphere (FT/residual layer (RL. We observe that SV-OOA and nitrate particles are associated with air masses arriving from the PBL where as particle composition measured from RL

  17. Interaction of a 29 MeV 3He particle beam with a Cl4C vapour target

    International Nuclear Information System (INIS)

    Lleo Morilla, A.

    1963-01-01

    The interactions of a 29 MeV 3 H e particles beam on a Cl 4 C vapour target have been studied using the photographic method. differential cross-sections for the Cl( 3 He, 3 He)Cl elastic scattering and 1 2C( 3 He, α) 1 1C pick-up reaction are shown; the corresponding angular distributions in the centre-of-mass system have been compared with the predictions of optical model and A.B.M. theories. (Author) 21 refs

  18. Classification and Processing Optimization of Barley Milk Production Using NIR Spectroscopy, Particle Size, and Total Dissolved Solids Analysis

    Directory of Open Access Journals (Sweden)

    Jasenka Gajdoš Kljusurić

    2015-01-01

    Full Text Available Barley is a grain whose consumption has a significant nutritional benefit for human health as a very good source of dietary fibre, minerals, vitamins, and phenolic and phytic acids. Nowadays, it is more and more often used in the production of plant milk, which is used to replace cow milk in the diet by an increasing number of consumers. The aim of the study was to classify barley milk and determine the optimal processing conditions in barley milk production based on NIR spectra, particle size, and total dissolved solids analysis. Standard recipe for barley milk was used without added additives. Barley grain was ground and mixed in a blender for 15, 30, 45, and 60 seconds. The samples were filtered and particle size of the grains was determined by laser diffraction particle sizing. The plant milk was also analysed using near infrared spectroscopy (NIRS, in the range from 904 to 1699 nm. Furthermore, conductivity of each sample was determined and microphotographs were taken in order to identify the structure of fat globules and particles in the barley milk. NIR spectra, particle size distribution, and conductivity results all point to 45 seconds as the optimal blending time, since further blending results in the saturation of the samples.

  19. 3D finite element modelling of force transmission and particle fracture of sand

    Energy Technology Data Exchange (ETDEWEB)

    Imseeh, Wadi H.; Alshibli, Khalid A. (Tennessee-K)

    2018-02-01

    Global compressive loading of granular media causes rearrangements of particles into a denser configuration. Under 1D compression, researchers observed that particles initially translate and rotate which lead to more contacts between particles and the development of force chains to resist applied loads. Particles within force chains resist most of the applied loads while neighbor particles provide lateral support to prevent particles within force chains from buckling. Several experimental and numerical models have been proposed in the literature to characterize force chains within granular materials. This paper presents a 3D finite element (FE) model that simulates 1D compression experiment on F-75 Ottawa sand. The FE mesh of particles closely matched 3D physical shape of sand particles that were acquired using 3D synchrotron micro-computed tomography (SMT) technique. The paper presents a quantitative assessment of the model, in which evolution of force chains, fracture modes, and stress-strain relationships showed an excellent agreement with experimental measurements reported by Cil et al. Alshibli (2017).

  20. Four-dimensional Hall mechanics as a particle on CP3

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Casteill, Pierre-Yves; Nersessian, Armen

    2003-01-01

    In order to establish an explicit connection between four-dimensional Hall effect on S 4 and six-dimensional Hall effect on CP 3 , we perform the Hamiltonian reduction of a particle moving on CP 3 in a constant magnetic field to the four-dimensional Hall mechanics (i.e., a-bar particle on S 4 in a SU(2) instanton field). This reduction corresponds to fixing the isospin of the latter system

  1. Mixed aliphatic and aromatic composition of evaporating very small grains in NGC 7023 revealed by the 3.4/3.3 μm ratio

    Science.gov (United States)

    Pilleri, P.; Joblin, C.; Boulanger, F.; Onaka, T.

    2015-05-01

    Context. A chemical scenario was proposed for photon-dominated regions (PDRs) according to which UV photons from nearby stars lead to the evaporation of very small grains (VSGs) and the production of gas-phase polycyclic aromatic hydrocarbons (PAHs). Aims: Our goal is to achieve better insight into the composition and evolution of evaporating very small grains (eVSGs) and PAHs through analyzing the infrared (IR) aliphatic and aromatic emission bands. Methods: We combined spectro-imagery in the near- and mid-IR to study the spatial evolution of the emission bands in the prototypical PDR NGC 7023. We used near-IR spectra obtained with the IRC instrument onboard AKARI to trace the evolution of the 3.3 μm and 3.4 μm bands, which are associated with aromatic and aliphatic C-H bonds on PAHs. The spectral fitting involved an additional broad feature centered at 3.45 μm that is often referred to as the plateau. Mid-IR observations obtained with the IRS instrument onboard the Spitzer Space Telescope were used to distinguish the signatures of eVSGs and neutral and cationic PAHs. We correlated the spatial evolution of all these bands with the intensity of the UV field given in units of the Habing field G0 to explore how their carriers are processed. Results: The intensity of the 3.45 μm plateau shows an excellent correlation with that of the 3.3 μm aromatic band (correlation coefficient R = 0.95) and a relatively poor correlation with the aliphatic 3.4 μm band (R = 0.77). This indicates that the 3.45 μm feature is dominated by the emission from aromatic bonds. We show that the ratio of the 3.4 μm and 3.3 μm band intensity (I3.4/I3.3) decreases by a factor of 4 at the PDR interface from the more UV-shielded layers (G0 ~ 150,I3.4/I3.3 = 0.13) to the more exposed layers (G0> 1 × 104,I3.4/I3.3 = 0.03). The intensity of the 3.3 μm band relative to the total neutral PAH intensity shows an overall increase with G0, associated with an increase of both the hardness of the

  2. Inter-particle gap distribution and spectral rigidity of the totally asymmetric simple exclusion process with open boundaries

    International Nuclear Information System (INIS)

    Krbalek, Milan; Hrabak, Pavel

    2011-01-01

    We consider the one-dimensional totally asymmetric simple exclusion process (TASEP model) with open boundary conditions and present the analytical computations leading to the exact formula for distance clearance distribution, i.e. probability density for a clear distance between subsequent particles of the model. The general relation is rapidly simplified for the middle part of the one-dimensional lattice. Both the analytical formulas and their approximations are compared with the numerical representation of the TASEP model. Such a comparison is presented for particles occurring in the internal part as well as in the boundary part of the lattice. Furthermore, we introduce the pertinent estimation for the so-called spectral rigidity of the model. The results obtained are sequentially discussed within the scope of vehicular traffic theory.

  3. Effect of particle size on the friction welding of Al2O3 reinforced 6160 Al alloy composite and SAE 1020 steel

    International Nuclear Information System (INIS)

    Hascalik, Ahmet; Orhan, Nuri

    2007-01-01

    The aim of this study is to investigate the feasibility of joining Al 2 O 3 reinforced Al alloy composite to SAE 1020 steel by rotational friction welding. The aluminum-based metal matrix composite (MMC) material containing 5, 10 and 15 vol% Al 2 O 3 particles with average particle sizes of 30 and 60 μm was produced by powder metallurgy technique. The integrity of the joints has been investigated by optical and scanning electron microscopy, while the mechanical properties assessment included microhardness and shear tests. Results indicated that Al/Al 2 O 3 composite could be joined to SAE 1020 steel by friction welding. However, it was pointed out that the quality of the joint was effected negatively with the increase in particle size and volume percentage of the oxide particles in the MMC

  4. Exposure to diesel exhaust fumes in the context of exposure to ultrafine particles

    Directory of Open Access Journals (Sweden)

    Stella Bujak-Pietrek

    2016-08-01

    Full Text Available Objectives: Diesel exhaust fumes emission is a significant source of ultrafine particles, the size of which is expressed in nanometers. People occupationally exposed to diesel exhaust particles include mainly workers servicing vehicles with engines of this type. This article presents the analysis of measurements of ultrafine particle concentrations occurring in the bus depot premises during the work connected with everyday technical servicing of buses. Material and Methods: The measurements were carried out in the everyday servicing (ES room of the bus depot before, during and after the work connected with bus servicing. Determinations included: particle concentrations in terms of particle number and particle surface area, and mass concentrations of aerosol. Results: Mean value of number concentration of 10- to 1000-nm particles increased almost 20-fold, from 7600 particles/cm3 before starting bus servicing procedures to 130 000 particles/cm3 during the bus servicing procedures in the room. During the procedures, the mean surface area concentration of particles potentially deposited in the alveolar (A region was almost 3 times higher than that of the particles depositing in the tracheo-bronchial (TB region: 356.46 μm2/cm3 vs. 95.97 μm2/cm3, respectively. The mass concentration of the fraction of particulate matter with aerodynamic diameter 0.02–1 μm (PM1 increased 5-fold during the analyzed procedures and was 0.042 mg/m3 before, and 0.298 mg/m3 while the procedures continued. Conclusions: At the time when bus servicing procedures continued in the ES room, a very high increase in all parameters of the analyzed particles was observed. The diesel exhaust particles exhibit a very high degree of fragmentation and, while their number is very high and their surface area is very large, their mass concentration is relatively low. The above findings confirm that ultrafine particles found in diesel exhaust fumes may be harmful to the health of the

  5. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  6. Size effects in PbTiO3 nanocrystals: Effect of particle size on spontaneous polarization and strains

    Science.gov (United States)

    Akdogan, E. K.; Rawn, C. J.; Porter, W. D.; Payzant, E. A.; Safari, A.

    2005-04-01

    The spontaneous polarization (Ps) and spontaneous strains (xi) in mechanically unclamped and surface charge compensated PbTiO3 nanocrystals were determined as a function of particle size in the range <150nm by differential scanning calorimetry and x-ray powder diffraction, respectively. Significant deviations from bulk order parameters (P,xi) have been observed as the particle size decreased below ˜100nm. The critical size (rc) below which the ferroelectric tetragonal phase transforms to the paraelectric cubic phase was determined as ˜15nm. The depression in transition temperature with particle size is 14 °C at 28 nm. No change in the order of m3m →4mm ferrodistortive phase transition is observed. A simple analysis showed that ΔHtr/(kBT )˜103 at 25 °C for r =16nm, indicating that the stabilization of the cubic phase at rc cannot be linked to an instability in dipolar ordering due to thermal agitations. Comparison of the spontaneous volumetric strains with the strain induced by surface stress indicated that the effect of surface stress on ferroelectric phase stability was negligible. Anomalies in electrostrictive properties were determined for r →rc. The observed size dependence of PS is attributed to the reduced extent of long-range dipole-dipole interactions that arise due to the changes in bonding characteristics of ions with decreasing particle size in the perovskite lattice, in conformity with a recent study by Tsunekawa et al. [Phys. Rev. Lett. 85 (16), 4340 (2000)].

  7. Synthesis and some properties of hydrogen phosphites M3(H2PO3)3, where M = Ga, V, Fe, or In

    International Nuclear Information System (INIS)

    Zakharova, B.S.; Tarnopol'skij, V.A.; Chudinova, N.N.

    2001-01-01

    The conditions on production and the properties of the acid phosphites M 3 (H 2 PO 3 ) 3 (M = Ga, V, Fe, In) are demonstrated. The compounds were investigated by X-ray diffraction, thermal gravimetric analysis, IR spectroscopy and conductometry. Interaction of M 2 O 3 (M = Ga, V, Fe, In) with the melt of phosphorous acid was studied in the P : M = 1. 5 : 1 - 10 : 1 interval of compositions. The lattice parameters are given, the hypothesis on the available of superstructure in the M 3 (H 2 PO 3 ) 3 compounds is corroborated. From the measurements the proton conductivity in vanadium and indium phosphites is comprised of 2.5 x 10 -5 and 1.9 x 10 8- S/cm correspondingly. Acid vanadium and indium phosphites are behaved similarly during heating. The limit of thermal stability of the acid phosphites V(H 2 PO 3 ) 3 , V(H 2 PO 3 ) 3 grows [ru

  8. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust

    Directory of Open Access Journals (Sweden)

    A. Polidori

    2008-03-01

    Full Text Available A photo-electric aerosol sensor, a diffusion charger, an Aethalometer, and a continuous particle counter were used along with other real-time instruments to characterize the particle-bound polycyclic aromatic hydrocarbon (p-PAH content, and the physical/chemical characteristics of aerosols collected a in Wilmington (CA near the Los Angeles port and close to 2 major freeways, and b at a dynamometer testing facility in downtown Los Angeles (CA, where 3 diesel trucks were tested. In Wilmington, the p-PAH, surface area, particle number, and "black" carbon concentrations were 4-8 times higher at 09:00–11:00 a.m. than between 17:00 and 18:00 p.m., suggesting that during rush hour traffic people living in that area are exposed to a higher number of diesel combustion particles enriched in p-PAH coatings. Dynamometer tests revealed that the p-PAH emissions from the "baseline" truck (no catalytic converter were up to 200 times higher than those from the 2 vehicles equipped with advanced emission control technologies, and increased when the truck was accelerating. In Wilmington, integrated filter samples were collected and analyzed to determine the concentrations of the most abundant p-PAHs. A correlation between the total p-PAH concentration (μg/m3 and the measured photo-electric aerosol sensor signal (fA was also established. Estimated ambient p-PAH concentrations (Average=0.64 ng/m3; Standard deviation=0.46 ng/m3 were in good agreement with those reported in previous studies conducted in Los Angeles during a similar time period. Finally, we calculated the approximate theoretical lifetime (70 years per 24-h/day lung-cancer risk in the Wilmington area due to inhalation of multi-component p-PAHs and "black" carbon. Our results indicate that the lung-cancer risk is highest during rush hour traffic and lowest in the afternoon, and that the genotoxic risk of the considered p-PAHs does not seem to contribute to a significant

  9. Electrochemical performance of carbon-encapsulated Fe3O4 nanoparticles in lithium-ion batteries: morphology and particle size effects

    International Nuclear Information System (INIS)

    Zhang, Yongguang; Li, Yue; Li, Haipeng; Zhao, Yan; Yin, Fuxing; Bakenov, Zhumabay

    2016-01-01

    Graphical abstract: Cycling performance and schematic of the fabrication process for the Fe 3 O 4 @C composites. - Highlights: • Carbon-encapsulated Fe 3 O 4 nanoparticles with varied microstructures were produced. • Pomegranate-like Fe 3 O 4 @C electrodes exhibit enhanced cycling ability and rate ability. • The carbon content has impact on the specific capacity of the Fe 3 O 4 @C electrodes. - Abstract: Carbon-encapsulated Fe 3 O 4 nanoparticles (Fe 3 O 4 @C) with varied microstructures were produced by controlling the relative concentrations of glucose and iron nitrate hydrate in a hydrothermal process, followed by heat treatment in Ar atmosphere. Three Fe 3 O 4 @C nanocomposites with different particle sizes (mean diameter 31.2, 45.1 and 55.3 nm) and Fe 3 O 4 core size (26.8, 15.4 and 10.3 nm) were investigated for lithium storage performance. The Fe 3 O 4 @C nanoparticles with 15.4 nm Fe 3 O 4 core exhibit excellent initial specific capacity (1215 mAh g −1 ) and significantly improved cycling performance (806 mAh g −1 after 100 cycles) and rate capability (573 mAh g −1 at current density of 1500 mA g −1 ), in comparison to the other Fe 3 O 4 @C composites. This superior performance is attributed to microstructural effects spawned from the pomegranate-like carbon coating architecture of the composite, the appropriate carbon content, and the optimized particle size of Fe 3 O 4 @C nanoparticles, which combined suppress the agglomeration and pulverization of Fe 3 O 4 nanoparticle upon cycling and enhance the electrical conductivity of the Fe 3 O 4 anode.

  10. Impact Strength of Composite Materials Based on EN AC-44200 Matrix Reinforced with Al2O3 Particles

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-09-01

    Full Text Available The paper presents the results of research of impact strength of aluminum alloy EN AC-44200 based composite materials reinforced with alumina particles. The research was carried out applying the materials produced by the pressure infiltration method of ceramic preforms made of Al2O3 particles of 3-6μm with the liquid EN AC-44200 Al alloy. The research was aimed at determining the composite resistance to dynamic loads, taking into account the volume of reinforcing particles (from 10 to 40% by volume at an ambient of 23°C and at elevated temperatures to a maximum of 300°C. The results of this study were referred to the unreinforced matrix EN AC-44200 and to its hardness and tensile strength. Based on microscopic studies, an analysis and description of crack mechanics of the tested materials were performed. Structural analysis of a fracture surface, material structures under the crack surfaces of the matrix and cracking of the reinforcing particles were performed.

  11. Kinetics of gas to particle conversion in the NH/sub 3/-Chl system

    Energy Technology Data Exchange (ETDEWEB)

    Luria, M; Cohen, B

    1980-01-01

    Particle formation in the reaction of NH/sub 3/ and Chl under 1 atm of N/sub 2/ and at 25/sup 0/C was studied in a flow reactor. The critical concentration below which NO particle can be formed was found to be 3.5 x 10/sup +14/ molecule/CM/sup 3/ for (NH/sub 3/)=(HCl). Above this concentration, gas-particle conversion percentage increases rapidly to approach 100%.

  12. CHARGE-EXCHANGE LIMITS ON LOW-ENERGY {alpha}-PARTICLE FLUXES IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, H. S. [SSL, UC Berkeley, CA 94720 (United States); Fletcher, L.; MacKinnon, A. L. [School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Woods, T. N., E-mail: hhudson@ssl.berkeley.edu [Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Dr., Boulder, CO 80303 (United States)

    2012-06-20

    This paper reports on a search for flare emission via charge-exchange radiation in the wings of the Ly{alpha} line of He II at 304 A, as originally suggested for hydrogen by Orrall and Zirker. Via this mechanism a primary {alpha} particle that penetrates into the neutral chromosphere can pick up an atomic electron and emit in the He II bound-bound spectrum before it stops. The Extreme-ultraviolet Variability Experiment on board the Solar Dynamics Observatory gives us our first chance to search for this effect systematically. The Orrall-Zirker mechanism has great importance for flare physics because of the essential roles that particle acceleration plays; this mechanism is one of the few proposed that would allow remote sensing of primary accelerated particles below a few MeV nucleon{sup -1}. We study 10 events in total, including the {gamma}-ray events SOL2010-06-12 (M2.0) and SOL2011-02-24 (M3.5) (the latter a limb flare), seven X-class flares, and one prominent M-class event that produced solar energetic particles. The absence of charge-exchange line wings may point to a need for more complete theoretical work. Some of the events do have broadband signatures, which could correspond to continua from other origins, but these do not have the spectral signatures expected from the Orrall-Zirker mechanism.

  13. ORBXYZ: a 3D single-particle orbit code for following charged-particle trajectories in equilibrium magnetic fields

    International Nuclear Information System (INIS)

    Anderson, D.V.; Cohen, R.H.; Ferguson, J.R.; Johnston, B.M.; Sharp, C.B.; Willmann, P.A.

    1981-01-01

    The single particle orbit code, TIBRO, has been modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications. Many details pertaining to this code are given on microfiche accompanying this report

  14. Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area.

    Science.gov (United States)

    Fernández-Ugalde, Oihane; Gartzia-Bengoetxea, Nahia; Arostegi, Javier; Moragues, Lur; Arias-González, Ander

    2017-06-01

    Biochar can largely contribute to enhance organic carbon (OC) stocks in soil and improve soil quality in forest and agricultural lands. Its contribution depends on its recalcitrance, but also on its interactions with minerals and other organic compounds in soil. Thus, it is important to study the link between minerals, natural organic matter and biochar in soil. In this study, we investigated the incorporation of biochar-derived carbon (biochar-C) into various particle-size fractions with contrasting mineralogy and the effect of biochar on the storage of total OC in the particle-size fractions in an acid loamy soil under Pinus radiata (C3 type) in the Spanish Atlantic area. We compared plots amended with biochar produced from Miscanthus sp. (C4 type) with control plots (not amended). We separated sand-, silt-, and clay-size fractions in samples collected from 0 to 20-cm depth. In each fraction, we analyzed clay minerals, metallic oxides and oxy-hydroxides, total OC and biochar-C. The results showed that 51% of the biochar-C was in fractions fractions (0.2-2μm, 0.05-0.2μm, fractions, as it occurred with the vermiculitic phases and metallic oxides and oxy-hydroxides. Biochar also affected to the distribution of total OC among particle-size fractions. Total OC concentration was greater in fractions 2-20μm, 0.2-2μm, 0.05-0.2μm in biochar-amended plots than in control plots. This may be explained by the adsorption of dissolved OC from fraction organic matter already occurred in the first year. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Characterization of the compounds of nitrogen and total suspended particles in the municipality Regla, Havana

    International Nuclear Information System (INIS)

    Wallo Vazquez, Antonio; Cuesta Santos, Osvaldo

    2006-01-01

    The questions related with the atmospheric contamination in urban areas every day they charge bigger importance for the affectations that it can take place so much in the health of the human beings as in the materials, constructions, etc. In the city of Havana those made up of nitrogen and the particles suspended totals are of the pollutants whose concentrations are elevated in the atmosphere. Inside this context, the present work intends the analysis of the behavior of this concentrations, taken as experimental polygon the municipality Regla in city of Havana

  16. Enhancing hydrogen storage performances of MgH2 by Ni nano-particles over mesoporous carbon CMK-3

    Science.gov (United States)

    Chen, Gang; Zhang, Yao; Chen, Jian; Guo, Xinli; Zhu, Yunfeng; Li, Liquan

    2018-06-01

    Nano-dispersed Ni particles over mesoporous carbon material CMK-3 (Ni/CMK-3) was fabricated by means of impregnation-reduction strategy using precursor NiCl2 · 6H2O, which is beneficial to improving the de/rehydrogenation performances of MgH2. The dehydrogenation onset temperature of MgH2–Ni/CMK-3 is significantly lowered by 170 K from that of pristine MgH2 (around 603 K). Totally 5.9 wt% of hydrogen absorption capacity is liberated within 1 h at a temperature of 423 K under a pressure of 3 MPa. This composite can absorb 3.9 wt% hydrogen even at a temperature of 328 K under 3 MPa H2. Activation energy values of both dehydrogenation (43.4 kJ mol‑1) and rehydrogenation (37.4 kJ mol‑1) for MgH2–Ni/CMK-3 are greatly enhanced from those of as-milled MgH2. Ni/CMK-3 also slightly destabilizes the dehydrogenation of MgH2 by 1.5 kJ mol {{{{H}}}2}-1. The enhanced performances can be attributed to the synergistic effects of both destabilization and activation from nano-dispersed Ni particles.

  17. Zone of influence for particle number concentrations at signalised traffic intersections

    Science.gov (United States)

    Goel, Anju; Kumar, Prashant

    2015-12-01

    Estimation of zone of influences (ZoI) at signalised traffic intersections (TI) is important to accurately model particle number concentrations (PNCs) and their exposure to public at emission hotspot locations. However, estimates of ZoI for PNCs at different types of TIs are barely known. We carried out mobile measurements inside the car cabin with windows fully open for size-resolved PNCs in the 5-560 nm range on a 6 km long busy round route that had 10 TIs. These included four-way TIs without built-up area (TI4w-nb), four-way TIs with built-up area (TI4w-wb), three-way TIs without built-up area (TI3w-nb) and three-way TIs with built-up area (TI3w-wb). Mobile measurements were made with a fast response differential mobility spectrometer (DMS50). Driving speed and position of the car were recorded every second using a global positioning system (GPS). Positive matrix factorisation (PMF) modelling was applied on the data to quantify the contribution of PNCs released during deceleration, creep-idling, acceleration and cruising to total PNCs at the TIs. The objectives were to address the following questions: (i) how does ZoI vary at different types of TIs in stop- and go-driving conditions?, (ii) what is the effect of different driving conditions on ZoI of a TI?, (iii) how realistically can the PNC profiles be generalised within a ZoI of a TI?, and (iv) what is the share of emissions during different driving conditions towards the total PNCs at a TI? Average length of ZoI in longitudinal direction and along the road was found to be the highest (148 m; 89 to -59 m from the centre of a TI) at a TI3w-wb, followed by TI4w-nb (129 m; 79 to -42 m), TI3w-nb (86 m; 71 to -15 m) and TI4w-wb (79 m; 46 to -33 m) in stop- and go-driving conditions. During multiple stopping driving conditions when a vehicle stops at a TI more than once in a signal cycle due to oversaturation of vehicles, average length of ZoI increased by 55, 22 and 21% at TI4w-nb, TI3w-nb and TI3w-wb, respectively

  18. Field ion microscopy and 3-D atom probe analysis of Al3Zr particles in 7050 Al alloy

    International Nuclear Information System (INIS)

    Sha, G.; Cerezo, A.

    2004-01-01

    Full text: For high strength 7xxx series Al alloys, Zr is an important trace alloy element which is often added to optimise properties, having effects such as refining grain size, inhibiting recrystallization, and improving stress corrosion cracking resistance and quench sensitivity. In addition, it has been reported recently that Zr addition also has a significant influence on early stage ageing behaviour of a 7xxx series Al alloy. Zr equilibrium solubility in solid Al is extremely low. After solution or ageing treatment, most Zr is present as small spherical Ai 3 Zr dispersoids approximately 20 nm in diameter, distributed at grain boundaries as well as within the Al matrix. The crystallographic nature of intermetallic phase Al 3 Zr has been well studied in the literatures. So far, no direct measurement of the chemistry of the Al 3 Zr particles in 7xxx series Al alloys has been published. It is unclear if there is significant Zn, Mg or Cu included in the particles. In this research, 3DAP has been employed for the first time to investigate ionisation behaviour of Al 3 Zr particles and determine the chemistry of the particles in 7050 Al alloy. Using field ion microscopy, the local evaporation radius of the Al 3 Zr particle has been measured to be equivalent to 36 nm for a 10 kV tip, less than the equivalent tip radius for the Al matrix of ∼68 nm. Using the matrix Al evaporation field (19 V/nm) as a reference, this allows the evaporation field of Al 3 Zr to be calculated as 35 V/nm, the same as the field calculated for evaporation of Al as Al 2+ (35 V/nm), and that of Zr as Zr 3+ (35 V/nm). This result is consistent with Al 2+ and Zr 3+ being the main species observed in the mass spectrum during analysis of Al 3 Zr particles. Using 3DAP, the chemical compositions of Al 3 Zr particles are determined to be 64.8∼67.7 at% Al, 23.6∼24.8 at% Zr, 6.9∼9.1 at% Zn, 0.4∼0.7 at% Cu, 0.5∼1.2 at% Mg, with a (Al+Zn)/Zr ratio close to 3. Choice of specimen temperature of

  19. Determining size-specific emission factors for environmental tobacco smoke particles

    Energy Technology Data Exchange (ETDEWEB)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.; Sextro, Richard G.; Nazaroff, William W.

    2002-07-07

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.

  20. Emission of Gas and Al2O3 Smoke in Gas-Al Particle Deflagration: Experiments and Emission Modeling for Explosive Fireballs

    Science.gov (United States)

    Ranc-Darbord, Isabelle; Baudin, Gérard; Genetier, Marc; Ramel, David; Vasseur, Pierre; Legrand, Julien; Pina, Vincent

    2018-03-01

    Emission of gas and Al2O3 smoke within the deflagration of H2{-}O2-{N2{-}CO2}-Al particles has been studied in a closed combustion chamber at pressures of up to 18 bar and at gas temperatures of up to 3700 K. Measurements of radiance intensity were taken using a five wavelength pyrometer (0.660 μ m, 0.850 μ m, 1.083 μ m, 1.260 μ m, 1.481 μ m) and a grating spectrometer in the range (4.10 μ m to 4.30 μ m). In order to characterize the aluminum oxide smoke size and temperature, an inversion method has been developed based on the radiation transfer equation and using pyrometer measurements and thermochemical calculations of Al2O3 smoke volume fractions. Temperatures in combustion gas have been determined using a method based on the assumed blackbody head of the 4.26 μ m CO2 emission line and on its spectral shift with pressure and temperature. For validation purpose, this method has been applied to measurements obtained when calibrated alumina particles are injected in a combustion chamber prior to gaseous deflagrations. This mathematical inversion method was developed to investigate explosive fireballs.

  1. Distribution of particle-phase hydrocarbons, PAHs and OCPs in Tianjin, China

    Science.gov (United States)

    Wu, Shui-Ping; Tao, Shu; Zhang, Zhi-Huan; Lan, Tian; Zuo, Qian

    Aliphatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) were determined in the total suspended particles (TSP) collected from 13 different locations in Tianjin, China, where intensive coal burning for domestic heating in winter takes place and a large quantity of pesticides had been produced and applied. Carbon preference index (CPI), carbon number maximum (C max) of n-alkane and plant wax index (%wax C n) indicate that n-alkanes come from both biogenic and petrogenic sources, and biogenic source contributes more n-alkanes in autumn than in winter. Petroleum biomarkers as indicators of petrogenic source such as hopanes and steranes were also detected in both seasons' samples. The sum of 16 PAH concentrations (∑PAH) ranged from 69.3 to 2170 ng m -3 in winter and from 7.01 to 40.0 ng m -3 in autumn. Seasonal variations were mainly attributed to the difference in coal combustion emission and meteorological conditions. The results of a source diagnostic analysis suggest that PAHs in TSP mainly come from coal combustion. Seven OCPs (four hexachlorohexanes (HCHs) and three dichlorodipheny-trichloroethane and metabolites (DDTs)) were detected in most samples. Concentrations of the sum of α-, β-, δ- and γ-HCH (∑HCH) and the sum of p, p'-DDT, p, p'-DDD and p, p'-DDE (∑DDT) in autumn varied in the ranges of 0.002-0.9 ng m -3 and 0.025-2.21 ng m -3 with the average±standard deviation values of 0.127±0.241 ng m -3 and 0.239±0.546 ng m -3, respectively. In winter, ∑HCH and ∑DDT in TSP ranged from 0.071 to 5.35 ng m -3 and from 0.416 to 3.14 ng m -3 with the average±standard deviation values 1.05±1.88 ng m -3 and 0.839±0.713 ng m -3, respectively. Both of the illegal application of technical HCH and DDT and the volatilization from topsoil contributed to the particle-phase contents of HCHs and DDTs in the atmosphere.

  2. Some properties of the psi(3.7) resonance, and features of the total hadronic cross section in e+e- annihilation from 2.4 GeV to 5.0 GeV c.m. energy

    International Nuclear Information System (INIS)

    Kadyk, J.A.; Abrams, G.S.; Briggs, D.D.

    1975-01-01

    An analysis of data at the psi(3.7) resonance gives a partial width to electrons, MMA ub e/ = 2.2 +- 0.5 keV, and limits on total width 200 keV + π - is observed with a branching ratio 0.31 +- 0.04, and psi(3.7) → psi(3.1) + anything has a branching ratio of 0.54 +- 0.08. The psi resonances appear to have the same G-parity. An enhancement occurs in the total hadronic cross section at a c.m. energy of about 4.1 GeV, rising to about 32 nb from a level of 18 nb adjacent to peak, which is about 300 MeV wide. The integrated cross section for the peak is about 5.5 nb-GeV, comparable to that for the psi(3.7) and psi(3.1) resonances. (U.S.)

  3. Some properties of the psi(3.7) resonance, and features of the total hadronic cross section in e+e- annihilation from 2.4GeV to 5.0GeV c.m. energy

    International Nuclear Information System (INIS)

    Abrams, G.S.; Briggs, D.D.; Chinowsky, W.; Friedberg, C.E.; Goldhaber, G.; Hollebeek, R.J.; Litke, A.; Lulu, B.A.; Pierre, F.; Sadoulet, B.; Trilling, G.H.; Whitaker, J.S.; Wiss, J.E.; Zipse, J.E.

    1975-01-01

    An analysis of data at the psi(3.7) resonance gives a partial width to electrons GAMMA(e)=2.2+-0.5keV, and limits on total width 200keV + π - is observed with a branching ratio 0.31+-0.04, and psi(3.7)→psi(3.1) + anything has a branching ratio of 0.54+-0.08. The psi resonances appear to have the same G-parity. An enhancement occurs in the total hadronic cross section at a c.m. energy of about 4.1GeV, rising to about 32nb from a level of 18nb adjacent to peak, which is about 300MeV wide. The integrated cross section for the peak is about 5.5nb-GeV, comparable to that for the psi(3.7) and psi(3.1) resonances

  4. Total cross-sections for reactions of high energy particles (including elastic, topological, inclusive and exclusive reactions). Subvol. b

    International Nuclear Information System (INIS)

    Schopper, H.; Moorhead, W.G.; Morrison, D.R.O.

    1988-01-01

    The aim of this report is to present a compilation of cross-sections (i.e. reaction rates) of elementary particles at high energy. The data are presented in the form of tables, plots and some fits, which should be easy for the reader to use and may enable him to estimate cross-sections for presently unmeasured energies. We have analyzed all the data published in the major Journals and Reviews for momenta of the incoming particles larger than ≅ 50 MeV/c, since the early days of elementary particle physics and, for each reaction, we have selected the best cross-section data available. We have restricted our attention to integrated cross-sections, such as total cross-sections, exclusive and inclusive cross-sections etc., at various incident beam energies. We have disregarded data affected by geometrical and/or kinematical cuts which would make them not directly comparable to other data at different energies. Also, in the case of exclusive reactions, we have left out data where not all of the particles in the final state were unambiguously identified. This work contains reactions induced by neutrinos, gammas, charged pions, kaons, nucleons, antinucleons and hyperons. (orig./HSI)

  5. The Chemical Composition Contrast between M3 and M13 Revisited: New Abundances for 28 Giant Stars in M3

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Guhathakurta, Puragra; Peterson, Ruth C.; Fulbright, Jon P.

    2004-04-01

    We report new chemical abundances of 23 bright red giant members of the globular cluster M3, based on high-resolution (R~45,000) spectra obtained with the Keck I telescope. The observations, which involve the use of multislits in the HIRES Keck I spectrograph, are described in detail. Combining these data with a previously reported small sample of M3 giants obtained with the Lick 3 m telescope, we compare metallicities and [X/Fe] ratios for 28 M3 giants with a 35-star sample in the similar-metallicity cluster M13, and with Galactic halo field stars having [Fe/H]=A(Si), we derive little difference in [X/Fe] ratios in the M3, M13, or halo field samples. All three groups exhibit C depletion with advancing evolutionary state beginning at the level of the red giant branch ``bump,'' but the overall depletion of about 0.7-0.9 dex seen in the clusters is larger than that associated with the field stars. The behaviors of O, Na, Mg, and Al are distinctively different among the three stellar samples. Field halo giants and subdwarfs have a positive correlation of Na with Mg, as predicted from explosive or hydrostatic carbon burning in Type II supernova sites. Both M3 and M13 show evidence of high-temperature proton-capture synthesis from the ON, NeNa, and MgAl cycles, while there is no evidence for such synthesis among halo field stars. But the degree of such extreme proton-capture synthesis in M3 is smaller than it is in M13: the M3 giants exhibit only modest deficiencies of O and corresponding enhancements of Na, less extreme overabundances of Al, fewer stars with low Mg and correspondingly high Na, and no indication that O depletions are a function of advancing evolutionary state, as has been claimed for M13. We have also considered NGC 6752, for which Mg isotopic abundances have been reported by Yong et al. Giants in NGC 6752 and M13 satisfy the same anticorrelation of O abundances with the ratio (25Mg+26Mg)/24Mg, which measures the relative contribution of rare to

  6. Atom probe characterization of yttria particles in ODS Eurofer steel

    International Nuclear Information System (INIS)

    Aleev, A.A.; Zaluzhny, A.G.; Nikitin, A.A.; Rogozhkin, S.V.; Iskandarov, N.A.; Vladimirov, P.; Moeslang, A.; Lindau, R.; Klimenkov, M.

    2009-01-01

    Oxide dispersion strengthened steels exhibit higher temperature and radiation resistance than conventionally produced ferritic/martensitic steels. Such behaviour, as believed, is mainly caused by presence of highly dispersed and extremely stable oxide particles with sizes of few nanometers. It was shown that the most promising oxide additive was yttria (Y 2 O 3 ) and as mechanical parameters were strongly depended on size and number density of formed peculiarities it is required to reduce their dimensions to few nanometers and drastically increase their number. At present, considerable effort is focused on investigation of behaviour and properties of such particles. Recent studies of Eurofer ODS steel (9%-CrWVTa) by SANS and PoAS revealed the presence of high number density structural peculiarities with size approximately one nanometer. At the same time, previous studies by TEM identified only high number of small (5-10 nm) Y 2 O 3 particles. So, the purpose of this work was to look into this material by means of tomographic atom probe and find out the chemistry and origin of peculiarities with sizes less than 5 nm. These investigations revealed fine (∼ 2 nm) particles that were enriched not only in yttrium and oxygen but also in vanadium and nitrogen. Concentration of vanadium in them is approximately at the same level as yttrium. Moreover, some particles were found to be enriched in only three or even two elements mentioned above. However, total concentration of chemical elements in these particles is considerably less than that of iron. Estimated number density for detected particles is (1 / 5) x 10 23 m -3 . (author)

  7. Experimental investigation of blast mitigation and particle-blast interaction during the explosive dispersal of particles and liquids

    Science.gov (United States)

    Pontalier, Q.; Loiseau, J.; Goroshin, S.; Frost, D. L.

    2018-05-01

    The attenuation of a blast wave from a high-explosive charge surrounded by a layer of inert material is investigated experimentally in a spherical geometry for a wide range of materials. The blast wave pressure is inferred from extracting the blast wave velocity with high-speed video as well as direct measurements with pressure transducers. The mitigant consists of either a packed bed of particles, a particle bed saturated with water, or a homogeneous liquid. The reduction in peak blast wave overpressure is primarily dependent on the mitigant to explosive mass ratio, M/ C, with the mitigant material properties playing a secondary role. Relative peak pressure mitigation reduces with distance and for low values of M/ C (compaction, deformation, and fracture of the powders plays an important role. The difference in scaled arrival time of the blast and material fronts increases with M/ C and scaled distance, with solid particles giving the largest separation between the blast wave and cloud of particles. Surrounding a high-explosive charge with a layer of particles reduces the positive-phase blast impulse, whereas a liquid layer has no influence on the impulse in the far field. Taking the total impulse due to the blast wave and material impact into account implies that the damage to a nearby structure may actually be augmented for a range of distances. These results should be taken into consideration in the design of explosive mitigant systems.

  8. Definition of a magnetic susceptibility of conglomerates with magnetite particles. Particularities of defining single particle susceptibility

    Science.gov (United States)

    Sandulyak, A. A.; Sandulyak, A. V.; Ershova, V.; Pamme, N.; Ngmasom, B.; Iles, A.

    2017-11-01

    Data of a magnetic susceptibility of ferro-and the ferrimagnetic particles of many technogenic, natural, special media are especially demanded for the solution of various tasks connected with purposeful magnetic impact on these particles. One of productive approaches to definition of a magnetic susceptibility χ of these particles consists in receiving experimental data of a susceptibility of disperse samples 〈 χ 〉 with a disperse phase of these particles. The paper expounds and analyses the results of experiments on defining (by Faraday method in a magnetic field with intensity H = 90-730 kA/m) the magnetic susceptibility 〈 χ 〉 of disperse samples (conglomerates) with a given volume ratio γ of magnetite particles (γ = 0.0065-0.25). The corresponding families of concentration and field dependences are provided alongside with discussing the applicability of linear and exponential functions to describe these dependences. We consider the possibility of defining single particles susceptibility χ (with simultaneous obtaining field dependence of this susceptibility) by the commonly used relation χ = 〈 χ 〉 /γ both at relatively small (preferable for accuracy reasons) values γ - to γ = 0.02…0.025, as well as at increased values γ - up to γ = 0.25. The data χ are provided depending on H and correlating with known data at H matter magnetic susceptibility χm (for the case when the particles are traditionally likened to balls with the characteristic for them demagnetising factor equalling 1/3) complies with the anticipated inverse function χm ∼ 1/H in the studied area H (where magnetization M expressed as M = χH reaches saturation M = Const).

  9. First results of high energy particle measurements with the TUENDE-M telescopes on board the S/C VEGA-1 and -2

    International Nuclear Information System (INIS)

    Somogyi, A.J.; Erdoes, G.; Eroe, J.

    1986-02-01

    VEGA-1 and VEGA-2 space probes launched to comet Halley are equipped with identical TUENDE-M high energy particle detectors. Each TUENDE-M instrument consists of two particle telescopes viewing in the ecliptic plane at an angle of deg 55 and deg 90, respectively, to the east of the Sun. Technical data of the detectors are tabulated. In the period Dec 1984 - Apr 1985 several cases of interplanetary acceleration of charged particles up to MeV energies and a large solar flare event (27.Jan 1985) were observed by the TUENDE-M instruments. The latter event is described in detail and observation results (intensity profiles of different channels of various energies) are presented. (D.Gy.)

  10. Enhanced stopping of macro-particles in particle-in-cell simulations

    International Nuclear Information System (INIS)

    May, J.; Tonge, J.; Ellis, I.; Mori, W. B.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Ren, C.

    2014-01-01

    We derive an equation for energy transfer from relativistic charged particles to a cold background plasma appropriate for finite-size particles that are used in particle-in-cell simulation codes. Expressions for one-, two-, and three-dimensional particles are presented, with special attention given to the two-dimensional case. This energy transfer is due to the electric field of the wake set up in the background plasma by the relativistic particle. The enhanced stopping is dependent on the q 2 /m, where q is the charge and m is the mass of the relativistic particle, and therefore simulation macro-particles with large charge but identical q/m will stop more rapidly. The stopping power also depends on the effective particle shape of the macro-particle. These conclusions are verified in particle-in-cell simulations. We present 2D simulations of test particles, relaxation of high-energy tails, and integrated fast ignition simulations showing that the enhanced drag on macro-particles may adversely affect the results of these simulations in a wide range of high-energy density plasma scenarios. We also describe a particle splitting algorithm which can potentially overcome this problem and show its effect in controlling the stopping of macro-particles

  11. Dynamic effect of total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion.

    Science.gov (United States)

    Motte, J-C; Escudié, R; Bernet, N; Delgenes, J-P; Steyer, J-P; Dumas, C

    2013-09-01

    Among all the process parameters of solid-state anaerobic digestion (SS-AD), total solid content (TS), inoculation (S/X ratio) and size of the organic solid particles can be optimized to improve methane yield and process stability. To evaluate the effects of each parameter and their interactions on methane production, a three level Box-Behnken experimental design was implemented in SS-AD batch tests degrading wheat straw by adjusting: TS content from 15% to 25%, S/X ratio (in volatile solids) between 28 and 47 and particle size with a mean diameter ranging from 0.1 to 1.4mm. A dynamic analysis of the methane production indicates that the S/X ratio has only an effect during the start-up phase of the SS-AD. During the growing phase, TS content becomes the main parameter governing the methane production and its strong interaction with the particle size suggests the important role of water compartmentation on SS-AD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Some preliminary studies on plants and pollutant levels along Pindi Bhattian-Faisalabad motorway (m-3) (Pakistan)

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, K F; Maqbool, S; Ashraf, I; Ahmad, S S; Ansari, Y.M., E-mail: kezmh@yahoo.com

    2011-10-15

    The roadside verges of M-3 were surveyed to investigate their floristic composition and the levels of heavy metals in their soils. For this purpose, the floristic data from 102 quadrats, each 1 x 2 m in size were collected and their associated soils were analyzed for total lead, cadmium, copper, manganese, iron and zinc. These quadrats were distributed on three zones (border, verge, and fence) within the M-3 verges. Fifty eight plant species were recorded. By considering their frequency and abundance values, Cynodon dactylon, Anagallis arvensis, Imperata cylindrica, Trifolium alexandrianum and Sonchus oleracea were the most frequent and abundant species of M-3. The mean concentrations of total Cu, Cd, Zn, Mn, Pb and Fe, 1.8 mu gg/sup 1-/, 43.4 mu gg/sup 1-/ , 336.1 mu gg/sup 1-/, 43.2 mu gg/sup 1-/ and 683.1 mu gg/sup 1-/ respectively. By in the roadside soils of M-3 were 14.0 mu gg/sup 1-/ comparing these values with their standard toxic levels, these soils can be considered as non-contaminated. (author)

  13. Some preliminary studies on plants and pollutant levels along Pindi Bhattian-Faisalabad motorway (m-3) (Pakistan)

    International Nuclear Information System (INIS)

    Akbar, K.F.; Maqbool, S.; Ashraf, I.; Ahmad, S.S.; Ansari, Y.M.

    2011-01-01

    The roadside verges of M-3 were surveyed to investigate their floristic composition and the levels of heavy metals in their soils. For this purpose, the floristic data from 102 quadrats, each 1 x 2 m in size were collected and their associated soils were analyzed for total lead, cadmium, copper, manganese, iron and zinc. These quadrats were distributed on three zones (border, verge, and fence) within the M-3 verges. Fifty eight plant species were recorded. By considering their frequency and abundance values, Cynodon dactylon, Anagallis arvensis, Imperata cylindrica, Trifolium alexandrianum and Sonchus oleracea were the most frequent and abundant species of M-3. The mean concentrations of total Cu, Cd, Zn, Mn, Pb and Fe, 1.8 mu gg/sup 1-/, 43.4 mu gg/sup 1-/ , 336.1 mu gg/sup 1-/, 43.2 mu gg/sup 1-/ and 683.1 mu gg/sup 1-/ respectively. By in the roadside soils of M-3 were 14.0 mu gg/sup 1-/ comparing these values with their standard toxic levels, these soils can be considered as non-contaminated. (author)

  14. Characterization of dust particles produced in an all-tungsten wall tokamak and potentially mobilized by airflow

    Energy Technology Data Exchange (ETDEWEB)

    Rondeau, A., E-mail: anthony.rondeau@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, SCA, 91192 Gif-sur-Yvette (France); Peillon, S.; Roynette, A.; Sabroux, J.-C.; Gelain, T.; Gensdarmes, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, SCA, 91192 Gif-sur-Yvette (France); Rohde, V. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Grisolia, C. [CEA, IRFM, 13108 Saint-Paul-lez-Durance (France); Chassefière, E. [Laboratoire Géosciences Paris Sud (GEOPS), UMR 8148, Université Paris Sud, 91403 Orsay Cedex (France)

    2015-08-15

    At the starting of the shutdown of the AUG (ASDEX Upgrade: Axially Symmetric Divertor EXperiment) German tokamak, we collected particles deposited on the divertor surfaces by means of a dedicated device called “Duster Box”. This device allows to collect the particles using a controlled airflow with a defined shear stress. Consequently, the particles collected correspond to a potentially mobilizable fraction, by an airflow, of deposited dust. A total of more than 70,000 tungsten particles was, analysed showing a bimodal particle size distribution with a mode composed of flakes at 0.6 μm and a mode composed of spherical particles at 1.8 μm.

  15. Microbial abundance and diversity in water, and immune parameters of red tilapia reared in bioflocs system with different fish density (25 fish/m3, 50 fish/m3, and 100 fish/m3

    Directory of Open Access Journals (Sweden)

    Frid Agustinus

    2010-07-01

    Full Text Available ABSTRACTThe objective of this experiment was to study microbial abundance and diversity in the water, and immune parameters of red tilapia Oreochromis sp. cultured in bioflok system with different fish stocking densities. The experiment comprised of two different factors, carbon source addition (bioflocs and control, and fish stocking density (25 fish/m3, 50 fish/m3, dan 100 fish/m3, with an experimental period of 99 days. Microbial load in water was determined biweekly, whereas immune parameters represented by fish blood profile were measured on day 0, 50, and 90. There was no significant difference in total bacteria count in the water of all treatments; there was however a tendency shown by all treatments that the microbial load in water increased along with the culture period. There were 4 genera of bacteria which particularly found in bioflok system, which are Acinetobacter sp., Corynobacterium sp., Listeria sp., dan Pseudomonas sp, and are suggested to play a role in bioflok formation. The percentage of phagocytic index of fish in bioflok system was higher than that in control, and may indicate that bioflok may stimulate the fish immune system.Keywords: bioflocs, red tilapia, bacteria, blood profile. ABSTRAKPenelitian ini bertujuan untuk mengidentifikasi kelimpahan dan keragaman jenis bakteri dalam air dan parameter imunitas ikan nila Oreochromis sp. yang dipelihara dalam sistem bioflok dengan kepadatan ikan yang berbeda. Penelitian terdiri atas dua faktor perlakuan yaitu penambahan sumber carbon (bioflok dan kontrol, dan padat penebaran ikan (25 ekor/m3, 50 ekor/m3, dan 100 ekor/m3 dengan lama waktu pemeliharaan ikan selama 99 hari. Kelimpahan bakteri diukur setiap 2 minggu sekali selama masa pemeliharaan. Parameter imunitas meliputi gambaran darah diukur dengan pengambilan contoh darah yang dilakukan pada tiga ekor ikan pada hari ke 0, 50, dan 99. Kelimpahan bakteri pada semua perlakuan pada setiap titik pengamatan tidak menunjukkan

  16. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems.

    Science.gov (United States)

    Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D

    2008-11-01

    A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.

  17. Characterization of ambient particles size in workplace of manufacturing physical fitness equipments

    Science.gov (United States)

    LIN, Chih-Chung; CHEN, Mei-Ru; CHANG, Sheng-Lang; LIAO, Wei-Heng; CHEN, Hsiu-Ling

    2014-01-01

    The manufacturing of fitness equipment involves several processes, including the cutting and punching of iron tubes followed by welding. Welding operations produce hazardous gases and particulate matter, which can enter the alveolar, resulting in adverse health effects. This study sought to verify the particle size distribution and exposure concentrations of atmospheric air samples in various work areas of a fitness equipment manufacturing industry. Observed particle concentrations are presented by area and in terms of relative magnitude: painting (15.58 mg/m3) > automatic welding (0.66 mg/m3) > manual welding (0.53 mg/m3) > punching (0.18 mg/m3) > cutting (0.16 mg/m3). The concentrations in each of the five work areas were Cinh>Cthor>Cresp. In all areas except the painting area, extra-fine particles produced by welding at high temperatures, and further those coagulated to form larger particles. This study observed bimodal distribution in the size of welding fume in the ranges of 0.7–1 µm and 15–21 µm. Meanwhile, the mass concentrations of particles with different sizes were not consistent across work areas. In the painting area, the mass concentration was higher in Chead>Cth>Calv, but in welding areas, it was found that Calv>Chead>Cth. Particles smaller than 1µm were primarily produced by welding. PMID:25327301

  18. Formation of nitro-PAHs from the heterogeneous reaction of ambient particle-bound PAHs with NO3/N2O5

    Science.gov (United States)

    Zimmermann, K.; Jariyasopit, N.; Simonich, S. L.; Atkinson, R.; Arey, J.

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (nitro-PAHs) have been shown to be mutagenic in bacterial and mammalian assays and are classified as probable human carcinogens. Semi-volatile PAHs partition between the gas and particulate phases, depending on their liquid-phase vapor pressures and ambient temperatures. These PAHs have been extensively measured in ambient particulate matter and can ultimately undergo long-range transport from source regions (e.g., China to the western USA) (1). During transport these particle-bound PAHs may undergo reaction with NO3/N2O5 to form nitro-PAH derivatives. Previous studies of heterogeneous nitration of PAHs have used particles composed of graphite, diesel soot, and wood smoke (2-4). This study investigates the heterogeneous formation of nitro-PAHs from ambient particle-bound PAHs from Beijing, China and sites located within the Los Angeles air basin. These ambient particle samples, along with filters coated with isotopically labeled PAHs, were exposed to a mix of NO2/NO3/N2O5 in a 7000 L Teflon chamber, with analysis focused on the heterogeneous formation of molecular weight 247 and 273 nitro-PAHs. The heterogeneous formation of certain nitro-PAHs (including1-nitropyrene and 1- and 2-nitrotriphenylene) was observed for some, but not all, ambient samples. Formation of nitro-PAHs typically formed through gas-phase reactions (2-nitrofluoranthene and 2-nitropyrene) was not observed. The effect of particle age and local photochemical conditions during sampling on the degree of nitration in environmental chamber reactions, as well as ambient implications, will be presented. 1. Primbs, T.; Simonich, S.; Schmedding, D.; Wilson, G.; Jaffe, D.; Takami, A.; Kato, S.; Hatakeyama, S.; Kajii, Y. Environ. Sci. Technol. 2007, 41, 3551-3558. 2. Esteve, W.; Budzinski, H.; Villenave, E. Atmospheric Environment 2004, 38, 6063-6072. 3. Nguyen, M.; Bedjanian, Y.; Guilloteau, A. Journal of Atmospheric Chemistry 2009, 62

  19. Real-time aerosol photometer and optical particle counter comparison

    International Nuclear Information System (INIS)

    Santi, E.; Belosi, F.; Santachiara, G.; Prodi, F.; Berico, M.

    2010-01-01

    The paper presents the results of a comparison exercise among real-time aerosol samplers, based on different light scattering techniques. The comparison was carried out near to the ISAC institute in a box positioned inside the CNR research area in Bologna. Two nephelometers (Dust Trak from TSI, and Air Genius from Unitec) and an optical particle counter (ENVIRO-check from Grimm) were used for P M1 and P M10 fraction assessment. In the case of the optical particle counter, the particle number concentration in each size bin was also used. In parallel, two manual sampling lines were employed for reference (gravimetric) measurements. The results highlight different factor scales for the dust monitors, in comparison with gravimetric assessment, underlining the importance of a user calibration of such monitors as a function of the specific aerosol sampled. Moreover, the relative fluctuations of the hourly P M 10 and P M1 concentrations, against daily average concentrations, were studied in order to compare the ability of each sampler to follow changes in the aerosol size distribution. It was found that the photometers and optical particle counter revealed different behaviours. In the latter, a small increase in the particle concentration number in the coarse fraction gave a relatively high increase in the mass concentration that was not measured by the photometers. The explanation could be the relatively slight influence of a small particle number variation on the total scattered light for the photometers, unlike the case of the optical particle counter, where each particle contributes to the mass concentration. This aspect merits future research in order to better understand optical particle counter output used in P Mx monitoring activities.

  20. Crushing strength of HTGR fuel particles

    International Nuclear Information System (INIS)

    Lackey, W.J.; Stinton, D.P.; Davis, L.E.; Beatty, R.L.

    1976-01-01

    The whole-particle crushing strengths of High-Temperature Gas-Cooled Reactor fertile and fissile coated particles were measured and correlated with fabrication procedures. The crushing strength of Biso-coated fertile particles was increased by the following factors: (1) increasing the outer coating thickness by 10 μm increased strengths by 0.3 lb (1.3 N) for annealed particles and by 0.5 lb (2.2 N) for unannealed particles. (2) An 1800 0 C postcoating anneal increased strengths by 1 lb (4.4 N) for particles with thick outer coatings and by 2 lb (8.9 N) for particles having thin coatings. (3) Increasing the inner coating density by 0.1 g/cm 3 increased strength by 0.6 lb (2.7 N). The crushing strength of Triso-coated fissile particles was proportional to the thickness of the SiC coatings, and strength decreased on annealing by about 0.2 lb (0.9 N) when a porous plate was used to distribute the coating gas and by about 1.5 lb (6.7 N) when a conical gas distributor was used. The strengths of fertile and fissile coated particles as well as uncoated kernels appear adequate to allow fuel fabrication without excessive particle damage

  1. Influence of colloid particle profile on sentinel lymph node uptake

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Nunez, Eutimio Gustavo [Radiopharmacy Center, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil)], E-mail: eutimiocu@yahoo.com; Linkowski Faintuch, Bluma; Teodoro, Rodrigo; Pereira Wiecek, Danielle [Radiopharmacy Center, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil); Martinelli, Jose Roberto [Center of Materials Science and Technology, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil); Gomes da Silva, Natanael; Castanheira, Claudia E. [Radiopharmacy Center, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil); Santos de Oliveira Filho, Renato [Faculty of Medicine, Federal University of Sao Paulo, SP 04020-041 (Brazil); Pasqualini, Roberto [CIS bio international, Research and Development, Gif sur Yvette, 91192 (France)

    2009-10-15

    Introduction: Particle size of colloids employed for sentinel lymph node (LN) detection is not well studied. This investigation aimed to correlate particle size and distribution of different products with LN uptake. Methods: All agents (colloidal tin, dextran, phytate and colloidal rhenium sulfide) were labeled with {sup 99m}Tc according to manufacturer's instructions. Sizing of particles was carried out on electron micrographs using Image Tool for Windows (Version 2.0). Biodistribution studies in main excretion organs as well as in popliteal LN were performed in male Wistar rats [30 and 90 min post injection (p.i.)]. The injected dose was 0.1 ml (37 MBq) in the footpad of the left posterior limb. Dynamic images (0-15 min p.i.) as well as static ones (30 and 90 min) were acquired in gamma camera. Results: Popliteal LN was clearly reached by all products. Nevertheless, particle size remarkably influenced node uptake. Colloidal rhenium sulfide, with the smallest diameter (5.1x10{sup -3}{+-}3.9x10{sup -3} {mu}m), permitted the best result [2.72{+-}0.64 percent injected dose (%ID) at 90 min]. Phytate displayed small particles (<15 {mu}m) with favorable uptake (1.02{+-}0.14%ID). Dextran (21.4{+-}12.8 {mu}m) and colloidal tin (39.0{+-}8.3 {mu}m) were less effective (0.55{+-}0.14 and 0.06{+-}0.03%ID respectively). Particle distribution also tended to influence results. When asymmetric, it was associated with biphasic uptake which increased over time; conversely, symmetric distribution (colloidal tin) was consistent with a constant pattern. Conclusion: The results are suggesting that particle size and symmetry may interfere with LN radiopharmaceutical uptake.

  2. Polietileno tibial móvel na artroplastia total do joelho Mobile polyethylene bearing in total knee replacement

    Directory of Open Access Journals (Sweden)

    Hugo Alexandre de Araújo Barros Cobra

    2009-01-01

    Full Text Available O desgaste do polietileno tibial utilizado nas artroplastias de joelho origina partículas que, quando fagocitadas, dão início à cascata de eventos biológicos que levam à osteólise e consequente afrouxamento dos componentes da prótese. Assim sendo, alternativas para o polietileno têm sido pesquisadas com o objetivo de minimizar o desgaste e, com isso, aumentar a durabilidade das artroplastias. Uma dessas opções é a utilização de polietilenos tibiais móveis, que apresentam maior conformidade do que os polietilenos fixos, ao mesmo tempo em que permitem autoalinhamento rotacional entre os componentes, melhorando, dessa forma, a cinética e a cinemática da prótese. São apresentados aqui, de forma resumida, porém abrangente, o conceito, os fundamentos biomecânicos, as indicações, os resultados esperados e complicações dos polietilenos tibiais móveis nas artroplastias totais do joelho.Debris of polyethylene tibial bearings have been recognized as a major cause for the onset of the cascade of biological events leading to osteolysis and loosening of prosthetic components after total knee arthroplasty. Since then, research has been focused on alternative bearing surfaces in order to minimize the amount and rate of polyethylene wear off and, in doing so, increasing the survivorship rate for knee arthroplasties. One such option is to have a mobile tibial bearing allowing more conformity and rotational self-alignment of the components, improving kinetics and kinematics of the prosthesis. The authors present a resumed but throughout and comprehensive review of the rationale, biomechanics fundamentals, indications, pitfalls, outcomes and complications for the use of mobile tibial bearings in total knee replacement.

  3. Infinite Coordination Polymer Nano- and Micro-Particles

    Science.gov (United States)

    2015-06-12

    attachment (Figure 1). Particles were synthesized by combining DABA-bis-HP-N3 and ferric nitrate in dilute NaOH. The crude particles were purified by...cervical cancer cells using dye-labeled DNA (Figure 2). The ICP-DNA particles were found to cross cell membranes with efficiency very similar to the...deliver their genetic cargo to the cell and effect expression of a known cancer -related mRNA transcript in vitro. SKOV-3 ovarian cancer cells were chosen

  4. [Comparison of in vivo characteristics of polyethylene wear particles produced by a metal and a ceramic femoral component in total knee replacement].

    Science.gov (United States)

    Veigl, D; Vavřík, P; Pokorný, D; Slouf, M; Pavlova, E; Landor, I

    2011-01-01

    The aim of the study was to evaluate in vivo and compare, in terms of the quality and number of ultra high-molecular polyethylene (UHMWPE) wear particles, total knee replacements of identical construction differing only in the material used for femoral component production, i.e., CoCrMo alloy or ZrO2 ceramics. Samples of peri-prosthetic granuloma tissue were collected in two patients with total knee replacement suffering from implant migration, who were matched in relevant characteristics. The primary knee replacement in Patient 1 with a CoCrMo femoral component was done 7.2 years and in Patient 2 with a ZrO2 implant 6.8 years before this assessment. The polyethylene wear-induced granuloma was analysed by the MORF method enabling us to assess the shape and size of wear debris and the IRc method for assessment of particle concentration. In the granuloma tissue samples of Patient 1, on the average, particles were 0.30 mm in size and their relative volume was 0.19. In the Patient 2 tissue samples, the average size of particles was 0.33 mm and their relative volume was 0.26. There was no significant difference in either particle morphology or their concentration in the granuloma tissue between the two patients. One of the options of how to reduce the production of polyethylene wear particles is to improve the tribological properties of contacting surfaces in total knee replacement by substituting a cobalt-chrome femoral component with a zirconia ceramic femoral component. The previous in vitro testing carried out with a mechanical simulator under conditions approaching real weight-bearing in the human body did show a nearly three-fold decrease in the number of UHMWPE wear particles in zirconia components. The evaluation of granuloma tissue induced by the activity of a real prosthetic joint for nearly seven years, however, did not reveal any great difference in either quality or quantity of polyethylene debris between the two replacements. The difference of surface

  5. Decabrominated Diphenyl Ethers (BDE-209) in Chinese and Global Air: Levels, Gas/Particle Partitioning, and Long-Range Transport: Is Long-Range Transport of BDE-209 Really Governed by the Movement of Particles?

    Science.gov (United States)

    Li, Yi-Fan; Qiao, Li-Na; Ren, Nan-Qi; Sverko, Ed; Mackay, Donald; Macdonald, Robie W

    2017-01-17

    In this paper, we report air concentrations of BDE-209 in both gas- and particle-phases across China. The annual mean concentrations of BDE-209 were from below detection limit (BDL) to 77.0 pg·m -3 in the gas-phase and 1.06-728 pg·m -3 in the particle-phase. Among the nine PBDEs measured, BDE-209 is the dominant congener in Chinese atmosphere in both gas and particle phases. We predicted the partitioning behavior of BDE-209 in air using our newly developed steady state equation, and the results matched the monitoring data worldwide very well. It was found that the logarithm of the partition quotient of BDE-209 is a constant, and equal to -1.53 under the global ambient temperature range (from -50 to +50 °C). The gaseous fractions of BDE-209 in air depends on the concentration of total suspended particle (TSP). The most important conclusion derived from this study is that, BDE-209, like other semivolatile organic compounds (SVOCs), cannot be sorbed entirely to atmospheric particles; and there is a significant amount of gaseous BDE-209 in global atmosphere, which is subject to long-range atmospheric transport (LRAT). Therefore, it is not surprising that BDE-209 can enter the Arctic through LRAT mainly by air transport rather than by particle movement. This is a significant advancement in understanding the global transport process and the pathways entering the Arctic for chemicals with low volatility and high octanol-air partition coefficients, such as BDE-209.

  6. Characterization of the abundant ≤0.2 μm cell-like particles inhabiting Lake Vida brine, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Kuhn, E.; Ichimura, A.; Peng, V.; Fritsen, C. H.; Murray, A. E.

    2011-12-01

    Most lakes in the McMurdo Dry Valleys are perennially covered with 3 to 6 m of ice, but Lake Vida is frozen from the surface through the lake bed, with ice permeated by brine channels. Brine collected from within the ice of Lake Vida is six times saltier than seawater, anoxic, with temperature of -13.4 C, pH of 6.2, high concentrations of ferrous iron (>300 μM), NH4+ (3.6 mM), and N2O (>58 μM), making it a unique environment. The first analysis of Vida brine microbial community (sampled in 2005) detected a cell rich environment (107 cells/mL), with cells falling into two size classes: ≥0.5 μm (105 cells/mL) and ~0.2 μm (107 cells/mL). Microorganisms in the domain Bacteria were detected, but Eukarya and Archaea were not. The clone library from 2005 identified Bacteria related to the phyla Proteobacteria (γ, δ, and ɛ), Lentisphaera, Firmicutes, Spirochaeta, Bacterioidetes, Actinobacteria, Verrucomicrobia, and candidate Division TM7. Brine samples were collected again in the austral summer of 2010 in which one of the focus areas is interrogating the ~0.2 μm cell size class. Molecular, imaging, and elemental analyses were employed to characterize the population of nano-sized particles (NP) that pass through 0.2 μm filters. The aim of testing was to determine whether or not these particles are cells with a morphology resulting from environmental stresses. These results are being compared to the same analyses applied in the whole brine microbial community. A 0.2 μm filtrate of brine incubated for 25 days at -13 C was collected on a 0.1 μm filter. Analysis of the 16S rRNA gene DGGE profile showed differences in the banding pattern and relative intensity when comparing the 0.2 μm filtrate to the whole brine community. A 16S rRNA clone library from the 0.2 μm filtrate indicated the presence of genera previously described in the 2005 whole brine community clone library like Pscychrobacter, Marinobacter, and members related to candidate Division TM7. Also, the

  7. The origin of the 3.4 micron feature in Wild 2 cometary particles and in ultracarbonaceous interplanetary dust particles

    OpenAIRE

    Matrajt, Graciela; Flynn, George; Brownlee, Don; Joswiak, Dave; Bajt, Sasa

    2013-01-01

    We analyzed 2 ultra-carbonaceous interplanetary dust particles and 2 cometary Wild 2 particles with infrared spectroscopy. We characterized the carrier of the 3.4 micron band in these samples and compared its profile and the CH2/CH3 ratios to the 3.4 micron band in the diffuse interstellar medium (DISM), in the insoluble organic matter (IOM) from 3 primitive meteorites, in asteroid 24 Themis and in the coma of comet 103P/Hartley 2. We found that the 3.4 micron band in both Wild 2 and IDPs is ...

  8. Study of 3-jet events in e/sup +/e/sup -/ annihilation into hadrons at 34. 6 c. m. energy

    Energy Technology Data Exchange (ETDEWEB)

    Althoff, M; Braunschweig, W; Kirschfink, F J; Martyn, H U; Rosskamp, R; Schmitz, D; Siebke, H; Wallraff, W; Eisenmann, J; Fischer, H M

    1985-10-01

    Three-jet events produced by e/sup +/e/sup -/ annihilation into hadrons at 34.6 GeV c.m. energy were studied by comparing them with 2nd order QCD and two different models of fragmentation. The distribution of low energy particles in the 3-jet plane is found to be better described by the LUND color string model than by the independent jet model. The opposite is true for more energetic particles flowing between the 3 jets. The average transverse momenta in jets can be described with values of sigmasub(q) between 350 and 500 MeV/c for the gluon jet.

  9. Particle creation effect on M4 X S7 Kaluza-Klein cosmologies

    International Nuclear Information System (INIS)

    Koikawa, T.; Maeda, K.

    1984-01-01

    The particle creation effect on the higher-dimensional Kaluza-Klein cosmologies with M 4 xS 7 topology is studied. This quantum effect is found to change the classical behavior of the internal and external scale factors drastically in the early stage of the expansion, so that the dimensional reduction seems to fail. However, at the later stage two scale factors get separated from each other and the internal scale factor approaches the final singularity just like the vacuum case. (orig.)

  10. Efficient isotope ratio analysis of uranium particles in swipe samples by total-reflection x-ray fluorescence spectrometry and secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Esaka, Fumitaka; Watanabe, Kazuo; Fukuyama, Hiroyasu; Onodera, Takashi; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu

    2004-01-01

    A new particle recovery method and a sensitive screening method were developed for subsequent isotope ratio analysis of uranium particles in safeguards swipe samples. The particles in the swipe sample were recovered onto a carrier by means of vacuum suction-impact collection method. When grease coating was applied to the carrier, the recovery efficiency was improved to 48±9%, which is superior to that of conventionally-used ultrasoneration method. Prior to isotope ratio analysis with secondary ion mass spectrometry (SIMS), total reflection X-ray fluorescence spectrometry (TXRF) was applied to screen the sample for the presence of uranium particles. By the use of Si carriers in TXRF analysis, the detection limit of 22 pg was achieved for uranium. By combining these methods with SIMS, the isotope ratios of 235 U/ 238 U for individual uranium particles were efficiently determined. (author)

  11. 211At-labelling of polymer particles for radiotherapy: synthesis, purification and stability

    International Nuclear Information System (INIS)

    Larsen, R.H.; Hassfjell, S.P.; Hoff, P.; Alstad, J.; Bjoergum, J.

    1993-01-01

    Cyclotron-produced 211 At was distilled from a Bi metal target and coupled to N-succinimidyl-3-(trimethylstannyl)benzoate. The resulting N-succinimidyl-3-( 211 At)astatobenzoate was thereafter coupled to aminated monosized polymer particles with a diameter of 1.8 μm. The total time elapsed from the end of the cyclotron irradiation until the final product was prepared was about 2.5 hours. From 23 to 51% of the target activity at the end of bombardment was measured in the final conjugate. Solid-liquid extraction purification of the astatinated intermediate, using Sep-pak columns (Waters), gave more reproducible yields in the final conjugation step. The 211 At-labelled particles were incubated with fetal calf serum, human serum and human full blood at room temperature. The 211 At activity on the particles was measured before and after three times washing at 4, 24 and 48 hours. The stability was not significantly different from 100% for all media and for all time points. This indicates that 211 At-labelled particles can be stable under in vivo conditions, and may thereby be a promising agent for intracavitary radiotherapy on free-floating cancer cells or surface fixed cells. (Author)

  12. Development and evaluation of an impactor sampler for radioactive aerosol particles

    International Nuclear Information System (INIS)

    Sorimachi, Atsuyuki; Kranrod, Chutima; Chantrarayotha, Supitcha; Tokonami, Shinji

    2008-01-01

    This sampler consists of one impaction stage, which allows separation of airborne particles by 1 μm particle size cut-off point with a 50% probability of impaction, followed by a back-up filter at a flow rate of 1 L min -1 . The particles size more than and less than 1 μm-diameter are collected on the impactor plate at the nozzle side and on the filter, respectively. A Cr-39 detector is mounted on the filter sides of the impaction plate; α particles emitted from the particles less than 1 μm-diameter are counted with the Cr-39 detectors. In order to separate α particles emitted from radon, thoron and their progeny, the Cr-39 detectors are covered with aluminum-vaporized Mylar films. The total thickness of films is adjusted to let their α particles impinge on the Cr-39 detectors. Laboratory tests are going on in terms of the spectral characteristics of α particles before and after passing through the films, the count rate performance of Cr-39 detectors by α particles, the actual collection efficiency of aerosol particles on the impaction plate, and so on. This sampler may be able to supply us with an interesting technique for measuring radon and thoron progeny come from the sources of natural radiation such as the naturally occurred radioactive materials. (author)

  13. The contribution of various types of settling particles to the flux of organic carbon in the Gulf of St. Lawrence

    Science.gov (United States)

    Romero-Ibarra, Nancy; Silverberg, Norman

    2011-10-01

    The contents of 31 samples from free-drifting sediment traps deployed in the Gulf of St. Lawrence (GSL) were analyzed for the individual contribution of the different types of particles encountered to the total particulate organic carbon (POC) flux. Two trap models were used in 1993-1994: small traps at 50 m depth and large traps at 50 and 150 m. Total POC fluxes averaged 42 mg C m -2 d -1 for the more reliable large trap and 149 mg C m -2 d -1 for the small trap. The POC fluxes were attributed to different classes of particles based upon microscopically determined particle dimensions and carbon/volume algorithms available in the literature. Fecal pellets, followed by phytoplankton, were the major attributable components, with important contributions by microzooplankton, particularly during the summer of 1994. The mean fluxes for pellets (6 and 60 mg C m -2 d -1, for the large and small traps, respectively) and phytoplankton (3.2 and 42.9 mg C m -2 d -1) were in the range of those encountered in other areas of moderate primary productivity. Mean zooplankton carbon fluxes (1.8 and 8.5 mg C m -2 d -1, respectively), however, reflect higher than average zooplankton abundances in the GSL. The C fluxes of specific algal groups confirmed the existence of three trophic regimes previously identified from water column studies and numeric cell fluxes: (1) a period when diatoms were dominant during the spring, (2) a longer interval, which was dominated by dinoflagellates at most others times of the year, and (3) a period of transition during summer. Carbon of animal origin dominated the attributable flux, including an important fraction associated with heterotrophic dinoflagellates. The contribution of marine snow to the total flux (estimated as the difference between the total POC flux and the sum of the attributed components) frequently amounted to more than 60%. The true importance of marine snow remains uncertain, however, because the errors associated with each of the

  14. Nucleation and growth of sub-3 nm particles in the polluted urban atmosphere of a megacity in China

    Directory of Open Access Journals (Sweden)

    H. Yu

    2016-03-01

    Full Text Available Particle size distribution down to 1.4 nm was measured in the urban atmosphere of Nanjing, China, in spring, summer, and winter during 2014–2015. Sub-3 nm particle event, which is equivalent to nucleation event, occurred on 42 out of total 90 observation days, but new particles could grow to cloud condensation nuclei (CCN-active sizes on only 9 days. In summer, infrequent nucleation was limited by both unfavorable meteorological conditions (high temperature and relative humidity – RH and reduced anthropogenic precursor availability due to strict emission control measures during the 2014 Youth Olympic Games in Nanjing. The limiting factors for nucleation in winter and spring were meteorological conditions (radiation, temperature, and RH and condensation sink, but for the further growth of sub-3 nm particles to CCN-active sizes, anthropogenic precursors again became limiting factors. Nucleation events were strong in the polluted urban atmosphere. Initial J1.4 at the onset and peak J1.4 at the noontime could be up to 2.1 × 102 and 2.5 × 103 cm−3 s−1, respectively, during the eight nucleation events selected from different seasons. Time-dependent J1.4 usually showed good linear correlations with a sulfuric acid proxy for every single event (R2 = 0.56–0.86, excluding a day with significant nocturnal nucleation, but the correlation among all eight events deteriorated (R2 =  0.17 due to temperature or season change. We observed that new particle growth rate (GR did not increase monotonically with particle size, but had a local maximum up to 25 nm h−1 between 1 and 3 nm. The existence of local maxima GR in sub-3 nm size range, though sensitive to measurement uncertainties, gives new insight into cluster dynamics in polluted environments. In this study such growth rate behavior was interpreted as the solvation effect of organic activating vapor in newly formed inorganic nuclei.

  15. Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles

    Science.gov (United States)

    Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.

    1987-04-01

    Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.

  16. Standard Practice for Continuous Sizing and Counting of Airborne Particles in Dust-Controlled Areas and Clean Rooms Using Instruments Capable of Detecting Single Sub-Micrometre and Larger Particles

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers the determination of the particle concentration, by number, and the size distribution of airborne particles in dust-controlled areas and clean rooms, for particles in the size range of approximately 0.01 to 5.0 m. Particle concentrations not exceeding 3.5 106 particles/m3 (100 000/ft 3) are covered for all particles equal to and larger than the minimum size measured. 1.2 This practice uses an airborne single particle counting device (SPC) whose operation is based on measuring the signal produced by an individual particle passing through the sensing zone. The signal must be directly or indirectly related to particle size. Note 1The SPC type is not specified here. The SPC can be a conventional optical particle counter (OPC), an aerodynamic particle sizer, a condensation nucleus counter (CNC) operating in conjunction with a diffusion battery or differential mobility analyzer, or any other device capable of counting and sizing single particles in the size range of concern and of sampling...

  17. Phospholipase C-independent effects of 3M3FBS in murine colon.

    Science.gov (United States)

    Dwyer, Laura; Kim, Hyun Jin; Koh, Byoung Ho; Koh, Sang Don

    2010-02-25

    The muscarinic receptor subtype M(3) is coupled to Gq/11 proteins. Muscarinic receptor agonists such as carbachol stimulate these receptors that result in activation of phospholipase C (PLC) which hydrolyzes phosphatidylinositol 4,5-bisphosphate into diacylglycerol and Ins(1,4,5)P(3). This pathway leads to excitation and smooth muscle contraction. In this study the PLC agonist, 2, 4, 6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benezenesulfonamide (m-3M3FBS), was used to investigate whether direct PLC activation mimics carbachol-induced excitation. We examined the effects of m-3M3FBS and 2, 4, 6-trimethyl-N-(ortho-3-trifluoromethyl-phenyl)-benzenesulfonamide (o-3M3FBS), on murine colonic smooth muscle tissue and cells by performing conventional microelectrode recordings, isometric force measurements and patch clamp experiments. Application of m-3M3FBS decreased spontaneous contractility in murine colonic smooth muscle without affecting the resting membrane potential. Patch clamp studies revealed that delayed rectifier K(+) channels were reversibly inhibited by m-3M3FBS and o-3M3FBS. The PLC inhibitor, 1-(6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), did not prevent this inhibition by m-3M3FBS. Both m-3M3FBS and o-3M3FBS decreased two components of delayed rectifier K(+) currents in the presence of tetraethylammonium chloride or 4-aminopyridine. Ca(2+) currents were significantly suppressed by m-3M3FBS and o-3M3FBS with a simultaneous increase in intracellular Ca(2+). Pretreatment with U73122 did not prevent the decrease in Ca(2+) currents upon m-3M3FBS application. In conclusion, both m-3M3FBS and o-3M3FBS inhibit inward and outward currents via mechanisms independent of PLC acting in an antagonistic manner. In contrast, both compounds also caused an increase in [Ca(2+)](i) in an agonistic manner. Therefore caution must be employed when interpreting their effects at the tissue and cellular level.

  18. 3.3 μm mapping of NGC 7027

    International Nuclear Information System (INIS)

    Isaacman, R.

    1984-01-01

    Among the principal unknowns regarding planetary nebulae is the nature of several unidentified infrared spectral lines. Probably the best-studied of these features are the 3.3 and 11.3 μm lines, which usually appear together. In the present work the bright planetary nebula NGC 7027 has been mapped using UKIRT, and a crosscut has been taken using the 3.0 m NASA Infrared Telescope Facility. Implications of the results for the possible excitation mechanisms are discussed. (U.K.)

  19. Compositions of airborne plutonium-bearing particles from a plutonium finishing operation

    International Nuclear Information System (INIS)

    Sanders, S.M. Jr.

    1976-11-01

    The elemental composition of 111 plutonium-bearing particles was determined (using an electron microprobe) as part of a program to investigate the origin and behavior of the long-lived transuranic radionuclides released from fuel reprocessing facilities at the Savannah River Plant. These particles, collected from wet-cabinet and room-air exhausts from the plutonium finishing operation (JB-Line), were between 0.4 and 36 μm in diameter. Ninety-nine of the particles were found to be aggregates of various minerals and metals, six were quartz, and six were small (less than 2-μm-diameter) pieces of iron oxide. Collectively, these particles contained less minerals and more metals than natural dusts contain. The metallic constituents included elements normally not found in dusts, e.g., chromium, nickel, copper, and zinc. Concentrations of aluminum and iron exceeded those normally found in minerals. Elemental concentrations in individual particles covered a wide range: one 2-μm-diameter particle contained 97 percent NiO, a 9-μm-diameter particle contained 72 percent Cr 2 O 3 . Although the particles were selected because they produced plutonium fission tracks, the plutonium concentration was too low to be estimated by microprobe analysis in all but a 1-μm-diameter particle. This plutonium-bearing particle contained 73 percent PuO 2 by weight in combination with Fe 2 O 3 and mica; its activity was estimated at 0.17 pCi of 239 Pu

  20. Postirradiation examination report of TRISO and BISO coated ThO2 particles irradiated in capsules HT-31 and HT-33

    International Nuclear Information System (INIS)

    Sedlak, B.J.

    1980-01-01

    Capsules HT-31 and HT-33 were uninstrumented capsule experiments irradiated in the target position of the High-Flux Isotope Reactor at Oak Ridge National Laboratory. The experiments were used to evaluate the irradiation performance of (1) fuel fabricated in a 240-mm-diameter coater for production scale-up, (2) TRISO ThO 2 and BISO ThO 2 particles, and (3) fuel with certain OPyC variables. A total of 16 BISO particle samples and 32 TRISO particle samples were irradiated to fast neutron fluences ranging from 4.0 to 11.7 x 10 25 n/m 2 (E > 29 fJ)/sub HTGR/ and heavy metal burnups between 3.5% and 13.2% FIMA at temperatures from 1150 0 to 1530 0 C

  1. Toxic assessment of urban atmospheric particle-bound PAHs: Relevance of composition and particle size in Barcelona (Spain)

    International Nuclear Information System (INIS)

    Mesquita, Sofia Raquel; Drooge, Barend L. van; Reche, Cristina; Guimarães, Laura; Grimalt, Joan O.; Barata, Carlos; Piña, Benjamin

    2014-01-01

    Zebrafish embryotoxicity and dioxin-like activity levels were tested for particulate air samples from an urban background site in Barcelona (Spain). Samples were collected during 14 months, and maximal values for both biological activities corresponded to samples collected during late autumn months, correlating with elevated PAH levels. Vehicle and combustion emissions appeared as the potentially most toxic sources, whereas total PM mass and mineral content appeared to be poor predictors of the biological activity of the samples. Samples simultaneously collected at different particle size cut-offs (10, 2.5, and 1 μm) did not differ significantly in dioxin-like PAH levels and biological activity, indicating that the sub-micron particle fraction (PM 1 ) concentrated essentially all observed toxicity. Our results support the need for a tighter control on sub-micron particle emissions and show that total PM mass and, particularly, PM 10 , may not fully characterize the toxic potential of air samples. Highlights: • Dioxin-like activity was found in all air particle samples collected in Barcelona. • 50% of the samples showed different levels of fish embryotoxicity. • Toxic effects associated to PAHs and linked to vehicle and combustion emissions. • The toxicity was not correlated to PM mass or mineral content. • The sub-micron particle fraction PM 1 concentrated essentially all observed toxicity. -- In vivo toxic effects associated to sub-micron urban air particles from combustion and vehicle emissions

  2. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles.

    Science.gov (United States)

    Fan, Fang-Li; Qin, Zhi; Bai, Jing; Rong, Wei-Dong; Fan, Fu-You; Tian, Wei; Wu, Xiao-Lei; Wang, Yang; Zhao, Liang

    2012-04-01

    Rapid removal of U(VI) from aqueous solutions was investigated using magnetic Fe(3)O(4)@SiO(2) composite particles as the novel adsorbent. Batch experiments were conducted to study the effects of initial pH, amount of adsorbent, shaking time and initial U(VI) concentrations on uranium sorption efficiency as well as the desorbing of U(VI). The sorption of uranium on Fe(3)O(4)@SiO(2) composite particles was pH-dependent, and the optimal pH was 6.0. In kinetics studies, the sorption equilibrium can be reached within 180 min, and the experimental data were well fitted by the pseudo-second-order model, and the equilibrium sorption capacities calculated by the model were almost the same as those determined by experiments. The Langmuir sorption isotherm model correlates well with the uranium sorption equilibrium data for the concentration range of 20-200 mg/L. The maximum uranium sorption capacity onto magnetic Fe(3)O(4)@SiO(2) composite particles was estimated to be about 52 mg/g at 25 °C. The highest values of uranium desorption (98%) was achieved using 0.01 M HCl as the desorbing agent. Fe(3)O(4)@SiO(2) composite particles showed a good selectivity for uranium from aqueous solution with other interfering cation ions. Present study suggested that magnetic Fe(3)O(4)@SiO(2) composite particles can be used as a potential adsorbent for sorption uranium and also provided a simple, fast separation method for removal of heavy metal ion from aqueous solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Gas supply during fluidization of spherical particles in FBR

    International Nuclear Information System (INIS)

    Jeong, Kyung Chai; Eom, Sung Ho; Kim, Yeon Ku; Kim, Woong Ki; Kim, Young Min; Lee, Young Woo; Cho, Moon Seong

    2011-11-01

    Calculations of gas flow requirements and of other related parameters in the fluidized-bed process used to coat nuclear fuel particles are presented. These data include: volumes and surfaces of spheres for diameters of 50 to 500μm: number of theses spheres in 1 g for densities of 2 to 11 g/cm 3 : overall densities of coated spheres for initial particle diameters of 50 to 500μm, initial densities of 8 to 11 g/cm 3 , coating densities of 1.0 to 2.2 g/cm 3 , and final particle diameters of 100 to 1000μm: viscosities of Ar, CO 2 , He, and H 2 for temperatures up to 2200 .deg. C: minimum flows of He and Ar necessary to fluidized nuclear fuel particles at 20 .deg. C: coefficients for converting the 20 .deg. C minimum fluidization gas flows to high-temperature flows (up to 2200 .deg. C): variation of particle diameter with time for constant weight deposition rate: variation of coating gas flow for constant linear growth of the coating: comparison of coating time at constant weight deposition rate and at constant coating growth rate

  4. Verification of nuclear data for DT neutron induced charged-particle emission reaction of light nuclei

    International Nuclear Information System (INIS)

    Kondo, K.; Murata, I.; Ochiai, K.; Kubota, N.; Miyamaru, H.; Takagi, S.; Shido, S.; Konno, C.; Nishitani, T.

    2007-01-01

    Double-differential cross-section (DDX) for emitted charged particles is necessary to estimate material damage, gas production and nuclear heating in a fusion reactor. Detailed measurements of the cross-sections for beryllium, carbon and fluorine, which are among the composition materials of expected fusion blankets and first walls, were carried out with a charged-particle spectrometer using a pencil-beam DT neutron source. As verification of the cross-sections evaluated in three nuclear libraries (JENDL-3.3, ENDF/B-VI and JEFF-3.1), our measured data were compared with the data evaluated in the libraries. From the comparison, the following problems were pointed out: Beryllium: Remarkable differences in energy and angular distribution for α-particles were observed between the measured data and the libraries. The estimated total cross-section for α-particle production well agreed with the libraries. Carbon: There was a discrepancy of about 20% between JENDL-3.3 and ENDF/B-VI (JEFF-3.1) for α-particle production cross-section, and no DDX for α-particles is given in the libraries. Our obtained total cross-section for α-particle production was rather consistent with ENDF/B-VI (JEFF-3.1), and the value evaluated in JENDL-3.3 seemed too large. Fluorine: The remarkable differences for DDX of protons and α-particles were observed between the obtained result and JENDL-3.3, although detailed DDX was stored only in JENDL. The obtained total cross-sections mostly supported the evaluation of ENDF/B-VI (JEFF-3.1)

  5. Validation of alternative methods of preparing 99mTc-MAG3

    International Nuclear Information System (INIS)

    Seetharaman, Shankar; Sosabowski, Michael H.; Ballinger, James R.

    2007-01-01

    Parameters in the preparation of 99m Tc-mertiatide ( 99m Tc-MAG3) were investigated to determine the importance of total activity, activity concentration, boiling time, and delay before boiling for the radiochemical purity (RCP) and stability of the product. Satisfactory RCP results (>90%) were obtained over a range of concentrations including a dilute preparation for paediatric use. RCP was not affected by the time between the addition of pertechnetate and boiling, but low RCP (<60%) resulted when the kit was boiled for less than 10 min

  6. Fabrication and Characterization of Surrogate TRISO Particles Using 800μm ZrO2 Kernels

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, Brian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Helmreich, Grant [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cooley, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    In support of fully ceramic microencapsulated (FCM) fuel development, coating development work is ongoing at Oak Ridge National Laboratory (ORNL) to produce tri-structural isotropic (TRISO) coated fuel particles with both UN kernels and surrogate (uranium-free) kernels. The nitride kernels are used to increase fissile density in these SiC-matrix fuel pellets with details described elsewhere. The surrogate TRISO particles are necessary for separate effects testing and for utilization in the consolidation process development. This report focuses on the fabrication and characterization of surrogate TRISO particles which use 800μm in diameter ZrO2 microspheres as the kernel.

  7. Radon decay products and 10-1100 nm aerosol particles in Postojna Cave

    Science.gov (United States)

    Bezek, M.; Gregorič, A.; Vaupotič, J.

    2013-03-01

    At the lowest point along the tourist route in Postojna Cave, the activity concentration of radon (222Rn) decay products and the number concentration and size distribution of aerosol particles in the size range of 10-1100 nm were monitored, with the focus on the unattached fraction (fun) of radon decay products (RnDPs), a key parameter in radon dosimetry. The total number concentration of aerosols during visits in summer was lower (700 cm-3) than in winter (2800 cm-3), and was dominated by 50 nm particles (related to the attached RnDPs) in winter. This explains the higher fun values in summer (0.75) and the lower winter measurement (0.04) and, consequently, DCFD values of 43.6 and 13.1 mSv WLM-1 respectively for the calculated dose conversion factors. The difference is caused by an enhanced inflow of fresh outside air, driven in winter by the higher air temperature in the cave compared to outside, resulting in the introduction of outside aerosol particles into the cave.

  8. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment

    Science.gov (United States)

    Schmidt, Susan; Schneider, Johannes; Klimach, Thomas; Mertes, Stephan; Schenk, Ludwig Paul; Kupiszewski, Piotr; Curtius, Joachim; Borrmann, Stephan

    2017-01-01

    In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January-February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between -27 and -6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.

  9. 2D and 3D organisation of nano-particles: synthesis and specific properties

    International Nuclear Information System (INIS)

    Taleb, Abdelhafed

    1998-01-01

    The first part of this research thesis addresses the synthesis of nano-particles of silver and cobalt in the inverse micellar system, and highlights the feasibility of two- and three-dimensional structures of these particles. The author first presents the micellar system (micro-emulsions, surfactant, properties of inverse micelles, functionalized inverse micelles, application to the synthesis of nano-particles), and then reports the study of the synthesis and organisation of colloids in 2D and 3D. He also reports the study of optical properties of metallic colloids: free electron approximation, optical properties of electron gases, optical properties of colloids, optical response of two-dimensional and three-dimensional nano-structures. The magnetic properties of colloids are then studied: magnetism of the massive metallic state, magnetic properties of nano-particles (influence of size, interactions and field, notions of magnetic order and disorder), effect of organisation. The second part of this thesis is made of a set of published articles: Synthesis of highly mono-disperse silver nano-particles from AOT reverse micelles (a way to 2D and 3D self-organisation), Optical properties of self-assembled 2D and 3D super-lattices of silver nano-particles, Collective optical properties of silver nano-particles organised in 2D super-lattices, Self assembled in 2D cobalt nano-sized particles, Self organisation of magnetic nano-sized cobalt particles, Organisation in 2D cobalt nano-particles (synthesis, characterization and magnetic properties) [fr

  10. Rapid determination of parabens in seafood sauces by high-performance liquid chromatography: A practical comparison of core-shell particles and sub-2 μm fully porous particles.

    Science.gov (United States)

    Ye, Jing; Cao, Xiaoji; Cheng, Zhuo; Qin, Ye; Lu, Yanbin

    2015-12-01

    In this work, the chromatographic performance of superficially porous particles (Halo core-shell C18 column, 50 mm × 2.1 mm, 2.7 μm) was compared with that of sub-2 μm fully porous particles (Acquity BEH C18 , 50 mm × 2.1 mm, 1.7 μm). Four parabens, methylparaben, ethylparaben, propylparaben, and butylparaben, were used as representative compounds for calculating the plate heights in a wide flow rate range and analyzed on the basis of the Van Deemter and Knox equations. Theoretical Poppe plots were constructed for each column to compare their kinetic performance. Both phases gave similar minimum plate heights when using nonreduced coordinates. Meanwhile, the flat C-term of the core-shell column provided the possibilities for applying high flow rates without significant loss in efficiency. The low backpressure of core-shell particles allowed this kind of column, especially compatible with conventional high-performance liquid chromatography systems. Based on these factors, a simple high-performance liquid chromatography method was established and validated for the determination of parabens in various seafood sauces using the Halo core-shell C18 column for separation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Single-crystalline spherical β-Ga2O3 particles: Synthesis, N-doping and photoluminescence properties

    International Nuclear Information System (INIS)

    Zhang, Tingting; Lin, Jing; Zhang, Xinghua; Huang, Yang; Xu, Xuewen; Xue, Yanming; Zou, Jin; Tang, Chengchun

    2013-01-01

    We report on the synthesis of single-crystalline spherical β-Ga 2 O 3 particles by a simple method in ambient atmosphere. No pre-treatment, catalyst, substrate, or gas flow was required during the synthesis process. The well-dispersed Ga 2 O 3 particles display uniform spherical morphology with an average diameter of ∼200 nm. Photoluminescence studies indicate that the Ga 2 O 3 particles exhibit a broad blue-green light emission and an interesting red light emission at room temperature. The red light emission can be further tuned by post-annealing of the particles in ammonia atmosphere. The present single-crystalline β-Ga 2 O 3 particles with spherical morphology, uniform sub-micrometer sizes and tunable light emission are envisaged to be of high promise for applications in white-LED phosphors and optoelectronic devices. -- Highlights: ► We prepared single-crystalline spherical β-Ga 2 O 3 particles in ambient atmosphere. ► The particles display uniform spherical morphology with an average diameter of ∼200 nm. ► The Ga 2 O 3 particles exhibit a broad blue-green light and an interesting red light emission. ► The red light emission can be further tuned by post-annealing of the particles

  12. Annealing effect on the structural and optical properties of Cr/α-Cr2O3 monodispersed particles based solar absorbers

    International Nuclear Information System (INIS)

    Khamlich, S.; McCrindle, R.; Nuru, Z.Y.; Cingo, N.; Maaza, M.

    2013-01-01

    Graphical abstract: A cost-effective and environmentally friendly green chemical method, the so-called aqueous chemical growth (ACG) method, was used to deposit chromium/alpha-chromium(III) oxide, Cr/α-Cr 2 O 3 , monodispersed particles, for solar absorbers applications. Highlights: ► Cr/α-Cr 2 O 3 have been deposited by the aqueous chemical growth (ACG) method. ► High temperature annealing affects the optical selectivity of the deposited particles. ► Oxygen diffusion to the interface at high temperature results in the oxidization of the substrate. - Abstract: A cost-effective and environmentally friendly green chemical method, the so-called aqueous chemical growth (ACG) method, was used to deposit chromium/alpha-chromium(III) oxide, Cr/α-Cr 2 O 3 , monodispersed particles, for solar absorbers applications. The deposited particles were annealed at various temperatures in a hydrogen atmosphere for 2 h to study the annealing temperature dependence of the structural, chemical and optical properties of the particles grown on tantalum substrates. The deposited Cr/α-Cr 2 O 3 was characterized by X-ray diffraction (XRD), attenuated total reflection (ATR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and diffuse reflectance UV–vis–NIR spectroscopy. The XRD and ATR analysis indicated that by increasing annealing temperature, the particles crystallinity was improved and Ta 2 O 5 was formed around 600 °C, due to the fast oxygen diffusion from the deposited α-Cr 2 O 3 toward the tantalum substrate. The optical measurements show that samples annealed at 400 and 500 °C exhibit the targeted high absorbing optical characteristics of “Black chrome”, while those annealed below 400 °C and above 500 °C show a significant low absorptivity and high emissivity.

  13. Use of GSR particle analysis program on an analytical SEM to identify sources of emission of airborne particles

    International Nuclear Information System (INIS)

    Chan, Y.C.; Trumper, J.; Bostrom, T.

    2002-01-01

    Full text: High concentrations of airborne particles, in particular PM 10 (particulate matter 10 , but has been little used in Australia for airborne particulates. Two sets of 15 mm PM 10 samples were collected in March and April 2000 from two sites in Brisbane, one within a suburb and one next to an arterial road. The particles were collected directly onto double-sided carbon tapes with a cascade impactor attached to a high-volume PM 10 sampler. The carbon tapes were analysed in a JEOL 840 SEM equipped with a Be-window energy-dispersive X-ray detector and Moran Scientific microanalysis system. An automated Gun Shot Residue (GSR) program was used together with backscattered electron imaging to characterise and analyse individual particulates. About 6,000 particles in total were analysed for each set of impactor samples. Due to limitations of useful pixel size, only particles larger than about 0.5 μm could be analysed. The size, shape and estimated elemental composition (from Na to Pb) of the particles were subjected to non-hierarchical cluster analysis and the characteristics of the clusters were related to their possible sources of emission. Both samples resulted in similar particle clusters. The particles could be classified into three main categories non-spherical (58% of the total number of analysed particles, shape factor >1 1), spherical (15%) and 'carbonaceous' (27%, ie with unexplained % of elemental mass >75%). Non-spherical particles were mainly sea salt and soil particles, and a small amount of iron, lead and mineral dust. The spherical particles were mainly sea salt particles and flyash, and a small amount of iron, lead and secondary sulphate dust. The carbonaceous particles included carbon material mixed with secondary aerosols, roadside dust, sea salt or industrial dust. The arterial road sample also contained more roadside dust and less secondary aerosols than the suburb sample. Current limitations with this method are the minimum particle size

  14. Transition to the improved confinement mode in torsatron U-3M in range of rare collision frequencies

    International Nuclear Information System (INIS)

    Pashnev, V.K.; Sorokovov, E.L.; Berezhnyj, V.L. and others

    2010-01-01

    Transition to the mode of improved plasma confinement in U-3M facility earlier was discussed in works [1-3]. In these studies discussed the various processes in the confinement volume and in the peripheral plasma that accompany the transition process. Study of plasma confinement and process of transition into the mode of improved confinement just at rare collisions between plasma particles is very important because future fusion reactor based on a toroidal magnetic trap will operate under plasma parameters with rare collision frequencies ('banana' mode). The peculiarity of experiments on torsatron U-3M is that they are conducted at small density n-bar e ≤ 2 lover case x 10 12 cm -3 and, thereby, the frequency of collisions in the confinement area is in the 'banana' mode [4]. And herewith, time of collisions is essentially smaller (up to several orders for electrons and up to the order for ions) than the lifetime of plasma particles. It ensures maxwellization of distribution function and possibility to compare the obtained results with data from other experiments. The objective of this work is to study the main regularity of transition into the mode of improved confinement. Also it is interesting to compare the results with data from other facilities.

  15. Blue and red emission in wide band gap BaZrO{sub 3}:Yb{sup 3+},Tm{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Borja-Urby, R. [Centro de Investigaciones en Optica, A. C., C. P. 37150 Leon, Gto. (Mexico); Diaz-Torres, L.A., E-mail: ditlacio@cio.mx [Centro de Investigaciones en Optica, A. C., C. P. 37150 Leon, Gto. (Mexico); Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A. P. 1-1010, Queretaro 76000 (Mexico); Vega-Gonzalez, M. [Centro de Geociencias-Universidad Nacional Autonoma de Mexico, A. P. 1-1010, Queretaro 76000 (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Cd. Mexico D.F. 07730 (Mexico)

    2010-10-25

    Under NIR excitation at 967 intense blue and red photoluminescence (PL) emissions are observed at room temperature in codoped Tm{sup 3+}-Yb{sup 3+} barium zirconate (BaZrO{sub 3}:Yb,Tm) powders. Powders were prepared by a simple hydrothermal method, and present a wide band gap that depends on the total rare earth content due to the degree of disorder induced in the BaZrO{sub 3} lattice by the substitution of the rare earth ions. Rietveld refinements of the XRD patterns indicated the presence of primary nanocrystallites with sizes between 50 and 70 nm depending on the Tm{sup 3+} content. Scanning transmission electron microscopy (STEM) shows that these primary particles self-aggregated in larger secondary particles which present a regular morphology with sizes around 1 {mu}m. The intense blue and red PL emissions in BaZrO{sub 3} powders under 967 nm excitation are governed by energy transfer processes from Yb{sup 3+} ions to Tm{sup 3+} ions and crossrelaxation among Tm{sup 3+} ions.

  16. Investigation of instability of M23C6 particles in F82H steel under electron and ion irradiation conditions

    Science.gov (United States)

    Kano, Sho; Yang, Huilong; Shen, Jingjie; Zhao, Zishou; McGrady, John; Hamaguchi, Dai; Ando, Mamami; Tanigawa, Hiroyasu; Abe, Hiroaki

    2018-04-01

    In order to clarify the instability of M23C6 in F82H steel under irradiation, both electron irradiation using a high voltage electron microscope (HVEM) and ion irradiation using an ion accelerator were performed. For the electron irradiation, in-situ observation under 2 MV electron irradiation and ex-situ high resolution electron microscopic (HREM) analysis were utilized to evaluate the response of M23C6 against irradiation. The temperature dependence of the irradiation induced instability of the carbide was first confirmed: 293 K indicating severe loss of crystallinity due to dissolution of the constituent atoms though irradiation-enhanced diffusion under the vacancy diffusion by the focused electron beam irradiation. For the ion irradiation, 10.5 MeV-Fe3+ ion was applied to bombard the F82H steel at 673 K to achieve the displacement damage of ≈20 dpa at the depth of 1.0 μm from surface. Cross-section TEM specimens were prepared by a focused ion beam technique. The shrinkage of carbide particles was observed especially near the irradiation surface. Besides, the lattice fringes at the periphery of carbide were observed in the irradiated M23C6 by the HREM analysis, which is different from that observed in the electron irradiation. It was clarified that the instability of M23C6 is dependent on the irradiation conditions, indicating that the flow rate of vacancy type defects might be the key factor to cause the dissolution of constituent atoms of carbide particles into matrix under irradiation.

  17. Synthesis of Fe3O4 particle-chain microwires in applied magnetic field

    International Nuclear Information System (INIS)

    Li Fashen; Wang Ying; Wang Tao

    2007-01-01

    Fe 3 O 4 particle-chain microwires are firstly synthesized under magnetic field by a simple coprecipitation method. The increase of magnetic field caused the lengthening of the wires, and doubled densities of starting solution lead to a halved diameter. It was supposed that the magnetic field gradient and the particular growing process of particles are the main factors of the formation of these microwires. Magnetic hysteresis curves of Fe 3 O 4 microwires were also measured. - Graphical abstract: Fe 3 O 4 particle-chain microwires are firstly synthesized under magnetic field by a simple coprecipitation method. It was supposed that the magnetic field gradient and the particular growing process of particles are the main factors of the formation of these microwires. Magnetic hysteresis curves of Fe 3 O 4 microwires were also measured

  18. Particle-two particle interaction in configuration space

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.

    1982-07-01

    The problem if three indentical particles with zero-range two-particle interaction is considered. An explicit expression for the effective potential between one particle and the remaining two-particle system is obtained in the coordinate representation. It is shown that for arbitrary energies, at small and, for zero energy, at large distances rho between the one particle and centre of mass of the other two particles the diagonal matrix element of the effective potential is attractive and proportional to 1/rho 2 . This property of the effective potenial explains both the Thomas singularity and the Efimov effect. In the case of zero total energy of the system the general form of the solution of the three-particle integral equation is found in configuration space. (orig.)

  19. M3 User's Manual. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (Geopoint AB, Sollentuna (Sweden)); Skaarman, Erik (Abscondo Utveckling, Bromma (Sweden)); Gomez, Javier B. (Univ. of Zaragoza (Spain). Geochemical modelling Group); Gurban, Ioana (3D Terra (Canada))

    2006-07-15

    This report describes the Multivariate Mixing and Mass balance calculations (M3). This new method and computer code is developed to trace the mixing and reaction processes in the groundwater. The aim of the M3 concept is to decode the often hidden and complex information gathered in the groundwater analytical data. The manual presents shortly the theory and practice behind the M3 method. The M3 computer code is also presented and emphasis is put on the reference manual. This includes detailed reference to the M3 program's abilities and limitations, installation procedures and all functions and operations that the program can perform. It also describes sample cases of how the program is used to analyse a test data set. This guide is part of the Help Files distributed together with M3. Two accompanying reports cover other aspects: - Concepts, Methods, and Mathematical Formulation, gives a complete description of the mathematical framework of M3 and introduces concepts and methods useful for the end user. - M3 version 3.0: Verification and Validation, gathers a collection of validation and verification exercises, designed to test each part of M3 code and to build confidence in its methodology. The M3 method has been tested and modified over several years. The development work has been supported by the Swedish Nuclear Fuel and Waste Management Company (SKB). The main test site for the model was the underground Aespoe Hard Rock Laboratory (HRL). The examples used in this manual are from a Aespoe international groundwater modelling co-operation project where one of the tools used was M3. The M3 concept has been applied on the data from SKB's site investigation programme and in data from Canada, Japan, Jordan, Gabon and Finland. The groundwater composition is a result of mixing processes and water-rock interaction. Standard groundwater models based on thermodynamic laws may not be applicable in a normal temperature groundwater system where equilibrium with many

  20. A method for three-dimensional interfacial particle image velocimetry (3D-IPIV) of an air–water interface

    International Nuclear Information System (INIS)

    Turney, Damon E; Anderer, Angelika; Banerjee, Sanjoy

    2009-01-01

    A new stereoscopic method for collecting particle image velocimetry (PIV) measurements within ∼1 mm of a wavy air–water interface with simultaneous measurements of the morphology of the interface is described. The method, termed three-dimensional interfacial particle image velocimetry (3D-IPIV), is tested in a wind wave channel with a wind speed of 5.8 m s −1 , water depth of 10 cm and a fetch of ∼9 m. Microscale breaking waves populate the interface and their flow patterns are clearly visible in the velocimetry results. The associated capillary waves and surface divergence patterns are observed. Several statistical measurements of the flow are compared with independent measurements and good agreement is found. The method shows great promise for investigating the transfer of momentum, heat and gases across an air–water interface, both in the laboratory and in field settings. Additional methods are described for manufacturing the flow tracers needed for the 3D-IPIV method. These tracers are likely to be useful for other researchers, and have the characteristics of being fluorescent, neutrally buoyant, non-toxic, monodisperse, inexpensive and easy to manufacture

  1. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere.

    Science.gov (United States)

    Lü, Senlin; Zhang, Rui; Yao, Zhenkun; Yi, Fei; Ren, Jingjing; Wu, Minghong; Feng, Man; Wang, Qingyue

    2012-01-01

    Ambient coarse particles (diameter 1.8-10 microm), fine particles (diameter 0.1-1.8 microm), and ultrafine particles (diameter Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 +/- 2.18, 8.82 +/- 3.52, and 2.02 +/- 0.41 microg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.

  2. Endosulfan induced alteration in bacterial protein profile and RNA yield of Klebsiella sp. M3, Achromobacter sp. M6, and Rhodococcus sp. M2.

    Science.gov (United States)

    Singh, Madhu; Singh, Dileep Kumar

    2014-01-30

    Three bacterial strains identified as Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2 were isolated by soil enrichment with endosulfan followed by shake flask enrichment technique. They were efficiently degrading endosulfan in the NSM (non sulfur medium) broth. Degradation of endosulfan was faster with the cell free extract of bacterial cells grown in the sulfur deficient medium (NSM) supplemented with endosulfan than that of nutrient rich medium (Luria Bertani). In the cell free extract of NSM supplemented with endosulfan as sole sulfur source, a unique band was visualized on SDS-PAGE but not with magnesium sulfate as the sole sulfur source in NSM and LB with endosulfan. Expression of a unique polypeptide band was speculated to be induced by endosulfan under sulfur starved condition. These unique polypeptide bands were identified as OmpK35 protein, sulfate binding protein and outer membrane porin protein, respectively, in Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2. Endosulfan showed dose dependent negative effect on total RNA yield of bacterial strains in nutrient rich medium. Absence of plasmid DNA indicated the presence of endosulfan metabolizing gene on genomic DNA. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Effect of corn grain particle size on ruminal fermentation and blood metabolites of Holstein steers fed total mixed ration

    Directory of Open Access Journals (Sweden)

    Do Hyung Kim

    2018-01-01

    Full Text Available Objective This study was conducted to investigate the effect of corn grain particle size on ruminant fermentation and blood metabolites in Holstein steers fed total mixed ration (TMR as a basal diet to explain fundamental data of corn grain for cattle in Korea. Methods Four ruminally cannulated Holstein steers (body weight 592±29.9 kg fed TMR as a basal diet were housed individually in an auto temperature and humidity modulated chamber (24°C and 60% for 22 h/d. Treatments in a 4×4 Latin square design were TMR only (control, TMR with whole corn grain (WC, coarsely ground corn grain (CC, and finely ground corn grain (FC, respectively. The corn feeds substituted for 20% energy intake of TMR intake. To measure the ruminal pH, ammonia N, and volatile fatty acids (VFA, ruminal digesta was sampled through ruminal cannula at 1 h intervals after the morning feeding to determine ruminal fermentation characteristics. Blood was sampled via the jugular vein after the ruminal digesta sampling. Results There was no difference in dry matter (DM intake between different corn particle size because the DM intake was restricted to 1.66% of body weight. Different corn particle size did not change mean ammonia N and total VFA concentrations whereas lower (p<0.05 ruminal pH and a ratio of acetate to propionate, and higher (p<0.05 propionate concentration were noted when the steers consumed CC compared with WC and FC. Concentration of blood metabolites were not affected by different particle size of corn grain except for blood triglyceride concentration, which was significantly (p<0.05 increased by FC. Conclusion Results indicate that feeding CC may increase feed digestion in the rumen, whereas the FC group seemed to obtain inadequate corn retention time for microbial degradation in the rumen.

  4. Particle Transport in ECRH Plasmas of the TJ-II

    International Nuclear Information System (INIS)

    Vargas, V. I.; Lopez-Bruna, D.; Estrada, T.; Guasp, J.; Reynolds, J. M.; Velasco, J. L.; Herranz, J.

    2007-01-01

    We present a systematic study of particle transport in ECRH plasmas of TJ-II with different densities. The goal is to fi nd particle confinement time and electron diffusivity dependence with line-averaged density. The experimental information consists of electron temperature profiles, T e (Thomson Scattering TS) and electron density, n e , (TS and reflectometry) and measured puffing data in stationary discharges. The profile of the electron source, Se, was obtained by the 3D Monte-Carlo code EIRENE. The analysis of particle balance has been done by linking the results of the code EIRENE with the results of a model that reproduces ECRH plasmas in stationary conditions. In the range of densities studied (0.58 ≤n e > (10 1 9m - 3) ≤0.80) there are two regions of confinement separated by a threshold density, e > ∼0.65 10 1 9m - 3. Below this threshold density the particle confinement time is low, and vice versa. This is reflected in the effective diffusivity, D e , which in the range of validity of this study, 0.5 e are flat for ≥0,63(10 1 9m - 3). (Author) 35 refs

  5. Unsteady Particle Deposition in a Human Nasal Cavity during Inhalation

    Directory of Open Access Journals (Sweden)

    Camby M.K. Se

    2010-12-01

    Full Text Available The present study investigates the deposition efficiency during the unsteady inhalation cycle by using Computational Fluid Dynamics (CFD. The unsteady inhalation profile was applied at the outlet of nasopharynx, which had a maximum flow rate of 40.3L/min which corresponds to an equivalent steady inhalation tidal volume flow rate of 24.6L/min. Aerodynamic particle sizes of 5μm and 20μm were studied in order to reflect contrasting Stokes numbered particle behaviour. Two particle deposition efficiencies in the nasal cavity versus time are presented. In general, the deposition of 5μm particles was much less than 20μm particles. The first 0.2 second of the inhalation cycle was found to be significant to the particle transport, since the majority of particles were deposited during this period (i.e. its residence time. Comparisons were also made with its equivalent steady inhalation flow rate which found that the unsteady inhalation produced lower deposition efficiency for both particle sizes.

  6. Direct numerical simulation of 3D particle motion in an evaporating liquid film

    International Nuclear Information System (INIS)

    Hwang, Ho Chan; Son, Gi Hun

    2016-01-01

    A direct numerical simulation method is developed for 3D particle motion in liquid film evaporation. The liquid-gas and fluid-solid interfaces are tracked by a sharp-interface Level-set (LS) method, which includes the effects of evaporation, contact line and solid particles. The LS method is validated through simulation of the interaction between two particles falling in a single-phase fluid. The LS based DNS method is applied to computation of the particle motion in liquid film evaporation to investigate the particle-interface and particle-particle interactions

  7. Gold particle formation via photoenhanced deposition on lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Zaniewski, A.M., E-mail: azaniews@asu.edu; Meeks, V.; Nemanich, R.J.

    2017-05-31

    Highlights: • Gold chloride is reduced into solid gold nanoparticles at the surface of a polarized semiconductor. • Reduction processes are driven by ultraviolet light. • Gold nanoparticle and silver nanoparticle deposition patterns are compared. - Abstract: In this work, we report on a technique to reduce gold chloride into sub-micron particles and nanoparticles. We use photoelectron transfer from periodically polarized lithium niobate (PPLN) illuminated with above band gap light to drive the surface reactions required for the reduction and particle formation. The particle sizes and distributions on the PPLN surface are sensitive to the solution concentration, with inhibited nucleation and large particles (>150 nm) for both low (2E−8M to 9E−7M) and high (1E−5M to 1E−3M) concentrations of gold chloride. At midrange values of the concentration, nucleation is more frequent, resulting in smaller sized particles (<150 nm). We compare the deposition process to that for silver, which has been previously studied. We find that the reduction of gold chloride into nanoparticles is inhibited compared to silver ion reduction, due to the multi-step reaction required for gold particle formation. This also has consequences for the resulting deposition patterns: while silver deposits into nanowires along boundaries between areas with opposite signed polarizations, such patterning of the deposition is not observed for gold, for a wide range of concentrations studied (2E−8 to 1E−3M).

  8. Magnetic resonances spectroscopy of nanosize particles La0.7Sr0.3MnO3

    International Nuclear Information System (INIS)

    Krivoruchko, Vladimir; Konstantinova, Tat'yana; Mazur, Anton; Prokhorov, Andrey; Varyukhin, Victor

    2006-01-01

    Using a co-precipitation method, perovskite-type manganese oxide La 0.7 Sr 0.3 MnO 3 nanoparticles (NPs) with particle size 12 nm were prepared. Detailed studies of both 55 Mn nuclear magnetic resonance and superparamagnetic resonance spectrum, completed by magnetic measurements, have been performed to obtain microscopic information on the local magnetic structure of the NP. Our results on nuclear dynamics provide direct evidence of formation of a magnetically dead layer, of the thickness ∼2 nm, at the particle surface. Temperature dependences of the magnetic resonance spectra have been measured to obtain information about complex magnetic properties of La 0.7 Sr 0.3 MnO 3 fine-particle ensembles. In particular, electron paramagnetic resonance spectrum at 300 K shows a relatively narrow sharp line, but as the temperature decreases to 5 K, the apparent resonance field decreases and the line width considerably increases. The low-temperature blocking of the NPs magnetic moments has been clearly observed in the electron paramagnetic resonances. The blocking temperature depends on the measuring frequency and for the ensemble of 12 nm NPs at 9.244 GHz has been evaluated as 110 K

  9. Neutronics feasibility of using Gd2O3 particles in VVER-1000 fuel assembly

    International Nuclear Information System (INIS)

    Hoang Van Khanh; Hoang Thanh Phi Hung; Tran Hoai Nam

    2016-01-01

    Neutronics feasibility of using Gd 2 O 3 particles for controlling excess reactivity of VVER-1000 fuel assembly has been investigated. The motivation is that the use of Gd 2 O 3 particles would increase the thermal conductivity of the UO 2 +Gd 2 O 3 fuel pellet which is one of the desirable characteristics for designing future high burnup fuel. The calculation results show that the Gd 2 O 3 particles with the diameter of 60 µm could control the reactivity similarly to that of homogeneous mixture with the same amount of Gd 2 O 3 . The power densities at the fuel pin with Gd 2 O 3 particles increase by about 10-11%, leading to the decrease of the power peak and a slightly flatter power distribution. The power peak appears at the periphery pins at the beginning of burnup process which is decreased by 0.9 % when using Gd 2 O 3 particles. Further work and improvement are being planned to optimize the high power peaking at the beginning of burnup. (author)

  10. Release of airborne particles and Ag and Zn compounds from nanotechnology-enabled consumer sprays: Implications for inhalation exposure

    Science.gov (United States)

    Calderón, Leonardo; Han, Taewon T.; McGilvery, Catriona M.; Yang, Letao; Subramaniam, Prasad; Lee, Ki-Bum; Schwander, Stephan; Tetley, Teresa D.; Georgopoulos, Panos G.; Ryan, Mary; Porter, Alexandra E.; Smith, Rachel; Chung, Kian Fan; Lioy, Paul J.; Zhang, Junfeng; Mainelis, Gediminas

    2017-04-01

    The increasing prevalence and use of nanotechnology-enabled consumer products have increased potential consumer exposures to nanoparticles; however, there is still a lack of data characterizing such consumer exposure. The research reported here investigated near-field airborne exposures due to the use of 13 silver (Ag)-based and 5 zinc (Zn)-based consumer sprays. The products were sprayed into a specially designed glove box, and all products were applied with equal spraying duration and frequency. Size distribution and concentration of the released particles were assessed using a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. Inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate the presence of metals in all investigated products. Spray liquids and airborne particles from select products were examined using transmission electron microscopy (TEM) and Energy Dispersive X-ray Spectroscopy (EDS). We found that all sprays produced airborne particles ranging in size from nano-sized particles (2.5 μm); however, there was a substantial variation in the released particle concentration depending on a product. The total aerosol mass concentration was dominated by the presence of coarse particles, and it ranged from ∼30 μg/m3 to ∼30,000 μg/m3. The TEM verified the presence of nanoparticles and their agglomerates in liquid and airborne states. The products were found to contain not only Ag and Zn compounds - as advertised on the product labeling - but also a variety of other metals including lithium, strontium, barium, lead, manganese and others. The results presented here can be used as input to model population exposures as well as form a basis for human health effects studies due to the use nanotechnology-enabled products.

  11. Alkali metal and ammonium fluoro(trifluoroacetato)metallates M'[ M''33-F)(CF3COO)6(CF3COOH)3], where M' = Li, Na, K, NH4, Rb, or Cs and M'' = Ni or Co. Synthesis and crystal structures

    Science.gov (United States)

    Tereshchenko, D. S.; Morozov, I. V.; Boltalin, A. I.; Karpova, E. V.; Glazunova, T. Yu.; Troyanov, S. I.

    2013-01-01

    A series of fluoro(trifluoroacetato)metallates were synthesized by crystallization from solutions in trifluoroacetic acid containing nickel(II) or cobalt(II) nitrate hydrates and alkali metal or ammonium fluorides: Li[Ni33-F)(CF3COO)6(CF3COOH)3](CF3COOH)3 ( I), M'[Ni33-F)(CF3COO)6(CF3COOH)3] ( M' = Na ( II), NH4 ( IV), Rb ( V), and Cs ( VI)), NH4[Co33-F) (CF3COO)6(CF3COOH)3] ( III), and Cs[Ni33-F)(CF3COO)6(CF3COOH)3](CF3COOH)0.5 ( VII). The crystal structures of these compounds were determined by single-crystal X-ray diffraction. All structures contain triangular trinuclear complex anions [ M 3″(μ3-F)(CF3COO)6(CF3COOH)3]- ( M″ = Ni, Co) structurally similar to trinuclear 3d metal oxo carboxylate complexes. The three-coordinated F atom is located at the center of the triangle formed by Ni(II) or Co(II) atoms. The metal atoms are linked in pairs by six bridging trifluoroacetate groups located above and below the plane of the [ M″3 F] triangle. The oxygen atoms of the axial CF3COOH molecules complete the coordination environment of M″ atoms to an octahedron.

  12. Mass spectrometry detection of G3m and IGHG3 alleles and follow-up of differential mother and neonate IgG3.

    Directory of Open Access Journals (Sweden)

    Célia Dechavanne

    Full Text Available Mass spectrometry (MS analysis for detection of immunoglobulins (IG of the human IgG3 subclass is described that relies on polymorphic amino acids of the heavy gamma3 chains. IgG3 is the most polymorphic human IgG subclass with thirteen G3m allotypes located on the constant CH2 and CH3 domains of the gamma3 chain, the combination of which leads to six major G3m alleles. Amino acid changes resulting of extensive sequencing previously led to the definition of 19 IGHG3 alleles that have been correlated to the G3m alleles. As a proof of concept, MS proteotypic peptides were defined which encompass discriminatory amino acids for the identification of the G3m and IGHG3 alleles. Plasma samples originating from ten individuals either homozygous or heterozygous for different G3m alleles, and including one mother and her baby (drawn sequentially from birth to 9 months of age, were analyzed. Total IgG3 were purified using affinity chromatography and then digested by a combination of AspN and trypsin proteases, and peptides of interest were detected by mass spectrometry. The sensitivity of the method was assessed by mixing variable amounts of two plasma samples bearing distinct G3m allotypes. A label-free approach using the high-performance liquid chromatography (HPLC retention time of peptides and their MS mass analyzer peak intensity gave semi-quantitative information. Quantification was realized by selected reaction monitoring (SRM using synthetic peptides as internal standards. The possibility offered by this new methodology to detect and quantify neo-synthesized IgG in newborns will improve knowledge on the first acquisition of antibodies in infants and constitutes a promising diagnostic tool for vertically-transmitted diseases.

  13. U-bearing particles in miners' and millers' lungs

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Singh, N.P.; Miller, S.C.; Jones, K.W.; Cholewa, M.; Hanson, A.L.; Saccomanno, G.

    1984-01-01

    The size distribution of uranium-bearing particles in air particulates in occupational areas of active uranium mines and mills is largely uninvestigated. Investigation of the size of residual uranium-bearing particles in uranium miners' and millers' lungs is warranted because significant inhalation of uranium can occur in certain occupational areas. Average uranium concentrations of about 0.3 ppM U in uranium miners' and millers' lungs have been reported. Local uranium concentrations in uranium-bearing particles inhaled and regionally deposited in the lungs of uranium miners and millers are orders of magnitude larger than the average uranium concentrations reported. The feasibility of using microPIXE (particle induced x-ray emission) techniques to search for such uranium-bearing particles embedded in lung tissues has been demonstrated. Proton microbeams 20 μm in diameter, scanning in 5 μm steps, were used to irradiate sections of lung tissues 10 to 40 μm thick. The paper will briefly describe the method, and present and discuss the results obtained in an extensive search for uranium-bearing particles embedded in lung tissues, collected at autopsy, of former uranium miners and millers. 13 references, 1 table

  14. Scanning tomographic particle image velocimetry applied to a turbulent jet

    KAUST Repository

    Casey, T. A.; Sakakibara, J.; Thoroddsen, Sigurdur T

    2013-01-01

    planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise

  15. Coolability of volumetrically heated particle beds

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Muhammad

    2017-03-22

    In case of a severe nuclear reactor accident, with loss of coolant, a particle bed may be formed from the fragmentation of the molten core in the residual water at different stages of the accident. To avoid further propagation of the accident and maintain the integrity of the reactor pressure vessel, the decay heat of the particle bed must be removed. To better understand the various thermo-hydraulic processes within such heat-generating particle beds, the existing DEBRIS test facility at IKE has been modified to be able to perform novel boiling, dryout and quenching experiments. The essential experimental data includes the pressure gradients measured by 8 differential pressure transducers along the bed height as a function of liquid and vapour superficial velocities, the determination of local dryout heat fluxes for different system pressures as well as the local temperature distribution measured by a set of 51 thermocouples installed inside the particle bed. The experiments were carried out for two different particle beds: a polydispersed particle bed which consisted of stainless steel balls (2 mm, 3 mm and 6 mm diameters) and an irregular particle bed which consisted of a mixture of steel balls (3 mm and 6 mm) and irregularly shaped Al{sub 2}O{sub 3} particles. Additionally, all experiments were carried out for different flow conditions, such as the reference case of passive 1D top-flooding, 1D bottom flooding (driven by external pumps and different downcomer configurations) and 2D top-/bottom-/lateral flooding with a perforated downcomer. In this work, it has been observed that for both particle beds with downcomer configurations an open downcomer leads to the best coolability (dryout heat flux = 1560 kW/m{sup 2}, polydispersed particle bed, psys = 1 bar) of the particle bed, mainly due to bottom-flow with enhanced natural convection. It has also been shown that a potential lateral flow via a perforation of the downcomer does not bring any further improvements

  16. Coolability of volumetrically heated particle beds

    International Nuclear Information System (INIS)

    Rashid, Muhammad

    2017-01-01

    In case of a severe nuclear reactor accident, with loss of coolant, a particle bed may be formed from the fragmentation of the molten core in the residual water at different stages of the accident. To avoid further propagation of the accident and maintain the integrity of the reactor pressure vessel, the decay heat of the particle bed must be removed. To better understand the various thermo-hydraulic processes within such heat-generating particle beds, the existing DEBRIS test facility at IKE has been modified to be able to perform novel boiling, dryout and quenching experiments. The essential experimental data includes the pressure gradients measured by 8 differential pressure transducers along the bed height as a function of liquid and vapour superficial velocities, the determination of local dryout heat fluxes for different system pressures as well as the local temperature distribution measured by a set of 51 thermocouples installed inside the particle bed. The experiments were carried out for two different particle beds: a polydispersed particle bed which consisted of stainless steel balls (2 mm, 3 mm and 6 mm diameters) and an irregular particle bed which consisted of a mixture of steel balls (3 mm and 6 mm) and irregularly shaped Al 2 O 3 particles. Additionally, all experiments were carried out for different flow conditions, such as the reference case of passive 1D top-flooding, 1D bottom flooding (driven by external pumps and different downcomer configurations) and 2D top-/bottom-/lateral flooding with a perforated downcomer. In this work, it has been observed that for both particle beds with downcomer configurations an open downcomer leads to the best coolability (dryout heat flux = 1560 kW/m 2 , polydispersed particle bed, psys = 1 bar) of the particle bed, mainly due to bottom-flow with enhanced natural convection. It has also been shown that a potential lateral flow via a perforation of the downcomer does not bring any further improvements in

  17. Conformal Gauge Mediation and Light Gravitino of Mass m3/2 < O(10) eV

    International Nuclear Information System (INIS)

    Ibe, M.; SLAC; Nakayama, Y.; Yanagida, T.T.

    2008-01-01

    We discuss a class of gauge mediated supersymmetry breaking models with conformal invariance above the messenger mass scale (conformal gauge mediation). The spectrum of the supersymmetric particles including the gravitino is uniquely determined by the messenger mass. When the conformal fixed point is strongly interacting, it predicts a light gravitino of mass m 3/2 < O(10) eV, which is attractive since such a light gravitino causes no problem in cosmology

  18. Feasibility study of electrophoresis deposition of DyF3 on Nd-Fe-B particles for coercivity enhancement

    Science.gov (United States)

    Kim, K. M.; Kang, M. S.; Kwon, H. W.; Lee, J. G.; Yu, J. H.

    2018-05-01

    Feasibility of the electrophoresis deposition (EPD) technique for homogeneous and adhesive deposition of DyF3 particles on the Nd-Fe-B-type particles was studied, and coercivity enhancement in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD was investigated. HDDR-treated Nd12.5Fe80.6B6.4Ga0.3Nb0.2 particles were deposited with DyF3 particles by EPD. More homogeneous and adhesive deposition of DyF3 particles on the surface of Nd-Fe-B particles was made by the EPD with respect to conventional dip-coating, and this led to more active and homogeneous diffusion of Dy. More profound coercivity enhancement was achieved in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD compared to dip-coated particles.

  19. Novel Discrete Element Method for 3D non-spherical granular particles.

    Science.gov (United States)

    Seelen, Luuk; Padding, Johan; Kuipers, Hans

    2015-11-01

    Granular materials are common in many industries and nature. The different properties from solid behavior to fluid like behavior are well known but less well understood. The main aim of our work is to develop a discrete element method (DEM) to simulate non-spherical granular particles. The non-spherical shape of particles is important, as it controls the behavior of the granular materials in many situations, such as static systems of packed particles. In such systems the packing fraction is determined by the particle shape. We developed a novel 3D discrete element method that simulates the particle-particle interactions for a wide variety of shapes. The model can simulate quadratic shapes such as spheres, ellipsoids, cylinders. More importantly, any convex polyhedron can be used as a granular particle shape. These polyhedrons are very well suited to represent non-rounded sand particles. The main difficulty of any non-spherical DEM is the determination of particle-particle overlap. Our model uses two iterative geometric algorithms to determine the overlap. The algorithms are robust and can also determine multiple contact points which can occur for these shapes. With this method we are able to study different applications such as the discharging of a hopper or silo. Another application the creation of a random close packing, to determine the solid volume fraction as a function of the particle shape.

  20. The semiclassical approximation for L- and M-shell coulomb ionization by heavy charged particles

    International Nuclear Information System (INIS)

    Kocbach, L.

    1975-08-01

    The semiclassical approximation with straight line trajectories is applied to the Coulomb ionization of K-, L- and M-shells by heavy charged particles. The calculational aspects are discussed in detail. Scaling relations for the experimentally relevant quantities are derived. The theoretical predictions are compared with experimental data. The relation of the present work to earlier SCA results and the PWBA results is discussed in detail. (auth)

  1. Fabrication of BaTiO3/Ni composite particles and their electro-magneto responsive properties

    International Nuclear Information System (INIS)

    Lu, Yaping; Gao, Lingxiang; Wang, Lijuan; Xie, Zunyuan; Gao, Meixiang; Zhang, Weiqiang

    2017-01-01

    Graphical abstract: The spherical BaTiO 3 /Ni particles with excellent structure were made by one-step method through fixing the metal Ni(0) reduced by a specific reducing agent (N 2 H 4 ·H 2 O) on the surface of the BaTiO 3 particles with grain diameter of ∼500 nm. BaTiO 3 /Ni particle has double responses of electric and magnetic field simultaneously. Consequentially, coating magnetic metal on BT particle is proposed an effective method to prepare novel electro-magneto responsive particles and one basis of electro-magneto responsive elastomers. - Highlights: • The BaTiO 3 /Ni composite particles were fabricated. • The content of Ni(0) in nickel sheath is 70.2%. • The BaTiO 3 /Ni particles have double responses of electric and magnetic field. - Abstract: BaTiO 3 (BT)/Ni composite particles were made by one-step method through agglomerating the metal Ni(0) nanoparticles reduced by a specific reducing agent (N 2 H 4 ·H 2 O) on the surface of BT sphere with diameter of ∼500 nm. The BT/Ni composite particles were characterized by the means of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). In BT/Ni particles, pure BT spherical particle was coated with Ni nanoparticles agglomerated on its surface. The average thickness of the Ni sheath was ∼30 nm and the content of Ni(0) and Ni (II) in the sheath were 70.2% and 29.8%, respectively. The responsive effects of BT/Ni particles filled in hydrogel elastomer were investigated by the viscoelastic properties. The results indicate that the BT/Ni particles exhibit electro and magneto coordinated responsive properties (E = 1 kV/mm, H = 0.1 T/mm), which is superior to BT particles with individual electro response.

  2. Particle surface area and bacterial activity in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg; von Ahnen, Mathis; Fernandes, Paulo

    2017-01-01

    Suspended particles in recirculating aquaculture systems (RAS) provide surface area that can be colonized by bacteria. More particles accumulate as the intensity of recirculation increases thus potentially increasing the bacterial carrying capacity of the systems. Applying a recent, rapid, culture...... but may provide significant surface area. Hence, the study substantiates that particles in RAS provide surface area supporting bacterial activity, and that particles play a key role in controlling the bacterial carrying capacity at least in less intensive RAS. Applying fast, culture-independent techniques......-independent fluorometric detection method (Bactiquant®) for measuring bacterial activity, the current study explored the relationship between total particle surface area (TSA, derived from the size distribution of particles >5 μm) and bacterial activity in freshwater RAS operated at increasing intensity of recirculation...

  3. Air pollution control and decreasing new particle formation lead to strong climate warming

    Science.gov (United States)

    Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M.

    2012-02-01

    The number concentration of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The present-day total aerosol forcing is increased from -1.0 W m-2 to -1.6 W m-2 when nucleation is introduced into the model. Nucleation doubles the change in aerosol forcing between years 2000 and 2100, from +0.6 W m-2 to +1.4 W m-2. Two climate feedbacks are studied, resulting in additional negative forcings of -0.1 W m-2 (+10% DMS emissions in year 2100) and -0.5 W m-2 (+50% BVOC emissions in year 2100). With the total aerosol forcing diminishing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  4. Particle residence times in waters of the Yangtze and Amazon continental shelves

    International Nuclear Information System (INIS)

    McKee, B.A.; Nittrouer, C.A.; DeMaster, D.J.

    1986-01-01

    Water column and seabed samples were analyzed for naturally occurring Th-234 to determine particle residence times in Yangtze and Amazon continental-shelf waters. On the Yangtze shelf, the water column was vertically well-mixed and suspended-sediment concentrations decreased offshore (from 230 mg/l near the river mouth to 2 mg/l in mid-shelf waters). Particle residence times increased offshore and ranged from 3.2 hours (12 m water depth) to 7.3 days (60 m water depth). Particle residence times ranged from 3 to 30 times shorter than values predicted by settling of discrete (4-8 micron) particles, suggesting that particles were settling in aggregate form. On the Amazon shelf, a two-layer estuarine flow dominated shelf circulation. Suspended-sediment concentrations on the inner shelf (10-12 m water depth) were much greater in bottom waters (range: 100-880 mg/l) than in surface waters (range 5-60 mg/l) as a result of resuspension. Particle residence times ranged from 1.1 days in surface waters to 2.5 days in bottom waters. Particles probably underwent several cycles of resuspension before permanent removal from the water column

  5. Dosagem de tiroxina total (T4 sérica pelo método de quimioluminescência em gatos clinicamente sadios

    Directory of Open Access Journals (Sweden)

    Aline Bomfim Vieira

    2010-06-01

    Full Text Available A dosagem de tiroxina total sérica em gatos é o exame de escolha para o diagnóstico do hipertireoidismo que é considerada a doença endócrina mais comum em gatos domésticos. Fatores como luminosidade e temperatura já foram incriminados como causa de variação das concentrações de hormônios tireoidianos em cães. O objetivo do presente estudo foi determinar valores séricos de referência para a tiroxina total em gatos saudáveis pelo método de quimioluminescência no Rio de Janeiro; comparar estes valores aos atualmente utilizados por laboratórios no Brasil e no exterior; além de analisar o efeito da idade e do sexo sobre os valores de tiroxina sérica total nos animais avaliados. A tiroxina sérica foi dosada em 119 amostras por meio de ensaio imunoenzimático por quimioluminescência. A faixa etária dos 119 felinos incluídos neste estudo variou de cinco meses a 18 anos (média de 7,11 ± 3,64. O menor valor de concentração sérica de T4 encontrado foi de 0,44 µg/dL e o maior valor foi de 4,6 µg/dL. A faixa de referência para a tiroxina nesta população ficou entre 0,75 e 3,5 µg/dL. De acordo com as amostras coletadas neste estudo, os valores médios da concentração de T4 para gatos machos e fêmeas foram considerados os mesmos para um erro α = 0,05. A idade, no entanto, apresentou um efeito significativo na concentração de T4 (p < 0,05 e correlação positiva.

  6. Exchange of reactive nitrogen compounds: concentrations and fluxes of total ammonium and total nitrate above a spruce canopy

    Directory of Open Access Journals (Sweden)

    V. Wolff

    2010-05-01

    Full Text Available Total ammonium (tot-NH4+ and total nitrate (tot-NO3 provide chemically conservative quantities in the measurement of surface exchange of reactive nitrogen compounds ammonia (NH3, particulate ammonium (NH4+, nitric acid (HNO3, and particulate nitrate (NO3, using the aerodynamic gradient method. Total fluxes were derived from concentration differences of total ammonium (NH3 and NH4+ and total nitrate (HNO3 and NO3 measured at two levels. Gaseous species and related particulate compounds were measured selectively, simultaneously and continuously above a spruce forest canopy in south-eastern Germany in summer 2007. Measurements were performed using a wet-chemical two-point gradient instrument, the GRAEGOR. Median concentrations of NH3, HNO3, NH4+, and NO3 were 0.57, 0.12, 0.76, and 0.48 μg m3, respectively. Total ammonium and total nitrate fluxes showed large variations depending on meteorological conditions, with concentrations close to zero under humid and cool conditions and higher concentrations under dry conditions. Mean fluxes of total ammonium and total nitrate in September 2007 were directed towards the forest canopy and were −65.77 ng m−2 s−1 and −41.02 ng m−2 s−1 (in terms of nitrogen, respectively. Their deposition was controlled by aerodynamic resistances only, with very little influence of surface resistances. Including measurements of wet deposition and findings of former studies on occult deposition (fog water interception at the study site, the total N deposition in September 2007 was estimated to 5.86 kg ha−1.

  7. Radon decay products and 10–1100 nm aerosol particles in Postojna Cave

    Directory of Open Access Journals (Sweden)

    M. Bezek

    2013-03-01

    Full Text Available At the lowest point along the tourist route in Postojna Cave, the activity concentration of radon (222Rn decay products and the number concentration and size distribution of aerosol particles in the size range of 10–1100 nm were monitored, with the focus on the unattached fraction (fun of radon decay products (RnDPs, a key parameter in radon dosimetry. The total number concentration of aerosols during visits in summer was lower (700 cm−3 than in winter (2800 cm−3, and was dominated by 50 nm particles (related to the attached RnDPs in winter. This explains the higher fun values in summer (0.75 and the lower winter measurement (0.04 and, consequently, DCFD values of 43.6 and 13.1 mSv WLM−1 respectively for the calculated dose conversion factors. The difference is caused by an enhanced inflow of fresh outside air, driven in winter by the higher air temperature in the cave compared to outside, resulting in the introduction of outside aerosol particles into the cave.

  8. Feasibility study of electrophoresis deposition of DyF3 on Nd-Fe-B particles for coercivity enhancement

    Directory of Open Access Journals (Sweden)

    K. M. Kim

    2018-05-01

    Full Text Available Feasibility of the electrophoresis deposition (EPD technique for homogeneous and adhesive deposition of DyF3 particles on the Nd-Fe-B-type particles was studied, and coercivity enhancement in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD was investigated. HDDR-treated Nd12.5Fe80.6B6.4Ga0.3Nb0.2 particles were deposited with DyF3 particles by EPD. More homogeneous and adhesive deposition of DyF3 particles on the surface of Nd-Fe-B particles was made by the EPD with respect to conventional dip-coating, and this led to more active and homogeneous diffusion of Dy. More profound coercivity enhancement was achieved in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD compared to dip-coated particles.

  9. Optical 3D methods for measurement of prosthetic wear of total hip arthroplasty: principles, verification and results

    Czech Academy of Sciences Publication Activity Database

    Rössler, T.; Mandát, Dušan; Gallo, J.; Hrabovský, Miroslav; Pochmon, Michal; Havránek, Vítězslav

    2009-01-01

    Roč. 17, č. 15 (2009), 12723-12730 ISSN 1094-4087 R&D Projects: GA MŠk(CZ) 1M06002 Grant - others:GA MŠk(CZ) OC 168 Program:OC Institutional research plan: CEZ:AV0Z10100522 Keywords : 3D methods * total hip arthroplasty Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.278, year: 2009

  10. Small violations of particle statistics

    International Nuclear Information System (INIS)

    Greenberg, O.W.

    1992-01-01

    This paper reports on the particle statistics menagerie for identical particles (in 3 + 1 dimensions) which consists of fermions (all states totally antisymmetric), bosons (all states totally symmetric), parafermions of order p (all representations of the symmetric group with Young tableaux having at most p boxes in a row) and parabosons of order p (all representations with at most p boxes in a column). p = 1 for parafermions is the same as Fermi, and p = 1 for parabosons is the same as Bose. These possibilities were derived in a general way by Doplicher, Haag and Roberts, who found one other case, infinite statistics for which all representations of the symmetric group occur, but did not give an algebra which leads to this statistics

  11. Compact 3D Camera for Shake-the-Box Particle Tracking

    Science.gov (United States)

    Hesseling, Christina; Michaelis, Dirk; Schneiders, Jan

    2017-11-01

    Time-resolved 3D-particle tracking usually requires the time-consuming optical setup and calibration of 3 to 4 cameras. Here, a compact four-camera housing has been developed. The performance of the system using Shake-the-Box processing (Schanz et al. 2016) is characterized. It is shown that the stereo-base is large enough for sensible 3D velocity measurements. Results from successful experiments in water flows using LED illumination are presented. For large-scale wind tunnel measurements, an even more compact version of the system is mounted on a robotic arm. Once calibrated for a specific measurement volume, the necessity for recalibration is eliminated even when the system moves around. Co-axial illumination is provided through an optical fiber in the middle of the housing, illuminating the full measurement volume from one viewing direction. Helium-filled soap bubbles are used to ensure sufficient particle image intensity. This way, the measurement probe can be moved around complex 3D-objects. By automatic scanning and stitching of recorded particle tracks, the detailed time-averaged flow field of a full volume of cubic meters in size is recorded and processed. Results from an experiment at TU-Delft of the flow field around a cyclist are shown.

  12. The improvement of the mechanical properties of PMMA denture base by Al2O3 particles with nitrile rubber

    Science.gov (United States)

    Alhareb, Ahmed Omran; Akil, Hazizan Md; Ahmad, Zainal Arifin

    2017-07-01

    Poly methyl methacrylate (PMMA) is mostly used for fabrication of denture base by heat-curing technique. Therefore, the purpose of this study is to investigate the effect of Al2O3 filler as toughening particles together with nitrile butadiene rubber (NBR) particles as impact modifier were used to reinforce PMMA denture base materials on the impact strength (IS) and fracture toughness (KIC). PMMA powder was mixed with liquid methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) as crosslinking agent. The powder components are PMMA, benzoyl peroxide, NBR (5, 7.5 and 10 wt%), and Al2O3 filler (5 wt%) treated by silane. The liquid components are 90% of methyl methacrylate and 10 % ethylene glycol dimethacryate. FTIR analyses confirmed that the Al2O3 filler was successfully treated with silane as coupling agent. The morphology of fracture surfaces was characterized using field emission scanning electron microscopy (FESEM). The results shown that IS and KIC improved significantly when using treated the Al2O3 filler. IS has increased to 56% (8.26 KJ/m2) and 73% (2.77 MPa.m1/2) for KIC when treated Al2O3 filler compared to unreinforced PMMA matrix. Statistical analyses of data results were significantly improved (PNBR with treated Al2O3 filler compared to other the compositions.

  13. Performance Characterization of Gas-Solid Cyclone for Separation of Particle from Syngas Produced from Food Waste Gasifier Plant

    Directory of Open Access Journals (Sweden)

    Osezua O. Ibhadode

    2017-06-01

    Full Text Available A biofuel from any biodegradable formation process such as a food waste bio-digester plant is a mixture of several gases such as methane (CH4, carbon dioxide (CO2, hydrogen sulfide (H2S, ammonia (NH3 and impurities like water and dust particles. The results are reported of a parametric study of the process of separation of methane, which is the most important gas in the mixture and usable as a biofuel, from particles and H2S. A cyclone, which is a conventional, economic and simple device for gas-solid separation, is considered based on the modification of three Texas A&M cyclone designs (1D2D, 2D2D and 1D3D by the inclusion of an air inlet tube. A parametric sizing is performed of the cyclone for biogas purification, accounting for the separation of hydrogen sulfide (H2S and dust particles from the biofuel. The stochiometric oxidation of H2S to form elemental sulphur is considered a useful cyclone design criterion. The proposed design includes geometric parameters and several criteria for quantifying the performance of cyclone separators such as the Lapple Model for minimum particle diameter collected, collection efficiency and pressure drop. For biogas volumetric flow rates between 0 and 1 m/s and inlet flow velocities of 12 m/s, 15 m/s and 18 m/s for the 1D2D, 2D2D and 1D3D cyclones, respectively, it is observed that the 2D2D configuration is most economic in terms of sizing (total height and diameter of cyclone. The 1D2D configuration experiences the lowest pressure drop. A design algorithm coupled with a user-friendly graphics interface is developed on the MATLAB platform, providing a tool for sizing and designing suitable cyclones.

  14. Absorption of lower hybrid waves by alpha particles in ITER

    International Nuclear Information System (INIS)

    Imbeaux, F.; Peysson, Y.; Eriksson, L.G.

    2003-01-01

    Absorption of lower hybrid (LH) waves by alpha particles may reduce significantly the current drive efficiency of the waves in a reactor or burning plasma experiment. This absorption is quantified for ITER using the ray-tracing+2D relativistic Fokker-Planck code Delphine. The absorption is calculated as a function of the superthermal alpha particle density, which is constant in these simulations, for two candidate frequencies for the LH system of ITER. Negligible absorption by alpha particles at 3.7 GHz requires n(alpha,supra) = 7.5 10 16 m -3 , while no significant impact on the driven current is found at 5 GHz, even if n(alpha,supra) = 1.5 10 18 m -3 . (authors)

  15. Magnetism of cyano-bridged hetero-one-dimensional Ln3+-M3+ complexes (Ln3+ = Sm, Gd, Yb; M3+ = FeLS, Co).

    Science.gov (United States)

    Figuerola, Albert; Diaz, Carmen; Ribas, Joan; Tangoulis, Vassilis; Sangregorio, Claudio; Gatteschi, Dante; Maestro, Miguel; Mahía, José

    2003-08-25

    The reaction of Ln(NO(3))(3).aq with K(3)[Fe(CN)(6)] or K(3)[Co(CN)(6)] and 2,2'-bipyridine in water led to five one-dimensional complexes: trans-[M(CN)(4)(mu-CN)(2)Ln(H(2)O)(4) (bpy)](n)().XnH(2)O.1.5nbpy (M = Fe(3+) or Co(3+); Ln = Sm(3+), Gd(3+), or Yb(3+); X = 4 or 5). The structures for [Fe(3)(+)-Sm(3+)] (1), [Fe(3)(+)-Gd(3+)] (2), [Fe(3)(+)-Yb(3+)] (3), [Co(3)(+)-Gd(3+)] (4), and [Co(3)(+)-Yb(3+)] (5) have been solved; they crystallize in the triclinic space P1 and are isomorphous. The [Fe(3+)-Sm(3+)] complex is a ferrimagnet, its magnetic studies suggesting the onset of weak ferromagnetic 3-D ordering at 3.5 K. The [Fe(3+)-Gd(3+)] interaction is weakly antiferromagnetic. The isotropic nature of Gd(3+) allowed us to evaluate the exchange interaction (J = 0.77 cm(-)(1)).

  16. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m{sup 3} or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 {mu}g/cm{sup 2} of material which corresponds to about 10{mu}g/m{sup 3} of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5{mu}m. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs.

  17. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    International Nuclear Information System (INIS)

    Cohen, D.

    1996-01-01

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m 3 or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 μg/cm 2 of material which corresponds to about 10μg/m 3 of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5μm. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs

  18. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m{sup 3} or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 {mu}g/cm{sup 2} of material which corresponds to about 10{mu}g/m{sup 3} of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5{mu}m. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs.

  19. Characterization on the precipitate sample of cetyltrimethylammonium bromide adsorbed onto nanocube CaCO3 particles from aqueous-ammonia-rich solution

    International Nuclear Information System (INIS)

    Rivera Virtudazo, Raymond V.; Fuji, Masayoshi; Takai, Chika; Shirai, Takashi

    2012-01-01

    Physicochemical analysis on the precipitate samples of the cationic cetyltrimethylammonium bromide (CTAB) adsorbed onto nanocube CaCO 3 particles (NcCP) in aqueous ammonia rich (NH 4 + ) solution was initially examined. The amount of CTAB added to the (<100 nm) NcCP ranging from 0.04 to 88.5 mM was prepared under room temperature aqueous alkaline condition and characterized by thermogravimetry/differential thermogravimetric analysis (TGA/DTA), Raman spectroscopy (RS), scanning electron microscopy, transmission electron microscopy (TEM), gas chromatograph combined with mass spectrometer analysis (GC–MS), and powder X-ray diffraction pattern. RS, GC–MS, and TGA/DTA analyses indicate that only layer of CTAB molecules were present on the surface of the NcCP. Moreover, this thin sheet layer was morphologically observed by the TEM image (particularly at 88 mM concentration of CTAB). In general, adsorption of CTAB molecules onto NcCP under aqueous alkaline medium had no effect on the cubic crystal structure and particle morphology. The present study confirms the adsorption mechanism of cationic surfactant onto NcCP colloids model and contributes to the better understanding of the possible structural arrangement of the sorbed surfactant molecules onto the NcCP-aqueous alkaline interface by simple characterization method. This investigation is expected to create new, low-cost route to produce promising nanopowders and conversion to hollow particles with multi-component porous surface shell wall.

  20. Reactions of macrophages exposed to particles <10 μm

    International Nuclear Information System (INIS)

    Monn, Christian; Naef, Roland; Koller, Theo

    2003-01-01

    This study describes experiments on cytotoxic effects and the production of oxidative radicals and the proinflammatory cytokine tumor growth factor alpha (TNFα) in a cell line of rat lung macrophages exposed to aqueou extracts from ambient air particles 10 ) collected on Teflon filters. The particles were collected during the four seasons at two urban sites, one rural site, and one alpine site in Switzerland. Cytotoxic effects determined as a reduction in the metabolic activity, were found in particle extracts from all sites and seasons. Taking together the data from all site and seasons, a dose-response function was observed between the particle mass on the filter and toxicity (r 2 =0.633, linear regression). The release of the pro-inflammatory cytokine TNFα as well as of oxidative radicals was most pronounced in particles collected in spring-summer and autumn. While a Montana (alpine), the stimulation of the cells was positively correlated with the particle mass on the filters, this correlation was negative at the urban sites Zuerich and Lugano. It is interpreted that at high PM 10 levels, as in these cities, macrophages are inhibited by increasing air pollution due to toxic effects. Cytotoxic effects and the release of oxidative radicals could be inhibited when the extracts were treated with an endotoxin-neutralizing protein. This suggests that endotoxin, a cell-wall constituent of gram-negative bacteria, is one of the factors which modulates macrophag activity. All together, the experiments indicate that in the PM 10 fraction water-soluble macrophage-toxic and macrophage-stimulating compounds ar present. The data offer an explanation for at least some of the known harmful effects of PM 10 , and confirm endotoxin as a possible reactant

  1. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    Science.gov (United States)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  2. Seasonal variations and vertical features of aerosol particles in the Antarctic troposphere

    Directory of Open Access Journals (Sweden)

    Keiichiro Hara

    2010-12-01

    Full Text Available Tethered balloon-borne aerosol measurements were carried out at Syowa Station, Antarctica during the 46th Japanese Antarctic Research Expedition. CN concentration had a maximum in the summer, whereas the number concentrations of fine particles (D_p>0.3 μm and coarse particles (D_p>2.0 μm increased during the winter-spring. The range of CN concentration was 30-2200 cm^ near the surface (surface-500 m and 7-7250 cm^ in the lower free troposphere (>1500 m. During the austral summer, higher CN concentration was often observed in the lower free troposphere. Frequent appearance of higher CN concentration in the free troposphere relative to the surface measurements strongly suggests that new particle formation in the Antarctic regions occurs in the lower free troposphere. Single particle analysis indicated that most of the aerosol particles during the winter were composed of Mg-enriched sea-salt particles originated from sea-salt fractionation on the sea-ice and their modified particles by NO_3^ and SO_4^. This suggests that sea-salt fractionation on sea-ice and modification of sea-salt particles were affected greatly by aerosol hygroscopicity during the winter. Antarctic haze layer was observed not only in the boundary layer but also in the lower free troposphere.

  3. Experimental Study on Ultrafine Particle Removal Performance of Portable Air Cleaners with Different Filters in an Office Room

    Directory of Open Access Journals (Sweden)

    Huan Ma

    2016-01-01

    Full Text Available Size- and time-dependent aerodynamic behaviors of indoor particles, including PM1.0, were evaluated in a school office in order to test the performance of air-cleaning devices using different filters. In-situ real-time measurements were taken using an optical particle counter. The filtration characteristics of filter media, including single-pass efficiency, volume and effectiveness, were evaluated and analyzed. The electret filter (EE medium shows better initial removal efficiency than the high efficiency (HE medium in the 0.33.5 μm particle size range, while under the same face velocity, the filtration resistance of the HE medium is several times higher than that of the EE medium. During service life testing, the efficiency of the EE medium decreased to 60% with a total purifying air flow of 25 × 104 m3/m2. The resistance curve rose slightly before the efficiency reached the bottom, and then increased almost exponentially. The single-pass efficiency of portable air cleaner (PAC with the pre-filter (PR or the active carbon granule filter (CF was relatively poor. While PAC with the pre-filter and the high efficiency filter (PR&HE showed maximum single-pass efficiency for PM1.0 (88.6%, PAC with the HE was the most effective at removing PM1.0. The enhancement of PR with HE and electret filters augmented the single-pass efficiency, but lessened the airflow rate and effectiveness. Combined with PR, the decay constant of large-sized particles could be greater than for PACs without PR. Without regard to the lifetime, the electret filters performed better with respect to resource saving and purification improvement. A most penetrating particle size range (MPPS: 0.4–0.65 μm exists in both HE and electret filters; the MPPS tends to become larger after HE and electret filters are combined with PR. These results serve to provide a better understanding of the indoor particle removal performance of PACs when combined with different kinds of filters in

  4. A 3D particle Monte Carlo approach to studying nucleation

    Science.gov (United States)

    Köhn, Christoph; Enghoff, Martin Bødker; Svensmark, Henrik

    2018-06-01

    The nucleation of sulphuric acid molecules plays a key role in the formation of aerosols. We here present a three dimensional particle Monte Carlo model to study the growth of sulphuric acid clusters as well as its dependence on the ambient temperature and the initial particle density. We initiate a swarm of sulphuric acid-water clusters with a size of 0.329 nm with densities between 107 and 108 cm-3 at temperatures between 200 and 300 K and a relative humidity of 50%. After every time step, we update the position of particles as a function of size-dependent diffusion coefficients. If two particles encounter, we merge them and add their volumes and masses. Inversely, we check after every time step whether a polymer evaporates liberating a molecule. We present the spatial distribution as well as the size distribution calculated from individual clusters. We also calculate the nucleation rate of clusters with a radius of 0.85 nm as a function of time, initial particle density and temperature. The nucleation rates obtained from the presented model agree well with experimentally obtained values and those of a numerical model which serves as a benchmark of our code. In contrast to previous nucleation models, we here present for the first time a code capable of tracing individual particles and thus of capturing the physics related to the discrete nature of particles.

  5. The effect of SiC particle size on the properties of Cu–SiC composites

    International Nuclear Information System (INIS)

    Celebi Efe, G.; Zeytin, S.; Bindal, C.

    2012-01-01

    Graphical abstract: The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and 97.5% to 95.2% for SiC with 5 μm particle size, microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and 156–182 HVN for SiC having 5 μm particle size and the electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, 87.9% IACS and 65.2%IACS for SiC with 5 μm particle size. It was found that electrical conductivity of composites containing SiC with 5 μm particle size is better than that of Cu–SiC composites containing SiC with particle size of 1 μm. Highlights: ► In this research, the effect of SiC particle size on some properties of Cu–SiC composites were investigated. ► The mechanical properties were improved. ► The electrical properties were obtained at desirable level. -- Abstract: SiC particulate-reinforced copper composites were prepared by powder metallurgy (PM) method and conventional atmospheric sintering. Scanning electron microscope (SEM), X-ray diffraction (XRD) techniques were used to characterize the sintered composites. The effect of SiC content and particle size on the relative density, hardness and electrical conductivity of composites were investigated. The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and from 97.5% to 95.2% for SiC with 5 μm particle size. Microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and from 156 to 182 HV for SiC having 5 μm particle size. The electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, between 87.9% IACS and 65.2% IACS for SiC with 5 μm particle size.

  6. Confocal (micro)-XRF for 3D analysis of elements distribution in hot environmental particles

    International Nuclear Information System (INIS)

    Bielewski, M.; Eriksson, M.; Himbert, J.; Simon, R.; Betti, M.; Hamilton, T.F.

    2007-01-01

    Studies on the fate and transport of radioactive contaminates in the environment are often constrained by a lack of knowledge on the elemental distribution and general behavior of particulate bound radionuclides contained in hot particles. A number of hot particles were previously isolated from soil samples collected at former U.S. nuclear test sites in the Marshall Islands and characterized using non-destructive techniques [1]. The present investigation at HASYLAB is a part of larger research program at ITU regarding the characterization of environmental radioactive particles different locations and source-terms. Radioactive particles in the environment are formed under a number of different release scenarios and, as such, their physicochemical properties may provide a basis for identifying source-term specific contamination regimes. Consequently, studies on hot particles are not only important in terms of studying the elemental composition and geochemical behavior of hot particles but may also lead to advances in assessing the long-term impacts of radioactive contamination on the environment. Six particles isolated from soil samples collected at the Marshall Islands were studied. The element distribution in the particles was determined by confocal (micro)-XRF analysis using the ANKA FLUO beam line. The CRL (compound refractive lens) was used to focus the exciting beam and the polycapillary half lens to collimate the detector. The dimensions of confocal spot were measured by 'knife edge scanning' method with thin gold structure placed at Si wafer. The values of 3.1 x 1.4 x 18.4 (micro)m were achieved if defined as FWHMs of measured L?intensity profiles and when the19.1 keV exciting radiation was used. The collected XRF spectra were analyzed offline with AXIL [2] software to obtain net intensities of element characteristic lines.Further data processing and reconstruction of element distribution was done with the software 'R' [3] dedicated for statistical

  7. Synthesis of morphology-controlled carbon hollow particles by carbonization of resorcinol-formaldehyde precursor microspheres and applications in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haijiao, E-mail: seaboyfang@163.com [Modern Manufacture Engineering Center, Heilongjiang Institute of Science and Technology, 150027 (China); Xu Huifang, E-mail: xuhf@hit.edu.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, 150001 (China); Zhao Can [Modern Manufacture Engineering Center, Heilongjiang Institute of Science and Technology, 150027 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Resorcinol-formaldehyde hollow particles could be obtained by inverse suspension method. Black-Right-Pointing-Pointer The morphologies of RF carbon precursor particles could be controlled by adjusting the pH values of the RF precursor. Black-Right-Pointing-Pointer The prepared carbon hollow particles, which derived from resorcinol-formaldehyde, exhibited microporous properties. Black-Right-Pointing-Pointer The RF carbon microcapsules displayed excellent power property and cycle durability. - Abstract: The morphology-controlled carbon hollow particles, derived from resorcinol-formaldehyde (RF) particles, were prepared by using an (oil phase) O/(water phase) W/(oil phase) O inverse-emulsion system which was formed by adding RF precursor (water phase) to n-hexane (oil phase) with Span-80 as surfactant and the following carbonization. This simple method led to the formation of various morphologies of RF carbon precursor particles such as hollow spheres, bowl-like hollow structures, microcapsules, or solid microspheres by adjusting the pH values of the RF precursor. The synthesized carbon particles exhibited porous characters with the surface area of 659 m{sup 2} g{sup -1} and the total pore volume of 0.44 cm{sup 3} g{sup -1}. Additionally, the electrochemical behavior of the typical RF carbon particles in lithium-ion batteries revealed that the RF carbon microcapsules displayed a high initial discharge capacity of 1059 mAh g{sup -1} and stabilized at about 330 mAh g{sup -1}, indicating its excellent power property and cycle durability.

  8. Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki - Part I: Modelling results within the LIPIKA project

    Science.gov (United States)

    Pohjola, M. A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Korhonen, H.; Hussein, T.; Ketzel, M.; Kukkonen, J.

    2007-08-01

    A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17-20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm-10 μm (aerodynamic diameter) by the Electrical Low Pressure Impactor (ELPI) and in the size range of 3-50 nm (mobility diameter) by Scanning Mobility Particle Sizer (SMPS), total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC), temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes). We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of condensable organic

  9. Mark Thomson presents the book "Modern Particle Physics"

    CERN Multimedia

    2013-01-01

    Tuesday 5 November 2013 at 4 p.m. in the Library, Bldg. 52 1-052 This new textbook covers all the main aspects of modern particle physics, providing a clear connection between the theory and recent experimental results, including the recent discovery of a Higgs boson and the most recent developments in neutrino physics. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a relatively straightforward manner with step-by-step mathematical derivations. In each chapter, fully worked examples link the theory to central experimental results in contemporary particle physics. Modern Particle Physics, by Mark Thomson, Cambridge University Press, 2013, ISBN 9781107034266. *Coffee will be served from 3.30 p.m.*

  10. Assembly of multilayer microcapsules on CacO3 particles from biocompatible polysaccharides.

    Science.gov (United States)

    Zhao, Qinghe; Mao, Zhengwei; Gao, Changyou; Shen, Jiacong

    2006-01-01

    Multilayer microcapsules were fabricated by layer-by-layer (LbL) assembly of natural polysaccharides onto CaCO3 particles, following with core removal. The micron-sized CaCO3 particles were synthesized by reaction between Ca(NO3)2 and Na2CO3 solutions in the existence of carboxylmethyl cellulose (CMC). The incorporated amount of CMC in the CaCO3 particles was found to be 5.3 wt% by thermogravimetric analysis. Two biocompatible polysaccharides, chitosan and sodium alginate were alternately deposited onto the CaCO3(CMC) templates to obtain hollow microcapsules. Regular oscillation of surface charge as detected by zeta potential demonstrated that the assembly proceeded surely in a LbL manner. The stability of the microcapsules was effectively improved by cross-linking of chitosan with glutaraldehyde. The chemical reaction was verified by infrared spectroscopy. The microcapsules thus fabricated could be spontaneously filled with positively charged low molecular weight substances such as rhodamine 6G and showed good biocompatibility, as detected by in vitro cell culture.

  11. Characterization of aerosol particles at the forested site in Lithuania

    Science.gov (United States)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    monitoring station (55˚ 26'26"N; 26˚ 03'60"E) in the eastern part of Lithuania in the Aukštaitija national park during 2-24 July, 2008. The Rugšteliškis station is located in a remote relatively clean forested area. An aerosol mass spectrometer (AMS), developed at Aerodyne Research, was used to obtain real-time quantitative information on particle size-resolved mass loadings for volatile and semi-volatile chemical components present in/on ambient aerosol. The AMS inlet system allows 100 % transmission efficiency for particles with size diameter between 60 to 600 nm and partial transmission down to 20 nm and up to 2000 nm. The aerosol sampling was also carried out using a Micro-Orifice Uniform Deposit Impactor (MOUDI) model 110. The flow rate was 30 l/min, and the 50% aerodynamic cutoff diameters of the 10 stages were 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.18, 0.10 and 0.056 m. Aluminum foil was used as the impaction surface. The aerosol samples were analyzed for total carbon using the elemental analyzer (Flash EA1112). Besides, samples were analyzed for ^13C/12C ratio by the isotopic ratio mass spectrometer (Thermo Finnigan Delta Plus Advantage) (Norman et al., 1999; Garbaras et al., 2008). During campaign the dynamic behavior of aerosols was measured and quantitatively compared with meteorological conditions and air mass transport. The submicron aerosol was predominately sulphate and organic material. The AMS was able to discriminate and quantify mixed organic/inorganic accumulation mode particles (300 - 400 nm), which appeared to be dominated by regional sources and were of the origin similar to those seen in the more remote areas. The particulate organic fraction was also investigated in detail using the mass spectral data. By combining the organic matter size distribution (measured with AMS) with the total carbon (TC) size distribution (measured with MOUDI) we were able to report organic carbon to total carbon (OC/TC) ratio in different size particles

  12. Transport with three-particle interaction

    International Nuclear Information System (INIS)

    Morawetz, K.

    2000-01-01

    Starting from a point - like two - and three - particle interaction the kinetic equation is derived. While the drift term of the kinetic equation turns out to be determined by the known Skyrme mean field the collision integral appears in two - and three - particle parts. The cross section results from the same microscopic footing and is naturally density dependent due to the three - particle force. By this way no hybrid model for drift and cross section is needed for nuclear transport. The resulting equation of state has besides the mean field correlation energy also a two - and three - particle correlation energy which both are calculated analytically for the ground state. These energies contribute to the equation of state and lead to an occurrence of a maximum at 3 times nuclear density in the total energy. (author)

  13. 3-D electromagnetic plasma particle simulations on the Intel Delta parallel computer

    International Nuclear Information System (INIS)

    Wang, J.; Liewer, P.C.

    1994-01-01

    A three-dimensional electromagnetic PIC code has been developed on the 512 node Intel Touchstone Delta MIMD parallel computer. This code is based on the General Concurrent PIC algorithm which uses a domain decomposition to divide the computation among the processors. The 3D simulation domain can be partitioned into 1-, 2-, or 3-dimensional sub-domains. Particles must be exchanged between processors as they move among the subdomains. The Intel Delta allows one to use this code for very-large-scale simulations (i.e. over 10 8 particles and 10 6 grid cells). The parallel efficiency of this code is measured, and the overall code performance on the Delta is compared with that on Cray supercomputers. It is shown that their code runs with a high parallel efficiency of ≥ 95% for large size problems. The particle push time achieved is 115 nsecs/particle/time step for 162 million particles on 512 nodes. Comparing with the performance on a single processor Cray C90, this represents a factor of 58 speedup. The code uses a finite-difference leap frog method for field solve which is significantly more efficient than fast fourier transforms on parallel computers. The performance of this code on the 128 node Cray T3D will also be discussed

  14. Observing thermomagnetic stability of nonideal magnetite particles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Kasama, Takeshi; Muxworthy, Adrian R.

    2014-01-01

    The thermomagnetic behavior of remanence-induced magnetite (Fe3O4) particles in the pseudo-single-domain (PSD) size range (similar to 0.1-10 mu m), which dominate the magnetic signature of many rock lithologies, is investigated using off-axis electron holography. Construction of magnetic induction...... of the Fe3O4 grain, in this instance, remains thermally stable close to its unblocking temperature and exhibits a similar in-plane remanent state upon cooling; i.e., the particle is effectively behaving like a uniaxial single-domain particle to temperatures near T-C. Such particles are thought to be robust...... magnetic recorders. It is suggested that evidence for PSD behavior should therefore not preclude paleomagnetic investigation....

  15. Concentration and characterization of airborne particles in Tehran's subway system.

    Science.gov (United States)

    Kamani, Hosein; Hoseini, Mohammad; Seyedsalehi, Mahdi; Mahdavi, Yousef; Jaafari, Jalil; Safari, Gholam Hosein

    2014-06-01

    Particulate matter is an important air pollutant, especially in closed environments like underground subway stations. In this study, a total of 13 elements were determined from PM10 and PM2.5 samples collected at two subway stations (Imam Khomeini and Sadeghiye) in Tehran's subway system. Sampling was conducted in April to August 2011 to measure PM concentrations in platform and adjacent outdoor air of the stations. In the Imam Khomeini station, the average concentrations of PM10 and PM2.5 were 94.4 ± 26.3 and 52.3 ± 16.5 μg m(-3) in the platform and 81.8 ± 22.2 and 35 ± 17.6 μg m(-3) in the outdoor air, respectively. In the Sadeghiye station, mean concentrations of PM10 and PM2.5 were 87.6 ± 23 and 41.3 ± 20.4 μg m(-3) in the platform and 73.9 ± 17.3 and 30 ± 15 μg m(-3), in the outdoor air, respectively. The relative contribution of elemental components in each particle fraction were accounted for 43% (PM10) and 47.7% (PM2.5) in platform of Imam Khomeini station and 15.9% (PM10) and 18.5% (PM2.5) in the outdoor air of this station. Also, at the Sadeghiye station, each fraction accounted for 31.6% (PM10) and 39.8% (PM2.5) in platform and was 11.7% (PM10) and 14.3% (PM2.5) in the outdoor. At the Imam Khomeini station, Fe was the predominant element to represent 32.4 and 36 % of the total mass of PM10 and PM2.5 in the platform and 11.5 and 13.3% in the outdoor, respectively. At the Sadeghiye station, this element represented 22.7 and 29.8% of total mass of PM10 and PM2.5 in the platform and 8.7 and 10.5% in the outdoor air, respectively. Other major crustal elements were 5.8% (PM10) and 5.3% (PM2.5) in the Imam Khomeini station platform and 2.3 and 2.4% in the outdoor air, respectively. The proportion of other minor elements was significantly lower, actually less than 7% in total samples, and V was the minor concentration in total mass of PM10 and PM2.5 in both platform stations.

  16. The transmission characteristics of indoor particles under different ventilation conditions

    Directory of Open Access Journals (Sweden)

    Lv Yang

    2017-01-01

    Full Text Available In modern society, ventilation is an important method for removing indoor particles. This study applies the parameter of attenuation index to analyze the effect of the removal of indoor particles in the two typical ventilation strategies called ceiling exhaust and slit exhaust strategy. Experiment was conducted in a chamber and riboflavin particles were used as the indoor particles source, instantaneous microbial detection (IMD used to measure the particulate concentration. Conclusions can be found that air exchange rate is an important factor affecting the indoor particle concentration distribution. In the process of indoor free settling(air exchange rate is 0 h-1, the deposition rate were 0.086 h-1, 0.122 h-1, 0.173 h-1 for the particles of 0.5–1.0 μm, 1.0–3.0μm and 3.0–5.0 μm. When the air exchange rate increased to 2.5 h-1, the differences in the attenuation index is significant. There was also a significant linear relationship between air exchange rate and attenuation index. Furthermore, the effect of the slit exhaust strategy on the removal of coarse particles is more remarkable as the increasing air exchange rate.

  17. Validation of alternative methods of preparing {sup 99m}Tc-MAG3

    Energy Technology Data Exchange (ETDEWEB)

    Seetharaman, Shankar [Department of Pharmacy, Guy' s and St Thomas' Hospital, Lambeth Palace Road, London SE1 9EH (United Kingdom); Sosabowski, Michael H. [School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb (United Kingdom); Ballinger, James R. [Department of Nuclear Medicine, Guy' s and St Thomas' Hospital, St Thomas Street, London SE1 9RT (United Kingdom)], E-mail: james.ballinger@gstt.nhs.uk

    2007-11-15

    Parameters in the preparation of {sup 99m}Tc-mertiatide ({sup 99m}Tc-MAG3) were investigated to determine the importance of total activity, activity concentration, boiling time, and delay before boiling for the radiochemical purity (RCP) and stability of the product. Satisfactory RCP results (>90%) were obtained over a range of concentrations including a dilute preparation for paediatric use. RCP was not affected by the time between the addition of pertechnetate and boiling, but low RCP (<60%) resulted when the kit was boiled for less than 10 min.

  18. The stochastic dynamics of intermittent porescale particle motion

    Science.gov (United States)

    Dentz, Marco; Morales, Veronica; Puyguiraud, Alexandre; Gouze, Philippe; Willmann, Matthias; Holzner, Markus

    2017-04-01

    Numerical and experimental data for porescale particle dynamics show intermittent patterns in Lagrangian velocities and accelerations, which manifest in long time intervals of low and short durations of high velocities [1, 2]. This phenomenon is due to the spatial persistence of particle velocities on characteristic heterogeneity length scales. In order to systematically quantify these behaviors and extract the stochastic dynamics of particle motion, we focus on the analysis of Lagrangian velocities sampled equidistantly along trajectories [3]. This method removes the intermittency observed under isochrone sampling. The space-Lagrangian velocity series can be quantified by a Markov process that is continuous in distance along streamline. It is fully parameterized in terms of the flux-weighted Eulerian velocity PDF and the characteristic pore-length. The resulting stochastic particle motion describes a continuous time random walk (CTRW). This approach allows for the process based interpretation of experimental and numerical porescale velocity, acceleration and displacement data. It provides a framework for the characterization and upscaling of particle transport and dispersion from the pore to the Darcy-scale based on the medium geometry and Eulerian flow attributes. [1] P. De Anna, T. Le Borgne, M. Dentz, A.M. Tartakovsky, D. Bolster, and P. Davy, "Flow intermittency, dispersion, and correlated continuous time random walks in porous media," Phys. Rev. Lett. 110, 184502 (2013). [2] M. Holzner, V. L. Morales, M. Willmann, and M. Dentz, "Intermittent Lagrangian velocities and accelerations in three- dimensional porous medium flow," Phys. Rev. E 92, 013015 (2015). [3] M. Dentz, P. K. Kang, A. Comolli, T. Le Borgne, and D. R. Lester, "Continuous time random walks for the evolution of Lagrangian velocities," Phys. Rev. Fluids (2016).

  19. How does a scanning ribosomal particle move along the 5'-untranslated region of eukaryotic mRNA? Brownian Ratchet model.

    Science.gov (United States)

    Spirin, Alexander S

    2009-11-17

    A model of the ATP-dependent unidirectional movement of the 43S ribosomal initiation complex (=40S ribosomal subunit + eIF1 + eIF1A + eIF2.GTP.Met-tRNA(i) + eIF3) during scanning of the 5'-untranslated region of eukaryotic mRNA is proposed. The model is based on the principles of molecular Brownian ratchet machines and explains several enigmatic data concerning the scanning complex. In this model, the one-dimensional diffusion of the ribosomal initiation complex along the mRNA chain is rectified into the net-unidirectional 5'-to-3' movement by the Feynman ratchet-and-pawl mechanism. The proposed mechanism is organized by the heterotrimeric protein eIF4F (=eIF4A + eIF4E + eIF4G), attached to the scanning ribosomal particle via eIF3, and the RNA-binding protein eIF4B that is postulated to play the role of the pawl. The energy for the useful work of the ratchet-and-pawl mechanism is supplied from ATP hydrolysis induced by the eIF4A subunit: ATP binding and its hydrolysis alternately change the affinities of eIF4A for eIF4B and for mRNA, resulting in the restriction of backward diffusional sliding of the 43S ribosomal complex along the mRNA chain, while stochastic movements ahead are allowed.

  20. [Aerodynamic focusing of particles and heavy molecules

    International Nuclear Information System (INIS)

    de la Mora, J.F.

    1990-01-01

    By accelerating a gas containing suspended particles or large molecules through a converging nozzle, the suspended species may be focused and therefore used to write fine lines on a surface. Our objective was to study the limits on how narrow this focal region could be as a function of particle size. We find that, for monodisperse particles with masses m p some 3.6 x 10 5 times larger than the molecular mass m of the carrier gas (diameters above some 100 angstrom), there is no fundamental obstacle to directly write submicron features. However, this conclusion has been verified experimentally only with particles larger than 0.1 μm. Experimental, theoretical and numerical studies on the defocusing role of Brownian motion for very small particles or heavy molecules have shown that high resolution (purely aerodynamic) focusing is impossible with volatile molecules whose masses are typically smaller than 1000 Dalton. For these, the minimal focal diameter after optimization appears to be 5√(m/m p ) times the nozzle diameter d n . But combinations of focused lasers and aerodynamic focusing appear as promising for direct writing with molecular precursors. Theoretical and numerical schemes capable of predicting the evolution of the focusing beam, including Brownian motion effects, have been developed, although further numerical work would be desirable. 11 refs

  1. Associations between fine particle, coarse particle, black carbon and hospital visits in a Chinese city.

    Science.gov (United States)

    Wang, Xi; Chen, Renjie; Meng, Xia; Geng, Fuhai; Wang, Cuicui; Kan, Haidong

    2013-08-01

    China is one of the countries with the highest ambient particle levels in the world; however, there have been no epidemiologic studies examining the effects of fine particle (PM2.5), coarse particle (PM10-2.5) and black carbon (BC) simultaneously on morbidity outcomes. In this study, we conducted a time-series analysis to evaluate the acute effects of PM2.5, PM10-2.5, and BC on daily hospital visits in Shanghai, China. During our study period, the mean daily concentrations of PM2.5, PM10-2.5 and BC were 53.9 μg/m(3), 38.4 μg/m(3) and 3.9 μg/m(3), respectively. We found significant associations of PM2.5, PM 10-2.5, and BC with daily hospital visits. An inter-quartile range increase of the average concentrations of the current and previous days in PM2.5, PM10-2.5 and BC was associated with a 1.88% (95% CI: 0.69% to 3.06%), a 1.30% (95% CI: 0.25% to 2.34%) and a 1.33% (95% CI: 0.34% to 2.32%) increase in emergency-room visits, respectively. For outpatient visits, the corresponding estimated changes were -2.44% (95% CI: -6.62% to 1.74%), 1.09% (95% CI: -2.72% to 4.90%) and 3.34% (95% CI: 0.10% to 6.57%) respectively. The effects of BC were more robust than the effects of PM2.5 and PM10-2.5 in two-pollutant models. To our knowledge, this is the first study in China, or even in Asian developing countries, to report the effect of PM2.5, PM10-2.5, and BC simultaneously on morbidity. Our findings also suggest that BC could serve as a valuable air quality indicator that reflects the health risks of airborne particles. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A 3D particle Monte Carlo approach to studying nucleation

    DEFF Research Database (Denmark)

    Köhn, Christoph; Bødker Enghoff, Martin; Svensmark, Henrik

    2018-01-01

    The nucleation of sulphuric acid molecules plays a key role in the formation of aerosols. We here present a three dimensional particle Monte Carlo model to study the growth of sulphuric acid clusters as well as its dependence on the ambient temperature and the initial particle density. We initiate...... a swarm of sulphuric acid–water clusters with a size of 0.329 nm with densities between 107 and and 108 cm-3 at temperatures between 200 and 300 K and a relative humidity of 50%. After every time step, we update the position of particles as a function of size-dependent diffusion coefficients. If two...... particles encounter, we merge them and add their volumes and masses. Inversely, we check after every time step whether a polymer evaporates liberating a molecule. We present the spatial distribution as well as the size distribution calculated from individual clusters. We also calculate the nucleation rate...

  3. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles

    Directory of Open Access Journals (Sweden)

    Yuniar Ponco Prananto

    2013-03-01

    Full Text Available Crystal growth of cobalt (II oxalate in silica gel at room temperature as precursor of Co3O4 nano particles has been studied. Specifically, this project is focusing on the use of two different reaction tube types toward crystallization of cobalt (II oxalate in gel. The gel was prepared at pH 5 by reacting sodium metasilicate solution with dilute nitric acid (for U-tube and oxalic acid (for straight tube, with gelling time of 4 days and crystal growth time of 8 (for straight tube and 12 (for U-tube weeks. Result shows that pink crystalline powder was directly formed using straight tube method. The use of different solvents in straight tube method affects crystallization and could delay direct precipitation of the product. In contrast, bigger and better shape of red block crystal was yielded from U-tube method; however, longer growth time was needed. FTIR studies suggest that both growth method produces identical compound of hydrated cobalt (II oxalate. © 2013 BCREC UNDIP. All rights reservedReceived: 25th October 2012; Revised: 30th November 2012; Accepted: 5th December 2012[How to Cite: Y.P. Prananto, M.M. Khunur, D.T. Wahyuni, R.A. Shobirin, Y.R. Nata, E. Riskah, (2013. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 198-204. (doi:10.9767/bcrec.7.3.4066.198-204][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4066.198-204 ] View in  |

  4. Particle and Power Exhaust in EAST

    Science.gov (United States)

    Wang, Liang; Ding, Fang; Yu, Yaowei; Gan, Kaifu; Liang, Yunfeng; Xu, Guosheng; Xiao, Bingjia; Sun, Youwen; Luo, Guangnan; Gong, Xianzu; Hu, Jiansheng; Li, Jiangang; Wan, Baonian; Maingi, Rajesh; Guo, Houyang; Garofalo, Andrea; EAST Team

    2017-10-01

    A total power injection up to 0.3GJ has been achieved in EAST long pulse USN operation with ITER-like water-cooling W-monoblock divertor, which has steady-state power exhaust capability of 10 MWm-2. The peak temperature of W target saturated at t = 12 s to the value T 500oC and a heat flux 3MWm-2was maintained. Great efforts to reduce heat flux and accommodate particle exhaust simultaneously have been made towards long pulse of 102s time scale. By exploiting the observation of Pfirsch-Schlüter flow direction in the SOL, the Bt direction with Bx ∇B away from the W divertor (more particles favor outer target in USN) was adopted along with optimizing the strike point location near the pumping slot, to facilitate particle and impurity exhaust with the top cryo-pump. By tailoring the 3D divertor footprint through edge magnetic topology change, the heat load was dispersed widely and thus peak heat flux and W sputtering was well controlled. Active feedback control of total radiative power with neon seeding was achieved within frad = 17-35%, exhibiting further potential for heat flux reduction with divertor and edge radiation. Other heat flux handling techniques, including quasi snowflake configuration, will also be presented.

  5. Single particle composition measurements of artificial Calcium Carbonate aerosols

    Science.gov (United States)

    Zorn, S. R.; Mentel, T. F.; Schwinger, T.; Croteau, P. L.; Jayne, J.; Worsnop, D. R.; Trimborn, A.

    2012-12-01

    Mineral dust, with an estimated total source from natural and anthropogenic emissions of up to 2800 Tg/yr, is one of the two largest contributors to total aerosol mass, with only Sea salt having a similar source strength (up to 2600 Tg/yr). The composition of dust particles varies strongly depending on the production process and, most importantly, the source location. Therefore, the composition of single dust particles can be used both to trace source regions of air masses as well as to identify chemical aging processes. Here we present results of laboratory studies on generating artificial calcium carbonate (CaCO3) particles, a model compound for carbonaceous mineral dust particles. Particles were generated by atomizing an aqueous hydrogen carbonate solution. Water was removed using a silica diffusion dryer., then the particles were processed in an oven at temperatures up to 900°C, converting the hydrogen carbonate to its anhydrous form. The resulting aerosol was analyzed using an on-line single particle laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The results confirm the conversion to calcium carbonate, and validate that the produced particles indeed can be used as a model compound for carbonaceous dust aerosols.

  6. Exclusion of mRNPs and ribosomal particles from a thin zone beneath the nuclear envelope revealed upon inhibition of transport

    International Nuclear Information System (INIS)

    Kylberg, Karin; Bjoerk, Petra; Fomproix, Nathalie; Ivarsson, Birgitta; Wieslander, Lars; Daneholt, Bertil

    2010-01-01

    We have studied the nucleocytoplasmic transport of a specific messenger RNP (mRNP) particle, named Balbiani ring (BR) granule, and ribosomal RNP (rRNP) particles in the salivary glands of the dipteran Chironomus tentans. The passage of the RNPs through the nuclear pore complex (NPC) was inhibited with the nucleoporin-binding wheat germ agglutinin, and the effects were examined by electron microscopy. BR mRNPs bound to the nuclear basket increased in number, while BR mRNPs translocating through the central channel decreased, suggesting that the initiation of translocation proper had been inhibited. The rRNPs accumulated heavily in nucleoplasm, while no or very few rRNPs were recorded within nuclear baskets. Thus, the transport of rRNPs had been blocked prior to the entry into the baskets. Remarkably, the rRNPs had been excluded both from baskets and the space in between the baskets. We propose that normally basket fibrils move freely and repel RNPs from the exclusion zone unless the particles have affinity for and bind to nucleoporins within the baskets.

  7. Bio-inspired particle separator design based on the food retention mechanism by suspension-feeding fish

    International Nuclear Information System (INIS)

    Hung, Tien-Chieh; Piedrahita, Raul H; Cheer, Angela

    2012-01-01

    A new particle separator is designed using a crossflow filtration mechanism inspired by suspension-feeding fish in this study. To construct the model of the bio-inspired particle separator, computational fluid dynamics techniques are used, and parameters related to separator shape, fluid flow and particle properties that might affect the performance in removing particles from the flow, are varied and tested. The goal is to induce a flow rotation which enhances the separation of particles from the flow, reduce the particle-laden flow that exits via a collection zone at the lower/posterior end of the separator, while at the same time increase the concentration of particles in that flow. Based on preliminary particle removal efficiency tests, an exiting flow through the collection zone of about 8% of the influent flow rate is selected for all the performance tests of the separator including trials with particles carried by air flow instead of water. Under this condition, the simulation results yield similar particle removal efficiencies in water and air but with different particle properties. Particle removal efficiencies (percentage of influent particles that exit through the collection zone) were determined for particles ranging in size from 1 to 1500 µm with a density between 1000 and 1150 kg m3 in water and 2 and 19 mm and 68 and 2150 kg m3 in air. As an example, removal efficiencies are 66% and 64% for 707 µm diameter particles with a density of 1040 kg m3 in water and for 2 mm particles with a density of 68 kg m3 in air, respectively. No significant performance difference is found by geometrically scaling the inlet diameter of the separator up or down in the range from 2.5 to 10 cm. (paper)

  8. Synergy of Nyquist and Bode electrochemical impedance spectroscopy studies to particle size effect on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2

    International Nuclear Information System (INIS)

    Liang, Chenghao; Liu, Lianbao; Jia, Zheng; Dai, Changsong; Xiong, Yueping

    2015-01-01

    To study the mechanism of material particle size effects on the electrochemical properties of LiNi 0.5 Co 0.2 Mn 0.3 O 2 , two kinds of materials with particle size of 300 nm and 1 μm were prepared, based on the electrospinning method and sol-gel method, respectively. The capacity differences of the two materials at 20 mA/g discharge current were unapparent, in the potential range of 2.8V–4.3 V, but become gigantic at 1000 mA/g discharge current. Electrochemical impedance spectroscopy (EIS) was employed to analysis the differences caused by particle size, and frequency responses of every electrochemical process were analyzed in detail through Bode plots, which proved the electrospinning material had an excellent performance caused by a shorter lithium ion and electron diffusion distance.

  9. Particle effects on fish gills

    DEFF Research Database (Denmark)

    Lu, Cao; Kania, Per W.; Buchmann, Kurt

    2018-01-01

    Particles composed of inorganic, organic and/or biological materials occur in both natural water bodies and aquaculture facilities. They are expected to affect fish health through a direct chemical, mechanical and biological interaction with gills during ventilation but the nature of the reactions...... and the relative importance of mechanical versus chemical and biological stimulation are unknown. The present work presents an immune gene expression method for evaluation of gill disturbance and sets a baseline for the mechanical influence on fish gills of chemically inert spherical particles. The method may...... be applied to investigate particle impact at different combinations of temperature, fish size, water quality and particle composition. Spherical polystyrene particles (diameters 0.2 μm, 1 μm, 20 μm, 40 μm and 90 μm) were adopted as the particle model and the rainbow trout (Oncorhynchus mykiss) fingerlings...

  10. Effect of modulation of the particle size distributions in the direct solid analysis by total-reflection X-ray fluorescence

    Science.gov (United States)

    Fernández-Ruiz, Ramón; Friedrich K., E. Josue; Redrejo, M. J.

    2018-02-01

    The main goal of this work was to investigate, in a systematic way, the influence of the controlled modulation of the particle size distribution of a representative solid sample with respect to the more relevant analytical parameters of the Direct Solid Analysis (DSA) by Total-reflection X-Ray Fluorescence (TXRF) quantitative method. In particular, accuracy, uncertainty, linearity and detection limits were correlated with the main parameters of their size distributions for the following elements; Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ba and Pb. In all cases strong correlations were finded. The main conclusion of this work can be resumed as follows; the modulation of particles shape to lower average sizes next to a minimization of the width of particle size distributions, produce a strong increment of accuracy, minimization of uncertainties and limit of detections for DSA-TXRF methodology. These achievements allow the future use of the DSA-TXRF analytical methodology for development of ISO norms and standardized protocols for the direct analysis of solids by mean of TXRF.

  11. The effect of sintering time on synthesis of in situ submicron {alpha}-Al{sub 2}O{sub 3} particles by the exothermic reactions of CuO particles in molten pure Al

    Energy Technology Data Exchange (ETDEWEB)

    Dikici, Burak, E-mail: burakdikici@yyu.edu.tr [Yuzuncu Yil University, Department of Mechanical Engineering, 65080 Van (Turkey); Gavgali, Mehmet [Ataturk University, Department of Mechanical Engineering, 25240 Erzurum (Turkey)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Al-Cu/Al{sub 2}O{sub 3} composites were prepared successfully by means of hot pressing method. Black-Right-Pointing-Pointer Sintering time of the Al-CuO system effect the reaction rate and formation of Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Increase in sintering time accelerates formation of submicron in situ {alpha}-Al{sub 2}O{sub 3} phase. Black-Right-Pointing-Pointer Hardness of the sintered composite for 30 min at 1000 Degree-Sign C increased from 60 to 174 HV. - Abstract: In this study, in situ {alpha}-Al{sub 2}O{sub 3} reinforcing particles have been successfully synthesised in an Al-Cu matrix alloy by means of the conventional Hot Pressing (HP) method. The effect of sintering time on the forming of the {alpha}-Al{sub 2}O{sub 3} phase at 1000 Degree-Sign C was investigated using Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and a Scanning Electron Microscope (SEM). The sintered composites contained thermodynamically stable {alpha}-Al{sub 2}O{sub 3} particles and {theta}-Al{sub 2}Cu eutectic phases, which were embedded in the Al-Cu matrix. The in situ {alpha}-Al{sub 2}O{sub 3} particles were generally spherical and their mean size was observed to be less than 0.5 {mu}m. The results showed that sintering time influences not only the reaction rate of copper and the formation of Al{sub 2}O{sub 3}. Also, an increase in the sintering time accelerates the formation of submicron in situ {alpha}-Al{sub 2}O{sub 3} particles and decreases the quantity of {theta}-Al{sub 2}Cu intermetallic phase in the liquid aluminium. Additionally, sintering of composite for 30 min at 1000 Degree-Sign C increased the hardness from 60 to 174 HV.

  12. The toxicity of particles from combustion processes

    International Nuclear Information System (INIS)

    Henderson, R.F.; Mauderly, J.L.

    1991-01-01

    The pulmonary toxicity of inhaled particles will depend on their size, solubility and inherent toxicity. Many combustion-derived particles, such as soot and fly ash, are of a respirable size and, being poorly soluble, are retained for prolonged periods in the lung. The acute toxicity of fly ash from coal combustion was compared to that of a known toxic particle, alpha-quartz, by exposures of rats to 35 mg/m 3 of each type of particle for 7 hr/day, 5 days/wk for 4 wk. The acute pulmonary toxicity was measured by analysis of bronchoalveolar lavage fluid. One year after the exposures, fibrosis with granulomas was observed in the quartz-exposed rats, while little or no fibrosis developed in the fly-ash-exposed rats. The toxicity of soot from diesel exhaust was determined by chronic (30 mo) exposures of rats, 7 hr/day, 5 days/wk to exhaust containing 0.35, 3.5 or 7.0 mg/m 3 soot. The two higher exposures caused persistent pulmonary inflammation, fibrosis and neoplasmas. Rats exposed to the lowest concentration demonstrated no toxic responses and there was no life shortening caused by any exposure. Ongoing comparative studies indicate that pure carbon black particles cause responses similar to those caused by diesel exhaust, indicating that much of the toxicity induced by the diesel soot results from the presence of the large lung burdens of carbonaceous particles

  13. Microstructure and tensile properties of oxide dispersion strengthened Fe–14Cr–0.3Y2O3 and Fe–14Cr–2W–0.3Ti–0.3Y2O3

    International Nuclear Information System (INIS)

    Auger, M.A.; Castro, V. de; Leguey, T.; Monge, M.A.; Muñoz, A.; Pareja, R.

    2013-01-01

    Two ODS ferritic steels with nominal compositions (wt.%): Fe–14Cr–0.3Y 2 O 3 and Fe–14Cr–2W–0.3Ti–0.3Y 2 O 3 have been produced by mechanical alloying and consolidation by hot isostatic pressing. The microstructure and tensile properties of these materials after being forged and heat-treated at 1123 K have been investigated to clarify the interrelation between composition, microstructure and mechanical properties. The second-phase precipitates in these alloys have been analyzed by high-angle annular dark-field imaging in scanning TEM mode and electron diffraction. Fe–14Cr–2W–0.3Ti–0.3Y 2 O 3 exhibits a duplex microstructure consisting of large recrystallized grains, as large as 1.5 μm, and unrecovered regions containing submicron equiaxed grains. In addition, three types of secondary phase particles have been found: large M 23 C 6 particles containing W and Cr, (Cr + Ti) rich spherical particles with diameters between 50 and 500 nm, and fine (Y + Ti) oxide particles with sizes below 30 nm. In contrast, Fe14CrY shows a uniform structure of equiaxed grains, with sizes in the range 0.5–3 μm, containing a fine dispersion of Y oxide particles ( 2 O 3 at temperatures up to 773 K, but the opposite appears to occur beyond this temperature

  14. Accurate particle speed prediction by improved particle speed measurement and 3-dimensional particle size and shape characterization technique

    DEFF Research Database (Denmark)

    Cernuschi, Federico; Rothleitner, Christian; Clausen, Sønnik

    2017-01-01

    Accurate particle mass and velocity measurement is needed for interpreting test results in erosion tests of materials and coatings. The impact and damage of a surface is influenced by the kinetic energy of a particle, i.e. particle mass and velocity. Particle mass is usually determined with optic...

  15. Study of a charge-coupled device for high-energy-particle detection

    International Nuclear Information System (INIS)

    Bhuiya, A.H.

    1983-05-01

    This presentation is based on measurements made to evaluate the application of charge-coupled devices as detectors of high-energy particles. The experiment was performed with a Fairchild Linear 256-Cell CCD111 array (size 8μm x 17 μm/cell), utilizing a light source instead of a particle beam. It was observed that the minimum detectable signal was limited to approx. 488 electrons at -50 0 C, where the readout and exposure times were about 260 ms and 400 ms respectively. The transfer inefficiency of the CCD111 was determined to be approx. 10 -4 . It has been concluded that at a lower temperature (approx. -100 0 C) or with faster readout (approx. 10 ms), the CCD111 would be able to detect the total deposited energy of minimum-ionizing charged particles

  16. SORCE Level 3 Total Solar Irradiance Daily Average V016

    Data.gov (United States)

    National Aeronautics and Space Administration — The Total Solar Irradiance (TSI) data set SOR3TSID contains the total solar irradiance (a.k.a solar constant) data collected by the Total Irradiance Monitor (TIM)...

  17. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    Science.gov (United States)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  18. A Light Universal Detector for the Study of Correlations between Photons and Charged Particles

    CERN Document Server

    2002-01-01

    The WA93 experiment combines two essential means of quark matter diagnosis: \\item a)~~~~the measurement of photon production rates relative to charged particles or $ \\pi ^0 ^{a}pos $s \\item b)~~~~the measurement of transverse momenta of charged and neutral particles and their correlations. \\end{enumerate} \\\\ \\\\ The experimental setup consists of highly segmented lead glass arrays (3780~modules) at a distance of 9~m from the target covering the range 2~$<$~y~$<$~3. The detector allows to reconstruct the transverse momentum of $ \\pi ^0 ^{a}pos $s and $ \\eta ^{a}pos $s. A preshower detector which can be operated in a hadron-blind mode complements the photon measurement in the range 3~$<$~y~$<$~5.5. The detector yields the number of photons and,~-~to a limited extend~-, information on the total electromagnetic transverse energy. Charged particle tracking is achieved by a set of newly developed multistep avalanche chambers read out by CCD cameras downstream of the GOLIATH vertex magnet. Bose-Einstein c...

  19. Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki ─ Part I: Modelling results within the LIPIKA project

    Directory of Open Access Journals (Sweden)

    M. Ketzel

    2007-08-01

    Full Text Available A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17–20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm–10 μm (aerodynamic diameter by the Electrical Low Pressure Impactor (ELPI and in the size range of 3–50 nm (mobility diameter by Scanning Mobility Particle Sizer (SMPS, total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC, temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes. We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of

  20. African biomass burning plumes over the Atlantic: aircraft based measurements and implications for H2SO4 and HNO3 mediated smoke particle activation

    Directory of Open Access Journals (Sweden)

    A. Dörnbrack

    2011-04-01

    Full Text Available Airborne measurements of trace gases and aerosol particles have been made in two aged biomass burning (BB plumes over the East Atlantic (Gulf of Guinea. The plumes originated from BB in the Southern-Hemisphere African savanna belt. On the day of our measurements (13 August 2006, the plumes had ages of about 10 days and were respectively located in the middle troposphere (MT at 3900–5500 m altitude and in the upper troposphere (UT at 10 800–11 200 m. Probably, the MT plume was lifted by dry convection and the UT plume was lifted by wet convection. In the more polluted MT-plume, numerous measured trace species had markedly elevated abundances, particularly SO2 (up to 1400 pmol mol−1, HNO3 (5000–8000 pmol mol−1 and smoke particles with diameters larger than 270 nm (up to 2000 cm−3. Our MT-plume measurements indicate that SO2 released by BB had not experienced significant loss by deposition and cloud processes but rather had experienced OH-induced conversion to gas-phase sulfuric acid. By contrast, a significant fraction of the released NOy had experienced loss, most likely as HNO3 by deposition. In the UT-plume, loss of NOy and SO2 was more pronounced compared to the MT-plume, probably due to cloud processes. Building on our measurements and accompanying model simulations, we have investigated trace gas transformations in the ageing and diluting plumes and their role in smoke particle processing and activation. Emphasis was placed upon the formation of sulfuric acid and ammonium nitrate, and their influence on the activation potential of smoke particles. Our model simulations reveal that, after 13 August, the lower plume traveled across the Atlantic and descended to 1300 m and hereafter ascended again. During the travel across the Atlantic, the soluble mass fraction of smoke particles and their mean diameter increased sufficiently to allow the processed smoke particles to act as water vapor condensation nuclei already at very low water

  1. Physical consequences of the alpha/beta rule which accurately calculates particle masses

    Energy Technology Data Exchange (ETDEWEB)

    Greulich, Karl Otto [Fritz Lipmann Institute, Beutenbergstr.11, D07745 Jena (Germany)

    2015-07-01

    Using the fine structure constant α (=1/137.036), the proton vs. electron mass ratio β (= 1836.2) and the integers m and n, the α/β rule: m{sub particle} = α{sup -n} x β m x 27.2 eV/c{sup 2} allows almost exact calculation of particle masses. (K.O.Greulich, DPG Spring meeting 2014, Mainz, T99.4) With n=2, m=0 the electron mass becomes 510.79 keV/c{sup 2} (experimental 511 keV/c{sup 2}) With n=2, m=1 the proton mass is 937.9 MeV/c{sup 2} (literature 938.3 MeV/c{sup 2}). For n=3 and m=1 a particle with 128.6 GeV/c{sup 2} close to the reported Higgs mass, is expected. For n=14 and m=-1 the Planck mass results. The calculated masses for gauge bosons and for quarks have similar accuracy. All masses fit into the same scheme (the alpha/beta rule), indicating that non of these particle masses play an extraordinary role. Particularly, the Higgs Boson, often termed the *God particle* plays in this sense no extraordinary role. In addition, particle masses are intimately correlated with the fine structure constant α. If particle masses have been constant over all times, α must have been constant over these times. In addition, the ionization energy of the hydrogen atom (13.6 eV) needs to have been constant if particle masses have been unchanged or vice versa. In conclusion, the α/β rule needs to be taken into account when cosmological models are developed.

  2. Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of M3 Rotary and M3 Pro Gold NiTi files

    Science.gov (United States)

    2018-01-01

    Objectives To evaluate the mechanical properties and metallurgical characteristics of the M3 Rotary and M3 Pro Gold files (United Dental). Materials and Methods One hundred and sixty new M3 Rotary and M3 Pro Gold files (sizes 20/0.04 and 25/0.04) were used. Torque and angle of rotation at failure (n = 20) were measured according to ISO 3630-1. Cyclic fatigue resistance was tested by measuring the number of cycles to failure in an artificial stainless steel canal (60° angle of curvature and a 5-mm radius). The metallurgical characteristics were investigated by differential scanning calorimetry. Data were analyzed using analysis of variance and the Student-Newman-Keuls test. Results Comparing the same size of the 2 different instruments, cyclic fatigue resistance was significantly higher in the M3 Pro Gold files than in the M3 Rotary files (p Rotary files showed 1 small peak on the heating curve and 1 small peak on the cooling curve. Conclusions The M3 Pro Gold files showed greater flexibility and angular rotation than the M3 Rotary files, without decrement of their torque resistance. The superior flexibility of M3 Pro Gold files can be attributed to their martensite phase. PMID:29765904

  3. Relativistic local quantum field theory for m=0 particles; Campos cuanticos locales relativos a particulas de masa no nula

    Energy Technology Data Exchange (ETDEWEB)

    Morales Villasevil, A

    1965-07-01

    A method is introduced ta deal with relativistic quantum field theory for particles with m=0. Two mappings I and J, giving rise respectively to particle and anti particle states, are defined between a test space and the physical Hilbert space. The intrinsic field operator is then defined as the minimal causal linear combinations of operators belonging to the annihilation-creation algebra associated to the germ and antigerm parts of the element. Local elements are introduced as improper test elements and local field operators are constructed in the same way as the intrinsic ones. Commutation rules are given. (Author) 17 refs.

  4. A relativistic colored spinning particle in an external color field

    International Nuclear Information System (INIS)

    Heinz, U.

    1984-01-01

    I derive fully covariant equations of motion for a classical colored spinning particle in an external SU(3) color field. Although the total color charge and total spin of the particle are found to be separately constants of motion (here I disagree with a recent paper by Arodz), the dynamics of the orientation of the color and spin vectors are coupled to each other through interaction with the color field, even if the latter is homogeneous. (orig.)

  5. Subvisible (2-100 μm) Particle Analysis During Biotherapeutic Drug Product Development: Part 1, Considerations and Strategy.

    Science.gov (United States)

    Narhi, Linda O; Corvari, Vincent; Ripple, Dean C; Afonina, Nataliya; Cecchini, Irene; Defelippis, Michael R; Garidel, Patrick; Herre, Andrea; Koulov, Atanas V; Lubiniecki, Tony; Mahler, Hanns-Christian; Mangiagalli, Paolo; Nesta, Douglas; Perez-Ramirez, Bernardo; Polozova, Alla; Rossi, Mara; Schmidt, Roland; Simler, Robert; Singh, Satish; Spitznagel, Thomas M; Weiskopf, Andrew; Wuchner, Klaus

    2015-06-01

    Measurement and characterization of subvisible particles (defined here as those ranging in size from 2 to 100 μm), including proteinaceous and nonproteinaceous particles, is an important part of every stage of protein therapeutic development. The tools used and the ways in which the information generated is applied depends on the particular product development stage, the amount of material, and the time available for the analysis. In order to compare results across laboratories and products, it is important to harmonize nomenclature, experimental protocols, data analysis, and interpretation. In this manuscript on perspectives on subvisible particles in protein therapeutic drug products, we focus on the tools available for detection, characterization, and quantification of these species and the strategy around their application. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Hardened over-coating fuel particle and manufacture of nuclear fuel using its fuel particle

    International Nuclear Information System (INIS)

    Yoshimuda, Hideharu.

    1990-01-01

    Coated-fuel particles comprise a coating layer formed by coating ceramics such as silicon carbide or zirconium carbide and carbons, etc. to a fuel core made of nuclear fuel materials. The fuel core generally includes oxide particles such as uranium, thorium and plutonium, having 400 to 600 μm of average grain size. The average grain size of the coated-fuel particle is usually from 800 to 900 μm. The thickness of the coating layer is usually from 150 to 250 μm. Matrix material comprising a powdery graphite and a thermosetting resin such as phenol resin, etc. is overcoated to the surface of the coated-fuel particle and hardened under heating to form a hardened overcoating layer to the coated-fuel particle. If such coated-fuel particles are used, cracks, etc. are less caused to the coating layer of the coated-fuel particles upon production, thereby enabling to prevent the damages to the coating layer. (T.M.)

  7. Particle number size distributions in urban air before and after volatilisation

    Directory of Open Access Journals (Sweden)

    W. Birmili

    2010-05-01

    Full Text Available Aerosol particle number size distributions (size range 0.003–10 μm in the urban atmosphere of Augsburg (Germany were examined with respect to the governing anthropogenic sources and meteorological factors. The two-year average particle number concentration between November 2004 and November 2006 was 12 200 cm3, i.e. similar to previous observations in other European cities. A seasonal analysis yielded twice the total particle number concentrations in winter as compared to summer as consequence of more frequent inversion situations and enhanced particulate emissions. The diurnal variations of particle number were shaped by a remarkable maximum in the morning during the peak traffic hours. After a mid-day decrease along with the onset of vertical mixing, an evening concentration maximum could frequently be observed, suggesting a re-stratification of the urban atmosphere. Overall, the mixed layer height turned out to be the most influential meteorological parameter on the particle size distribution. Its influence was even greater than that of the geographical origin of the prevailing synoptic-scale air mass.

    Size distributions below 0.8 μm were also measured downstream of a thermodenuder (temperature: 300 °C, allowing to retrieve the volume concentration of non-volatile compounds. The balance of particle number upstream and downstream of the thermodenuder suggests that practically all particles >12 nm contain a non-volatile core while additional nucleation of particles smaller than 6 nm could be observed after the thermodenuder as an interfering artifact of the method. The good correlation between the non-volatile volume concentration and an independent measurement of the aerosol absorption coefficient (R2=0.9 suggests a close correspondence of the refractory and light-absorbing particle fractions. Using the "summation method", an average diameter ratio of particles before and after volatilisation could

  8. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    International Nuclear Information System (INIS)

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant 236 U/ 238 U isotope ratios (i.e. 10 −5 ). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for 234 U/ 238 U and 235 U/ 238 U ratios. Experimental results obtained for 236 U/ 238 U isotope ratios deviated by less than −2.5% from the certified values. Expanded relative total combined standard uncertainties U c (k = 2) of 2.6%, 1.4% and 5.8% were calculated for 234 U/ 238 U, 235 U/ 238 U and 236 U/ 238 U, respectively. - Highlights: ► LA-MC-ICP-MS was fully validated for the direct analysis of individual particles. ► Traceability was established by using an IRMM glass particle reference material. ► Measured U isotope ratios were in agreement with the certified range. ► A comprehensive total combined uncertainty evaluation was performed. ► The analysis of 236 U/ 238 U isotope ratios was improved by using a deceleration filter.

  9. Influence of body mass index (BMI on functional improvements at 3 years following total knee replacement: a retrospective cohort study.

    Directory of Open Access Journals (Sweden)

    Paul Baker

    Full Text Available BACKGROUND: The number of patients presenting for total knee replacement who are classified as obese is increasing. The functional benefits of performing TKR in these patients are unclear. AIM: To assess the influence pre-operative body mass index has upon knee specific function, general health status and patient satisfaction at 3 years following total knee replacement. DESIGN: Retrospective comparative cohort study using prospectively collected data from an institutional arthroplasty register. METHODS: 1367 patients were assessed using the Western Ontario and McMaster University Osteoarthritis Index (WOMAC and Medical Outcomes Trust Short Form-36 (SF-36 scores supplemented by a validated measure of satisfaction pre-operatively and subsequently at 1,2 and 3 year post-operatively. Comparisons were made by dividing the cohort into 4 groups based on body mass index (BMI 18.5-25.0 kg/m(2 (n = 253;>25.0-30.0 kg/m(2 (n = 559;>30.0-35.0 kg/m(2 (n = 373;>35.0 kg/m(2 (n = 182. RESULTS: Despite lower pre-operative, 1 and 3 year WOMAC and SF-36 scores patients with the highest BMIs >35.0 kg/m(2 experienced similar improvements to patients with a 'normal' BMI (18.5-25.0 kg/m(2 at 1 year (Difference in WOMAC improvement = 0.0 (95%CI -5.2 to 5.2, p = 1.00 and this improvement was sustained at up to 3 years (Difference in 1 year to 3 year improvement = 2.2 (95%CI: -2.1 to 6.5, p = 1.00. This effect was also observed for the SF-36 mental and physical component scores. Despite equivalent functional improvements levels of satisfaction in the >35.0 kg/m(2 group were lower than for any other BMI group (>35.0 kg/m(2 = 84.6% satisfied versus 18.5-5.0 kg/m(2 = 93.3% satisfied,p = 0.01 as was the proportion of patients who stated they would have the operation again (>35.0 kg/m(2 = 69.6% versus 18.5-25.0 kg/m(2 = 82.2%,p = 0.01. CONCLUSION: Obese and morbidly obese patients gain as much functional benefit from

  10. A 3d particle simulation code for heavy ion fusion accelerator studies

    International Nuclear Information System (INIS)

    Friedman, A.; Bangerter, R.O.; Callahan, D.A.; Grote, D.P.; Langdon, A.B.; Haber, I.

    1990-01-01

    We describe WARP, a new particle-in-cell code being developed and optimized for ion beam studies in true geometry. We seek to model transport around bends, axial compression with strong focusing, multiple beamlet interaction, and other inherently 3d processes that affect emittance growth. Constraints imposed by memory and running time are severe. Thus, we employ only two 3d field arrays (ρ and φ), and difference φ directly on each particle to get E, rather than interpolating E from three meshes; use of a single 3d array is feasible. A new method for PIC simulation of bent beams follows the beam particles in a family of rotated laboratory frames, thus ''straightening'' the bends. We are also incorporating an envelope calculation, an (r, z) model, and 1d (axial) model within WARP. The BASIS development and run-time system is used, providing a powerful interactive environment in which the user has access to all variables in the code database. 10 refs., 3 figs

  11. Studies of charged particle distributions in an electrostatic confinement system. Progress report, 1 November 1971--31 January 1976

    International Nuclear Information System (INIS)

    Gardner, A.L.

    1976-01-01

    Microwave cavity techniques were used to measure electron density in a spherical, inertial-electrostatic confinement device using six ion guns. The density was roughly proportional to ion current (1 to 17 mA) and decreased somewhat with increasing ion energy (10 to 37 keV). With D 2 pressure decrease from 10 to 3 mTorr, n/sub e/ decreased faster than linearly and below approximately 3 mTorr decreased linearly with pressure down to the lowest pressure of 0.4 mTorr. At 1 mTorr and 10 mA, measurements (with poor spatial resolution) were consistent with 10 10 total electrons and a central n/sub e/ of 10 9 electrons/cm 3 . Neutron flux (at 50 keV) was about one sixth that of Hirsch (J. Appl. Phys. 38, 4522 (1967)). Six- vs. three-gun operation showed a small enhancement of both n/sub e/ and neutron flux that may indicate some particle trapping

  12. Fabrication of BaTiO{sub 3}/Ni composite particles and their electro-magneto responsive properties

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yaping [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Gao, Lingxiang, E-mail: gaolx@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Wang, Lijuan [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Xie, Zunyuan, E-mail: zyxie123@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Gao, Meixiang [Yulin Vocational and Technical College, Yulin 719000 (China); Zhang, Weiqiang [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China)

    2017-07-15

    Graphical abstract: The spherical BaTiO{sub 3}/Ni particles with excellent structure were made by one-step method through fixing the metal Ni(0) reduced by a specific reducing agent (N{sub 2}H{sub 4}·H{sub 2}O) on the surface of the BaTiO{sub 3} particles with grain diameter of ∼500 nm. BaTiO{sub 3}/Ni particle has double responses of electric and magnetic field simultaneously. Consequentially, coating magnetic metal on BT particle is proposed an effective method to prepare novel electro-magneto responsive particles and one basis of electro-magneto responsive elastomers. - Highlights: • The BaTiO{sub 3}/Ni composite particles were fabricated. • The content of Ni(0) in nickel sheath is 70.2%. • The BaTiO{sub 3}/Ni particles have double responses of electric and magnetic field. - Abstract: BaTiO{sub 3} (BT)/Ni composite particles were made by one-step method through agglomerating the metal Ni(0) nanoparticles reduced by a specific reducing agent (N{sub 2}H{sub 4}·H{sub 2}O) on the surface of BT sphere with diameter of ∼500 nm. The BT/Ni composite particles were characterized by the means of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). In BT/Ni particles, pure BT spherical particle was coated with Ni nanoparticles agglomerated on its surface. The average thickness of the Ni sheath was ∼30 nm and the content of Ni(0) and Ni (II) in the sheath were 70.2% and 29.8%, respectively. The responsive effects of BT/Ni particles filled in hydrogel elastomer were investigated by the viscoelastic properties. The results indicate that the BT/Ni particles exhibit electro and magneto coordinated responsive properties (E = 1 kV/mm, H = 0.1 T/mm), which is superior to BT particles with individual electro response.

  13. sup(234) Th scavenging and particle export fluxes from the upper 100 m of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sarin, M.M.; Rengarajan, R.; Ramaswamy, V.

    of column primary productivity. Using the sup(234) Th export fluxes and the measured specific activity of sup(234) Th in the sediment traps, we have computed th eparticle and carbon fluxes at 100 m. These results reveal that the particle fluxes determined...

  14. Evaluation of luminescent properties and detection of Eu2+ in nano structured particles of Gd2-x EuxO3 system (x= 0.05, 0.10 and 0.30)

    International Nuclear Information System (INIS)

    Barroso, J.; Mena, I.; Gomez, L. S.; Milosevic, O.; Rabanal, M. E.

    2012-01-01

    Spray Pyrolysis (SP) is performed at 700 degree centigrade in dry air atmosphere using common nitrate aqueous solutions (0,1M) as precursor in order to obtain nano structured particles with the composition Gd 2 -xEu x O 3 (x= 0.05, 0.10 and 0.30). In this work, three samples with different atomic europium concentration (1, 2 and 6%) were studied. After, the obtained particles were subjected to different thermal treatments with varying temperatures between 800 and 1000 degree centigrade/12 h in dry air atmosphere. The obtained particles were characterized by XRD, SEM techniques, laser dispersion and steady state fluorescence spectroscopy. The existence of two cubic phases with different symmetry cubic phases (Ia-3, Fm-3m) was identified within the as-prepared samples. Moreover, the presence of Gd 2 O 3 monoclinic phase (C 2 /m) which disappears during the thermal treatments was proved. In all thermally treated samples, it was observed the stabilization of an only Ia-3 phase. Fluorescence emission measurements in all studied samples the presence of Eu 2 + (λ= 430nm), whose intensity increases as long as the content of the monoclinic phase decreases of the Eu 3 + percentage. (Author) 35 refs.

  15. High resolution imaging of particle interactions in a large bubble chamber using holographic techniques

    International Nuclear Information System (INIS)

    Akbari, Homaira.

    1988-01-01

    Particle interactions were recorded holographically in a large volume of the 15-foot Bubble Chamber at Fermilab. This cryogenic bubble chamber was filled with a heavy Neon-Hydrogen mixture and was exposed to a wideband neutrino beam with mean energy of 150 GeV. The use of holography in combination with conventional photography provides a powerful tool for direct detection of short-lived particles. Holography gives a high resolution over a large depth of field which can not be achieved with conventional photography. A high-power pulsed ruby laser was used as the holographic light source. Since short pulses of some 50 ns duration at the required energy were found to give rise to boiling during the chamber's expansion, a reduction of the instantaneous power at a given energy was required to suppress this unwanted after-effect. This was achieved by developing a unique technique for stretching the pulses using an electro-optic feedback loop. One hundred thousand holograms were produced during a wide-band neutrino experiment (E-632, 1985) using a dark-field holographic system. Analysis of a sample of holograms shows a resolution of 150 μm was achieved in an ovoidal shape fiducial volume of 0.48 m 3 % of the 14 m 3 total fiducial volume of the chamber

  16. Limestone particle attrition and size distribution in a small circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhongxiang Chen; John R. Grace; C. Jim Lim [University of British Columbia, Vancouver, BC (Canada). Department of Chemical and Biological Engineering

    2008-06-15

    Limestone particle attrition was investigated in a small circulating fluidized bed reactor at temperatures from 25 to 850{sup o}C, 1 atm pressure and superficial gas velocities from 4.8 to 6.2 m/s. The effects of operating time, superficial gas velocity and temperature were studied with fresh limestone. No calcination or sulfation occurred at temperatures {le} 580{sup o}C, whereas calcination and sulfation affected attrition at 850{sup o}C. Increasing the temperature (while maintaining the same superficial gas velocity) reduced attrition if there was negligible calcination. Attrition was high initially, but after about 24 h, the rate of mass change became constant. The ratio of initial mean particle diameter to that at later times increased linearly with time and with (U{sub g} - U{sub mf}){sup 2}, while decreasing exponentially with temperature, with an activation energy for fresh limestone of -4.3 kJ/mol. The attrition followed Rittinger's surface theory. The change of surface area of limestone particles was proportional to the total excess kinetic energy consumed and to the total attrition time, whereas the change of surface area decreased exponentially with increasing temperature. At 850{sup o}C, the attrition rate of calcined lime was highest, whereas the attrition rate was lowest for sulfated particles. When online impact attrition was introduced, the attrition rate was about an order of magnitude higher than without impacts. 25 refs., 14 figs., 4 tabs.

  17. Modeling accumulations of particles in lung during chronic inhalation exposures that lead to impaired clearance

    International Nuclear Information System (INIS)

    Wolff, R.K.; Griffith, W.C. Jr.; Cuddihy, R.G.; Snipes, M.B.; Henderson, R.F.; Mauderly, J.L.; McClellan, R.O.

    1989-01-01

    Chronic inhalation of insoluble particles of low toxicity that produce substantial lung burdens of particles, or inhalation of particles that are highly toxic to the lung, can impair clearance. This report describes model calculations of accumulations in lung of inhaled low-toxicity diesel exhaust soot and high-toxicity Ga2O3 particles. Lung burdens of diesel soot were measured periodically during a 24-mo exposure to inhaled diesel exhaust at soot concentrations of 0, 0.35, 3.5, and 7 mg m-3, 7 h d-1, 5 d wk-1. Lung burdens of Ga2O3 were measured for 1 y after a 4-wk exposure to 23 mg Ga2O3 m-3, 2 h d-1, 5 d wk-1. Lung burdens of Ga2O3 were measured for 1 y both studies using inhaled radiolabeled tracer particles. Simulation models fit the observed lung burdens of diesel soot in rats exposed to the 3.5- and 7-mg m-3 concentrations of soot only if it was assumed that clearance remained normal for several months, then virtually stopped. Impaired clearance from high-toxicity particles occurred early after accumulations of a low burden, but that from low-toxicity particles was evident only after months of exposure, when high burdens had accumulated in lung. The impairment in clearances of Ga2O3 particles and radiolabeled tracers was similar, but the impairment in clearance of diesel soot and radiolabeled tracers differed in magnitude. This might have been related to differences in particle size and composition between the tracers and diesel soot. Particle clearance impairment should be considered both in the design of chronic exposures of laboratory animals to inhaled particles and in extrapolating the results to people

  18. General circular velocity relation of a test particle in a 3D gravitational potential: application to the rotation curves analysis and total mass determination of UGC 8490 and UGC 9753

    Science.gov (United States)

    Repetto, P.; Martínez-García, E. E.; Rosado, M.; Gabbasov, R.

    2018-06-01

    In this paper, we derive a novel circular velocity relation for a test particle in a 3D gravitational potential applicable to every system of curvilinear coordinates, suitable to be reduced to orthogonal form. As an illustration of the potentiality of the determined circular velocity expression, we perform the rotation curves analysis of UGC 8490 and UGC 9753 and we estimate the total and dark matter mass of these two galaxies under the assumption that their respective dark matter haloes have spherical, prolate, and oblate spheroidal mass distributions. We employ stellar population synthesis models and the total H I density map to obtain the stellar and H I+He+metals rotation curves of both galaxies. The subtraction of the stellar plus gas rotation curves from the observed rotation curves of UGC 8490 and UGC 9753 generates the dark matter circular velocity curves of both galaxies. We fit the dark matter rotation curves of UGC 8490 and UGC 9753 through the newly established circular velocity formula specialized to the spherical, prolate, and oblate spheroidal mass distributions, considering the Navarro, Frenk, and White, Burkert, Di Cintio, Einasto, and Stadel dark matter haloes. Our principal findings are the following: globally, cored dark matter profiles Burkert and Einasto prevail over cuspy Navarro, Frenk, and White, and Di Cintio. Also, spherical/oblate dark matter models fit better the dark matter rotation curves of both galaxies than prolate dark matter haloes.

  19. Total synthesis of (3S, 5R, 3'S, 5'R)-capsorubin

    International Nuclear Information System (INIS)

    Frederico, Daniel; Constantino, Mauricio G.; Donate, Paulo M.

    2009-01-01

    The total synthesis of enantiomerically enriched (3S, 5R, 3'S, 5'R)-capsorubin (1) by aldol condensation of (1R, 4S)-1-(4-hydroxy-1,2,2-trimethyl-cyclopentyl)ethanone (2a) and crocetindial (3) is described. An alternative, short eight-step synthesis of the optically active compound 2a (ee 89%) is also reported. (author)

  20. Cavitation inception on micro-particles: a self propelled particle accelerator

    NARCIS (Netherlands)

    Arora, M.; Ohl, C.D.; Morch, Knud Aage; Gutkowski, Witold; Kowalewski, Tomasz A.

    2004-01-01

    Corrugated, hydrophilic particles with diameters between 30 �m and 150 �m are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growth of cavity and its interaction with the original nucleating particle is recorded by means of

  1. PAHs levels in gas and particle-bound phase in schools at different locations in Serbia

    Directory of Open Access Journals (Sweden)

    Živković Marija

    2015-01-01

    Full Text Available This study investigated seasonal variation of PAHs and their partition between gas and particulate-bounded phases in indoor and outdoor air in 4 schools in Serbia located at different locations. The sampling campaigns were conducted during one workweek at each school successively. Campaigns were conducted in schools during heating and non-heating seasons in December 2011 and June 2012. Seasonal variations of gas and particle-bounded PAHs concentrations were observed with higher levels during heating season. The highest total PAH values were associated with the gas phase in both sampling periods. The total PAHs concentration at indoor and at the outdoor sites, during heating season, ranged from 88.45 to 447.72 ng/m3 and 201.69 to 1017.15 ng/m3, respectively. During non-heating season, the total PAHs concentration ranged from 36.91 to 271.57 ng/m3 in indoor environment and 27.00 to 132.32 ng/m3 in outdoor environment. Most of the I/O ratios were less than 1, which indicated that the indoor PAHs were mostly from outdoor sources. The use of diagnostic ratio showed that traffic emission and coal combustion are the major sources of PAHs. Only the diagnostic ratios for the school, located near the industrial area, showed significant deviation compared to other schools. [Projekat Ministarstva nauke Republike Srbije, br. TR33036: Development of new meteorological mast for turbulence parameters characterization and br. III42008: Evaluation of Energy Performances and Indoor Environment Quality of Educational Buildings in Serbia with Impact to Health

  2. Characterization of Spatial Impact of Particles Emitted from a Cement Material Production Facility on Outdoor Particle Deposition in the Surrounding Community.

    Science.gov (United States)

    Yu, Chang Ho; Fan, Zhihua Tina; McCandlish, Elizabeth; Stern, Alan H; Lioy, Paul J

    2011-10-01

    The objective of this study was to estimate the contribution of a facility that processes steel production slag into raw material for cement production to local outdoor particle deposition in Camden, NJ. A dry deposition sampler that can house four 37-mm quartz fiber filters was developed and used for the collection of atmospheric particle deposits. Two rounds of particle collection (3-4 weeks each) were conducted in 8-11 locations 200-800 m downwind of the facility. Background samples were concurrently collected in a remote area located ∼2 km upwind from the facility. In addition, duplicate surface wipe samples were collected side-by-side from each of the 13 locations within the same sampling area during the first deposition sampling period. One composite source material sample was also collected from a pile stored in the facility. Both the bulk of the source material and the particle deposition flux in the study area was higher (24-83 mg/m 2 ·day) than at the background sites (13-17 mg/m 2 ·day). The concentration of Ca, a major element in the cement source production material, was found to exponentially decrease with increasing downwind distance from the facility (P particle deposition. The contribution of the facility to outdoor deposited particle mass was further estimated by three independent models using the measurements obtained from this study. The estimated contributions to particle deposition in the study area were 1.8-7.4% from the regression analysis of the Ca concentration in particle deposition samples against the distance from the facility, 0-11% from the U.S. Environmental Protection Agency (EPA) Chemical Mass Balance (CMB) source-receptor model, and 7.6-13% from the EPA Industrial Source Complex Short Term (ISCST3) dispersion model using the particle-size-adjusted permit-based emissions estimates. [Box: see text].

  3. Characterization of airborne plutonium-bearing particles from a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Sanders, S.M. Jr.

    1977-11-01

    The elemental compositions, sizes, structures, and 239 Pu contents were determined for 299 plutonium-bearing particles isolated from airborne particles collected at various locations in the exhaust from a nuclear fuel reprocessing facility. These data were compared with data from natural aerosol particles. Most of the collected particles were composed of aggregates of crustal materials. Seven percent of the particles were organic and 3% were metallic, viz., iron, chromium, and nickel. High enrichment factors for titanium, manganese, chromium, nickel, zinc, and copper were evidence of the anthropic nature of some of the particles. The amount of plutonium in most particles was very small (less than one femtocurie of 239 Pu). Plutonium concentrations were determined by the fission track counting method. Only one particle contained sufficient plutonium for detection by electron microprobe analysis. This was a 1-μm-diameter particle containing 73% PuO 2 by weight (estimated to be 170 fCi of 239 Pu) in combination with Fe 2 O 3 and mica. The plutonium-bearing particles were generally larger than natural aerosols. The geometric mean diameter of those collected from the mechanical line exhaust point where plutonium is converted to the metal was larger than that of particles collected from the wet cabinet exhaust (13.7 μm vs. 4.6 μm). Particles from the mechanical line also contained more plutonium per particle than those from the wet cabinets

  4. Growth performance and total tract nutrient digestion for Holstein heifers limit-fed diets high in distillers grains with different forage particle sizes

    Science.gov (United States)

    This study evaluated dairy heifer growth performance and total tract nutrient digestion when fed diets high in dried distillers grains with solubles (DDGS) with different forage particle size. An 8-wk randomized complete block design study was conducted utilizing twenty-two Holstein heifers (123 ±...

  5. Collisions of droplets on spherical particles

    Science.gov (United States)

    Charalampous, Georgios; Hardalupas, Yannis

    2017-10-01

    Head-on collisions between droplets and spherical particles are examined for water droplets in the diameter range between 170 μm and 280 μm and spherical particles in the diameter range between 500 μm and 2000 μm. The droplet velocities range between 6 m/s and 11 m/s, while the spherical particles are fixed in space. The Weber and Ohnesorge numbers and ratio of droplet to particle diameter were between 92 deposition and splashing regimes, a regime is observed in the intermediate region, where the droplet forms a stable crown, which does not breakup but propagates along the particle surface and passes around the particle. This regime is prevalent when the droplets collide on small particles. The characteristics of the collision at the onset of rim instability are also described in terms of the location of the film on the particle surface and the orientation and length of the ejected crown. Proper orthogonal decomposition identified that the first 2 modes are enough to capture the overall morphology of the crown at the splashing threshold.

  6. Improved concentration and separation of particles in a 3D dielectrophoretic chip integrating focusing, aligning and trapping

    KAUST Repository

    Li, Ming

    2012-10-18

    This article presents a dielectrophoresis (DEP)-based microfluidic device with the three-dimensional (3D) microelectrode configuration for concentrating and separating particles in a continuous throughflow. The 3D electrode structure, where microelectrode array are patterned on both the top and bottom surfaces of the microchannel, is composed of three units: focusing, aligning and trapping. As particles flowing through the microfluidic channel, they are firstly focused and aligned by the funnel-shaped and parallel electrode array, respectively, before being captured at the trapping unit due to negative DEP force. For a mixture of two particle populations of different sizes or dielectric properties, with a careful selection of suspending medium and applied field, the population exhibits stronger negative DEP manipulated by the microelectrode array and, therefore, separated from the other population which is easily carried away toward the outlet due to hydrodynamic force. The functionality of the proposed microdevice was verified by concentrating different-sized polystyrene (PS) microparticles and yeast cells dynamically flowing in the microchannel. Moreover, separation based on size and dielectric properties was achieved by sorting PS microparticles, and isolating 5 μm PS particles from yeast cells, respectively. The performance of the proposed micro-concentrator and separator was also studied, including the threshold voltage at which particles begin to be trapped, variation of cell-trapping efficiency with respect to the applied voltage and flow rate, and the efficiency of separation experiments. The proposed microdevice has various advantages, including multi-functionality, improved manipulation efficiency and throughput, easy fabrication and operation, etc., which shows a great potential for biological, chemical and medical applications. © 2012 Springer-Verlag Berlin Heidelberg.

  7. Experimental setup for studying the effects of alpha particles on zebrafish embryos

    International Nuclear Information System (INIS)

    Yum, E.H.W.; Ng, C.K.M.; Lin, A.C.C.; Cheng, S.H.; Yu, K.N.

    2007-01-01

    In the present work, we have studied the feasibility to use an experimental setup based on polyallyldiglycol-carbonate (PADC) films to study effects of alpha particles on dechorionated zebrafish embryos. Thin PADC films with a thickness of 16 μm were prepared from commercially available CR-39 films by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 4 h post fertilization (hpf) with absorbed doses up to 2.3 mGy. Images of the embryos at 48 hpf were examined for identification of morphologic abnormalities. The preliminary results showed that absorbed doses corresponding to the abnormally developed embryos ranged from 0.41 to 2.3 mGy, which was equivalent to 0.21-1.2 mGy in human

  8. Experimental setup for studying the effects of alpha particles on zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Yum, E.H.W.; Ng, C.K.M. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Lin, A.C.C.; Cheng, S.H. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)], E-mail: peter.yu@cityu.edu.hk

    2007-11-15

    In the present work, we have studied the feasibility to use an experimental setup based on polyallyldiglycol-carbonate (PADC) films to study effects of alpha particles on dechorionated zebrafish embryos. Thin PADC films with a thickness of 16 {mu}m were prepared from commercially available CR-39 films by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 4 h post fertilization (hpf) with absorbed doses up to 2.3 mGy. Images of the embryos at 48 hpf were examined for identification of morphologic abnormalities. The preliminary results showed that absorbed doses corresponding to the abnormally developed embryos ranged from 0.41 to 2.3 mGy, which was equivalent to 0.21-1.2 mGy in human.

  9. Viscous properties of ferrofluids containing both micrometer-size magnetic particles and fine needle-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Ido, Yasushi, E-mail: ido.yasushi@nitech.ac.jp [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Nishida, Hitoshi [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, 13 Hongo-cho, Toyama (Japan); Iwamoto, Yuhiro [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Yokoyama, Hiroki [KYB Corporation, 2-4-1 Hamamatsu-cho, Minato-ku, Tokyo (Japan)

    2017-06-01

    Ferrofluids containing both micrometer-size spherical magnetic particles and nanometer-size needle-like nonmagnetic hematite particles were newly produced. Average length of long axis of the needle-like nonmagnetic particles was 194 nm and the aspect ratio was 8.3. Shear stress and viscosity were measured using the rheometer with the additional equipment for viscosity measurements in the presence of magnetic field. When the total volume fraction of particles in the fluid is constant (0.30), there is the specific mixing ratio of the particles to increase viscosity of the fluid drastically in the absence of magnetic field due to the percolation phenomenon. The fluid of the specific mixing ratio shows solid-like behavior even in the absence of magnetic field. Mixing the needle-like nonmagnetic particles causes strong yield stress and strong viscous force in the presence of magnetic field. - Highlights: • Viscous properties of new magnetic functional fluids were studied experimentally. • The new fluids contain spherical magnetic particles and needle-like particles. • Percolation occurs in the fluid of specific mixing ratio of particles without field. • The fluid of the specific mixing ratio behaves like solid without field. • Mixing needle-like particles causes strong yield stress of the fluid in the field.

  10. Study of total oxidation of ethanol using the perovskite-type oxides LaBO{sub 3} (B= Mn, Ni, Fe); Estudo da oxidacao total do etanol usando oxidos tipo perovskita LaBO{sub 3} (B= Mn, Ni, Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Ana Brigida [Centro Federal de Educacao Tecnologica do Espirito Santo, Vitoria, ES (Brazil). Centro de Ciencias e Tecnologias Quimicas]. E-mail: brigida@cefetes.br; Silva, Paulo Roberto Nagipe da [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias e Tecnologia; Freitas, Jair C.C. [Universidade Federal do Espirito Santo, Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Fisica; Almeida, Clara Muniz de [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Fisica

    2007-09-15

    The present work investigated the effect of coprecipitation-oxidant synthesis on the specific surface area of perovskite-type oxides LaBO{sub 3} (BMn, Ni, Fe) for total oxidation of ethanol. The perovskite-type oxides were characterized by X-ray diffraction, nitrogen adsorption (BET method), thermogravimetric analysis (TGA-DTA), TPR and X-ray photoelectron spectroscopy (XPS). Through method involving the coprecipitation-oxidant was possible to obtain catalysts with different BET specific surface areas, of 33-51 m{sup 2}/g. The results of the catalytic test confirmed that all oxides investigated in this work have specific catalytic activity for total oxidation of ethanol, though the temperatures for total conversion change for each transition metal. (author)

  11. DLVO and XDLVO calculations for bacteriophage MS2 adhesion to iron oxide particles.

    Science.gov (United States)

    Park, Jeong-Ann; Kim, Song-Bae

    2015-10-01

    In this study, batch experiments were performed to examine the adhesion of bacteriophage MS2 to three iron oxide particles (IOP1, IOP2 and IOP3) with different particle properties. The characteristics of MS2 and iron oxides were analyzed using various techniques to construct the classical DLVO and XDLVO potential energy profiles between MS2 and iron oxides. X-ray diffractometry peaks indicated that IOP1 was mainly composed of maghemite (γ-Fe2O3), but also contained some goethite (α-FeOOH). IOP2 was composed of hematite (α-Fe2O3) and IOP3 was composed of iron (Fe), magnetite (Fe3O4) and iron oxide (FeO). Transmission electron microscope images showed that the primary particle size of IOP1 (γ-Fe2O3) was 12.3±4.1nm. IOP2 and IOP3 had primary particle sizes of 167±35nm and 484±192nm, respectively. A surface angle analyzer demonstrated that water contact angles of IOP1, IOP2, IOP3 and MS2 were 44.83, 64.00, 34.33 and 33.00°, respectively. A vibrating sample magnetometer showed that the magnetic saturations of IOP1, IOP2 and IOP3 were 176.87, 17.02 and 946.85kA/m, respectively. Surface potentials measured in artificial ground water (AGW; 0.075mM CaCl2, 0.082mM MgCl2, 0.051mM KCl, and 1.5mM NaHCO3; pH7.6) indicated that iron oxides and MS2 were negatively charged in AGW (IOP1=-0.0185V; IOP2=-0.0194V; IOP3=-0.0301V; MS2=-0.0245V). Batch experiments demonstrated that MS2 adhesion to iron oxides was favorable in the order of IOP1>IOP2>IOP3. This tendency was well predicted by the classical DLVO model. In the DLVO calculations, both the sphere-plate and sphere-sphere geometries predicted the same trend of MS2 adhesion to iron oxides. Additionally, noticeable differences were not found between the DLVO and XDLVO interaction energy profiles, indicating that hydrophobic interactions did not play a major role; electrostatic interactions, however, did influence MS2 adhesion to iron oxides. Furthermore, the aggregation of iron oxides was investigated with a modified XDLVO

  12. Development of M3C code for Monte Carlo reactor physics criticality calculations

    International Nuclear Information System (INIS)

    Kumar, Anek; Kannan, Umasankari; Krishanani, P.D.

    2015-06-01

    The development of Monte Carlo code (M3C) for reactor design entails use of continuous energy nuclear data and Monte Carlo simulations for each of the neutron interaction processes. BARC has started a concentrated effort for developing a new general geometry continuous energy Monte Carlo code for reactor physics calculation indigenously. The code development required a comprehensive understanding of the basic continuous energy cross section sets. The important features of this code are treatment of heterogeneous lattices by general geometry, use of point cross sections along with unionized energy grid approach, thermal scattering model for low energy treatment, capability of handling the microscopic fuel particles dispersed randomly. The capability of handling the randomly dispersed microscopic fuel particles which is very useful for the modeling of High-Temperature Gas-Cooled reactor fuels which are composed of thousands of microscopic fuel particle (TRISO fuel particle), randomly dispersed in a graphite matrix. The Monte Carlo code for criticality calculation is a pioneering effort and has been used to study several types of lattices including cluster geometries. The code has been verified for its accuracy against more than 60 sample problems covering a wide range from simple (like spherical) to complex geometry (like PHWR lattice). Benchmark results show that the code performs quite well for the criticality calculation of the system. In this report, the current status of the code, features of the code, some of the benchmark results for the testing of the code and input preparation etc. are discussed. (author)

  13. Strong interaction scattering of a spin-zero particle by a 1/2 spin particle

    International Nuclear Information System (INIS)

    Derem, Andre

    1969-03-01

    This paper gather kinematic formulas that are commonly used to describe the scattering, with conservation of parity, 0 - + 1 + /2 → 0 - + 1 + /2 (in the notation S P , S being the spin and P the parity). The two particles 0 - will be two mesons M and M', the two particles 1 + /2 two baryons B and B'. The authors assume that the masses of these four particles are all different. The notations and the definitions are introduced in chapter 1. Chapter 2 recalls essential notions concerning the Dirac equation. The relativistic invariant differential cross-section is calculated in chapter 3, as a function of the invariant amplitudes A'(s,t) and B(s,t). Pauli's usual formalism in the center of mass system is given in chapter 4, as well as the means of passing f(θ) and g(θ) amplitudes to A' and B amplitudes. Chapter 5 is concerned with elastic scattering [fr

  14. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    Science.gov (United States)

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-09-01

    determine particle size distributions of cloud layers. Depending on how ice particles vary through the cloud, several layers per cloud with relatively uniform properties have been analysed. Preliminary results of the balloon campaign, targeting upper tropospheric, cold cirrus clouds, are presented here. Ice particles in these clouds were predominantly very small, with a median size of measured particles of around 50 µm and about 80 % of all particles below 100 µm in size. The properties of the particle size distributions at temperatures between -36 and -67 °C have been studied, as well as particle areas, extinction coefficients, and their shapes (area ratios). Gamma and log-normal distribution functions could be fitted to all measured particle size distributions achieving very good correlation with coefficients R of up to 0.95. Each distribution features one distinct mode. With decreasing temperature, the mode diameter decreases exponentially, whereas the total number concentration increases by two orders of magnitude with decreasing temperature in the same range. The high concentrations at cold temperatures also caused larger extinction coefficients, directly determined from cross-sectional areas of single ice particles, than at warmer temperatures. The mass of particles has been estimated from area and size. Ice water content (IWC) and effective diameters are then determined from the data. IWC did vary only between 1 × 10-3 and 5 × 10-3 g m-3 at temperatures below -40 °C and did not show a clear temperature trend. These measurements are part of an ongoing study.

  15. Synthesis and characterization of CaCO3 (calcite) nano particles from cockle shells (Anadara granosa Linn) by precipitation method

    Science.gov (United States)

    Widyastuti, Sri; Intan Ayu Kusuma, P.

    2017-06-01

    Calcium supplements can reduce the risk of osteoporosis, but they are not automatically absorbed in the gastrointestinal tract. Nanotechnology is presumed to have a capacity in resolving this problem. The preparation and characterization of calcium carbonate nano particle to improve the solubility was performed. Calcium carbonate nano particles were synthesized using precipitation method from cockle shells (Anadara granosa Linn). Samples of the cockle shells were dried in an oven at temperature of 50°C for 7 (seven) days and subsequently they were crushed and blended into fine powder that was sieved through 125-μm sieve. The synthesis of calcium carbonate nanocrystals was done by extracting using hydro chloride acid and various concentrations of sodium hydroxide were used to precipitate the calcium carbonate nano particles. The size of the nano particles was determined by SEM, XRD data, and Fourier transform infrared spectroscopy (FT-IR). The results of XRD indicated that the overall crystalline structure and phase purity of the typical calcite phase CaCO3 particles were approximately 300 nm in size. The method to find potential applications in industry to yield the large scale synthesis of aragonite nano particles by a low cost but abundant natural resource such as cockle shells is required.

  16. The High Momentum Particle IDentification (HMPID) detector PID performance and its contribution to the ALICE physics program

    Science.gov (United States)

    Volpe, Giacomo; ALICE Collaboration

    2017-12-01

    The ALICE apparatus is dedicated to study the properties of strongly interacting matter under extremely high temperature and energy density conditions. For this, enhanced particle identification (PID) capabilities are required. Among the PID ALICE detectors, the ALICE-HMPID (High Momentum Particle IDentification) detector is devoted to the identification of charged hadrons, exploiting the Cherenkov effect. It consists of seven identical RICH modules, with liquid C6F14 as Cherenkov radiator (n ≈1.298 at λ=175 nm). Photon and charged particle detection is performed by a MWPC, coupled with a pad segmented CsI coated photo-cathode. The total CsI active area is 10.3 m2. The HMPID provides 3 sigma separation for pions and kaons up to pT = 3 GeV / c and for kaons and (anti-)protons up to pT = 5 GeV / c . A review of the HMPID PID performance, in particular in the challenging central Pb-Pb collisions, and its contribution to the ALICE physics program, using the LHC RUN1 (2010-2013) and RUN2 (2015) data, are presented.

  17. HAT-TR-318-007: A Double-lined M Dwarf Binary with Total Secondary Eclipses Discovered by HATNet and Observed by K2

    Science.gov (United States)

    Hartman, J. D.; Quinn, S. N.; Bakos, G. Á.; Torres, G.; Kovács, G.; Latham, D. W.; Noyes, R. W.; Shporer, A.; Fulton, B. J.; Esquerdo, G. A.; Everett, M. E.; Penev, K.; Bhatti, W.; Csubry, Z.

    2018-03-01

    We report the discovery by the HATNet survey of HAT-TR-318-007, a P=3.34395390+/- 0.00000020 day period detached double-lined M dwarf binary with total secondary eclipses. We combine radial velocity (RV) measurements from TRES/FLWO 1.5 m and time-series photometry from HATNet, FLWO 1.2 m, BOS 0.8 m, and NASA K2 Campaign 5, to determine the masses and radii of the component stars: MA=0.448+/-0.011 M⊙N, MB=0.2721-0.0042+0.0041 M⊙N, RA=0.4548-0.0036+0.0035 R⊙N, and RB=0.2913-0.0024+0.0023 R⊙N. We obtained a FIRE/Magellan near-infrared spectrum of the primary star during a total secondary eclipse, and we use this to obtain disentangled spectra of both components. We determine spectral types of STA=M 3.71+/- 0.69 and STB=M 5.01+/- 0.73 and effective temperatures of Teff, A= 3190+/-110 K and Teff, B=3100+/- 110 K for the primary and secondary star, respectively. We also measure a metallicity of [Fe/H] = +0.298+/- 0.080 for the system. We find that the system has a small, but significant, nonzero eccentricity of 0.0136+/- 0.0026. The K2 light curve shows a coherent variation at a period of 3.41315-0.00032+0.00030 days, which is slightly longer than the orbital period, and which we demonstrate comes from the primary star. We interpret this as the rotation period of the primary. We perform a quantitative comparison between the Dartmouth stellar evolution models and the seven systems, including HAT-TR-318-007, that contain M dwarfs with 0.2 M⊙N< M< 0.5 M⊙N, have metallicity measurements, and have masses and radii determined to better than 5% precision. Discrepancies between the predicted and observed masses and radii are found for three of the systems.

  18. Equilibrium Total Pressure and CO2 Solubility in Binary and Ternary Aqueous Solutions of 2-(Diethylamino)ethanol (DEEA) and 3-(Methylamino)propylamine (MAPA)

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Svendsen, Hallvard Fjøsne; Fosbøl, Philip Loldrup

    2014-01-01

    Equilibrium total pressures were measured and equilibrium CO2 partial pressures were calculated from the measured total pressure data in binary and ternary aqueous solutions of 2-(diethylamino)ethanol (DEEA) and 3-(methylamino)propylamine (MAPA). The measurements were carried out in a commercially...... available calorimeter used as an equilibrium cell. The examined systems were the binary aqueous solutions of 5 M DEEA, 2 M MAPA, and 1 M MAPA and the ternary aqueous mixtures of 5 M DEEA + 2 M MAPA (5D2M) and 5 M DEEA + 1 M MAPA (5D1M), which gave liquid–liquid phase split upon CO2 absorption. The total...... pressures were measured and the CO2 partial pressures were calculated as a function of CO2 loading at three different temperatures 40 °C, 80 °C, and 120 °C. All experiments were reproduced with good repeatability. The measurements were carried out for 30 mass % MEA solutions to validate the experimental...

  19. Soot particles at an elevated site in eastern China during the passage of a strong cyclone

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Hongya [State Key Laboratory of Coal Resources and Safe Mining, School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 (China); Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan); Shao, Longyi [State Key Laboratory of Coal Resources and Safe Mining, School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 (China); Zhang, Daizhou, E-mail: dzzhang@pu-kumamoto.ac.jp [Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan)

    2012-07-15

    Atmospheric particles larger than 0.2 {mu}m were collected at the top of Mt. Tai (36.25 Degree-Sign N, 117.10 Degree-Sign E, 1534 m a.s.l.) in eastern China in May 2008 during the passage of a strong cyclone. The particles were analyzed with electron microscopes and characterized by morphology, equivalent diameter and elemental composition. Soot particles with coating (coated soot particles) and those without apparent coating (naked soot particles) were predominant in the diameter range smaller than 0.6 {mu}m in all samples. The number-size distribution of the relative abundance of naked soot particles in the prefrontal air was similar to that in the postfrontal air and their size modes were around 0.2-0.3 {mu}m. However, the distribution of inclusions of coated soot particles showed a mode in the range of 0.1-0.3 {mu}m. The coating degree of coated soot particles, which was defined by the ratio of the diameter of inclusion to the diameter of particle body, showed a mode around 0.5 with the range of 0.3-0.6. These results indicate that the status of soot particles in the prefrontal and postfrontal air was similar although air pollution levels were dramatically different. In addition, the relative abundance of accumulation mode particles increased with the decrease of soot particles after the front passage. - Highlights: Black-Right-Pointing-Pointer Particles at an elevated site in eastern China in a strong cyclone were studied. Black-Right-Pointing-Pointer Aged status of soot particles in the prefrontal and postfrontal air was similar. Black-Right-Pointing-Pointer Soot particles in elevated layers could be considered as aged ones.

  20. 99mTc-Labeled Cyclic RGD Peptides for Noninvasive Monitoring of Tumor Integrin αvβ3 Expression

    Directory of Open Access Journals (Sweden)

    Yang Zhou

    2011-09-01

    Full Text Available This report describes the biologic evaluations of [99mTc(HYNIC-3P-RGD2(tricine(TPPTS] (99mTc-3P-RGD2: 6-hydrazinonicotinyl; 3P-RGD2 = PEG4-E[PEG4-c(RGDfK]2; PEG4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid; and TPPTS = trisodium triphenylpho-sphine-3,3′,3“-trisulfonate, [99mTc(HYNIC-3G-RGD2(tricine(TPPTS] (99mTc-3G-RGD2: 3G-RGD2 = G3-E[G3-c(RGDfK]2 and G3 = Gly-Gly-Gly, and 99mTcO(MAG2−3G-RGD2 (MAG2 = mercaptoacetylglycylglycyl as radiotracers for noninvasive imaging of tumor integrin αvβ3 expression in five xenografted tumor-bearing models. Biodistribution and imaging studies were performed in athymic nude mice bearing U87MG, MDA-MB-435, A549, HT29, or PC-3 tumor xenografts. Immunochemistry was performed using the cultured primary tumor cells and xenografted tumor tissues. It was found that the radiotracer tumor uptake followed the trend U87MG > MDA-MB-435 ≈ HT29 ≈ A549 > PC-3. The total integrin β3 expression levels followed the general trend: U87MG > MDA-MB-435 ≈ A549~HT29 > PC-3. There is a linear relationship between the radiotracer injected dose per gram tumor uptake and the total integrin β3 expression levels. On the basis of these, it was concluded that radiotracer tumor uptake is contributed by integrin αVβ3 expressed on tumor cells and activated endothelial cells of the tumor neovasculature. 99mTc-3P-RGD2 has the capability to monitor integrin αvβ3 expression in a noninvasive fashion.

  1. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  2. Application of monodisperse fibers and discs to evaluation of the aerodynamic particle sizer

    International Nuclear Information System (INIS)

    Hoover, M.D.; Lipowicz, P.J.; Hanson, R.W.; Yeh, H.C.; Casalnuovo, S.A.

    1988-01-01

    Monodisperse fibers, μm in width and lengths of 5, 10, 20, and 40 μm, as well as monodisperse discs, 2 4 8, or 12 μm in diameter, were prepared using an integrated circuit microchip fabrication technique. Particles were silicon dioxide with thickness of 1 μm. Examination of the particles using a scanning electron microscope showed that they were uniform in shape, with well-defined edges. The particles were suspended in distilled water and aerosolized with a Lovelace nebullizer. The monodisperse particles were used to evaluate the TSI Aerodynamic Particle Sizer (APS). Carbon fibers that were monodisperse in diameter (count median diameter 3.42 μm, geometric standard deviation 1.06) and polydisperse in length (count median length = 28 μm, geometric standard deviation 2.2) were also used. The APS was found to be insensitive to fiber length and only weakly sensitive to disc diameter. (author)

  3. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    Science.gov (United States)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  4. Global particle balance and wall recycling properties of long duration discharges on TRIAM-1M

    International Nuclear Information System (INIS)

    Sakamoto, M.; Yuno, M.; Itoh, S.

    2003-01-01

    The longest tokamak discharge with the duration of 11406 s (3 h 10 min) was achieved. The global particle balance has been investigated. In the longest discharge, the global balance between the particle absorption and release of the wall was achieved around t∼30 min and then the fueling was automatically stopped. After that the plasma density was maintained by the recycling flux alone until the end of the discharge. The maximum wall inventory is about 3.6 x 10 20 H at t ∼ 30 min but it is finally released from the wall at the end of the discharge. The global balance seems to be caused by the increase in the hydrogen release from the main chamber resulting from its temperature rise. Moreover, it has been observed a large difference between properties of wall recycling in the continuous gas feed case (i.e. static condition) and the additional gas puff case (i.e. dynamic condition). In the static condition, the effective particle confinement time increases almost linearly to about 10 s during the one-minute discharge. In the dynamic condition, the decay time of the electron density just after the gas puff, i.e. the effective particle confinement time, is 0.2 to 0.3 s during the one-minute discharge. The large difference was also reproduced in the longest discharge. It is considered that the enhanced wall pumping is caused by the increase in fluxes of the diffused ions and charge exchange neutrals due to the additional gas puff. (author)

  5. Non-accelerator particle physics

    International Nuclear Information System (INIS)

    Steinberg, R.I.

    1990-01-01

    The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are currently engaged in construction of the MACRO detector, an Italian-American collaborative research instrument with a total particle acceptance of 10,000 m 2 sr, which will perform a sensitive search for magnetic monopoles using excitation-ionization methods. Other major objective of the MACRO experiment are to search for astrophysical high energy neutrinos expected to be emitted by such objects as Vela X-1, LMC X-4 and SN-1987A and to search for low energy neutrino bursts from gravitational stellar collapse. We are also working on BOREX, a liquid scintillation solar neutrino experiment and GRANDE, a proposed very large area surface detector for astrophysical neutrinos, and on the development of new techniques for liquid scintillation detection

  6. A parallel algorithm for 3D particle tracking and Lagrangian trajectory reconstruction

    International Nuclear Information System (INIS)

    Barker, Douglas; Zhang, Yuanhui; Lifflander, Jonathan; Arya, Anshu

    2012-01-01

    Particle-tracking methods are widely used in fluid mechanics and multi-target tracking research because of their unique ability to reconstruct long trajectories with high spatial and temporal resolution. Researchers have recently demonstrated 3D tracking of several objects in real time, but as the number of objects is increased, real-time tracking becomes impossible due to data transfer and processing bottlenecks. This problem may be solved by using parallel processing. In this paper, a parallel-processing framework has been developed based on frame decomposition and is programmed using the asynchronous object-oriented Charm++ paradigm. This framework can be a key step in achieving a scalable Lagrangian measurement system for particle-tracking velocimetry and may lead to real-time measurement capabilities. The parallel tracking algorithm was evaluated with three data sets including the particle image velocimetry standard 3D images data set #352, a uniform data set for optimal parallel performance and a computational-fluid-dynamics-generated non-uniform data set to test trajectory reconstruction accuracy, consistency with the sequential version and scalability to more than 500 processors. The algorithm showed strong scaling up to 512 processors and no inherent limits of scalability were seen. Ultimately, up to a 200-fold speedup is observed compared to the serial algorithm when 256 processors were used. The parallel algorithm is adaptable and could be easily modified to use any sequential tracking algorithm, which inputs frames of 3D particle location data and outputs particle trajectories

  7. Microscopic calculations of λ single particle energies

    International Nuclear Information System (INIS)

    Usmani, Q. N.

    1998-01-01

    Λ binding energy data for total baryon number A ≤ 208 and for Λ angular momenta ell Λ ≤ 3 are analyzed in terms of phenomenological (but generally consistent with meson-exchange) ΛN and ΛNN potentials. The Fermi-Hypernetted-Chain technique is used to calculate the expectation values for the Λ binding to nuclear matter. Accurate effective ΛN and ΛNN potentials are obtained which are folded with the core nucleus nucleon densities to calculate the Λ single particle potential U Λ (r). We use a dispersive ΛNN potential but also include an explicit ρ dependence to allow for reduced repulsion in the surface, and the best fits have a large ρ dependence giving consistency with the variational Monte Carlo calculations for Λ 5 He. The exchange fraction of the ΛN space-exchange potential is found to be 0.2-0.3 corresponding to m Λ * ≅ (0.74-0.82)m Λ . Charge symmetry breaking is found to be significant for heavy hypernuclei with a large neutron excess, with a strength consistent with that obtained from the A = 4 hypernuclei

  8. Artroplastia total do joelho com o apoio tibial móvel: avaliação dos resultados a médio prazo Total knee arthroplasty with a mobile tibial bearing: medium-term follow-up results

    Directory of Open Access Journals (Sweden)

    Luiz Gabriel Betoni Guglielmetti

    2010-01-01

    Full Text Available OBJETIVO: Avaliações dos resultados a médio prazo da aplicação da prótese com apoio tibial móvel. MÉTODOS: Noventa e seis pacientes (107 joelhos foram submetidos a artroplastia total do joelho realizada com um modelo de prótese com mobilidade rotatória no componente tibial. Os pacientes foram avaliados após um seguimento médio de 52,7 meses - desvio padrão 21,94 (mínimo de 24 meses e máximo de 120 meses, através do protocolo de avaliação "Knee Society Clinical Rating System" (KSCRS, com uma média de 78,22 pontos. RESULTADOS: Entre as complicações transoperatórias e pós operatórias imediatas ocorreram uma deiscência de sutura, com cura espontânea, duas fraturas de patela, uma fratura do côndilo medial do fêmur, três paresias do nervo fibular lateral e uma distrofia nervosa simpático reflexa. As complicações tardias foram uma fratura da patela, uma fratura distal do fêmur, quatro solturas assépticas e quatro infecções profundas, que necessitaram de revisão. CONCLUSÃO: Excluindo-se os casos que necessitaram de uma revisão, por soltura séptica ou asséptica, os autores concluem serem bons os resultados clínicos e funcionais obtidos com a prótese com o apoio tibial móvel num seguimento a médio prazo.OBJECTIVE: Evaluation of mid-term follow up results of the application of a total knee replacement with a mobile tibial bearing design. METHODS: Ninety six patients (107 knees were submitted to total knee Arthroplasty, performed with a model of prosthesis with rotating mobility in the tibial component. The patients were evaluated after a mean follow-up of 52.7 months - standard deviation 21.94 (minimum 24 months and maximum 120 months through the Knee Society Clinical Rating System (KSCRS, with a mean outcome of 78.22 points. RESULTS: The complications that occurred immediately after or during the surgery included: one wound dehiscence with spontaneous healing, two patellar fractures, one fracture of the medial

  9. Nonthermal Particle Acceleration in 3D Relativistic Magnetic Reconnection in Pair Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Gregory R.; Uzdensky, Dmitri A., E-mail: Greg.Werner@colorado.edu [Center for Integrated Plasma Studies, Physics Department, University of Colorado, 390 UCB, Boulder, CO 80309 (United States)

    2017-07-10

    As a fundamental process converting magnetic to plasma energy in high-energy astrophysical plasmas, relativistic magnetic reconnection is a leading explanation for the acceleration of particles to the ultrarelativistic energies that are necessary to power nonthermal emission (especially X-rays and gamma-rays) in pulsar magnetospheres and pulsar wind nebulae, coronae and jets of accreting black holes, and gamma-ray bursts. An important objective of plasma astrophysics is therefore the characterization of nonthermal particle acceleration (NTPA) effected by reconnection. Reconnection-powered NTPA has been demonstrated over a wide range of physical conditions using large 2D kinetic simulations. However, its robustness in realistic 3D reconnection—in particular, whether the 3D relativistic drift-kink instability (RDKI) disrupts NTPA—has not been systematically investigated, although pioneering 3D simulations have observed NTPA in isolated cases. Here, we present the first comprehensive study of NTPA in 3D relativistic reconnection in collisionless electron–positron plasmas, characterizing NTPA as the strength of 3D effects is varied systematically via the length in the third dimension and the strength of the guide magnetic field. We find that, while the RDKI prominently perturbs 3D reconnecting current sheets, it does not suppress particle acceleration, even for zero guide field; fully 3D reconnection robustly and efficiently produces nonthermal power-law particle spectra closely resembling those obtained in 2D. This finding provides strong support for reconnection as the key mechanism powering high-energy flares in various astrophysical systems. We also show that strong guide fields significantly inhibit NTPA, slowing reconnection and limiting the energy available for plasma energization, yielding steeper and shorter power-law spectra.

  10. Total cross section for hadron production by e+e--annihilation at center of mass energies between 3.6 and 5.2 GeV

    International Nuclear Information System (INIS)

    Brandelik, R.; Braunschweig, W.; Ludwig, J.; Mess, K.H.; Orito, S.; Suda, T.; Tokyo Univ.

    1978-03-01

    The total cross section for e + e - annihilation into hadronic final states between 3.6 and 5.2 GeV was measured by the nonmagnetic inner detector of DASP, which has similar trigger and detection efficeincies for photons and charged particles. The measured difference in R = sigmasub(had)/sigmasub(μμ) between 3.6 GeV and 5.2 GeV is ΔR = 2.1 +- 0.3. We observe three peaks at cm energies of 4.04, 4.16 and 4.417 GeV, the parameters of which, when interpreted as resonances, are given. (orig.) [de

  11. Study on treatment of radioactive liquid waste from uranium ore processing by the use of nano Fe_3O_4 KT particles

    International Nuclear Information System (INIS)

    Vuong Huu Anh; Nguyen Ba Tien; Doan Thi Thu Hien; Luu Cao Nguyen; Nguyen Van Chinh

    2015-01-01

    Nano Fe_3O_4 KT was produced from the Military Institute of Science and Technology were used to adsorbed heavy metal elements in liquid waste. In this report, the nano Fe_3O_4 KT particles sized 80-100 nm and specific surface area was 50-70 m"2/g was applied to study the adsorption of radioactive elements in the liquid waste of uranium ores processing. The effective parameters on adsorption process included temperature, stirring rate, stirring time, the pH value of the solution, the initial concentration of uranium in solution. The results showed the maximum adsorption capacity of the nano Fe_3O_4 KT was 53.5 mg/g with conditions such as room temperature, stirring speed 120 rounds/minute, the pH value of solution was 8, stirring time about 2 hours (Uranium/materials). From the results obtained, nano Fe_3O_4 KT tested to treatment liquid waste of uranium ore processing after preliminary precipitation removed almost heavy metals and a part of radioactive elements. The results were analyzed on the ICP-MS and α, β total counting, instrument. The solution concentration after treatment was suitable for Vietnam discharge standards into environment (QCVN 40:2011 on Industrial wastewater). (author)

  12. Fine particles from Independence Day fireworks events: chemical characterization and source apportionment

    Science.gov (United States)

    Zhang, J.; Lance, S.; Freedman, J. M.; Yele, S.; Crandall, B.; Wei, X.; Schwab, J. J.

    2017-12-01

    To study the impact of fireworks (FW) events on air quality, aerosol particles from FW displays were measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and collocated instruments during the Independence Day holiday 2017 in Albany, NY. Three FW events were identified through potassium ion (K+) signals in the mass spectra. The largest FW event signal measured at two different locations was the Independence Day celebration in Albany, with maximum aerosol concentrations of about 55 ug/m3 at the downtown site and 35 ug/m3 at the uptown site. The aerosol concentration peaked at the uptown site about 2 hours later than at the downtown site. FW events resulted in significant increases in both organic and inorganic (K+, sulfate, chloride) compounds. Among the organics, Positive Matrix Factorization (PMF) identified one special FW organic aerosol factor (FW-OA), which was highly oxidized. The intense emission of FW particles from the Independence Day celebration contributed 76% of total PM1 at the uptown site. The aerosol and wind LiDAR measurements showed two distinct pollution sources, one from the Independence Day FW event in Albany, and another aerosol source transported from other areas, potentially associated with other town's FW events.

  13. Sources of ultrafine particles in the Eastern United States

    Science.gov (United States)

    Posner, Laura N.; Pandis, Spyros N.

    2015-06-01

    Source contributions to ultrafine particle number concentrations for a summertime period in the Eastern U.S. are investigated using the chemical transport model PMCAMx-UF. New source-resolved number emissions inventories are developed for biomass burning, dust, gasoline automobiles, industrial sources, non-road and on-road diesel. According to the inventory for this summertime period in the Eastern U.S., gasoline automobiles are responsible for 40% of the ultrafine particle number emissions, followed by industrial sources (33%), non-road diesel (16%), on-road diesel (10%), and 1% from biomass burning and dust. With these emissions as input, the chemical transport model PMCAMx-UF reproduces observed ultrafine particle number concentrations (N3-100) in Pittsburgh with an error of 12%. For this summertime period in the Eastern U.S., nucleation is predicted to be the source of more than 90% of the total particle number concentrations. The source contributions to primary particle number concentrations are on average similar to those of their source emissions contributions: gasoline is predicted to contribute 36% of the total particle number concentrations, followed by industrial sources (31%), non-road diesel (18%), on-road diesel (10%), biomass burning (1%), and long-range transport (4%). For this summertime period in Pittsburgh, number source apportionment predictions for particles larger than 3 nm in diameter (traffic 65%, other combustion sources 35%) are consistent with measurement-based source apportionment (traffic 60%, combustion sources 40%).

  14. Master actions for massive spin-3 particles in D = 2 + 1

    Energy Technology Data Exchange (ETDEWEB)

    Leite Mendonca, Elias; Dalmazi, Denis [UNESP, Campus de Guaratingueta, DFQ, Guaratingueta, SP (Brazil)

    2016-04-15

    We present here a relationship between massive self-dual models for spin-3 particles in D = 2 + 1 via the master action procedure. Starting with a first-order model (in the derivatives) S{sub SD(1)} we have constructed a master action which interpolates between a sequence of four self-dual models S{sub SD(i)} where i = 1, 2, 3, 4. By analyzing the particle content of the mixing terms, we give additional arguments that explain why it is apparently impossible to jump from the fourth-order model to a higher-order model. We have also analyzed similarities and differences between the fourth-order K-term in the spin-2 case and the analogous fourth-order term in the spin-3 context. (orig.)

  15. Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter

    Science.gov (United States)

    Sindelar, Charles V.; Grigorieff, Nikolaus

    2012-01-01

    The high noise level found in single-particle electron cryo-microscopy (cryo-EM) image data presents a special challenge for three-dimensional (3D) reconstruction of the imaged molecules. The spectral signal-to-noise ratio (SSNR) and related Fourier shell correlation (FSC) functions are commonly used to assess and mitigate the noise-generated error in the reconstruction. Calculation of the SSNR and FSC usually includes the noise in the solvent region surrounding the particle and therefore does not accurately reflect the signal in the particle density itself. Here we show that the SSNR in a reconstructed 3D particle map is linearly proportional to the fractional volume occupied by the particle. Using this relationship, we devise a novel filter (the “single-particle Wiener filter”) to minimize the error in a reconstructed particle map, if the particle volume is known. Moreover, we show how to approximate this filter even when the volume of the particle is not known, by optimizing the signal within a representative interior region of the particle. We show that the new filter improves on previously proposed error-reduction schemes, including the conventional Wiener filter as well as figure-of-merit weighting, and quantify the relationship between all of these methods by theoretical analysis as well as numeric evaluation of both simulated and experimentally collected data. The single-particle Wiener filter is applicable across a broad range of existing 3D reconstruction techniques, but is particularly well suited to the Fourier inversion method, leading to an efficient and accurate implementation. PMID:22613568

  16. Estimation of the solubility of radioactive aerosol particles in biological liquids

    International Nuclear Information System (INIS)

    Garger, E.K.; Odintsov, A.A.; Sazhenyuk, A.D.

    2003-01-01

    Solubility of aerosol 'hot' particles sampled in 1987 in the town of Pripyat in the simulated lung fluid (SLF) (Gamble or Ringer solution) and in 0.1 M HCl was studied under static conditions. Leaching of radionuclides from the 'hot' particles in SFL decreases in the order 137 Cs > 90 Sr >> 239+240 Pu > 241 Am, and in 0.1 M HCl in the order 90 Sr > 241 Am >> 137 Cs > 239+240 Pu. The degree of passing into 0.1 M HCl solution for 90 Sr and 241 Am was estimated at 3.3-21 and 2.7-17%, respectively. Depending on the particle size, 0.06-2.2% of 241 Am and 0.2-1.8% of 239+240 Pu passes into SLF within 28 days [ru

  17. Internal Structure of Charged Particles in a GRT Gravitational Model

    Science.gov (United States)

    Khlestkov, Yu. A.; Sukhanova, L. A.

    2018-05-01

    With the help of an exact solution of the Einstein and Maxwell equations, the internal structure of a multiply connected space of wormhole type with two unclosed static throats leading out of it into two parallel vacuum spaces or into one space is investigated in GRT for a free electric field and dust-like matter. The given geometry is considered as a particle-antiparticle pair with fundamental constants arising in the form of first integrals in the solution of the Cauchy problem - electric charges ±e of opposite sign in the throats and rest mass m0 - the total gravitational mass of the inner world of the particle in the throat. With the help of the energy conservation law, the unremovable rotation of the internal structure is included and the projection of the angular momentum of which onto the rotation axis is identified with the z-projection of the spin of the charged particle. The radius of 2-Gaussian curvature of the throat R* is identified with the charge radius of the particle, and the z-projection of the magnetic moment and the g-factor are found. The feasibility of the given gravitational model is confirmed by the found condition of independence of the spin quantum number of the electron and the proton s = 1/2 of the charge radius R* and the relativistic rest mass m* of the rotating throat, which is reliably confirmed experimentally, and also by the coincidence with high accuracy of the proton radius calculated in the model R*p = 0.8412·10-13 cm with the value of the proton charge radius obtained experimentally by measuring the Lamb shift on muonic hydrogen. The electron in the given model also turns out to be a structured particle with radius R*e = 3.8617·10-11 cm.

  18. UARS Particle Environment Monitor (PEM) Level 3TP V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Particle Environment Monitor (PEM) Level 3TP data product consists of daily, 65.536 second and 2.048 interval time-ordered, vertical profiles of electron and...

  19. Dissolution of aerosol particles collected from nuclear facility plutonium production process

    International Nuclear Information System (INIS)

    Ning Xu; Martinez, Alex; Schappert, Michael; Montoya, D.P.; Martinez, Patrick; Tandon, Lav

    2016-01-01

    A simple, robust analytical chemistry method has been developed to dissolve plutonium containing particles in a complex matrix. The aerosol particles collected on Marple cascade impactor substrates were shown to be dissolved completely with an acid mixture of 12 M HNO 3 and 0.1 M HF. A pressurized closed vessel acid digestion technique was utilized to heat the samples at 130 deg C for 16 h to facilitate the digestion. The dissolution efficiency for plutonium particles was 99 %. The resulting particle digestate solution was suitable for trace elemental analysis and isotope composition determination, as well as radiochemistry measurements. (author)

  20. Lower FOXO3 mRNA expression in granulosa cells is involved in unexplained infertility.

    Science.gov (United States)

    Yamamoto, Hikaru; Yamashita, Yoshiki; Saito, Natsuho; Hayashi, Atsushi; Hayashi, Masami; Terai, Yoshito; Ohmichi, Masahide

    2017-06-01

    The aim of this study was to investigate whether FOXO1 and FOXO3 mRNA expression in granulosa cells is the cause of unexplained infertility. Thirty-one patients aged infertility and 18 with male partner infertility as a control group) whose serum anti-Müllerian hormone level was >0.5 ng/μL were enrolled in the study. All patients underwent oocyte retrieval under a short protocol from June 2012 to October 2013. Real-time PCR was carried out using mRNA extracted from granulosa cells retrieved from mature follicles. We compared FOXO1 and FOXO3 mRNA expression ratios in granulosa cells between the unexplained infertility group and the male infertility group. The relation between FOXO1 and FOXO3 mRNA expression ratios in granulosa cells and assisted reproduction technology clinical outcome was also examined. FOXO3 mRNA expression ratio was significantly lower in the unexplained infertility group than in the male infertility group. Moreover, FOXO3 mRNA expression ratio showed a positive correlation with both the number of retrieved oocytes and serum anti-Müllerian hormone level. A positive correlation was also identified between FOXO1 mRNA expression and total dose of hMG. As well, the number of retrieved oocytes in the unexplained infertility group was statistically lower than that in the male infertility group. A lower FOXO3 mRNA expression in granulosa cells leads to poor oocyte development in patients with unexplained infertility undergoing controlled ovarian stimulation for in vitro fertilization-embryo transfer. © 2017 Japan Society of Obstetrics and Gynecology.