WorldWideScience

Sample records for m-2 lake area

  1. Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000-2011 Using Minimum Composite MODIS NDVI.

    Science.gov (United States)

    Kang, Sinkyu; Hong, Suk Young

    2016-01-01

    A minimum composite method was applied to produce a 15-day interval normalized difference vegetation index (NDVI) dataset from Moderate Resolution Imaging Spectroradiometer (MODIS) daily 250 m reflectance in the red and near-infrared bands. This dataset was applied to determine lake surface areas in Mongolia. A total of 73 lakes greater than 6.25 km2in area were selected, and 28 of these lakes were used to evaluate detection errors. The minimum composite NDVI showed a better detection performance on lake water pixels than did the official MODIS 16-day 250 m NDVI based on a maximum composite method. The overall lake area detection performance based on the 15-day minimum composite NDVI showed -2.5% error relative to the Landsat-derived lake area for the 28 evaluated lakes. The errors increased with increases in the perimeter-to-area ratio but decreased with lake size over 10 km(2). The lake area decreased by -9.3% at an annual rate of -53.7 km(2) yr(-1) during 2000 to 2011 for the 73 lakes. However, considerable spatial variations, such as slight-to-moderate lake area reductions in semi-arid regions and rapid lake area reductions in arid regions, were also detected. This study demonstrated applicability of MODIS 250 m reflectance data for biweekly monitoring of lake area change and diagnosed considerable lake area reduction and its spatial variability in arid and semi-arid regions of Mongolia. Future studies are required for explaining reasons of lake area changes and their spatial variability.

  2. M-area basin closure-Savannah River Site

    International Nuclear Information System (INIS)

    McMullin, S.R.; Horvath, J.G.

    1991-01-01

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway

  3. Diffuse CO2 fluxes from Santiago and Congro volcanic lakes (São Miguel, Azores archipelago)

    Science.gov (United States)

    Andrade, César; Cruz, José; Viveiros, Fátima; Branco, Rafael

    2017-04-01

    Diffuse CO2 degassing occurring in Santiago and Congro lakes, both located in depressions associated to maars from São Miguel Island (Azores, Portugal), was studied through detailed flux measurements. Four sampling campaigns were developed between 2013 and 2016 in each water body, split by the cold and wet seasons. São Miguel has an area of 744.6 km2, being the largest island of the archipelago. The geology of the island is dominated by three quiescent central volcanoes (Sete Cidades, Fogo and Furnas), linked by volcanic fissural zones (Picos and Congro Fissural Volcanic systems). The oldest volcanic systems of the island are located in its eastern part (Povoação-Nordeste). Santiago lake, with a surface area of 0.26 km2 and a depth of 30.5 m, is located inside a maar crater in the Sete Cidades volcano at an altitude of 355 m. The watershed of the lake has an area of 0.97 km2 and a surface flow estimated as 1.54x10 m3/a. A total of 1612 CO2 flux measurements using the accumulation chamber method were made at Santiago lake, 253 in the first campaign (November 2013), and 462, 475 and 422 in the three other campaigns, respectively, in April 2014, September 2016 and December 2016. The total CO2 flux estimated for this lake varies between 0.4 t d-1 and 0.59 t d-1, for the surveys performed, respectively, in November 2013 and September 2016; higher CO2 outputs of 1.57 and 5.87 t d-1 were calculated for the surveys carried out in April 2014 and December 2016. These higher CO2 emissions were associated with a period without water column stratification. Similarly to Santiago lake, Congro lake is located inside a maar, in the Congro Fissural Volcanic system, and has a surface area of 0.04 km2 with 18.5 m depth and a storage of about 2.4x105 m3/a. The lake, located at an altitude of 420 m, is fed by a watershed with an area of 0.33 km2 and a runoff estimated as about 8x104 m3/a. In Congro lake a total of 713 CO2 flux measurements were performed during four surveys from

  4. Lake and lake-related drainage area parameters for site investigation program

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, P.; Brunberg, A.K. [Uppsala Univ. (Sweden). Dept. of Limnology; Brydsten, L [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Science

    2000-09-01

    In this paper, a number of parameters of importance to a preliminary determination of the ecological function of lakes are presented. The choice of parameters have been made with respect to a model for the determination of the nature conservation values of lakes which is currently being developed by the authors of this report, but is also well suited for a general description of the lake type and the functioning of the inherent ecosystem. The parameters have been divided into five groups: (1) The location of the object relative important gradients in the surrounding nature; (2) The lake catchment area and its major constituents; (3) The lake morphometry; (4) The lake ecosystem; (5) Human-induced damages to the lake ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area represent parameters that can be used to establish the rarity and representativity of the lake, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the lake morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of different key habitats in the system. The fourth group, the ecosystem of the lake, includes physical, chemical and biological parameters required for determination of the stratification pattern, light climate, influence from the terrestrial ecosystem of the catchment area, trophic status, distribution of key habitats, and presence of fish and rare fauna and flora in the lake. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and material in the system. The fifth group, finally, describes the degree on anthropogenic influence on the ecosystem and will in the context of site investigation programmes be used to judge eventual malfunctioning within the entire, or parts of, the lake

  5. Lake and lake-related drainage area parameters for site investigation program

    International Nuclear Information System (INIS)

    Blomqvist, P.; Brunberg, A.K.; Brydsten, L

    2000-09-01

    In this paper, a number of parameters of importance to a preliminary determination of the ecological function of lakes are presented. The choice of parameters have been made with respect to a model for the determination of the nature conservation values of lakes which is currently being developed by the authors of this report, but is also well suited for a general description of the lake type and the functioning of the inherent ecosystem. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The lake catchment area and its major constituents; 3) The lake morphometry; 4) The lake ecosystem; 5) Human-induced damages to the lake ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area represent parameters that can be used to establish the rarity and representativity of the lake, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the lake morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of different key habitats in the system. The fourth group, the ecosystem of the lake, includes physical, chemical and biological parameters required for determination of the stratification pattern, light climate, influence from the terrestrial ecosystem of the catchment area, trophic status, distribution of key habitats, and presence of fish and rare fauna and flora in the lake. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and material in the system. The fifth group, finally, describes the degree on anthropogenic influence on the ecosystem and will in the context of site investigation programmes be used to judge eventual malfunctioning within the entire, or parts of, the lake ecosystem

  6. Glacial lake inventory and lake outburst potential in Uzbekistan.

    Science.gov (United States)

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Remote Sensing of Hydrological Changes in Tian-e-Zhou Oxbow Lake, an Ungauged Area of the Yangtze River Basin

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2017-12-01

    Full Text Available The hydrological pattern changes have a great influence on the wetland environment. However, some important wetland areas often lack historical observations due to economic and physical conditions. The Tian-e-Zhou oxbow lake wetland is an important habitat for two endangered species and also has very little historical hydrological data. Remote sensing images can be used to explore the historical water area fluctuation of lakes. In addition, remote sensing can also be used to obtain historical water levels based on the water boundary elevation integrated with a topographic data (WBET method or the level-surface area relationship curve (LRC method. In order to minimize the uncertainty of the derived results, both methods were introduced in the extraction of the water level of Tian-e-Zhou during 1992–2015. The results reveal that the hydrological regime of the oxbow lake has experienced a significant change after the Shatanzi Levee construction in 1998. With the impact of the levee, the mean annual water surface area of the lake was reduced by 5.8 km2 during the flood season, but, during the non-flood season, it was increased by 1.35 km2. For the same period, the water level of the lake during the flood season also showed a 1.47 m (WBET method or 3.21 m (LRC method decrease. The mean annual water level increased by 1.12 m (WBET method or 0.75 m (LRC method. Both results had a good accuracy with RMSE (root-mean-square errors of less than 0.4 m. Furthermore, the water level differences between the Yangtze River channel and the oxbow lake increased by at least 0.5 m. It is found that the hydrological pattern of the oxbow lake changed significantly after the levee construction, which could bring some disadvantages to the habitats of the two endangered species.

  8. Sedimentary evolution and ecosystem change in Ahémé lake, south-west Benin

    Science.gov (United States)

    Amoussou, Ernest; Totin Vodounon, Henri S.; Vissin, Expédit W.; Mahé, Gil; Oyédé, Marc Lucien

    2018-04-01

    Tropical moist ecosystems, such as Ahémé lake, south-west Benin, are increasingly marked by water degradation, linked with the activities of increasing riparian populations. The objective of this study is to analyze sedimentary dynamics and its influence on the changing ecosystem of Ahémé lake from 1961-2010. Data used to carry out the study are records of precipitation, flows, turbidity, suspended sediment, mineral elements and bathymetry. Grain size data from the sieving of sediment samples were used to interpret suspended solids distribution in the lake. Linear correlation coefficients were used to assess the degree of dependence between rainfall and runoff inputs to the lake. Lake depth measurements in some areas of the lake serve to determine the rate of infilling. The sorting index was used to highlight the distribution and origin of sediments in the lake. The results show a degradation of the lake Ahémé ecosystem characterized by infilling of its bed, a high correlation (r = 0.90) between rainfall and runoff, seasonal change in physicochemical parameters (total suspended sediment decrease by -91 %) and decrease in fish production by 135.8 t yr-1. The highest mean suspended sediment concentrations in lake inputs occur during high water periods (123 mg L-1) compared to low water periods (11.2 mg L-1).

  9. Quantification of the CO2 emitted from volcanic lakes in Pico Island (Azores)

    Science.gov (United States)

    Andrade, César; Cruz, José; Viveiros, Fátima; Branco, Rafael

    2017-04-01

    This study shows the results of the diffuse CO2 degassing surveys performed in lakes from Pico volcanic Island (Azores archipelago, Portugal). Detailed flux measurements using the accumulation chamber method were made at six lakes (Capitão, Caiado, Paul, Rosada, Peixinho and Negra) during two field campaigns, respectively, in winter (February 2016) and late summer (September 2016). Pico is the second largest island of the Azores archipelago with an area of 444.8 km2; the oldest volcanic unit is dated from about 300,000 years ago. The edification of Pico was mainly due to Hawaiian and Strombolian type volcanic activity, resulting in pahoehoe and aa lava flows of basaltic nature, as well as scoria and spatter cones. Three main volcanic complexes are identified in the island, namely (1) the so-called Montanha Volcanic Complex, corresponding to a central volcano located in the western side of the island that reaches a maximum altitude of 2351 m, (2) the São Roque-Piedade Volcanic Complex, and (3) the Topo-Lajes Volcanic Complex, this last one corresponding to the remnants of a shield volcano located in the south coast. The studied lakes are spread along the São Roque-Piedade Volcanic Complex at altitudes between 785 m and 898 m. Three are associated with depressions of undifferentiated origin (Caiado, Peixinho, Negra), two with depressions of tectonic origin (Capitão, Paul), while Rosada lake is located inside a scoria cone crater. The lakes surface areas vary between 1.25x10-2 and 5.38x10-2 km2, and the water column maximum depth is 7.9 m (3.5-7.9 m). The water storage ranges between 3.6x104 to 9.1x104 m3, and the estimated residence time does not exceed 1.8x10-1 years. A total of 1579 CO2 flux measurements were made during both surveys (868 in summer and 711 in the winter campaign), namely 518 in Caiado lake (293; 225), 358 in Paul (195; 163), 279 in Capitão (150, 129), 200 in Rosada (106, 94), 171 in Peixinho (71, 100) and 53 measurements in Negra lake. Negra

  10. Bathymetric map and area/capacity table for Castle Lake, Washington

    Science.gov (United States)

    Mosbrucker, Adam R.; Spicer, Kurt R.

    2017-11-14

    The May 18, 1980, eruption of Mount St. Helens produced a 2.5-cubic-kilometer debris avalanche that dammed South Fork Castle Creek, causing Castle Lake to form behind a 20-meter-tall blockage. Risk of a catastrophic breach of the newly impounded lake led to outlet channel stabilization work, aggressive monitoring programs, mapping efforts, and blockage stability studies. Despite relatively large uncertainty, early mapping efforts adequately supported several lake breakout models, but have limited applicability to current lake monitoring and hazard assessment. Here, we present the results of a bathymetric survey conducted in August 2012 with the purpose of (1) verifying previous volume estimates, (2) computing an area/capacity table, and (3) producing a bathymetric map. Our survey found seasonal lake volume ranges between 21.0 and 22.6 million cubic meters with a fundamental vertical accuracy representing 0.88 million cubic meters. Lake surface area ranges between 1.13 and 1.16 square kilometers. Relationships developed by our results allow the computation of lake volume from near real-time lake elevation measurements or from remotely sensed imagery.

  11. Simulating Lake-Groundwater Interactions During Decadal Climate Cycles: Accounting For Variable Lake Area In The Watershed

    Science.gov (United States)

    Virdi, M. L.; Lee, T. M.

    2009-12-01

    The volume and extent of a lake within the topo-bathymetry of a watershed can change substantially during wetter and drier climate cycles, altering the interaction of the lake with the groundwater flow system. Lake Starr and other seepage lakes in the permeable sandhills of central Florida are vulnerable to climate changes as they rely exclusively on rainfall and groundwater for inflows in a setting where annual rainfall and recharge vary widely. The groundwater inflow typically arrives from a small catchment area bordering the lake. The sinkhole origin of these lakes combined with groundwater pumping from underlying aquifers further complicate groundwater interactions. Understanding the lake-groundwater interactions and their effects on lake stage over multi-decadal climate cycles is needed to manage groundwater pumping and public expectation about future lake levels. The interdependence between climate, recharge, changing lake area and the groundwater catchment pose unique challenges to simulating lake-groundwater interactions. During the 10-year study period, Lake Starr stage fluctuated more than 13 feet and the lake surface area receded and expanded from 96 acres to 148 acres over drier and wetter years that included hurricanes, two El Nino events and a La Nina event. The recently developed Unsaturated Zone Flow (UZF1) and Lake (LAK7) packages for MODFLOW-2005 were used to simulate the changing lake sizes and the extent of the groundwater catchment contributing flow to the lake. The lake area was discretized to occupy the largest surface area at the highest observed stage and then allowed to change size. Lake cells convert to land cells and receive infiltration as receding lake area exposes the underlying unsaturated zone to rainfall and recharge. The unique model conceptualization also made it possible to capture the dynamic size of the groundwater catchment contributing to lake inflows, as the surface area and volume of the lake changed during the study

  12. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    We examined the relationship between environmental factors and the richness of submerged macrophytes species in 73 Danish lakes, which are mainly small, shallow, and have mesotrophic to hypertrophic conditions. We found that mean species richness per lake was only 4.5 in acid lakes of low...... alkalinity but 12.3 in lakes of high alkalinity due to a greater occurrence of the species-rich group of elodeids. Mean species richness per lake also increased significantly with increasing Secchi depth. No significant relationship between species richness and lake surface area was observed among the entire...... group of lakes or a subset of eutrophic lakes, as the growth of submerged macrophytes in large lakes may be restricted by wave action in shallow water and light restriction in deep water. In contrast, macrophyte species richness increased with lake surface area in transparent lakes, presumably due...

  13. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake Havasu...

  14. Recreation Carrying Capacity Facts and Considerations. Report 2. Benbrook Lake Project Area.

    Science.gov (United States)

    1980-07-01

    Lake and the representa- tives from the Fort Worth District Office. Their contributions of practical experi- ence and knowledge , along with their...Acceptability of techniques - Table 8 indicates the acceptability of different techniques for solving problems to the boaters and water- skiers surveyed at...boats near swimming areas. Boater/water- Boaters, especially jet e consider lake zoning, e.g. restrict skier conflicts boaters, are sometimes waterskiing

  15. Release of CO{sub 2} and CH{sub 4} from small wetland lakes in western Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Repo, M.E.; Huttunen, J.T.; Martikainen, P.J. [Univ. of Kuopio, Dept. of Env ironmental Science, FI-70211 Kuopio (Finland); Naumov, A.V.; Chichulin, A.V. [I nst. of Soil Science and Agrochemistry, Russian Academy of Science, 630099 Novos ibirsk (Russian Federation); Lapshina, E.D. [Yugra State Univ., 628012, Khanty-Mansiysk (Russian Federation); Bleuten , W. [Utrecht Univ., Dept. of Physical Geography,3508 TC Utrecht (Netherlands)

    2007-11-15

    CO{sub 2} and CH{sub 4} fluxes were measured from three small wetland lakes located in the middle taiga and forest tundra zones on West Siberian Lowlands (WSL), the world's largest wetland area. Fluxes were measured during summer 2005 using floating chambers and were validated against the thin boundary layer model based on the relationship between gas exchange and wind speed. All studied lakes were supersaturated with CO{sub 2} and CH{sub 4}, and acted on a seasonal basis as sources of these greenhouse gases to the atmosphere. Daily mean CO{sub 2} fluxes measured with chambers ranged from near the zero to 3.1 g CO{sub 2}/m{sup 2}/d and corresponding CH{sub 4} fluxes from 1.1 to 120 mg CH{sub 4}/m{sup 2}/d. CH{sub 4} ebullition (0.65-11 mg CH{sub 4}/m{sup 2}/d) was detected in two of the lakes. Total carbon evasion from the studied lakes during the active season was 23-66 g C/m{sup 2}, of which more than 90% was released as CO{sub 2}-C. The carbon loss per unit area from the studied lakes was of similar magnitude as previously reported values of net carbon uptake of Siberian peatlands. This emphasizes the importance of small water-bodies in the carbon balance of West Siberian landscape.

  16. Characterization of the abundant ≤0.2 μm cell-like particles inhabiting Lake Vida brine, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Kuhn, E.; Ichimura, A.; Peng, V.; Fritsen, C. H.; Murray, A. E.

    2011-12-01

    Most lakes in the McMurdo Dry Valleys are perennially covered with 3 to 6 m of ice, but Lake Vida is frozen from the surface through the lake bed, with ice permeated by brine channels. Brine collected from within the ice of Lake Vida is six times saltier than seawater, anoxic, with temperature of -13.4 C, pH of 6.2, high concentrations of ferrous iron (>300 μM), NH4+ (3.6 mM), and N2O (>58 μM), making it a unique environment. The first analysis of Vida brine microbial community (sampled in 2005) detected a cell rich environment (107 cells/mL), with cells falling into two size classes: ≥0.5 μm (105 cells/mL) and ~0.2 μm (107 cells/mL). Microorganisms in the domain Bacteria were detected, but Eukarya and Archaea were not. The clone library from 2005 identified Bacteria related to the phyla Proteobacteria (γ, δ, and ɛ), Lentisphaera, Firmicutes, Spirochaeta, Bacterioidetes, Actinobacteria, Verrucomicrobia, and candidate Division TM7. Brine samples were collected again in the austral summer of 2010 in which one of the focus areas is interrogating the ~0.2 μm cell size class. Molecular, imaging, and elemental analyses were employed to characterize the population of nano-sized particles (NP) that pass through 0.2 μm filters. The aim of testing was to determine whether or not these particles are cells with a morphology resulting from environmental stresses. These results are being compared to the same analyses applied in the whole brine microbial community. A 0.2 μm filtrate of brine incubated for 25 days at -13 C was collected on a 0.1 μm filter. Analysis of the 16S rRNA gene DGGE profile showed differences in the banding pattern and relative intensity when comparing the 0.2 μm filtrate to the whole brine community. A 16S rRNA clone library from the 0.2 μm filtrate indicated the presence of genera previously described in the 2005 whole brine community clone library like Pscychrobacter, Marinobacter, and members related to candidate Division TM7. Also, the

  17. Vegetation Diversity Quality in Mountainous Forest of Ranu Regulo Lake Area, Bromo Tengger Semeru National Park, East Java

    Directory of Open Access Journals (Sweden)

    Jehan Ramdani Hariyati

    2012-01-01

    Full Text Available Aim of this research was to study vegetation diversity quality in mountainous forest of Ranu Regulo Lake area in Bromo Tengger Semeru National Park (TNBTS, East Java. Field observation was carried out by vegetation analysis using sampling plots of 25x25 m2 for trees, 5x5 m2 for poles, 1x1 m2 for ground surface plants. Community structure of each lake side was determined by calculating vegetation's density, basal area, frequency, important value and stratification of species. While vegetations diversity was estimated by taxa richness, Shannon-Wiener diversity index, and rate of endemism. Each lake side forests were compared by Morisita community similarity index. Data were tabulated by Microsoft Excel 2007. The result showed that based on existed vegetation, mountainous forest surrounding Ranu Regulo Lake consisted of four ecosystems, i.e. heterogenic mountainous forest, pine forest, acacia forest and bushes. Bushes Area has two types of population, edelweiss and Eupatorium odoratum invaded area. Vegetation diversity quality in heterogenic mountainous forest of Ranu Regulo TNBTS was the highest, indicated by its multi-stratification to B stratum trees of 20-30m high. Heterogenic mountainous forest’s formation was Acer laurinum and Acmena accuminatissima for trees, Chyatea for poles. Taxa richness was found 59 species and 30 families, while the others were found below 28 species and 17 families. Diversity Index of heterogenic mountainous forest is the highest among others for trees is 2.31 and 3.24 for poles and second in bushes (H=3.10 after edelweiss ecosystem (H=3.39. Highest rate of endemism reached 100% for trees in heterogenic mountainous forest, 87% for poles in edelweiss area and 89% for bushes also in heterogenic mountainous forest. Trees, poles and herbs most similarity community showed by pine and acacia forest. Based on those five characters, vegetation diversity quality in Ranu Regulo Lake area was medium for heterogenic mountainous

  18. Zooplankton communities in a large prealpine lake, Lake Constance: comparison between the Upper and the Lower Lake

    Directory of Open Access Journals (Sweden)

    Gerhard MAIER

    2005-08-01

    Full Text Available The zooplankton communities of two basins of a large lake, Lake Constance, were compared during the years 2002 and 2003. The two basins differ in morphology, physical and chemical conditions. The Upper Lake basin has a surface area of 470 km2, a mean depth of 100 and a maximum depth of 250 m; the Lower Lake basin has a surface area of 62 km2, a mean depth of only 13 and a maximum depth of 40 m. Nutrient, chlorophyll-a concentrations and mean temperatures are somewhat higher in the Lower than in the Upper Lake. Total abundance of rotifers (number per m2 lake surface was higher and rotifer development started earlier in the year in the Lower than in the Upper Lake. Total abundance of crustaceans was higher in the Upper Lake in the year 2002; in the year 2003 no difference in abundance could be detected between the lake basins, although in summer crustacean abundance was higher in the Lower than in the Upper Lake. Crustacean communities differed significantly between lake basins while there was no apparent difference in rotifer communities. In the Lower Lake small crustaceans, like Bosmina spp., Ceriodaphnia pulchella and Thermocyclops oithonoides prevailed. Abundance (number per m2 lake surface of predatory cladocerans, large daphnids and large copepods was much lower in the Lower than in the Upper Lake, in particular during the summer months. Ordination with nonmetric multidimensional scaling (NMS separated communities of both lakes along gradients that correlated with temperature and chlorophyll a concentration. Clutches of copepods were larger in the Lower than in the Upper Lake. No difference could be detected in clutch size of large daphnids between lake basins. Our results show that zooplankton communities in different basins of Lake Constance can be very different. They further suggest that the lack of large crustaceans in particular the lack of large predatory cladocerans in the Lower Lake can have negative effects on growth and

  19. 36 CFR 7.69 - Ross Lake National Recreation Area.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Ross Lake National Recreation... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.69 Ross Lake National Recreation Area... snowmobiles the following locations within the Ross Lake National Recreation Area: (1) State Highway 20, that...

  20. Generating High-Resolution Lake Bathymetry over Lake Mead using the ICESat-2 Airborne Simulator

    Science.gov (United States)

    Li, Y.; Gao, H.; Jasinski, M. F.; Zhang, S.; Stoll, J.

    2017-12-01

    Precise lake bathymetry (i.e., elevation/contour) mapping is essential for optimal decision making in water resources management. Although the advancement of remote sensing has made it possible to monitor global reservoirs from space, most of the existing studies focus on estimating the elevation, area, and storage of reservoirs—and not on estimating the bathymetry. This limitation is attributed to the low spatial resolution of satellite altimeters. With the significant enhancement of ICESat-2—the Ice, Cloud & Land Elevation Satellite #2, which is scheduled to launch in 2018—producing satellite-based bathymetry becomes feasible. Here we present a pilot study for deriving the bathymetry of Lake Mead by combining Landsat area estimations with airborne elevation data using the prototype of ICESat-2—the Multiple Altimeter Beam Experimental Lidar (MABEL). First, an ISODATA classifier was adopted to extract the lake area from Landsat images during the period from 1982 to 2017. Then the lake area classifications were paired with MABEL elevations to establish an Area-Elevation (AE) relationship, which in turn was applied to the classification contour map to obtain the bathymetry. Finally, the Lake Mead bathymetry image was embedded onto the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), to replace the existing constant values. Validation against sediment survey data indicates that the bathymetry derived from this study is reliable. This algorithm has the potential for generating global lake bathymetry when ICESat-2 data become available after next year's launch.

  1. Water management sustainability in reclaimed coastal areas. The case of the Massaciuccoli lake basin (Tuscany, Italy)

    Science.gov (United States)

    Rossetto, Rudy; Baneschi, Ilaria; Basile, Paolo; Guidi, Massimo; Pistocchi, Chiara; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    The lake of Massaciuccoli (7 km2 wide and about 2 m deep) and its palustrine nearby areas (about 13 km2 wide) constitute a residual coastal lacustrine and marshy area largerly drained by 1930. In terms of hydrological boundaries, the lake watershed is bordered by carbonate to arenaceous reliefs on the east, by a sandy coastal shallow aquifer on the west (preventing groundwater salinisation), while south and north by the Serchio River and the Burlamacca-Gora di Stiava channels alignment respectively. Since reclamation of the peaty soils started, subsidence began (2 to 3 m in 70 years), leaving the lake perched and central respect the low drained area, now 0 to -3 m below m.s.l., and requiring 16 km embankment construction. During the dry summer season, the lake undergoes a severe water stress, that, along with nutrients input, causes the continuous ecosystem degradation resulting in water salinisation and eutrophication. Water stress results in a head decrease below m.s.l., causing seawater intrusion along the main outlet, and reaching its highest point at the end of the summer season (common head values between -0.40 and -0.5 a.m.s.l.). The water budget for an average dry season lasting about 100 days was computed, considering a 10% error, in order to understand and evaluate all the components leading to the above mentioned water stress by means of several multidisciplinary activities during the years 2008-2009. They started with a thoroughly literature review, continued with hydrological, hydrogeochemical monitoring and testing (both for surface water and the shallow aquifer) and agronomical investigations (to characterize cropping systems, evapotranspiration rates and irrigation schemes). All the collected data were then processed by means of statistical methods, time series analysis, numerical modelling of the shallow aquifer and hydrological modelling. The results demonstrate the presence of two interrelated hydrological sub-systems: the lake and the reclaimed

  2. Intense methane ebullition from open water area of a shallow peatland lake on the eastern Tibetan Plateau.

    Science.gov (United States)

    Zhu, Dan; Wu, Yan; Chen, Huai; He, Yixin; Wu, Ning

    2016-01-15

    Methane fluxes from a shallow peatland lake (3450 m a.s.l., 1.6 km(2) in area, maximum depth peatlands to the lake. The shallowness of the water column could be another important favorable factor for methane-containing bubble formation in the sediment and their transportation to the atmosphere. The methane ebullition must have been enhanced by the low atmospheric pressure (ca. 672 hPa) in the high-altitude environment. For a better understanding on the mechanism of methane emission from alpine lakes, more lakes on the Tibetan Plateau should be studied in the future for their methane ebullition. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Hydrocarbon assessment summary report of Buffalo Lake area of interest

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, Y. [Northwest Territories Geoscience Office, Yellowknife, NT (Canada)

    2007-07-01

    The Northwest Territories (NWT) Protected Areas Strategy (PAS) is a process to identify the known cultural, ecological and economic values of areas in the NWT. This report presented a hydrocarbon resource potential assessment of Buffalo Lake area of interest located in the Great Slave Plain region. It covers an area greater than 2100 square km. The region is almost entirely covered by a thick mantle of glacial deposits. It is underlain by a southwest-dipping, relatively undisturbed succession dominated by Paleozoic carbonate rocks and Cretaceous clastic rocks. Six exploration wells have been drilled within, or near the outer limit of Buffalo Lake area of interest. Suitable source and reservoir rocks are present within Buffalo Lake area of interest, but the potential of significant petroleum discoveries is likely very low. Most of the prospective intervals are either shallow or exposed at surface. Other exploration risks, such as discontinuous distribution and isolation from source rocks, are also anticipated for some of the plays. 17 refs., 2 tabs., 6 figs.

  4. 32 CFR Appendix A to Subpart M of... - DPCA Recreational Areas in Training Areas

    Science.gov (United States)

    2010-07-01

    ... launch adjacent to Officer's Club Beach on American Lake—Beachwood area Cat Lake Picnic and Fishing Area—Training Area 19 Chambers Lake Picnic and Fishing Area—Training Area 12 (See Para 3 below) Fiander lake Picnic and Fishing Area—Training Area 20 Johnson Marsh—Training Area 10 Lewis Lake Picnic and Fishing...

  5. The Elevation to Area Relationship of Lake Behnke

    Directory of Open Access Journals (Sweden)

    Kaitlin Deutsch

    2012-01-01

    Full Text Available The objective of this project was to determine the area-to-depth relationship in Lake Behnke, which acts as the principal stormwater drainage basin for the University of South Florida campus in Tampa, Florida. Data previously collected in a stormwater management study by Jeffery Earhart illustrated a linear correlation between the lake's area and depth; however, that study was conducted in 1998, and this present work serves to double check that correlation. We analyzed a bathymetric map of Lake Behnke that displayed several contour lines indicating depth and approximated the area inside each closed curve with a contour integral. The resulting relationship between area and elevation was determined to be more parabolic than linear.

  6. Numerical simulation of ground-water flow through glacial deposits and crystalline bedrock in the Mirror Lake area, Grafton County, New Hampshire

    Science.gov (United States)

    Tiedeman, Claire; Goode, Daniel J.; Hsieh, Paul A.

    1997-01-01

    This report documents the development of a computer model to simulate steady-state (long-term average) flow of ground water in the vicinity of Mirror Lake, which lies at the eastern end of the Hubbard Brook valley in central New Hampshire. The 10-km2 study area includes Mirror Lake, the three streams that flow into Mirror Lake, Leeman's Brook, Paradise Brook, and parts of Hubbard Brook and the Pemigewasset River. The topography of the area is characterized by steep hillsides and relatively flat valleys. Major hydrogeologic units include glacial deposits, composed of till containing pockets of sand and gravel, and fractured crystalline bedrock, composed of schist intruded by granite, pegmatite, and lamprophyre. Ground water occurs in both the glacial deposits and bedrock. Precipitation and snowmelt infiltrate to the water table on the hillsides, flow downslope through the saturated glacial deposits and fractured bedrock, and discharge to streams and to Mirror Lake. The model domain includes the glacial deposits, the uppermost 150m of bedrock, Mirror Lake, the layer of organic sediments on the lake bottom, and streams and rivers within the study area. A streamflow routing package was included in the model to simulate baseflow in streams and interaction between streams and ground water. Recharge from precipitation is assumed to be areally uniform, and riparian evapotranspiration along stream banks is assumed negligible. The spatial distribution of hydraulic conductivity is represented by dividing the model domain into several zones, each having uniform hydraulic properties. Local variations in recharge and hydraulic conductivities are ignored; therefore, the simulation results characterize the general ground-water system, not local details of ground-water movement. The model was calibrated using a nonlinear regression method to match hydraulic heads measured in piezometers and wells, and baseflow in three inlet streams to Mirror Lake. Model calibration indicates that

  7. Lake Area Analysis Using Exponential Smoothing Model and Long Time-Series Landsat Images in Wuhan, China

    Directory of Open Access Journals (Sweden)

    Gonghao Duan

    2018-01-01

    Full Text Available The loss of lake area significantly influences the climate change in a region, and this loss represents a serious and unavoidable challenge to maintaining ecological sustainability under the circumstances of lakes that are being filled. Therefore, mapping and forecasting changes in the lake is critical for protecting the environment and mitigating ecological problems in the urban district. We created an accessible map displaying area changes for 82 lakes in the Wuhan city using remote sensing data in conjunction with visual interpretation by combining field data with Landsat 2/5/7/8 Thematic Mapper (TM time-series images for the period 1987–2013. In addition, we applied a quadratic exponential smoothing model to forecast lake area changes in Wuhan city. The map provides, for the first time, estimates of lake development in Wuhan using data required for local-scale studies. The model predicted a lake area reduction of 18.494 km2 in 2015. The average error reached 0.23 with a correlation coefficient of 0.98, indicating that the model is reliable. The paper provided a numerical analysis and forecasting method to provide a better understanding of lake area changes. The modeling and mapping results can help assess aquatic habitat suitability and property planning for Wuhan lakes.

  8. The Performance and Potentials of the CryoSat-2 SAR and SARIn Modes for Lake Level Estimation

    Directory of Open Access Journals (Sweden)

    Karina Nielsen

    2017-05-01

    Full Text Available Over the last few decades, satellite altimetry has proven to be valuable for monitoring lake levels. With the new generation of altimetry missions, CryoSat-2 and Sentinel-3, which operate in Synthetic Aperture Radar (SAR and SAR Interferometric (SARIn modes, the footprint size is reduced to approximately 300 m in the along-track direction. Here, the performance of these new modes is investigated in terms of uncertainty of the estimated water level from CryoSat-2 data and the agreement with in situ data. The data quality is compared to conventional low resolution mode (LRM altimetry products from Envisat, and the performance as a function of the lake area is tested. Based on a sample of 145 lakes with areas ranging from a few to several thousand km 2 , the CryoSat-2 results show an overall superior performance. For lakes with an area below 100 km 2 , the uncertainty of the lake levels is only half of that of the Envisat results. Generally, the CryoSat-2 lake levels also show a better agreement with the in situ data. The lower uncertainty of the CryoSat-2 results entails a more detailed description of water level variations.

  9. A framework for profiling a lake's riparian area development potential

    Science.gov (United States)

    Pamela J. Jakes; Ciara Schlichting; Dorothy H. Anderson

    2003-01-01

    Some of the greatest challenges for managing residential development occur at the interface between the terrestrial and aquatic ecosystems -in a lake`s riparian area. Land use planners need a framework they can use to identify development hotspots, areas were the next push for development will most likely occur. Lake riparian development profiles provide a framework...

  10. Pleistocene lake level changes in Western Mongolia

    Science.gov (United States)

    Borodavko, P. S.

    2009-04-01

    Global cooling in the Early Pleistocene caused extensive continental glaciation in the northern hemisphere including the arid areas of Central Asia. The reduction of temperatures (particularly summer temperatures) reduced evaporation and strengthened the importance of precipitation. The simultaneity of "lakes periods" (pluvials) and stages of glaciation is established experience confirmed by investigations in the west of North America and Russia. In the Mongolian Great Lakes Depression new evidence for similar conditions is found. The Great Lakes Depression is one of the largest in Central Asia, and is divided into 2 main Lakes basins: Hyargas Lake Basin and Uvs Lake Basin. The basin is 600-650 km in length with a width of 200-250 km in the north and 60-100 km in the south. Total catchment area is about 186600 km2. The elevation of the basin floor is from 1700 m a.s.l. to 760 m a.s.l., decreasing to the north and south-east. The depression extends south-north and is bounded by mountains: Tannu-Ola to the north, Hangai to the east; Gobi Altai to the south and Mongolian Altay to the west. The maximum elevation of the mountains is 4000 m a.s.l. There are some mountains with an elevation between 2000 and 3000 m a.s.l in the lake catchment. These mountains are not glaciated today. The geological record [1] suggests the Great Lakes Depression already existed in the Mesozoic, but assumed its modern form only during the Pliocene-Quaternary when tectonic movements caused the uplift of the surrounding mountains. A phase of tectonic stability occurred during the Late Quaternary. The depression is filled by Quaternary fluvial, aeolian and lacustrine deposits (e.g. sand, pebbles). The Neogene deposits are represented by coloured clay, marl, sand and sandstone [1]. Hyargas Lake is the end base level of erosion of the lake group consisting of the Hara-Us Nur, Dorgon, Hara Nur and Airag lakes. Hyargas is one of the largest lakes in Mongolia, with a water surface of 1,407 km2. The

  11. Crustacean plankton communities in forty-five lakes in the experimental lakes area, northwestern Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Patalas, K

    1971-01-01

    Zooplankton communities were characterized on the basis of samples taken in summer as vertical net hauls in the central part of lakes. Twenty-eight species of crustaceans were found in the 45 lakes studied. The highest number of species as well as the highest numbers of individuals (per unit of area) usually occurred in the largest deepest lakes with most transparent water.

  12. Analysis of hepatic deiodinase 2 mRNA levels in natural fish lake populations exposed to different levels of putative thyroid disrupters

    International Nuclear Information System (INIS)

    Jarque, Sergio; Bosch, Carme; Casado, Marta; Grimalt, Joan O.; Raldúa, Demetrio; Piña, Benjamin

    2014-01-01

    Hepatic mRNA levels of the dio2 gene (deiodinase 2), implicated in thyroid hormone homeostasis, were analyzed in trout from six remote lakes in the Pyrenees (Spain) and the Tatra Mountains (Slovakia). Highest levels corresponded to fish from the two coldest lakes in Pyrenees, whereas relatively low levels were found in the Tatra lakes. These values correlated with the presence of highly-brominated polybrominated diphenyl ethers (PBDE) congeners in the muscle of the same animals, reflecting the distribution of these compounds across European mountain ranges. In contrast, cyp1a expression levels, diagnostic for the presence of dioxin-like pollutants, mirrored the distribution of semi-volatile organochlorine compounds, indicating the specificity of the two types of biological responses. Exposure to PDBEs is known to increase transcription of dio2 and other thyroid-related genes in laboratory experiments; we propose that our data reflects the same phenomenon in natural populations, driven by anthropogenic pollutants at the environmental concentrations. - Highlights: • Hepatic deiodinase 2 (dio2) mRNA levels vary among mountain lake trout populations. • High dio2 expression correlated with elevated levels of PBDE 153 and 154 in muscle. • Expression patterns of dio2 and cyp1a diverge among the same fish populations. • Elevated biological responses associated to high loads of specific pollutants. • These data indicate that thyroid disruption may occur in remote ecosystems. - Deionidase dio2 expression as a marker for exposure to putative thyroid disruptors in mountain lake trout

  13. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    Science.gov (United States)

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Water Resources And Geomorphologic Characteristics Of Tushka Area, West Of Lake Nasser, Egypt

    International Nuclear Information System (INIS)

    Elewa, H.H.

    2003-01-01

    The main geomorphologic and drainage characteristics of the Tushka area were delineated through the interpretation of Landsat TM image. The study area displays physiographic features indicative of previous wet climatic conditions. The Nubia aquifer system in the region has a wide extension in the study area and rests un conformably on the Precambrian rocks. The River Nile has its own bearing on the hydrogeological regime of the Tushka and neighbouring areas of Lake Nasser. Comparison of the available data concerning the water levels of Lake Nasser above its submerged bottom (which involves elevations ranging from 50 to 90 m. (a. s. 1.) according to the recorded data between 1964 and 1996), with the static water levels of the groundwater wells reaching the deeper horizons of the Nubia Sandstone aquifer system in the Tushka basin area, suggests that the River Nile acts mostly as an influent stream. However, in some cases, when the static water levels of some deep water-bearing horizons reaches levels above those of the bottom of the lake, water flows from the groundwater reservoirs towards the river which acts as an effluent stream. Other wells have low static water levels compared to those of the bottom of the lake, and the waters of the River Nile most probably recharge the groundwater of these deeper water-bearing horizons of the Nubian aquifer. The prepared equi potentiometric contour map confirms this conclusion as it indicates that the maximum potentiometric level is attained in the north western part of Lake Nasser (at contour 80, near Well No. 12) whereas the minimum potentiometric level is encountered in a small area around Well No. 6 (at contour 50). Hence, the groundwater flow is generally towards Lake Nasser. However, in some instances, it is also moving in an adverse direction. The hydrogeological condition of the study area was conducted based on the variation in lithology, areal extent, recharge and productivity. The study revealed that the Nubia

  15. Aquatic balance in Vegoritis Lake, West Macedonia, Greece, relating to lignite mining works in the area

    Science.gov (United States)

    Dimitrakopoulos, D.; Grigorakou, E.; Koumantakis, J.

    2003-04-01

    Vegoritis Lake, which is located at Vegoritis closed Basin in West Macedonia, Greece, is the biggest lake in Greece. In 1994 the area of the lake was 35 Km2 with maximum depth 42 m at the northwestern part of the lake. It is the final receiving body of the surface runoff of the hydrological basin. Moreover, it is the surficial appearance of an enormous and not well-known karstic aquifer. Being a closed hydrological basin any interference in surface or groundwater conditions in every part of its area affects the level of the lake. The level of the lake in 1900 was 525 masl, in 1942 was 542 masl reaching the higher level of 543 masl in 1956. The increase of the level of the lake was due to the drainage of Ptolemais (Sarigiol) swamp through Soulou drain ditches that transfer the water in the lake. Since then, a continuous drawdown took place with small periods of rising of water level. Today, the level of the lake is declined in a smaller rate having reached the level of 510 masl. Water coming from the lake has been used in the past, and in some cases still does, for agricultural, industrial and domestic use, for hydropower generation and for the cooling system of power plants. Moreover, P.P.C. (Public Power Corporation of Greece) develops an intense activity in the area with the exploitation of the lignite deposits of the basin and power generation in several Power Plants. Few years ago significant quantities from Vegoritis Lake were used for hydro power of Agras Power Plant. With the elaboration of the existent data (water level measurements, recharge, discharge) the connection between the lowering of the surface of the lake and the subtracted quantities through the Arnissa Tunel the first years of its use, is obvious. The last twenty years the condition has change. Outflow through the Arnissa Tunnel for hydropower has stopped. The continued lowering of the level of the lake is caused, mainly, by overexploitation due to the intense increase of the irrigating land

  16. Observing a catastrophic thermokarst lake drainage in northern Alaska

    Science.gov (United States)

    Jones, Benjamin M.; Arp, Christopher D.

    2015-01-01

    The formation and drainage of thermokarst lakes have reshaped ice-rich permafrost lowlands in the Arctic throughout the Holocene. North of Teshekpuk Lake, on the Arctic Coastal Plain of northern Alaska, thermokarst lakes presently occupy 22.5% of the landscape, and drained thermokarst lake basins occupy 61.8%. Analysis of remotely sensed imagery indicates that nine lakes (>10 ha) have drained in the 1,750 km2 study area between 1955 and 2014. The most recent lake drainage was observed using in situ data loggers providing information on the duration and magnitude of the event, and a nearby weather station provided information on the environmental conditions preceding the lake drainage. Lake 195 (L195), an 80 ha thermokarst lake with an estimated water volume of ~872,000 m3, catastrophically drained on 05 July 2014. Abundant winter snowfall and heavy early summer precipitation resulted in elevated lake water levels that likely promoted bank overtopping, thermo-erosion along an ice-wedge network, and formation of a 9 m wide, 2 m deep, and 70 m long drainage gully. The lake emptied in 36 hours, with 75% of the water volume loss occurring in the first ten hours. The observed peak discharge of the resultant flood was 25 m3/s, which is similar to that in northern Alaska river basins whose areas are more than two orders of magnitude larger. Our findings support the catastrophic nature of sudden lake drainage events and the mechanistic hypotheses developed by J. Ross Mackay.

  17. Quantifying the impact of bathymetric changes on the hydrological regimes in a large floodplain lake: Poyang Lake

    Science.gov (United States)

    Yao, Jing; Zhang, Qi; Ye, Xuchun; Zhang, Dan; Bai, Peng

    2018-06-01

    The hydrological regime of a lake is largely dependent on its bathymetry. A dramatic water level reduction has occurred in Poyang Lake in recent years, coinciding with significant bed erosion. Few studies have focused on the influence of bathymetric changes on the hydrological regime in such a complex river-lake floodplain system. This study combined hydrological data and a physically based hydrodynamic model to quantify the influence of the bathymetric changes (1998-2010) on the water level spatiotemporal distribution in Poyang Lake, based on a dry year (2006), a wet year (2010) and an average year (2000-2010). The following conclusions can be drawn from the results of this study: (1) The bed erosion of the northern outlet channel averaged 3 m, resulting in a decrease in the water level by 1.2-2 m in the northern channels (the most significantly influenced areas) and approximately 0.3 m in the central lake areas during low-level periods. The water levels below 16 m and 14 m were significantly affected during the rising period and recession period, respectively. The water level reduction was enhanced due to lower water levels. (2) The water surface profiles adjusted, and the rising and recession rates of the water level increased by 0.5-3.1 cm/d at the lake outlet. The bathymetric influence extended across the entire lake due to the emptying effect, resulting in a change in the water level distribution. The average annual outflow increased by 6.8%. (3) The bathymetric changes contributed approximately 14.4% to the extreme low water level in autumn 2006 and enhanced the drought in the dry season. This study quantified the impact of the bathymetric changes on the lake water levels, thereby providing a better understanding of the potential effects of continued sand mining operations and providing scientific explanations for the considerable variations in the hydrological regimes of Poyang Lake. Moreover, this study attempts to provide a reference for the assessment of

  18. Mapping of the total magnetic field in the area of Lake Balaton

    Science.gov (United States)

    Visnovitz, Ferenc; Hegyi, Betti; Raveloson, Andrea; Rozman, Gábor; Lenkey, László; Kovács, Péter; Csontos, András; Heilig, Balázs; Horváth, Ferenc

    2017-04-01

    The Lake Balaton with 600 km2 area represents the largest lake in Central Europe and a blank spot on the magnetic anomaly map of Hungary. It is because the construction of the Hungarian magnetic anomaly map dates back to the 1960s and relied mainly on classical vertical-field balance surveys. To fill the gap, we initiated a systematic mapping using modern magnetometers and positioning system in the framework of a complex geophysical study of Lake Balaton (National Research Project 109255 K). The main goal of this study has been to identify subvolcanic bodies and tectonic structures below the lake and correlate them with well-known features mapped onshore in the vicinity of Balaton. During the magnetic survey an Overhauser field magnetometer (GEM System, GSM-19) was mounted on a plastic boat and towed behind a motorboat in a distance of 20 m with a speed of 6 to 16 km/h depending on weather conditions. Tests measurements showed that at this distance the magnetic noise generated by the motorboat was negligible. We measured total field values with a sampling interval of 1 to 2 s. As a result, the whole lake has been covered by magnetic profiles in an orthogonal grid with spacing of 1 km. During data interpretation we applied for correction of temporal variation of magnetic field registered in the Tihany Geophysical Observatory and normal field correction from a regional model. The final anomaly map in the western part of the lake shows anomalies with amplitudes of 20 to 60 nT and a half wavelength of 0.5 to 1 km. A larger feature was recognized related to the Badacsony Hill a major basaltic bute at the northern shore of the lake. In the middle part of the lake the total field is rather smooth, no significant anomaly has been revealed. However, slight disturbances can be noticed in the proximity of a neotectonic fault zone mapped by high resolution seismic data. In the eastern part of the lake few low amplitude (5-20 nT) anomalies have been observed that are associated

  19. Microplastics in Taihu Lake, China.

    Science.gov (United States)

    Su, Lei; Xue, Yingang; Li, Lingyun; Yang, Dongqi; Kolandhasamy, Prabhu; Li, Daoji; Shi, Huahong

    2016-09-01

    In comparison with marine environments, the occurrence of microplastics in freshwater environments is less understood. In the present study, we investigated microplastic pollution levels during 2015 in Taihu Lake, the third largest Chinese lake located in one of the most developed areas of China. The abundance of microplastics reached 0.01 × 10(6)-6.8 × 10(6) items/km(2) in plankton net samples, 3.4-25.8 items/L in surface water, 11.0-234.6 items/kg dw in sediments and 0.2-12.5 items/g ww in Asian clams (Corbicula fluminea). The average abundance of microplastics was the highest in plankton net samples from the southeast area of the lake and in the sediments from the northwest area of the lake. The northwest area of the lake was the most heavily contaminated area of the lake, as indicated by chlorophyll-α and total phosphorus. The microplastics were dominated by fiber, 100-1000 μm in size and cellophane in composition. To our best knowledge, the microplastic levels measured in plankton net samples collected from Taihu Lake were the highest found in freshwater lakes worldwide. The ratio of the microplastics in clams to each sediment sample ranged from 38 to 3810 and was negatively correlated to the microplastic level in sediments. In brief, our results strongly suggest that high levels of microplastics occurred not only in water but also in organisms in Taihu Lake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Limnology of Botos Lake, a tropical crater lake in Costa Rica.

    Science.gov (United States)

    Umaña, G

    2001-12-01

    Botos Lake, located at the Poas Volcano complex (Costa Rica) was sampled eight times from 1994 to 1996 for physicochemical conditions of the water column and phytoplanktonic community composition. Depth was measured at fixed intervals in several transects across the lake to determine its main morphometric characteristics. The lake has an outlet to the north. It is located 2580 m above sea level and is shallow, with a mean depth of 1.8 m and a relative depth of 2.42 (surface area 10.33 ha, estimated volume 47.3 hm3). The lake showed an isothermal water column in all occasions, but it heats and cools completely according to weather fluctuations. Water transparency reached the bottom on most occasions (> 9 m). The results support the idea that the lake is polymictic and oligotrophic. The lake has at least 23 species of planktonic algae, but it was always dominated by dinoflagellates, especially Peridinium inconspicuum. The shore line is populated by a sparse population of Isoetes sp. and Eleocharis sp. mainly in the northern shore where the bottom has a gentle slope and the forest does not reach the shore.

  1. Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s.

    Science.gov (United States)

    Tang, Lingyi; Duan, Xiaofang; Kong, Fanjin; Zhang, Fan; Zheng, Yangfan; Li, Zhen; Mei, Yi; Zhao, Yanwen; Hu, Shuijin

    2018-05-09

    Qinghai-Tibetan Plateau is the most sensitive region to global warming on Earth. Qinghai Lake, the largest lake on the plateau, has experienced evident area variation during the past several decades. To quantify the area changes of Qinghai Lake, a satellite-based survey based on Landsat images from the 1980s to 2010s has been performed. In addition, meteorological data from all the seven available stations on Qinghai-Tibetan Plateau has been analyzed. Area of Qinghai Lake shrank ~2% during 1987-2005, and then increased ~3% from 2005-2016. Meanwhile, the average annual temperature increased 0.319 °C/10 y in the past 50 years, where the value is 0.415 °C/10 y from 2005-2016. The structural equation modeling (SEM) shows that precipitation is the primary factor influencing the area of Qinghai Lake. Moreover, temperature might be tightly correlated with precipitation, snow line, and evaporation, thereby indirectly causes alternations of the lake area. This study elucidated the significant area variation of water body on the Qinghai-Tibetan Plateau under global warming since 1980s.

  2. Data report: Jean Lake Area, Nevada. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Cook, J.R.

    1982-05-01

    This report presents the results of detailed sampling of soils, rocks, and dry lake bed material from the area of Jean Dry Lake in southern Nevada. The study area is in the Kingman 1 0 x 2 0 quadrangle of the National Topographic Map Series. Samples were collected from 1000 sites. The target density of sampling was 16 sites per square mile in the lake bed and four sites per square mile for soil samples. Neutron activation analyses are presented for uranium and 16 other elements. Scintillometer readings are reported for each site. Analytical data and scintillometer measurements are presented in tables. Statistical summaries and a brief description of the results are given. Data from the sites (on microfiche in pocket) include; (1) elemental analyses (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, and V); and (2) scintillometer readings. To make the data available for public use without further delay, this report is being issued without the normal technical and copy editing

  3. Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil

    Science.gov (United States)

    Sanders, Luciana M.; Taffs, Kathryn; Stokes, Debra; Sanders, Christian J.; Enrich-Prast, Alex; Amora-Nogueira, Leonardo; Marotta, Humberto

    2018-01-01

    Forests along the Amazon Basin produce significant quantities of organic material, a portion of which is deposited in floodplain lakes. Deforestation in the watershed may then have potentially important effects on the carbon fluxes. In this study, a sediment core was extracted from an Amazon floodplain lake to examine the relationship between carbon burial and changing land cover and land use. Historical records from the 1930s and satellite data from the 1970s were used to calculate deforestation rates between 1930 to 1970 and 1970 to 2010 in four zones with different distances from the margins of the lake and its tributaries (100, 500, 1000 and 6000 m buffers). A sediment accumulation rate of ˜ 4 mm yr-1 for the previous ˜ 120 years was determined from the 240+239Pu signatures and the excess 210Pb method. The carbon burial rates ranged between 85 and 298 g C m-2 yr-1, with pulses of high carbon burial in the 1950s, originating from the forest vegetation as indicated by δ13C and δ15N signatures. Our results revealed a potentially important spatial dependence of the organic carbon (OC) burial in Amazon lacustrine sediments in relation to deforestation rates in the catchment. These deforestation rates were more intense in the riparian vegetation (100 m buffer) during the period 1930 to 1970 and the larger open water areas (500, 1000 and 6000 m buffer) during 1970 to 2010. The continued removal of vegetation from the interior of the forest was not related to the peak of OC burial in the lake, but only the riparian deforestation which peaked during the 1950s. Therefore, this supports the conservation priority of riparian forests as an important management practice for Amazon flooded areas. Our findings suggest the importance of abrupt and temporary events in which some of the biomass released by deforestation, especially restricted to areas along open water edges, might reach the depositional environments in the floodplain of the Amazon Basin.

  4. Lake-sediment evidence for the date of deglaciation of the Hidden Lake area, Kenai Peninsula, Alaska

    Science.gov (United States)

    Rymer, Michael J.; Sims, John D.

    1982-06-01

    An abrupt environmental change is reflected in a core from Hidden Lake, Alaska, by differences in sediment type, chlorite crystallinity, and content of organic carbon and water of the sediments. This abrupt change in the sedimentary record occurred about 14,500 14C yr ago and probably marks the time of recession of the glacier from the Hidden Lake drainage basin. Deglaciation of the area was then underway, and rock flour was being deposited in the lake. After recession of the glacier from the Hidden Lake drainage basin, rock flour was no longer introduced, and organic-matter content of the sediment increased. By the dating of these changes in sediment type, we show that retreat of glaciers in this area took place significantly earlier than previously estimated; this agrees with the timing of retreat of alpine glaciers elsewhere in western North America.

  5. Impact of partly ice-free Lake Ladoga on temperature and cloudiness in an anticyclonic winter situation – a case study using a limited area model

    Directory of Open Access Journals (Sweden)

    Kalle Eerola

    2014-12-01

    Full Text Available At the end of January 2012, a low-level cloud from partly ice-free Lake Ladoga caused very variable 2-m temperatures in Eastern Finland. The sensitivity of the High Resolution Limited Area Model (HIRLAM to the lake surface conditions was tested in this winter anticyclonic situation. The lake appeared to be (incorrectly totally covered by ice when the lake surface was described with its climatology. Both parametrisation of the lake surface state by using a lake model integrated to the NWP system and objective analysis based on satellite observations independently resulted in a correct description of the partly ice-free Lake Ladoga. In these cases, HIRLAM model forecasts were able to predict cloud formation and its movement as well as 2-m temperature variations in a realistic way. Three main conclusions were drawn. First, HIRLAM could predict the effect of Lake Ladoga on local weather, when the lake surface state was known. Second, the current parametrisation methods of air–surface interactions led to a reliable result in conditions where the different physical processes (local surface processes, radiation and turbulence were not strong, but their combined effect was important. Third, these results encourage work for a better description of the lake surface state in NWP models by fully utilising satellite observations, combined with advanced lake parametrisation and data assimilation methods.

  6. Terrestrial CDOM in Lakes of Yamal Peninsula: Connection to Lake and Lake Catchment Properties

    Directory of Open Access Journals (Sweden)

    Yury Dvornikov

    2018-01-01

    Full Text Available In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM absorption at 440 nm (a(440CDOM and absorption slope (S300–500 in lakes using field sampling and optical remote sensing data for an area of 350 km2 in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a(λCDOM data from 18 lakes sampled in the field to 356 lakes in the study area (model R2 = 0.79. Values of a(440CDOM in 356 lakes varied from 0.48 to 8.35 m−1 with a median of 1.43 m−1. This a(λCDOM dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques in the lake shores and lake water level were the two most important controls, explaining 48.4% and 28.4% of lake CDOM, respectively (R2 = 0.61. Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440CDOM = 5.3 m−1. Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440CDOM = 3.8 m−1 compared to lakes located on higher terraces.

  7. Survey and assessment of post volcanic activities of a young caldera lake, Lake Cuicocha, Ecuador

    Directory of Open Access Journals (Sweden)

    G. Gunkel

    2009-05-01

    Full Text Available Cuicocha is a young volcano adjacent to the inactive Pleistocene Cotacachi volcano complex, located in the western cordilleras of the Ecuadorian Andes. A series of eruptions with intensive ash emission and collapse of the caldera occurred around 4500–3000 y BP. A crater 3.2 km in diameter and a maximum depth of 450 m was formed. Further eruptions of the volcano occurred 1300 y BP and formed four smaller domes within the caldera. Over the last few hundred years, a caldera lake has developed, with a maximum depth of 148 m. The lake water is characterized by sodium carbonate with elevated concentrations of manganese, calcium and chloride. Nowadays, an emission of gases, mainly CO2, and an input of warm spring water occur in Lake Cuicocha. The zone of high activity is in the western basin of the lake at a depth of 78 m, and continuous gas emissions with sediment resuspension were observed using sonar. In the hypolimnion of the lake, CO2 accumulation occurs up to 0.2% saturation, but the risk of a limnic eruption can be excluded at present. The lake possesses monomictic stratification behaviour, and during overturn an intensive gas exchange with the atmosphere occurs. Investigations concerning the sedimentation processes of the lake suggest only a thin sediment layer of up to 10–20 cm in the deeper lake basin; in the western bay, in the area of gas emissions, the lake bottom is partly depleted of sediment in the form of holes, and no lake colmation exists. Decreases in the lake water level of about 30 cm y−1 indicate a percolation of water into fractures and fissures of the volcano, triggered by a nearby earthquake in 1987.

  8. Use of Natural 35S to Trace Sulphate Cycling in Small Lakes, Flattops Wilderness Area, Colorado, U.S.A

    International Nuclear Information System (INIS)

    Michel, Robert L.; Turk, John T.; Campbell, Donald H.; Mast, M. A.

    2002-01-01

    Measurements of the cosmogenically-produced 35 S, a radioisotope of sulphur (t 1/2 = 87 days), are reported for the Ned Wilson Lake watershed in Colorado. The watershed contains two small lakes and a flowing spring presumed to be representative of local ground water. The watershed is located in the Flattops Wilderness Area and the waters in the system have low alkalinity, making them sensitive to increases in acid and sulphate deposition. Time series of 35 S measurements were made during the summers of 1995 and 1996 (July-September) at all three sites. The system is dominated by melting snow and an initial concentration of 16-20 mBq L -1 was estimated for snow melt based on a series of snow samples collected in the Rocky Mountains. The two lakes had large initial 35 S concentrations in July, indicating that a large fraction of the lake water and sulphate was introduced by meltwater from that year's snowpack. In 1995 and 1996, 35 S concentrations decreased more rapidly than could be accounted for by decay, indicating that other processes were affecting 35 S concentrations. The most likely explanation is that exchange with sediments or the biota was removing 35 S from the lake and replacing it with older sulphate devoid of 35 S. In September of 1995 and 1996, 35 S concentrations increased, suggesting that atmospheric deposition is important in the sulphate flux of these lakes in late summer. Sulphur-35 concentrations in the spring water were highly variable but never higher than 3.6 mBq L -1 and averaged 2 mBq L -1 . Using a simple mixing model, it was estimated that 75% of the spring water was derived from precipitation of previous years

  9. Use of natural 35S to trace sulphate cycling in small lakes, Flattops Wilderness Area, Colorado, U.S.A.

    Science.gov (United States)

    Michel, Robert L.; Turk, John T.; Campbell, Donald H.; Mast, M. Alisa

    2002-01-01

    Measurements of the cosmogenically-produced 35S, a radioisotope of sulphur (t1/2 = 87 days), are reported for the Ned Wilson Lake watershed in Colorado. The watershed contains two small lakes and a flowing spring presumed to be representative of local ground water. The watershed is located in the Flattops Wilderness Area and the waters in the system have low alkalinity, making them sensitive to increases in acid and sulphate deposition. Time series of 35S measurements were made during the summers of 1995 and 1996 (July–September) at all three sites. The system is dominated by melting snow and an initial concentration of 16–20 mBq L-1was estimated for snowmelt based on a series of snow samples collected in the Rocky Mountains. The two lakes had large initial 35S concentrations in July, indicating that a large fraction of the lake water and sulphate was introduced by meltwater from that year's snowpack. In 1995 and 1996, 35S concentrations decreased more rapidly than could be accounted for by decay, indicating that other processes were affecting 35S concentrations. The most likely explanation is that exchange with sediments or the biota was removing 35S from the lake and replacing it with older sulphate devoid of 35S. In September of 1995 and 1996, 35S concentrations increased, suggesting that atmospheric deposition is important in the sulphate flux of these lakes in late summer. Sulphur-35 concentrations in the spring water were highly variable but never higher than 3.6 mBq L-1 and averaged 2 mBq L-1. Using a simple mixing model, it was estimated that 75% of the spring water was derived from precipitation of previous years.

  10. Potential area for floating net fishery in Lake Toba

    Science.gov (United States)

    Rustini, H. A.; Harsono, E.; Ridwansyah, I.

    2018-02-01

    Lake Toba in North Sumatera, Indonesia, is now designated to be a world-class tourism destination. Aside from its infrastructure development, this largest lake in the Southeast Asia needs to be restored, especially its water quality. While an oligotrophic status is required for tourism purposes, several studies showed that Toba is mesotrophic at its best and hyper-eutrophic at its worst. Numerous studies and reports blame floating net fishery (FNF) for water quality decline in Lake Toba and propose limitation for its production. While the central government allowed FNF to be positioned in certain areas according to its depth and distance from the lakeshore, increasing number of FNF means adding more nutrients to the lake and thus may inhibit the lake’s restoration process. Hence, it is important to identify which areas are potential for FNF location to assist the authorities to regulate FNF. This study used SPOT-6, SPOT-7, and Pleiades satellite imagery to locate the position of existing FNF and to analyse the result to identify a potential location for FNF.

  11. Lake Area Changes and Their Influence on Factors in Arid and Semi-Arid Regions along the Silk Road

    Directory of Open Access Journals (Sweden)

    Chao Tan

    2018-04-01

    Full Text Available In the context of global warming, the changes in major lakes and their responses to the influence factors in arid and semi-arid regions along the Silk Road are especially important for the sustainable development of local water resources. In this study, the areas of 24 lakes were extracted using MODIS NDVI data, and their spatial-temporal characteristics were analyzed. In addition, the relationship between lake areas and the influence factors, including air temperature, precipitation, evapotranspiration, land use and land cover change (LULCC and population density in the watersheds, were investigated. The results indicated that the areas of most lakes shrank, and the total area decreased by 22,189.7 km2 from 2001 to 2016, except for those of the lakes located on the Qinghai-Tibetan Plateau. The air temperature was the most important factor for all the lakes and increased at a rate of 0.113 °C/a during the past 16 years. LULCC and the increasing population density markedly influenced the lakes located in the middle to western parts of this study area. Therefore, our results connecting lake area changes in the study region highlight the great challenge of water resources and the urgency of implementation of the green policy in the One Belt and One Road Initiative through international collaboration.

  12. 75 FR 73983 - Proposed Modification of the Salt Lake City, UT, Class B Airspace Area; Public Meetings

    Science.gov (United States)

    2010-11-30

    ... of the Salt Lake City, UT, Class B Airspace Area; Public Meetings AGENCY: Federal Aviation... Class B airspace area at Salt Lake City, UT. The purpose of these meetings is to provide interested... Road, Ogden, UT, 84405. (2) The meeting on Tuesday, February 1, 2011, will be held in the Conference...

  13. Preliminary Nearshore Sedimentation Rate Analysis of the Tuungane Project Northern Mahale Conservation Area, Lake Tanganyika (Tanzania)

    Science.gov (United States)

    Smiley, R. A.; McGlue, M. M.; Yeager, K. M.; Soreghan, M. J.; Lucas, J.; Kimirei, I.; Mbonde, A.; Limbu, P.; Apse, C.

    2017-12-01

    The combined effects of climate change, overfishing, and sediment pollution are altering Lake Tanganyika's littoral fisheries in profoundly negative ways. One method for conserving critical fish resources and safeguarding biodiversity in Lake Tanganyika is by establishing small-scale nearshore protected zones, which can be administrated by lakeshore villagers organized into beach management units (BMUs). Each BMU endeavors to manage offshore "no-catch" protected zones, prohibit the use of illegal fishing gear, and promote sustainable agriculture that abates erosion in the lake watershed, in order to mitigate sediment pollution in the lake. We adopted a limnogeological approach to assist in characterizing the littoral zone associated with BMUs in the northern Mahale region of Lake Tanganyika (Tanzania), a critical conservation area for the Nature Conservancy's Tuungane Project (https://www.nature.org/ourinitiatives/regions/africa/wherewework/tuungane-project.xml). We hypothesized that BMUs with heavy onshore agricultural activity would experience relatively high offshore sedimentation rates, due to enhanced sediment-laden runoff in the wet season. Such changes are predicted to alter benthic substrates and degrade habitat available for fish spawning. We mapped bathymetry and sediment types along a 29 km2 area of the littoral zone using high-resolution geophysical tools, and assessed short-term sedimentation rates using sediment cores and radionuclide geochronology (210Pb). Initial results from 210Pb analyses show that sedimentation rates at the mud-line ( 85-100 m water depth) are relatively slow but spatially variable in the northern Mahale area. Offshore of the Kalilani village BMU, linear sedimentation rates are 0.50 mm/yr. By contrast, sedimentation rates offshore from the Igualula village BMU are 0.90-1.30 mm/yr. Higher sedimentation rates near Igualula are consistent with greater sediment inputs from the nearby Lagosa River and its watershed, which has been

  14. Study of the wide area of a lake with remote sensing

    Science.gov (United States)

    Lazaridou, Maria A.; Karagianni, Aikaterini C.

    2016-08-01

    Water bodies are particularly important for environment and development issues. Their study requires multiple information. Remote sensing has been proven useful in the above study. This paper concerns the wide area of Lake Orestiada in the region of Western Macedonia in Greece. The area is of particular interest because Lake Orestiada is included in the Natura 2000 network and is surrounded by diverse landcovers as built up areas and agricultural land. Multispectral and thermal Landsat 5 satellite images of two time periods are being used. Their processing is being done by Erdas Imagine software. The general physiognomy of the area and the lake shore are examined after image enhancement techniques and image interpretation. Directions of the study concern geomorphological aspects, land covers, estimation of surface temperature as well as changes through time.

  15. Extraction and representation of nested catchment areas from digital elevation models in lake-dominated topography

    Science.gov (United States)

    Mackay, D. Scott; Band, Lawrence E.

    1998-04-01

    This paper presents a new method for extracting flow directions, contributing (upslope) areas, and nested catchments from digital elevation models in lake-dominated areas. Existing tools for acquiring descriptive variables of the topography, such as surface flow directions and contributing areas, were developed for moderate to steep topography. These tools are typically difficult to apply in gentle topography owing to limitations in explicitly handling lakes and other flat areas. This paper addresses the problem of accurately representing general topographic features by first identifying distinguishing features, such as lakes, in gentle topography areas and then using these features to guide the search for topographic flow directions and catchment marking. Lakes are explicitly represented in the topology of a watershed for use in water routing. Nonlake flat features help guide the search for topographic flow directions in areas of low signal to noise. This combined feature-based and grid-based search for topographic features yields improved contributing areas and watershed boundaries where there are lakes and other flat areas. Lakes are easily classified from remotely sensed imagery, which makes automated representation of lakes as subsystems within a watershed system tractable with widely available data sets.

  16. Characteristics and ontogeny of oligotrophic hardwater lakes in the Forsmark area, central Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Brunberg, A.K.; Blomqvist, P. [Uppsala Univ. (Sweden). Dept. of Limnology

    1999-12-01

    This is the first part of a report characterising the lakes of Uppsala county, with special emphasis on the coastal lakes in the Forsmark area.The aim of the study is to characterise different main types of lakes within the Forsmark area and to create a basis for prediction of their ontogeny, that can be used also for new lakes which due to shoreline displacement will be formed during the next 10 000 years. Areas where future research is needed to fully understand the functioning of the lake ecosystems and their ontogeny should also be identified. This first part of the study identifies and describes one of the most common lake types in the area, the oligotrophic hardwater lake. The geology in the catchments of the Forsmark area includes a bedrock dominated by granites and gneisses, covered by calcareous glacial till and postglacial clay. The catchments are dominated by forest, and the oligotrophic hardwater lakes are to a large extent surrounded by mires. Inflow as well as outflow of water is often diffuse, via the surrounding mire. The lakes are small and shallow, with nutrient poor and highly alkaline water. Three key habitats have been identified within the lakes; the pelagic zone, characterised by low production of biota;, the presumably moderately productive emergent macrophyte zone, dominated by Sphagnum and Phragmites;, and the light exposed soft-bottom zone with Chara meadows and an unusually rich and presumably highly productive microbial sediment community. The oligotrophic hardwater lakes have their origin as depressions in the bottom of the Baltic Sea, which are successively transported upwards due to the land-rise process in the area. As the basins are isolated from the sea , a gradual change from a brackish to freshwater conditions occur. When the lakes have become completely isolated, the oligotrophic hardwater stage follows, due to inflow of carbonate-rich and well buffered groundwater. In the next successional stage, Sphagnum mosses start to

  17. Characteristics and ontogeny of oligotrophic hardwater lakes in the Forsmark area, central Sweden

    International Nuclear Information System (INIS)

    Brunberg, A.K.; Blomqvist, P.

    1999-12-01

    This is the first part of a report characterising the lakes of Uppsala county, with special emphasis on the coastal lakes in the Forsmark area.The aim of the study is to characterise different main types of lakes within the Forsmark area and to create a basis for prediction of their ontogeny, that can be used also for new lakes which due to shoreline displacement will be formed during the next 10 000 years. Areas where future research is needed to fully understand the functioning of the lake ecosystems and their ontogeny should also be identified. This first part of the study identifies and describes one of the most common lake types in the area, the oligotrophic hardwater lake. The geology in the catchments of the Forsmark area includes a bedrock dominated by granites and gneisses, covered by calcareous glacial till and postglacial clay. The catchments are dominated by forest, and the oligotrophic hardwater lakes are to a large extent surrounded by mires. Inflow as well as outflow of water is often diffuse, via the surrounding mire. The lakes are small and shallow, with nutrient poor and highly alkaline water. Three key habitats have been identified within the lakes; the pelagic zone, characterised by low production of biota;, the presumably moderately productive emergent macrophyte zone, dominated by Sphagnum and Phragmites;, and the light exposed soft-bottom zone with Chara meadows and an unusually rich and presumably highly productive microbial sediment community. The oligotrophic hardwater lakes have their origin as depressions in the bottom of the Baltic Sea, which are successively transported upwards due to the land-rise process in the area. As the basins are isolated from the sea , a gradual change from a brackish to freshwater conditions occur. When the lakes have become completely isolated, the oligotrophic hardwater stage follows, due to inflow of carbonate-rich and well buffered groundwater. In the next successional stage, Sphagnum mosses start to

  18. A post-Calumet shoreline along southern Lake Michigan

    Science.gov (United States)

    Capps, D.K.; Thompson, T.A.; Booth, R.K.

    2007-01-01

    The southern shore of Lake Michigan is the type area for many of ancestral Lake Michigan's late Pleistocene lake phases, but coastal deposits and features of the Algonquin phase of northern Lake Michigan, Lake Huron, and Lake Superior are not recognized in the area. Isostatic rebound models suggest that Algonquin phase deposits should be 100 m or more below modern lake level. A relict shoreline, however, exists along the lakeward margin of the Calumet Beach that was erosional west of Deep River and depositional east of the river. For this post-Calumet shoreline, the elevation of basal foreshore deposits east of Deep River and the base of the scarp west of Deep River indicate a slightly westward dipping water plane that is centered at ???184 m above mean sea level. Basal foreshore elevations also indicate that lake level fell ???2 m during the development of the shoreline. The pooled mean of radiocarbon dates from the surface of the peat below post-Calumet shoreline foreshore deposits indicate that the lake transgressed over the peat at 10,560 ?? 70 years B.P. Pollen assemblages from the peat are consistent with this age. The elevation and age of the post-Calumet shoreline are similar to the Main Algonquin phase of Lake Huron. Recent isostatic rebound models do not adequately address a high-elevation Algonquin-age shoreline along the southern shore of Lake Michigan, but the Goldthwait (1908) hinge-line model does. ?? 2006 Springer Science+Business Media B.V.

  19. Monitoring climate signal transfer into the varved lake sediments of Lake Czechowskie, Poland

    Science.gov (United States)

    Groß-Schmölders, Miriam; Ott, Florian; Brykała, Dariusz; Gierszewski, Piotr; Kaszubski, Michał; Kienel, Ulrike; Brauer, Achim

    2015-04-01

    In 2012 we started a monitoring program at Lake Czechowskie, Poland, because the lake comprises a long Holocene time series of calcite varves until recent times. The aim of the program is to understand how environmental and climatic conditions influence the hydrological conditions and, ultimately, the sediment deposition processes of the lake. Lake Czechowskie is located in the north of Poland in the Pomeranian Lake District and is part of the national park Tuchola Forest. The landscape and the lake is formed by the glacier retreat after the last glaciation (Weichselian). Lake Czechowskie is a typical hardwater lake and has a length of 1.4 km, an average width of 600 m and a lake surface area of ca 4 km. The maximum depth of 32 m is reached in a rather small hollow in the eastern part of the lake. Two different types of sediment traps provide sediment samples with monthly resolution from different water depths (12m, 26m). In addition, hydrological data including water temperature in different depths, water inflow, throughflow and outflow and the depth of visibility are measured. These data allow to describe strength and duration of lake mixing in spring and autumn and its influence on sedimentation. The sediment samples were analyzed with respect to their dry weight (used to calculate mean daily sediment flux), their inorganic and organic carbon contents, the stable C- and O-isotopes of organic matter and calcite as well as N-isotopes of organic matter. For selected samples dominant diatom taxa are determined. Our first results demonstrate the strong influence of the long winter with ice cover until April in 2013 on the sedimentation. A rapid warming in only 9 days starting on April 9th from -0,3 C° to 15,2 C° resulted in fast ice break-up and a short but intensive lake mixing. In consequence of this short mixing period a strong algal bloom especially of Fragilaria and Crysophycea commenced in April and had its maximum in May. This bloom further induced biogenic

  20. The regional abundance and size distribution of lakes and reservoirs in the United States and implication for estimates of global lake extent

    Science.gov (United States)

    McDonald, Cory P.; Rover, Jennifer; Stets, Edward G.; Striegl, Robert G.

    2012-01-01

    We analyzed complete geospatial data for the 3.5 million lakes and reservoirs larger than 0.001 km2, with a combined surface area of 131,000 km2, in the contiguous United States (excluding the Laurentian Great Lakes) and identified their regional distribution characteristics. For Alaska, we also analyzed (1) incomplete data that suggest that the state contains 1–2.5 million lakes larger than 0.001 km2 covering over 50,000 km2 and (2) localized high-resolution (5 m) data that suggest that the number of very small water bodies ( 0.001 km2 in some areas. The Pareto distribution cannot accurately describe the lake abundance-size relationship across the entire size spectrum, and extrapolation of this density function to small size classes has likely resulted in the overestimation of the number of small lakes in the world. While small water bodies dominate in terms of numbers, they are not numerous enough to dominate in terms of surface area, as has been previously suggested. Extending our results to the global scale suggests that there are on the order of 64 million water bodies larger than 0.001 km2 in the world, with a total surface area of approximately 3.8 million km2.

  1. MINING LAKES OF THE AGHIREŞ AREA: GENESIS, EVOLUTION AND MORPHOMETRIC ASPECTS

    Directory of Open Access Journals (Sweden)

    V. MĂCICĂŞAN

    2012-03-01

    Full Text Available Mining lakes of the Aghireş area: Genesis, evolution and morphometric aspects. Mining activities are heavily influencing and destroying the landscape worldwide. In Aghireş mining perimeter, exploitation workings have led to extreme and irreversible environmental damages, especially regarding the geomorphologic and hydrological situation. After cessation of underground mining and initiation of quarry exploitation, certain mining galleries collapsed and were afterwards flooded by precipitation and re-ascending groundwater, leading to the formation of lacustrine units. Later, the abandoned quarries have undergone the same flooding process. In this paper, we report on the genesis, evolution and the current characteristics of these bodies of water, referred to as mining lakes. In addition, using the GIS technology, the morphometry of the mining lakes is presented in this paper. Due to their predominant current use, as for recreational purposes, the sustainable management of the mining lakes is an important ecological and socio-economical factor for the Aghireş area. For the majority of mining lakes, restoration measures may be necessary due to the demands of the European legislation as well as to the demands of a specific socio-economic use in the future (e.g. bathing lakes or fishing lakes. These aspects of investigation will constitute a prerequisite for effective environmental management and rehabilitation strategies.

  2. Large Lakes Dominate CO2 Evasion From Lakes in an Arctic Catchment

    Science.gov (United States)

    Rocher-Ros, Gerard; Giesler, Reiner; Lundin, Erik; Salimi, Shokoufeh; Jonsson, Anders; Karlsson, Jan

    2017-12-01

    CO2 evasion from freshwater lakes is an important component of the carbon cycle. However, the relative contribution from different lake sizes may vary, since several parameters underlying CO2 flux are size dependent. Here we estimated the annual lake CO2 evasion from a catchment in northern Sweden encompassing about 30,000 differently sized lakes. We show that areal CO2 fluxes decreased rapidly with lake size, but this was counteracted by the greater overall coverage of larger lakes. As a result, total efflux increased with lake size and the single largest lake in the catchment dominated the CO2 evasion (53% of all CO2 evaded). By contrast, the contribution from the smallest ponds (about 27,000) was minor (evasion at the landscape scale.

  3. Comparing the Performance of Protected and Unprotected Areas in Conserving Freshwater Fish Abundance and Biodiversity in Lake Tanganyika, Tanzania

    Directory of Open Access Journals (Sweden)

    Emmanuel Andrew Sweke

    2016-01-01

    Full Text Available Marine protected areas have been shown to conserve aquatic resources including fish, but few studies have been conducted of protected areas in freshwater environments. This is particularly true of Lake Tanganyika, Tanzania. To better conserve the lake’s biodiversity, an understanding of the role played by protected areas in conserving fish abundance and diversity is needed. Sampling of fish and environmental parameters was performed within the Mahale Mountains National Park (MMNP and nearby unprotected areas at depths between 5 m and 10 m. Twelve replicates of fish sampling were performed at each site using gillnets set perpendicularly to the shore. Mann-Whitney tests were performed, and the total amount of species turnover was calculated. A total of 518 individual fish from 57 species were recorded in the survey. The fish weight abundance was fivefold greater in the MMNP than in the unprotected areas. Fish abundance and diversity were higher in the MMNP than in the unprotected areas and decreased with distance from it. Our findings confirmed the importance of the protected area in conserving fish resources in Lake Tanganyika. The study provides baseline information for management of the resources and guiding future studies in the lake and other related ecosystems. Management approaches that foster awareness and engage with communities surrounding the MMNP are recommended for successful conservation of the resources in the region.

  4. Decision 99-18: Range Petroleum Corporation application for a well licence, Sturgeon Lake Area

    International Nuclear Information System (INIS)

    1999-07-01

    Range Petroleum Corporation (Range) applied to the Alberta Energy and Utilities Board (EUB) pursuant to Section 2.020 of the Oil and Gas Conservation Regulations for a well licence to drill a sour oil well from a surface location in Legal Subdivision 4, Section 34, West of the fifth Meridian, directionally to a bottom-hole location under Sturgeon Lake. The purpose of the proposed well would be to obtain sour oil production from the Leduc Formation. The well would be a Level 1 well because it would have a potential maximum hydrogen sulphide release rate of 0.0412 cubic m/s. The EUB received objections to the application from landowners, cattle ranchers, farmers, residents, and cottage owners in the area of the proposed well. The application and intervention were considered at a public hearing on 26 January 1999 in Grande Prairie, Alberta, and the Board viewed the proposed surface location, the previous Lds 3-2 surface location, and the surrounding area prior to the hearing. Having carefully considered the evidence, the Board believed that it would be possible to drill the proposed well safely and with minimal risk, subject to attached conditions. But in light of the unique setting of the area, including the residences and the road and lake configurations, and the difficulty that would exist preparing an effective environmental review process (ERP), the Board deferred its decision on the well licence application until an approved ERP is in place

  5. Identification of hot spot area of sediment contamination in a lake system using texture characteristics.

    Science.gov (United States)

    Sheela, A M; Letha, J; Joseph, Sabu; Thomas, Jobin

    2013-04-01

    Texture plays an important role in the identification of polluted stretch in a lake system. The organic matter as well as toxic elements get accumulated in the finer sediments. The aim of the work is to show the spatio-temporal distribution of texture of the lake sediment (Akkulam-Veli lake, Kerala) and to identify the hot spot areas of contamination. Hot spot areas vary with seasons. During PRM, (premonsoon), the upstream portion of the Akkulam lake is the hot spot. During MON (monsoon), the downstream portion of the Akkulam lake and the upstream portion of the Veli lake are the hot spots. During POM (postmonsoon), hot spot area is the downstream portion of the Akkulam lake. This methodology can be used for the quick identification of hot spots in water bodies.

  6. Lake Cadagno

    DEFF Research Database (Denmark)

    Tonolla, Mauro; Storelli, Nicola; Danza, Francesco

    2017-01-01

    Lake Cadagno (26 ha) is a crenogenic meromictic lake located in the Swiss Alps at 1921 m asl with a maximum depth of 21 m. The presence of crystalline rocks and a dolomite vein rich in gypsum in the catchment area makes the lake a typical “sulphuretum ” dominated by coupled carbon and sulphur...... cycles. The chemocline lies at about 12 m depth, stabilized by density differences of salt-rich water supplied by sub-aquatic springs to the monimolimnion and of electrolyte-poor surface water feeding the mixolimnion. Steep sulphide and light gradients in the chemocline support the growth of a large...... in the chemocline. Small-celled PSB together with the sulfate-reducing bacterium Desulfocapsa thiozymogenes sp. form stable aggregates in the lake, which represent small microenvironments with an internal sulphur cycle. Eukaryotic primary producers in the anoxic zones are dominated by Cryptomonas phaseolus...

  7. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  8. Sources and distribution of microplastics in China's largest inland lake - Qinghai Lake.

    Science.gov (United States)

    Xiong, Xiong; Zhang, Kai; Chen, Xianchuan; Shi, Huahong; Luo, Ze; Wu, Chenxi

    2018-04-01

    Microplastic pollution was studied in China's largest inland lake - Qinghai Lake in this work. Microplastics were detected with abundance varies from 0.05 × 10 5 to 7.58 × 10 5 items km -2 in the lake surface water, 0.03 × 10 5 to 0.31 × 10 5 items km -2 in the inflowing rivers, 50 to 1292 items m -2 in the lakeshore sediment, and 2 to 15 items per individual in the fish samples, respectively. Small microplastics (0.1-0.5 mm) dominated in the lake surface water while large microplastics (1-5 mm) are more abundant in the river samples. Microplastics were predominantly in sheet and fiber shapes in the lake and river water samples but were more diverse in the lakeshore sediment samples. Polymer types of microplastics were mainly polyethylene (PE) and polypropylene (PP) as identified using Raman Spectroscopy. Spatially, microplastic abundance was the highest in the central part of the lake, likely due to the transport of lake current. Based on the higher abundance of microplastics near the tourist access points, plastic wastes from tourism are considered as an important source of microplastics in Qinghai Lake. As an important area for wildlife conservation, better waste management practice should be implemented, and waste disposal and recycling infrastructures should be improved for the protection of Qinghai Lake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Protecting water resources from pollution in the Lake Badovc

    Energy Technology Data Exchange (ETDEWEB)

    Avdullahi, Sabri; Fejza, Islam; Tmava, Ahmet [Faculty of Geosciences and Technology, University of Prishtina, Str. Parku Industrial, 40000 Mitrovic, Republic of Kosova

    2012-07-01

    In recent years, the international community has witnessed incidence of climate variability and human activities. The objective of this paper is protecting water resources from pollution in the catchments area of Lake Badovc. The catchments area of the Lake Badovc has a size of 109 km² and the active storage volume of the lake is assessed to 26.4 Mill.m3. Around 28% of the total population of Municipality of Prishtina supply with drinking water from Lake Badovc. The hydrologic modelling system used, is HEC-HMS developed by the Hydrologic Engineering Centre of the US Corps of Engineers. The model is designed to simulate the rainfall-runoff processes of catchments areas and is applicable to a wide range of geographic areas.Water samples are taken from two streams reach Lake Badovc and from the lake in three different depths (5m, 10m and 15m) at different locations. Concerning the environment impact more than 140 interviews were conducted and questionnaires filled in the period October-November for Mramor area, concentrating on the most important issues: building, water supply, wastewater disposal and west disposal.

  10. Geochemical evolution of groundwater in the Mud Lake area, eastern Idaho, USA

    Science.gov (United States)

    Rattray, Gordon W.

    2015-01-01

    Groundwater with elevated dissolved-solids concentrations—containing large concentrations of chloride, sodium, sulfate, and calcium—is present in the Mud Lake area of Eastern Idaho. The source of these solutes is unknown; however, an understanding of the geochemical sources and processes controlling their presence in groundwater in the Mud Lake area is needed to better understand the geochemical sources and processes controlling the water quality of groundwater at the Idaho National Laboratory. The geochemical sources and processes controlling the water quality of groundwater in the Mud Lake area were determined by investigating the geology, hydrology, land use, and groundwater geochemistry in the Mud Lake area, proposing sources for solutes, and testing the proposed sources through geochemical modeling with PHREEQC. Modeling indicated that sources of water to the eastern Snake River Plain aquifer were groundwater from the Beaverhead Mountains and the Camas Creek drainage basin; surface water from Medicine Lodge and Camas Creeks, Mud Lake, and irrigation water; and upward flow of geothermal water from beneath the aquifer. Mixing of groundwater with surface water or other groundwater occurred throughout the aquifer. Carbonate reactions, silicate weathering, and dissolution of evaporite minerals and fertilizer explain most of the changes in chemistry in the aquifer. Redox reactions, cation exchange, and evaporation were locally important. The source of large concentrations of chloride, sodium, sulfate, and calcium was evaporite deposits in the unsaturated zone associated with Pleistocene Lake Terreton. Large amounts of chloride, sodium, sulfate, and calcium are added to groundwater from irrigation water infiltrating through lake bed sediments containing evaporite deposits and the resultant dissolution of gypsum, halite, sylvite, and bischofite.

  11. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2002-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 425, Area 9 Main Lake Construction Debris Disposal Area. This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). This site will be cleaned up under the SAFER process since the volume of waste exceeds the 23 cubic meters (m(sup 3)) (30 cubic yards[yd(sup 3)]) limit established for housekeeping sites. CAU 425 is located on the Tonopah Test Range (TTR) and consists of one Corrective Action Site (CAS) 09-08-001-TA09, Construction Debris Disposal Area (Figure 1). CAS 09-08-001-TA09 is an area that was used to collect debris from various projects in and around Area 9. The site is located approximately 81 meters (m) (265 feet[ft]) north of Edwards Freeway northeast of Main Lake on the TTR. The site is composed of concrete slabs with metal infrastructure, metal rebar, wooden telephone poles, and concrete rubble from the Hard Target and early Tornado Rocket sled tests. Other items such as wood scraps, plastic pipes, soil, and miscellaneous nonhazardous items have also been identified in the debris pile. It is estimated that this site contains approximately 2280 m(sup 3) (3000 yd(sup 3)) of construction-related debris

  12. Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida

    Science.gov (United States)

    Reich, Christopher; Flocks, James; Davis, Jeffrey

    2012-01-01

    This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the

  13. Stable carbon isotopes in high-productive littoral areas of Lake Constance

    International Nuclear Information System (INIS)

    Chondrogianni, C.

    1992-01-01

    The investigation attempted to extend understanding of C fractionation in aquatic systems and to facilitate the interpretation of palaeolimnological isotope data. Particular interest was taken in the aspect of bicarbonate assimilation at high productivity and in the exchange processes between water and atmosphere. Littoral areas of lakes were chosen as areas of investigation as they offer a high-productivity environment with large populations of submersed macrophytes and periphytes. To get a better picture of the factors influencing C fractionation, litteral and pellagial regions were compared on the one hand and a mesotrophic (Ueberlingersee) and a eutrophic (Gnadensee) lake section on the other hand. Further factors of differentiation between the two lake parts were: Volume, the proportional share of the litteral area, and water exchange. Two main fields of interest were investigated: - Determination of the C isotope ratio (δ 13 C) in the dissolved bicarbonate of water in the sediments of a single year for the purpose of calibrating its fractionation in the basis of the present chemical and physical status of the lake water (water programme). - Determination of δ 13 C in selected carbonate components from sedimentary cores in order to find out about palaeolimnological events in the areas of investigation (sediment programme). (orig.) [de

  14. Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil

    Directory of Open Access Journals (Sweden)

    L. M. Sanders

    2018-01-01

    Full Text Available Forests along the Amazon Basin produce significant quantities of organic material, a portion of which is deposited in floodplain lakes. Deforestation in the watershed may then have potentially important effects on the carbon fluxes. In this study, a sediment core was extracted from an Amazon floodplain lake to examine the relationship between carbon burial and changing land cover and land use. Historical records from the 1930s and satellite data from the 1970s were used to calculate deforestation rates between 1930 to 1970 and 1970 to 2010 in four zones with different distances from the margins of the lake and its tributaries (100, 500, 1000 and 6000 m buffers. A sediment accumulation rate of  ∼ 4 mm yr−1 for the previous  ∼ 120 years was determined from the 240+239Pu signatures and the excess 210Pb method. The carbon burial rates ranged between 85 and 298 g C m−2 yr−1, with pulses of high carbon burial in the 1950s, originating from the forest vegetation as indicated by δ13C and δ15N signatures. Our results revealed a potentially important spatial dependence of the organic carbon (OC burial in Amazon lacustrine sediments in relation to deforestation rates in the catchment. These deforestation rates were more intense in the riparian vegetation (100 m buffer during the period 1930 to 1970 and the larger open water areas (500, 1000 and 6000 m buffer during 1970 to 2010. The continued removal of vegetation from the interior of the forest was not related to the peak of OC burial in the lake, but only the riparian deforestation which peaked during the 1950s. Therefore, this supports the conservation priority of riparian forests as an important management practice for Amazon flooded areas. Our findings suggest the importance of abrupt and temporary events in which some of the biomass released by deforestation, especially restricted to areas along open water edges, might reach the depositional environments in

  15. Remote sensing appraisal of Lake Chad shrinkage connotes severe impacts on green economics and socio-economics of the catchment area.

    Science.gov (United States)

    Onamuti, Olapeju Y; Okogbue, Emmanuel C; Orimoloye, Israel R

    2017-11-01

    Lake Chad commonly serves as a major hub of fertile economic activities for the border communities and contributes immensely to the national growth of all the countries that form its boundaries. However, incessant and multi-decadal drying via climate change pose greater threats to this transnational water resource, and adverse effects on ecological sustainability and socio-economic status of the catchment area. Therefore, this study assessed the extent of shrinkage of Lake Chad using remote sensing. Landsat imageries of the lake and its surroundings between 1987 and 2005 were retrieved from Global Land Cover Facility website and analysed using Integrated Land and Water Information System version 3.3 (ILWIS 3.3). Supervised classification of area around the lake was performed into various land use/land cover classes, and the shrunk part of its environs was assessed based on the land cover changes. The shrinkage trend within the study period was also analysed. The lake water size reduced from 1339.018 to 130.686 km 2 (4.08-3.39%) in 1987-2005. The supervised classification of the Landsat imageries revealed an increase in portion of the lake covered by bare ground and sandy soil within the reference years (13 490.8-17 503.10 km 2 ) with 4.98% total range of increase. The lake portion intersected with vegetated ground and soil also reduced within the period (11 046.44-10 078.82 km 2 ) with 5.40% (967.62 km 2 ) total decrease. The shrunk part of the lake covered singly with vegetation increased by 2.74% from 1987 to 2005. The shrunk part of the lake reduced to sand and turbid water showed 5.62% total decrease from 1987 to 2005 and a total decrease of 1805.942 km 2 in area. The study disclosed an appalling rate of shrinkage and damaging influences on the hydrologic potential, eco-sustainability and socio-economics of the drainage area as revealed using ILWIS 3.3.

  16. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    Science.gov (United States)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i,j,k,m

  17. Geohydrologic reconnaissance of Lake Mead National Recreation Area; Las Vegas Wash to Opal Mountain, Nevada

    Science.gov (United States)

    Laney, R.L.

    1981-01-01

    The study is a geohydrologic reconnaissance of about 170 square miles in the Lake Mead National Recreation Area from Las Vegas Wash to Opal Mountain, Nevada. The study is one of a series that describes the geohydrology of the recreation area and that indentifies areas where water supplies can be developed. Precipitation in this arid area is about 5 inches per year. Streamflow is seasonal and extremely variable except for that in the Colorado River, which adjoins the area. Pan evaporation is more than 20 times greater than precipitation; therefore, regional ground-water supplies are meager except near the Colorado River, Lake Mead, and Lake Mohave. Large ground-water supplies can be developed near the river and lakes, and much smaller supplies may be obtained in a few favorable locations farther from the river and lakes. Ground water in most of the areas probably contains more than 1,000 milligrams per liter of dissolved solids, but water that contains less than 1,000 milligrams per liter of dissolved solids can be obtained within about 1 mile of the lakes. Crystalline rocks of metamorphic, intrusive and volcanic origin crop out in the area. These rocks are overlain by conglomerate and mudstone of the Muddy Creek Formation, gravel and conglomerate of the older alluvium, and sand and gravel of the Chemehuevi Formation and younger alluvium. The crystalline rocks, where sufficiently fractured, yield water to springs and would yield small amounts of water to favorably located wells. The poorly cemented and more permeable beds of the older alluvium, Chemehuevi Formation, and younger alluvium are the better potential aquifers, particularly along the Colorado River and Lakes Mead and Mohave. Thermal springs in the gorge of the Colorado River south of Hoover Dam discharge at least 2,580 acre-feet per year of water from the volcanic rocks and metamorphic and plutonic rocks. The discharge is much greater than could be infiltrated in the drainage basin above the springs

  18. Characteristics of surface O3 over Qinghai Lake area in Northeast Tibetan Plateau, China

    International Nuclear Information System (INIS)

    Shen, Zhenxing; Cao, Junji; Zhang, Leiming; Zhao, Zhuzi; Dong, Jungang; Wang, Linqing; Wang, Qiyuan; Li, Guohui; Liu, Suixin; Zhang, Qian

    2014-01-01

    Surface O 3 was monitored continuously during Aug. 12, 2010 to Jul. 21, 2011 at a high elevation site (3200 m above sea level) in Qinghai Lake area (36°58′37″N, 99°53′56″E) in Northeast Tibetan Plateau, China. Daily average O 3 ranged from 21.8 ppbv to 65.3 ppbv with an annual average of 41.0 ppbv. Seasonal average of O 3 followed a decreasing order of summer > autumn > spring > winter. Diurnal variations of O 3 showed low concentrations during daytime and high concentrations during late night and early morning. An intensive campaign was also conducted during Aug. 13–31, 2010 to investigate correlations between meteorological or chemical conditions and O 3 . It was found that O 3 was poorly correlated with solar radiation due to the insufficient NO x in the ambient air, thus limiting O 3 formation under strong solar radiation. In contrast, high O 3 levels always coincided with strong winds, suggesting that stratospheric O 3 and long range transport might be the main sources of O 3 in this rural area. Back-trajectory analysis supported this hypothesis and further indicated the transport of air masses from northwest, northeast and southeast directions. - Highlights: • Surface O 3 was measured in Qinghai Lake area in Northeast Tibetan Plateau, China. • The O 3 chemical formation was under a strong NOx-limited in Qinghai Lake areas. • Stratospheric O 3 and transport might be the main sources of O 3 in this area

  19. Uranium and base metal dispersion studies in the Maquire Lake area, Saskatchewan

    International Nuclear Information System (INIS)

    Sopuck, V.J.; Lehto, D.A.W.; Alley, D.W.

    1980-03-01

    The objective of this study was to study uranium and base metal dispersion in various sample media occurring in the Maguire Lake area of Saskatchewan: bedrock, overburden, lake water, and lake sediments. Factors controlling partitioning of metals among various sample media were investigated, and lake sediment data were interpreted in terms of the factors to determine the significance of lake sediment data in indicating local mineralization. The association between organic matter contents and metal contents was found to vary between lake-center and nearshore sediments. Nickel, cobalt and zinc in lake sediments are strongly controlled by hydroxide precipitation and are less dependent on bedrock type. The concentration of Fe in center-lake sediments appears to reflect only the physicochemical parameters in the lake. Uranium and copper are strongly controlled by and preferentially concentrated in the organic matter; however, in center-lake sediments with >12 percent organic matter, U and Cu strongly reflect rock type

  20. Study on the relationship between the lake area variations of Qinghai-Tibetan Plateau and the corresponding climate change in their basins

    Science.gov (United States)

    Guozhuang, Shen; Jingjuan, Liao; Huadong, Guo; Yingkui, Li

    2014-03-01

    Qinghai-Tibetan Plateau is the largest lake area in China, with a total area of existing lakes of 36,900km2, accounting for 52% of the total lake area of China. Lakes on the Tibetan Plateau play critical roles in the water cycle and ecological and environment systems of the Plateau. The global trend of warming up is increasing obviously, which has led to major changes in the climate conditions in China, even in the world. Whereas, when they analyse the relationship they just use the weather station's recording data, without any spatial analysis of the climate data. Here, we will do some researches on the relationship between the 10 selected lakes' area variation and the corresponding climate change in their drainage basin and discuss how the lakes changes in recent 40 years using the climate data processed using the spatial kriging. Thus, the drainage area can be taken into account and a real relationship can be pointed out. In order to study the relationship, Landsat MSS data, Landsat TM, Landsat ETM images, the topographic map have been collected to extract the variation of lake area. The 131 weather stations climate data, including precipitation, temperature, sun shine duration, evaporation are chosen to study the relationship. After extraction of the area of the lakes, a multivariate statistical analysis method was used to test the relationship between the area of the lakes and the global climate change, including the change of the temperature, the precipitation, and other factors. The variation of lakes in Qinghai-Tibetan Plateau is related to the mean temperature, the precipitation and saturation vapour pressure. But the frozen soil may affect the lake area variation to some extent.

  1. Study on the relationship between the lake area variations of Qinghai-Tibetan Plateau and the corresponding climate change in their basins

    International Nuclear Information System (INIS)

    Guozhuang, Shen; Jingjuan, Liao; Huadong, Guo; Yingkui, Li

    2014-01-01

    Qinghai-Tibetan Plateau is the largest lake area in China, with a total area of existing lakes of 36,900km 2 , accounting for 52% of the total lake area of China. Lakes on the Tibetan Plateau play critical roles in the water cycle and ecological and environment systems of the Plateau. The global trend of warming up is increasing obviously, which has led to major changes in the climate conditions in China, even in the world. Whereas, when they analyse the relationship they just use the weather station's recording data, without any spatial analysis of the climate data. Here, we will do some researches on the relationship between the 10 selected lakes' area variation and the corresponding climate change in their drainage basin and discuss how the lakes changes in recent 40 years using the climate data processed using the spatial kriging. Thus, the drainage area can be taken into account and a real relationship can be pointed out. In order to study the relationship, Landsat MSS data, Landsat TM, Landsat ETM images, the topographic map have been collected to extract the variation of lake area. The 131 weather stations climate data, including precipitation, temperature, sun shine duration, evaporation are chosen to study the relationship. After extraction of the area of the lakes, a multivariate statistical analysis method was used to test the relationship between the area of the lakes and the global climate change, including the change of the temperature, the precipitation, and other factors. The variation of lakes in Qinghai-Tibetan Plateau is related to the mean temperature, the precipitation and saturation vapour pressure. But the frozen soil may affect the lake area variation to some extent

  2. Remote assessment of reserve capacity of outburst alpine lakes

    Directory of Open Access Journals (Sweden)

    V. G. Konovalov

    2016-01-01

    Full Text Available Results of distant satellite sounding (the TERRA satellite of high-mountainous areas and digital models SRTM 4.1 and ASTER DEM G2 of the same relief were used to calculate the following parameters of high-mountain dammed glacial lakes: area, depth, the water volume, excess of the dam above the water level. It is important for estimation of the water volume that can be dangerous for a break-through of a dammed lake. Formulas deduced to calculate the depth and volume of a lake for several sections of its area were tested and proposed. It is demonstrated that the regression equation V = Hmax × F, where Hmax is maximum depth of the lake, can be used as the parameterization of the formula «lake volume V equals the product of the area F on average depth D». More precise values of the coefficients a and b in the formula V = aFb were also obtained. Parameters and the water volumes of lakes were estimated for the river Gunt (right tributary of Pyanj River basin. According to [28], there are 428 high-mountain lakes in this region with their total area ≥ 2500 m2. For basin Inflow of melted snow and glacier water caused by the rise of mean summer air temperatures in 1931–2015 was estimated for the lake Rivankul basin (the Pamir Mountains.

  3. ECOLOGICAL RESEARCH ON THE BREEDING AVIFAUNA OF THE DÂMBOVNIC AND SUSENI LAKES AREA

    Directory of Open Access Journals (Sweden)

    Maria Denisa Conete

    2016-12-01

    Full Text Available Our research study was conducted in the area of the Dâmbovnic and Suseni lakes (a square of 2x2 km, two artificially created lakes. We identified 105 breeding species belonging to 13 orders, 39 families and 74 genera; 97 (92,4% of them are confirmed breeding species and 8 (7,6 % are probable breeding species. The results of the research on the Dâmbovnic and Suseni lakes area were compared and related to the data from the Atlas of the Romanian breeding species. By relating them to the Atlas data, we noted that 83 of the 100 breeding species cited in the Atlas were also recorded during our study; 22 new breeding species were identified (19 of them are confirmed breeding species and 3 are probable breeding species. The species that nest mainly in the reed beds (Ixobrychus minutus, Anas platyrhynchos, Fulica atra, Gallinula chloropus, Aythya ferina, Acrocephalus arundinaceus and in the ecotones, marginal areas stand out among the wetland-dependent species through their higher numbers of individuals. Chroicocephalus ridibundus and Himantopus himantopus were observed to nest in the Argeş county for the first time. Most of them are constant and euconstant species (78 species, the results reflecting the abundance of resources in the area during the nesting period. The species showing increasing trends in their breeding population had a significant share (57 %, because the attractiveness of these lakes for birds has continuously grown, being correlated with the ecological restoration of the degraded wetland areas and the emergenge of dense vegetation (thus creating new nesting places, the diversity of the habitat, the existence of ecotone areas, the diversification of the aquatic trophic resources and last but not least the reduced interaction between the local population and the bird communities in the lakes area. The anthropogenic influence is manifested through aggressive agriculture (the use of pesticides and fertilizers, etc. and more recently

  4. [Ecological compensation standard in Dongting Lake region of returning cropland to lake based on emergy analysis].

    Science.gov (United States)

    Mao, De-Hua; Hu, Guang-Wei; Liu, Hui-Jie; Li, Zheng-Zui; Li, Zhi-Long; Tan, Zi-Fang

    2014-02-01

    The annual emergy and currency value of the main ecological service value of returning cropland to lake in Dongting Lake region from 1999 to 2010 was calculated based on emergy analysis. The calculation method of ecological compensation standard was established by calculating annual total emergy of ecological service function increment since the starting year of returning cropland to lake, and the annual ecological compensation standard and compensation area were analyzed from 1999 to 2010. The results indicated that ecological compensation standard from 1999 to 2010 was 40.31-86.48 yuan x m(-2) with the mean of 57.33 yuan x m(-2). The ecological compensation standard presented an increase trend year by year due to the effect of eco-recovery of returning cropland to lake. The ecological compensation standard in the research area presented a swift and steady growth trend after 2005 mainly due to the intensive economy development of Hunan Province, suggesting the value of natural ecological resources would increase along with the development of society and economy. Appling the emergy analysis to research the ecological compensation standard could reveal the dynamics of annual ecological compensation standard, solve the abutment problem of matter flow, energy flow and economic flow, and overcome the subjective and arbitrary of environment economic methods. The empirical research of ecological compensation standard in Dongting Lake region showed that the emergy analysis was feasible and advanced.

  5. Surficial geologic map of the Red Rock Lakes area, southwest Montana

    Science.gov (United States)

    Pierce, Kenneth L.; Chesley-Preston, Tara L.; Sojda, Richard L.

    2014-01-01

    The Centennial Valley and Centennial Range continue to be formed by ongoing displacement on the Centennial fault. The dominant fault movement is downward, creating space in the valley for lakes and the deposition of sediment. The Centennial Valley originally drained to the northeast through a canyon now represented by a chain of lakes starting with Elk Lake. Subsequently, large landslides blocked and dammed the drainage, which created Lake Centennial, in the Centennial Valley. Sediments deposited in this late Pleistocene lake underlie much of the valley floor and rest on permeable sand and gravel deposited when the valley drained to the northeast. Cold Pleistocene climates enhanced colluvial supply of gravelly sediment to mountain streams and high peak flows carried gravelly sediment into the valley. There, the lower gradient of the streams resulted in deposition of alluvial fans peripheral to Lake Centennial as the lake lowered through time to the level of the two present lakes. Pleistocene glaciers formed in the high Centennial Range, built glacial moraines, and also supplied glacial outwash to the alluvial fans. Winds from the west and south blew sand to the northeast side of the valley building up high dunes. The central part of the map area is flat, sloping to the west by only 0.6 meters in 13 kilometers (2 feet in 8 miles) to form a watery lowland. This lowland contains Upper and Lower Red Rock Lakes, many ponds, and peat lands inside the “water plane,” above which are somewhat steeper slopes. The permeable sands and gravels beneath Lake Centennial sediments provide a path for groundwater recharged from the adjacent uplands. This groundwater leaks upward through Lake Centennial sediments and sustains wetland vegetation into late summer. Upper and Lower Red Rock Lakes are formed by alluvial-fan dams. Alluvial fans converge from both the south and the north to form outlet thresholds that dam the two shallow lakes upstream. The surficial geology aids in

  6. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska

    Science.gov (United States)

    Jones, Benjamin M.; Grosse, G.; Arp, C.D.; Jones, M.C.; Walter, Anthony K.M.; Romanovsky, V.E.

    2011-01-01

    Quantifying changes in thermokarst lake extent is of importance for understanding the permafrost-related carbon budget, including the potential release of carbon via lake expansion or sequestration as peat in drained lake basins. We used high spatial resolution remotely sensed imagery from 1950/51, 1978, and 2006/07 to quantify changes in thermokarst lakes for a 700 km2 area on the northern Seward Peninsula, Alaska. The number of water bodies larger than 0.1 ha increased over the entire observation period (666 to 737 or +10.7%); however, total surface area decreased (5,066 ha to 4,312 ha or -14.9%). This pattern can largely be explained by the formation of remnant ponds following partial drainage of larger water bodies. Thus, analysis of large lakes (>40 ha) shows a decrease of 24% and 26% in number and area, respectively, differing from lake changes reported from other continuous permafrost regions. Thermokarst lake expansion rates did not change substantially between 1950/51 and 1978 (0.35 m/yr) and 1978 and 2006/07 (0.39 m/yr). However, most lakes that drained did expand as a result of surface permafrost degradation before lateral drainage. Drainage rates over the observation period were stable (2.2 to 2.3 per year). Thus, analysis of decadal-scale, high spatial resolution imagery has shown that lake drainage in this region is triggered by lateral breaching and not subterranean infiltration. Future research should be directed toward better understanding thermokarst lake dynamics at high spatial and temporal resolution as these systems have implications for landscape-scale hydrology and carbon budgets in thermokarst lake-rich regions in the circum-Arctic.

  7. Palaeolimnological evidence of vulnerability of Lake Neusiedl (Austria) toward climate related changes since the last "vanished-lake" stage.

    Science.gov (United States)

    Tolotti, Monica; Milan, Manuela; Boscaini, Adriano; Soja, Gerhard; Herzig, Alois

    2013-04-01

    The palaeolimnological reconstruction of secular evolution of Euroepan Lakes with key socio-economical relevance respect to large (climate change) and local scale (land use, tourism) environmental changes, represents one of the objectives of the project EuLakes (European Lakes Under Environmental Stressors, Supporting lake governance to mitigate the impact of climate change, Reg. N. 2CE243P3), launched in 2010 within the Central European Inititiative. The project consortium comprises lakes of different morphology and prevalent human uses, including the meso-eutrophic Lake Neusiedl, the largest Austrian lake (total area 315 km2), and the westernmost shallow (mean depth 1.2 m) steppe lake of the Euro-Asiatic continent. The volume of Lake Neusiedl can potentially change over the years, in relation with changing balance between atmospheric precipitation and lake water evapotranspiration. Changing water budget, together with high lake salinity and turbidity, have important implications over the lake ecosystem. This contribution illustrates results of the multi-proxi palaeolimnological reconstruction of ecologial changes occurred in Lake Neusiedl during the last ca. 140 years, i.e. since the end of the last "vanished-lake" stage (1865-1871). Geochemical and biological proxies anticipate the increase in lake productivity of ca. 10 years (1950s) respect to what reported in the literature. Diatom species composition indicate a biological lake recovery in the late 1980s, and suggest a second increment in lake productivity since the late 1990s, possibly in relation with the progressive increase in the nitrogen input from agriculture. Abundance of diatoms typical of brackish waters indicated no significant long-term change in lake salinity, while variations in species toleranting dessiccation confirm the vulnerability of Lake Neusiedl toward climate-driven changes in the lake water balance. This fragility is aggravated by the the semi-arid climate conditions of the catchemnt

  8. Photo Gallery for Lake Pontchartrain Area/New Orleans (Louisiana)

    Science.gov (United States)

    Lake Pontchartrain Area/New Orleans (Louisiana) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  9. Program Contacts for Lake Pontchartrain Area/New Orleans (Louisiana)

    Science.gov (United States)

    Lake Pontchartrain Area/New Orleans (Louisiana) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts

  10. Land Cover Change Detection in Urban Lake Areas Using Multi-Temporary Very High Spatial Resolution Aerial Images

    Directory of Open Access Journals (Sweden)

    Wenyuan Zhang

    2018-01-01

    Full Text Available The availability of very high spatial resolution (VHR remote sensing imagery provides unique opportunities to exploit meaningful change information in detail with object-oriented image analysis. This study investigated land cover (LC changes in Shahu Lake of Wuhan using multi-temporal VHR aerial images in the years 1978, 1981, 1989, 1995, 2003, and 2011. A multi-resolution segmentation algorithm and CART (classification and regression trees classifier were employed to perform highly accurate LC classification of the individual images, while a post-classification comparison method was used to detect changes. The experiments demonstrated that significant changes in LC occurred along with the rapid urbanization during 1978–2011. The dominant changes that took place in the study area were lake and vegetation shrinking, replaced by high density buildings and roads. The total area of Shahu Lake decreased from ~7.64 km2 to ~3.60 km2 during the past 33 years, where 52.91% of its original area was lost. The presented results also indicated that urban expansion and inadequate legislative protection are the main factors in Shahu Lake’s shrinking. The object-oriented change detection schema presented in this manuscript enables us to better understand the specific spatial changes of Shahu Lake, which can be used to make reasonable decisions for lake protection and urban development.

  11. Iodine 129 concentration in river and lake water in the Fukushima area

    International Nuclear Information System (INIS)

    Tokuyama, Hironori; Matsuzaki, Hiroyuki; Miyake, Yasuto; Honda, Maki; Yamagata, Takeyasu

    2012-01-01

    A large amount of radionuclides, including "1"2"9I, were released into the environment by Fukushima Daiichi nuclear power plant accident. In determination of "1"2"9I, accelerator mass spectrometry is extraordinarily sensitive. We found that river and lake water in Fukushima area contained significant amount of "1"2"9I from the accident, and provided fruitful information for us. The concentration of "1"2"9I in the river and lake water taken in June 2012 ranged from 3.88 x 10"7 atoms/L to 3.32 x 10"9 atoms/L. The concentration of "1"2"9I in samples taken in Kawauchi village and Tamura city located in the west of the nuclear power plant was low, while that in Namie town, Iitate village and Minamisouma city was relatively high. In addition, the concentration of "1"2"9I in samples taken at the same place in December 2011, March 2012 and June 2012 was increased except one sample. This is result from the outflow of "1"2"9I which was attached to the organic matter, and from seasonal changes. To investigate the state of dilution of "1"2"9I in river and lake, it is necessary to take long-term and fixed-point observation. (author)

  12. Inorganic mercury (Hg2+ uptake by different plankton fractions of Andean Patagonian lakes (Argentina

    Directory of Open Access Journals (Sweden)

    Diéguez M.C.

    2014-07-01

    Full Text Available The species composition and the size structure of natural planktonic food webs may provide essential information to understand the fate of mercury and, in particular, the bioaccumulation pattern of Hg2+ in the water column of lake ecosystems. Heterotrophic and autotrophic picoplankton and phytoplankton are the most important entry points for Hg in aquatic ecosystems since they concentrate Hg2+ and MeHg from ambient water, making them available to planktonic consumers at higher trophic levels of lake food webs. In this investigation we studied the uptake of 197Hg2+ in natural plankton assemblages from four Andean lakes (Nahuel Huapi National Park, Patagonia, Argentina, comprised in the size fractions 0.2-2.7 μm (picoplankton, 0.2-20 μm (pico and nanoplankton and 20-50 μm (microplankton through experiments using Hg2+ labeled with 197Hg2+. The experimental results showed that the uptake of Hg2+ was highest in the smallest plankton fractions (0.2-2.7 μm and 0.2-20 μm compared to the larger fraction comprising microplankton (20-50 um. This pattern was consistent in all lakes, reinforcing the idea that among pelagic organisms, heterotrophic and autotrophic bacteria with the contribution of nanoflagellates and dinoflagellates constitute the main entry point of Hg2+ to the pelagic food web. Moreover, a significant direct relationship was found between the Hg2+ uptake and surface index of the planktonic fractions (SIf. Thus, the smaller planktonic fractions which bore the higher SI were the major contributors to the Hg2+ passing from the abiotic to the biotic pelagic compartments of these Andean lakes.

  13. Impacts of urban sprawl on the area of downtown lakes in a highly developing city on central China

    Science.gov (United States)

    Zhang, W.; Zhang, Y.

    2016-12-01

    Wuhan city in central China is full of water resources and numerous lakes are located. Downtown lakes have significant ecological value and ornamental value for urban inhabitants in Wuhan. Under the rapid process of urban sprawl, downtown lakes are occupied by impervious areas. This research uses Landsat images to extract land uses from 1991 to 2013 in Wuhan city , and attempts to find out how urban sprawl affects the water body area decline in space. Two largest downtown lakes in Wuhan city, Donghu Lake located in central city and Tangxunhu Lake located in suburbs, are taken as case study area. A direction change index (DCI) is proposed to evaluate the changes of a specific land use in different directions. The results reveal that two downtown lakes are undergoing rapid water body area decline from 1991 to 2013, with decline rate are -0.022 in Donghu watershed and -0.011 in Tangxunhu watershed. 68.26% and 62.50% of the reduced water body is occupied by built-up land in Donghu watershed and Tangxunhu watershed, respectively. According to DCI, the water body reduce is highly correlated with built-up land increase in all direction. Moreover, it is found that in the Donghu watershed the north-west part suffered significant water body area decline, which is close to central city. While in Tangxunhu watershed, the area of water body declined in north-west, south-west and north-east part, and the area obstructed from central city by the lake was suffering less water body area decline. It is concluded that the water body area of downtown lakes are highly affected by the process of urban sprawl, and the lakes in central districts trends to suffer higher descend than that of the downtown lake located in suburbs. Meanwhile, even for the same downtown lake, the area orientating and close to the central city may suffer more rapid decline than the area that does not orientate to the central city.

  14. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30years.

    Science.gov (United States)

    Zhang, Zengxin; Chang, Juan; Xu, Chong-Yu; Zhou, Yang; Wu, Yanhong; Chen, Xi; Jiang, Shanshan; Duan, Zheng

    2018-09-01

    Lakes and vegetation are important factors of the Earth's hydrological cycle and can be called an "indicator" of climate change. In this study, long-term changes of lakes' area and vegetation coverage in the Qinghai-Tibetan Plateau (QTP) and their relations to the climate change were analyzed by using Mann-Kendall method during the past 30years. Results showed that: 1) the lakes' area of the QTP increased significantly during the past 30years as a whole, and the increasing rates have been dramatically sped up since the year of 2000. Among them, the area of Ayakekumu Lake has the fastest growing rate of 51.35%, which increased from 618km 2 in the 1980s to 983km 2 in the 2010s; 2) overall, the Normalized Difference Vegetation Index (NDVI) increased in the QTP during the past 30years. Above 79% of the area in the QTP showed increasing trend of NDVI before the year of 2000; 3) the air temperature increased significantly, the precipitation increased slightly, and the pan evaporation decreased significantly during the past 30years. The lake area and vegetation coverage changes might be related to the climate change. The shifts in the temporal climate trend occurred around the year 2000 had led the lake area and vegetation coverage increasing. This study is of importance in further understanding the environmental changes under global warming over the QTP. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Evaluation of the Benefit of Flood Reduction by Artificial Groundwater Recharge Lake Operation in a Coastal Area

    Science.gov (United States)

    Chen, Ching-Nuo; Tsai, Chih-Heng

    2017-04-01

    Inundation disasters often occur in the southwestern coastal plains of Taiwan. The coastal plains suffers mostly from land-subsidence, surface water is difficult to be drained during the typhoon period, leading to more severe flood disasters. Global climate warming has become more significant, which in turn has resulted in the increase in amplitude and frequency of climate change related disasters. In addition, climate change also induces a rise in sea water level year by year. The rise in sea water level does not only weakens the function of existing drainage system but also increases tidal levels and storm tide levels, which increases the probability and amount of inundation disasters. The serious land subsidence area at Linbian river basin was selected as the study area. An artificial groundwater recharge lake has been set up in Linbian river basin by Pingtung government. The development area of this lake is 58 hectare and the storage volume is 2.1 million cubic meters (210 × 104m3). The surface water from Linbian basin during a wet season is led into the artificial groundwater recharge lake by water diversion project, and then employ special hydro-geological conditions of the area for groundwater recharge, increase groundwater supply and decrease land subsidence rate, and incidentally some of the flood diversion, detention, reduce flooding. In this study, a Real-time Interactive Inundation Model is applied to simulate different flooding storage volume and gate operations to estimate the benefits of flood mitigation. According to the simulation results, the hydrograph shape, peak-flow reduction and time lag to peak of the flood reduction hydrograph into the lake are apparently different for each case of different gate operation at the same storage volume. Therefore, the effect of flood control and disaster mitigation is different. The flood control and disaster mitigation benefits are evaluated by different operation modes, which provide decision makers to

  16. Spatial distribution and temporal development of high-mountain lakes in western Austria

    Science.gov (United States)

    Merkl, Sarah; Emmer, Adam; Mergili, Martin

    2015-04-01

    Glacierized high-mountain environments are characterized by active morphodynamics, favouring the rapid appearance and disappearance of lakes. On the one hand, such lakes indicate high-mountain environmental changes such as the retreat of glaciers. On the other hand, they are sometimes susceptible to sudden drainage, leading to glacial lake outburst floods (GLOFs) putting the downstream population at risk. Whilst high-mountain lakes have been intensively studied in the Himalayas, the Pamir, the Andes or the Western Alps, this is not the case for the Eastern Alps. A particular research gap, which is attacked with the present work, concerns the western part of Austria. We consider a study area of approx. 6,140 km², covering the central Alps over most of the province of Tyrol and part of the province of Salzburg. All lakes ≥250 m² located higher than 2000 m asl are mapped from high-resolution Google Earth imagery and orthophotos. The lakes are organized into seven classes: (i) ice-dammed; near-glacial (ii) moraine-dammed and (iii) bedrock-dammed; (iv) moraine-dammed and (v) bedrock-dammed distant to the recent glaciers; (vi) landslide-dammed; (vii) anthropogenic. The temporal development of selected lakes is investigated in detail, using aerial photographs dating back to the 1950s. 1045 lakes are identified in the study area. Only eight lakes are ice-dammed (i). One third of all lakes is located in the immediate vicinity of recent glacier tongues, half of them impounded by moraine (ii), half of them by bedrock (iii). Two thirds of all lakes are impounded by features (either moraines or bedrock) shaped by LIA or Pleistocenic glaciers at some distance to the present glacier tongues (iv and v). Only one landslide-dammed lake (vi) is identified in the study area, whilst 21 lakes are of anthropogenic origin (vii). 72% of all lakes are found at 2250-2750 m asl whilst less than 2% are found above 3000 m asl. The ratio of rock-dammed lakes increases with increasing

  17. Sedimentological, mineralogical, and geochemical results from surface sediments and the sediment record from Site 2 of the ICDP drilling project at Lake Towuti, Indonesia

    Science.gov (United States)

    Hasberg, A. K.; Melles, M.; Wennrich, V.; Vogel, H.; Just, J.; Russell, J. M.; Bijaksana, S.; Morlock, M.; Opitz, S.

    2017-12-01

    More than 1000 m of sediment core were recovered in spring 2015 from three different drill sites in tropical Lake Towuti (2.5°S, 121°E), Indonesia, during the Towuti Drilling Project (TDP) of the International Continental Scientific Drilling Program (ICDP). Furthermore, a set of 84 lake surface sediment samples, distributed over the entire lake, was collected in order to better understand modern sedimentary processes. The surface samples were investigated for physical, chemical, mineralogical, and biological properties at the University of Cologne (UoC), Germany. On the sediment cores macro- and microscopical lithological descriptions, line-scan imaging, logging of physical properties (MSCL), and subsampling was conducted at the National Lacustrine Core Facility of the University of Minnesota, USA, in November 2015 and January 2016. Afterwards, the archive core halves and 672 subsamples of TDP Site 2 were shipped to the UoC for X-Ray Fluorescence (XRF) scanning and sedimentological, geochemical, and mineralogical analyses, respectively, supplemented by visible to near-infrared spectroscopy (VNIR) at Brown University, USA. The data from the surface samples evidence that allochthonous sedimentation in Lake Towuti today is dominated by fluvial supply from five distinguishable source areas: (i) the Mahalona River to the north, which drains lakes Mahalona and Matano, (ii) inlets around the village of Timampu to the northwest, (iii) the Loeha River to the east, (iv) the Lengke River to the south, and (v) the Lemo-Lemo River to the northeast of Lake Towuti. Of these, source areas (ii) and (iii) as well as (iv) and (v) have similar geochemical compositions, respectively. In addition, the lake sedimentation is significantly influenced by gravitational sediment supply from steep slopes as well as lake-internal gravitational and density-driven processes. The uppermost 41 m of sediment core 2A consist of pelagic sediments (totaling 11 m) and event layers from mass movement

  18. High-frequency remote monitoring of large lakes with MODIS 500 m imagery

    Science.gov (United States)

    McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.

    2012-01-01

    Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.

  19. Basic limnology of fifty-one lakes in Costa Rica.

    Science.gov (United States)

    Haberyan, Kurt A; Horn, Sally P; Umaña, Gerardo

    2003-03-01

    We visited 51 lakes in Costa Rica as part of a broad-based survey to document their physical and chemical characteristics and how these relate to the mode of formation and geographical distribution of the lakes. The four oxbow lakes were low in elevation and tended to be turbid, high in conductivity and CO2, but low in dissolved O2; one of these, L. Gandoca, had a hypolimnion essentially composed of sea water. These were similar to the four wetland lakes, but the latter instead had low conductivities and pH, and turbidity was often due to tannins rather than suspended sediments. The thirteen artificial lakes formed a very heterogenous group, whose features varied depending on local factors. The thirteen lakes dammed by landslides, lava flows, or lahars occurred in areas with steep slopes, and were more likely to be stratified than most other types of lakes. The eight lakes that occupy volcanic craters tended to be deep, stratified, clear, and cool; two of these, L. Hule and L. Río Cuarto, appeared to be oligomictic (tending toward meromictic). The nine glacial lakes, all located above 3440 m elevation near Cerro Chirripó, were clear, cold, dilute, and are probably polymictic. Cluster analysis resulted in three significant groups of lakes. Cluster 1 included four calcium-rich lakes (average 48 mg l-1), Cluster 2 included fourteen lakes with more Si than Ca+2 and higher Cl- than the other clusters, and Cluster 3 included the remaining thirty-three lakes that were generally less concentrated. Each cluster included lakes of various origins located in different geographical regions; these data indicate that, apart from the high-altitude glacial lakes and lakes in the Miravalles area, similarity in lake chemistry is independent of lake distribution.

  20. Characteristics of Heavy Metals Contamination in Lotus Root in the Dongting Lake Area, China

    Directory of Open Access Journals (Sweden)

    LUO Man

    2016-11-01

    Full Text Available Heavy metal contamination in soils in the Dongting Lake areas has evoked widespread concerns about the excessive heavy metals in aquatic product. Based on the national standards of food contaminant limits and the method of comprehensive pollution index, heavy metals of Cd, Pb, Cu, Zn, Mn in lotus root were clarified through field investigation in the Dongting Lake area. Results showed that lotus root in the Dongting Lake area was contaminated seriously by heavy metals. Cd and Pb were two main pollutants and the single pollution indices were 5.70 and 8.35 respectively. According to the comprehensive pollution index of heavy metals, lotus root in Yueyanglou District and Yuanjiang City were classified into medium pollution and Junshan District, Huarong County, Nan County, and Datong District were classified into heavy pollution. Principal component analysis showed that planting areas of lotus root were clumped and medium and heavy pollution areas were separated significantly. Habitat contamination by heavy metals and decreasing area of lotus ponds were two main factors for excessive heavy metals in lotus root. Thus, some measurements, such as habit restoration, were proposed for local government to decrease heavy metals in planting areas and to promote the healthy development of lotus root industry in the Dongting Lake area.

  1. Terrestrial Lava Lake Physical Parameter Estimation Using a Silicate Cooling Model - Implications for a Return to the Volcanic Moon, Io

    Science.gov (United States)

    Davies, Ashley

    2010-05-01

    Active lava lakes are open volcanic systems, where lava circulates between a magma chamber and the surface. Rare on Earth, lava lakes may be common on Io, the highly volcanic moon of Jupiter (see [1]). Lava lakes are important targets for future missions to Io [2, 3] as they provide excellent targets at which to measure lava eruption temperature (see [2] for other targets). With this in mind, hand-held infrared imagers were used to collect in-situ thermal emission data from the anorthoclase phonolite lava lake at Erebus volcano (Antarctica) in December 2005 [1, 3] and the basalt lava lake at Erta'Ale volcano (Ethiopia) in September 2009. These data have been analysed to establish surface temperature and area distributions and the integrated thermal emission spectra for each lava lake. These spectra have been used to test models developed for analysis of remote sensing data of lava lakes and lava flows on both Earth and Io, where no ground-truth exists. The silicate cooling model [4] assumes, for the lava lake model variant, that the existing surface crust has been created at a fixed rate. Model output consists of a synthesized thermal emission spectrum, estimate of surface age range, and a rate of surface crust area formation. The cooling model provides accurate reproductions of actual thermal spectra and the total emitting area to within a few percent of actual emitting area. Despite different composition lavas, the integrated thermal emission spectra from the two terrestrial lava lakes studied are very similar in shape, and, importantly, bear a striking similarity to spectra of Pele, a feature on Io that has been proposed to be a persistent, active lava lake [1]. The 2005 Erebus lava lake had an area of ~820 m2 and a measured surface temperature distribution of 1090 K to 575 K with a broad peak from 730 K to 850 K [5]. Total heat loss was estimated to be 23.5 MW [5]. The model fit yielded an area of ~820 m2, temperatures from 1475 K to 699 K, and an average

  2. Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Frederick Policelli

    2018-02-01

    Full Text Available Lake Chad, located in the middle of the African Sahel belt, underwent dramatic decreases in the 1970s and 1980s leaving less than ten percent of its 1960s surface water extent as open water. In this paper, we present an extended record (dry seasons 1988–2016 of the total surface water area of the lake (including both open water and flooded vegetation derived using Land Surface Temperature (LST data (dry seasons 2000–2016 from the NASA Terra MODIS sensor and EUMETSAT Meteosat-based LST measurements (dry seasons 1988–2001 from an earlier study. We also examine the total surface water area for Lake Chad using radar data (dry seasons 2015–2016 from the ESA Sentinel-1a mission. For the limited number of radar data sets available to us (18 data sets, we find on average a close match between the estimates from these data and the corresponding estimates from LST, though we find spatial differences in the estimates using the two types of data. We use these spatial differences to adjust the record (dry seasons 2000–2016 from MODIS LST. Then we use the adjusted record to remove the bias of the existing LST record (dry seasons 1988–2001 derived from Meteosat measurements and combine the two records. From this composite, extended record, we plot the total surface water area of the lake for the dry seasons of 1988–1989 through 2016–2017. We find for the dry seasons of 1988–1989 to 2016–2017 that the maximum total surface water area of the lake was approximately 16,800 sq. km (February and May, 2000, the minimum total surface water area of the lake was approximately 6400 sq. km (November, 1990, and the average was approximately 12,700 sq. km. Further, we find the total surface water area of the lake to be highly variable during this period, with an average rate of increase of approximately 143 km2 per year.

  3. Scenario earthquake hazards for the Long Valley Caldera-Mono Lake area, east-central California (ver. 2.0, January 2018)

    Science.gov (United States)

    Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.

    2014-06-30

    As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and also for preparing emergency response plans.The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault Zone to the east of the study area.In this report, an earthquake scenario is intended to depict the potential consequences of significant earthquakes. A scenario earthquake is not necessarily the largest or most damaging earthquake possible on a recognized fault. Rather it is both large enough and likely enough that emergency planners should consider it in regional emergency response plans. In particular, the ground motion predicted for a given scenario earthquake does not represent a full probabilistic hazard assessment, and thus it does not provide the basis for hazard zoning and earthquake-resistant building design.Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM). Alternatives

  4. Integrated Application of Remote Sensing, GIS and Hydrological Modeling to Estimate the Potential Impact Area of Earthquake-Induced Dammed Lakes

    Directory of Open Access Journals (Sweden)

    Bo Cao

    2017-10-01

    Full Text Available Dammed lakes are an important secondary hazard caused by earthquakes. They can induce further damage to nearby humans. Current hydrology calculation research on dammed lakes usually lacks spatial expressive ability and cannot accurately conduct impact assessment without the support of remote sensing, which obtains important characteristic information of dammed lakes. The current study aims to address the issues of the potential impact area estimate of earthquake-induced dammed lakes by combining remote sensing (RS, a geographic information system (GIS, and hydrological modeling. The Tangjiashan dammed lake induced by the Wenchuan earthquake was selected as the case for study. The elevation-versus-reservoir capacity curve was first calculated using the seed-growing algorithm based on digital elevation model (DEM data. The simulated annealing algorithm was applied to train the hydrological modeling parameters according to the historical hydrologic data. Then, the downstream water elevation variational process under different collapse capacity conditions was performed based on the obtained parameters. Finally, the downstream potential impact area was estimated by the highest water elevation values at different hydrologic sections. Results show that a flood with a collapse elevation of at least 680 m will impact the entire downstream region of Beichuan town. We conclude that spatial information technology combined with hydrological modeling can accurately predict and demonstrate the potential impact area with limited data resources. This paper provides a better guide for future immediate responses to dammed lake hazard mitigation.

  5. Post-glacial, land rise-induced formation and development of lakes in the Forsmark area, central Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Brunberg, Anna-Kristina; Blomqvist, Peter [Uppsala Univ. (Sweden). Dept. of Limnology, Evolutionary Biology Centre

    2000-03-15

    This report describes the lakes of Uppsala county, with special emphasis on the coastal lakes in the Forsmark area. The aim of the study is to characterise different main types of lakes within the Forsmark area and to create a basis for prediction of their ontogeny, that can be used also for new lakes which due to shoreline displacement will be formed during the next 10 000 years. Areas where future research is needed to fully understand the functioning of the lake ecosystems and their ontogeny have also been identified. Three main types of lake ecosystems could be identified: The oligotrophic hardwater lakes are to a large extent surrounded by mires. Inflow as well as outflow of water is often diffuse, via the surrounding mire. The lakes are small and shallow, with nutrient poor and highly alkaline water. Three key habitats have been identified within the lakes; i) the pelagic zone, characterised by low production of biota, ii) the presumably moderately productive emergent macrophyte zone, dominated by Sphagnum and Phragmites, and iii) the light-exposed soft-bottom zone with Chara meadows and an unusually rich and presumably highly productive microbial sediment community. In later stages of the lake ontogeny, Sphagnum becomes more and more dominant in the system, which successively turns acidic. The final stage is likely to be a raised bog ecosystem with an autonomous hydrological functioning. The brown water lakes are typically found within the main part of the River Forsmarksaan and are characterised by a high flow-through of water from the upper parts of the drainage area, which are dominated by mires. Their lake water is highly stained by allochtonous organic carbon imported from the catchment area. Also in this lake type a Sphagnum-littoral successively develops, and in a mature lake three key habitats can be identified; i) the pelagic zone, most likely the dominant habitat in terms of production of organisms and in which bacterioplankton dominates the

  6. Post-glacial, land rise-induced formation and development of lakes in the Forsmark area, central Sweden

    International Nuclear Information System (INIS)

    Brunberg, Anna-Kristina; Blomqvist, Peter

    2000-03-01

    This report describes the lakes of Uppsala county, with special emphasis on the coastal lakes in the Forsmark area. The aim of the study is to characterise different main types of lakes within the Forsmark area and to create a basis for prediction of their ontogeny, that can be used also for new lakes which due to shoreline displacement will be formed during the next 10 000 years. Areas where future research is needed to fully understand the functioning of the lake ecosystems and their ontogeny have also been identified. Three main types of lake ecosystems could be identified: The oligotrophic hardwater lakes are to a large extent surrounded by mires. Inflow as well as outflow of water is often diffuse, via the surrounding mire. The lakes are small and shallow, with nutrient poor and highly alkaline water. Three key habitats have been identified within the lakes; i) the pelagic zone, characterised by low production of biota, ii) the presumably moderately productive emergent macrophyte zone, dominated by Sphagnum and Phragmites, and iii) the light-exposed soft-bottom zone with Chara meadows and an unusually rich and presumably highly productive microbial sediment community. In later stages of the lake ontogeny, Sphagnum becomes more and more dominant in the system, which successively turns acidic. The final stage is likely to be a raised bog ecosystem with an autonomous hydrological functioning. The brown water lakes are typically found within the main part of the River Forsmarksaan and are characterised by a high flow-through of water from the upper parts of the drainage area, which are dominated by mires. Their lake water is highly stained by allochtonous organic carbon imported from the catchment area. Also in this lake type a Sphagnum-littoral successively develops, and in a mature lake three key habitats can be identified; i) the pelagic zone, most likely the dominant habitat in terms of production of organisms and in which bacterioplankton dominates the

  7. Qualitative Study Of Anopheles Species In Konduga Lake Area Of ...

    African Journals Online (AJOL)

    The investigation on Anopheles species in Konduga lake area, Borno State of Nigeria, was carried out to identify various Anopheles species prevalent in the area and to determine their relative population densities. Six Anopheles species were recorded, namely, A. gambiae, A. funestus, A. ziemanni, A. squamosus, ...

  8. Statistical analysis of lake levels and field study of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015: Chapter A of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Diekoff, Aliesha L.; Rosenberry, Donald O.; White, Eric A.; Erickson, Melinda L.; Morel, Daniel L.; Heck, Jessica M.

    2016-10-19

    Water levels declined from 2003 to 2011 in many lakes in Ramsey and Washington Counties in the northeast Twin Cities Metropolitan Area, Minnesota; however, water levels in other northeast Twin Cities Metropolitan Area lakes increased during the same period. Groundwater and surface-water exchanges can be important in determining lake levels where these exchanges are an important component of the water budget of a lake. An understanding of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area has been limited by the lack of hydrologic data. The U.S. Geological Survey, in cooperation with the Metropolitan Council and Minnesota Department of Health, completed a field and statistical study assessing lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes. This report documents the analysis of collected hydrologic, water-quality, and geophysical data; and existing hydrologic and geologic data to (1) assess the effect of physical setting and climate on lake-level fluctuations of selected lakes, (2) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (3) estimate general ages for waters extracted from the wells, and (4) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Statistical analyses of lake levels during short-term (2002–10) and long-term (1925–2014) periods were completed to help understand lake-level changes across the northeast Twin Cities Metropolitan Area. Comparison of 2002–10 lake levels to several landscape and geologic characteristics explained variability in lake-level changes for 96 northeast Twin Cities Metropolitan Area lakes. Application of several statistical methods determined that (1) closed-basin lakes (without an active outlet) had larger lake-level declines than flow-through lakes with an outlet; (2

  9. Holocene pollen and sediment record from the tangle lakes area, central Alaska

    Science.gov (United States)

    Ager, Thomas A.; Sims, John D.

    1981-01-01

    Pollen and sediments have been analyzed from a 5.5 meter‐length core of lacustrine sediments from Tangle Lakes, in the Gulkana Upland south of the Alaska Range (63 ° 01 ‘ 46”; N. latitude, 146° 03 ‘ 48 “ W. longitude). Radiocarbon ages indicate that the core spans the last 4700 years. The core sediments are sandy silt and silty clay; the core shows distinct rhythmic laminations in the lower 398 cm. The laminae appear to be normally graded; peat fibers and macerated plant debris are more abundant near the tops of the laminae. Six volcanic‐ash layers are present in the upper 110 cm of the core.Present‐day vegetation of the Tangle Lakes area is mesic shrub tundra and open spruce woodland, with scattered patches of shrub willow (Salix), balsam poplar (P. balsamifera), spruce (Picea), paper birch (Betula papyrifera), and alder (Alnus). Pollen analysis of 27 core samples suggests that this vegetation type has persisted throughout the past 4700 years, except for an apparently substantial increase in Picea beginning about 3500 years B.P. Percentages of Picea pollen are very low (generally 1–3 percent) in the lower 2 meters of core (ca. 4700 to 3500 years B.P.), but rise to 13–18 percent in the upper 3.4 meters (ca. 3500 years B.P. to present). Previously reported data from this area indicate that Picea trees initially arrived in the Tangle Lakes area about 9100 years B.P., at least 2.5 to 3 thousand years after deglaciation of the region. The present investigation suggests that Picea trees became locally scarce or died out sometime after about 9000 years B.P. but before 4700 years B.P., then reinvaded the area about 3500 years B.P. If this extrapolated age for the Picea reinvasion is accurate it suggests that local expansion of the Picea population coincides with the onset of a Neoglacial interval of cooler, moister climate. This is an unexpected result, because intervals of cooler climate generally coincide with lowering of the altitudinal limit of

  10. Prediction of lake depth across a 17-state region in the United States

    Science.gov (United States)

    Oliver, Samantha K.; Soranno, Patricia A.; Fergus, C. Emi; Wagner, Tyler; Winslow, Luke A.; Scott, Caren E.; Webster, Katherine E.; Downing, John A.; Stanley, Emily H.

    2016-01-01

    Lake depth is an important characteristic for understanding many lake processes, yet it is unknown for the vast majority of lakes globally. Our objective was to develop a model that predicts lake depth using map-derived metrics of lake and terrestrial geomorphic features. Building on previous models that use local topography to predict lake depth, we hypothesized that regional differences in topography, lake shape, or sedimentation processes could lead to region-specific relationships between lake depth and the mapped features. We therefore used a mixed modeling approach that included region-specific model parameters. We built models using lake and map data from LAGOS, which includes 8164 lakes with maximum depth (Zmax) observations. The model was used to predict depth for all lakes ≥4 ha (n = 42 443) in the study extent. Lake surface area and maximum slope in a 100 m buffer were the best predictors of Zmax. Interactions between surface area and topography occurred at both the local and regional scale; surface area had a larger effect in steep terrain, so large lakes embedded in steep terrain were much deeper than those in flat terrain. Despite a large sample size and inclusion of regional variability, model performance (R2 = 0.29, RMSE = 7.1 m) was similar to other published models. The relative error varied by region, however, highlighting the importance of taking a regional approach to lake depth modeling. Additionally, we provide the largest known collection of observed and predicted lake depth values in the United States.

  11. Leaf-litter microfungal community on poor fen plant debris in Torfy Lake area (Central Poland)

    OpenAIRE

    Mateusz Wilk; Agnieszka Banach; Julia Pawłowska; Marta Wrzosek

    2014-01-01

    The purpose of this study was to initially evaluate the species diversity of microfungi growing on litter of 15 plant species occurring on the poor fen and neighbouring area of the Torfy Lake, Masovian voivodeship, Poland. The lake is located near the planned road investment (construction of the Warsaw southern express ring road S2). The place is biologically valuable as there are rare plant communities from Rhynchosporion albae alliance protected under the Habitats Directive adopted by the E...

  12. The Cottonwood Lake study area, a long-term wetland ecosystem monitoring site

    Science.gov (United States)

    Mushet, David M.; Euliss, Ned H.

    2012-01-01

    The Cottonwood Lake study area is one of only three long-term wetland ecosystem monitoring sites in the prairie pothole region of North America; the other two are Orchid Meadows in South Dakota and St. Denis in Saskatchewan. Of the three, Cottonwood Lake has, by far, the longest continuous data-collection record. Research was initiated at the study area in 1966, and intensive investigations of the hydrology, chemistry, and biology of prairie pothole wetlands continue at the site today. This fact sheet describes the study area, provides an overview of wetland ecology research that has been conducted at the site in the past, and provides an introduction to current work being conducted at the study area by USGS scientists.

  13. Ecological Sensitivity Evaluation of Tourist Region Based on Remote Sensing Image - Taking Chaohu Lake Area as a Case Study

    Science.gov (United States)

    Lin, Y.; Li, W. J.; Yu, J.; Wu, C. Z.

    2018-04-01

    Remote sensing technology is of significant advantages for monitoring and analysing ecological environment. By using of automatic extraction algorithm, various environmental resources information of tourist region can be obtained from remote sensing imagery. Combining with GIS spatial analysis and landscape pattern analysis, relevant environmental information can be quantitatively analysed and interpreted. In this study, taking the Chaohu Lake Basin as an example, Landsat-8 multi-spectral satellite image of October 2015 was applied. Integrated the automatic ELM (Extreme Learning Machine) classification results with the data of digital elevation model and slope information, human disturbance degree, land use degree, primary productivity, landscape evenness , vegetation coverage, DEM, slope and normalized water body index were used as the evaluation factors to construct the eco-sensitivity evaluation index based on AHP and overlay analysis. According to the value of eco-sensitivity evaluation index, by using of GIS technique of equal interval reclassification, the Chaohu Lake area was divided into four grades: very sensitive area, sensitive area, sub-sensitive areas and insensitive areas. The results of the eco-sensitivity analysis shows: the area of the very sensitive area was 4577.4378 km2, accounting for about 37.12 %, the sensitive area was 5130.0522 km2, accounting for about 37.12 %; the area of sub-sensitive area was 3729.9312 km2, accounting for 26.99 %; the area of insensitive area was 382.4399 km2, accounting for about 2.77 %. At the same time, it has been found that there were spatial differences in ecological sensitivity of the Chaohu Lake basin. The most sensitive areas were mainly located in the areas with high elevation and large terrain gradient. Insensitive areas were mainly distributed in slope of the slow platform area; the sensitive areas and the sub-sensitive areas were mainly agricultural land and woodland. Through the eco-sensitivity analysis of

  14. Characteristics of surface O{sub 3} over Qinghai Lake area in Northeast Tibetan Plateau, China

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Zhenxing, E-mail: zxshen@mail.xjtu.edu.cn [Department of Environmental Sciences and Engineering, Xi' an Jiaotong University, Xi' an (China); Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Cao, Junji [Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Zhang, Leiming [Air Quality Research Division, Environment Canada, Toronto (Canada); Zhao, Zhuzi [Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Dong, Jungang [School of Architecture, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Wang, Linqing [Department of Environmental Sciences and Engineering, Xi' an Jiaotong University, Xi' an (China); Wang, Qiyuan; Li, Guohui; Liu, Suixin [Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Zhang, Qian [Department of Environmental Sciences and Engineering, Xi' an Jiaotong University, Xi' an (China)

    2014-12-01

    Surface O{sub 3} was monitored continuously during Aug. 12, 2010 to Jul. 21, 2011 at a high elevation site (3200 m above sea level) in Qinghai Lake area (36°58′37″N, 99°53′56″E) in Northeast Tibetan Plateau, China. Daily average O{sub 3} ranged from 21.8 ppbv to 65.3 ppbv with an annual average of 41.0 ppbv. Seasonal average of O{sub 3} followed a decreasing order of summer > autumn > spring > winter. Diurnal variations of O{sub 3} showed low concentrations during daytime and high concentrations during late night and early morning. An intensive campaign was also conducted during Aug. 13–31, 2010 to investigate correlations between meteorological or chemical conditions and O{sub 3}. It was found that O{sub 3} was poorly correlated with solar radiation due to the insufficient NO{sub x} in the ambient air, thus limiting O{sub 3} formation under strong solar radiation. In contrast, high O{sub 3} levels always coincided with strong winds, suggesting that stratospheric O{sub 3} and long range transport might be the main sources of O{sub 3} in this rural area. Back-trajectory analysis supported this hypothesis and further indicated the transport of air masses from northwest, northeast and southeast directions. - Highlights: • Surface O{sub 3} was measured in Qinghai Lake area in Northeast Tibetan Plateau, China. • The O{sub 3} chemical formation was under a strong NOx-limited in Qinghai Lake areas. • Stratospheric O{sub 3} and transport might be the main sources of O{sub 3} in this area.

  15. Remotely Sensing Lake Water Volumes on the Inner Arctic Coastal Plain of Northern Alaska

    Science.gov (United States)

    Simpson, C. E.; Arp, C. D.; Jones, B. M.; Hinkel, K. M.; Carroll, M.; Smith, L. C.

    2017-12-01

    Thermokarst lake depth is controlled by the amount of excess ice in near-surface permafrost, with lake depths of about 1 - 3 m in areas of epigenetic permafrost and over 10 m in areas of syngenetic permafrost. An important exception to these general patterns is found on the inner Arctic Coastal Plain (ACP) of northern Alaska, where deep lakes occur in Pleistocene-aged, ground-ice poor sandy terrain. These lakes cover 20% of the currently inactive sand sheet and dune deposit (referred to as the Pleistocene Sand Sea) that comprises approximately 7000 km2 of the ACP. Surrounded by high and eroding bluffs, sand sea lakes lie in natural depressions and are characterized by wide, shallow littoral shelves and central troughs that are typically oriented NNW to SSE and can reach depths greater than 20 m. Despite their unique form and extensive coverage, these lakes have received little prior study and a literature gap remains regarding regional water storage. This research classifies sand sea lakes, estimates individual lake volume, and provides a first quantification of water storage in a region of the lake-dominated ACP. We measured bathymetric profiles in 19 sand sea lakes using a sonar recorder to capture various lake depth gradients. Bathymetric surveys collected by oil industry consultants, lake monitoring programs, and habitat studies serve as additional datasets. These field measured lake depth data points were used to classify Color Infrared Photography, WorldView-2 satellite imagery, and Landsat-OLI satellite imagery to develop a spectral depth-classification algorithm and facilitate the interpolation of the bathymetry for study lakes in the inner ACP. Finally, we integrate the remotely sensed bathymetry and imagery-derived lake surface area to estimate individual and regional-scale lake volume. In addition to the natural function of these lakes in water storage, energy balance, and habitat provision, the need for winter water supply to build ice roads for oil

  16. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    Science.gov (United States)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  17. Development of Turbulent Diffusion Transfer Algorithms to Estimate Lake Tahoe Water Budget

    Science.gov (United States)

    Sahoo, G. B.; Schladow, S. G.; Reuter, J. E.

    2012-12-01

    The evaporative loss is a dominant component in the Lake Tahoe hydrologic budget because watershed area (813km2) is very small compared to the lake surface area (501 km2). The 5.5 m high dam built at the lake's only outlet, the Truckee River at Tahoe City can increase the lake's capacity by approximately 0.9185 km3. The lake serves as a flood protection for downstream areas and source of water supply for downstream cities, irrigation, hydropower, and instream environmental requirements. When the lake water level falls below the natural rim, cessation of flows from the lake cause problems for water supply, irrigation, and fishing. Therefore, it is important to develop algorithms to correctly estimate the lake hydrologic budget. We developed a turbulent diffusion transfer model and coupled to the dynamic lake model (DLM-WQ). We generated the stream flows and pollutants loadings of the streams using the US Environmental Protection Agency (USEPA) supported watershed model, Loading Simulation Program in C++ (LSPC). The bulk transfer coefficients were calibrated using correlation coefficient (R2) as the objective function. Sensitivity analysis was conducted for the meteorological inputs and model parameters. The DLM-WQ estimated lake water level and water temperatures were in agreement to those of measured records with R2 equal to 0.96 and 0.99, respectively for the period 1994 to 2008. The estimated average evaporation from the lake, stream inflow, precipitation over the lake, groundwater fluxes, and outflow from the lake during 1994 to 2008 were found to be 32.0%, 25.0%, 19.0%, 0.3%, and 11.7%, respectively.

  18. Seasonal rainfall predictability over the Lake Kariba catchment area

    CSIR Research Space (South Africa)

    Muchuru, S

    2014-07-01

    Full Text Available The Lake Kariba catchment area in southern Africa has one of the most variable climates of any major river basin, with an extreme range of conditions across the catchment and through time. Marked seasonal and interannual fluctuations in rainfall...

  19. Lake Pend Oreille Predation Research, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Bassista, Thomas

    2004-02-01

    During August 2002 we conducted a hydroacoustic survey to enumerate pelagic fish >406 mm in Lake Pend Oreille, Idaho. The purpose of this survey was to determine a collective lakewide biomass estimate of pelagic bull trout Salvelinus confluentus, rainbow trout Oncorhynchus mykiss, and lake trout S. namaycush and compare it to pelagic prey (kokanee salmon O. nerka) biomass. By developing hydroacoustic techniques to determine the pelagic predator to prey ratio, we can annually monitor their balance. Hydroacoustic surveys were also performed during December 2002 and February 2003 to investigate the effectiveness of autumn and winter surveys for pelagic predators. The inherent problem associated with hydroacoustic sampling is the inability to directly identify fish species. Therefore, we utilized sonic tracking techniques to describe rainbow trout and lake trout habitat use during our winter hydroacoustic survey to help identify fish targets from the hydroacoustic echograms. During August 2002 we estimated there were 39,044 pelagic fish >406 mm in Lake Pend Oreille (1.84 f/ha). Based on temperature and depth utilization, two distinct groups of pelagic fish >406 mm were located during August; one group was located between 10 and 35 m and the other between 40 and 70 m. The biomass for pelagic fish >406 mm during August 2002 was 73 t (metric ton). This would account for a ratio of 1 kg of pelagic predator for every 2.63 kg of kokanee prey, assuming all pelagic fish >406 mm are predators. During our late fall and winter hydroacoustic surveys, pelagic fish >406 mm were observed at lake depths between 20 and 90 m. During late fall and winter, we tracked three rainbow trout (168 habitat observations) and found that they mostly occupied pelagic areas and predominantly stayed within the top 10 m of the water column. During late fall (one lake trout) and winter (four lake trout), we found that lake trout (184 habitat observations) utilized benthic-nearshore areas 65% of the time

  20. Changes in surface area of the Böön Tsagaan and Orog lakes (Mongolia, Valley of the Lakes, 1974-2013) compared to climate and permafrost changes

    Science.gov (United States)

    Szumińska, Danuta

    2016-07-01

    The main aim of the study is the analysis of changes in surface area of lake Böön Tsagaan (45°35‧N, 99°8‧E) and lake Orog (45°3‧N, 100°44‧E) taking place in the last 40 years in the context of climate conditions and permafrost degradation. The lakes, located in Central Mongolia, at the borderline of permafrost range are fed predominantly by river waters and groundwater from the surrounding mountain areas, characterized by continuous and discontinuous permafrost occurrence - mostly the Khangai. The analysis of the Böön Tsagaan and Orog lake surface area in 1974-2013 was conducted based on satellite images, whereas climate conditions were analysed using the NOAA climate data and CRU dataset. Principal Component Analysis (PCA) was used to study the relationship patterns between the climatic factors and changes in the surface area of the lakes. A tendency for a decrease in surface area, intermittent with short episodes of resupply, was observed in both studied lakes. Climate changes recorded in the analysed period had both direct and indirect impacts on water supply to lakes. Taking into account the results of PCA analysis, the most significant factors include: fluctuation of annual precipitation, increase in air temperature and thickness of snow cover. The extended duration of snow cover in the last decades of the 20th century may constitute a key factor in relation to permafrost degradation.

  1. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    International Nuclear Information System (INIS)

    Sonesten, Lars

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  2. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    Energy Technology Data Exchange (ETDEWEB)

    Sonesten, Lars [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Environmental Assessment

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  3. ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya

    Science.gov (United States)

    Wessels, R.L.; Kargel, J.S.; Kieffer, H.H.

    2002-01-01

    We demonstrate an application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images to detect and monitor supraglacial lakes on glaciers in the Mount Everest region in Tibet (Xizang) and Nepal. ASTER offers powerful capabilities to monitor supraglacial lakes in terms of (1) surface area, growth and disappearance (spatial resolution = 15 m), (2) turbidity (15 m resolution), and (3) temperature (90 m resolution). Preliminary results show an overall similarity of supraglacial lakes on three glaciers. Lakes have widely varying turbidity as indicated by color in visible/near-infrared bands 1-3, the largest lakes being bright blue (highly turbid), cold (near 0??C) and hydrautically connected with other lakes and supraglacial streams, while small lakes are mostly dark blue (relatively clear water), warmer (>4??C), and appear hydrautically isolated. High levels of turbidity in supraglacial lakes indicate high rates of meltwater input from streams or erosion of ice cliffs, and thus are an indirect measure relating to the activity and hydraulic integration of the lake with respect to other lakes and streams in the glacier.

  4. Hydrologic data and description of a hydrologic monitoring plan for the Borax Lake area, Oregon

    Science.gov (United States)

    Schneider, Tiffany Rae; McFarland, William D.

    1995-01-01

    Borax Lake is located in southeastern Oregon, within the Alvord Valley Known Geothermal Resource Area. Borax Lake is a large hot spring; there are more than 50 smaller hot springs within about one-half mile to the north of the lake. Several geothermal exploration wells have been drilled near Borax Lake, and there is concern that development of the geothermal resources could affect the lake and nearby hot springs. A factor to consider in developing the resource is that the Borax Lake chub is an endangered species of fish that is found exclusively in Borax Lake.

  5. A preliminary magnetic study of Sawa lake sediments, Southern Iraq

    Science.gov (United States)

    Ameen, Nawrass

    2016-04-01

    A preliminary magnetic study combined with chemical analyses was carried out in Sawa Lake in Al-Muthanna province, southern Iraq, about 22 km south west of Samawa city (31°18'48.80"N, 45°0'25.25"E). The lake is about 4.74 km length, 1.75 km width and 5.5 m height, it is surrounded by a salt rim which is higher than the lake water by about 2.8 m and sea water by about 18.5 m (Naqash et al., 1977 in Hassan, 2007). The lake is an elongated closed basin with no surface water available to it, it may be fed by groundwater of the Euphrates and Dammam aquifers through system of joints and cracks. This study aims to investigate the concentrations of selected heavy metals as pollutants and magnetic susceptibility (MS) and other magnetic properties of sediment samples from fifty sites collected from the bottom of the lake, the study area lies in an industrial area. The results show spatial variations of MS with mean value of about 4.58 x 10-8 m3 kg-1. Scanning electron microscopy and magnetic mineralogy parameters indicate the dominance of soft magnetic phase like magnetite and presence of hard magnetic phase like hematite. Spatial variations of MS combined with the concentrations of heavy metals suggests the efficiency of magnetic methods as effective, inexpensive and non-time consuming method to outlining the heavy metal pollution. References: Hassan W.F., 2007. The Physio-chemical characteristic of Sawa lake water in Samawa city-Iraq. Marine Mesopotamica, 22(2), 167-179.

  6. Turbidity as a factor in the decline of Great Lakes fishes with special reference to Lake Erie

    Science.gov (United States)

    Van Oosten, John

    1948-01-01

    Fish live and thrive in water with turbidities that range above 400 p.p.m. and average 200 p.p.m. The waters of the Great Lakes usually are clear except in Lake Erie where the turbidities of the inshore areas averaged 37 p.p.m.; the turbidities of the offshore waters averaged less. Lake Erie waters were no clearer 50 years ago than they are now. In fact, the turbidity values are less now than they were in the earlier years; the annual average of the inshore waters dropped from 44 p.p.m. before 1930 to 32 p.p.m. in 1930 and later, and the April-May values decreased from 72 p.p.m. to 46 p.p.m. Any general decline in the Lake Erie fishes cannot be attributed to increased turbidities. Furthermore, these turbidities averaged well below 100 p.p.m. and, therefore, were too low to affect fishes adversely.

  7. Submerged Grove in Lake Onogawa

    OpenAIRE

    Sato, Yasuhiro; Nakamura, Soken; Ochiai, Masahiro

    1996-01-01

    Abstract : The first record by ultrasonic echo sounding on the distribution of the submerged standing trees on the bottom of Lake Onogawa is presented. Lake Onogawa is a dammed lake formed at the time of the eruption of the volcano Mt.Bandai in 1888. Since then the original vegetation of the dammed valley has remained submerged. Many submerged standing trees are distributed on the bottom within about 600m from the northeast end of the lake. The density of the trees in this area is sufficient ...

  8. LONG-TERM REMOTE MONITORING OF THREE TYPICAL LAKE AREA VARIATIONS IN THE NORTHWEST CHINA OVER THE PAST 40 YEARS

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2018-04-01

    Full Text Available water resources management and sustainable development strategy, but also provide reference for assessing the impact of climate change and human activities. This paper selects three inland lakes in Northwest China, using Landsat MSS/TM/ETM+/OLI data from 1970 to 2015, Normalized Difference Water Index (NDWI and Modified Normalized Difference Water Index (MNDWI were used to extract lake area and analysed the dynamic trends. Meteorological station rainfall, evaporation and other meteorological data of the lakes were used to analyse reasons for the area change. The results showed that area of Hongjiannao Lake in the past 40 a was reduced, the groundwater impoundment and underground coal mining are the main cause of area reduction; the area of Bosten Lake in recent 40 a showed a decreasing trend after the first increase, the area was mainly affected by the surface runoff and snowmelt; the area of Qinghai Lake in the past 40 a shows a trend of decreasing first and then increasing, the change of its area is mainly affected by regional precipitation and the inflow.

  9. Long-Term Remote Monitoring of Three Typical Lake Area Variations in the Northwest China Over the Past 40 Years

    Science.gov (United States)

    Liu, Y.; Lu, Y.; Li, Y.; Yue, H.

    2018-04-01

    water resources management and sustainable development strategy, but also provide reference for assessing the impact of climate change and human activities. This paper selects three inland lakes in Northwest China, using Landsat MSS/TM/ETM+/OLI data from 1970 to 2015, Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI) were used to extract lake area and analysed the dynamic trends. Meteorological station rainfall, evaporation and other meteorological data of the lakes were used to analyse reasons for the area change. The results showed that area of Hongjiannao Lake in the past 40 a was reduced, the groundwater impoundment and underground coal mining are the main cause of area reduction; the area of Bosten Lake in recent 40 a showed a decreasing trend after the first increase, the area was mainly affected by the surface runoff and snowmelt; the area of Qinghai Lake in the past 40 a shows a trend of decreasing first and then increasing, the change of its area is mainly affected by regional precipitation and the inflow.

  10. Variety, State and Origin of Drained Thaw Lake Basins in West-Siberian North

    Science.gov (United States)

    Kirpotin, S.; Polishchuk, Y.; Bryksina, N.; Sugaipova, A.; Pokrovsky, O.; Shirokova, L.; Kouraev, A.; Zakharova, E.; Kolmakova, M.; Dupre, B.

    2009-04-01

    Drained thaw lake basins in Western Siberia have a local name "khasyreis" [1]. Khasyreis as well as lakes, ponds and frozen mounds are invariable element of sub-arctic frozen peat bogs - palsas and tundra landscapes. In some areas of West-Siberian sub-arctic khasyreis occupy up to 40-50% of total lake area. Sometimes their concentration is so high that we call such places ‘khasyrei's fields". Khasyreis are part of the natural cycle of palsa complex development [1], but their origin is not continuous and uniform in time and, according to our opinion, there were periods of more intensive lake drainage and khasyrei development accordingly. These times were corresponding with epochs of climatic warming and today we have faced with one of them. So, last years this process was sufficiently activated in the south part of West-Siberian sub-arctic [2]. It was discovered that in the zone of continuous permafrost thermokarst lakes have expanded their areas by about 10-12%, but in the zone of discontinuous permafrost the process of their drainage prevails. These features are connected with the thickness of peat layers which gradually decreases to the North, and thus have reduced the opportunity for lake drainage in northern areas. The most typical way of khasyrei origin is their drainage to the bigger lakes which are always situated on the lower levels and works as a collecting funnels providing drainage of smaller lakes. The lower level of the big lake appeared when the lake takes a critical mass of water enough for subsidence of the lake bottom due to the melting of underlaying rocks [2]. Another one way of lake drainage is the lake intercept by any river. Lake drainage to the subsurface (underlaying rocks) as some authors think [3, 4] is not possible in Western Siberia, because the thickness of permafrost is at list 500 m here being safe confining bed. We mark out few stages of khasyrei development: freshly drained, young, mature and old. This row reflects stages of

  11. Leaf-litter microfungal community on poor fen plant debris in Torfy Lake area (Central Poland

    Directory of Open Access Journals (Sweden)

    Mateusz Wilk

    2014-06-01

    Full Text Available The purpose of this study was to initially evaluate the species diversity of microfungi growing on litter of 15 plant species occurring on the poor fen and neighbouring area of the Torfy Lake, Masovian voivodeship, Poland. The lake is located near the planned road investment (construction of the Warsaw southern express ring road S2. The place is biologically valuable as there are rare plant communities from Rhynchosporion albae alliance protected under the Habitats Directive adopted by the European Union. On the examined plant debris 73 taxa of fungi were recorded (3 basidiomycetes, 13 ascomycetes, 2 zygomycetes, 43 anamorphic ascomycetes, 12 unidentified. Two of them, Dicranidion sp. and Wentiomyces sp. are presented here as new to Poland. Among the plant species examined, the litter of Rhododendron tomentosum harbored the highest number of fungal taxa (16. The highest percents of substrate-specific microfungi (i.e. recorded only on one plant species was noted on R. tomentosum (81.3 %, and Pteridium aquilinum (75%. It is emphasized that the lake area should be protected not only because of rare plant community but also because of the uniqueness and diversity of mycobiota.

  12. The Estimation of Lake Naivasha Area Changes Using of Hydro ...

    African Journals Online (AJOL)

    mapping lakes and estimating their area changes accurately because it contributes not only in understanding the ... existing links to local and international markets for vegetables and cut flowers (Legese, 2011). ..... Summer school , FWU, Vol.

  13. Catawba Nuclear Station and surrounding area, Lake Wylie, South Carolina

    International Nuclear Information System (INIS)

    Fritzsche, A.E.

    1984-10-01

    An aerial gamma survey was conducted over the Catawba Nuclear Station, located near Lake Wylie, South Carolina, during the period 31 May through 7 June 1984. The survey covered a 260-square-kilometer (100-square-mile) area centered on the Station. A contour map of the terrestrial gamma exposure rate plus cosmic exposure rate at the 1-meter level was prepared and overlaid on an aerial photograph and a USGS topographic map of the area. The terrestrial plus cosmic gamma exposure rate ranged from 3.7 microroentgens per hour (μR/h), the cosmic level over Lake Wylie, to 17.4 μR/h just east of the Catawba River below the dam site. A search of the gamma data showed no man-made gamma emitters in the survey area. Soil samples and ion chamber measurements were obtained at four locations on the ground to support the aerial data. 8 references, 4 figures, 3 tables

  14. Lake Izabal (Guatemala) shoreline detection and inundated area estimation from ENVISAT ASAR images

    Science.gov (United States)

    Medina, C.; Gomez-Enri, J.; Alonso, J. J.; Villares, P.

    2008-10-01

    The surface extent of a lake reflects its water storage variations. This information has important hydrological and operational applications. However, there is a lack of information regarding this subject because the traditional methodologies for this purposes (ground surveys, aerial photos) requires high resources investments. Remote sensing techniques (optical/radar sensors) permit a low cost, constant and accurate monitoring of this parameter. The objective of this study was to determine the surface variations of Lake Izabal, the largest one in Guatemala. The lake is located close to the Caribbean Sea coastline. The climate in the region is predominantly cloudy and rainy, being the Synthetic Aperture Radar (SAR) the best suited sensor for this purpose. Although several studies have successfully used SAR products in detecting land-water boundaries, all of them highlighted some sensor limitations. These limitations are mainly caused by roughened water surfaces caused by strong winds which are frequent in Lake Izabal. The ESA's ASAR data products were used. From the set of 9 ASAR images used, all of them have wind-roughened ashore waters in several levels. Here, a chain of image processing steps were applied in order to extract a reliable shoreline. The shoreline detection is the key task for the surface estimation. After the shoreline extraction, the inundated area of the lake was estimated. In-situ lake level measurements were used for validation. The results showed good agreement between the inundated areas estimations and the lake level gauges.

  15. [Fleas on small mammals in the surrounding area of Erhai Lake].

    Science.gov (United States)

    Dong, Wen-Ge; Guo, Xian-Guo; Men, Xing-Yuan; Gong, Zheng-Da; Wu, Dian; Zhang, Zheng-Kun; Zhang, Li-Yun

    2009-12-01

    To investigate the distribution pattern, species diversity and community structure of fleas on small mammals in the surrounding area of Erhai Lake, and the relationship between fleas and their hosts. Different geographical areas surrounding the Erhai Lake in Yunnan were selected as investigated spots. Small mammals were captured with baited cages. The cage-traps were examined and re-baited each morning. All fleas on the hosts were collected and identified. The richness (S), evenness (J'), diversity index (H'), dominance index (C'), total ectoparasite infestation rate (Rpt), total ectoparasite infestation index (Ipt), and constituent ratio (Cr) were used to measure the community structure. Altogether, 3,303 small mammals and 3,243 fleas were collected. From the 21 species of small mammal hosts, 13 species of fleas were identified. In southern area of the Lake, the species richness (21 species of small mammals & 12 species of fleas) was highest among the three selected areas. Seventeen species of small mammals and 8 species of fleas were found in eastern area, and only 13 species of small mammals and 7 species of fleas found in the west. This implied the probable influences of ecological environments on the fleas and their corresponding hosts. The community structure of fleas on small mammals was complex. The species diversity, species composition, community structure and distribution pattern of fleas were simultaneously influenced by the hosts' body surface microenvironment and the macroenvironment (habitat). The fleas are commonly distributed in small mammals in the areas and their communities are related to host species and the habitats.

  16. ECOLOGICAL SENSITIVITY EVALUATION OF TOURIST REGION BASED ON REMOTE SENSING IMAGE – TAKING CHAOHU LAKE AREA AS A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Y. Lin

    2018-04-01

    Full Text Available Remote sensing technology is of significant advantages for monitoring and analysing ecological environment. By using of automatic extraction algorithm, various environmental resources information of tourist region can be obtained from remote sensing imagery. Combining with GIS spatial analysis and landscape pattern analysis, relevant environmental information can be quantitatively analysed and interpreted. In this study, taking the Chaohu Lake Basin as an example, Landsat-8 multi-spectral satellite image of October 2015 was applied. Integrated the automatic ELM (Extreme Learning Machine classification results with the data of digital elevation model and slope information, human disturbance degree, land use degree, primary productivity, landscape evenness , vegetation coverage, DEM, slope and normalized water body index were used as the evaluation factors to construct the eco-sensitivity evaluation index based on AHP and overlay analysis. According to the value of eco-sensitivity evaluation index, by using of GIS technique of equal interval reclassification, the Chaohu Lake area was divided into four grades: very sensitive area, sensitive area, sub-sensitive areas and insensitive areas. The results of the eco-sensitivity analysis shows: the area of the very sensitive area was 4577.4378 km2, accounting for about 37.12 %, the sensitive area was 5130.0522 km2, accounting for about 37.12 %; the area of sub-sensitive area was 3729.9312 km2, accounting for 26.99 %; the area of insensitive area was 382.4399 km2, accounting for about 2.77 %. At the same time, it has been found that there were spatial differences in ecological sensitivity of the Chaohu Lake basin. The most sensitive areas were mainly located in the areas with high elevation and large terrain gradient. Insensitive areas were mainly distributed in slope of the slow platform area; the sensitive areas and the sub-sensitive areas were mainly agricultural land and woodland

  17. Monitoring the Fluctuation of Lake Qinghai Using Multi-Source Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Wenbin Zhu

    2014-10-01

    Full Text Available The knowledge of water storage variations in ungauged lakes is of fundamental importance to understanding the water balance on the Tibetan Plateau. In this paper, a simple framework was presented to monitor the fluctuation of inland water bodies by the combination of satellite altimetry measurements and optical satellite imagery without any in situ measurements. The fluctuation of water level, surface area, and water storage variations in Lake Qinghai were estimated to demonstrate this framework. Water levels retrieved from ICESat (Ice, Cloud, and and Elevation Satellite elevation data and lake surface area derived from MODIS (Moderate Resolution Imaging Spectroradiometer product were fitted by linear regression during the period from 2003 to 2009 when the overpass time for both of them was coincident. Based on this relationship, the time series of water levels from 1999 to 2002 were extended by using the water surface area extracted from Landsat TM/ETM+ images as inputs, and finally the variations of water volume in Lake Qinghai were estimated from 1999 to 2009. The overall errors of water levels retrieved by the simple method in our work were comparable with other globally available test results with r = 0.93, MAE = 0.07 m, and RMSE = 0.09 m. The annual average rate of increase was 0.11 m/yr, which was very close to the results obtained from in situ measurements. High accuracy was obtained in the estimation of surface areas. The MAE and RMSE were only 6 km2, and 8 km2, respectively, which were even lower than the MAE and RMAE of surface area extracted from Landsat TM images. The estimated water volume variations effectively captured the trend of annual variation of Lake Qinghai. Good agreement was achieved between the estimated and measured water volume variations with MAE = 0.4 billion m3, and RMSE = 0.5 billion m3, which only account for 0.7% of the total water volume of Lake Qinghai. This study demonstrates that it is feasible to monitor

  18. Scientific Collaboration on Past Speciation Conditions in Lake Ohrid–SCOPSCO Workshop Report

    Directory of Open Access Journals (Sweden)

    Sasho Trajanovski

    2009-03-01

    Full Text Available Transboundary Lake Ohrid between Albania and Macedonia (SE Europe, Fig. 1 is considered to be the oldest continuously existing lake in Europe with a likely age of three to five million years. The lake has a surface area of 360 km2 and is 289 m deep. An extraordinarily high degree of endemism, including more than 210 described endemic species (Fig. 2, makes the lake a unique aquatic ecosystem of worldwide importance. Due to its old age, Lake Ohrid is one of the very few lakes in the world representing a hot spot of evolution and a potential evolutionary reservoir enabling the survival of relict species (Albrecht and Wilke, 2008. Its importance was emphasized when the lake was declared a UNESCO World Heritage Site in 1979.

  19. Elemental composition of a deep sediment core from Lake Stocksjoen in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Stroemgren, Maarten [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Sciences; Brunberg, Anna-Kristina [Uppsala Univ. (Sweden). Dept. of Ecology and Evolution/Limnology

    2006-10-15

    A deep sediment core was taken from Lake Stocksjoen, situated within the Forsmark site investigation area. The 55 cm long sediment core, representing the entire history of the lake (approx 430 years) was sliced in 5 cm portions and analysed for various chemical elements, using ICP-MS technique. In total, 54 different elements - classified as main elements, heavy metals and trace elements - were analysed. In general terms, three different patterns of stratigraphy were derived from all the analysed elements. Calcium, manganese, lead and mercury occurred in highest concentrations in the upper sediments (<30 cm depth). Phosphorus, zinc, cadmium, antimony, tin and strontium occurred in more even proportions throughout the sediment core. All the other elements were substantially reduced in the upper parts (<30 cm) compared to the deeper parts of the sediment core. Metals that are considered as airborne pollutants were found in low or moderate concentrations. This is in concert with other investigations of pollutants that have been performed in the Forsmark area. The sediment of Lake Stocksjoen is highly organic, and has been so during the entire history of the lake. Much of the organic Material seems to be refractory and less susceptible for mineralisation and respiration during the prevailing environmental conditions. This corresponds well with the characteristic gelatinous cyanophycee gyttja found in the lower parts of the sediment core. Although speculative, the pronounced changes in elemental composition of the sediment at 30 cm depth may correspond to the final isolation of the lake from the Baltic Sea, which occurred approximately 230 years ago. The deeper parts (below 30 cm depth) thus may represent the time period with regular intrusions of brackish water into the lake basin. One important factor governing the environmental conditions and the resulting elemental composition of the sediment is the unusually thick 'microbial mat', which is characteristic

  20. Stream Sediment Geochemical Survey of Selected Element In Catchment Area Of Saguling Lake

    Directory of Open Access Journals (Sweden)

    Wardhani Eka

    2018-01-01

    Full Text Available Saguling Lake is one of the largest lakes in West Java Province that accommodates domestic and non-domestic wastes via the Citarum River as its main water source. This study aims to determine the geochemical background concentration (Cbg in water catchment area of Saguling Lake. The knowledge of the Cbg of heavy metals is essential for defining pollution, identifying the source of contamination, and for establishing reliable environmental quality criteria for sediments. The value of Cbg will be used for assessment of the sediment quality in Saguling Lake. Assessment of sediment quality is very important to determine the actual condition of water in the lake and as the basis for management of waters environment in the future. The search was taken at 22 sampling points in the unpolluted water catchment area. Samples were collected and analyzed for Cd, Cr, Cu, and Pb. Each sample was digested in agua regia and analyzed by ICP-EOS. Results showed Cbg which are: Cd 0.34 ± 0.10 mg/kg, Cr 110.57 ± 28.61 mg/kg, Cu 49.93 ± 9.28 mg/kg, and Pb 18.62 ± 9.83 mg/kg. Based on the assessment result, it is concluded that the sediment quality in Saguling Lake is categorized as polluted by Cd, Cr, Cu, and Pb metals.

  1. Existence versus extinction : Human-hippo conflicts in Lake Victoria Area, Kenya

    NARCIS (Netherlands)

    Post, A.W.C.H.M.

    2017-01-01

    This PhD dissertation examines the role of different organisations and affected communities in human-wildlife governance, with a focus on human-hippo conflicts in Lake Victoria Area, Kenya. The hippo population in this area is under pressure due to human activities that impact on the wetland

  2. Surficial geologic map of Berrien County, Michigan, and the adjacent offshore area of Lake Michigan

    Science.gov (United States)

    Stone, Byron D.; Kincare, Kevin A.; O'Leary, Dennis W.; Newell, Wayne L.; Taylor, Emily M.; Williams, Van S.; Lundstrom, Scott C.; Abraham, Jared E.; Powers, Michael H.

    2017-12-13

    The surficial geologic map of Berrien County, southwestern Michigan (sheet 1), shows the distribution of glacial and postglacial deposits at the land surface and in the adjacent offshore area of Lake Michigan. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics, stratigraphic relationships, and age. Drill-hole information correlated in cross sections provides details of typical stratigraphic sequences that compose one or more penetrated geologic map units. A new bedrock geologic map (on sheet 2) includes contours of the altitude of the eroded top of bedrock and shows the distribution of middle Paleozoic shale and carbonate units in the subcrop. A sediment thickness map (also on sheet 2) portrays the extent of as much as 150 meters of surficial materials that overlie the bedrock surface.The major physical features of the county are related principally to deposits of the last Laurentide ice sheet that advanced and then retreated back through the region from about 19,000 to 14,000 radiocarbon years before present. Glacial and postglacial deposits underlie the entire county; shale bedrock crops out only in the adjacent offshore area on the bottom of Lake Michigan. All glacial deposits and glacial meltwater deposits in Berrien County are related to the late Wisconsinan glacial advances of the Lake Michigan ice lobe and its three regional recessional moraines, which cross the county as three north-northeast-trending belts.From east to west (oldest to youngest), the three moraine belts are known as the Kalamazoo, Valparaiso, and Lake Border morainic systems. The till-ridge morainic systems (Lake Border and local Valparaiso morainic systems) consist of multiple, elongate moraine ridges separated by till plains and lake-bottom plains. Tills in ground and end moraines in Berrien County are distinguished as informal units, and are correlated with three proposed regional till units in southwestern Michigan

  3. Changes in sediment volume in Alder Lake, Nisqually River Basin, Washington, 1945-2011

    Science.gov (United States)

    Czuba, Jonathan A.; Olsen, Theresa D.; Czuba, Christiana R.; Magirl, Christopher S.; Gish, Casey C.

    2012-01-01

    The Nisqually River drains the southwest slopes of Mount Rainier, a glaciated stratovolcano in the Cascade Range of western Washington. The Nisqually River was impounded behind Alder Dam when the dam was completed in 1945 and formed Alder Lake. This report quantifies the volume of sediment deposited by the Nisqually and Little Nisqually Rivers in their respective deltas in Alder Lake since 1945. Four digital elevation surfaces were generated from historical contour maps from 1945, 1956, and 1985, and a bathymetric survey from 2011. These surfaces were used to compute changes in sediment volume since 1945. Estimates of the volume of sediment deposited in Alder Lake between 1945 and 2011 were focused in three areas: (1) the Nisqually River delta, (2) the main body of Alder Lake, along a 40-meter wide corridor of the pre-dam Nisqually River, and (3) the Little Nisqually River delta. In each of these areas the net deposition over the 66-year period was 42,000,000 ± 4,000,000 cubic meters (m3), 2,000,000 ± 600,000 m3, and 310,000 ± 110,000 m3, respectively. These volumes correspond to annual rates of accumulation of 630,000 ± 60,000 m3/yr, 33,000 ± 9,000 m3/yr, and 4,700 ± 1,600 m3/yr, respectively. The annual sediment yield of the Nisqually (1,100 ± 100 cubic meters per year per square kilometer [(m3/yr)/km2]) and Little Nisqually River basins [70 ± 24 (m3/yr)/km2] provides insight into the yield of two basins with different land cover and geomorphic processes. These estimates suggest that a basin draining a glaciated stratovolcano yields approximately 15 times more sediment than a basin draining forested uplands in the Cascade Range. Given the cumulative net change in sediment volume in the Nisqually River delta in Alder Lake, the total capacity of Alder Lake since 1945 decreased about 3 percent by 1956, 8 percent by 1985, and 15 percent by 2011.

  4. Modeling Lake Turkana Hydrology: Evaluating the potential hydrological impact of Gibe III reservoir on the Lake Turkana water levels using multi-source satellite data

    Science.gov (United States)

    Velpuri, N.; Senay, G. B.

    2012-12-01

    Ethiopia is currently building the Gibe III hydroelectric dam on the Omo River, which supplies >80% of the inflows to Lake Turkana, Kenya. On completion, the Gibe III dam will be the tallest dam in Africa (height of 241 m) with a storage capacity of 14.5 billion m3. Arguably, this is one of the most controversial hydro-power projects in the region because the nature of interactions and potential impacts of the dam regulated flows on Lake Turkana are not well understood due to its remote location and unavailability of reliable in situ hydrological datasets. In this research, we used a calibrated multi-source satellite data-driven water balance model for Lake Turkana that takes into account 12 years (1998-2009) of satellite rainfall, model routed runoff, lake/reservoir evapotranspiration, direct rain on lakes/reservoirs and releases from the dam to compute lake water levels. The model was used to evaluate the impact of the Gibe III dam using three different simple but robust approaches - a historical approach; a rainfall based sampling approach; and a non-parametric bootstrap resampling approach to generate rainfall-runoff scenarios. Modelling results indicate that, on average, the reservoir would take up to 8-10 months to reach minimum operation level of 201 m (initial impoundment period). During this period, the dam would regulate the lake inflows up to 50% and as a result the lake level would drop up to 2 m. However, after the initial impoundment period, due to releases from the dam, the rate of lake inflows would be around 10 m3/s less when compared to the rate without Gibe III (650 m3/s). Due to this, the lake levels will decline on average 1.5 m (3 m). Over the entire modeling period including the initial period of impoundment, the average rate of lake inflows due to Gibe III dam was estimated to be 500 m3/s. Results indicated that dam would also moderate the seasonal fluctuations in the lake. Areas along the Lake Turkana shoreline that are vulnerable to

  5. Monitoring of Bashkara glacial lakes (the Central Caucasus) and modelling of their potential outburst.

    Science.gov (United States)

    Krylenko, I.; Norin, S.; Petrakov, D.; Tutubalina, O.; Chernomorets, S.

    2009-04-01

    In recent decades due to glacier retreat the glacial lakes in the Central Caucasus, as well as in other high-mountainous areas of the world, have expanded intensively. As result the risk of lake outbursts and destructive floods is raising. In this paper we present one of the most potentially hazardous lakes of this region - a group of glacial lakes near the Bashkara glacier in the upper Adylsu river valley, to the southeast of Mt. Elbrus. Total area of these lakes is about 100,000m2, and a total volume exceeds 1,000,000 m3. The biggest of them - the Bashkara lake has formed in late 1930s - early 1940s and the small Lapa lake has appeared in the end of 1980s. The Bashkara lake outburst occurred twice in the end of 1950s and produced devastating debris flows of ca. 2 million m3. We have monitored these lakes since 1999. Our work includes detailed field research: constant measurements of water level during warm period, annually repeated bathymetric surveys, geodetic surveys, observations on dam condition and some special measurements (i.e. water temperature distribution, current velocity). Also we use aerial and satellite images to obtain data about dynamic of areas for the lakes. From 2001 to 2006 years volume of the Lapa lake has increased 5 times (from 30,000 m3 to 140,000 m3), the Bashkara lake in this period was quasi-stable. In 2006-2008 volume of the Lapa lake has decreased due to sedimentation, however, rapid growth of water level in Bashkara lake (more than 20 sm. per day) has suddenly begun. As a result, volume of the Bashkara lake exceeded 1,000000 m3 in July 2008 whereas in 2001 -2007 year it was about 800,000 m3. Previous maximum of water level was exceeded on 3,5 m, moraine dam with ice core was overtopped and overflow has started. Thus, Bashkara glacier lakes are unstable and risk of outburst is increasing. To assess parameters and zones of potential outburst flood in the Adylsu River valley we have carried out hydrodynamic simulation. Two computer

  6. Identification of the core ecosystem services and their spatial heterogeneity in Poyang Lake area

    Institute of Scientific and Technical Information of China (English)

    Nana SHI; Jinyan ZHAN; Feng WU; Jifu DU

    2009-01-01

    According to the ecosystem assessment framework developed by the Millennium Ecosystem Assessment (MA), this paper designs an evaluation system of ecosystem services in Poyang Lake area. On the basis of relevant variables disaggregated to 1 km grid using the gridded 1 km, this paper employs factor analysis to extract a number of factors which characterize the ecosystem services of Poyang Lake area. The extracted principal component are then represented onto 1 km ×1 km grids by spatial clustering analysis to recognize and identify the minimal but consistent mapping units for ecosystem services which can be used to delimit the boundaries of ecological service zones. The research identifies ten ecosystem service zones in Poyang Lake area according to the consistent principle of core ecosystem service unit.Four kinds of core ecosystem services including supporting function, provisioning function, regulating function and cultural function are identified and represented. The research results could provide both spatially and temporally valuable decision-making information for sustainable ecosystem management in the targeted area.

  7. The Geysers-Clear Lake geothermal area, California - an updated geophysical perspective of heat sources

    Science.gov (United States)

    Stanley, W.D.; Blakely, R.J.

    1995-01-01

    The Geysers-Clear Lake geothermal area encompasses a large dry-steam production area in The Geysers field and a documented high-temperature, high-pressure, water-dominated system in the area largely south of Clear Lake, which has not been developed. An updated view is presented of the geological/geophysical complexities of the crust in this region in order to address key unanswered questions about the heat source and tectonics. Forward modeling, multidimensional inversions, and ideal body analysis of the gravity data, new electromagnetic sounding models, and arguments made from other geophysical data sets suggest that many of the geophysical anomalies have significant contributions from rock property and physical state variations in the upper 7 km and not from "magma' at greater depths. Regional tectonic and magmatic processes are analyzed to develop an updated scenario for pluton emplacement that differs substantially from earlier interpretations. In addition, a rationale is outlined for future exploration for geothermal resources in The Geysers-Clear Lake area. -from Authors

  8. Crater lake and post-eruption hydrothermal activity, El Chichón Volcano, Mexico

    Science.gov (United States)

    Casadevall, Thomas J.; De la Cruz-Reyna, Servando; Rose, William I.; Bagley, Susan; Finnegan, David L.; Zoller, William H.

    1984-01-01

    Explosive eruptions of Volcán El Chichón in Chiapas, Mexico on March 28 and April 3–4, 1982 removed 0.2 km3 of rock to form a 1-km-wide 300-m-deep summit crater. By late April 1982 a lake had begun to form on the crater floor, and by November 1982 it attained a maximum surface area of 1.4 × 105 m2 and a volume of 5 × 106 m3. Accumulation of 4–5 m of rainfall between July and October 1982 largely formed the lake. In January 1983, temperatures of fumaroles on the crater floor and lower crater walls ranged from 98 to 115°C; by October 1983 the maximum temperature of fumarole emissions was 99°C. In January 1983 fumarole gas emissions were greater than 99 vol. % H2O with traces of CO2, SO2, and H2S. The water of the lake was a hot (T = 52–58°C), acidic (pH = 0.5), dilute solution (34,046 mg L−1 dissolved solids; Cl/S = 20.5). Sediment from the lake contains the same silicate minerals as the rocks of the 1982 pyroclastic deposits, together with less than 1% of elemental sulfur. The composition and temperature of the lake water is attributed to: (1) solution of fumarole emissions; (2) reaction of lake water with hot rocks beneath the lake level; (3) sediments washed into the lake from the crater walls; (4) hydrothermal fluids leaching sediments and formational waters in sedimentary rocks of the basement; (5) evaporation; and (6) precipitation.

  9. Water level monitoring using radar remote sensing data: Application to Lake Kivu, central Africa

    Science.gov (United States)

    Munyaneza, Omar; Wali, Umaru G.; Uhlenbrook, Stefan; Maskey, Shreedhar; Mlotha, McArd J.

    Satellite radar altimetry measures the time required for a pulse to travel from the satellite antenna to the earth’s surface and back to the satellite receiver. Altimetry on inland lakes generally shows some deviation from in situ level measurements. The deviation is attributed to the geographically varying corrections applied to account for atmospheric effects on radar waves. This study was focused on verification of altimetry data for Lake Kivu (2400 km 2), a large inland lake between Rwanda and the Democratic Republic of Congo (DRC) and estimating the lake water levels using bathymetric data combined with satellite images. Altimetry data obtained from ENVISAT and ERS-2 satellite missions were compared with water level data from gauging stations for Lake Kivu. Gauge data for Lake Kivu were collected from the stations ELECTROGAZ and Rusizi. ENVISAT and ERS-2 data sets for Lake Kivu are in good agreement with gauge data having R2 of 0.86 and 0.77, respectively. A combination of the two data sets improved the coefficient of determination to 95% due to the improved temporal resolution of the data sets. The calculated standard deviation for Lake Kivu water levels was 0.642 m and 0.701 m, for ENVISAT and ERS-2 measurements, respectively. The elevation-surface area characteristics derived from bathymetric data in combination with satellite images were used to estimate the lake level gauge. Consequently, the water level of Lake Kivu could be estimated with an RMSE of 0.294 m and an accuracy of ±0.58 m. In situations where gauges become malfunctioning or inaccessible due to damage or extreme meteorological events, the method can be used to ensure data continuity.

  10. Summary of the results and interpretation of tritium and noble gas measurements on groundwater samples from the Perch Lake Basin Area

    International Nuclear Information System (INIS)

    Kotzer, T.G.

    1999-02-01

    Along the west-central margin of the Lower Perch Lake Basin, a limited number of groundwaters have been sampled from piezometers at depths of between 8 and 17 m and distances of between 100 and 900 m downgradient from their recharge location near Area A. Concentrations of tritium in these groundwaters varied between approximately 100 and 2800 TU. Measurements of dissolved gases in these groundwaters indicate concentrations of 4 He and neon approximating those in recently recharged groundwaters; however, the concentrations of 3 He are as much as 100 times higher, indicating the waters have accumulated tritiogenic 3 He. Using the 3 H/ 3 He dating technique, groundwater residence times on the order of 29 ± 8 years and groundwater velocities on the order of 0.1 m/day have been calculated for the flow system in the middle sand unit between Area A recharge and Perch Lake. These results, although based on a very small number of groundwater analyses, are comparable to earlier estimates of groundwater residence times and velocities obtained using Darcy calculations, borehole dilution experiments and tracer-test results from previous hydrogeologic studies in the area. (author)

  11. A preliminary carbon budget for two oligotrophic hardwater lakes in the Forsmark area, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Eva [Uppsala Univ. (Sweden). Dept. of Limnology

    2001-06-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for management and disposal of Swedish radioactive waste. The company is planning to construct repositories that will keep radioactive waste away from humans for hundreds of thousands of years. In a safety assessment of the repositories hypothetical releases are used to evaluate the robustness of the repositories. It is important to know how the radioactive nuclides would react if they were released and by which way they could enter the living biota. SFR are responsible for the disposal of low radioactive waste and close to the nuclear plant in Forsmark there is a storage for low radioactive waste. At the moment this storage is located in the bedrock far below the sea level but due to land-rise in the area it will in the future be located above sea level. Hence, it is of importance to know how the surface ecosystems in the area are functioning. A carbon budget for the aquatic ecosystem above SFR in Oeresundsgrepen exist, but it is also important to have a carbon budget for the surface systems in the Forsmark area since SFR in the future will be situated above sea level. Carbon budgets can be used to get a picture of how an ecosystem functions. The carbon flow shows how carbon is transported through a food web from lower trophic levels, e.g. plants and bacteria to higher trophic levels such as fish. Oligotrophic hardwater lakes are the most important lakes in the Forsmark area. This report aims to give a picture of a potential flow of carbon through the ecosystem in two oligotrophic hard-water lakes, Lake Haellefjaerd and Lake Eckarfjaerden. Macrophyte, mainly Chara, were calculated to make up the largest part of the biomass and production in both lakes. Benthic bacteria and microphytobenthos (benthic photosynthesising microorganisms) were other large contributors to the production. Benthic bacteria were found responsible for a major part of respiration and, hence, consumption of carbon in the

  12. A preliminary carbon budget for two oligotrophic hardwater lakes in the Forsmark area, Sweden

    International Nuclear Information System (INIS)

    Nilsson, Eva

    2001-06-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for management and disposal of Swedish radioactive waste. The company is planning to construct repositories that will keep radioactive waste away from humans for hundreds of thousands of years. In a safety assessment of the repositories hypothetical releases are used to evaluate the robustness of the repositories. It is important to know how the radioactive nuclides would react if they were released and by which way they could enter the living biota. SFR are responsible for the disposal of low radioactive waste and close to the nuclear plant in Forsmark there is a storage for low radioactive waste. At the moment this storage is located in the bedrock far below the sea level but due to land-rise in the area it will in the future be located above sea level. Hence, it is of importance to know how the surface ecosystems in the area are functioning. A carbon budget for the aquatic ecosystem above SFR in Oeresundsgrepen exist, but it is also important to have a carbon budget for the surface systems in the Forsmark area since SFR in the future will be situated above sea level. Carbon budgets can be used to get a picture of how an ecosystem functions. The carbon flow shows how carbon is transported through a food web from lower trophic levels, e.g. plants and bacteria to higher trophic levels such as fish. Oligotrophic hardwater lakes are the most important lakes in the Forsmark area. This report aims to give a picture of a potential flow of carbon through the ecosystem in two oligotrophic hard-water lakes, Lake Haellefjaerd and Lake Eckarfjaerden. Macrophyte, mainly Chara, were calculated to make up the largest part of the biomass and production in both lakes. Benthic bacteria and microphytobenthos (benthic photosynthesising microorganisms) were other large contributors to the production. Benthic bacteria were found responsible for a major part of respiration and, hence, consumption of carbon in the

  13. Physical and Chemical Characteristics of Lake Edku Water, Egypt

    Directory of Open Access Journals (Sweden)

    M.A. OKBAH

    2002-12-01

    Full Text Available The objective of this work is to evaluate the quality of Lake Edku water. Regional and seasonal variations of some physico-chemical parameters (nutrient salts, total nitrogen, total phosphorous and silicate, in addition to pH, total alkalinity, chlorosity, dissolved oxygen, biological oxygen demand and oxidizable organic matter that were determined during the period from January to December 2000. Important variations have occurred in the investigated area as a result of human activity and the discharge of wastewater to the lake. The relatively low pH values reflect the decreased productivity of the Lake as a result of the polluted water discharged into the lake. Total alkalinity varied between 2.25 ± 0.35 to 8.38 ± 0.9 meq/l. In comparison with previous decades chlorosity content (586-1562 mg/l showed the general decreasing trend. Dissolved oxygen varied (2.37 ± 0.72 - 4.47 ± 0.94 mg/l. The ratios of BOD/ OOM values indicate that the lake water has a biodegradable nature. There was a noticeable variation in ammonia levels; a lower ammonia content was recorded in summer and spring. Nitrite and nitrate concentrations in Lake Edku water showed values ranging from 3.7±1.4 to 7.8±1.9 ΜM and from 15.2±2.9 to 45.9±11.8 ΜM, respectively. The total nitrogen of the lake exhibited higher levels (53.1±12.2 – 164.2±30.7 ΜM. The ratio of NH4/TIN (0.09-0.45 seems to be highly representative of the microbial nitrification rate as well as of the varying agricultural inflows. It is interesting to note that increasing values of reactive phosphate (11.6±1.8 – 14.7±2.5 ΜM were determined in autumn and winter respectively. The higher concentrations of reactive silicate were directly proportional to drainage water discharged into the Lake. It is clear from the mean ratio of N/P (2.4-8.8 nitrogen is the limiting factor. The lower values of N/P ratio could be related to an allochthonous condition.

  14. Basic limnology of fifty-one lakes in Costa Rica

    Directory of Open Access Journals (Sweden)

    Kurt A. Haberyan

    2003-03-01

    Full Text Available We visited 51 lakes in Costa Rica as part of a broad-based survey to document their physical and chemical characteristics and how these relate to the mode of formation and geographical distribution of the lakes. The four oxbow lakes were low in elevation and tended to be turbid, high in conductivity and CO2 , but low in dissolved O2 ; one of these, L. Gandoca, had a hypolimnion essentially composed of sea water. These were similar to the four wetland lakes, but the latter instead had low conductivities and pH, and turbidity was often due to tannins rather than suspended sediments. The thirteen artificial lakes formed a very heterogenous group, whose features varied depending on local factors. The thirteen lakes dammed by landslides, lava flows, or lahars occurred in areas with steep slopes, and were more likely to be stratified than most other types of lakes. The eight lakes that occupy volcanic craters tended to be deep, stratified, clear, and cool; two of these, L. Hule and L. Río Cuarto, appeared to be oligomictic (tending toward meromictic. The nine glacial lakes, all located above 3440 m elevation near Cerro Chirripó, were clear, cold, dilute, and are probably polymictic. Cluster analysis resulted in three significant groups of lakes. Cluster 1 included four calcium-rich lakes (average 48 mg l-1, Cluster 2 included fourteen lakes with more Si than Ca+2 and higher Cl- than the other clusters, and Cluster 3 included the remaining thirty-three lakes that were generally less concentrated. Each cluster included lakes of various origins located in different geographical regions; these data indicate that, apart from the high-altitude glacial lakes and lakes in the Miravalles area, similarity in lake chemistry is independent of lake distribution.Se visitaron 51 lagos en Costa Rica como parte de un sondeo de lagos más amplio, con el fin de documentar sus carácteristicas físicas y químicas y las relaciones entre estas carácteristicas y el modo

  15. Lake Urmia Shrinkage and its Effect on the Settlement of the Surrounding Areas Investigated Using Radar and Optical Satellite Images

    Science.gov (United States)

    Motagh, M.; Shamshiri, R.; Hosseini, F.; Sharifi, M. A.; Baes, M.

    2014-12-01

    With a total area of more than 50000 km^2 Lake Urmia basin in northwest of Iran was once one of the biggest salt lakes in the world. The lake has been shrinking in the recent years, losing in turn dramatically its area. A lot of factors have been attributed to this shrinking including construction of dams on the rivers feeding the lake and overexploitation of groundwater for agricultural and industrial purposes. In this study we first utilized time-series analysis of Landsat images to precisely quantify surface changes in the region between 1984 and 2013. We then analyzed a number of SAR images from 2002 to 2014 including 30 ASAR images from Envisat, 10 PALSAR images from ALOS, and more than 35 TerraSAR-X (TSX) in both Stripmap and Spot modes to assess surface ground deformation. Ground deformation was evaluated for both agricultural regions around the lake and Lake Urmia Causeway (LUC), connecting two provinces of East and West Azerbaijan on both sides of the lake. The InSAR results of the LUC embankments is further investigated using Finite Element approach to better understand the relation between soil parameters, lake level changes and settlement of the LUC. The classification results using optical imagery analysis show that human and anthropogenic activities have resulted in shrinking of Lake Urmia by more than 60% over the past 30 years. The agricultural areas around the lake are dominated by ground subsidence reaching to 10 cm/yr in places. The LUC embankments also show large deformation with peak settlement of more than 5 cm/yr over the last decade. FEM simulation shows that consolidation due to dissipation of excess pore pressure in embankments can satisfactorily explain its surface deformation.

  16. Hazards of volcanic lakes: analysis of Lakes Quilotoa and Cuicocha, Ecuador

    Directory of Open Access Journals (Sweden)

    G. Gunkel

    2008-01-01

    Full Text Available Volcanic lakes within calderas should be viewed as high-risk systems, and an intensive lake monitoring must be carried out to evaluate the hazard of potential limnic or phreatic-magmatic eruptions. In Ecuador, two caldera lakesLakes Quilotoa and Cuicocha, located in the high Andean region >3000 a.s.l. – have been the focus of these investigations. Both volcanoes are geologically young or historically active, and have formed large and deep calderas with lakes of 2 to 3 km in diameter, and 248 and 148 m in depth, respectively. In both lakes, visible gas emissions of CO2 occur, and an accumulation of CO2 in the deep water body must be taken into account.

    Investigations were carried out to evaluate the hazards of these volcanic lakes, and in Lake Cuicocha intensive monitoring was carried out for the evaluation of possible renewed volcanic activities. At Lake Quilotoa, a limnic eruption and diffuse CO2 degassing at the lake surface are to be expected, while at Lake Cuicocha, an increased risk of a phreatic-magmatic eruption exists.

  17. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    Science.gov (United States)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2017-07-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  18. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    Science.gov (United States)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2018-06-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  19. Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes.

    Science.gov (United States)

    McCrackin, Michelle L; Elser, James J

    2010-02-01

    Microbially mediated denitrification is an important process that may ameliorate the effects of nitrogen (N) loading by permanently removing excess N inputs. In this study, we measured the rate of denitrification and nitrous oxide (N2O) production during denitrification in sediments from 32 Norwegian lakes at the high and low ends of a gradient of atmospheric N deposition. Denitrification and N2O production rates averaged 41.7 and 1.1 micromol N x m(-2) x h(-1), respectively, for high-deposition lakes. There was no detectable denitrification or N2O production in low-deposition lakes. Epilimnetic nitrate concentration was strongly correlated with denitrification rate (r2 = 0.67). We also measured the denitrification rate in response to experimental additions of organic carbon, nitrate, and phosphorus. Experimental nitrate additions stimulated denitrification in sediments of all lakes, regardless of N deposition level. In fact, the rate of denitrification in nitrate-amended treatments was the same magnitude for lakes in both deposition areas. These findings suggest that lake sediments possess considerable capacity to remove nitrate and that this capacity has not been saturated under conditions of chronic N loading. Further, nitrous oxide was nearly 3% of the total gaseous product during denitrification in high-deposition lakes, a fraction that is comparable to polluted marine sediments. Our findings suggest that, while lakes play an important role in N removal in the landscape, they may be a source of N2O emissions, especially in areas subject to elevated N inputs.

  20. Impact of the Three Gorges project on ecological environment changes and snail distribution in Dongting Lake area.

    Directory of Open Access Journals (Sweden)

    Feiyue Li

    2017-07-01

    Full Text Available The Three Gorges Dam (TGD is a remarkable, far-reaching project in China. This study was conducted to assess the impact of TGD on changes in the ecological environment, snail distribution and schistosomiasis transmission in Dongting Lake area.Hydrological data were collected from 12 monitoring sites in Hunan section of Yangtze River before and after TGD was established. Data on snail distribution and human schistosomiasis infection were also collected. Correlation analyses were performed to detect the significance of snail distribution to changes in ecological environmental factors and human schistosomiasis infection.A series of ecological environmental factors have changed in Dongting Lake area following the operation of TGD. Volume of annual runoff discharged into Dongting Lake declined by 20.85%. Annual sediment volume discharged into the lake and the mean lake sedimentation rate decreased by 73.9% and 32.2%, respectively. From 2003 to 2015, occurrence rate of frames with living snails and mean density of living snails decreased overall by 82.43% and 94.35%, respectively, with annual decrements being 13.49% and 21.29%. Moreover, human infection rate of schistosomiasis had decreased from 3.38% in 2003 to 0.44% in 2015, with a reduction of 86.98%. Correlation analyses showed that mean density of living snails was significantly associated with water level (r = 0.588, p<0.001, as well as the mean elevation range of the bottomland (r = 0.374, p = 0.025 and infection rate of schistosomiasis (r = 0.865, p<0.001.Ecological environmental changes caused by the TGD were associated with distribution of snails, and might further affect the transmission and prevalence of schistosomiasis. Risk of schistosomiasis transmission still exists in Dongting Lake area and long-term monitoring is required.

  1. A proposal of protection techniques in the catchment of a lake in the context of improving its recreational value

    Directory of Open Access Journals (Sweden)

    Grochowska Jolanta

    2016-12-01

    Full Text Available The study was carried out on Lake Rentyńskie (100.8 ha; 9.4 m situated approximately 20 km to the west of Olsztyn, in the drainage basin of the rivers Giłwa and Pasłęka. The direct catchment area of the lake is 166.2 ha. Forests cover most of the drainage basin area (74%. As revealed in the study, Rentyńskie is a highly eutrophic reservoir. The lake waters were characterized by a high content of nutrients, up to 1.508 mg P dm-3 and 11.7 mg N dm-3. The high fertility of the lake was also evident in the values of chlorophyll a - 75.4 μg dm-3, and low water transparency - average 1 m. The total annual phosphorus and nitrogen load to Lake Rentyńskie, calculated according to Giercuszkiewicz-Bajtlik (1990 equals 759.0 kg of phosphorus and 31869.7 kg of nitrogen, or per unit surface 0.753 g P m-2 yr-1 and 31.611 N m-2 yr-1. Allowable and critical load levels to Lake Rentyńskie calculated according to the hydrological model of Vollenweider (1976 equal (respectively 0.090 g P m-2 yr-1 and 0.189 g P m-2 yr-1. From a comparison between the actual phosphorus load and the values calculated according to Vollenweider it can be concluded that the loads not only exceed the allowable values by several times but also the critical values responsible for advanced eutrophication. The study showed that the River Giłwa, which flows through the reservoir, posed a major threat to the analysed lake . In order to improve the water quality in Lake Rentyńskie drastic protective measures should be taken in the basin of the River Giłwa, which is intensively used for agriculture, and also, at the point where the river enters the lake a special system to reduce the level of phosphorus compound concentrations should be set up.

  2. Land cover changes in catchment areas of lakes situated in headwaters of the Tyśmienica River

    Directory of Open Access Journals (Sweden)

    Grzywna Antoni

    2017-06-01

    Full Text Available The paper presents the history of land cover changes in the catchment area of lakes situated in the headwaters of the Tyśmienica River. The basis of the study were topographic maps in scale 1:50 000, from 1936 and 2014. We analyzed the quantitative aspect of these changes. The study was conducted in three natural lakes (Rogóźno, Krasne, Łukcze, and in one lake transformed into a storage reservoir (Krzczeń. The technical issues of georeferencing maps in the Geographic Information System (GIS software are addressed first. In the landscape of Łęczna and Włodawa Lake District, to the end of the 19th century wetlands and bushes dominated. The first type of human pressure on this area was agriculture. Another type of pressure was recreation. In the catchment areas of studied lakes increased mainly the area of buildings and forests. Significantly increased also the length of roads and watercourses. Almost completely disappeared bushes and wastelands. In most of the analyzed basins, the area of wetlands and arable lands decreased. The probable cause of the changes in catchment use was decline in the water table, and thus overgrowing of meadows and wetlands.

  3. INDEPENDENT CONFIRMATORY SURVEY REPORT FOR THE SECTION 4 AREA AT THE RIO ALGOM AMBROSIA LAKE FACILITY AMBROSIA LAKE, NEW MEXICO

    International Nuclear Information System (INIS)

    Adams, W.C.

    2010-01-01

    The Rio Algom Mining (RAM) Limited Liability Corporation Ambrosia Lake site began processing uranium-bearing ore in 1958. Operating under U. S. Nuclear Regulatory Commission (NRC) Source Material License SUA-1473, the site processed approximately 33 million tons of ore through 1985 and continued to be an active uranium production facility through December 2002. Reclamation of the tailings began in 1989 and included the excavation and disposal of unlined evaporation pond residues, contaminated soil cleanup, construction of surface water erosion protection features and the demolition of the mill buildings (NRC 2006). Construction of the Section 4 evaporation ponds commenced in 1976 and was completed in 1979. The ponds were used to evaporate liquid wastes generated from RAM's processing mill. The ponds remained in active service until April 2004; reclamation activities included the pond sediments being relocated to the main tailings disposal area (KOMEX 2006). Other reclamation activities included the excavation and disposal of unlined evaporation pond residues, contaminated soil clean-up, completion of the majority of the required reclamations for Impoundments 1 and 2, construction of a rock apron on Impoundment 2 and demolition of the conventional milling structures and most support facilities. Additional activities at the site included the construction of erosion protection features adjacent to the tailings disposal facility. On January 19, 2005, the RAM submitted a Soil Decommissioning Plan for its Ambrosia Lake uranium mill tailings facility, specifically the evaporation ponds, to the NRC. The NRC requested, in several comment letters, that RAM provide additional information and a revised plan (NRC 2006). RAM issued a revised decommissioning plan (DP) that addresses the methods and procedures implemented to ensure soil remediation meets the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) and NRC regulations contained within the Code of

  4. 32 CFR Appendix A to Part 552 - DPCA Recreational Areas in Training Areas

    Science.gov (United States)

    2010-07-01

    ... guests. Boat launch adjacent to Officer's Club Beach on American Lake/Beachwood area Cat Lake Picnic and Fishing Area—Training Area 19 Chambers Lake Picnic and *Fishing Area—Training Area 12 (See para 2 below) Ecology Park Hiking Path—North Fort, CTA A West Fiander Lake Picnic and Fishing Area—Training Area 20...

  5. Trace element composition in sediments of the Amazonian Lake Cristalino

    International Nuclear Information System (INIS)

    Ferraz, E.S.B.; Fernandes, E.A.N.

    1995-01-01

    Lake Cristalino is a small lake adjacent to the Negro River near Manaus and not far from the Amazonas River, in the central Amazon basin. The lake is fed seasonally by waters of the Negro River, a blackwater river with low levels of nutrients and suspended solids (7 g m -3 ). However, some investigations have established that Lake Cristalino has a high sedimentation rate (0.4-0.5 cm year -l ) similar to those in the alluvial floodplain lakes of the Amazonas River (suspended solids 200-300 g m -3 ). Sediment cores were taken during the low-water period and the trace-element composition and the natural radioactivity in the lake were examined. The results show a core (31 cm length) relatively uniform in concentrations of trace elements (Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, La, Sc, Sm, Ta, Tb, Th, Yb and Zn), and the presence of 137 Cs in the first half. Concentrations of trace elements in Lake Cristalino sediments were not correlated with concentrations in the sediments of its parent river, the Negro River, or with concentrations in soils of the local area. However, significant correlation was found between the sediments of the lake and those of the Amazonas River. On the basis of these results, and water-level data at Manaus port, it is concluded that the lake occasionally receives variable amounts of sediment from the Amazonas River. 10 refs., 2 tabs., 2 figs

  6. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    Science.gov (United States)

    Mast, M. Alisa; Turk, John T.; Clow, David W.; Campbell, Donald D.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 μeq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 μeq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93°C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering.

  7. 75 FR 4102 - Folsom Lake State Recreation Area and Folsom Power House State Historic Park General Plan...

    Science.gov (United States)

    2010-01-26

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Folsom Lake State Recreation Area and Folsom Power House State Historic Park General Plan/Resource Management Plan AGENCY: Bureau of Reclamation... review and comment a joint Final EIS/EIR for the Folsom Lake State Recreation Area and Folsom Power House...

  8. Distribution of native mussel (unionidae) assemblages in coastal areas of Lake Erie, Lake St. Clair, and connecting channels, twenty-five years after a dreissenid invasion

    Science.gov (United States)

    Zanatta, David T.; Bossenbroek, Jonathan M.; Burlakova, Lyubov E.; Crail, Todd D.; Szalay, Ferenc de; Griffith, Traci A.; Kapusinski, Douglas; Karatayev, Alexander Y.; Krebs, Robert A.; Meyer, Elizabeth S.; Paterson, Wendy L.; Prescott, Trevor J.; Rowe, Matthew T.; Schloesser, Donald W.; Walsh, Mary C.

    2015-01-01

    Over the past 25 years, unionid mussels in the Laurentian Great Lakes of North America have been adversely impacted by invasive dreissenid mussels, which directly (e.g., by attachment to unionid shells) and indirectly (e.g., by competing for food) cause mortality. Despite the invasion, unionids have survived in several areas in the presence of dreissenid mussels. We investigated current spatial patterns in these native mussel refuges based on surveys for unionid mussels across 48 sampling locations (141 sites) in 2011 and 2012, and documented species abundance and diversity in coastal areas of lakes St. Clair and Erie. The highest-quality assemblages of native mussels (densities, richness, and diversity) appear to be concentrated in the St. Clair delta, where abundance continues to decline, as well as in in Thompson Bay of Presque Isle in Lake Erie and in just a few coastal wetlands and drowned river-mouths in the western basin of Lake Erie. The discovery of several new refuge areas suggests that unionids have a broader distribution within the region than previously thought.

  9. Spatial and temporal analysis of lake sedimentation under reforestation

    Directory of Open Access Journals (Sweden)

    C.M. Pilgrim

    2015-10-01

    Full Text Available Spatial and temporal land cover changes can reduce or accelerate lake sedimentation. This study was conducted to examine morphometry and bathymetry, and the long-term changes (over 75 years in sedimentation in the Lake Issaqueena reservoir, South Carolina. The watershed and catchment areas were delineated using Light Detection and Ranging (LiDAR based data. Trends in lake surface area and riparian buffer condition (vegetated or unvegetated were determined from historical aerial photography. From 1938 to 2009, the lake experienced a decrease in surface area of approximately 11.33 ha while catchment area increased by 6.99 ha, and lake volume decreased by 320,800.00 m3. Lake surface area decreased in years corresponding to equal coverage or largely unvegetated riparian buffers. Surface area and average annual precipitation were not correlated; therefore other factors such as soil type, riparian buffer condition and changes in land use likely contributed to sedimentation. Shift from agricultural land to forestland in this watershed resulted in a decrease in sedimentation rates by 88.28%. Keywords: Bathymetry, Erosion, Geographic Information Systems (GIS, Land cover, Riparian buffer, Soils

  10. Glaciotectonics in the Cold Lake area and implications for steam-assisted heavy-oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Andriashek, L.D.; Fenton, M.M. [Alberta Geological Survey, Calgary, AB (Canada); Freitas de, T.; Mann, G. [Imperial Oil of Canada, Calgary, AB (Canada)

    1999-11-01

    A study was conducted to show how the depositional history of the Alberta`s Cold Lake region can have an impact on the use of steam assisted heavy-oil recovery in the oil sands region. The bitumens are found mainly within the 50 m thick estuarine and fluvial sandstone of the Cretaceous Clearwater Formation of the Mannville Group, at a depth of approximately 450 m. The stratigraphic sequences within the Mannville Group were presented. It has been determined that glaciotectonics have played a major role in the depositional history of the area. It was also determined that a good understanding of the hydrostratigraphic complexity makes it possible to better manage local ground water resources and to effectively plan further groundwater withdrawal sites.

  11. Atmospheric Mercury Transport Across Southern Lake Michigan: Influence from the Chicago/Gary Urban Area

    Science.gov (United States)

    Gratz, L. E.; Keeler, G. J.; Dvonch, J. T.

    2008-12-01

    The local and regional impacts of mercury emissions from major urban and industrial areas are critical to quantify in order to further understand mercury cycling in the environment. The Chicago/Gary urban area is one such location in which mercury emissions from industrial sources are significant and regional mercury transport needs to be further examined. Speciated atmospheric mercury was measured in Chicago, IL and Holland, MI from July to November 2007 to better characterize the impact of Chicago/Gary on southwest Michigan. Previous work under the 1994-1995 Lake Michigan Mass Balance Study (LMMBS) indicated that the highest levels of mercury deposition in southwest Michigan occurred with transport from the Chicago/Gary area, particularly with rapid transport where less mercury was deposited close to sources(1). However, at that time it was not possible to measure reactive gas phase mercury (RGM), a highly-soluble form of mercury in industrial emissions that is readily removed from the atmosphere. Since the LMMBS, the development of speciated mercury systems has made it possible to continuously monitor gaseous elemental mercury (Hg0), particulate mercury (HgP), and RGM. These measurements are useful for understanding atmospheric mercury chemistry and differentiating between local and regional source impacts due to the different behaviors of reactive and elemental mercury. Results from 2007 show that, on average, Hg0 and HgP were 1.5 times higher and RGM was 2 times higher in Chicago than in Holland. Mean mercury wet deposition was nearly 3 times higher in Chicago than in Holland. Meteorological analysis indicates that transport across the lake from Chicago/Gary occurred frequently during the study. Additional measurements of O3, SO2, meteorological parameters, event mercury and trace element precipitation samples, and modeled back-trajectories are used to discern regional transport events from local deposition and characterize the impact of the Chicago/Gary urban

  12. Visual observations of historical lake trout spawning grounds in western Lake Huron

    Science.gov (United States)

    Nester, Robert T.; Poe, Thomas P.

    1987-01-01

    Direct underwater video observations were made of the bottom substrates at 12 spawning grounds formerly used by lake trout Salvelinus namaycush in western Lake Huron to evaluate their present suitability for successful reproduction by lake trout. Nine locations examined north of Saginaw Bay in the northwestern end of the lake are thought to provide the best spawning habitat. The substrate at these sites consisted of angular rough cobble and rubble with relatively deep interstitial spaces (a?Y 0.5 m), small amounts of fine sediments, and little or no periphytic growth. Conditions at the three other sampling locations south of Saginaw Bay seemed much less suitable for successful reproduction based on the reduced area of high-quality substrate, shallow interstitial spaces, high infiltration of fine sediments, and greater periphytic growth.

  13. SWAT modeling of Critical Source Area for Runoff and Phosphorus losses: Lake Champlain Basin, VT

    Science.gov (United States)

    Lake Champlain, located between Vermont, New York, and Quebec, exhibits eutrophication due to continuing phosphorus (P) inputs mainly from upstream nonpoint source areas. To address the Lake's eutrophication problem and as part of total maximum daily load (TMDL) requirements, a state-level P reducti...

  14. Deglaciation, lake levels, and meltwater discharge in the Lake Michigan basin

    Science.gov (United States)

    Colman, Steven M.; Clark, J.A.; Clayton, L.; Hansel, A.K.; Larsen, C.E.

    1994-01-01

    The deglacial history of the Lake Michigan basin, including discharge and routing of meltwater, is complex because of the interaction among (1) glacial retreats and re-advances in the basin (2) the timing of occupation and the isostatic adjustment of lake outlets and (3) the depositional and erosional processes that left evidence of past lake levels. In the southern part of the basin, a restricted area little affected by differential isostasy, new studies of onshore and offshore areas allow refinement of a lake-level history that has evolved over 100 years. Important new data include the recognition of two periods of influx of meltwater from Lake Agassiz into the basin and details of the highstands gleaned from sedimentological evidence. Major disagreements still persist concerning the exact timing and lake-level changes associated with the Algonquin phase, approximately 11,000 BP. A wide variety of independent data suggests that the Lake Michigan Lobe was thin, unstable, and subject to rapid advances and retreats. Consequently, lake-level changes were commonly abrupt and stable shorelines were short-lived. The long-held beliefs that the southern part of the basin was stable and separated from deformed northern areas by a hinge-line discontinuity are becoming difficult to maintain. Numerical modeling of the ice-earth system and empirical modeling of shoreline deformation are both consistent with observed shoreline tilting in the north and with the amount and pattern of modern deformation shown by lake-level gauges. New studies of subaerial lacustrine features suggest the presence of deformed shorelines higher than those originally ascribed to the supposed horizontal Glenwood level. Finally, the Lake Michigan region as a whole appears to behave in a similar manner to other areas, both local (other Great Lakes) and regional (U.S. east coast), that have experienced major isostatic changes. Detailed sedimentological and dating studies of field sites and additional

  15. Characterization of three acid strip mine lakes in Grundy County, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Master, W. A.

    1979-09-01

    Three small lakes with acid water and one with circumneutral water at an abandoned strip mine site were characterized to identify factors limiting biological productivity. Dissolved oxygen, specific conductance, and temperature profiles were determined. Water samples were analyzed for 23 parameters, and the lakes were examined for the presence of aquatic vascular plants and benthic inhabitants. The acid lakes ranged from 0.9 ha to 2.7 ha in surface area and from 3.1 m to 6.7 m in maximum depth. The mean pH of the acid lakes ranged from 3.1 to 3.9. Chemicals found at concentrations higher than Illinois surface water standards or federal criteria for the protection of aquatic life included Cd, Cu, Fe, Mn, SO/sub 4/=, and Zn. A number of these chemicals were at sufficiently high concentrations to limit the survival and productivity of most aquatic fauna. The lake with the poorest water quality had the least diversity of aquatic vascular plants and benthic invertebrates, while the circumneutral lake had the greatest diversity of species.

  16. Gamma-emitting radionuclides in the bottom sediments of some Finnish lakes

    International Nuclear Information System (INIS)

    Ilus, E.; Puhakainen, M.; Saxen, R.

    1993-10-01

    In 1988 and 1990 bottom sediment and surface water samples were taken from eight large lakes representing all five categories of deposition regions contaminated by the chernobyl fallout in Finland. All samples were analysed for gamma-emitting radionuclides. The 137 Cs concentrations in surface waters varied in 1988 from 20 to 310 Bq/m 3 and in 1990 from 78 to 170 Bq/m 3 . The other radionuclides of Chernobyl origin detected in water samples were 106 Ru, 125 Sb and 134 Cs. In the sediments the total amount of 137 Cs per square metre varied in 1988 from 1100 to 160 000 Bq/m 2 and in 1990 from 14 000 to 250 000 Bq/m 2 . The maximum values were in Lake Pyhaejaervi. The maximum concentration of 137 Cs in the surface layer of sediment (0-2cm) was 55 700 Bq/kg dry wt in Lake Naesijaervi. In addition to the cesium isotopes 137 Cs and 134 Cs , Chernobyl derived 106 Ru, 125 Sb amd 144 Ce were detected i the surface layer of sediment in most lakes. 54 Mn, 60 Co and 110m Ag were also detected in some lakes situated in the regions most contaminated by the Chernobyl fallout. In 1988 the maximum concentrations of 137 Cs and 134 Cs were in the uppermost layer of sediment (0-2cm) at almost all stations. In 1990, the cesium peaks already occurred at many stations in the second slice (2-5cm), which may indicate downward diffusion of cesium in sediments or mixing of sediment layers during sampling. The most important factors affecting cesium values in sediments were the local amount of deposition and the type of sediment. This study did not reveal any correletion between the maximum depth of the lake and the area of the lake with the cesium amounts in the sediments. (orig.). (23 refs., 10 figs., 6 tabs.)

  17. Lakes near the glacier Maliy Azau on the Elbrus (Central Caucasus: dynamics and outbursts

    Directory of Open Access Journals (Sweden)

    M. D. Dokukin

    2016-01-01

    Full Text Available The lake dynamics and the current state of them were analyzed on the basis of interpretation of aerial and satellite images of different years together with results of field surveys. Areas of six lakes existing in different years near the Maliy Azau Glacier had been determined. On August 22, 2011, the maximum area of one of the lakes was equal to 25.5 thousand m2. The first outburst was caused by the landslide deformations of the moraine massif forming a part of the lake basin, while the second one was a result of degradation of the lake ice dam and the water overflow on top of it. The present‑day lake dams (terminal‑moraine ramparts and medial moraine ridges are the result of the Maliy Azau Glacier advance in 1990s. The revealed feature of the lake dynamics on the mountain Elbrus was a drop of the water level and corresponding decrease of the lake areas in winter that was related to existence of the groundwater runoff into fractured volcanic rocks. At present, moraine dams of lakes and areas of the surface water runoff from the lakes are in stable condition due to which there is no threat of a lake outburst. However, the potential threat of outburst still remains because of high seismicity and possible volcanic activity in this region.

  18. Observations of Lake-Breeze Events During the Toronto 2015 Pan-American Games

    Science.gov (United States)

    Mariani, Zen; Dehghan, Armin; Joe, Paul; Sills, David

    2018-01-01

    Enhanced meteorological observations were made during the 2015 Pan and Parapan American Games in Toronto in order to measure the vertical and horizontal structure of lake-breeze events. Two scanning Doppler lidars (one fixed and one mobile), a C-band radar, and a network including 53 surface meteorological stations (mesonet) provided pressure, temperature, humidity, and wind speed and direction measurements over Lake Ontario and urban areas. These observations captured the full evolution (prior, during, and after) of 27 lake-breeze events (73% of observation days) in order to characterize the convective and dynamic processes driving lake breezes at the local scale and mesoscale. The dominant signal of a passing lake-breeze front (LBF) was an increase in dew-point temperature of 2.3 ± 0.3°C, coinciding with a 180° shift in wind direction and a decrease in air temperature of 2.1 ± 0.2°C. Doppler lidar observations over the lake detected lake breezes 1 hour (on average) before detection by radar and mesonet. On days with the synoptic flow in the offshore direction, the lidars observed wedge-shaped LBFs with shallow depths, which inhibited the radar's ability to detect the lake breeze. The LBF's ground speed and inland penetration distance were found to be well-correlated (r = 0.78), with larger inland penetration distances occurring on days with non-opposing (non-offshore) synoptic flow. The observed enhanced vertical motion ({>} 1 m s^{-1}) at the LBF, observed by the lidar on 54% of lake-breeze days, was greater (at times {>} 2.5 m s^{-1}) than that observed in previous studies and longer-lasting over the lake than over land. The weaker and less pronounced lake-breeze structure over land is illustrated in two case studies highlighting the lifetime of the lake-breeze circulation and the impact of propagation distance on lake-breeze intensity.

  19. Geochemical and Thermodinamic Modeling of Segara Anak Lake and the 2009 Eruption of Rinjani Volcano, Lombok, Indonesia

    Directory of Open Access Journals (Sweden)

    Akhmad Solikhin

    2014-06-01

    Anak Lake, and increasing of lake surface temperatures. The new lava flow from May - August 2009 eruption covers an area of 650,000 m2. The shoreline was significantly modified by the entry of lava into Segara Anak Lake. The area of the lake is reduced by 460,000 m2.

  20. Recolonization and possible recovery of burrowing mayflies (Ephemeroptera: Ephemeridae: Hexagenia spp.) in Lake Erie of the Laurentian Great Lakes

    Science.gov (United States)

    Schloesser, Don W.; Krieger, Kenneth A.; Ciborowski, Jan J.H.; Corkum, Lynda D.

    2000-01-01

    Burrowing mayflies of the genus Hexagenia spp. were widely distributed (ca. 80% of sites) and abundant (ca. 160 nymphs/m2) in the western basin of Lake Erie of the Laurentian Great Lakes in 1929–1930, prior to a period of anoxia in the mid 1950s. Nymphs were absent or rare in the basin between 1961 and 1973–1975. In 1979–1991, nymphs were infrequently found (13–46% of sites) in low abundance (3–40 nymphs/m2) near shore (recolonized sediments of western Lake Erie and that their abundance may be similar to levels observed before their disappearance in the mid 1950s. However, prior to the mid 1950s, densities were greater in offshore than nearshore waters, but between 1979 and 1998 greater densities occurred near shore than offshore. In addition, there were two areas in the 1990s where low densities consistently occurred. Therefore, recovery of nymphs in western Lake Erie may not have been complete in 1998. At present we do not know the cause for the sudden recolonization of nymphs in large portions of western Lake Erie. Undoubtedly, pollution-abatement programs contributed to improved conditions that would have ultimately led to mayfly recovery in the future. However, the explosive growth of the exotic zebra mussel, Dreissena polymorpha, undoubtedly diverted plankton foods to bottom substrates which could have increased the speed at which Hexagenia spp. nymphs recolonized sediments in western Lake Erie in the 1990s.

  1. Effects of acidity on primary productivity in lakes: phytoplankton. [Lakes Panther, Sagamore, and Woods

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G R

    1979-01-01

    Relationships between phytoplankton communities and lake acidity are being studied at Woods Lake (pH ca. 4.9), Sagamore Lake (pH ca. 5.5), and Panther Lake (pH ca. 7.0). Numbers of phytoplankton species observed as of July 31, 1979 are Woods 27, Sagamore 38, and Panther 64, conforming to other observations that species numbers decrease with increasing acidity. Patterns of increasing biomass and productivity found in Woods Lake may be atypical of similar oligotrophic lakes in that they develop rather slowly instead of occuring very close to ice-out. Contributions of netplankton (net > 48 ..mu..m), nannoplankton (48 > nanno > 20 ..mu..m) and ultraplankton (20 > ultra >0.45 ..mu..m) to productivity per m/sup -2/ show that the smaller plankton are relatively more important in the more acid lakes. This pattern could be determined by nutrient availability (lake acidification leading to decreased availability of phosphorus). The amount of /sup 14/C-labelled dissolved photosynthate (/sup 14/C-DOM), as a percent of total productivity, is ordered Woods > Sagamore > Panther. This is consistent with a hypothesis that microbial heterotrophic activity is reduced with increasing acidity, but the smaller phytoplankton may be more leaky at low pH. (ERB)

  2. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.

    2017-09-05

    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  3. High net CO2 and CH4 release at a eutrophic shallow lake on a formerly drained fen

    Science.gov (United States)

    Franz, Daniela; Koebsch, Franziska; Larmanou, Eric; Augustin, Jürgen; Sachs, Torsten

    2016-05-01

    Drained peatlands often act as carbon dioxide (CO2) hotspots. Raising the groundwater table is expected to reduce their CO2 contribution to the atmosphere and revitalise their function as carbon (C) sink in the long term. Without strict water management rewetting often results in partial flooding and the formation of spatially heterogeneous, nutrient-rich shallow lakes. Uncertainties remain as to when the intended effect of rewetting is achieved, as this specific ecosystem type has hardly been investigated in terms of greenhouse gas (GHG) exchange. In most cases of rewetting, methane (CH4) emissions increase under anoxic conditions due to a higher water table and in terms of global warming potential (GWP) outperform the shift towards CO2 uptake, at least in the short term.Based on eddy covariance measurements we studied the ecosystem-atmosphere exchange of CH4 and CO2 at a shallow lake situated on a former fen grassland in northeastern Germany. The lake evolved shortly after flooding, 9 years previous to our investigation period. The ecosystem consists of two main surface types: open water (inhabited by submerged and floating vegetation) and emergent vegetation (particularly including the eulittoral zone of the lake, dominated by Typha latifolia). To determine the individual contribution of the two main surface types to the net CO2 and CH4 exchange of the whole lake ecosystem, we combined footprint analysis with CH4 modelling and net ecosystem exchange partitioning.The CH4 and CO2 dynamics were strikingly different between open water and emergent vegetation. Net CH4 emissions from the open water area were around 4-fold higher than from emergent vegetation stands, accounting for 53 and 13 g CH4 m-2 a-1 respectively. In addition, both surface types were net CO2 sources with 158 and 750 g CO2 m-2 a-1 respectively. Unusual meteorological conditions in terms of a warm and dry summer and a mild winter might have facilitated high respiration rates. In sum, even after 9

  4. Influence of permafrost on lake terraces of Lake Heihai (NE Tibetan Plateau)

    Science.gov (United States)

    Lockot, Gregori; Hartmann, Kai; Wünnemann, Bernd

    2013-04-01

    The Tibetan Plateau (TP) is one of the key regions for climatic global change. Besides the poles the TP is the third highest storage of frozen water in glaciers. Here global warming is three times higher than in the rest of the world. Additionally the TP provides water for billions of people and influences the moisture availability from the Indian and East Asian monsoon systems. During the Holocene extent and intensity of the monsoonal systems changed. Hence, in the last decades, a lot of work was done to reconstruct timing and frequency of monsoonal moisture, to understand the past and give a better forecast for the future. Comparative workings often show very heterogeneous patterns of timing and frequency of the Holocene precipitation and temperature maximum, emphasizing the local importance of catchment dynamics. In this study we present first results of lake Heihai (36°N, 93°15'E, 4500m a.s.l.), situated at the north-eastern border of the TP. The lake is surrounded by a broad band of near-shore lake sediments, attesting a larger lake extent in the past. These sediments were uplifted by permafrost, reaching nowadays heights ca. +8 meters above present lake level. Due to the uplift one of the main inflows was blocked and the whole hydrology of the catchment changed. To quantify the uplift of permafrost Hot Spot Analysis were accomplished at a DEM of the near-shore area. As a result regions of high permafrost uplift and those which mirror the original height of lake ground were revealed. The most obvious uplift took place in the northern and western part of the lake, where the four uplift centers are located. In contrast the southern and eastern areas show a rather degraded pattern (probably by fluvial erosion, thermokarst, etc.). The ancient lake bottom, without permafrost uplift was estimated to be 4-6 meters above the modern lake level. For a better understanding of permafrost interaction inside the terrace bodies a 5m sediment profile was sampled and

  5. Stable isotopes, δ18O and δ2H, in the study of water balance of Lake Massoko, Tanzania: Investigation of the exchange between lake and underground water

    International Nuclear Information System (INIS)

    Bergonzini, L.; Gibert, E.; Winckel, A.

    2002-01-01

    Full text: The stable oxygen and deuterium isotope compositions of a lake depend upon its water balance. Therefore the balance equations of stable isotopes, which imply calculation of the composition of evaporating moisture α E , provide information for assessing the water balance. In most cases, this approach is used to investigate the relationships between lakes and groundwater. Lake Massoko (8 deg. 20'S, 33 deg. 45'E, 870 m.a.s.l.) is a freshwater maar-lake without surface outlet. The lake surface and its runoff area cover 0.38 and 0.55 km 2 respectively. In contrast with the mean annual rainfall in the other parts of south Tanzania (1000-1200 mm y -1 ), the presence of Lake Malawi to the South, and the high ranges to the North (Mounts Poroto, Rungwe and Livingstone) imply local climatic features. Air masses overloaded with humidity bypassing Lake Malawi are submitted, especially in April, to ascending currents, producing rainfalls up to 2450 mm y -1 over Massoko area. Because of the evaporation rate from the lake's surface (around 2100 mm y -1 ) and without taking into account the runoff from the drainage basin, hydrological balance is positive and imply underground lost. One of most difficult points in the establishment of the isotope balances is the calculation of the composition of the evaporated water (δ E ), which requires an estimation of the isotopic composition of the water vapour in the atmosphere over the lake (δ Atm ). Without direct measurements, two ways can be used for the determination of the vapour composition (i) equilibrium with precipitation and reconstitution from them, or (ii) calculation from the balances of a terminal lake of the region. Both approaches are presented and compared, but only the second one allows physical solutions. δ Atm determined from Lake Rukwa hydrological and isotope balances has been used to calculate values for δ E over Lake Massoko. The estimation of δ Atm obtained from Lake Rukwa budgets presents a deuterium

  6. MORPHO-BATHYMETRIC PARAMETERS OF RECESS CRUCII LAKE (STÂNIŞOAREI MOUNTAINS

    Directory of Open Access Journals (Sweden)

    ALIN MIHU-PINTILIE

    2012-03-01

    Full Text Available Morpho-bathymetric parameters of recess Crucii Lake (Stânişoarei Mountains. Crucii Lake from Stânişoarei Mountains was formed in 1978 as a result of riverbed dam Cuejdel after a landslide triggered on the western slope of Muncelul Peak. The event led initially to a small accumulation of 250-300 acvatoriu m, 25-30 m wide and 4-5 m maximum depth. In the summer of 1991 following the construction of a forest road in the flysch, and amid a high humid conditions, the slide was reactivated, leading to the formation of the largest natural dam lake in Romania. It has a length of 1 km, area of 12.2 ha, maximum depth of 16 m and a water volume of ca. 907.000 m3. Morphometric and morpho-bathymetric measurements performed in the summer of 2011, with the help of the integrated 1.200 GPS of Station Leica System 1.200 surveying measurements and bathymetric measurements Valeyport Ecosounder Midas showed new values for the morpho-bathymetric parameters. Among them stands out: 13,95 ha area, perimeter 2801,1 m, maximum length of 1004,82 m, 282,6 m maximum width, maximum depth 16,45 m. To achieve the numerical model of the lake basin were more than 45.000 points bali reading, with equidistance of 0,25 m. The scale of detail work aimed to draw up a proper database to eliminate suspicions about the old analytical methods inaccuracies. At the same time was studied the evolution of the lake’s basin in the context of relatively recent geomorphological changes.

  7. Preliminary assessment of the impact of fluctuating water levels on northern pike in Reindeer Lake

    International Nuclear Information System (INIS)

    Chen, M.

    1993-03-01

    Reindeer Lake in north eastern Saskatchewan regulates water levels for the Island Falls hydroelectric power plant. Since inception of the Whitesand Dam on the lake, there have been concerns that fluctuating water levels could be adversely impacting the habitat and population of northern pike in the lake. The extent of water level fluctuations during the pike spawning period of Reindeer Lake and its effect on spawning success was investigated. Since construction of the Whitesand Dam in 1942 Reindeer Lake water levels have averaged ca 1.71 m higher than had the dam not existed, creating ca 430 km 2 of new surface area. Much of this area is shallow water and prone to growth of aquatic vegetation, which is suitable spawning and nursery habitat for northern pike. Annual and periodic water level fluctuations of Reindeer Lake have been higher than under natural conditions. During northern pike spawning and nursing periods, water levels in the lake have generally increased, in 60 out of 64 y. It is concluded that operation of the dam has not caused any direct negative impacts on the northern pike habitat in the lake. 2 refs., 4 figs., 4 tabs

  8. Long-term Simulation Study about the Impact of submerse Macrophytes on thermal Stratification Dynamics and Transport Processes in an extreme shallow water lake - Lake Federsee

    Science.gov (United States)

    Wolf, Thomas; Pöschke, Franziska; Pflugbeil, Thomas

    2017-04-01

    Lake Federsee is formed primarily by ice age processes and was subjected to strong siltation processes in post-glacial times, while in the last two centuries anthropogenic impact due to amelioration projects became more important and determined it's morphometry. Lake Federsee has a maximum length of 2.4 km, a maximum width of 1.1 km and an area of approx. 1.4 km2. With respect to it's area Lake Federsee is the third largest lake in the federal state of Baden-Wuerttemberg situated in the south of Germany. It is characterized by its very flat bathymetry with a maximum depth of about 3.15 m and an average depth of about 1 m. In recent years Lake Federsee has undergone a strong reduction of the nutrient content, thus developing from hypertrophic states in the years 1980ies to eutrophic conditions in the years 2000ies. Since 2005 this development is accompanied by a change of the general habitus of the lake converting from a lake dominated by algae to a lake dominated by macrophytes. Changing successions of aquatic plants have been observed in the lake with strong seasonal variations in the composition and density of the vegetation cover, however forming often an almost complete coverage of the lake. In the present study the implementation of the hydrodynamic, three-dimensional model DELFT3D - FLOW for this extreme shallow water lake will be presented. The impact of some numerical parameters will be investigated in a sensitivity study, which is aiming to set up the hydrodynamic model in an optimal way. This 3-dim hydrodynamic model is used to simulate the 3-dim flow field and to investigate the thermal stratification as well as the mixing processes taking place in this lake. The model is run for the simulation time period 2000 - 2016 having a horizontal resolution of dx=dy=50 m and 10 or 20 equidistantly spaced fixed vertical layers giving a vertical resolution of 0.32 or 0.16 m respectively. The timestep is choosen to be dt = 10 s. Analysis of the simulated vertical

  9. Sanctuaries for lake trout in the Great Lakes

    Science.gov (United States)

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  10. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    Science.gov (United States)

    Muster, Sina; Roth, Kurt; Langer, Moritz; Lange, Stephan; Cresto Aleina, Fabio; Bartsch, Annett; Morgenstern, Anne; Grosse, Guido; Jones, Benjamin; Sannel, A. Britta K.; Sjöberg, Ylva; Günther, Frank; Andresen, Christian; Veremeeva, Alexandra; Lindgren, Prajna R.; Bouchard, Frédéric; Lara, Mark J.; Fortier, Daniel; Charbonneau, Simon; Virtanen, Tarmo A.; Hugelius, Gustaf; Palmtag, Juri; Siewert, Matthias B.; Riley, William J.; Koven, Charles D.; Boike, Julia

    2017-06-01

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002-2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( pangaea.de/10.1594/PANGAEA.868349" target="_blank">https://doi.pangaea.de/10.1594/PANGAEA.868349.

  11. Distribution and interannual variability of supraglacial lakes on debris-covered glaciers in the Khan Tengri-Tumor Mountains, Central Asia

    International Nuclear Information System (INIS)

    Qiao, Liu; Mayer, Christoph; Liu, Shiyin

    2015-01-01

    Supraglacial lakes are widely formed on debris-covered glaciers in the Khan Tengri-Tumor Mountains (KTTM), Tianshan, Central Asia. Study of their distribution characters based on regional-wide remote sensing investigations is still lacking, but it can promote our understanding about the influence of supraglacial lakes on the surface melting, hydrology and dynamics of debris-covered glaciers in this region. This study presents results of the supraglacial lake inventory in the KTTM region, based on multi-year Landsat images. We focus on the glacio-geomorphological characters of the supraglacial lakes and their late summer conditions, since all suitable Landsat images were acquired between August and September during 1990–2011. With a minimum threshold extent of 3600 m 2 for conservative mapping results, we totally mapped 775 supraglacial lakes and 38 marginal glacial lakes on eight huge debris-covered glaciers. Supraglacial lakes are concentrated on the Tumor Glacier and the South Inylchek Glacier, two biggest glaciers in this region. Although most supraglacial lakes are short-lived, a number of lakes can be repeatedly identified between different Landsat images. Detailed investigation of these ‘perennial’ lakes on the Tumor Glacier indicates that their filling frequency and area contributions have increased since 2005. Analysis of the area-elevation distributions for all mapped supraglacial lakes shows that they predominantly occur close to the altitude of 3250 m a.s.l., as high as the lowest reach of clean ice where surface debris begins to appear, and can further develop upglacier to a limit of about 3950 m a.s.l.. Total and mean area of supraglacial lakes in the KTTM region during the late summer seasons show great variability between years. Correlation analysis between the annual lake area and the observed nearby meteorological conditions suggests that warmer springs seem related to the draining of some supraglacial lakes during the following seasons, due

  12. Economic Development Mode and Countermeasure Research on the Nansi Lake Drainage Area Based on Circular Economy

    OpenAIRE

    Jia, Yong-fei; Peng, Li-min

    2011-01-01

    Firstly, it is pointed out that circular economy should be vigorously developed in the Nansi Lake Drainage Area, and the connotation of circular economy is expounded. Then, problems in developing circular economy in Nansi Lake Drainage Area are analyzed from the aspects of agriculture, industrial enterprises, and waste utilization. Finally, combining with the four modes of peasant household, enterprise, region and society in the development of circular economy, corresponding countermeasures a...

  13. Dynamics of lake Koeycegiz, SW Turkey: An environmental isotopic and hydrochemical study

    International Nuclear Information System (INIS)

    Bayari, C.S.; Kurttas, T.; Tezcan, L.

    2001-01-01

    Lake Koeycegiz, located in southwestern Turkey, is a meromictic lake with a surface area of 55 km 2 . Impermeable ophiolitic rocks, and groundwater bearing alluvium and karstified limestone are the major geologic units around the lake. Lake Koeycegiz, fed mainly by rainfall and stream flow, discharges into the Mediterranean Sea via a 14 km long natural channel. The average water level is estimated to be slightly above the sea level and the estimated lake volume is 826 million m 3 . Lake level fluctuations are well correlated with rainfall intensity. Lake Koeycegiz comprises two major basins: Sultaniye basin (-32m) at the south and Koeycegiz Basin (-24m) at the north which are connected by a 12m deep strait. Environmental isotopic and chemical data reveals that the Lake Koeycegiz has complicated mixing dynamics which are controlled mainly by density-driven flow of waters from different origins. The lake is fed mainly by rainfall and stream flow as low density waters and by high density thermal groundwater inflow at the southern coast. Complete annual mixing cannot be achieved, because of the density difference between mixolimnion and recharge. Continuous high-density thermal water input into the Sultaniye basin is the major factor controlling the lake dynamics. The high density thermal groundwater discharging into the lake sinks to the bottom of Sultaniye basin and overflows toward the north along the bottom surface. During its travel, dense bottom water is mixed with mixolimnion water and as the distance from the thermal water inflow increases, the density tends to decrease throughout the lake. Calculations based on long-term average electrical conductivity data reveal that about 60% of mixolimnion in both basins is replenished annually, whereas the annual mixing with mixolinmion for Sultaniye and Koeycegiz Basins is 20% and 30%, respectively. Turnover times for mixolimnion and monimolimnions of Sultaniye and Koeycegiz Basins are estimated to be 2 years, 5 years

  14. Eruptive behavior of the Marum/Mbwelesu lava lake, Vanuatu and comparisons with lava lakes on Earth and Io

    Science.gov (United States)

    Radebaugh, Jani; Lopes, Rosaly M.; Howell, Robert R.; Lorenz, Ralph D.; Turtle, Elizabeth P.

    2016-08-01

    Observations from field remote sensing of the morphology, kinematics and temperature of the Marum/Mbwelesu lava lake in the Vanuatu archipelago in 2014 reveal a highly active, vigorously erupting lava lake. Active degassing and fountaining observed at the 50 m lava lake led to large areas of fully exposed lavas and rapid ( 5 m/s) movement of lava from the centers of upwelling outwards to the lake margins. These rapid lava speeds precluded the formation of thick crust; there was never more than 30% non-translucent crust. The lava lake was observed with several portable, handheld, low-cost, near-infrared imagers, all of which measured temperatures near 1000 °C and one as high as 1022 °C, consistent with basaltic temperatures. Fine-scale structure in the lava fountains and cooled crust was visible in the near infrared at 5 cm/pixel from 300 m above the lake surface. The temperature distribution across the lake surface is much broader than at more quiescent lava lakes, peaking 850 °C, and is attributed to the highly exposed nature of the rapidly circulating lake. This lava lake has many characteristics in common with other active lava lakes, such as Erta Ale in Ethiopia, being confined, persistent and high-temperature; however it was much more active than is typical for Erta Ale, which often has > 90% crust. Furthermore, it is a good analogue for the persistent, high-temperature lava lakes contained within volcanic depressions on Jupiter's moon Io, such as Pele, also believed from spacecraft and ground-based observations to exhibit similar behavior of gas emission, rapid overturn and fountaining.

  15. Red Lake Band of Chippewa Indians response to the draft area recommendation report

    International Nuclear Information System (INIS)

    1986-01-01

    The statement of Little Rock, a Chief of the Red Lake Band of Chippewa Indians, provides the genesis of the Red Lake Band of Chippewa Indian's response to the Department of Energy's efforts to establish a nuclear waste repository on lands ceded under the Treaty of 1863. Of paramount interest to the Red Lake Band of Chippewa Indians are the unresolved issues of hunting and fishing rights, promised in the Treaty negotiations of 1863 and still unresolved to the satisfaction of Tribal members. Comments pertaining to the draft Area Recommendation Report will address the potential impact of a high-level nuclear repository on the human and natural resources of the Red Lake Band of Chippewa Indians. Socio-cultural factors of economics and family displacement and traditional beliefs, combined with potential hazards to natural habitats of wildlife, will be analyzed and synthesized for applicable conclusions. 18 refs., 4 tabs

  16. Forsmark site investigation. Hydrochemical investigations in four calciferous lakes in the Forsmark area. Results from the second year of a complementary investigation in the Forsmark area

    International Nuclear Information System (INIS)

    Qvarfordt, Susanne; Borgiel, Micke; Berg, Cecilia

    2011-12-01

    The present report documents the results from the second year of hydrochemical investigations in four small, calciferous lakes in the Forsmark area in order to study the lake water compositions. The construction of a permanent storage facility for used nuclear fuel may result in a lowering of the ground water level and also lake surface water levels. Restoration of habitats by adding water may be an option to reduce possible negative consequences induced by a lower water level on biodiversity and valuable species. Thus, knowledge of the water composition is needed. This report presents the results from six sampling occasions during January to December 2010. The results from the sampling of the four lakes includes field measurements of redox potential (ORP), pH, dissolved oxygen, electrical conductivity, salinity, depth, atmospheric pressure, turbidity, chlorophyll and water temperature, as well as chemical analyses of major constituents and nutrient salts. The four investigated small lakes are well buffered with high alkalinity, high pH and high calcium concentrations. This is in accordance with results from the ongoing monitoring programme of lakes and streams in the area and with the results from the previous sampling period (2008-2009). The results show both seasonal and inter-annual variation in the analysed parameters. This can be explained by seasonal changes and annual differences in temperature, ice-cover, precipitation etc and lake specific parameters such as lake size and drainage area. The variation highlights the importance of both year round sampling and continued sampling for several years when discussing the water composition

  17. Forsmark site investigation. Hydrochemical investigations in four calciferous lakes in the Forsmark area. Results from the second year of a complementary investigation in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Qvarfordt, Susanne; Borgiel, Micke [Sveriges Vattenekologer AB, Vingaaker (Sweden); Berg, Cecilia [Geosigma AB, Uppsala (Sweden)

    2011-12-15

    The present report documents the results from the second year of hydrochemical investigations in four small, calciferous lakes in the Forsmark area in order to study the lake water compositions. The construction of a permanent storage facility for used nuclear fuel may result in a lowering of the ground water level and also lake surface water levels. Restoration of habitats by adding water may be an option to reduce possible negative consequences induced by a lower water level on biodiversity and valuable species. Thus, knowledge of the water composition is needed. This report presents the results from six sampling occasions during January to December 2010. The results from the sampling of the four lakes includes field measurements of redox potential (ORP), pH, dissolved oxygen, electrical conductivity, salinity, depth, atmospheric pressure, turbidity, chlorophyll and water temperature, as well as chemical analyses of major constituents and nutrient salts. The four investigated small lakes are well buffered with high alkalinity, high pH and high calcium concentrations. This is in accordance with results from the ongoing monitoring programme of lakes and streams in the area and with the results from the previous sampling period (2008-2009). The results show both seasonal and inter-annual variation in the analysed parameters. This can be explained by seasonal changes and annual differences in temperature, ice-cover, precipitation etc and lake specific parameters such as lake size and drainage area. The variation highlights the importance of both year round sampling and continued sampling for several years when discussing the water composition.

  18. Modelling assessment of End Pit Lakes meromictic potential

    International Nuclear Information System (INIS)

    2006-11-01

    The use of End Pit Lakes have been proposed as a remediation solution for oil sands reclamation and operational waters. This report modelled the main factors controlling the occurrence of stratification in Pit Lakes in order to establish design and management guidelines for the Cumulative Environmental Management Association's End Pit Lake Sub-group. The study focused on End Pit Lake size, depth, starting lake salinity concentrations, inflow rates and inflow salinity flux, and investigated their influence on density gradients. One-dimensional modelling and limited 2-D modelling simulations were conducted to examine meromictic potential for a large range of End Pit Lake configurations and conditions. Modelling results showed that fall is the governing season for determining meromixis. The expelling of salt from saline water upon ice formation and its effect on stratification potential and the effect of fresh water loading on stratification potential during spring melt events were not observed to be dominant factors governing meromictic potential for the scenarios examined in the study. Results suggested that shallow End Pit Lakes showed a high turn-over rate with seasonal heating and cooling cycles. Moderately deep End Pit Lakes demonstrated a meromictic potential that was inversely proportional to lake size and require higher starting salinities. With a 2 or 10 million m 3 /yr inflow rate and a 5 parts per thousand starting salinity, a 50 m deep End Pit Lake achieved meromixis at all 3 size ranges considered in the study. Results also showed that the rate of influent salinity decrease was the least important of the parameters influencing meromixis. It was observed that meromixis was a temporary condition in all of the End Pit Lake scenarios envisioned due to the lack of a constant, positive salt replenishment over the long term. It was concluded that further 3-D modelling is required to represent littoral areas as well as to account for extreme winter conditions. A

  19. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication—A Case Study in the Taihu Lake Basin (China)

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; He, Bin

    2015-01-01

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil erosion intensity was designated as a watershed indicator, and the lake algae area was designated as a lake quality indicator. The sensitive watershed region was identified based on the relationship between these two indicators among different lake divisions for a temporal sequence from 2000 to 2012. The results show that the relationship between soil erosion modulus and lake quality varied among different lake areas. Soil erosion from the two bay areas was more closely correlated with water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to 10 km from the lake, where the r2 was as high as 0.764. Results indicate that soil erosion could be used as an indicator for identifying key watershed protection areas. Different lake areas need to be considered separately due to differences in geographical features, land use, and the corresponding effects on lake water quality. PMID:26712772

  20. Radiochemical tools at the experimental lakes area (ELA) in Ontario, Canada

    International Nuclear Information System (INIS)

    Pfitzner, J.; Brunskill, G.

    1998-01-01

    Full text: For over 20 years, Canadian research scientists have used radiochemical tracers added to remote and pristine lakes to study physical, chemical, and biological processes that could not be easily quantified by other methods. Lakes have also been manipulated by experimentally altering the hydrological cycle, chemical composition, and species of fish in selected lakes, and using companion lakes as controls. Varying additions of organic carbon, N, and P have been done, and the exchange rate of carbon dioxide between the atmosphere and water was estimated using radon evasion rates from radium spikes in the lake water. Multinuclide spikes were done to follow the path of mine waste elements through the food chain and sediment accumulation. Lakes were experimentally acidified with HCl and HNO 3 and H 2 SO 4 to simulate acid rain, and to study natural buffering capacity of the hydrological cycle. Some of this research has been used to legislate pollution control in the St. Laurence Great Lakes and across Canada and USA. ELA research team spirit has survived several forest fires, bear attacks on the kitchen, massive cut-backs in funding and reduction in staff of Fisheries and Ocean Canada

  1. Methane emissions from permafrost thaw lakes limited by lake drainage.

    NARCIS (Netherlands)

    van Huissteden, J.; Berrittella, C.; Parmentier, F.J.W.; Mi, Y.; Maximov, T.C.; Dolman, A.J.

    2011-01-01

    Thaw lakes in permafrost areas are sources of the strong greenhouse gas methane. They develop mostly in sedimentary lowlands with permafrost and a high excess ground ice volume, resulting in large areas covered with lakes and drained thaw-lake basins (DTLBs; refs,). Their expansion is enhanced by

  2. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 2, Sections 1-16

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  3. Analysis, Evaluation and Measures to Reduce Environmental Risk within Watershed Areas of the Eastern Zauralye District Lakes

    Science.gov (United States)

    Rasskasova, N. S.; Bobylev, A. V.; Malaev, A. V.

    2017-11-01

    The authors have performed an analysis for the use of watershed areas of the lakes of the Eastern Zauralye district (the territory to the east of Ural) for national economic purposes. The analysis gave a possibility to assess the impact of watersheds depending on the applied technologies on the dump of various runoff into the reservoir waters. The watershed areas of all lakes have been found to be actively used as pastures, farmland and recreational resources. Some of the main sources of solid and liquid industrial waste are cattle farms and agricultural land using outdated equipment and technologies. The study of 26 km of the watershed line areas showed that pollutants (household garbage, fuels and lubricants) and organic substances (phosphorus and nitrogen) got into the waters of the reservoirs. The maximum runoff of solid and liquid waste into the waters of the lakes happens in summer which leads to increased concentrations of organic substances, an increase in productivity of alga and higher aquatic flora determining the degree of eutrophication and trophy in the reservoirs. The average annual trophic status of TSI lakes of the Eastern Zauralye district is 56 which corresponds to the typical phase of eutrophy. The reduced transparency of lakes is also the evidence of an increase in biological productivity of reservoirs, their eutrophication and, as a result, the water quality deterioration. The intensive eutrophication of reservoirs, in its turn, most significantly affects the concentration of the ammonium form of nitrogen, total phosphorus and total nitrogen, increase in pH and deterioration of oxygen condition. The authors have developed various activities to reduce a technogenic risk in the watershed areas of the lakes in the Eastern Zauralye district which can be applied to other areas using the analogy method.

  4. H-O isotopic and chemical characteristics of a precipitation-lake water-groundwater system in a desert area

    Science.gov (United States)

    Jin, Ke; Rao, Wenbo; Tan, Hongbing; Song, Yinxian; Yong, Bin; Zheng, Fangwen; Chen, Tangqing; Han, Liangfeng

    2018-04-01

    The recharge mechanism of groundwater in the Badain Jaran Desert, North China has been a focus of research and still disputable in the past two decades. In this study, the chemical and hydrogen (H) and oxygen (O) isotopic characteristics of shallow groundwater, lake water and local precipitation in the Badain Jaran Desert and neighboring areas were investigated to reveal the relationships between various water bodies and the recharge source of shallow groundwater. Isotopic and hydrogeochemical results show that (1) shallow groundwater was associated with local precipitation in the Ayouqi and Yabulai regions, (2) lake water was mainly recharged by groundwater in the desert hinterland, (3) shallow groundwater of the desert hinterland, Yabulai Mountain and Gurinai Grassland had a common recharge source. Shallow groundwater of the desert hinterland had a mean recharge elevation of 1869 m a.s.l. on the basis of the isotope-altitude relationship and thus originated chiefly from lateral infiltration of precipitation in the Yabulai Mountain. It is further concluded that shallow groundwater flowed towards the Gurinai Grassland according to the groundwater table contour map. Along the flow pathway, the H-O isotopic variations were primarily caused by the evaporation effect but chemical variations of shallow groundwater were affected by multiple factors, e.g., evaporation effect, dilution effect of occasional heavy-precipitation and dissolution of aquifer evaporites. Our findings provide new insight into the groundwater cycle and benefit the management of the limited water resources in the arid desert area.

  5. Tracing and quantifying lake water and groundwater fluxes in the area under mining dewatering pressure using coupled O and H stable isotope approach.

    Science.gov (United States)

    Lewicka-Szczebak, Dominika; Jędrysek, Mariusz-Orion

    2013-01-01

    Oxygen and hydrogen stable isotopic compositions of precipitation, lake water and groundwater were used to quantitatively asses the water budget related to water inflow and water loss in natural lakes, and mixing between lake water and aquifer groundwater in a mining area of the Lignite Mine Konin, central Poland. While the isotopic composition of precipitation showed large seasonal variations (δ(2)H from-140 to+13 ‰ and δ(18)O from-19.3 to+7.6 ‰), the lake waters were variously affected by evaporation (δ(2)H from-44 to-21 ‰ and δ(18)O from-5.2 to-1.7 ‰) and the groundwater showed varying contribution from mixing with surface water (δ(2)H from-75 to-39 ‰ and δ(18)O from-10.4 to-4.8 ‰). The lake water budget was estimated using a Craig-Gordon model and isotopic mass balance constraint, which enabled us to identify various water sources and to quantify inflow and outflow for each lake. Moreover, we documented that a variable recharge of lake water into the Tertiary aquifer was dependent on mining drainage intensity. A comparison of coupled δ(2)H-δ(18)O data with hydrogeological results indicated better precision of the δ(2)H-based calculations.

  6. Late Holocene distribution of lake sediment and peat in NE Uppland, Sweden

    International Nuclear Information System (INIS)

    Bergstroem, Elisabeth

    2001-02-01

    This report is part of a larger project conducted by SKB. The aim is to carry out investigations of eight lakes and one bog, with respect to stratigraphic and geographic distribution of sediment and peat. More than 150 corings were made with a Russian peat sampler. The bog was investigated regarding its isolation from the Baltic basin. This site is included in the shore displacement model elaborated from other sites situated at the same isobase for the Litorina Sea. Northern Uppland is an area with a smooth topography, which also affects the lake basins. The water depth is generally shallow, 1-3 metres. The bedrock mainly consists of granitoids. A few areas consist of meta volcanics, younger granites and pegmatites. The Quaternary deposits in Uppland are more or less calcareous, which is reflected in the rich flora with e. g. orchids and saw grass. Till is the most common deposit in the area covering considerable areas but rarely forming geomorphological features. Glaciofluvial deposits i. e. eskers, stretches in more or less S-N direction, being generally small. In northern Uppland, large areas are covered by mires. Most of them are affected by human activities in the form of ditching; some are used for cultivation or as pasture land. One site, Vissomossen, with a levelled isolation threshold at 27. 4 m a. s. l. , is mainly a fen, with a bog developing in the central part. Diatom analyses and AMS dates show that the basin was earlier a bay of the Litorina Sea and isolated 3500-3600 14 C years BP. The former lake basin was as large as the present extension of the mire. Accumulated material reveals that the lake during time has been filled in with sediment, overgrown and finally forming a mire. The result of the present study is summarized as an extended shore displacement model for northern Uppland, and it reflects an ongoing regression in the area. A decline in regression can be compared with the Litorina transgression 3 (L3), which in the Stockholm area is dated

  7. Test strip at the Musters lake area, Chubut province (Argentina)

    International Nuclear Information System (INIS)

    Lopez, Luis E.

    1998-01-01

    A local test strip to determine both the system sensitivities and height attenuation coefficients was defined at the Musters Lake area, for its use in airborne spectrometric surveys in the South Patagonia region. The selected calibration range presents both low and uniform radioelement concentration. The mean spectrometer values obtained at ground level were 1.8 % K, 1.6 ppm eU and 7.3 ppm eTh while the variation coefficients were 7.5 %, 27.0 %, and 10.2 %, respectively. These values as well as range dimensions, moisture condition, easy access, easy navigation for aircraft, proximity to a fresh water body and with no flight restrictions are consistent with the international recommendations for setting up a test range. (author)

  8. Test strip at the Musters Lake area, Chubut province (Argentina)

    International Nuclear Information System (INIS)

    Lopez, Luis E.

    1998-01-01

    A local test strip to determine both the system sensitivities and height attenuation coefficients was defined at the Musters Lake area, for its use in airborne spectrometric surveys in the South Patagonia region. The selected calibration range presents both low and uniform radioelement concentrations. The mean spectrometer values obtained at ground level were 1.8 % K, 1.6 ppm eU and 7.3 ppm eTh while the variation coefficients were 7.5 %, 27.0 %, and 10.2 %, respectively. These values as well as range dimensions, moisture condition, easy access, easy navigation for aircraft, proximity to a fresh water body and with no flight restrictions are consistent with the international recommendations for setting up a test range. (author)

  9. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    Johansson, Per-Olof; Werner, Kent; Bosson, Emma; Berglund, Sten; Juston, John

    2005-06-01

    The present report is a background report describing the meteorological conditions and the modelling of surface hydrology and near-surface hydrogeology in support of the Forsmark version 1.2 SDM based on the data available in the Forsmark 1.2 ''data freeze'' (July 31, 2004). The area covered in the conceptual and descriptive modelling is characterised by a low relief and a small-scale topography. Almost the whole area is located below 20 m a s l (metres above sea level). The corrected mean annual precipitation is 600-650 mm and the mean annual evapotranspiration can be estimated to a little more than 400 mm, leaving approximately 200 mm x year-1 for runoff. Till is the dominating Quaternary deposit covering approximately 75% of the area. In most of the area, the till is sandy. Bedrock outcrops are frequent but cover only approximately 5% of the area. Direct groundwater recharge from precipitation is the dominant source of groundwater recharge. The small-scale topography implies that many local, shallow groundwater flow systems are formed in the Quaternary deposits, overlaying more large-scale flow systems associated with groundwater flows at greater depths. Groundwater level time series from wells in till and bedrock within the same areas show a considerably higher groundwater level in the till than in the bedrock. The sediment stratigraphy of lakes and wetlands is crucial for their function as discharge areas for groundwater. Comparisons between measured lake water levels and groundwater levels below and around lakes indicate that the lakes in some cases may act as sources of groundwater recharge. Specifically, observations from Lake Bolundsfjaerden and Lake Eckarfjaerden show that such conditions were at hand during the dry summer of 2003. However, whether the observed water level relations correspond to significant water fluxes depends also on the hydrogeological properties of the lake sediments and the underlying Quaternary deposits. ''Old'' water with high

  10. PeRL: A circum-Arctic Permafrost Region Pond and Lake database

    Science.gov (United States)

    Muster, Sina; Roth, Kurt; Langer, Moritz; Lange, Stephan; Cresto Aleina, Fabio; Bartsch, Annett; Morgenstern, Anne; Grosse, Guido; Jones, Benjamin; Sannel, A.B.K.; Sjoberg, Ylva; Gunther, Frank; Andresen, Christian; Veremeeva, Alexandra; Lindgren, Prajna R.; Bouchard, Frédéric; Lara, Mark J.; Fortier, Daniel; Charbonneau, Simon; Virtanen, Tarmo A.; Hugelius, Gustaf; Palmtag, J.; Siewert, Matthias B.; Riley, William J.; Koven, Charles; Boike, Julia

    2017-01-01

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( s.l.) land surface area. PeRL waterbodies with sizes of 1. 0 × 106 m2 down to 1. 0 × 102 m2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101 km−2. Ponds are the dominant waterbody type by number in all landscapes representing 45–99 % of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands. Waterbody maps, study area

  11. Late Quaternary sedimentary features of Bear Lake, Utah and Idaho

    Science.gov (United States)

    Smoot, J.P.

    2009-01-01

    Bear Lake sediments were predominantly aragonite for most of the Holocene, reflecting a hydrologically closed lake fed by groundwater and small streams. During the late Pleistocene, the Bear River flowed into Bear Lake and the lake waters spilled back into the Bear River drainage. At that time, sediment deposition was dominated by siliciclastic sediment and calcite. Lake-level fluctuation during the Holocene and late Pleistocene produced three types of aragonite deposits in the central lake area that are differentiated primarily by grain size, sorting, and diatom assemblage. Lake-margin deposits during this period consisted of sandy deposits including well-developed shoreface deposits on margins adjacent to relatively steep gradient lake floors and thin, graded shell gravel on margins adjacent to very low gradient lake-floor areas. Throughout the period of aragonite deposition, episodic drops in lake level resulted in erosion of shallow-water deposits, which were redeposited into the deeper lake. These sediment-focusing episodes are recognized by mixing of different mineralogies and crystal habits and mixing of a range of diatom fauna into poorly sorted mud layers. Lake-level drops are also indicated by erosional gaps in the shallow-water records and the occurrence of shoreline deposits in areas now covered by as much as 30 m of water. Calcite precipitation occurred for a short interval of time during the Holocene in response to an influx of Bear River water ca. 8 ka. The Pleistocene sedimentary record of Bear Lake until ca. 18 ka is dominated by siliciclastic glacial fl our derived from glaciers in the Uinta Mountains. The Bear Lake deep-water siliciclastic deposits are thoroughly bioturbated, whereas shallow-water deposits transitional to deltas in the northern part of the basin are upward-coarsening sequences of laminated mud, silt, and sand. A major drop in lake level occurred ca. 18 ka, resulting in subaerial exposure of the lake floor in areas now covered by

  12. Remote estimation of colored dissolved organic matter and chlorophyll-a in Lake Huron using Sentinel-2 measurements

    Science.gov (United States)

    Chen, Jiang; Zhu, Weining; Tian, Yong Q.; Yu, Qian; Zheng, Yuhan; Huang, Litong

    2017-07-01

    Colored dissolved organic matter (CDOM) and chlorophyll-a (Chla) are important water quality parameters and play crucial roles in aquatic environment. Remote sensing of CDOM and Chla concentrations for inland lakes is often limited by low spatial resolution. The newly launched Sentinel-2 satellite is equipped with high spatial resolution (10, 20, and 60 m). Empirical band ratio models were developed to derive CDOM and Chla concentrations in Lake Huron. The leave-one-out cross-validation method was used for model calibration and validation. The best CDOM retrieval algorithm is a B3/B5 model with accuracy coefficient of determination (R2)=0.884, root-mean-squared error (RMSE)=0.731 m-1, relative root-mean-squared error (RRMSE)=28.02%, and bias=-0.1 m-1. The best Chla retrieval algorithm is a B5/B4 model with accuracy R2=0.49, RMSE=9.972 mg/m3, RRMSE=48.47%, and bias=-0.116 mg/m3. Neural network models were further implemented to improve inversion accuracy. The applications of the two best band ratio models to Sentinel-2 imagery with 10 m×10 m pixel size presented the high potential of the sensor for monitoring water quality of inland lakes.

  13. Allogenic sedimentary components of Bear Lake, Utah and Idaho

    Science.gov (United States)

    Rosenbaum, J.G.; Dean, W.E.; Reynolds, R.L.; Reheis, M.C.

    2009-01-01

    Bear Lake is a long-lived lake filling a tectonic depression between the Bear River Range to the west and the Bear River Plateau to the east, and straddling the border between Utah and Idaho. Mineralogy, elemental geochemistry, and magnetic properties provide information about variations in provenance of allogenic lithic material in last-glacial-age, quartz-rich sediment in Bear Lake. Grain-size data from the siliciclastic fraction of late-glacial to Holocene carbonate-rich sediments provide information about variations in lake level. For the quartz-rich lower unit, which was deposited while the Bear River fl owed into and out of the lake, four source areas are recognized on the basis of modern fluvial samples with contrasting properties that reflect differences in bedrock geology and in magnetite content from dust. One of these areas is underlain by hematite-rich Uinta Mountain Group rocks in the headwaters of the Bear River. Although Uinta Mountain Group rocks make up a small fraction of the catchment, hematite-rich material from this area is an important component of the lower unit. This material is interpreted to be glacial fl our. Variations in the input of glacial flour are interpreted as having caused quasi-cyclical variations in mineralogical and elemental concentrations, and in magnetic properties within the lower unit. The carbonate-rich younger unit was deposited under conditions similar to those of the modern lake, with the Bear River largely bypassing the lake. For two cores taken in more than 30 m of water, median grain sizes in this unit range from ???6 ??m to more than 30 ??m, with the coarsest grain sizes associated with beach or shallow-water deposits. Similar grain-size variations are observed as a function of water depth in the modern lake and provide the basis for interpreting the core grain-size data in terms of lake level. Copyright ?? 2009 The Geological Society of America.

  14. Remote sensing of macrophyte morphological traits: Implications for the management of shallow lakes

    Directory of Open Access Journals (Sweden)

    Paolo Villa

    2017-03-01

    Full Text Available Macrophytes are important elements of freshwater ecosystems, fulfilling a pivotal role in biogeochemical cycles. The synoptic capabilities provided by remote sensing make it a powerful tool for monitoring aquatic vegetation characteristics and the functional status of shallow lake systems in which they occur. The latest generation of airborne and spaceborne imaging sensors can be effectively exploited for mapping morphologically – and physiologically – relevant vegetation features based on their canopy spectral response. The objectives of this study were to calibrate semi-empirical models for mapping macrophyte morphological traits (i.e., fractional cover, leaf area index and above-water biomass from hyperspectral data, and to investigate the capabilities of remote sensing in supporting macrophyte monitoring and management. We calibrated spectral models using in situ reflectance and morphological trait measures and applied them to airborne hyperspectral imaging data, acquired over two shallow European water bodies (Lake Hídvégi, in Hungary, and Mantua lakes system, in Italy in two key phenological phases. Maps of morphological traits were produced covering a broad range of aquatic plant types (submerged, floating, and emergent, common to temperate and continental regions, with an error level of 5.4% for fractional cover, 0.10 m2 m-2 for leaf area index, and 0.06 kg m-2 for above-water biomass. Based on these maps, we discuss how remote sensing could support monitoring strategies and shallow lake management with reference to our two case studies: i.e., by providing insight into spatial and species-wise variability, by assessing nutrient uptake by aquatic plants, and by identifying hotspot areas where invasive species could become a threat to ecosystem functioning and service provision.

  15. Carbon dioxide dynamics in a lake and a reservoir on a tropical island (Bali, Indonesia).

    Science.gov (United States)

    Macklin, Paul A; Suryaputra, I Gusti Ngurah Agung; Maher, Damien T; Santos, Isaac R

    2018-01-01

    Water-to-air carbon dioxide fluxes from tropical lakes and reservoirs (artificial lakes) may be an important but understudied component of global carbon fluxes. Here, we investigate the seasonal dissolved carbon dioxide (CO2) dynamics in a lake and a reservoir on a tropical volcanic island (Bali, Indonesia). Observations were performed over four seasonal surveys in Bali's largest natural lake (Lake Batur) and largest reservoir (Palasari Reservoir). Average CO2 partial pressures in the natural lake and reservoir were 263.7±12.2 μatm and 785.0±283.6 μatm respectively, with the highest area-weighted partial pressures in the wet season for both systems. The strong correlations between seasonal mean values of dissolved oxygen (DO) and pCO2 in the natural lake (r2 = 0.92) suggest that surface water metabolism was an important driver of CO2 dynamics in this deep system. Radon (222Rn, a natural groundwater discharge tracer) explained up to 77% of the variability in pCO2 in the shallow reservoir, suggesting that groundwater seepage was the major CO2 driver in the reservoir. Overall, the natural lake was a sink of atmospheric CO2 (average fluxes of -2.8 mmol m-2 d-1) while the reservoir was a source of CO2 to the atmosphere (average fluxes of 7.3 mmol m-2 d-1). Reservoirs are replacing river valleys and terrestrial ecosystems, particularly throughout developing tropical regions. While the net effect of this conversion on atmospheric CO2 fluxes remains to be resolved, we speculate that reservoir construction will partially offset the CO2 sink provided by deep, volcanic, natural lakes and terrestrial environments.

  16. Water quality of Lake Austin and Town Lake, Austin, Texas

    Science.gov (United States)

    Andrews, Freeman L.; Wells, Frank C.; Shelby, Wanda J.; McPherson, Emma

    1988-01-01

    Lake Austin and Town Lake are located on the Colorado River in Travis County, central Texas, and serve as a source of water for municipal and industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Lake Austin, located immediately downstream of Lake Travis, extends for more than 20 miles into the western edge of the city of Austin. Town Lake extends through the downtown area of the city of Austin for nearly 6 miles where the Colorado River is impounded by Longhorn Dam.

  17. Glacial lakes in South Tyrol: distribution, evolution and potential for GLOFs

    Science.gov (United States)

    Schug, Marie-Claire; Mergili, Martin

    2017-04-01

    All over the world glaciers are currently retreating, leading to the formation or growth of glacial lakes. Some of these lakes are susceptible to sudden drainage. In order to assess the danger of glacial lake outburst floods (GLOFs) in South Tyrol in the Italian Alps, we present (i) an inventory of lakes, (ii) an analysis of the development of selected glacial lakes since 1945, and (iii) the susceptibility to and the possible impact areas of GLOFs. The inventory includes 1010 lakes that are larger than 250 m2 at an elevation above 2000 m asl, most of them of glacial origin. These lakes are mapped manually from orthophotos. Apart from collecting information on the spatial distribution of these lakes, the inventory lists dam material, glacier contact, and further parameters. 89% of the lakes in the investigation area are impounded by bedrock, whereas 93% of the lakes are detached from the associated glacier. The majority of lakes is small to medium sized (selected lakes are analyzed in detail in the field and from multi-temporal orthophotos, including the development of lake size and surroundings in the period since 1945. The majority of the selected lakes, however, was first recorded on orthophotos from the early 1980s. Eight of ten lakes grew significantly in that period. But when the lakes detached from the glacier until the early 2000s, the growth slowed down or ceased. Based on the current development of the selected lakes we conclude that the close surroundings of these lakes have stabilised and the lakes' susceptibility to an outburst has thus decreased. We further conduct broad-scale analyses of the susceptibility of the mapped lakes to GLOFs, and of the potential reach of possible GLOFs. The tool r.glachaz is used to determine the potentially dangerous lakes. Even though some few lakes require closer attention, the overall susceptibility to GLOFs in South Tyrol is relatively low, as most lakes are impounded by bedrock. In some cases, GLOFs caused by impact

  18. LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models

    Directory of Open Access Journals (Sweden)

    WIM Thiery

    2014-02-01

    Full Text Available The African great lakes are of utmost importance for the local economy (fishing, as well as being essential to the survival of the local people. During the past decades, these lakes experienced fast changes in ecosystem structure and functioning, and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated for Lake Kivu (2.28°S; 28.98°E, East Africa. The unique limnology of this meromictic lake, with the importance of salinity and subsurface springs in a tropical high-altitude climate, presents a worthy challenge to the seven models involved in the Lake Model Intercomparison Project (LakeMIP. Meteorological observations from two automatic weather stations are used to drive the models, whereas a unique dataset, containing over 150 temperature profiles recorded since 2002, is used to assess the model's performance. Simulations are performed over the freshwater layer only (60 m and over the average lake depth (240 m, since salinity increases with depth below 60 m in Lake Kivu and some lake models do not account for the influence of salinity upon lake stratification. All models are able to reproduce the mixing seasonality in Lake Kivu, as well as the magnitude and seasonal cycle of the lake enthalpy change. Differences between the models can be ascribed to variations in the treatment of the radiative forcing and the computation of the turbulent heat fluxes. Fluctuations in wind velocity and solar radiation explain inter-annual variability of observed water column temperatures. The good agreement between the deep simulations and the observed meromictic stratification also shows that a subset of models is able to account for the salinity- and geothermal-induced effects upon deep-water stratification. Finally, based on the strengths and weaknesses discerned in this study, an informed choice of a one-dimensional lake model for a given research purpose becomes possible.

  19. Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas

    Science.gov (United States)

    Wang, Weicai; Gao, Yang; Iribarren Anacona, Pablo; Lei, Yanbin; Xiang, Yang; Zhang, Guoqing; Li, Shenghai; Lu, Anxin

    2018-04-01

    Glacial lake outburst floods (GLOFs) have recently become one of the primary natural hazards in the Himalayas. There is therefore an urgent need to assess GLOF hazards in the region. Cirenmaco, a moraine-dammed lake located in the upstream portion of Zhangzangbo valley, Central Himalayas, has received public attention after its damaging 1981 outburst flood. Here, by combining remote sensing methods, bathymetric survey and 2D hydraulic modeling, we assessed the hazard posed by Cirenmaco in its current status. Inter-annual variation of Cirenmaco lake area indicates a rapid lake expansion from 0.10 ± 0.08 km2 in 1988 to 0.39 ± 0.04 km2 in 2013. Bathymetric survey shows the maximum water depth of the lake in 2012 was 115 ± 2 m and the lake volume was calculated to be 1.8 × 107 m3. Field geomorphic analysis shows that Cirenmaco glacial lake is prone to GLOFs as mass movements and ice and snow avalanches can impact the lake and the melting of the dead ice in the moraine can lower the dam level. HEC-RAS 2D model was then used to simulate moraine dam failure of the Cirenmaco and assess GLOF impacts downstream. Reconstruction of Cirenmaco 1981 GLOF shows that HEC-RAS can produce reasonable flood extent and water depth, thus demonstrate its ability to effectively model complex GLOFs. GLOF modeling results presented can be used as a basis for the implementation of disaster prevention and mitigation measures. As a case study, this work shows how we can integrate different methods to GLOF hazard assessment.

  20. Land use impacts on lake water quality in Alytus region (Lithuania)

    Science.gov (United States)

    Pereira, Paulo; Laukonis, Rymvidas

    2016-04-01

    Land use has important impacts on soils, surface and ground water quality. Urban agricultural areas are an important source of pollutants, which can reach lakes through surface runoff and underground circulation. Human intervention in the landscape is one of the major causes pollution and land degradation, thus it is very important to understand the impacts of and use on environment and if they have some spatial pattern (Pereira et al., 2013, 2015; Brevik et al., 2016). The identification of the spatial pattern of lakes pollution is in Alytus area (Lithuania) is fundamental, since they provide an important range of ecosystem services to local communities, including food and recreational activities. Thus, the degradation of these environments can induce important economic losses. In this context, it is import to identify the areas with high pollutant accumulation and the environmental and human factors responsible for it. The objective of this work is to study identify the amount of some important nutrients resultant from human activities in lake water quality in Alytus region (Lithuania). Alytus region is located in southern part of Lithuania and has an approximate area of 40 km2. Inside this region we analyzed several water quality parameters of 55 lakes, including, pH, electrical conductivity (EC), suspended materials (SM), water clarity (WC) biochemical oxygen demand (BDO), total phosphorous (TP), total Nitrogen (TN), dissolved organic carbon (DOC), as other environmental variables as altitude, lake maximum deep (MD), lake area and land use according Corine land cover classification (CLC2006). Previous to data analysis, data normality and homogeneity of the variances, was assessed with the Shapiro-wilk and Leven's test, respectively. The majority of the data did not respect the Gaussian distribution and the heteroscedasticity, even after a logarithmic, and box-cox transformation. Thus, in this work we used the logarithmic transformed data to do a principal

  1. LAKE-0: a model for the simulation of nuclides transfer in lake scenarios

    International Nuclear Information System (INIS)

    Garcia-Olivares, A.; Aguero, A.; Pinedo, P.

    1994-01-01

    This report presents documentation and a user's manual for the program LAKE-0, a mathematical model of nuclides transfer in lake scenarios. Mathematical equations and physical principles used to develop the code are presented in section 2. The program use is presented in section 3 including input data sets and output data. Section 4 presents two example problems, and some results. The complete program listing including comments is presented in Appendix A. Nuclides are assumed to center the lake via atmospheric deposition and carried by the water runoff and the dragged sediments from the adjacent catchment. The dynamics of the nuclides inside the lake is based in the model proposed by Codell (11) as modified in (5). The removal of concentration from the lake water is due to out flow from the lake and to the transfer of activity to the button sediments. The model has been applied to the Esthwaite Water (54 degree celsius 2 l'N, 03 degree celsius 00'W at 65 m. asi.) in the frame of the VAMP Aquatic Working Group (8) and to Devoke Water (5 21.5'N, 03H8'W at 230 m. asi.). (Author). 13 refs

  2. Occurrence of zebra mussels in near-shore areas of western Lake Erie

    Science.gov (United States)

    Custer, Christine M.; Custer, T.W.

    1997-01-01

    Zebra mussels (Dreissena polymorpha) invaded the Great Lakes in the mid-1980s and quickly reached high densities. The objective of this study was to determine current consumption of zebra mussels by waterfowl in the Great Lakes region. Feeding Lesser Scaups (Aythya affinis), Greater Scaups (A. marila), Canvasbacks (A. valisineria), Redheads (A. americana), Buffleheads (Bucephala albeola) and Common Goldeneyes (B. clangula) were collected in western Lake Erie and in Lake St. Clair between fall and spring, 1992-1993 to determine food habits. All 10 Redheads, 97% of Lesser Scaups, 83% of Goldeneyes, 60% of Buffleheads and 9% of Canvasbacks contained one or more zebra mussels in their upper gastrointestinal tracts. The aggregate percent of zebra mussels in the diet of Lesser Scaups was higher in Lake Erie (98.6%) than in Lake St. Clair (54.4%). Zebra mussels, (aggregate percent) dominated the diet of Common Goldeneyes (79.2%) but not in Buffleheads (23.5%), Redheads (21%) or Canvasbacks (9%). Lesser Scaups from Lake Erie fed on larger zebra mussels ( = 10.7 i?? 0.66 mm SE) than did Lesser Scaups from Lake St. Clair ( = 4.4 i?? 0.22 mm). Lesser Scaups, Buffleheads and Common Goldeneyes from Lake Erie consumed zebra mussels of similar size.

  3. Changes in the dreissenid community in the lower Great Lakes with emphasis on southern Lake Ontario

    Science.gov (United States)

    Mills, Edward L.; Chrisman, Jana R.; Baldwin, Brad; Owens, Randall W.; O'Gorman, Robert; Howell, Todd; Roseman, Edward F.; Raths, Melinda K.

    1999-01-01

    A field study was conducted in the lower Great Lakes to assess changes in spatial distribution and population structure of dreissenid mussel populations. More specifically, the westward range expansion of quagga mussel into western Lake Erie and toward Lake Huron was investigated and the shell size, density, and biomass of zebra and quagga mussel with depth in southern Lake Ontario in 1992 and 1995 were compared. In Lake Erie, quagga mussel dominated the dreissenid community in the eastern basin and zebra mussel dominated in the western basin. In southern Lake Ontario, an east to west gradient was observed with the quagga mussel dominant at western sites and zebra mussel dominant at eastern locations. Mean shell size of quagga mussel was generally larger than that of zebra mussel except in western Lake Erie and one site in eastern Lake Erie. Although mean shell size and our index of numbers and biomass of both dreissenid species increased sharply in southern Lake Ontario between 1992 and 1995, the increase in density and biomass was much greater for quagga mussels over the 3-year period. In 1995, zebra mussels were most abundant at 15 to 25 m whereas the highest numbers and biomass of quagga mussel were at 35 to 45 m. The quagga mussel is now the most abundant dreissenid in areas of southern Lake Ontario where the zebra mussel was once the most abundant dreissenid; this trend parallels that observed for dreissenid populations in the Dneiper River basin in the Ukraine.

  4. Monitoring and Assessment of Hydrological and Ecological Changes in Lake Manyas

    Science.gov (United States)

    Curebal, Isa; Efe, Recep; Soykan, Abdullah; Sonmez, Suleyman

    2014-05-01

    Manyas Lake in the northwest of Turkey occupies an area of 165 square kilometers. The surface area of the lake is continuously changing due to human activities, hydrologic and climatic conditions. The objective of this study is to examine the changes in water level and the area of lake and the effects of these changes on the lake's ecosystem and human economic activities. In order to determine the changes lake level measurement data, 1/25000 scale topography maps, rainfall and temperature data and bathymetry maps were used and elevation models were made. During the study period the water level fluctuated between 14.0 and 17.8 meters, and surface area changed between 124,8 km2 and 170,6 km2 respectively. Prior to the construction of a flood barrier at the southern end of the lake in 1992 the maximum surface area of the lake was calculated at 209 km2. Lake Manyas is an important wetland on the route of migration of birds from/to Europe and Africa. 64 ha of the lake and its surroundings along with the entire National Park is a Ramsar site. Irrigated and dry farming is practiced around the lake and fishing is important economic activity. The changes in the water level as result of natural and human factors brought about negative effects on the lake's ecosystem in last ten years. Result of these effects, natural fluctuation of the lake changed and the marshes around the lake destroyed and the bird population decreased. Lowering the water level in the lake is also significantly reduced the number of fish and number of migratory birds. The construction of the flood barrier destroyed vegetation and bird life in about a 25% of area of the lake on the south. The natural ecosystem in this area has been adversely affected. Moreover, when the water level is low due to low rain fall and irrigation, vegetation on the lake's shore line dies and some areas turn to swamp. The fauna and flora are negatively affected by water level changes particularly in the protected National Park

  5. How much acidification has occurred in Adirondack region lakes (New York, USA) since preindustrial times

    International Nuclear Information System (INIS)

    Cumming, B.F.; Smol, J.P.; Kingston, J.C.; Charles, D.F.; Birks, H.J.B.

    1992-01-01

    Preindustrial and present-day lake water pH, acid neutralizing capacity (ANC), total monomeric aluminum Al(sub m), and dissolved organic carbon (DOC) were inferred from the species composition of diatom and chrysophyte microfossils in the tops (present-day inferences) and bottoms (pre-1850 inferences) of sediment cores collected from a statistically selected set of Adirondack lakes. Results from the study lakes were extrapolated to a predefined target population of 675 low-alkalinity Adirondack region lakes. Estimates of preindustrial to present-day changes in lake water chemistry show that approximately 25-35% of the target population has acidified. The magnitude of acidification was greatest in the low-alkalinity lakes of the southwestern Adirondacks, an area with little geological ability to neutralize acidic deposition and receives the highest annual average rainfall in the region. The authors estimate that approximately 80% of the target population lakes with present-day measured pH = or < 5.2 and 30-45% of lakes with pH between 5.2 and 6.0 have undergone large declines in pH and ANC, and concomitant increases in Al(sub m). Estimated changes in (DOC) were small and show no consistent pattern in the acidified lakes. The study provides the first statistically based regional evaluation of the extent of lake acidification in the Adirondacks

  6. Great Bear Lake, N.W.T. - 1963, No. 13 in 1964 Data Record Series, Canadian Oceanographic Data Center (NODC Accession 7500188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Great Bear Lake has an area of 29,500 km^2 and it is the fourth largest lake in North America. It is situated at an elevation of 169 m (515 ft) and has a maximum...

  7. Early Holocene estuary development of the Hesselø Bay area, southern Kattegat, Denmark and its implication for Ancylus Lake drainage

    Science.gov (United States)

    Bendixen, Carina; Boldreel, Lars Ole; Jensen, Jørn Bo; Bennike, Ole; Hübscher, Christian; Clausen, Ole Rønø

    2017-12-01

    High-resolution shallow seismic data, sediment core information, radiocarbon dating and sequence stratigraphy have been used to interpret the late glacial to early Holocene geological evolution of Hesselø Bay in the southern Kattegat, Denmark. A reconstruction of the early Holocene coastal environment and a description of coastal processes associated with a river outlet into the bay are presented. Weichselian glacial deposits form the lowermost interpreted unit, covered by late glacial (LG) and postglacial (PG, Holocene) sediments. A funnel-shaped estuary existed at the mouth of channels in the period 10.3-9.2 cal. ka BP; the channels drained water from south to north. The early PG is characterised by estuarine and coastal deposits. The early Holocene bars that developed in the estuary are preserved as morphological features on the present-day seabed, possibly as a result of rapid relative sea-level rise. The estuary existed simultaneously with the occurrence and drainage of the Ancylus Lake. The drainage of this lake occurred through the Dana River (palaeo-Great Belt channel) into the southern Kattegat and then into the study area. The level of the Ancylus Lake in the Baltic Sea region dropped significantly at about 10.2 cal. ka BP at the same time as the estuary developed in the Kattegat region. One outcome of the present study is an enhanced understanding of the Ancylus Lake drainage path. No evidence of major erosion is seen, which indicates non-catastrophic continuous water flow from the south without major drainage events of the Ancylus Lake to the southern Kattegat. During the Littorina transgression, coastal estuarine conditions characterized the Hesselø Bay area where elongated ridges formed a bar system. As the Littorina transgression continued, back-stepping of the bar system and coastline occurred. When the transgression breached the Great Belt threshold, flooding caused major erosion throughout the study area.

  8. Lake Afrera, a structural depression in the Northern Afar Rift (Red Sea).

    Science.gov (United States)

    Bonatti, Enrico; Gasperini, Elia; Vigliotti, Luigi; Lupi, Luca; Vaselli, Orlando; Polonia, Alina; Gasperini, Luca

    2017-05-01

    The boundary between the African and Arabian plates in the Southern Red Sea region is displaced inland in the northern Afar rift, where it is marked by the Red Sea-parallel Erta Ale, Alaita, and Tat Ali volcanic ridges. The Erta Ale is offset by about 20 and 40 km from the two en echelon ridges to the south. The offset area is highly seismic and marked by a depression filled by lake Afrera, a saline body of water fed by hydrothermal springs. Acoustic bathymetric profiles show ≈80 m deep canyons parallel to the NNW shore of the lake, part of a system of extensional normal faults striking parallel to the Red Sea. This system is intersected by oblique structures, some with strike-slip earthquakes, in what might evolve into a transform boundary. Given that the lake's surface lies today about 112 m below sea level, the depressed (minus ≈190 m below sea level) lake's bottom area may be considered the equivalent of the "nodal deep" in slow-slip oceanic transforms. The chemistry of the lake is compatible with the water having originated from hydrothermal liquids that had reacted with evaporites and basalts, rather than residual from evaporation of sea water. Bottom sediments include calcitic grains, halite and gypsum, as well as ostracod and diatom tests. The lake's level appears to have dropped by over 10 m during the last ≈50 years, continuing a drying up trend of the last few thousand years, after a "wet" stage 9,800 and 7,800 years before present when according to Gasse (1973) Lake Afrera covered an area several times larger than at present. This "wet" stage corresponds to an early Holocene warm-humid climate that prevailed in Saharan and Sub Saharan Africa. Lake Abhé, located roughly 250 km south of Afrera, shows similar climate-driven oscillations of its level.

  9. The quagga mussel crisis at Lake Mead National Recreation Area, Nevada (U.S.A.).

    Science.gov (United States)

    Hickey, Valerie

    2010-08-01

    Parks are cornerstones of conservation; and non-native invasive species drive extensive changes to biological diversity in parks. Knowing this, national park staff at Lake Mead National Recreation Area in the southwestern United States had a program in place for early detection of the non-native, invasive quagga mussel (Dreissena rostriformis bugensis). Upon finding the mussel in January 2007, managers moved quickly to access funding and the best available science to implement a response. Managers considered four options--doing nothing, closing the park, restricting movement on the lakes, and educating and enforcing park visitors--and decided to focus on education and enforcing existing laws. Nonetheless, quagga spread throughout the park and soon began to appear throughout the western United States. I examined why efforts to control the expansion failed and determined the general lessons to be learned from this case. Concentrating human visitation on the lakes through land-use zoning opened a pathway for invasion, reduced management options, and led to the rapid spread of quagga. To reconcile competing mandates to protect nature and provide recreation, zoning in parks has become a common practice worldwide. It reduces stress on some areas of a park by restricting and thus concentrating human activity in particular areas. Concentrating the human activity in one area does three things: cements pathways that repeatedly import and export vectors of non-native invasive species; creates the disturbed area necessary to enable non-native invasive species to gain a foothold; and, establishes a source of invasions that, without appropriate controls, can quickly spread to a park's wilderness areas.

  10. Mapping ecosystem service indicators in a Great Lakes estuarine Area of Concern

    Science.gov (United States)

    Estuaries provide multiple ecosystem services from which humans benefit. Currently, thirty-six Great Lakes estuaries in the United States and Canada are designated as Areas of Concern (AOCs) due to a legacy of chemical contamination, degraded habitat, and non-point-source polluti...

  11. Natural regeneration and growth of Taxodium distichum (L.) rich. In Lake Chicot, Louisiana after 44 years of flooding

    Science.gov (United States)

    Keeland, B.D.; Conner, W.H.

    1999-01-01

    Lake Chicot, in south central Louisiana, USA, was created in 1943 by the impoundment of Chicot Bayou. Extensive establishment of woody seedling occurred in the lake during a 1.5 year period, including the growing seasons of both 1986 and 1987, when the reservoir was drained for repair work on the dam. Study plots were established in September 1986 to document woody vegetation establishment and to provide a baseline by which to monitor survival and growth after flooding resumed. Taxodium distichum seedlings were the dominant species after one growing season, with a maximum density of 50 seedlings/m2, an average of about 2/m2, and an average height of 75 cm. The lake was reflooded at the end of 1987, bringing water depths at the study plots up to about 1.4 m. Temporary drawdowns were again conducted during the fall of 1992 and 1996. In December 1992, the site was revisited, new plots established, and saplings counted and measured. There was an average of 2.1 T. distichum stems/m2, and the average height was 315 cm. After the 1996 growing season, there was still an average of about 1.9 stems/m2, and the average height had increased to 476 cm. Preservation of T. distichum forests in relatively shallow but continuously flooded areas such as Lake Chicot may be a simple matter of draining the lake after a good seed crop and maintaining the drawdown long enough for the seedlings to grow taller than the typical growing season water level. In the case of Lake Chicot, this period was two growing seasons. This action will mimic natural, drought-related drawdowns of the lake and will allow the seedlings to establish themselves and grow tall enough to survive normal lake water levels.

  12. Analysis of Dynamic Changeof Hong Jiannao Lake Based on Scaled Soil Moisture Monitoring Index

    Science.gov (United States)

    Yue, H.; Liu, Y.

    2018-04-01

    to climate change and human activities, Hong Jiannao Lake located in the arid and semi-arid area of China, it played a very important role in the regulation of the local climate, the balance of water resources and the maintenance of biological diversity. Hongjiannao Lake area in recent years continues to shrink, it was urgent to get the Hongjiannao Lake area change trend. This article take Hongjiannao Lake as study object using MODIS image of NIR and Red wavelength reflectivity data, selected April to October of 2000-2014,consturcted scale of SMMI (S-SMMI) based on soil moisture monitoring index (SMMI). The result indicated that lake area reduced from 46.9 km2 in 2000 to 27.8 km2 in 2014, average decay rate is 1.3 km2/a. The lake's annual change showed a trend of periodic change. In general, the lake area began to increase slowly each year in April, and the area of the lake area reached the maximum, and then decreased gradually in June to July. Finally, we analysed the main driving factors included natural, man-made, and underground mining which lead to the lake area shrink.

  13. Assessing Resiliency in a Large Lake Receiving Mine Tailings Waste: Impacts of Major Environmental Disturbance.

    Science.gov (United States)

    Petticrew, Ellen; Owens, Philip; Albers, Sam

    2016-04-01

    On 4th August 2014, the tailings impoundment of the Mount Polley copper and gold mine in British Columbia failed. Material from the impoundment (surface area = 2.7 km2) flowed into nearby Polley Lake and Hazeltine Creek, before discharging into Quesnel Lake, a large (ca. 100 km long, >500 m deep), relatively pristine lake. Initial estimates suggest that approximately 25 Mm3 of tailings (water and solids) and eroded soils and surficial materials from Hazeltine Creek were delivered to Quesnel Lake, raising the lake by 7.7 cm. Much of this material was deposited at the bottom of Quesnel Lake but a plume of fine-grained sediment (D50 of ca. 1 μm) remained suspended in the water column. The impact of the distribution of this sediment was monitored over the next 15 months using water column profiling for temperature, conductivity, fluorescence and turbidity with depth. The plume movement was regulated by natural processes associated with the physical limnology of this large fjord lake, specifically, seiche events which transferred suspended particles both up-lake, against the flow regime, and down-lake into the Quesnel River. Samples of lake water and bottom sediment taken from the impacted area show elevated levels of total metals and other elements, which may have important ecosystem implications in this watershed. Indeed, the breach occurred at a time when a peak run of sockeye salmon were returning to their natal streams in the Quesnel basin. Zooplankton sampling for metals was initiated in fall 2014 to determine up take of metals into the food web. This poster describes the failure of the impoundment dam and presents results of sampling the aquatic environment over the first fifteen months of impact.

  14. Hydrochemical patterns of a small lake and a stream in an uplifting area proposed as a repository site for spent nuclear fuel, Forsmark, Sweden

    Science.gov (United States)

    Rönnback, Pernilla; Åström, Mats

    2007-10-01

    SummaryThe overall aim of this study was to increase the understanding of the chemical dynamics of small catchments. The focus was on a small oligotropic lake and its major inflow stream in an uplifting area in eastern Sweden (Forsmark) proposed as a repository site for spent nuclear fuel. The hydrochemical sampling campaign lasted for nearly 4 years with sample collection monthly to semi-monthly, and continuous flow measurements carried out over the last 20 months. All this was done as part of the Swedish Nuclear Fuel and Waste Management Company's (SKBs) Site Investigation Programme. The major findings were: (1) as a result of the calcareous overburden caused by redistributed Paleozoic deposits, pH and the Ca and HCO3- concentrations were relatively high in both the stream and lake throughout the period, (2) limnic primary production resulted in decreased concentrations of Ca, HCO3-, NH4+, NO3- and Si, and increased pH and concentrations of chlorophyll a, O 2, DON, POC, PON and POP in the lake in summer, while in other seasons (in winter in particular) when the production was minimal or non-existent the concentrations in the lake and the inflow stream were similar, (3) intrusion of brackish-water resulted in moderately to strongly increased concentrations of Cl -, Na, Mg, Br -, SO42-, K and Sr in the lake: the ratio versus Cl - were for Na and Br - always similar to those in sea water, for Mg and SO42- similar to those in sea water at elevated Cl - concentrations (>3 mM), while K and Sr always occurred in relative excess as compared to sea water, (4) high U concentrations in both the stream and the lake was derived most likely from reduced U-minerals in the overburden and was predicted to be carried to >90% in the form of calcium uranyl carbonate, in a model in which colloidal Fe and Al oxyhydroxides were not considered, (5) the rare earth elements (REEs) had similar concentrations and fractionation patterns in the stream and lake, unlike those found in the

  15. Optimizing best management practices to control anthropogenic sources of atmospheric phosphorus deposition to inland lakes.

    Science.gov (United States)

    Weiss, Lee; Thé, Jesse; Winter, Jennifer; Gharabaghi, Bahram

    2018-04-18

    Excessive phosphorus loading to inland freshwater lakes around the globe has resulted in nuisance plant growth along the waterfronts, degraded habitat for cold water fisheries, and impaired beaches, marinas and waterfront property. The direct atmospheric deposition of phosphorus can be a significant contributing source to inland lakes. The atmospheric deposition monitoring program for Lake Simcoe, Ontario indicates roughly 20% of the annual total phosphorus load (2010-2014 period) is due to direct atmospheric deposition (both wet and dry deposition) on the lake. This novel study presents a first-time application of the Genetic Algorithm (GA) methodology to optimize the application of best management practices (BMPs) related to agriculture and mobile sources to achieve atmospheric phosphorus reduction targets and restore the ecological health of the lake. The novel methodology takes into account the spatial distribution of the emission sources in the airshed, the complex atmospheric long-range transport and deposition processes, cost and efficiency of the popular management practices and social constraints related to the adoption of BMPs. The optimization scenarios suggest that the optimal overall capital investment of approximately $2M, $4M, and $10M annually can achieve roughly 3, 4 and 5 tonnes reduction in atmospheric P load to the lake, respectively. The exponential trend indicates diminishing returns for the investment beyond roughly $3M per year and that focussing much of this investment in the upwind, nearshore area will significantly impact deposition to the lake. The optimization is based on a combination of the lowest-cost, most-beneficial and socially-acceptable management practices that develops a science-informed promotion of implementation/BMP adoption strategy. The geospatial aspect to the optimization (i.e. proximity and location with respect to the lake) will help land managers to encourage the use of these targeted best practices in areas that

  16. Assessing The Impact Of Mercury Contamination To Lake Balkyldak In Kazakhstan

    Science.gov (United States)

    Adjacent to Lake Balkyldak in Kazakhstan, there is a large wastewater holding pond from a former mercury cell chloralkali plant which contains high levels of mercury-contamination. The holding pond capacity is 74 million m3 with a water-surface area of 18 km2

  17. A new bathymetric survey of the Suwałki Landscape Park lakes

    Directory of Open Access Journals (Sweden)

    Borowiak Dariusz

    2016-12-01

    Full Text Available The results of the latest bathymetric survey of 21 lakes in the Suwałki Landscape Park (SLP are presented here. Measurements of the underwater lake topography were carried out in the years 2012–2013 using the hydroacoustic method (sonar Lawrence 480M. In the case of four lakes (Błędne, Pogorzałek, Purwin, Wodziłki this was the first time a bathymetric survey had been performed. Field material was used to prepare bathymetric maps, which were then used for calculating the basic size and shape parameters of the lake basins. The results of the studies are shown against the nearly 90 year history of bathymetric surveying of the SLP lakes. In the light of the current measurements, the total area of the SLP lakes is over 634 hm2 and its limnic ratio is 10%. Lake water resources in the park were estimated at 143 037.1 dam3. This value corresponds to a retention index of 2257 mm. In addition, studies have shown that the previous morphometric data are not very accurate. The relative differences in the lake surface areas ranged from –14.1 to 9.1%, and in the case of volume – from –32.2 to 35.3%. The greatest differences in the volume, expressed in absolute values, were found in the largest SLP lakes: Hańcza (1716.1 dam3, Szurpiły (1282.0 dam3, Jaczno (816.4 dam3, Perty (427.1 dam3, Jegłówek (391.2 dam3 and Kojle (286.2 dam3. The smallest disparities were observed with respect to the data obtained by the IRS (Inland Fisheries Institute in Olsztyn. The IMGW (Institute of Meteorology and Water Management bathymetric measurements were affected by some significant errors, and morphometric parameters determined on their basis are only approximate.

  18. Photochemical Reactivity of Dissolved Organic Matter in Boreal Lakes

    Science.gov (United States)

    Gu, Y.; Vuorio, K.; Tiirola, M.; Perämäki, S.; Vahatalo, A.

    2016-12-01

    Boreal lakes are rich in dissolved organic matter (DOM) that terrestrially derived from forest soil and wetland, yet little is known about potential for photochemical transformation of aquatic DOM in boreal lakes. Transformation of chromophoric dissolved organic matter (CDOM) can decrease water color and enhance microbial mineralization, affecting primary production and respiration, which both affect the CO2 balance of the lakes. We used laboratory solar radiation exposure experiments with lake water samples collected from 54 lakes located in Finland and Sweden, representing different catchment composition and watershed location to assess photochemical reactivity of DOM. The pH of water samples ranged from 5.4 to 8.3, and the concentrations of dissolved iron (Fe) were between samples received simulated solar radiation corresponding to a daily dose of sunlight, and photomineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) was measured for determination of spectral apparent quantum yields (AQY). During irradiation, photobleaching decreased the absorption coefficients of CDOM at 330 nm between 4.9 and 79 m-1 by 0.5 to 11 m-1. Irradiation generated DIC from 2.8 to 79 μmol C L-1. The AQY at 330 nm ranged between 31 and 273 ×10-6 mol C mol photons-1 h-1, which was correlated positively with concentration of dissolved Fe, and negatively with pH. Further statistical analyze indicated that the interaction between pH and Fe may explain much of the photochemical reactivity of DOM in the examined lakes, and land cover concerns main catchment areas also can have impact on the photoreaction process. This study may suggest how environmental conditions regulate DOM photomineralization in boreal lakes.

  19. Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling

    Science.gov (United States)

    Van Den Hoek, Jamon; Read, Jordan S.; Winslow, Luke A.; Montesano, Paul; Markfort, Corey D.

    2015-01-01

    Satellite-based measurements of vegetation canopy structure have been in common use for the last decade but have never been used to estimate canopy's impact on wind sheltering of individual lakes. Wind sheltering is caused by slower winds in the wake of topography and shoreline obstacles (e.g. forest canopy) and influences heat loss and the flux of wind-driven mixing energy into lakes, which control lake temperatures and indirectly structure lake ecosystem processes, including carbon cycling and thermal habitat partitioning. Lakeshore wind sheltering has often been parameterized by lake surface area but such empirical relationships are only based on forested lakeshores and overlook the contributions of local land cover and terrain to wind sheltering. This study is the first to examine the utility of satellite imagery-derived broad-scale estimates of wind sheltering across a diversity of land covers. Using 30 m spatial resolution ASTER GDEM2 elevation data, the mean sheltering height, hs, being the combination of local topographic rise and canopy height above the lake surface, is calculated within 100 m-wide buffers surrounding 76,000 lakes in the U.S. state of Wisconsin. Uncertainty of GDEM2-derived hs was compared to SRTM-, high-resolution G-LiHT lidar-, and ICESat-derived estimates of hs, respective influences of land cover type and buffer width on hsare examined; and the effect of including satellite-based hs on the accuracy of a statewide lake hydrodynamic model was discussed. Though GDEM2 hs uncertainty was comparable to or better than other satellite-based measures of hs, its higher spatial resolution and broader spatial coverage allowed more lakes to be included in modeling efforts. GDEM2 was shown to offer superior utility for estimating hs compared to other satellite-derived data, but was limited by its consistent underestimation of hs, inability to detect within-buffer hs variability, and differing accuracy across land cover types. Nonetheless

  20. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    Science.gov (United States)

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  1. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    Science.gov (United States)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake

  2. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity

    Science.gov (United States)

    McCullough, Ian M.; Loftin, Cyndy; Sader, Steven A.

    2012-01-01

    Water clarity is a reliable indicator of lake productivity and an ideal metric of regional water quality. Clarity is an indicator of other water quality variables including chlorophyll-a, total phosphorus and trophic status; however, unlike these metrics, clarity can be accurately and efficiently estimated remotely on a regional scale. Remote sensing is useful in regions containing a large number of lakes that are cost prohibitive to monitor regularly using traditional field methods. Field-assessed lakes generally are easily accessible and may represent a spatially irregular, non-random sample of a region. We developed a remote monitoring program for Maine lakes >8 ha (1511 lakes) to supplement existing field monitoring programs. We combined Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) brightness values for TM bands 1 (blue) and 3 (red) to estimate water clarity (secchi disk depth) during 1990–2010. Although similar procedures have been applied to Minnesota and Wisconsin lakes, neither state incorporates physical lake variables or watershed characteristics that potentially affect clarity into their models. Average lake depth consistently improved model fitness, and the proportion of wetland area in lake watersheds also explained variability in clarity in some cases. Nine regression models predicted water clarity (R2 = 0.69–0.90) during 1990–2010, with separate models for eastern (TM path 11; four models) and western Maine (TM path 12; five models that captured differences in topography and landscape disturbance. Average absolute difference between model-estimated and observed secchi depth ranged 0.65–1.03 m. Eutrophic and mesotrophic lakes consistently were estimated more accurately than oligotrophic lakes. Our results show that TM bands 1 and 3 can be used to estimate regional lake water clarity outside the Great Lakes Region and that the accuracy of estimates is improved with additional model variables that reflect

  3. Distinguishing between anthropogenic and climatic impacts on lake size: a modeling approach using data from Ebinur Lake in arid northwest China

    Directory of Open Access Journals (Sweden)

    Long Ma

    2014-03-01

    Full Text Available Evaluation of anthropogenic and climatic impacts on lake size variation is important for maintaining ecosystem integrity and sustaining societal development. We assumed that climate and human activity are the only drivers of lake-size variation and are independent of each other. We then evaluated anthropogenic and climatic effects on hydrological processes, using a multivariate linear model. Macro-economic data were used to describe the anthropogenic impact on lake surface area in our approach. Ebinur Lake is a shallow, closed, saline lake in arid northwest China; it has shrunk at a rapid rate over the past half century. Using our new method, we explored temporal trends of anthropogenic and climatic impacts on the lake over the past 50 years. Assessment indices indicate that the model represents observed data quite well. Compared with the reference period of 1955-1960, impacts of climate change across the catchment were generally positive with respect to lake area, except for the period from 1961 to 1970. Human activity was responsible for a reduction in lake surface area of 286.8 km2 over the last 50 years. Our approach, which uses economic variables to describe the anthropogenic impact on lake surface area, enables us to explain the lake responses to climate change and human activities quantitatively.

  4. Lake-wide distribution of Dreissena in Lake Michigan, 1999

    Science.gov (United States)

    Fleischer, Guy W.; DeSorcie, Timothy J.; Holuszko, Jeffrey D.

    2001-01-01

    The Great Lakes Science Center has conducted lake-wide bottom trawl surveys of the fish community in Lake Michigan each fall since 1973. These systematic surveys are performed at depths of 9 to 110 m at each of seven index sites around Lake Michigan. Zebra mussel (Dreissena polymorpha) populations have expanded to all survey locations and at a level to sufficiently contribute to the bottom trawl catches. The quagga (Dreissena bugensis), recently reported in Lake Michigan, was likely in the catches though not recognized. Dreissena spp. biomass ranged from about 0.6 to 15 kg/ha at the various sites in 1999. Dreissenid mussels were found at depths of 9 to 82 m, with their peak biomass at 27 to 46 m. The colonization of these exotic mussels has ecological implications as well as potential ramifications on the ability to sample fish consistently and effectively with bottom trawls in Lake Michigan.

  5. Intentional introduction of Artemia sinica (Anostraca) in the high-altitude Tibetan lake Dangxiong Co: the new population and consequences for the environment and for humans

    Science.gov (United States)

    Jia, Qinxian; Anufriieva, Elena; Liu, Xifang; Kong, Fanjing; Shadrin, Nickolai

    2015-11-01

    The imbalance between supply and demand of Artemia cysts in China and around the world is increasing now. Salt lakes in Tibet may contribute to the solution of the problem. In Northern Tibet there are 26 saline lakes whose salinity and temperature may support Artemia survival at an altitude of 4 000-5 100 m. We found Artemia in 15 of these lakes. The saline lakes with Artemia populations mainly belong to the shallow basin lakes, and the majority of these lakes are small in area. The total area of lakes without Artemia is more than 1 000 km2. Lake Dangxiong Co (Co means lake in Tibet) was chosen for the intentional introduction of Artemia sinica. In 2004, 850 g of A. sinica cysts, originating from Qinghai, were introduced in the lake. Surveys in 2006-2014 showed that the average abundance of Artemia adults in the lake gradually increased from 20 ind./m3 in 2006 to 1950 ind./m3 in 2013. We assume that two subpopulations of A. sinica, separated by depth, may exist in the lake. The new Artemia population caused an increase in the number of species of phytoplankton and heterotrophic protozoa with a decrease of their total abundance. Water transparency also increased. Dominance in phytoplankton passed from cyanobacteria to diatoms. Changes occurred not only in the lake ecosystem; the number of water birds using the lakes also dramatically increased. Preliminary calculations showed that is it possible to harvest at least about 150 t cysts per year from the lake as well as 3.2 thousand tons of frozen or 350 t of dried biomass of adult Artemia.

  6. Late Holocene distribution of lake sediment and peat in NE Uppland, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Elisabeth [Stockholm Univ. (Sweden). Dept. of Physical Geography and Quaternary Geology

    2001-02-01

    This report is part of a larger project conducted by SKB. The aim is to carry out investigations of eight lakes and one bog, with respect to stratigraphic and geographic distribution of sediment and peat. More than 150 corings were made with a Russian peat sampler. The bog was investigated regarding its isolation from the Baltic basin. This site is included in the shore displacement model elaborated from other sites situated at the same isobase for the Litorina Sea. Northern Uppland is an area with a smooth topography, which also affects the lake basins. The water depth is generally shallow, 1-3 metres. The bedrock mainly consists of granitoids. A few areas consist of meta volcanics, younger granites and pegmatites. The Quaternary deposits in Uppland are more or less calcareous, which is reflected in the rich flora with e. g. orchids and saw grass. Till is the most common deposit in the area covering considerable areas but rarely forming geomorphological features. Glaciofluvial deposits i. e. eskers, stretches in more or less S-N direction, being generally small. In northern Uppland, large areas are covered by mires. Most of them are affected by human activities in the form of ditching; some are used for cultivation or as pasture land. One site, Vissomossen, with a levelled isolation threshold at 27. 4 m a. s. l. , is mainly a fen, with a bog developing in the central part. Diatom analyses and AMS dates show that the basin was earlier a bay of the Litorina Sea and isolated 3500-3600 {sup 14}C years BP. The former lake basin was as large as the present extension of the mire. Accumulated material reveals that the lake during time has been filled in with sediment, overgrown and finally forming a mire. The result of the present study is summarized as an extended shore displacement model for northern Uppland, and it reflects an ongoing regression in the area. A decline in regression can be compared with the Litorina transgression 3 (L3), which in the Stockholm area is

  7. The 24 July 2008 outburst flood at the western Zyndan glacier lake and recent regional changes in glacier lakes of the Teskey Ala-Too range, Tien Shan, Kyrgyzstan

    Directory of Open Access Journals (Sweden)

    C. Narama

    2010-04-01

    Full Text Available On 24 July 2008, a glacier lake outburst flood (GLOF occurred at the western (w- Zyndan glacier lake in the Tong District of Ysyk-Köl Oblast, Kyrgyzstan. The flood killed three people and numerous livestock, destroyed infrastructure, and devastated potato and barley crops as well as pastures. Tuurasuu village and a downstream reservoir on the Zyndan river escaped heavy damage because the main flood was diverted toward the Tong river. RTK-GPS and satellite data (Landsat 7 ETM+, ALOS/PRISM, and ALOS/AVNIR-2 reveal that the flood reduced the lake area from 0.0422 km2 to 0.0083 km2, discharging 437 000 m3 of water. This glacier lake was not present in a Landsat 7 ETM+ image taken on 26 April 2008. It formed rapidly over just two and half months from early May to the late July, when large amounts of snow and glacier melt water became trapped in a basin in the glacier terminus area, blocked by temporary closure of the drainage channel through the terminal moraine that included much dead-ice. In the same mountain region, most other glacier-lake expansions were not particularly large during the period from 1999–2008. Although events like the w-Zyndan glacier lake outburst occur infrequently in the high Central Asian mountains, such fast developing, short-lived lakes are particularly dangerous and not easy to monitor using satellite data. Appropriate measures to protect against such lake outburst hazards in this region include educating residents on glacier hazards and monitoring techniques, providing frequently updated maps of glacier lakes, and planning and monitoring land-use, including house locations.

  8. Seismic investigations of ancient Lake Ohrid (Macedonia/Albania): a pre-site survey for the SCOPSCO ICDP-drilling campaign

    Science.gov (United States)

    Lindhorst, K.; Krastel, S.; Schwenk, T.; Kurschat, S.; Daut, G.; Wessel, M.; Wagner, B.

    2009-04-01

    Lake Ohrid (Macedonia/Albania) is probably the oldest lake in Europe (2-5 Ma), and has been found as an important archive to study the sedimentary evolution of a graben system over several million years. Lake Ohrid has a length of 30 km (N-S) and a width of 15 km (W-E) and covers an area of 360 sqkm. Two major mountain chains surround the lake, on the west side the Mocra Mountains (app. 1500 m) and on the east side the Galicica Mountain (app. 2250 m). With more than 210 endemic species described, the lake is a unique aquatic ecosystem that is of worldwide importance. An international group of scientists has recently submitted a full drilling proposal entitled SCOPSCO (Scientific Collaboration On Past Speciation Conditions in Lake Ohrid) to ICDP in order to (i) to obtain more precise information about the age and origin of the lake, (ii) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (iii) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (iv) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. The lake was the target of several geophysical pre-site surveys starting with a first shallow seismic campaign in spring 2004 using a high resolution parametric sediment echosounder (INNOMAR SES-96 light). Airgun multichannel seismic data were collected during two surveys in 2007 and 2008, resulting in a dense grid of seismic lines over the entire lake. In total 650 km of shallow seismic lines 400 km of airgun multichannel seismics demonstrates the potential of Lake Ohrid as target for ICDP. Seismic profiles show that the lake can be divided into slope areas and a large central basin. The slope areas are characterized by a dense net of faults

  9. LAKE-0: a model for the simulation of nuclides transfer in lake scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Olivares, A.; Aguero, A.; Pinedo, P.

    1994-07-01

    This report presents documentation and a user's manual for the program LAKE-0, a mathematical model of nuclides transfer in lake scenarios. Mathematical equations and physical principles used to develop the code are presented in section 2. The program use is presented in section 3 including input data sets and output data. Section 4 presents two example problems, and some results. The complete program listing including comments is presented in Appendix A. Nuclides are assumed to center the lake via atmospheric deposition and carried by the water runoff and the dragged sediments from the adjacent catchment. The dynamics of the nuclides inside the lake is based in the model proposed by Codell (11) as modified in (5). The removal of concentration from the lake water is due to out flow from the lake and to the transfer of activity to the button sediments. The model has been applied to the Esthwaite Water (54 degree celsius 2 l'N, 03 degree celsius 00'W at 65 m. asi.) in the frame of the VAMP Aquatic Working Group (8) and to Devoke Water (5 21.5'N, 03H8'W at 230 m. asi.). (Author). 13 refs.

  10. 75 FR 5115 - Temporary Concession Contract for Lake Mead National Recreation Area, AZ/NV

    Science.gov (United States)

    2010-02-01

    ... National Recreation Area, AZ/NV AGENCY: National Park Service, Department of the Interior. ACTION: Notice of intention to award temporary concession contract for Lake Mead National Recreation Area. SUMMARY: Pursuant to 36 CFR 51.24, public notice is hereby given that the National Park Service intends to award a...

  11. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    Science.gov (United States)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  12. Study of Morphologic Change in Poyang Lake Basin Caused by Sand Dredging Using Multi-temporal Landsat Images and DEMs

    Science.gov (United States)

    Qi, S.; Zhang, X.; Wang, D.; Zhu, J.; Fang, C.

    2014-11-01

    Sand dredging has been practiced in rivers, lakes, harbours and coastal areas in recent years in China mostly because of demand from construction industry as building material. Sand dredging has disturbed aquatic ecosystems by affecting hydrological processes, increasing content of suspended sediments and reducing water clarity. Poyang Lake, connecting with Yangtze River in the lower reaches of the Yangtze River, is the largest fresh water lake in China. Sand dredging in Poyang Lake has been intensified since 2001 because such practice was banned in Yangtze River and profitable. In this study, the morphologic change caused by sand dredging in Poyang Lake basin was analysed by overlaying two DEMs acquired in 1952 and 2010 respectively. Since the reflectance of middle infrared band for sand dredging vessel is much higher than that of water surface, sand dredging vessels were showed as isolated grey points and can be counted in the middle infrared band in 12 Landsat images acquired in flooding season during 2000~2010. Another two Landsat images (with low water level before 2000 and after 2010) were used to evaluate the morphologic change by comparing inundation extent and shoreline shape. The following results was obtained: (1) vessels for sand dredging are mainly distributed in the north of Poyang Lake before 2007, but the dredging area was enlarged to the central region and even to Gan River; (2) sand dredging area reached to about 260.4 km2 and is mainly distributed in the north of Songmen Mountain and has been enlarged to central of Poyang Lake from the distribution of sand vessels since 2007. Sand dredged from Poyang Lake was about 1.99 × 109 m3 or 2448 Mt assuming sediment bulk density of 1.23 t m-3. It means that the magnitude of sand mining during 2001-2010 is almost ten times of sand depositions in Poyang Lake during 1955-2010; (3) Sand dredging in Poyang Lake has alternated the lake capacity and discharge section area, some of the watercourse in the

  13. Three Dimensional Seismic Tomography of the Shallow Subsurface Structure Under the Meihua Lake in Ilan, Northeastern Taiwan

    Science.gov (United States)

    Shih, R.

    2008-12-01

    The island of Taiwan is located at an ongoing collision boundary between two plates. The Philippine Sea plate and the Eurasian plate collided at the Longitudinal Valley of eastern Taiwan, and the Philippine Sea plate subducted northward beneath the Eurasian plate along the Ryukyu trench in eastern Taiwan at the Hualien area. Further northward in the island, the opening Okinawa trough ended at the Ilan area in northeastern Taiwan. The Ilan area is over populated and potentially able to produce large earthquake; however, since that are is densely covered with forests, due to lack of geologic and geomorphologic evidences, known active faults are still unclear. Recently, a series of topographic offsets of several meters distributed in a zone were found by using the LiDAR DTM data, indicating active normal faulting was activated in the past. Besides, several small sag ponds were mapped to support the active normal faulting activities. Later on, core borings in one of the small ponds (the Meihua Lake, diameter of about 700m) were conducted and the records showed obvious difference of depths in the adjacent boreholes at a very short distance. In order to realize the variation of the distribution of sediments under the Meihua Lake, we conducted a 3d seismic tomography survey at the lake, hopefully to help to verify the faults. In this paper, we will show results of using a 120-channel shallow seismic recording system for mapping the shallow subsurface structure of sediments under the Meihua Lake. During the experiment, we deployed the geophone groups of three geophones at every 6m along the bank of the lake and fired the shots at every 80m around the lake. An impactor of energy 2200 joule per shot was used as a seismic source. We stacked the energy at each shot point around 60 times for receiving clear signals. Since the total extension of recording system is 720m, about one third of the perimeter around the lake, 2,200m, we moved the geophone deployments 3 times to

  14. Monitoring of Water-Level Fluctuation of Lake Nasser Using Altimetry Satellite Data

    Science.gov (United States)

    El-Shirbeny, Mohammed A.; Abutaleb, Khaled A.

    2018-05-01

    Apart from the Renaissance Dam and other constructed dams on the River Nile tributaries, Egypt is classified globally as a state of scarce water. Egypt's water resources are very limited and do not contribute a significant amount to its water share except the River Nile (55.5 billion m3/year). While the number of population increases every year, putting more stress on these limited resources. This study aims to use remote-sensing data to assess the change in surface area and water-level variation in Lake Nasser using remote-sensing data from Landsat-8 and altimetry data. In addition, it investigates the use of thermal data from Landsat-8 to calculate water loss based on evaporation from Lake Nasser. The eight Landsat-8 satellite images were used to study the change in surface area of Lake Nasser representing winter (January) and summer (June/July) seasons in two consecutive years (2015 and 2016). Time series analyses for 10-day temporal resolution water-level data from Jason-2/OSTM and Jason-3 altimetry was carried out to investigate water-level trends over the long term (1993 and 2016) and short term (2015-2016) in correspondence with the change of the surface area. Results indicated a shrink in the lake surface area in 2016 of approximately 14% compared to the 2015 area. In addition, the evaporation rate in the lake is very high causing a loss of approximately 20% of the total water share from the river Nile.

  15. Tsunami-generated sediment wave channels at Lake Tahoe, California-Nevada, USA

    Science.gov (United States)

    Moore, James G.; Schweickert, Richard A.; Kitts, Christopher A.

    2014-01-01

    A gigantic ∼12 km3 landslide detached from the west wall of Lake Tahoe (California-Nevada, USA), and slid 15 km east across the lake. The splash, or tsunami, from this landslide eroded Tioga-age moraines dated as 21 ka. Lake-bottom short piston cores recovered sediment as old as 12 ka that did not reach landslide deposits, thereby constraining the landslide age as 21–12 ka.Movement of the landslide splashed copious water onto the countryside and lowered the lake level ∼10 m. The sheets of water that washed back into the lake dumped their sediment load at the lowered shoreline, producing deltas that merged into delta terraces. During rapid growth, these unstable delta terraces collapsed, disaggregated, and fed turbidity currents that generated 15 subaqueous sediment wave channel systems that ring the lake and descend to the lake floor at 500 m depth. Sheets of water commonly more than 2 km wide at the shoreline fed these systems. Channels of the systems contain sediment waves (giant ripple marks) with maximum wavelengths of 400 m. The lower depositional aprons of the system are surfaced by sediment waves with maximum wavelengths of 300 m.A remarkably similar, though smaller, contemporary sediment wave channel system operates at the mouth of the Squamish River in British Columbia. The system is generated by turbidity currents that are fed by repeated growth and collapse of the active river delta. The Tahoe splash-induced backwash was briefly equivalent to more than 15 Squamish Rivers in full flood and would have decimated life in low-lying areas of the Tahoe region.

  16. Validation of cryoSat-2 based lake levels

    DEFF Research Database (Denmark)

    Nielsen, Karina; Stenseng, Lars; Andersen, Ole Baltazar

    In this study, which is part of the FP7 project Land and Ocean take up from Sentinel-3 (LOTUS), we demonstrate the potential SAR altimetry. We consider lakes at various sizes and evaluate the CryoSat-2 derived lake levels in terms of along-track precision and agreement with in-situ data. As a ref......In this study, which is part of the FP7 project Land and Ocean take up from Sentinel-3 (LOTUS), we demonstrate the potential SAR altimetry. We consider lakes at various sizes and evaluate the CryoSat-2 derived lake levels in terms of along-track precision and agreement with in-situ data....... To derive lake level time series we apply a state-space model with a robust handling of erroneous data. Instead of attempting to identify and remove the polluted observations we use a mixture distribution to describe the observation noise, which prevents the polluted observations from biasing our final...

  17. Aerial radiological survey of the United States Department of Energy's Pantex Plant and surrounding area Amarillo, Texas. Date of survey: October 1979

    International Nuclear Information System (INIS)

    Boyns, P.K.

    1981-07-01

    An aerial radiological survey was conducted over the United States Department of Energy's Pantex Plant and Pantex Lake areas in October, 1979. The Pantex Plant survey covered an area of approximately 64 km 2 . The Pantex Lake survey area was approximately 2 km 2 . Both areas were surveyed at an altitude of 46 m (150 feet) with lines spaced at 91 m (300 foot) intervals. Several passes were also made over the shipping areas at the Amarillo International Airport. An array of sodium iodide detectors were mounted in a helicopter to collect gamma ray spectral data. As expected, the spectral data indicated the presence of several areas containing man-made sources

  18. Anaerobic Oxidation of Methane in a French meromictic lake (Lake Pavin): Who is responsible?

    Science.gov (United States)

    Grossi, V.; Attard, E.; Birgel, D.; Schaeffer, P.; Jézéquel, D.; Lehours, A.

    2012-12-01

    Methane is an important greenhouse gas and its biogeochemical cycle is of primary significance to the global carbon cycle. The Anaerobic Oxidation of Methane (AOM) has been estimated to be responsible for >90% of methane consumption. This biogeochemical process has been increasingly documented during the last two decades but the underlying microbial processes and their key agents remain incompletely understood. Freshwater lakes account for 2-10% of the total emissions of methane and are therefore an important part of the global methane cycle. Lake Pavin is a French meromictic crater lake with unusual hydrological characteristics: its morphology (depth >92m, mean diameter 750m) induce that waters below 60m are never mixed with overlying waters and remain permanently anoxic. The deep anoxic waters of Lake Pavin contain high concentrations (i.e. 4 mM) of methane but, contrary to other aquatic systems, almost no methane escapes from the lake. Previous biogeochemical and modeling studies suggest that methane is preferentially consumed within the oxic-anoxic transition zone (ca. 55-60 m depth) but that ca. 30% of methane oxidation occurs in the anoxic part of the lake. Phylogenetic (16S rRNA) analyses showed that ANME generally involved in AOM (ANME-1, -2 and -3) are not present in Lake Pavin. Other archaeal groups that do not have any cultured representatives so far appear well represented in the anoxic parts of the lake but their implication in AOM is not demonstrated. The analysis of lipid biomarkers using GC-MS and LC-MS revealed the presence of a low diversity of archaeal-specific biomarkers in the superficial sediments and in the anoxic waters of the lake. Archaeol and caldarcheaol (GDGT-0) are the two main archaeal core lipids detected; other biomarkers generally present in ANME such as pentamethylicosane or hydroxyarchaeol are not present. However, the stable carbon isotopic composition of archaeol (δ13C = -18‰) and of the biphytane chain of GDGT-0 (δ13C

  19. A study on the levels of radioactivity in fish samples from the experimental lakes area in Ontario, Canada

    International Nuclear Information System (INIS)

    Chen, Jing; Rennie, Michael D.; Sadi, Baki; Zhang, Weihua; St-Amant, Nadereh

    2016-01-01

    To better understand background radiation levels in country foods, a total of 125 fish samples were collected from three lakes (Lake 226, Lake 302 and Lake 305) in the Experimental Lakes Area (ELA) in Ontario of Canada during the summer of 2014. Concentrations of naturally occurring radionuclides ("2"2"6Ra, "2"1"0Pb and "2"1"0Po) as well as anthropogenic radionuclides ("1"3"4Cs and "1"3"7Cs) were measured. This study confirmed that "2"1"0Po is the dominant contributor to radiation doses resulting from fish consumption. While concentrations of "2"1"0Pb and "2"2"6Ra were below conventional detection limits, "2"1"0Po was measured in almost all fish samples collected from the ELA. The average concentration was about 1.5 Bq/kg fresh weight (fw). None of the fish samples analysed in this study contained any detectable levels of "1"3"4Cs. An average "1"3"7Cs level of 6.1 Bq/kg fw was observed in freshwater fishes harvested in the ELA, almost twice that of samples measured in the National Capital Region of Canada in 2014 and more than 20 times higher than the levels observed in marine fish harvested from the Canadian west coast in 2013 and 2014. However, it is important to note that the concentrations of "1"3"7Cs in fish samples from these inland lakes are considered very low from a radiological protection perspective. The resulting radiation dose for people from fish consumption would be a very small fraction of the annual dose from exposure to natural background radiation in Canada. The results indicate that fishes from inland lakes do not pose a radiological health concern. - Highlights: • "2"1"0Po is the dominant radionuclide measured in a total of 125 fish samples. The average activity concentration was 1.5 Bq/kg fresh weight (fw). • Activity concentration of "2"1"0Po in fish showed a negative dependency on fish size. • While an average "1"3"7Cs level of 6.1 Bq/kg fw was observed, none of the fish samples analysed in this study contained any detectable

  20. Glacial lakes in the Horgos river basin and their outbreak risk assessment

    Directory of Open Access Journals (Sweden)

    A. P. Medeu

    2013-01-01

    Full Text Available The river Khorgos (in Kazakhstan – Korgas is a boundary river between Kazakhstan and China. Its basin is located in the central part of southern slope of Dzhungarskiy (Zhetysu Alatau range. According to agreement between Kazakhstan and China at the boundary transition of Khorgos in the floodplain of the river Khorgos the large Center of Frontier Cooperation is erected. Estimation of safety of the mentioned object including connection with possible glacial lakes outbursts has the importance of political-economical value. Nowadays development of glacial lakes in the overhead part of Khorgos river basin has reached apogee. As a roof we can mention the maximum of total glacial lakes area (1,7 million m² in 41 lakes and emptied kettles of former glacial lakes. Six lakes reached highly dangerous outburst stage: the volume of lakes reached some million m³, maximum depth up to 30–40 m. Focal ground filtration of the water from lakes takes place. Development of glacial lakes in Khorgos river basin will continue, and these lakes give and will give real danger for the Center of Frontier Cooperation in case of outburst of naturally dammed lake Kazankol with the similar mechanism of Issyk lake outburst, occurred in 1963 in ZailijskiyAlatau (Ile Alatau.

  1. The ralationship between the Tamarix spp. growth and lake level change in the Bosten Lake,northwest China

    Science.gov (United States)

    Ye, Mao; Hou, JiaWen

    2015-04-01

    Dendrochronology methods are used to analyze the characteristics of Tamarix spp. growth in Bosten Lake. Based on the long-term annual and monthly data of lake level, this paper models the relationship between ring width of Tamarix spp. and lake level change. The sensitivity index is applied to determine the rational change range of lake level for protecting the Tamarix spp. growth. The results show that :( 1) the annual change of lake level in Bosten Lake has tree evident stages from 1955 to 2012. The monthly change of lake level has two peak values and the seasonal change is not significant; (2) the average value of radical width of Tamarix spp. is 3.39mm. With the increment of Tamarix spp. annual growth , the average radical width has a decreasing trend, which is similar to the annual change trend of lake level in the same years ;( 3) the response of the radical width of Tamarix spp. to annual change of lake level is sensitive significantly. When the lake level is 1045.66m, the Sk value of radical width of Tamarix spp. appears minimum .when the lake level is up to1046.27m, the Sk value is maximum. Thus the sensitivity level of radical width of Tamarix spp. is 1045.66- 1046.27m which could be regarded as the rational lake level change range for protecting the Tamarix spp. growth.

  2. Timing of lake-level changes for a deep last-glacial Lake Missoula: optical dating of the Garden Gulch area, Montana, USA

    DEFF Research Database (Denmark)

    Smith, Larry N.; Sohbati, Reza; Buylaert, Jan-Pieter

    2018-01-01

    Glaciolacustrine sediments in the Clark Fork River valley at Garden Gulch, near Drummond, Montana, USA record highstand positions of the ice-dammed glacial Lake Missoula and repeated subaerial exposure. During these highstands the lake was at greater than 65% of its recognized maximum capacity......-level fluctuation, occurred over time scales of decades to ∼2 ka. Bioturbated sandy slopewash dated at 10.6 ± 0.9 ka and 11.9 ± 1.2 ka unconformably overlies the upper glaciolacustrine deposits. The uppermost sediments, above the glaciolacustrine section, are younger than the Glacier Peak tephra (13.7-13.4 cal ka B...... the lake's highstand position due to ice-dam failure likely led to scour in the downstream portions of the glacial Lake Missoula basin and megafloods in the Channeled Scabland....

  3. Lake Baikal Ecosystem Faces the Threat of Eutrophication

    Directory of Open Access Journals (Sweden)

    Galina I. Kobanova

    2016-01-01

    Full Text Available Recently there have been reports about large accumulations of algae on the beaches of Lake Baikal, the oldest and deepest freshwater body on earth, near major population centers and in areas with large concentrations of tourists and tourism infrastructure. To evaluate the observations indicating the ongoing process of eutrophication of Lake Baikal, a field study in July 2012 in the two largest bays of Lake Baikal, Barguzinsky and Chivyrkuisky, was organized. The study of phytoplankton using the sedimentary method and quantitative records of accumulations of macrophytes in the surf zone was made. In Chivyrkuisky Bay, we found the massive growth of colorless flagellates and cryptomonads as well as the aggregations of Elodea canadensis along the sandy shoreline (up to 26 kg/m2. Barguzinsky Bay registered abundantly cyanobacterial Anabaena species, cryptomonads, and extremely high biomass of Spirogyra species (up to 70 kg/m3. The results show the presence of local but significant eutrophication of investigated bays. To prevent further extensions of this process in unique ecosystem of Lake Baikal, the detailed study and monitoring of the coastal zone, the identification of the sources of eutrophication, and the development of measures to reduce nutrient inputs in the waters are urgently needed.

  4. 75 FR 34934 - Safety Zone; Fireworks for the Virginia Lake Festival, Buggs Island Lake, Clarksville, VA

    Science.gov (United States)

    2010-06-21

    ...-AA00 Safety Zone; Fireworks for the Virginia Lake Festival, Buggs Island Lake, Clarksville, VA AGENCY... Fireworks for the Virginia Lake Festival event. This action is intended to restrict vessel traffic movement... Virginia Lake Festival, Buggs Island Lake, Clarksville, VA (a) Regulated Area. The following area is a...

  5. Cs-137 in aquatic organisms in the southern Lake Keurusselkae (Finland)[Radioecology

    Energy Technology Data Exchange (ETDEWEB)

    Ilus, E.; Klemola, S.; Vartti, V.P.; Mattila, J.; Ikaeheimonen, T.K. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-04-15

    The results of a study carried out in Lake Keurusselkae, in the Finnish Lake District, are reported. The aim of the study was to collect biota samples for the INDOFERN Project from an area that was rather highly contaminated (70 kBq m{sup -2} of {sup 137}Cs in 1986) with the Chernobyl fallout in Finland. The samples were taken from a relatively small area surrounding the island of Iso Riihisaari in the southern part of the Keurusselkae water course. In total 15 samples of aquatic plants, 6 samples of aquatic animals, 1 water sample and 2 sediment cores were taken. In August 2003, the activity concentration of {sup 137}Cs in the surface water of the southern Lake Keurusselkae was 49 Bq m{sup -3}, whereas it was 310 Bq m{sup -3} in 1988, two year after the Chernobyl accident. In the relatively shallow area surrounding the island of Iso Riihisaari, the total amount of {sup 137}Cs in sediments was 32-37 kBq m{sup -2} in 2003, but in a deeper basin close to this area the total amount of {sup 137}Cs was 130 kBq m{sup -2} in 1990. The clearly highest activity concentration and concentration factor of {sup 137}Cs was found in one sample of Water horsetail (Equisetum fluviatile), 1 430 Bq kg{sup -1} dry wt; CF 29 200, whereas in another sample of the same species the concentration was only 174 Bq kg{sup -1} dry wt. In addition, the Water lily (Nymphaea candida), Spiked water millfoil (Myriophyllum spicatum), Broad-leaved pondweed (Potamogeton natans) and Yellow water lily (Nuphar lutea) seemed to be good indicators for {sup 137}Cs. The tall freshwater clam (Anodonta sp.) seemed to be a modest accumulator of {sup 137}Cs. Contrary to our results from the coastal areas of the Baltic Sea, many aquatic plants demonstrated in fresh water similar accumulation capacity of {sup 137}Cs as fish (perch and roach), while in the sea the uptake of {sup 137}Cs in fish seemed to be more efficient than in aquatic plants. (LN)

  6. Second-Year Results from the Circumarctic Lakes Observation Network (CALON) Project

    Science.gov (United States)

    Hinkel, K. M.; Arp, C. D.; Beck, R. A.; Eisner, W. R.; Frey, K. E.; Gaglioti, B.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Townsend-Small, A.

    2013-12-01

    Beginning in April 2012, over 55 lakes in northern Alaska were instrumented as the initial phase of CALON, a project designed to document landscape-scale variability in physical and biogeochemical processes of Arctic lakes developed atop permafrost. The current network has nine observation nodes along two latitudinal transects that extend from the Arctic Ocean south 200 km to the foothills of the Brooks Range. At each node, six representative lakes of differing area and depth were instrumented at different intensity levels, and a suite of instruments were deployed to collect field measurements on lake physiochemistry, lake-surface and terrestrial climatology, and lake bed and permafrost temperature. Each April, sensors measuring water temperature and water depth are deployed through the ice and water samples are collected. Sensors are downloaded from lakes and meteorological stations in August, recording a timeline of lake regimes and events from ice decay to the summertime energy and water balance. In general, lake ice thickness increased with latitude. In 2012, ice on deeper (>2 m) lakes was about 1.4 m thick in the Arctic Foothills and 1.7 m thick near the Arctic Ocean coast. Lake ice thickness was about 20 cm thicker in winter 2013 although winter temperatures were several degrees warmer than the previous year; this is likely due to a thinner snow cover in 2013. Lake ice elevations agree with this general trend, showing higher absolute elevation in April 2013 compared to 2012 for most of the surveyed lakes. Regionally, ice-off occurs 2-4 weeks later on lakes near the coast, although there is significant inter-lake variability related to lake depth. Following ice-off, rapid lake warming occurs and water temperature varies synchronously in response to synoptic weather variations and associated changes in net radiation and turbulent heat fluxes. Average mid-summer (July) lake temperatures spanned a relatively wide range in 2012 from 7°C to 18°C, with higher

  7. 75 FR 80372 - Proposed Amendment of Restricted Areas R-2907A and R-2907B, Lake George, FL; and R-2910...

    Science.gov (United States)

    2010-12-22

    ...-1146; Airspace Docket No. 10-ASO-25] Proposed Amendment of Restricted Areas R-2907A and R-2907B, Lake George, FL; and R-2910, Pinecastle, FL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice... limits of restricted areas R-2907A and R-2907B, Lake George, FL; and restricted area R-2910, Pinecastle...

  8. Pinatubo Lake Chemistry and Degassing 1991-2010

    Science.gov (United States)

    Schwandner, F. M.; Newhall, C. G.; Christenson, B. W.; Apfelbeck, C. A.; Arpa, M. C. B.; Vaquilar, R.; Bariso, E.

    2016-12-01

    We review the history of degassing, bathymetry and water chemistry of the crater lake of Mt. Pinatubo (Philippines) using data obtained during 1991-2001, and 2010. In late 1992, the initial small lake had a significant acid-sulfate component from a volcanic degassing through a hydrothermal system and the lake, and anhydrite dissolution. Subsequently, this component was "drowned" by rainfall (2-4 m/y), meteoric groundwater draining from the crater walls into the lake, and a few neutral chloride crater wall springs. Conductivity-Temperature-Depth (CTD) measurements in August 2000 found a strong inverted thermal gradient below 20m depth, reaching over 70°C at 50-60 m depth. By January 2001 the lake had homogenized and was much cooler (27°C at all depths), and it was again well-mixed and still cool when re-surveyed in June 2001 and November 2010. By 2010, the lake was well mixed, at neutral pH, with no significant vertical or horizontal structure. Bubbling of a predominantly carbon dioxide (CO2) gas phase persists throughout the lake's history, some from 1991-92 magma and some from degassing of the long-standing (pre-1991) hydrothermal system fed from a deeper magmatic or mantle source. Crater wall fumaroles emit boiling-point hydrothermal gases dominated by water, air, and CO2.

  9. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact.

    Science.gov (United States)

    Yang, Yuyi; Xu, Chen; Cao, Xinhua; Lin, Hui; Wang, Jun

    2017-08-01

    Urban lakes are impacted by heavy human activities and represent potential reservoirs for antibiotic resistance genes. In this study, six urban lakes in Wuhan, central China were selected to analyze the distribution of sulfonamide resistance (sul) genes, tetracycline resistance (tet) genes and quinolone resistance (qnr) genes and their relationship with heavy metals, antibiotics, lake morphology and anthropic impact. sul1 and sul2 were detected in all six lakes and dominated the types of antibiotic resistance genes, which accounted for 86.28-97.79% of the total antibiotic resistance gene abundance. For eight tested tet genes, antibiotic efflux pumps (tetA, tetB, tetC, and tetG) genes were all observed in six lakes and had higher relative abundance than ribosomal protection protein genes (tetM and tetQ). For 4 plasmid mediated quinolone resistance genes, only qnrD is found in all six lakes. The class I integron (intI1) is also found to be a very important media for antibiotic resistance gene propagation in urban lakes. The results of redundancy analysis and variation partitioning analysis showed that antibiotic and co-selection with heavy metals were the major factors driving the propagation of antibiotic resistance genes in six urban lakes. The heavily eutrophic Nanhu Lake and Shahu Lake which located in a high density building area with heavy human activities had the higher relative abundance of total antibiotic resistance genes. Our study could provide a useful reference for antibiotic resistance gene abundance in urban lakes with high anthropic impact.

  10. Excess unsupported sup(210)Pb in lake sediment from Rocky Mountain lakes

    International Nuclear Information System (INIS)

    Norton, S.A.; Hess, C.T.; Blake, G.M.; Morrison, M.L.; Baron, J.

    1985-01-01

    Sediment cores from four high-altitude (approximately 3200 m) lakes in Rocky Mountain National Park, Colorado, were dated by sup(210)Pb chronology. Background (supported) sup(210)Pb activities for the four cores range from 0.26 to 0.93 Beq/g dry weight, high for typical oligotrophic lakes. Integrated unsupported sup(210)Pb ranges from 0.81 (a typical value for most lakes) to 11.0 Beq/cmsup(2). The sup(210)Pb activity in the surface sediments ranges from 1.48 to 22.2 Beq/g dry weight. Sedimentation from Lake Louise, the most unusual of the four, has 22.2 Beq/g dry weight at the sediment surface, an integrated unsupported sup(210)Pb=11.0 Beq/cmsup(2), and supported sup(210)Pb=0.74 Beq/g dry weight. sup(226)Ra content of the sediment is insufficient to explain either the high unsupported sup(210)Pb or the sup(222)Rn content of the water column of Lake Louise, which averaged 96.2 Beq/L. We concluded that sup(222)Rn-rich groundwater entering the lake is the source of the high sup(222)Rn in the water column. This, in turn, is capable of supporting the unusually high sup(210)Pb flux to the sediment surface. Groundwater with high sup(222)Rn may control the sup(210)Pb budget of lakes where sediment cores have integrated unsupported sup(210)Pb greater than 2 Beq/cmsup(2)

  11. Tonle Sap Lake Water Storage Change Over 24 Years From Satellite Observation and Its Link With Mekong River Discharge and Climate Events

    Science.gov (United States)

    Biancamaria, S.; Frappart, F.; Normandin, C.; Blarel, F.; Bourrel, L.; Aumont, M.; Azema, P.; Vu, P. L.; Lubac, B.; Darrozes, J.

    2017-12-01

    The Tonle Sap lake is the largest freshwater lake in Southeast Asia and is located within the Mekong basin (mainly in Cambodia). It is one of he most productive ecosystem of the world and provide two thirds of Cambodia fish catch. It also plays a unique role on the Mekong basin hydrological cycle: during the monsoon period, the Mekong river partially flows to the lake, whereas during the dry season, the lake flows to the Mekong delta. It is therefore crucial to monitor and take into account this lake to estimate Mekong discharge to the ocean. However, in situ measurements of lake level and river discharge are very sparse (especially during the last decades) and computing lake storage variation from in situ data only is difficult due to the huge annual variation of lake area. That's why, satellite data (nadir radar altimetry and visible imagery) have been used to study its volume variation and its relationship with climate events and Mekong river discharge. Multi-mission altimetry data have been extracted (Topex, ERS-2, ENVISAT, Jason-1, Jason-2, Saral and Jason-3, using CTOH data extraction tools) to derive a lake water level from1993 to 2016, which varies from 3 m to 12 m. Lake area have been computed from MODIS data from 2000 to 2016 and varies from 3,400 km2 to 11,800 km2. These dataset clearly shows a relationship between lake water level and area, which has been used to estimate lake water volume change from 1995 to 2016, with a minimum in 2015 and a maximum in 2011. Lake's droughts and floods can be observed during moderate and strong El Nino/La Nina events, enhanced by the Pacific Decadal Oscillation. Besides, comparison with in situ discharge at the outlet of the Mekong basin (over 1995/2000 time period) shows that lake water level is 20 days time lagged and increases/decreases after Mekong discharge at its outlet. This time lag results of Mekong river partially flowing to the lake. Finally, high correlation between lake level and outlet discharge allows to

  12. Timing of lake-level changes for a deep last-glacial Lake Missoula: optical dating of the Garden Gulch area, Montana, USA

    Science.gov (United States)

    Smith, Larry N.; Sohbati, Reza; Buylaert, Jan-Pieter; Lian, Olav B.; Murray, Andrew; Jain, Mayank

    2018-03-01

    Glaciolacustrine sediments in the Clark Fork River valley at Garden Gulch, near Drummond, Montana, USA record highstand positions of the ice-dammed glacial Lake Missoula and repeated subaerial exposure. During these highstands the lake was at greater than 65% of its recognized maximum capacity. The initial lake transgression deposited a basal sand unit. Subsequent cycles of lake-level fluctuations are recorded by sequences of laminated and cross laminated silt, sand, and clay deformed by periglacial processes during intervening periods of lower lake levels. Optically stimulated luminescence (OSL) dating of quartz sand grains, using single-aliquot regenerative-dose procedures, was carried out on 17 samples. Comparison of infrared stimulated luminescence (IRSL) from K-rich feldspar to OSL from quartz for all the samples suggests that they were well bleached prior to deposition and burial. Ages for the basal sand and overlying glaciolacustrine exposure surfaces are indistinguishable within one standard deviation, and give a weighted mean age of 20.9 ± 1.3 ka (n = 11). Based on sedimentological and stratigraphic analysis we infer that the initial transgression, and at least six cycles of lake-level fluctuation, occurred over time scales of decades to ∼2 ka. Bioturbated sandy slopewash dated at 10.6 ± 0.9 ka and 11.9 ± 1.2 ka unconformably overlies the upper glaciolacustrine deposits. The uppermost sediments, above the glaciolacustrine section, are younger than the Glacier Peak tephra (13.7-13.4 cal ka B.P.), which was deposited across parts of the drained lake basin, but has not been found at Garden Gulch. Our study indicates that glacial Lake Missoula reached >65 percent of maximum capacity by about 20.9 ± 1.3 ka and either partially or completely drained twelve times from this position. Rapid lowering from the lake's highstand position due to ice-dam failure likely led to scour in the downstream portions of the glacial Lake Missoula basin and megafloods in the

  13. Integrated Application of Remote Sensing, GIS and Hydrological Modeling to Estimate the Potential Impact Area of Earthquake-Induced Dammed Lakes

    OpenAIRE

    Bo Cao; Shengmei Yang; Song Ye

    2017-01-01

    Dammed lakes are an important secondary hazard caused by earthquakes. They can induce further damage to nearby humans. Current hydrology calculation research on dammed lakes usually lacks spatial expressive ability and cannot accurately conduct impact assessment without the support of remote sensing, which obtains important characteristic information of dammed lakes. The current study aims to address the issues of the potential impact area estimate of earthquake-induced dammed lakes by combin...

  14. Partners in flight bird conservation plan for the Upper Great Lakes Plain (Physiographic Area 16)

    Science.gov (United States)

    Knutson, M.G.; Butcher, G.; Fitzgerald, J.; Shieldcastle, J.

    2001-01-01

    1 November 2001. Conservation of bird habitats is a major focus of effort by Partners in Flight, an international coalition of agencies, citizens, and other groups dedicated to 'keeping common birds common'. USGS worked on a planning team to publish a bird conservation plan for the Upper Great Lakes Plain ecoregion (PIF 16), which includes large portions of southern Wisconsin, southern Michigan and parts of Minnesota, Iowa, Illinois, Indiana, and Ohio. The conservation plan outlines specific habitat restoration and bird population objectives for the ecoregion over the next decade. The plan provides a context for on-the-ground conservation implementation by the US Fish and Wildlife Service, the USDA Natural Resources Conservation Service, the US Forest Service, states, and conservation groups. Citation: Knutson, M. G., G. Butcher, J. Fitzgerald, and J. Shieldcastle. 2001. Partners in Flight Bird Conservation Plan for The Upper Great Lakes Plain (Physiographic Area 16). USGS Upper Midwest Environmental Sciences Center in cooperation with Partners in Flight, La Crosse, Wisconsin. Download from website: http://www.blm.gov/wildlife/pifplans.htm. The Upper Great Lakes Plain covers the southern half of Michigan, northwest Ohio, northern Indiana, northern Illinois, southern Wisconsin, and small portions of southwest Minnesota and northwest Iowa. Glacial moraines and dissected plateaus are characteristic of the topography. Broadleaf forests, oak savannahs, and a variety of prairie communities are the natural vegetation types. A oDriftless Areao was not glaciated during the late Pleistocene and emerged as a unique area of great biological diversity. Priority bird species for the area include the Henslow's Sparrow, Sedge Wren, Bobolink, Golden-winged Warbler, Cerulean Warbler, Black-billed Cuckoo, and Red-headed Woodpecker. There are many large urban centers in this area whose growth and sprawl will continue to consume land. The vast majority of the presettlement forest and

  15. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China

    International Nuclear Information System (INIS)

    Yuan Guoli; Liu Chen; Chen Long; Yang Zhongfang

    2011-01-01

    The temporal and spatial distribution of heavy metals (Cd, Hg, Pb, As and Cr) in Poyang Lake, the largest freshwater lake (3050 km 2 ) in China, were studied based on the sedimentary profiles. For this purpose, eight sedimentary cores were selected which located at lake area, outfall of lake and the main branch rivers, respectively. High-resolution profiles with interval 2 cm were used for analyzing the concentration of metals, and the ages of them were determined by 210 Pb and 137 Cs isotopic dating. While studying the change of metals concentration with the age in profile, it is found that the concentration of them in sediments was influenced not only by the sources in history but also by the sediment types. Based on this detailed work, the inventory and burden of heavy metals per decade were estimated in lake area during the past 50 years. Significantly, rivers-contribution ratio per decade was estimated to distinguish each river's contribution of heavy metals into lake while river-flux in history and metals concentration in profiles were considered as calculating factors. So, our research provides a proof to well understand the sedimentary history and the inputting history of heavy metals from main rivers into an inland lake.

  16. Sample Archaeological Survey of Public Use Areas, Milford Lake, Kansas

    Science.gov (United States)

    1982-09-01

    especially ceramics); Middle "" Mississippian, Middle Woodland and Central Plains archaeology ; the engineering and building technology of the Maya ...Sample Archaeological Survey of Public Use Areas -- 0C 0 awo (L" . .614 4.- -. 1?CNOV 1 40484 * , "n. O ji - 0" By Laura S. Schwiekhard Thn ’.iint haUs...RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED Milford Lake, Kansas Sample Archaeological Survey of Public Use

  17. Exploring the Spatial-Seasonal Dynamics of Water Quality, Submerged Aquatic Plants and Their Influencing Factors in Different Areas of a Lake

    Directory of Open Access Journals (Sweden)

    Kun Li

    2017-09-01

    Full Text Available The degradation of water quality in lakes and its negative effects on freshwater ecosystems have become a serious problem worldwide. Exploring the dynamics in the associated factors is essential for water pollution management and control. GIS interpolation, principal component analysis (PCA and multivariate statistical techniques were used to identify the main pollution sources in different areas of Honghu Lake. The results indicate that the spatial distribution of the concentrations of total nitrogen (TN, total phosphate (TP, ammonia nitrogen (NH4+–N, and permanganate index (CODMn have similar characteristics and that their values gradually increased from south to north during the three seasons in Honghu Lake. The major influencing factors of water quality varied across the different areas and seasons. The relatively high concentrations of TN and TP, which might limit the growth of submerged aquatic plants, were mainly caused by anthropogenic factors. Our work suggests that spatial analyses combined with PCA are useful for investigating the factors that influence water quality and submerged aquatic plant biomass in different areas of a lake. These findings provide sound information for the future water quality management of the lake or even the entire lake basin.

  18. Geographical information systems as a tool in limnological studies An applied case study in a shallow .lake of a plain area, Buenos Aires province, Argentina

    International Nuclear Information System (INIS)

    Quiroz, Orlando; Romanelli, Asuncion; Martinez, Daniel

    2009-01-01

    The understanding of the hydrological functioning and the interaction among the different water bodies in an area is essential when a sustainable use of the hydric resources is considered. The aim of the present paper is to assess both hydrological-limnological methods and GIS as an integrated methodology applied to the study of shallow lakes, and the hydrological behavior of shallow wetlands in plain areas. La Salada is an areic permanent shallow lake with an area of 5,78 km 2 located near La Dulce town (SE of Buenos Aires Province, Argentina). In this paper we applied methods and tools of the Geographical information Systems in order to assess both, the evolution and state of the wetland. Topographic profiles, showing the relationship among the lake and the other aquatic systems, and also a multi temporal assessment of the morphometric parameters were performed by using a Digital Terrain Model of the area. A sample grid was designed to obtain bathymetric, hydrogeochemical and isotopic data. The chemical water composition is homogeneous in area and depth. changes in the conductivity values along depth, the isotopic contents and the Gibbs diagram showed that the evaporation is the main process controlling the water chemistry. Physical-chemical parameters established water quality and uses of the lake.

  19. Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe

    NARCIS (Netherlands)

    Nõges, P.; Nõges, T.; Tuvikene, L.; Smal, H.; Ligeza, S.; Kornijów, R.; Peczula, W.; Bécares, E.; Garcia-Criado, F.; Alvarez-Carrera, C.; Fernandez-Alaez, C.; Ferriol, C.; Miracle, R.M.; Vicente, E.; Romo, S.; Van Donk, E.; Van de Bund, W.J.; Jensen, J.P.; Gross, E.M.; Hansson, L-A.; Gyllström, M.; Nykänen, M.; De Eyto, E.; Irvine, K.; Stephen, D.; Collings, S.E.; Moss, B.

    2003-01-01

    In order to disentangle the causes of variations in water chemistry among European shallow lakes, we performed standardised sampling programs in 86 lakes along a latitudinal gradient from southern Spain to northern Sweden. Lakes with an area of 0.1 to 27 000 ha and mean depth of 0.4–5.6 m located in

  20. Phytoplankton community responses to acidification of Lake 223, Experimental Lakes Area, Northwestern Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, D.L.; Kasian, S.E.

    1986-10-01

    From 1976 to 1983 the pH of Lake 223 was artificially lowered by additions of H/sub 2/SO/sub 4/. From an initial level of 6.7, the pH was lowered at a rate of 0.5 pH units a year until it reached 5.0 and was held there for 3 yr. The decrease in pH caused major changes in the epilimnetic phytoplankton community in this lake. Biomass increased as pH decreased. Chlorophyte (Chlorella) abundance increased as pH decreased from 6.1 to 5.6 while Cyanophytes (Merismopedia and Chroococcus) and dinoflagellates (Gymnodinium and Peridinium) dominated once pH decreased below 5.6. Community diversities decreased because of these species shifts and a decrease in the number of species. The amount of edible biomass increased as the pH decreased from 6.7 to 5.6, then declined as pH decreased to 5.0. 25 refs.

  1. Lake Sturgeon, Acipenser fulvescens, movements in Rainy Lake, Minnesota and Ontario

    Science.gov (United States)

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake, Minnesota-Ontario, contains a native population of Lake Sturgeon (Acipenser fulvescens) that has gone largely unstudied. The objective of this descriptive study was to summarize generalized Lake Sturgeon movement patterns through the use of biotelemetry. Telemetry data reinforced the high utilization of the Squirrel Falls geographic location by Lake Sturgeon, with 37% of the re-locations occurring in that area. Other spring aggregations occurred in areas associated with Kettle Falls, the Pipestone River, and the Rat River, which could indicate spawning activity. Movement of Lake Sturgeon between the Seine River and the South Arm of Rainy Lake indicates the likelihood of one integrated population on the east end of the South Arm. The lack of re-locations in the Seine River during the months of September and October may have been due to Lake Sturgeon moving into deeper water areas of the Seine River and out of the range of radio telemetry gear or simply moving back into the South Arm. Due to the movements between Minnesota and Ontario, coordination of management efforts among provincial, state, and federal agencies will be important.

  2. [Arsenic removal by coagulation process and the field expanding experiments for Yangzonghai Lake].

    Science.gov (United States)

    Chen, Jing; Zhang, Shu; Yang, Xiang-jun; Huang, Zhang-jie; Wang, Shi-xiong; Wang, Chong; Wei, Qun-yan; Zhang, Gen-lin; Xiao, Jun

    2015-01-01

    Yangzonghai Lake is the third largest plateau lake in Yunnan province. In June 2008, arsenic contamination was detected in Yangzonghai Lake and the water quality worsens dramatically from standard grade II to worse than grade V. Since Yongzonghai Lake is so large with the area of 31 km2 and the storage capacity of 6.04 x 10(8) m3, those pretreatment operations of the traditional arsenic removal methods, such as pre oxidation, adjusting pH value, are not applicable. In this study, a facile remediation strategy for arsenic removal by coagulation process, in which ferric chloride was directly sprayed into the contaminated water without any pretreatment, was reported. The results showed that the arsenic removal percentage was up to 95.1%-96.7% for 50 L raw water with reagent dosage of 1.62-3.20 mg x L(-1). Furthermore, the pH value of the lake kept constant in the coagulation process, which was beneficial for fish survival. Re-dissolved arsenic from precipitation was not detected in 954 days. The strategy of ferric chloride coagulation were applied to field experiments for lake water with volumes of 1 x 10(4) m3 and 25 x 10(4) m3, in which arsenic was also removed effectively. The reported strategy was of great advantage for simple operation, low cost and ecological safety, therefore it provides a representative example for arsenic contamination treatment of large lake.

  3. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    Directory of Open Access Journals (Sweden)

    S. Muster

    2017-06-01

    Full Text Available Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013 high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( <  300 m a.s.l. land surface area. PeRL waterbodies with sizes of 1. 0 × 106 m2 down to 1. 0 × 102 m2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101 km−2. Ponds are the dominant waterbody type by number in all landscapes representing 45–99 % of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands

  4. The predominance of young carbon in Arctic whole-lake CH4 and CO2 emissions and implications for Boreal yedoma lakes.

    Science.gov (United States)

    Elder, C.; Xu, X.; Walker, J. C.; Walter Anthony, K. M.; Pohlman, J.; Arp, C. D.; Townsend-Small, A.; Hinkel, K. M.; Czimczik, C. I.

    2017-12-01

    Lakes in Arctic and Boreal regions are hotspots for atmospheric exchange of the greenhouse gases CO2 and CH4. Thermokarst lakes are a subset of these Northern lakes that may further accelerate climate warming by mobilizing ancient permafrost C (> 11,500 years old) that has been disconnected from the active C cycle for millennia. Northern lakes are thus potentially powerful agents of the permafrost C-climate feedback. While they are critical for projecting the magnitude and timing these feedbacks from the rapidly warming circumpolar region, we lack datasets capturing the diversity of northern lakes, especially regarding their CH4contributions to whole-lake C emissions and their ability to access and mobilize ancient C. We measured the radiocarbon (14C) ages of CH4 and CO2 emitted from 60 understudied lakes and ponds in Arctic and Boreal Alaska during winter and summer to estimate the ages of the C sources yielding these gases. Integrated mean ages for whole-lake emissions were inferred from the 14C-age of dissolved gases sampled beneath seasonal ice. Additionally, we measured concentrations and 14C values of gases emitted by ebullition and diffusion in summer to apportion C emission pathways. Using a multi-sourced mass balance approach, we found that whole-lake CH4 and CO2 emissions were predominantly sourced from relatively young C in most lakes. In Arctic lakes, CH4 originated from 850 14C-year old C on average, whereas dissolved CO2 was sourced from 400 14C-year old C, and represented 99% of total dissolved C flux. Although ancient C had a minimal influence (11% of total emissions), we discovered that lakes in finer-textured aeolian deposits (Yedoma) emitted twice as much ancient C as lakes in sandy regions. In Boreal, yedoma-type lakes, CH4 and CO2 were fueled by significantly older sources, and mass balance results estimated CH4-ebullition to comprise 50-60% of whole-lake CH4 emissions. The mean 14C-age of Boreal emissions was 6,000 14C-years for CH4-C, and 2

  5. Magnetostratigraphy and 230Th dating of a drill core from the southeastern Qaidam Basin: Salt lake evolution and tectonic implications

    Directory of Open Access Journals (Sweden)

    An-Dong Chen

    2018-05-01

    Full Text Available The Qarhan Salt Lake area is the Quaternary depocenter of the Qaidam Basin, and carries thick lacustrine sediments, as well as rich potassium and magnesium salt deposits. The abundant resources and thick sediments in this lake provide an ideal place for the study of biogas formation and preservation, salt lake evolution, and the uplift of the Tibetan Plateau. In this study, we attempt to construct a paleomagnetic and 230Th age model and to obtain information on tectonic activity and salt lake evolution through detailed studies on a 1300-m-long drill core (15DZK01 from the northwestern margin of the Qarhan Salt Lake area (Dongling Lake. Based on gypsum 230Th dating, the age of the uppermost clastic deposit was calculated to be around 0.052 Ma. The polarity sequence consist of 13 pairs of normal and reversed zones, which can be correlated with subchrons C2r.1r-C1n of the geomagnetic polarity timescale (GPTS 2012 (from ∼2.070 Ma to ∼0.052 Ma. Sedimentary characteristics indicate that Dongling Lake witnessed freshwater environment between ∼2.070 Ma and 1.546 Ma. During this period, the sedimentary record reflects primarily lakeshore, shallow-water and swamp environments, representing favourable conditions for the formation of hydrocarbon source rocks. Between 1.546 Ma and ∼0.052 Ma, the Dongling Lake was in sulphate deposition stage, which contrasts with the central Qarhan Salt Lake area, where this stage did not occur in the meantime. During this stage, Dongling Lake was in a shallow saltwater lake environment, but several periods of reduced salinity occurred during this stage. During the late Pleistocene at ∼0.052 Ma, the Dongling Lake experienced uplift due to tectonic activity, and saltwater migrated through the Sanhu Fault to the central Qarhan Salt Lake area, resulting in the absence of halite deposition stage. The residual saline water was concentrated into magnesium-rich brine due to the lack of freshwater, and few

  6. Lake-0: A model for the simulation of nuclides transfer in lake scenarios

    International Nuclear Information System (INIS)

    Garcia-Olivares, A.; Aguero, A.; Pinedo, P.

    1994-01-01

    This report presents documentation and a user's manual for the program LAKE-0, a mathematical model of nuclides transfer in lake scenarios. Mathematical equations and physical principles used to develop the code are presented in section 2. The program use is presented in section 3 including input data sets and output data. Section 4 presents two example problems, and some results. The complete program listing including comments is presented in Appendix A. Nuclides are assumed to enter the lake via atmospheric deposition and carried by the water runoff and the dragged sediments from the adjacent catchment. The dynamics of the nuclides inside the lake is based in the model proposed by Codell (11) as modified in (5). The removal of concentration from the lake water is due to outflow from the lake and to the transfer of activity to the bottom sediments. The model has been applied to the Esthwaite Water (54 degree 21 minute N, 03 degree 00 minute W at 65 m. asl.) in the frame of the VAMP Aquatic Working Group (8) and to Devoke Water (54 degree 21 minute 5'N, 03 degree, 18 minute W at 230 m. asl.)

  7. Quartz-molybdenite veins in the Priestly Lake granodiorite, north-central Maine

    Science.gov (United States)

    Ayuso, Robert A.; Shank, Stephen G.

    1983-01-01

    Quartz-molybdenite veins up to 15 cm in width occur in fine to medium-grained porphyritic biotite-hornblende granodiorite at Priestly Lake north-central Maine. An area of about 150 m x 150 m contains quartz-molybdenite veins; a larger area is characterized by barren quartz veins. Quartz-molybdenite veins are concentrated within the most felsic variants of the intrusion as suggested by lower mafic mineral contents. The pluton has a narrow range in SiO2 (67-70 wt.%), major oxides, and in trace-element compositions. Molybdenite occurs as coarse grained clusters in pockets within the quartz veins, and fills fractures in the quartz veins and host rocks. Disseminated molybdenite in the granodiorite is relatively rare and occurs only in the area characterized by a high density of quartz veins (up to 50 veins per square meter). Alteration envelopes along the quartz veins are very thin or absent, although in some areas the granodiorite appears to be selectively and pervasively altered. Sericite, chlorite, epidote, calcite, pyrite, and quartz are concentrated near the quartz-molybdenite veins. Many of the field and geochemical characteristics of the Priestly Lake pluton are unlike those of major molybdenum-producing areas (Climax, Henderson, Urad). For example, the area of alteration seems to be of limited extent, the host rock is not intensely altered hydrothermally at the surface, the density of fractures is rather low in the mineralized area, and the amount of disseminated molybdenite appears to be small. However, the Priestly Lake pluton may be a small fraction of a concealed batholith as suggested by geophysical data. It is conceivable that the type of mineralization at the surface might be the expression of more extensive molybdenite mineralization at depth. The quartz-molybdenite veins in the Priestly Lake pluton are significant because they indicate that potential molybdenum sources for producing mineralized granites were available at depth. Future studies should be

  8. The Askja rockslide and the associated tsunami in the caldera lake

    Science.gov (United States)

    Vogfjörd, Kristin; Kristinn Helgason, Jon; Jonsdottir, Kristin; Brynjolfsson, Sveinn; Grimsdottir, Harpa; Johannesson, Tomas; Hensch, Martin; Ripepe, Maurizio

    2015-04-01

    A large rockslide was released in Askja, central Iceland, on the evening of 21 July 2014 and descended into the caldera lake. It is one of the largest known rockslides since the settlement of Iceland. The release area of the slide is approximately 900 m wide and 350 m above the lake. The front of the landslide travelled at least 2000 m along the lake bottom where it reached the depth of 150 m. The total run-out is approximatly 3100 m and the fall height 500 m. The estimated volume of the slide is estimated as 15-50 million m3. The rockslide appeared as shallow tremor on IMO seismographs near Askja and the data show that the slide was released at 23:24. The slide created seismic waves that travelled over most of Iceland in roughly one minute. In addition, it triggered atmospheric pressure waves that were detected on an infrasound array some 210 km southwest of the event. The infrasound waves travelled this distance in 11 minutes and were reflected in the stratosphere. Photographs from the rockslide area indicate that considerable movement had started a few years before the slide was released. Slow movement in the bedrock seems to have accelerated in the summer of 2014. There was deep snow in the mountains and fairly warm weather before the slide occurred. Percolating water from the melting snow might, thus, have increased the rate of movement. Seismic data indicate that a creeping movement started around 40 minutes before the slide, but at 23:24 the failure point was reached and the rockslide was released. The slide triggered a tsunami in the lake that washed up on the lakeshores all around the lake, reaching up to 20-30 m elevation above the water level and even higher in some places. The wave travelled farthest around 400 m (horizontally) into the flatland SE of the crater Víti. It was fortunate that the rockslide occurred late at night when nobody was close to the water, otherwise it would have been extremely hazardous. A few hours earlier, dozens of people were

  9. Research objectives to support the South Florida Ecosystem Restoration initiative-Water Conservation Areas, Lake Okeechobee, and the East/West waterways

    OpenAIRE

    Kitchens, Wiley M.

    1994-01-01

    The South Florida Ecosystem encompasses an area of approximately 28,000 km2 comprising at least 11 major physiographic provinces, including the Kissimmee River Valley, Lake Okeechobee, the Immokalee Rise, the Big Cypress, the Everglades, Florida Bay, the Atlantic Coastal Ridge, Biscayne Bay, the Florida Keys, the Florida Reef Tract, and nearshore coastal waters. South Florida is a heterogeneous system of wetlands, uplands, coastal areas, and marine areas, dominated by the watershe...

  10. Strontium-90 in the bottom sediments of some Finnish lakes

    Energy Technology Data Exchange (ETDEWEB)

    Ilus, E.; Puhakainen, M.; Saxen, R

    1999-07-01

    The {sup 90}Sr concentrations in surface waters varied from 14 to 29 Bq m{sup -3} in 1988 and from 16 to 23 Bq m{sup -3} in 1990. In Lake Pielinen almost all the {sup 90}Sr seemed to originate from weapons test fallout, whereas in Lakes Ontojaervi, Naesijaervi and Pyhaejaervi the share of the Chernobyl fallout was equal to that of weapons test fallout. In the sediments, the total amount of {sup 90}Sr per square metre varied from 97 to 1060 Bq m{sup -2} in 1988 and from 310 to 1160 Bq m{sup -2} in 1990. The maximum values occurred in Lake Naesijaervi. The local amount of deposition and the type of sediment were the most important factors affecting strontium values in sediments. In addition, the large variation in total amounts of {sup 90}Sr was due to other environmental factors. The total amounts of {sup 90}Sr in sediments were generally of the same order of magnitude as the {sup 90}Sr deposition on the ground in the area. The concentrations of {sup 90}Sr in surface waters also conformed quite well to the distribution pattern of the deposition values. At some stations there was a clear maximum in a deeper sediment layer, which could be construed as a marker of the nuclear weapons tests in the 1960s. (orig.)

  11. New insights on water level variability for Lake Turkana for the past 15 ka and at 150 ka from relict beaches

    Science.gov (United States)

    Forman, S. L.; Wright, D.

    2015-12-01

    Relict beaches adjacent to Lake Turkana provide a record of water level variability for the Late Quaternary. This study focused on deciphering the geomorphology, sedimentology, stratigraphy and 14C chronology of strand plain sequences in the Kalokol and Lothagam areas. Nine >30 m oscillations in water level were documented between ca. 15 and 4 ka. The earliest oscillation between ca. 14.5 and 13 ka is not well constrained with water level to at least 70 m above the present surface and subsequently fell to at least 50 m. Lake level increased to ~ 90 m between ca. 11.2 and 10.4 ka, post Younger Dryas cooling. Water level fell by >30 m by 10.2 ka, with another potential rise at ca. 8.5 ka to >70 m above current level. Lake level regressed by > 40 m at 8.2 ka coincident with cooling in the equatorial Eastern Atlantic Ocean. Two major >70 m lake level oscillations centered at 6.6 and 5.2 ka may reflect enhanced convection with warmer sea surface temperatures in the Western Indian Ocean. The end of the African Humid Period occurred from ca. 8.0 to 4.5 ka and was characterized by variable lake level (± > 40 m), rather than one monotonic fall in water level. This lake level variability reflects a complex response to variations in the extent and intensity of the East and West African Monsoons near geographic and topographic limits within the catchment of Lake Turkana. Also, for this closed lake basin excess and deficits in water input are amplified with a cascading lake effect in the East Rift Valley and through the Chew Bahir Basin. The final regression from a high stand of > 90 m began at. 5.2 ka and water level was below 20 m by 4.5 ka; and for the remainder of the Holocene. This sustained low stand is associated with weakening of the West African Monsoon, a shift of the mean position of Congo Air Boundary west of the Lake Turkana catchment and with meter-scale variability in lake level linked to Walker circulation across the Indian Ocean. A surprising observation is

  12. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  13. Chemical treatment of acid mining lakes in the Lausitz region. Experience with lime slurry resuspension in Koschen lake; Die chemische Behandlung saurer Tagebauseen in der Lausitz. Erfahrungen zur Kalkschlammresuspension im Tagebausee Koschen

    Energy Technology Data Exchange (ETDEWEB)

    Benthaus, F.C. [Lausitzer und Mitteldeutsche Bergbauverwaltungs-Gesellschaft mbH, Senftenberg (Germany); Uhlmann, W. [Institut fuer Wasser und Boden Dr. Uhlmann, Dresden (Germany)

    2006-07-01

    Acidic groundwater from catchments areas at mining lakes in the Lausitz basin causes negative effects on water quality. Those do not fit to existing standards and does not correspond to further use of mining lakes. Most of the lakes are to be filled by surface waters from nearby rivers and creeks. Cause of the limited availability of flooding water a hydrochemical treatment of water bodies is necessary. In order to apply modern techniques, the LMBV company support partners to develop new procedures. The LMBV evaluates the results of R+D projects on applications to reach the objectives with high efficiency, sustainability and cost effectiveness. At the Koschen lake, limestone slurry of a former treatment plant had to be moved because of stability reasons. In order to ameliorate the water quality in the lake, this slurry deposit had been mixed to a 540,000 m{sup 3} suspension and used as neutralising agent. Wind effects had been used to spread the agent all over the water body. While running this project in 2004 and 2005, the lake had been filled simultaneously with about 9 Mio. m{sup 3} of surface waters. Hydrochemical modelling, based on a monitoring program, allows demonstrating the effects of the treatment as well as the filling process. The increase of alkalinity gained by treatment and by filling was about +0.7 eq/m{sup 3} respectively +0.2 eq/m{sup 3}. Together they allow ameliorating the water body by economic means. (orig.)

  14. Glacial lakes in Austria - Distribution and formation since the Little Ice Age

    Science.gov (United States)

    Buckel, J.; Otto, J. C.; Prasicek, G.; Keuschnig, M.

    2018-05-01

    Glacial lakes constitute a substantial part of the legacy of vanishing mountain glaciation and act as water storage, sediment traps and sources of both natural hazards and leisure activities. For these reasons, they receive growing attention by scientists and society. However, while the evolution of glacial lakes has been studied intensively over timescales tied to remote sensing-based approaches, the longer-term perspective has been omitted due a lack of suitable data sources. We mapped and analyzed the spatial distribution of glacial lakes in the Austrian Alps. We trace the development of number and area of glacial lakes in the Austrian Alps since the Little Ice Age (LIA) based on a unique combination of a lake inventory and an extensive record of glacier retreat. We find that bedrock-dammed lakes are the dominant lake type in the inventory. Bedrock- and moraine-dammed lakes populate the highest landscape domains located in cirques and hanging valleys. We observe lakes embedded in glacial deposits at lower locations on average below 2000 m a.s.l. In general, the distribution of glacial lakes over elevation reflects glacier erosional and depositional dynamics rather than the distribution of total area. The rate of formation of new glacial lakes (number, area) has continuously accelerated over time with present rates showing an eight-fold increase since LIA. At the same time the total glacier area decreased by two-thirds. This development coincides with a long-term trend of rising temperatures and a significant stepping up of this trend within the last 20 years in the Austrian Alps.

  15. German-Russian project PLOT: new postglacial-glacial-preglacial pollen records from the Lakes Ladoga and Bol'shoe Shuch'e

    Science.gov (United States)

    Andreev, A.; Savelieva, L.; Shumilovskikh, L.; Gromig, R.; Wennrich, V.; Fedorov, G.; Wagner, B.; Melles, M.

    2017-12-01

    The German-Russian project PLOT (PaleolimnoLOgical Transect) investigates the Late Quaternary environmental history along the Northern Eurasia transect. Within the scope of a pilot phase of the project we have investigated Lake Ladoga, the largest lake in Europe. Although the postglacial history of the lake was studied over the last decades, the preglacial history remained unknown. It is assumed that during the Last Interglacial Lake Ladoga was part of a precursor of the Baltic Sea, which had a connection via Ladoga and Onega Lakes to the White Sea. Sediment coring at two sites in western Ladoga Lake in September 2013 has revealed sediment succession subdivided into 5 main lithological units. The sediments studied in a 22.7 m lake core were also palynologically investigated. Pollen assemblages indicate that the lowermost sediments with pollen of Betula, Alnus, Pinus, Carpinus, Quercus, Corylus, Ulmus, Tilia, remains of fresh-water Pediastrum and Botryococcus colonies as well as cysts of marine dinoflagellates and brackish water acritarchs) were accumulated during an interglacial with climate more favorable than in the Holocene. The OSL-dated samples show the late Eemian and post Eemian ages. Lake Bol'shoe Shuch'e (Polar Urals) was cored in April 2016. The thickness of the lacustrine sediments was 54 m. According to the previous studies, most of the study area has remained ice-free over the last 50-60 ka. However, the configuration and timing of the preceding glaciations has remained unclear, because of lack continuous, long-term paleoenvironmental records in the area. Preliminary studies show that the uppermost 9 m of the sediments were accumulated during the Holocene, between 11 and 9 m - in Younger Dryas, between 11 and 9 m - in Allerod, between 11 and 25 m - in MIS 2, between 25 and 54 m - in the MIS 3. We expect that the core will provide the most continuous sediment records from the whole region which can be used to reconstruct the environmental changes.

  16. On the Salt Water Intrusion into the Durusu Lake, Istanbul: A Joint Central Loop TEM And Multi-Electrode ERT Field Survey

    Science.gov (United States)

    Ardali, Ayça Sultan; Tezkan, Bülent; Gürer, Aysan

    2018-02-01

    Durusu Lake is the biggest and most important freshwater source supplying drinking water to the European side of Istanbul. In this study, electrical resistivity tomography (ERT) and transient electromagnetic (TEM) measurements were applied to detect a possible salt water intrusion into the lake and to delineate the subsurface structure in the north of Durusu Lake. The ERT and TEM measurements were carried out along six parallel profiles extending from the sea coast to the lake shore on the dune barrier. TEM data were interpreted using different 1-D inversion methods such as Occam, Marquardt, and laterally constrained inversion (LCI). ERT data were interpreted using 2-D inversion techniques. The inversion results of ERT and TEM data were shown as resistivity depth sections including topography. The sand layer spreading over the basin has a resistivity of 150-400 Ωm with a thickness of 5-10 m. The sandy layer with clay, silt, and gravel has a resistivity of 15-100 Ωm and a thickness of 10-40 m followed by a clay layer of a resistivity below 10 Ωm. When the inversion of these data is interpreted along with the hydrogeology of the area, it is concluded that the salt water intrusion along the dune barrier is not common and occurs at a particular area where the distance between lake and sea is very close. Using information from boreholes around the lake, it was verified that the common conductive region at depths of 30 m or more consists of clay layers and clay lenses.

  17. The role of metabolism in modulating CO2 fluxes in boreal lakes

    Science.gov (United States)

    Bogard, Matthew J.; del Giorgio, Paul A.

    2016-10-01

    Lake CO2 emissions are increasingly recognized as an important component of the global CO2 cycle, yet the origin of these emissions is not clear, as specific contributions from metabolism and in-lake cycling, versus external inputs, are not well defined. To assess the coupling of lake metabolism with CO2 concentrations and fluxes, we estimated steady state ratios of gross primary production to respiration (GPP:R) and rates of net ecosystem production (NEP = GPP-R) from surface water O2 dynamics (concentration and stable isotopes) in 187 boreal lakes spanning long environmental gradients. Our findings suggest that internal metabolism plays a dominant role in regulating CO2 fluxes in most lakes, but this pattern only emerges when examined at a resolution that accounts for the vastly differing relationships between lake metabolism and CO2 fluxes. Fluxes of CO2 exceeded those from NEP in over half the lakes, but unexpectedly, these effects were most common and typically largest in a subset ( 30% of total) of net autotrophic lakes that nevertheless emitted CO2. Equally surprising, we found no environmental characteristics that distinguished this category from the more common net heterotrophic, CO2 outgassing lakes. Excess CO2 fluxes relative to NEP were best predicted by catchment structure and hydrologic properties, and we infer from a combination of methods that both catchment inputs and internal anaerobic processes may have contributed this excess CO2. Together, our findings show that the link between lake metabolism and CO2 fluxes is often strong but can vary widely across the boreal biome, having important implications for catchment-wide C budgets.

  18. Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia

    Science.gov (United States)

    Narama, Chiyuki; Daiyrov, Mirlan; Duishonakunov, Murataly; Tadono, Takeo; Sato, Hayato; Kääb, Andreas; Ukita, Jinro; Abdrakhmatov, Kanatbek

    2018-04-01

    Four large drainages from glacial lakes occurred during 2006-2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock as well as destroying property and crops. Using satellite data analysis and field surveys of this area, we find that the water volume that drained at Kashkasuu glacial lake in 2006 was 194 000 m3, at western Zyndan lake in 2008 was 437 000 m3, at Jeruy lake in 2013 was 182 000 m3, and at Karateke lake in 2014 was 123 000 m3. Due to their subsurface outlet, we refer to these short-lived glacial lakes as the tunnel-type, a type that drastically grows and drains over a few months. From spring to early summer, these lakes either appear, or in some cases, significantly expand from an existing lake (but non-stationary), and then drain during summer. Our field surveys show that the short-lived lakes form when an ice tunnel through a debris landform gets blocked. The blocking is caused either by the freezing of stored water inside the tunnel during winter or by the collapse of ice and debris around the ice tunnel. The draining then occurs through an opened ice tunnel during summer. The growth-drain cycle can repeat when the ice-tunnel closure behaves like that of typical supraglacial lakes on debris-covered glaciers. We argue here that the geomorphological characteristics under which such short-lived glacial lakes appear are (i) a debris landform containing ice (ice-cored moraine complex), (ii) a depression with water supply on a debris landform as a potential lake basin, and (iii) no visible surface outflow channel from the depression, indicating the existence of an ice tunnel. Applying these characteristics, we examine 60 depressions (> 0.01 km2) in the study region and identify here 53 of them that may become short-lived glacial lakes, with 34 of these having a potential drainage exceeding 10 m3 s-1 at peak discharge.

  19. Gases (CH4, CO2 and N2 and pore water chemistry in the surface sediments of Lake Orta, Italy: acidification effects on C and N gas cycling

    Directory of Open Access Journals (Sweden)

    Donald D. ADAMS

    2001-02-01

    Full Text Available Lake Orta, a subalpine, warm monomictic lake in northwestern Italy was heavily polluted from rayon factory discharges of ammonium and copper since 1926. In the 1950s accumulations of contaminants resulted in whole lake pHs of 3.8-4.0 from ammonium oxidation. Partial remediation started in the 1950s, but by 1985-89 the water remained acidified at pHs of 4.0. Artificial liming (14,500 t in 1989-90 resulted in improved water quality and substantial recovery of the biological community. Sediment gases, sampled in 1989 before liming, from the lake's four basins showed severe inhibition of methanogenesis (CH4 = 0.0-0.15 mM in the surface sediments (0.5-5 cm of the southern basin, location of the plant effluent, as compared to the deep central and northern basins (0.9-1.4 mM. Four years after liming, cores collected in 1994 near the 1989 southern basin sites showed a slight change in surface sediment methane (0.07-0.82 mM, yet suggested continual sediment toxicity, at least to carbon cycling through methanogenesis. Calculations of diffuse flux of CH4 at the sediment-water interface (SWI in 1989 were 6.6-7.4 mM m-2 day-1 for the central and northern basins and 0.13 for the southern basin. CH4 fluxes increased 16x to 2 mM m-2 day-1 in 1994 in the southern basin, possibly from remediation of near surface sediments. The impact of pollution on denitrification (formation of sediment N2 gas was not so obvious since two processes could counteract each other (high NO3 - stimulating denitrification versus possible negative effects from acidity and metals. The calculated flux of N2 from the southern basin sediments increased 5x four years after liming compared to the period of acidification, suggesting possible toxicity towards denitrifiers during the earlier period. Core overlying water (0.68 mM exhibited N2 concentrations close to saturation, while most surface sediments were twice as much (1.5 mM. Surface (0-6 cm sediment N2 was similar at most sites, with the

  20. VITELLOGENIN GENE EXPRESSION IN FATHEAD MINNOWS EXPOSED TO EE2 IN A WHOLE LAKE DOSING EXPERIMENT

    Science.gov (United States)

    A whole-lake endocrine disruption experiment was conducted by Fisheries and Oceans Canada at the Experimental Lakes Area (ELA), northwestern Ontario in 2001 and 2002. This experiment examined population, organism, biochemical and cellular-level effects in lake trout, white sucke...

  1. Current and temperature structure of Rihand Lake

    Digital Repository Service at National Institute of Oceanography (India)

    Suryanarayana, A.; Swamy, G.N.; Sadhuram, Y.

    The environmental parameters such as wind, water and air temperatures, and currents were measured in Rihand Lake, Madhya Pradesh, India during the hotest months, May-June of 1983. Rihand is an artificial lake having an area of 300 km super(2...

  2. Modelling of soil depth and lake sediments. An application of the GeoEditor at the Forsmark site

    International Nuclear Information System (INIS)

    Vikstroem, Maria

    2005-02-01

    This report aims at describing the modelled soil depth according to three layers with different hydrogeological properties at the Forsmark site, based on available data from boreholes, observation points, seismic data and radar profiles. For the lakes in the area, the sediment has been modelled according to six layers of the most common deposits in the area. The peat layer at Stenroesmossen has also been visualized. The program used in the modelling of soil depths is the GeoEditor, which is an ArcView3.3-extension. The input data used in the model consist of 1,532 points based on seismic measurements, 31 profiles of interpreted ground penetrating radar data, 119 boreholes and 472 observation points. The western and south eastern part of the area has a low data density. In the southern parts the data density with respect to estimated bedrock elevation is low. Observation points in this area are generally not very deep and do not describe the actual bedrock elevation. They do, however, describe the minimum soil depth at each location. A detailed topographical DEM, bathymetry and map of Quaternary deposits were also used. The model is based on a three-layer-principle where each layer is assumed to have similar hydrological characteristics. The uppermost layer, Z1, is characterized by the impact from surface processes, roots and biological activity. The bottom layer, Z3, is characterized by contact with the bedrock. The middle layer, Z2, is assumed to have different hydraulic qualities than Z1 and Z3. The lake sediments have been modelled according to six classes of typical deposits. The modelled soil depths show a relatively high bedrock elevation and thus small total soil depth in the major part of the area. The median soil depth has been calculated to 1.9 m, based on model results in areas with higher data density. The maximum modelled soil depth is about 13 m, just north of Lake Stocksjoen. Generally, the sediment layers in the lakes of the area consists of a

  3. Effects of uranium mining on ground water in Ambrosia Lake area, New Mexico

    International Nuclear Information System (INIS)

    Kelly, T.E.; Link, R.L.; Schipper, M.R.

    1979-01-01

    This paper discusses the impact of mining on the principal aquifer in the Ambrosia Lake area, the Westwater Canyon Member of the Morrison Formation. Loss of potentiometric head has resulted in interformational migration of ground water. This migration has produced local deterioration in chemical quality of the ground water. 7 refs

  4. Ecology of playa lakes

    Science.gov (United States)

    Haukos, David A.; Smith, Loren M.

    1992-01-01

    Between 25,000 and 30,000 playa lakes are in the playa lakes region of the southern high plains (Fig. 1). Most playas are in west Texas (about 20,000), and fewer, in New Mexico, Oklahoma, Kansas, and Colorado. The playa lakes region is one of the most intensively cultivated areas of North America. Dominant crops range from cotton in southern areas to cereal grains in the north. Therefore, most of the native short-grass prairie is gone, replaced by crops and, recently, grasses of the Conservation Reserve Program. Playas are the predominant wetlands and major wildlife habitat of the region.More than 115 bird species, including 20 species of waterfowl, and 10 mammal species have been documented in playas. Waterfowl nest in the area, producing up to 250,000 ducklings in wetter years. Dominant breeding and nesting species are mallards and blue-winged teals. During the very protracted breeding season, birds hatch from April through August. Several million shorebirds and waterfowl migrate through the area each spring and fall. More than 400,000 sandhill cranes migrate through and winter in the region, concentrating primarily on the larger saline lakes in the southern portion of the playa lakes region.The primary importance of the playa lakes region to waterfowl is as a wintering area. Wintering waterfowl populations in the playa lakes region range from 1 to 3 million birds, depending on fall precipitation patterns that determine the number of flooded playas. The most common wintering ducks are mallards, northern pintails, green-winged teals, and American wigeons. About 500,000 Canada geese and 100,000 lesser snow geese winter in the playa lakes region, and numbers of geese have increased annually since the early 1980’s. This chapter describes the physiography and ecology of playa lakes and their attributes that benefit waterfowl.

  5. Water sediment, and nutrient budgets, and bathymetric survey of Old and New Gillespie Lakes, Macoupin County, Illinois, May 1996-April 1997; with a discussion of lake-management practices

    Science.gov (United States)

    Johnson, Gary P.

    1999-01-01

    The Gillespie Lakes system serves as a drinking water source for the town of Gillespie, Illinois, and is a major recreational focus for the area. As part of an investigation of a concern that the lakes are being adversely affected by excessive sediment and nutrient in flows, this report presents hydrologic, sediment, and nutrient budgets for Old Gillespie Lake and New Gillespie Lake, calculated by the U.S. Geological Survey with data collected during May 1996-April 1997 in cooperation with the Illinois Environmental Protection Agency and the city of Gillespie, Illinois. Bathymetric data also were collected in the two lakes to produce maps of the lake bed elevations. The influx of sediment, phosphorus, and nitrogen into Old Gillespie Lake during the study period was 4,063, 6.02, and 52.3 tons, respectively. Old Gillespie Lake retained 92 percent of the inflowing sediment (which agrees with theoretical calculations of trapping efficiency for Old Gillespie Lake), 84 percent of the inflowing phosphorus, and 87 percent of the inflowing nitrogen. The influx of sediment, phosphorus, and nitrogen into New Gillespie Lake during the study period was 4,792, 7.56, and 64.3 tons, respectively. Old Gillespie Lake retained 95 percent of the inflowing sediment (which agrees with theoretical calculations of trapping efficiency for New Gillespie Lake), 82 percent of the inflowing phosphorus, and 81 percent of the inflowing nitrogen. The loads per area of phosphorus and nitrogen to the Gillespie Lakes were 1.06 tons/mi2 and 9.26 tons/mi2, respectively. For row crops of corn and soybeans, the literature reports ranges of loads per area of phosphorus of 0.15 to 1.43 tons/mi2 and of nitrogen of 0.86 to 11.43 tons/mi2. Therefore, loads to the Gillespie Lakes are relatively high for the given cropping practices, and application of best management practices may substantially reduce the per area loads of these nutrients. Considering these loads and retention of sediment and nutrients, a

  6. The Location of Lake Titicaca's Coastal Area During the Tiwanaku and Inca Periods: Methodology and Strategies of Underwater Archaeology

    Science.gov (United States)

    Delaere, Christophe

    2017-12-01

    For more than 30 years, numerous research projects have revealed the dense and complex human settlement of the lacustrine basin of Lake Titicaca in Bolivia and Peru. Physical evidence of such establishments has been discovered in plains, valleys, and highlands connected to the lake. These remains confirm human occupation and development in this environment, particularly during the Tiwanaku (AD 500-1150) and Inca (AD 1400-1532) Periods. The research project discussed in this paper includes consideration of submerged areas through underwater archaeology. This investigation involves analysis of two areas that have evidence of ancient human occupation but are poorly documented: the coastal and lacustrine regions. Due to its dominance in the landscape, Lake Titicaca has always been a major feature in the life and identity of populations of this vicinity. These inhabitants have developed socio-economic and ritual behaviours directly associated with the lake that have left cultural and material prints that are the foci of the present study.

  7. Response of lake chemistry to atmospheric deposition and climate in selected Class I wilderness areas in the western United States, 1993-2009

    Science.gov (United States)

    Mast, M. Alisa

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service, Air Resource Management, conducted a study to evaluate long-term trends in lake-water chemistry for 64 high-elevation lakes in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming during 1993 to 2009. Understanding how and why lake chemistry is changing in mountain areas is essential for effectively managing and protecting high-elevation aquatic ecosystems. Trends in emissions, atmospheric deposition, and climate variables (air temperature and precipitation amount) were evaluated over a similar period of record. A main objective of the study was to determine if changes in atmospheric deposition of contaminants in the Rocky Mountain region have resulted in measurable changes in the chemistry of high-elevation lakes. A second objective was to investigate linkages between lake chemistry and air temperature and precipitation to improve understanding of the sensitivity of mountain lakes to climate variability.

  8. Holocene evolution of the Tonle Sap Lake: valley network infill and rates of sedimentation in Cambodia's Great Lake

    Science.gov (United States)

    Best, J.; Darby, S. E.; Langdon, P. G.; Hackney, C. R.; Leyland, J.; Parsons, D. R.; Aalto, R. E.; Marti, M.

    2017-12-01

    Tonle Sap Lake, the largest freshwater lake in SE Asia (c. 120km long and 35 km wide), is a vital ecosystem that provides 40-60% of the protein for the population of Cambodia. The lake is fed by flow from the Mekong River that causes the lake rise in level by c. 8m during monsoonal and cyclone-related floods, with drainage of the lake following the monsoon. Hydropower dam construction on the Mekong River has raised concerns as to the fragility of the Tonle Sap habitat due to any changing water levels and sedimentation rates within the lake. This paper details results of sub-bottom profiling surveys of Tonle Sap Lake in October 2014 that detailed the stratigraphy of the lake and assessed rates of infill. An Innomar Parametric Echo Sounder (PES) was used to obtain c. 250 km of sub-bottom profiles, with penetration up to 15m below the lake bed at a vertical resolution of c. 0.20m. These PES profiles were linked to cores from the north of the lake and previous literature. The PES profiles reveal a network of valleys, likely LGM, with relief up to c. 15-20m, that have been infilled by a suite of Holocene sediments. The valley surface is picked out as a strong reflector throughout the lake, and displays a series of valleys that are up to c. 15m deep and commonly 50-200m wide, although some of the largest valleys are 1.2km in width. Modelling of channel network incision during LGM conditions generates landscapes consistent with our field observations. The Tonle Sap valley network is infilled by sediments that show firstly fluvial and/or subaerial slope sedimentation, and then by extensive, parallel-bedded, lacustrine sedimentation. Lastly, the top c. 1m of sedimentation is marked by a distinct basal erosional surface that can be traced over much of the Tonle Sap Lake, and that is overlain by a series of parallel PES reflections. This upper sediment layer is interpreted to represent sedimentation in the Tonle Sap lake due to sediment suspension settling but after a period

  9. Optimizing hourly hydro operations at the Salt Lake City Area integrated projects

    International Nuclear Information System (INIS)

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-01-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. To analyze a broad range of issues associated with many possible future operational restrictions, Argonne National Laboratory (ANL), with technical assistance from Western has developed the Hydro LP (Linear Program) Model. This model simulates hourly operations at SLCA/IP hydropower plants for weekly periods with the objective of maximizing Western's net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) spinning reserve requirements, and Western's purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation is simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western's net revenue is computed

  10. Evaporite deposition in a shallow perennial lake, Qaidam basin, western China

    Energy Technology Data Exchange (ETDEWEB)

    Schubel, K.A.; Lowenstein, T.K. (SUNY, Binghampton, NY (United States)); Spencer, R.J. (Univ. of Calgary, Alberta (Canada)); Pengxi, Z. (Institute of Salt Lakes, Xining (China))

    1991-03-01

    Evaporites accumulate in ephemeral saline-pans, shallow perennial lakes or lagoons, and deep perennial systems. Continuous brine trench exposures of Holocene evaporites from the Qaidam basin provide criteria for the recognition of shallow perennial lake sediments. Based on Landsat photographs, lateral extent of beds (at least 7 km), and sequence thicknesses (maximum 2.5 m), the paleolake is interpreted to have been less than 2.5 m deep and at least 120 km{sup 2} in area. Sediments consist of laminated siliciclastic mud overlain by mud-halite couplets (mm- to cm-scale layers), which represent one vertical shallowing- and concentrating-upwards sequence. The basal laminite marks the onset of deposition in this shallow perennial paleolake. Syndepositional halite textures and fabrics in the overlying mud-halite couplets include cumulates, rafts, and chevrons, draped by mud laminae, and halite layers truncated by horizontal dissolution surfaces (increasing in frequency upwards). Paleolake brines, determined from fluid inclusion melting temperatures, are Na-Mg-Cl-rich and evolve from 0.84 m Mg{sup 2} to 1.52 m Mg{sup 2+} (near the surface). Combinations of the following criteria may be used for the recognition of shallow, nonstratified, perennial lake sediments: lateral continuity of layers; muds undisrupted by subaerial exposure; vertical bottom-growth of halite; halite layers conformably overlain by mud; halite layers truncated by nonuniformly spaced horizontal dissolution surfaces; erosional scours and channels filled with cross-laminated gypsum, halite, and siliciclastic sand and mud; and salinity fluctuations over small stratigraphic intervals within an overall concentrating-upwards sequence.

  11. Contamination and Risk Assessment of Heavy Metals in Lake Bed Sediment of a Large Lake Scenic Area in China

    Science.gov (United States)

    Wan, Li; Xu, Liang; Fu, Yongsheng

    2016-01-01

    The exposure of heavy metals to lake bed sediment of scenic areas may pose risks on aquatic ecosystems and human health, however very few studies on risk assessment have been reported for scenic areas. Accordingly, this study determined concentration levels, and assessed contamination characteristics and risks, of heavy metals in lake bed sediment of National Scenic Areas Songhuahu (NSAS) in China. The concentrations of Zn, Cr, Pb, Ni, and Cu were determined in 29 bed sediment samples. Results showed that the mean values of Zn, Cr, Pb, Ni, and Cu were 92.69, 90.73, 38.29, 46.77, and 49.44 mg/kg, respectively. Pearson correlation coefficients indicated that organic matter was a major factor influencing distribution of heavy metals. The results for enrichment factors indicated that contamination rates and anthropogenic inputs of single heavy metals decreased in the order Cu > Ni > Pb > Cr > Zn; results of Nemerow integrated pollution index suggested that 72.41% of sampling sites were exposed to low to moderately integrated pollution, and 27.59% of sampling sites were exposed to strongly integrated pollution. According to results for potential ecological risk index, ecological risks of single and all the heavy metals in bed sediment from all the sampling sites were low. Human risks were assessed with hazardous quotients, and the results suggested that exposure of heavy metals to bed sediment posed no or little risk to human health, and the pathway of ingestion significantly contributed to human health risks. PMID:27455296

  12. Toward Monitoring Surface and Subsurface Lakes on the Greenland Ice Sheet Using Sentinel-1 SAR and Landsat-8 OLI Imagery

    Directory of Open Access Journals (Sweden)

    Katie E. Miles

    2017-07-01

    Full Text Available Supraglacial lakes are an important component of the Greenland Ice Sheet's mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR satellite to investigate supraglacial lakes in West Greenland. A semi-automated algorithm is developed to detect surface lakes from Sentinel-1 images during the 2015 summer. A combined Landsat-8 and Sentinel-1 dataset, which has a comparable temporal resolution to MODIS (3 days vs. daily but a higher spatial resolution (25–40 vs. 250–500 m, is then used together with a fully automated lake drainage detection algorithm. Rapid (<4 days and slow (>4 days drainages are investigated for both small (<0.125 km2, the minimum size detectable by MODIS and large (≥0.125 km2 lakes through the summer. Drainage events of small lakes occur at lower elevations (mean 159 m, and slightly earlier (mean 4.5 days in the melt season than those of large lakes. The analysis is extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August; 1,270 m mean elevation. Finally, the Sentinel-1 imagery is used to detect subsurface lakes and, for the first time, their dates of appearance and freeze-through (mean 9 August and 7 October, respectively. These subsurface lakes occur at higher elevations than the surface lakes detected in this study (mean 1,593 and 1,185 m, respectively. Sentinel-1 imagery therefore provides great potential for tracking melting, water movement and freezing within both the firn zone and ablation area of the Greenland Ice Sheet.

  13. REVITALIZATION OF DEGRADED AREAS OF THE TUZLA BASIN AND FORMING ARTIFICIAL LAKES IN THE FUNCTION OF TOURISM DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    SENADA NEZIROVIĆ

    2016-03-01

    Full Text Available The Tuzla basin is located in the central part of the region of north-eastern Bosnia. It covers an area of 1,405 km² consisting of five municipalities:Tuzla, Ţivinice, Lukavac, Banovići and Kalesija. It is surrounded by mountains Majevica, Ozren, Konjuh and Javornik. It has a favorable geo-traffic position because it represents the intersection of roads leading to Belgrade,Orašje, Sarajevo and Doboj. The area of Tuzla basin has significant resources of coal and rock salt on the basis of which was developed chemical industry.The period of industrialization has considerably affected the economic situation of the entire region, and particularly the development of the central places of the Tuzla basin. Intensive exploitation of rock salt has significantly influenced the subsidence in the metropolitan area of Tuzla and turned it into an unordered wetlands. After the end of coal mining in the abandoned mining pits in the area of the municipalities of Ţivinice, Tuzla and Banovići were formed lake depressions. In order to improve and protect the environment, there were implemented several environmental projects which reconstructed coastal areas of lakes in the area of Ţivinice, Tuzla, Lukavac and Banovići, and in the metropolitan area of Tuzla there were built three artificial salt lakes in the function of the city outdoor pool.The paper places particular emphasis on the promotion of values of artificial lakes created by revitalization of degraded areas in the Tuzla basin and future directions in the development of the same. Moreover, considerable attention is given to the system of planned realisation of environmental projects for the improvement of environment in the towns of Tuzla, Ţivinice, Lukavac, Banovići and solving environmental problems.The aim of this study is to point out the proper management and use of hydrographic resources in the function of tourism development in the area of the Tuzla basin.

  14. Detection of Supra-Glacial Lakes on the Greenland Ice Sheet Using MODIS Images

    Science.gov (United States)

    Verin, Gauthier; Picard, Ghislain; Libois, Quentin; Gillet-Chaulet, Fabien; Roux, Antoine

    2015-04-01

    During melt season, supra-glacial lakes form on the margins of the Greenland ice sheet. Because of their size exceeding several kilometers, and their concentration, they affect surface albedo leading to an amplification of the regional melt. Furthermore, they foster hydro-fracturing that propagate liquid water to the bedrock and therefore enhance the basal lubrication which may affect the ice motion. It is known that Greenland ice sheet has strongly responded to recent global warming. As air temperature increases, melt duration and melt intensity increase and surface melt area extends further inland. These recent changes may play an important role in the mass balance of the Greenland ice sheet. In this context, it is essential to better monitor and understand supra-glacial spatio-temporal dynamics in order to better assess future sea level rise. In this study MODIS (Moderate Resolution Imaging Spectroradiometer) images have been used to detect supra-glacial lakes. The observation site is located on the West margin of the ice sheet, between 65°N and 70°N where the concentration of lake is maximum. The detection is performed by a fully automatic algorithm using images processing techniques introduced by Liang et al. (2012) which can be summarized in three steps: the selection of usable MODIS images, mainly we exclude images with too many clouds. The detection of lake and the automatic correction of false detections. This algorithm is capable to tag each individual lake allowing a survey of all lake geometrical properties over the entire melt season. We observed a large population of supra-glacial lakes over 14 melt seasons, from 2000 to 2013 on an extended area of 70.000 km2. In average, lakes are observed from June 9 ± 8.7 days to September 13 ± 13.9 days, and reach a maximum total area of 699 km2 ± 146 km2. As the melt season progresses, lakes form higher in altitude up to 1800 m above sea level. Results show a very strong inter-annual variability in term of

  15. Carbon Dioxide Evasion from Boreal Lakes: Drivers, Variability and Revised Global Estimate

    Science.gov (United States)

    Hastie, A. T.; Lauerwald, R.; Weyhenmeyer, G. A.; Sobek, S.; Verpoorter, C.; Regnier, P. A. G.

    2016-12-01

    Carbon dioxide evasion (FCO2) from lakes and reservoirs is established as an important component of the global carbon (C) cycle, a fact reflected by the inclusion of these waterbodies in the most recent IPCC assessment report. In this study we developed a statistical model driven by environmental geodata, to predict CO2 partial pressure (pCO2) in boreal lakes, and to create the first high resolution map (0.5°) of boreal (50°- 70°) lake pCO2. The resulting map of pCO2 was combined with lake area (lakes >0.01km2) from the recently developed GLOWABO database (Verpoorter et al., 2014) and estimates of gas transfer velocity k, to produce the first high resolution map of boreal lake FCO2. Before training our model, the geodata as well as approximately 27,000 samples of `open water' (excluding periods of ice cover) pCO2 from the boreal region, were gridded at 0.5° resolution and log transformed where necessary. A multilinear regression was used to derive a prediction equation for log10 pCO2 as a function of log10 lake area, net primary productivity (NPP), precipitation, wind speed and soil pH (r2= 0.66), and then applied in ArcGIS to build the map of pCO2. After validation, the map of boreal lake pCO2 was used to derive a map of boreal lake FCO2. For the boreal region we estimate an average, lake area weighted, pCO2 of 930 μatm and FCO2 of 170 (121-243) Tg C yr-1. Our estimate of FCO2 will soon be updated with the incorporation of the smallest lakes (<0.01km2). Despite the current exclusion of the smallest lakes, our estimate is higher than the highest previous estimate of approximately 110 Tg C yr-1 (Aufdenkampe et al, 2011). Moreover, our empirical approach driven by environmental geodata can be used as the basis for estimating future FCO2 from boreal lakes, and their sensitivity to climate change.

  16. Benthic fauna of extremely acidic lakes (pH 2-3)

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G G

    2001-07-01

    The structure of the benthic invertebrate communities were investigated in terms of composition, abundance, and biomass from extremely acidic lakes with pH values from 2 to 3 in areas where coal was intensively mined in the Lusatian region in the eastern region of Germany. Benthic invertebrates colonisation on leaves and the breakdown rate processing of the three deciduous leaf: Betula pendula (birch), Fraxinus excelsior (ash), and Juglans regia (walnut) were investigated. Also, the main key-species of these acidic environments were investigated, in terms of description of pupal exuviae of Chironomus crassimanus and the feeding habit of this acid-resistant species through analysis of their gut content. The benthic food web in extremely acidic mining Lusatian lakes is very short in terms of species richness, trophic relationship, guilds and functional feeding groups. Collector-filters and scraper-grazers were absent in extremely acidic mining lakes (AML 107, AML 111 and AML 117). Shredders as Limnophyes minimus (Diptera, Chironomidae, Orthocladiinae) and Hydrozetes lacustris (Acari, Hydrozetidae) occurred in low abundance in AML 107 and AML 111, and it may be in response to slow leaf breakdown process in these ecosystems, except in AML 117 where the H. lacustris contributed most to ecosystems functioning via the processing of litter. Aquatic insects as Sialis lutaria (Megaloptera, Sialidae), Orectochilus villosus (Coleoptera, Gyrinidae), Coenagrion mercuriale (Odonata, Coenagrionidae), and Phryganeidae (Trichoptera) are the top-predators of these ecosystems. They did not depend on the level of pH in the lakes, but on the availability of food resources. (orig.)

  17. Hierarchical multi-scale classification of nearshore aquatic habitats of the Great Lakes: Western Lake Erie

    Science.gov (United States)

    McKenna, J.E.; Castiglione, C.

    2010-01-01

    Classification is a valuable conservation tool for examining natural resource status and problems and is being developed for coastal aquatic habitats. We present an objective, multi-scale hydrospatial framework for nearshore areas of the Great Lakes. The hydrospatial framework consists of spatial units at eight hierarchical scales from the North American Continent to the individual 270-m spatial cell. Characterization of spatial units based on fish abundance and diversity provides a fish-guided classification of aquatic areas at each spatial scale and demonstrates how classifications may be generated from that framework. Those classification units then provide information about habitat, as well as biotic conditions, which can be compared, contrasted, and hierarchically related spatially. Examples within several representative coastal or open water zones of the Western Lake Erie pilot area highlight potential application of this classification system to management problems. This classification system can assist natural resource managers with planning and establishing priorities for aquatic habitat protection, developing rehabilitation strategies, or identifying special management actions.

  18. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes

    Science.gov (United States)

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2016-01-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.

  19. Isotopic mass balance of Manzala Lake as indicators of present and past hydrogeological processes in Egypt

    International Nuclear Information System (INIS)

    Salem, M.W.M.

    2006-01-01

    Lakes are very important part of the aquatic ecosystem, which represent about 15% of the total commercial fishing areas in Egypt. Manzala lake is considered one of the largest lakes in Egypt. It is located in the north-eastern edge of the Nile delta and suffering from industrial and agricultural pollutions. The most serious source of pollution may be from Port Said and Damietta wastes, which dumped regularly into the lake. The main object of the present study is to investigate the hydrochemical and isotopic features of the lake waters and to compare the parameters deduced in the present and previous investigations in order to improve the current knowledge of the dynamic change during this time. The stable isotope (oxygen-18) component mass balance approach was used to find out the evaporation rate and the seepage from the groundwater to the lake. The data showed that the seepage rate from the groundwater to the lake was 305.54 x 106 m3/y (about 2% higher than previous study) since the amounts of drainage water became higher. The evaporation rate was 2185.844 x 106 m3/y (about 5% less than previous study). This is due to the reduction in the lake size. Although these rates are relatively small, yet they indicate an alarm for pollution propagation around the lake, which would increase with time

  20. A synthesis of rates and controls on elemental mercury evasion in the Great Lakes Basin

    International Nuclear Information System (INIS)

    Denkenberger, Joseph S.; Driscoll, Charles T.; Branfireun, Brian A.; Eckley, Chris S.; Cohen, Mark; Selvendiran, Pranesh

    2012-01-01

    Rates of surface-air elemental mercury (Hg 0 ) fluxes in the literature were synthesized for the Great Lakes Basin (GLB). For the majority of surfaces, fluxes were net positive (evasion). Digital land-cover data were combined with representative evasion rates and used to estimate annual Hg 0 evasion for the GLB (7.7 Mg/yr). This value is less than our estimate of total Hg deposition to the area (15.9 Mg/yr), suggesting the GLB is a net sink for atmospheric Hg. The greatest contributors to annual evasion for the basin are agricultural (∼55%) and forest (∼25%) land cover types, and the open water of the Great Lakes (∼15%). Areal evasion rates were similar across most land cover types (range: 7.0–21.0 μg/m 2 -yr), with higher rates associated with urban (12.6 μg/m 2 -yr) and agricultural (21.0 μg/m 2 -yr) lands. Uncertainty in these estimates could be partially remedied through a unified methodological approach to estimating Hg 0 fluxes. - Highlights: ► Considerable variability exists across spatial/temporal scales in Hg 0 evasion rates. ► Methodological approaches vary for estimating and reporting gaseous Hg 0 fluxes. ► Hg 0 evasion from the Great Lakes Basin is estimated at 7.7 Mg/yr (10.2 μg/m 2 -yr). ► Hg flux estimates suggest region is a net sink for atmospheric Hg. ► 95% of Hg 0 evasion in the region is from agriculture, forest, and the Great Lakes. - A synthesis of Hg evasion was conducted and this information was used to develop an estimate of Hg evasion for the Great Lakes Basin.

  1. Lake Ontario benthic prey fish assessment, 2015

    Science.gov (United States)

    Weidel, Brian C.; Walsh, Maureen; Holden, Jeremy P.; Connerton, Michael J.

    2016-01-01

    Benthic prey fishes are a critical component of the Lake Ontario food web, serving as energy vectors from benthic invertebrates to native and introduced piscivores. Since the late 1970’s, Lake Ontario benthic prey fish status was primarily assessed using bottom trawl observations confined to the lake’s south shore, in waters from 8 – 150 m (26 – 492 ft). In 2015, the Benthic Prey Fish Survey was cooperatively adjusted and expanded to address resource management information needs including lake-wide benthic prey fish population dynamics. Effort increased from 55 bottom trawl sites to 135 trawl sites collected in depths from 8 - 225m (26 – 738 ft). The spatial coverage of sampling was also expanded and occurred in all major lake basins. The resulting distribution of tow depths more closely matched the available lake depth distribution. The additional effort illustrated how previous surveys were underestimating lake-wide Deepwater Sculpin, Myoxocephalus thompsonii, abundance by not sampling in areas of highest density. We also found species richness was greater in the new sampling sites relative to the historic sites with 11 new fish species caught in the new sites including juvenile Round Whitefish, Prosopium cylindraceum, and Mottled sculpin, Cottus bairdii. Species-specific assessments found Slimy Sculpin, Cottus cognatus abundance increased slightly in 2015 relative to 2014, while Deepwater Sculpin and Round Goby, Neogobius melanostomus, dramatically increased in 2015, relative to 2014. The cooperative, lake-wide Benthic Prey Fish Survey expanded our understanding of benthic fish population dynamics and habitat use in Lake Ontario. This survey’s data and interpretations influence international resource management decision making, such as informing the Deepwater Sculpin conservation status and assessing the balance between sport fish consumption and prey fish populations. Additionally a significant Lake Ontario event occurred in May 2015 when a single

  2. Fluctuations of Lake Orta water levels: preliminary analyses

    Directory of Open Access Journals (Sweden)

    Helmi Saidi

    2016-04-01

    Full Text Available While the effects of past industrial pollution on the chemistry and biology of Lake Orta have been well documented, annual and seasonal fluctuations of lake levels have not yet been studied. Considering their potential impacts on both the ecosystem and on human safety, fluctuations in lake levels are an important aspect of limnological research. In the enormous catchment of Lake Maggiore, there are many rivers and lakes, and the amount of annual precipitation is both high and concentrated in spring and autumn. This has produced major flood events, most recently in November 2014. Flood events are also frequent on Lake Orta, occurring roughly triennially since 1917. The 1926, 1951, 1976 and 2014 floods were severe, with lake levels raised from 2.30 m to 3.46 m above the hydrometric zero. The most important event occurred in 1976, with a maximum level equal to 292.31 m asl and a return period of 147 years. In 2014 the lake level reached 291.89 m asl and its return period was 54 years. In this study, we defined trends and temporal fluctuations in Lake Orta water levels from 1917 to 2014, focusing on extremes. We report both annual maximum and seasonal variations of the lake water levels over this period. Both Mann-Kendall trend tests and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes, and logistic regression was used to detect trends in the number of flood events. Lake level decreased during winter and summer seasons, and a small but statistically non-significant positive trend was found in the number of flood events over the period. We provide estimations of return period for lake levels, a metric which could be used in planning lake flood protection measures.

  3. Dynamics Change of Honghu Lake's Water Surface Area and Its Driving Force Analysis Based on Remote Sensing Technique and TOPMODEL model

    International Nuclear Information System (INIS)

    Wen, X; Cao, B; Shen, S; Hu, D; Tang, X

    2014-01-01

    Honghu Lake is the largest freshwater lake in the Hubei Province of China. This paper introduces a remote sensing approach to monitor the lake's water surface area dynamics over the last 40 years by using multi-temporal remote sensing imagery including Landsat and HJ-1. Meanwhile, the daily precipitation and evaporation data provided by Honghu meteorological station since 1970s were also collected and used to analyze the influence of climate change factors. The typical situation for precipitation was selected as an input into the TOPMODEL model to simulate the hydrological process in Honghu Lake. The simulation result with the water surface area extracted from remote sensing imagery was analyzed. This experiment shows the precipitation and timing of precipitation effects changes in the lake with remote sensing data and it showed the potential of using TOPMODEL model to analyze the combined hydrological process in Honghu Lake

  4. Microbial ecology of acid strip mine lakes in southern Indiana

    International Nuclear Information System (INIS)

    Gyure, R.A.

    1986-01-01

    In this study, the author examined the limnology and microbial ecology of two acid strip mine lakes in the Greene-Sullivan State Forest near Dugger, Indiana. Reservoir 29 is a larger lake (225 ha) with water column pH of 2.7 and sediment pH of 3.8. Lake B, a smaller (20 ha) lake to the south of Reservoir 29, also has an acidic water column (pH 3.4) but more neutral sediments (pH 6.2). Both have very high sulfate concentrations: 20-30 mM in the water column and as high as 100 mM in the hypolimnion of Lake B. Low allochthonous carbon and nutrient input characterize these lakes as oligotrophic, although algal biomass is higher than would be expected for this trophic status. In both lakes, algal populations are not diverse, with a few species of single-celled Chlorophyta and euglenoids dominating. Algal biomass is concentrated in a thin 10 cm layer at the hypolimnion/metalimnion interface, although light intensity at this depth is low and severely limits productivity. Bacterial activity based on 14 C-glucose incorporation is highest in the hypolimnion of both lakes, and sulfate-reduction is a dominant process in the sediments. Rates of sulfate-reduction compare with those in other freshwater environments, but are not as high as rates measured in high sulfate systems like saltmarsh and marine sediments

  5. Late Glacial and Holocene sedimentary evolution of Czechowskie Lake (Eastern Pomerania, North Central Poland)

    Science.gov (United States)

    Kordowski, Jarosław; Błaszkiewicz, Mirosław; Kramkowski, Mateusz; Noryśkiewicz, Agnieszka M.; Słowiński, Michał; Tyszkowski, Sebastian; Brauer, Achim; Ott, Florian

    2015-04-01

    Czechowskie Lake is located in north-central Poland in Tuchola Forest, about 100 kilometers SW away from Gdańsk. In the deepest parts of the lake there are preserved laminated sediments with an excellent Holocene climatic record. The lake has the area of 76,6 ha. Actual water level is at 109,9 m a.s.l. The average depth is 9,59 m, maximal 32 m. It occupies a large subglacial channel, reproduced within the glacifluvial sediments of the last glaciation. The lake has a history reaching back to Pommeranian phase which is proved by analysis of sedimentary succesions in the vicinity of present-day waterbody. Primarily it come to existence as an very variable ice dammed lake but after dead ice and permafrost desintegration it changed into a stable lake. In the terrestrialised part oft the lake and in its litoral zone there were curried out numerous boreholes within limnic and slope sediments. They have been analysed in respect to lithology and structure. Some of them were also investigated palynologically which along with radiocarbon datings allowed to reconstruct major phases of the water level fluctuations. The maximum infilling with the limnic and telmatic sediments reaches over 12 m. In the bottom of the lake there is a marked presence of many overdeepenings with the diameter of dozen or several dozen meters and the depth of up to 10 m with numerous, distinct throughs between them. They favoured the preservation of the lamination in the deepest parts of the lake due to waves hampering and stopping of the density circulation in the lake waterbody. The analysis of limnic sediments revealed considerable spatial and temporal variability mainly in dependance of the area of the water body and water level in time of deposition. In the lake are recorded three distinct phases of lake level decrease. The sedimentary evolution in the isolated minor lake basins showed gradual decrease of mineral and organic deposition in favour for carbonate one although in places separated by

  6. Watershed vs. within-lake drivers of nitrogen: phosphorus dynamics in shallow lakes.

    Science.gov (United States)

    Ginger, Luke J; Zimmer, Kyle D; Herwig, Brian R; Hanson, Mark A; Hobbs, William O; Small, Gaston E; Cotner, James B

    2017-10-01

    Research on lake eutrophication often identifies variables affecting amounts of phosphorus (P) and nitrogen (N) in lakes, but understanding factors influencing N:P ratios is important given its influence on species composition and toxin production by cyanobacteria. We sampled 80 shallow lakes in Minnesota (USA) for three years to assess effects of watershed size, proportion of watershed as both row crop and natural area, fish biomass, and lake alternative state (turbid vs. clear) on total N : total P (TN : TP), ammonium, total dissolved phosphorus (TDP), and seston stoichiometry. We also examined N:P stoichiometry in 20 additional lakes that shifted states during the study. Last, we assessed the importance of denitrification by measuring denitrification rates in sediment cores from a subset of 34 lakes, and by measuring seston δ 15 N in four additional experimental lakes before and after they were experimentally manipulated from turbid to clear states. Results showed alternative state had the largest influence on overall N:P stoichiometry in these systems, as it had the strongest relationship with TN : TP, seston C:N:P, ammonium, and TDP. Turbid lakes had higher N at given levels of P than clear lakes, with TN and ammonium 2-fold and 1.4-fold higher in turbid lakes, respectively. In lakes that shifted states, TN was 3-fold higher in turbid lakes, while TP was only 2-fold higher, supporting the notion N is more responsive to state shifts than is P. Seston δ 15 N increased after lakes shifted to clear states, suggesting higher denitrification rates may be important for reducing N levels in clear states, and potential denitrification rates in sediment cores were among the highest recorded in the literature. Overall, our results indicate lake state was a primary driver of N:P dynamics in shallow lakes, and lakes in clear states had much lower N at a given level of P relative to turbid lakes, likely due to higher denitrification rates. Shallow lakes are often

  7. Interfacing a one-dimensional lake model with a single-column atmospheric model: 2. Thermal response of the deep Lake Geneva, Switzerland under a 2 × CO2 global climate change

    Science.gov (United States)

    Perroud, Marjorie; Goyette, StéPhane

    2012-06-01

    In the companion to the present paper, the one-dimensional k-ɛ lake model SIMSTRAT is coupled to a single-column atmospheric model, nicknamed FIZC, and an application of the coupled model to the deep Lake Geneva, Switzerland, is described. In this paper, the response of Lake Geneva to global warming caused by an increase in atmospheric carbon dioxide concentration (i.e., 2 × CO2) is investigated. Coupling the models allowed for feedbacks between the lake surface and the atmosphere and produced changes in atmospheric moisture and cloud cover that further modified the downward radiation fluxes. The time evolution of atmospheric variables as well as those of the lake's thermal profile could be reproduced realistically by devising a set of adjustable parameters. In a "control" 1 × CO2 climate experiment, the coupled FIZC-SIMSTRAT model demonstrated genuine skills in reproducing epilimnetic and hypolimnetic temperatures, with annual mean errors and standard deviations of 0.25°C ± 0.25°C and 0.3°C ± 0.15°C, respectively. Doubling the CO2 concentration induced an atmospheric warming that impacted the lake's thermal structure, increasing the stability of the water column and extending the stratified period by 3 weeks. Epilimnetic temperatures were seen to increase by 2.6°C to 4.2°C, while hypolimnion temperatures increased by 2.2°C. Climate change modified components of the surface energy budget through changes mainly in air temperature, moisture, and cloud cover. During summer, reduced cloud cover resulted in an increase in the annual net solar radiation budget. A larger water vapor deficit at the air-water interface induced a cooling effect in the lake.

  8. Using Satellite Imagery to Monitor the Major Lakes; Case Study Lake Hamun

    Science.gov (United States)

    Norouzi, H.; Islam, R.; Bah, A.; AghaKouchak, A.

    2015-12-01

    Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes would provide invaluable information for policy-makers and local people. As part of a comprehensive study, we aim to monitor the land-cover/ land-use changes in the world's major lakes using satellite observations. As a case study, Hamun Lake which is a pluvial Lake, also known as shallow Lake, located on the south-east of Iran and adjacent to Afghanistan, and Pakistan borders is investigated. The Lake is the main source of resources (agriculture, fishing and hunting) for the people around it and politically important in the region since it is shared among three different countries. The purpose of the research is to find the Lake's area from 1972 to 2015 and to see if any drought or water resources management has affected the lake. Analyzing satellites imagery from Landsat shows that the area of the Lake changes seasonally and intra-annually. Significant seasonal effects are found in 1975,1977, 1987, 1993, 1996, 1998, 2000, 2009 and 2011, as well as, substantial amount of shallow water is found throughout the years. The precipitation records as well as drought historical records are studied for the lake's basin. Meteorological studies suggest that the drought, decrease of rainfalls in the province and the improper management of the Lake have caused environmental, economic and geographical consequences. The results reveal that lake has experienced at least two prolong dryings since 1972 which drought cannot solely be blamed as main forcing factor.Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes

  9. Changes in the sedimentation histories of lakes using Pb-210 as a tracer of sinking particulate matter

    International Nuclear Information System (INIS)

    Barnes, R.S.; Birch, P.B.; Spyridakis, D.E.; Schell, W.R.

    1978-01-01

    A detailed study of man's impact over the last 150 years on six lakes in Western Washington State has been made using Pb-210 dating methods and historical records. These lakes represent a gradient in watershed usage from pristine natural environments to heavily urbanized areas. Fine structures in the sediment profiles of Pb-210 measurements were found to correlate with changing watershed land use. Contemporary sedimentation rates varied from 50-679 g/m 2 x a (0.37-2.9 mm/a) and were generally higher than precultural rates. The highest average sedimentation rates (1230-1800 g/m 2 x a or 5.6-8.3 mm/a) were simultaneous with suburbanization. Construction of roads and houses appeared to be the major cause of increased erosion in the watersheds. The present day sediments of all lakes were enriched in lead compared to older background material. The stable lead profiles from all lakes except Lake Union were consistent with the local history of lead pollution based on the Pb-210 geochronologies. Water column residence times for Pb-210 and stable lead were almost identical and were consistent with algal settling rates and the sinking rates of fine silts and clays. (orig.) [de

  10. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    Science.gov (United States)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  11. Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake.

    Science.gov (United States)

    Reis, P C J; Barbosa, F A R

    2014-08-01

    It is well accepted in the literature that lakes are generally net heterotrophic and supersaturated with CO2 because they receive allochthonous carbon inputs. However, autotrophy and CO2 undersaturation may happen for at least part of the time, especially in productive lakes. Since diurnal scale is particularly important to tropical lakes dynamics, we evaluated diurnal changes in pCO2 and CO2 flux across the air-water interface in a tropical productive lake in southeastern Brazil (Lake Carioca) over two consecutive days. Both pCO2 and CO2 flux were significantly different between day (9:00 to 17:00) and night (21:00 to 5:00) confirming the importance of this scale for CO2 dynamics in tropical lakes. Net heterotrophy and CO2 outgassing from the lake were registered only at night, while significant CO2 emission did not happen during the day. Dissolved oxygen concentration and temperature trends over the diurnal cycle indicated the dependence of CO2 dynamics on lake metabolism (respiration and photosynthesis). This study indicates the importance of considering the diurnal scale when examining CO2 emissions from tropical lakes.

  12. Spatial and temporal variability of greenhouse gas emissions from a small and shallow temperate lake

    Science.gov (United States)

    Praetzel, Leandra; Schmiedeskamp, Marcel; Broder, Tanja; Hüttemann, Caroline; Jansen, Laura; Metzelder, Ulrike; Wallis, Ronya; Knorr, Klaus-Holger; Blodau, Christian

    2017-04-01

    Small inland waters (spots" and "hot moments" that could contribute significantly to total emissions. To address this knowledge gap, we determined CO2 and CH4 emissions and dynamics to identify their controlling environmental factors in a polymictic small (1.4 ha) and shallow (max. depth approx. 1.5 m) crater lake ("Windsborn") in the Eifel uplands in south-west Germany. As Lake Windsborn has a small catchment area (8 ha) and no surficial inflows, it serves well as a model system for the identification of factors and processes controlling emissions. In 2015, 2016 and 2017 we measured CO2 and CH4 gas fluxes with different techniques across the sediment/water and water/atmosphere interface. Atmospheric exchange was measured using mini-chambers equipped with CO2 sensors and with an infra-red greenhouse gas analyzer for high temporal resolution flux measurements. Ebullition of CH4 was quantified with funnel traps. Sediment properties were examined using pore-water peepers. All measurements were carried out along a transect covering both littoral and central parts of the lake. Moreover, a weather station on a floating platform in the center of the lake recorded meteorological data as well as CO2 concentration in different depths of the water column. So far, Lake Windsborn seems to be a source for both CO2 and CH4 on an annual scale. CO2 emissions generally increased from spring to summer. Even though CO2 uptake could be observed during some periods in spring and fall, CO2 emissions in the summer exceeded the uptake. CO2 and CH4 emissions also appeared to be spatially variable between littoral areas and the inner lake. Shallow areas turned out to be "hot spots" of CO2 emissions whereas CH4 emissions were - against our expectations - highest in the center of the lake. Moreover, CH4 ebullition contributed substantially to total CH4 emissions. Our results show the importance of spatially and temporally highly resolved long-term measurements of greenhouse gas emissions and

  13. Carbon Metabolism in Lake Steinhuder Meer

    International Nuclear Information System (INIS)

    Ernst, D.

    1981-01-01

    Lake Steinhuder Meer is the largest lake in the Northern German plain. It is very shallow (average 1.35 m deep), highly productive and turbid due to a layer of loose sediments rich in organic matter (Ernst et al., 1980). It is an important recreational site, natural resort and still remarkable fishing area. It is fed by 2/3 from subsoil waters and by 1/3 by. rain. The response of the water body to increased nutrient load is investigated by enrichment experiments using plastic bags. Water in plastic bags is in contact with the atmosphere but is separated from the bottom sediment. Hence this technique may also give information about the roles of the sediment and the atmosphere in lake metabolism. Plasticisers may influence the experiment and mechanical damage may restrict the life-time of the facility. After several trials with polyethylene foils we now use a re-enforced PVC-foil. The material (Beneflex L) stands the wave movement for several weeks. Since Steinhuder Meer is not stratified we just pump the water into the bag. The water volume in the container is determined by a water clock

  14. Determination of Water Quality Parameters in Sivas - Kurugöl Lake

    Directory of Open Access Journals (Sweden)

    Ekrem Mutlu

    2013-12-01

    Full Text Available Kurugöl Lake; Sivas province Hafik county Kurugöl village located within the boundaries of Sivas province, 54 km, Hafik the town 24 miles away, an area of 8.9 ha altitude of 1362 m, an average depth of 3.4 - 4 m with gypsum plateau on the bottom of the boiling water along with rainfall and snowmelt with the lake is fed naturally. Kurugöl (Hafik - Sivas waters of Lake of the physical and chemical properties during the year changes occurring determining water quality characteristics to reveal the pollution levels are determined, living life in terms of the availability of the detection, water pollution and control regulations by the lake water classification and fishing activities, compliance with were identified. The inland lake in Kurugöl (SKKY according to the classification of water resources in accordance with the parameters measured I-III water quality varies from class.

  15. A model for landscape development in terms of shoreline displacement, sediment dynamics, lake formation, and lake choke-up processes

    International Nuclear Information System (INIS)

    Brydsten, Lars

    2006-12-01

    repeated until the calculated number of pixels is marked. However, vegetation is only permitted to colonize on bottoms shallower than 2 metres. The lake module steps forward until the former lake basin is totally covered with vegetation. Outputs from the module are in text-file with following values; time, mean water depth, water area, added sediment volume since lake isolation, and area and volume of organic material. The model is applied on a large number of objects in both the Forsmark and Oskarshamn sites. Most of the objects exists or are future lakes, but, also some terrestrial objects are processed. For future lakes in Forsmark, the results from the simulations show that the length of the lacustrine phase are 3,000-4,000 years for the small lakes and > 9,000 years for the large and deep lakes situated in the so-called Graesoeraennan. Two of the future lakes in the Simpevarp area will also be long-lived (> 1 ,000 years); both will be formed in the existing Granholmsfjaerden

  16. A model for landscape development in terms of shoreline displacement, sediment dynamics, lake formation, and lake choke-up processes

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden)

    2006-12-15

    process is repeated until the calculated number of pixels is marked. However, vegetation is only permitted to colonize on bottoms shallower than 2 metres. The lake module steps forward until the former lake basin is totally covered with vegetation. Outputs from the module are in text-file with following values; time, mean water depth, water area, added sediment volume since lake isolation, and area and volume of organic material. The model is applied on a large number of objects in both the Forsmark and Oskarshamn sites. Most of the objects exists or are future lakes, but, also some terrestrial objects are processed. For future lakes in Forsmark, the results from the simulations show that the length of the lacustrine phase are 3,000-4,000 years for the small lakes and > 9,000 years for the large and deep lakes situated in the so-called Graesoeraennan. Two of the future lakes in the Simpevarp area will also be long-lived (> 1 ,000 years); both will be formed in the existing Granholmsfjaerden.

  17. Relative Paleointensity of the Geomagnetic Field 12-20 kyr. From Sediment Cores, Lake Moreno (Patagonia, Argentina)

    Science.gov (United States)

    Gogorza, C. S.; Irurzun, M. A.; Chaparro, M. A.; Lirio, J. M.; Nunez, H.; Sinito, A. M.

    2007-05-01

    Four cores labeled Lmor1, Lmor2, Lmor3, Lmor98-1, Lmor98-2 from the bottom sediments of Lake Moreno (south-western Argentina) have been used to estimate regional geomagnetic paleointensity. Lake Moreno is on the east side of the Andean Cordillera Patagónica; it is located in the Llao Llao area, San Carlos de Bariloche, Argentina (41° S, 71° 30'W). The following measurements were performed: Natural Remanent Magnetization (NRM), magnetic susceptibility at low and high frequency (specific, X and volumetric, k), Isothermal Remanent Magnetization (IRM) reaching the Saturation Isothermal Remanent Magnetization (SIRM), Back Field, Anhysteric Remanent Magnetization with a direct field of 0.1mT and an alternating field between 2.5 and 100mT (ARM100mT). Associated parameters were calculated: S-ratio, Remanent Coercitive Field (BCR, anhysteric volumetric susceptibility (kanh), SIRM/k, ARM100mT/k, and SIRM/ ARM100mT. The rock magnetic studies indicate that the magnetic mineralogy of the clay-rich sediments is dominated by pseudo- single domain magnetite in a narrow range of grain size (between 1 and 4μm) and concentration (between 0.05 and 0.1%), thereby meeting established criteria for relative paleointensity studies. The remanent magnetization at 20mT (NRM20mT) has been normalized using the anhysteric remanent magnetization at 20mT (ARM20mT), the saturation of the isothermal remanent magnetization at 20mT (SIRM20mT) and k. A comparison of these results with relative paleointensity records obtained in previous works, Lake Escondido (Gogorza et al., 2004) and Lake El Trébol (Gogorza et al., 2006) allows obtaining detailed information about the disagreement observed in the period 12-20 kyr between both records. References Gogorza, C.S.G., J.M. Lirio, H. Nunez, M.A.E. Chaparro, H.R. Bertorello, A.M. Sinito. Paleointensity studies on Holocene-Pleistocene sediments from Lake Escondido, Argentina, Phys. Earth and Planet. Inter. 145: 219-238, 2004. Gogorza, C.S.G., M.A. Irurzun

  18. Lake Ice Detection in Low-Resolution Optical Satellite Images

    Science.gov (United States)

    Tom, M.; Kälin, U.; Sütterlin, M.; Baltsavias, E.; Schindler, K.

    2018-05-01

    Monitoring and analyzing the (decreasing) trends in lake freezing provides important information for climate research. Multi-temporal satellite images are a natural data source to survey ice on lakes. In this paper, we describe a method for lake ice monitoring, which uses low spatial resolution (250 m-1000 m) satellite images to determine whether a lake is frozen or not. We report results on four selected lakes in Switzerland: Sihl, Sils, Silvaplana and St. Moritz. These lakes have different properties regarding area, altitude, surrounding topography and freezing frequency, describing cases of medium to high difficulty. Digitized Open Street Map (OSM) lake outlines are back-projected on to the image space after generalization. As a pre-processing step, the absolute geolocation error of the lake outlines is corrected by matching the projected outlines to the images. We define the lake ice detection as a two-class (frozen, non-frozen) semantic segmentation problem. Several spectral channels of the multi-spectral satellite data are used, both reflective and emissive (thermal). Only the cloud-free (clean) pixels which lie completely inside the lake are analyzed. The most useful channels to solve the problem are selected with xgboost and visual analysis of histograms of reference data, while the classification is done with non-linear support vector machine (SVM). We show experimentally that this straight-forward approach works well with both MODIS and VIIRS satellite imagery. Moreover, we show that the algorithm produces consistent results when tested on data from multiple winters.

  19. Interaction of hydrological regime and vegetation in a seasonally flooded lake wetland (Poyang Lake) in China

    Science.gov (United States)

    Zhang, Qi

    2017-04-01

    Hydrological regime has been widely recognized as one of the major forces determining vegetation distribution in seasonally flooded wetlands. To explore the influences of hydrological conditions on the spatial distribution of wetland vegetation, an experimental transect in Poyang Lake wetland, the largest freshwater lake in China, was selected as a study area. In-situ high time frequency observations of climate, soil moisture, groundwater level and surface water level were simultaneously conducted. Vegetation was sampled periodically to obtain species composition, diversity and biomass. Results show that significant hydrological gradient exists along the experimental transect. Both groundwater level and soil moisture demonstrate high correlation with the distribution of different communities of vegetation. Above- and belowground biomass present Gaussian models along the gradient of groundwater depth in growing seasons. It was found that the optimal average groundwater depths for above- and belowground biomass are 0.8 m and 0.5 m, respectively. Numerical simulations using HYDRUS-1D further indicated that the groundwater depths had significant influences on the water usage by vegetation, which suggested the high dependence of wetland vegetation on groundwater, even in a wet climate zone such as Poyang Lake. The study revealed new knowledge on the interaction of hydrological regime and wetland vegetation, and provided scientific support for an integrated management of balancing wetland ecology and water resources development in Poyang Lake, and other lake floodplain wetlands, with strong human interferences.

  20. Perfluorinated compounds in fish and blood of anglers at Lake Möhne, Sauerland area, Germany.

    Science.gov (United States)

    Hölzer, Jürgen; Göen, Thomas; Just, Paul; Reupert, Rolf; Rauchfuss, Knut; Kraft, Martin; Müller, Johannes; Wilhelm, Michael

    2011-10-01

    Perfluorinated compounds (PFCs) were measured in fish samples and blood plasma of anglers in a cross-sectional study at Lake Möhne, Sauerland area, Germany. Human plasma and drinking water samples were analyzed by solid phase extraction, high-performance liquid chromatography (HPLC), and tandem mass spectrometry (MS/MS). PFCs in fish fillet were measured by ion pair extraction followed by HPLC and MS/MS. PFOS concentrations in 44 fish samples of Lake Möhne ranged between 4.5 and 150 ng/g. The highest median PFOS concentrations have been observed in perches (median: 96 ng/g) and eels (77 ng/g), followed by pikes (37 ng/g), whitefish (34 ng/g), and roaches (6.1 ng/g). In contrast, in a food surveillance program only 11% of fishes at retail sale contained PFOS at detectable concentrations. One hundred five anglers (99 men, 6 women; 14-88 years old; median 50.6 years) participated in the human biomonitoring study. PFOS concentrations in blood plasma ranged from 1.1 to 650 μg/L (PFOA: 2.1-170 μg/L; PFHxS: 0.4-17 μg/L; LOD: 0.1 μg/L). A distinct dose-dependent relationship between fish consumption and internal exposure to PFOS was observed. PFOS concentrations in blood plasma of anglers consuming fish 2-3 times per month were 7 times higher compared to those without any fish consumption from Lake Möhne. The study results strongly suggest that human internal exposure to PFC is distinctly increased by consumption of fish from PFC-contaminated sites.

  1. Influence of lake surface area and total phosphorus on annual bluegill growth in small impoundments of central Georgia

    Science.gov (United States)

    Jennings, Cecil A.; Sundmark, Aaron P.

    2017-01-01

    The relationships between environmental variables and the growth rates of fishes are important and rapidly expanding topics in fisheries ecology. We used an informationtheoretic approach to evaluate the influence of lake surface area and total phosphorus on the age-specific growth rates of Lepomis macrochirus (Bluegill) in 6 small impoundments in central Georgia. We used model averaging to create composite models and determine the relative importance of the variables within each model. Results indicated that surface area was the most important factor in the models predicting growth of Bluegills aged 1–4 years; total phosphorus was also an important predictor for the same age-classes. These results suggest that managers can use water quality and lake morphometry variables to create predictive models specific to their waterbody or region to help develop lake-specific management plans that select for and optimize local-level habitat factors for enhancing Bluegill growth.

  2. Probing Small Lakes on Titan Using the Cassini RADAR Altimeter

    Science.gov (United States)

    Mastrogiuseppe, M.; Poggiali, V.; Hayes, A.; Lunine, J. I.; Seu, R.; Lorenz, R. D.; Mitri, G.; Mitchell, K. L.; Janssen, M. A.; Casarano, D.; Notarnicola, C.; Le Gall, A. A.

    2017-12-01

    The T126 Cassini's final flyby of Titan has offered a unique opportunity to observe an area in the Northern Polar terrain, where several small - medium size (10 - 50 km) hydrocarbon lakes are present and have been previously imaged by Cassini. The successful observation allowed the radar to operate at the closest approach over several small lakes, using its altimetry mode for the investigation of depth and liquid composition. Herein we present the result of a dedicate processing previously applied to altimetric data acquired over Ligeia Mare where the radar revealed the bathymetry and composition of the sea [1,2]. We show that, the optimal geometry condition met during the T126 fly-by allowed the radar to probe Titan's lakes revealing that such small liquid bodies can exceed one-hundred meters of depth. [1] M. Mastrogiuseppe et al. (2014, Mar.). The bathymetry of a Titan Sea. Geophysical Research Letters. [Online]. 41 (5), pp. 1432-1437. Available: http://dx.doi.org/10.1002/2013GL058618 [2] M.Mastrogiuseppe et al. (2016, Oct). Radar Sounding Using the Cassini Altimeter: Waveform Modeling and Monte Carlo Approach for Data Inversion of Observations of Titan's Seas, IEEE Transactions On Geoscience And Remote Sensing, Vol. 54, No. 10, doi: 10.1109/TGRS.2016.2563426.

  3. Climatic data for the Cottonwood Lake area, Stutsman County, North Dakota 1982

    Science.gov (United States)

    Sturrock, A.M.; Hanson, B.A.; Scarborough, J.L.; Winter, T.C.

    1986-01-01

    Research on the hydrology of the Cottonwood Lake area, Stutsman County, North Dakota, includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer evaporation studies, including: water-surface temperature, sediment temperature dry-bulb and wet-bulb air temperatures, vapor pressure at and above the water surface, wind speed, and short- and long-wave radiation. Data were collected at raft and land stations.

  4. Climatic data for the Cottonwood Lake area, Stutsman County, North Dakota, 1983

    Science.gov (United States)

    Sturrock, A.M.; Hanson, B.A.; Scarborough, J.L.; Winter, T.C.

    1987-01-01

    Research on the hydrology of the Cottonwood Lake area, Stutsman County, North Dakota, includes study of evaporation. Climatic data needed for energy-budget and mass-transfer evaporation studies that were collected during 1983 include water-surface temperature, sediment temperature, dry-bulb and wet-bulb air temperature, vapor pressure at and above the water surface, wind speed, and short-and long-wave radiation. Data are collected at raft and land stations. (USGS)

  5. The 2014 Lake Askja rockslide tsunami - optimization of landslide parameters comparing numerical simulations with observed run-up

    Science.gov (United States)

    Sif Gylfadóttir, Sigríður; Kim, Jihwan; Kristinn Helgason, Jón; Brynjólfsson, Sveinn; Höskuldsson, Ármann; Jóhannesson, Tómas; Bonnevie Harbitz, Carl; Løvholt, Finn

    2016-04-01

    The Askja central volcano is located in the Northern Volcanic Zone of Iceland. Within the main caldera an inner caldera was formed in an eruption in 1875 and over the next 40 years it gradually subsided and filled up with water, forming Lake Askja. A large rockslide was released from the Southeast margin of the inner caldera into Lake Askja on 21 July 2014. The release zone was located from 150 m to 350 m above the water level and measured 800 m across. The volume of the rockslide is estimated to have been 15-30 million m3, of which 10.5 million m3 was deposited in the lake, raising the water level by almost a meter. The rockslide caused a large tsunami that traveled across the lake, and inundated the shores around the entire lake after 1-2 minutes. The vertical run-up varied typically between 10-40 m, but in some locations close to the impact area it ranged up to 70 m. Lake Askja is a popular destination visited by tens of thousands of tourists every year but as luck would have it, the event occurred near midnight when no one was in the area. Field surveys conducted in the months following the event resulted in an extensive dataset. The dataset contains e.g. maximum inundation, high-resolution digital elevation model of the entire inner caldera, as well as a high resolution bathymetry of the lake displaying the landslide deposits. Using these data, a numerical model of the Lake Askja landslide and tsunami was developed using GeoClaw, a software package for numerical analysis of geophysical flow problems. Both the shallow water version and an extension of GeoClaw that includes dispersion, was employed to simulate the wave generation, propagation, and run-up due to the rockslide plunging into the lake. The rockslide was modeled as a block that was allowed to stretch during run-out after entering the lake. An optimization approach was adopted to constrain the landslide parameters through inverse modeling by comparing the calculated inundation with the observed run

  6. Lake fish as the main contributor of internal dose to lakeshore residents in the Chernobyl contaminated area

    International Nuclear Information System (INIS)

    Travnikova, I.G.; Bazjukin, A.N.; Bruk, G.Ja.; Shutov, V.N.; Balonov, M.I.; Skuterud, L.; Mehli, H.; Strand, P.

    2004-01-01

    Two field expeditions in 1996 studied 137 Cs intake patterns and its content in the bodies of adult residents from the village Kozhany in the Bryansk region, Russia, located on the shore of a drainless peat lake in an area subjected to significant radioactive contamination after the 1986 Chernobyl accident. The 137 Cs contents in lake water and fish were two orders of magnitude greater than in local rivers and flow-through lakes, 10 years after Chernobyl radioactive contamination, and remain stable. The 137 Cs content in lake fish and a mixture of forest mushrooms was between approximately 10-20 kBq/kg, which exceeded the temporary Russian permissible levels for these products by a factor of 20-40. Consumption of lake fish gave the main contribution to internal doses (40-50%) for Kozhany village inhabitants Simple countermeasures, such as Prussian blue doses for dairy cows and pre-boiling mushrooms and fish before cooking, halved the 137 Cs internal dose to inhabitants, even 10 years after the radioactive fallout

  7. Lake Nasser evaporation reduction study

    Directory of Open Access Journals (Sweden)

    Hala M.I. Ebaid

    2010-10-01

    Full Text Available This study aims to evaluate the reduction of evaporation of Lake Nasser’s water caused by disconnecting (fully or partially some of its secondary channels (khors. This evaluation integrates remote sensing, Geographic Information System (GIS techniques, aerodynamic principles, and Landsat7 ETM+ images. Three main procedures were carried out in this study; the first derived the surface temperature from Landsat thermal band; the second derived evaporation depth and approximate evaporation volume for the entire lake, and quantified evaporation loss to the secondary channels’ level over one month (March by applied aerodynamic principles on surface temperature of the raster data; the third procedure applied GIS suitability analysis to determine which of these secondary channels (khors should be disconnected. The results showed evaporation depth ranging from 2.73 mm/day at the middle of the lake to 9.58 mm/day at the edge. The evaporated water-loss value throughout the entire lake was about 0.86 billion m3/month (March. The analysis suggests that it is possible to save an approximate total evaporation volume loss of 19.7 million m3/month (March, and thus 2.4 billion m3/year, by disconnecting two khors with approximate construction heights of 8 m and 15 m. In conclusion, remote sensing and GIS are useful for applications in remote locations where field-based information is not readily available and thus recommended for decision makers remotely planning in water conservation and management.

  8. A new method to generate a high-resolution global distribution map of lake chlorophyll

    Science.gov (United States)

    Sayers, Michael J; Grimm, Amanda G.; Shuchman, Robert A.; Deines, Andrew M.; Bunnell, David B.; Raymer, Zachary B; Rogers, Mark W.; Woelmer, Whitney; Bennion, David; Brooks, Colin N.; Whitley, Matthew A.; Warner, David M.; Mychek-Londer, Justin G.

    2015-01-01

    A new method was developed, evaluated, and applied to generate a global dataset of growing-season chlorophyll-a (chl) concentrations in 2011 for freshwater lakes. Chl observations from freshwater lakes are valuable for estimating lake productivity as well as assessing the role that these lakes play in carbon budgets. The standard 4 km NASA OceanColor L3 chlorophyll concentration products generated from MODIS and MERIS sensor data are not sufficiently representative of global chl values because these can only resolve larger lakes, which generally have lower chl concentrations than lakes of smaller surface area. Our new methodology utilizes the 300 m-resolution MERIS full-resolution full-swath (FRS) global dataset as input and does not rely on the land mask used to generate standard NASA products, which masks many lakes that are otherwise resolvable in MERIS imagery. The new method produced chl concentration values for 78,938 and 1,074 lakes in the northern and southern hemispheres, respectively. The mean chl for lakes visible in the MERIS composite was 19.2 ± 19.2, the median was 13.3, and the interquartile range was 3.90–28.6 mg m−3. The accuracy of the MERIS-derived values was assessed by comparison with temporally near-coincident and globally distributed in situmeasurements from the literature (n = 185, RMSE = 9.39, R2 = 0.72). This represents the first global-scale dataset of satellite-derived chl estimates for medium to large lakes.

  9. Bathymetric Contour Maps of Lakes Surveyed in Iowa in 2005

    Science.gov (United States)

    Linhart, S.M.; Lund, K.D.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, conducted bathymetric surveys on seven lakes in Iowa during 2005 (Arrowhead Pond, Central Park Lake, Lake Keomah, Manteno Park Pond, Lake Miami, Springbrook Lake, and Yellow Smoke Lake). The surveys were conducted to provide the Iowa Department of Natural Resources with information for the development of total maximum daily load limits, particularly for estimating sediment load and deposition rates. The bathymetric surveys provide a baseline for future work on sediment loads and deposition rates for these lakes. All of the lakes surveyed in 2005 are man-made lakes with fixed spillways. Bathymetric data were collected using boat-mounted, differential global positioning system, echo depth-sounding equipment, and computer software. Data were processed with commercial hydrographic software and exported into a geographic information system for mapping and calculating area and volume. Lake volume estimates ranged from 47,784,000 cubic feet (1,100 acre-feet) at Lake Miami to 2,595,000 cubic feet (60 acre-feet) at Manteno Park Pond. Surface area estimates ranged from 5,454,000 square feet (125 acres) at Lake Miami to 558,000 square feet (13 acres) at Springbrook Lake.

  10. Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia

    Directory of Open Access Journals (Sweden)

    C. Narama

    2018-04-01

    Full Text Available Four large drainages from glacial lakes occurred during 2006–2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock as well as destroying property and crops. Using satellite data analysis and field surveys of this area, we find that the water volume that drained at Kashkasuu glacial lake in 2006 was 194 000  m3, at western Zyndan lake in 2008 was 437 000 m3, at Jeruy lake in 2013 was 182 000 m3, and at Karateke lake in 2014 was 123 000 m3. Due to their subsurface outlet, we refer to these short-lived glacial lakes as the tunnel-type, a type that drastically grows and drains over a few months. From spring to early summer, these lakes either appear, or in some cases, significantly expand from an existing lake (but non-stationary, and then drain during summer. Our field surveys show that the short-lived lakes form when an ice tunnel through a debris landform gets blocked. The blocking is caused either by the freezing of stored water inside the tunnel during winter or by the collapse of ice and debris around the ice tunnel. The draining then occurs through an opened ice tunnel during summer. The growth–drain cycle can repeat when the ice-tunnel closure behaves like that of typical supraglacial lakes on debris-covered glaciers. We argue here that the geomorphological characteristics under which such short-lived glacial lakes appear are (i a debris landform containing ice (ice-cored moraine complex, (ii a depression with water supply on a debris landform as a potential lake basin, and (iii no visible surface outflow channel from the depression, indicating the existence of an ice tunnel. Applying these characteristics, we examine 60 depressions (> 0.01 km2 in the study region and identify here 53 of them that may become short-lived glacial lakes, with 34 of these having a potential drainage exceeding 10 m3 s−1 at peak discharge.

  11. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication--A Case Study in the Taihu Lake Basin (China).

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; He, Bin

    2015-12-24

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil erosion intensity was designated as a watershed indicator, and the lake algae area was designated as a lake quality indicator. The sensitive watershed region was identified based on the relationship between these two indicators among different lake divisions for a temporal sequence from 2000 to 2012. The results show that the relationship between soil erosion modulus and lake quality varied among different lake areas. Soil erosion from the two bay areas was more closely correlated with water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to 10 km from the lake, where the r² was as high as 0.764. Results indicate that soil erosion could be used as an indicator for identifying key watershed protection areas. Different lake areas need to be considered separately due to differences in geographical features, land use, and the corresponding effects on lake water quality.

  12. Thermal Regime of A Deep Temperate Lake and Its Response to Climate Change: Lake Kuttara, Japan

    Directory of Open Access Journals (Sweden)

    Kazuhisa A. Chikita

    2018-02-01

    Full Text Available A deep temperate lake, Lake Kuttara, Hokkaido, Japan (148 m deep at maximum was completely ice-covered every winter in the 20th century. However, ice-free conditions of the lake over winter occurred three times in the 21st century, which is probably due to global warming. In order to understand how thermal regime of the lake responds to climate change, a change in lake mean water temperature from the heat storage change was calculated by integrating observed water temperature over water depths and by numerical calculation of heat budget components based on hydrometeorological data. As a result, a temporal variation of lake mean water temperature from the heat budget calculation was very reasonable to that from the observed water temperature (determination coefficient R2 = 0.969. The lowest lake mean temperature for non-freeze was then evaluated at −1.87 °C, referring to the zero level at 6.80 °C. The 1978–2017 data at a meteorological station near Kuttara indicated that there are significant (less than 5% level long-term trends for air temperature (+0.024 °C/year and wind speed (−0.010 m/s/year. In order to evaluate the effects of climate change on freeze-up patterns, a sensitivity analysis was carried out for the calculated lake mean water temperature. It is noted that, after two decades, the lake could be ice-free once per every two years.

  13. Drastic lake level changes of Lake Van (eastern Turkey) during the past ca. 600 ka: climatic, volcanic and tectonic control

    Science.gov (United States)

    Cukur, D.; Krastel, S.; Schmincke, H.; Sumita, M.; Tomonaga, Y.; Damci, E.

    2013-12-01

    Lake Van is the largest soda lake in the world with a present surface of 3,574 km2 and a maximum water depth of 450 m. Sedimentary deposits in the lake preserve one of the most complete record of continental climate in the Middle East since the Middle Pleistocene. We studied these deposits to characterize the evolution of the lake level and its possible relationships with changes in climate, volcanic, and regional tectonics since the formation of the lake ca. 600 ka ago. Changes in lake level were determined based on high-resolution seismic reflection profiles showing erosional surfaces, changes in stratal geometries such as downward shifts in coastal onlap, and recognition of distinctive stratigraphic features such as prograding delta clinoforms. Our results show that Lake Van has undergone drastic changes in surface elevation by as much as 600 meters over the past ca. 600 ka. Five major lowstands occurred at ca. ~600 ka, ca. 365-340 ka, ca 290-230 ka; ca. 150-130 ka; and ca. 30-14 ka. During a first period (A) (ca. 600-ca 230 ka) lake levels changed drastically by hundreds of m but at longer time intervals between low and high stands. Changes occurred more frequently but mostly by a few tens of m during the past ca. 230 ka years where we can distinguish a first period (B1) of stepwise transgressions between ca. 230 and 150 ka followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise again during period B2 lasting until ca 30 ka. During the past 30 ka a regression and a final transgression each lasted ca. 15 ka years. The major lowstand periods in Lake Van occurred during glacial periods, arguing for a climatic control of these lake-level fluctuations (i.e., significantly reduced precipitation leading to lake level low stands). Although climate forcing may have been the dominant cause for the drastic lake level changes of Lake Van, volcanic and tectonic forcing factors are also invoked. For example, the number of distinct tephra layers

  14. Lake Chad, Chad, Africa

    Science.gov (United States)

    1992-01-01

    Hydrologic and ecologic changes in the Lake Chad Basin are shown in this Oct 1992 photograph. In space photo documentation, Lake Chad was at its greatest area extent (25,000 sq. km.) during Gemini 9 in June 1966 (see S66-38444). Its reduction during the severe droughts from 1968 to 1974 was first noted during Skylab (1973-1974). After the drought began again in 1982, the lake reached its minimum extent (1,450 sq. km.) in Space Shuttle photographs taken in 1984 and 1985. In this STS-52 photograph, Lake Chad has begun to recover. The area of the open water and interdunal impoundments in the southern basin (the Chari River Basin) is estimated to be 1,900 to 2100 sq. km. Note the green vegetation in the valley of the K'Yobe flow has wetted the northern lake basin for the first time in several years. There is evidence of biomass burning south of the K'Yobe Delta and in the vegetated interdunal areas near the dike in the center of the lake. Also note the dark 'Green Line' of the Sahel (the g

  15. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes?

    Science.gov (United States)

    Lin, Peng; Guo, Laodong

    2016-12-01

    The Laurentian Great Lakes have experienced unprecedented ecological and environmental changes, especially after the introduction of invasive quagga mussel (Dreissena rostriformis bugensis). While impacts on ecological functions have been widely recognized, the response of carbon dynamics to invasive species remains largely unknown. We report new CO2 data showing significant increases in pCO2 (up to 800 μatm in Lake Michigan) and CO2 emission fluxes in most of the Great Lakes compared to those prior to or during the early stage of the colonization of invasive quagga mussels. The increased CO2 supersaturation is most prominent in Lakes Huron and Michigan, followed by Lakes Ontario and Erie, but no evident change was observed in Lake Superior. This trend mirrors the infestation extent of invasive quagga mussels in the Great Lakes and is consistent with the decline in primary production and increase in water clarity observed pre- and post-Dreissena introduction, revealing a close linkage between invasive species and carbon dynamics. The Great Lakes have become a significant CO2 source to the atmosphere, emitting >7.7 ± 1.0 Tg-C annually, which is higher than the organic carbon burial rate in global inland-seas and attesting to the significant role of the Laurentian Great Lakes in regional/global CO2 budget and cycling.

  16. Secondary Pollutants in the Lake Tahoe Basin, USA

    Science.gov (United States)

    Zielinska, B.; Bytnerowicz, A.; Gertler, A.; McDaniel, M.; Burley, J. D.

    2013-12-01

    Lake Tahoe, located at 6,225 ft. (1,897 m) in the Sierra Nevada mountain range, is the largest alpine lake in North America. Known for the clarity of its water and the panorama of surrounding mountains on all sides, Lake Tahoe is a prime tourist attraction in the California - Nevada area. However, the Lake Tahoe Basin is facing significant problems in air quality and declining water clarity. In July 21 - 26, 2012, we conducted a field study in the Basin designed to characterize the precursors and pathways of secondary pollutant formation, including ozone, secondary organic aerosol (SOA) and ammonium nitrate. Four strategic sampling sites were selected inside the Basin; two of these sites were located at high elevation (one each on the western and eastern sides of the Basin) and two were positioned near the Lake level. Ozone and NO/NO2 concentrations were continuously measured. With a resolution of several hours over a 6-day sampling period we collected canister samples for detailed speciation of volatile organic compounds (VOC), 2,4-dinitrophenylhydrazine (DNPH) impregnated Sep-Pak cartridges for analysis of carbonyl compounds and honeycomb denuder/filter pack samples for measurement of concentrations of ammonia, nitrous acid, nitric acid, and fine particulate ammonium nitrate. We also collected PM2.5 Teflon and quartz filter samples for measurements of mass, organic and elemental carbon (OC/EC) concentrations and speciation of organic compounds. Whereas the concentrations of lower molecular weight (mw) C2 - C3 hydrocarbons were generally the highest in all sampling sites, ranging from 25 to 76% of the total measured VOC (over 70 species from C2 to C10), the concentrations of biogenic hydrocarbons, isoprene and α-pinene were significant, ranging from 1.4 to 26% and 1.5 to 30%, respectively, of the total VOC, depending on the site and sampling period. For comparison, the sum of benzene, toluene, ethylbenzene and xylenes (BTEX) constituted from 2.5 to 37% of the

  17. Anaerobic Psychrophiles from Lake Zub and Lake Untersee, Antarctica

    Science.gov (United States)

    Townsend, Alisa; Pikuta, Elena V.; Guisler, Melissa; Stahl, Sarah; Hoover, Richard B.

    2009-01-01

    The study of samples from Antarctica 2008 and 2009 expeditions organized and successfully conducted by Richard Hoover led to the isolation of diverse anaerobic strains with psychrotolerant and psychrophilic physiology. Due to the fact that Lake Untersee has never been subject to microbiological study, this work with the samples has significant and pioneering impact to the knowledge about the biology of this unique ecosystem. Also, the astrobiological significance for the study of these ecosystems is based on new findings of ice covered water systems on other bodies of our solar system. Anaerobic psychrotolerant strain LZ-22 was isolated from a frozen sample of green moss with soils around the rhizosphere collected near Lake Zub in Antarctica. Morphology of strain LZ-22 was observed to be motile, rod shaped and spore-forming cells with sizes 1 x 5-10 micron. This new isolate is a mesophile with the maximum temperature of growth at 40C. Strain LZ-22 is able to live on media without NaCl and in media with up to 7% (w/v) NaCl. It is catalase negative and grows only on sugars with the best growth rate being on lactose. The strain is a neutrophile and grows between pH 5 and 9.0 with the optimum at 7.8. Another two strains UL7-96mG and LU-96m7P were isolated from deep water samples of Lake Untersee. Proteolytic strain LU-96m7P had a truly psychrophilic nature and refused to grow at room temperature. Sugarlytic strain UL7-96mG was found to be psychrotolerant, but its rate of growth at 3C was very high compared with other mesophiles. Two homoacetogenic psychrophilic strains A7AC-96m and AC-DS7 were isolated and purified from samples of Lake Untersee; both of them are able to grow chemolithotrophically on H2+CO2. In the presence of lactate, these strains are able to grow only at 0-18C, and growth at 22C was observed only with yeast extract stimulation. In this paper, physiological and morphological characteristics of novel psychrophilic and psychrotolerant isolates from

  18. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes

    Science.gov (United States)

    Winslow, Luke A.; Read, Jordan S.; Hanson, Paul C.; Stanley, Emily H.

    2014-01-01

    With lake abundances in the thousands to millions, creating an intuitive understanding of the distribution of morphology and processes in lakes is challenging. To improve researchers’ understanding of large-scale lake processes, we developed a parsimonious mathematical model based on the Pareto distribution to describe the distribution of lake morphology (area, perimeter and volume). While debate continues over which mathematical representation best fits any one distribution of lake morphometric characteristics, we recognize the need for a simple, flexible model to advance understanding of how the interaction between morphometry and function dictates scaling across large populations of lakes. These models make clear the relative contribution of lakes to the total amount of lake surface area, volume, and perimeter. They also highlight the critical thresholds at which total perimeter, area and volume would be evenly distributed across lake size-classes have Pareto slopes of 0.63, 1 and 1.12, respectively. These models of morphology can be used in combination with models of process to create overarching “lake population” level models of process. To illustrate this potential, we combine the model of surface area distribution with a model of carbon mass accumulation rate. We found that even if smaller lakes contribute relatively less to total surface area than larger lakes, the increasing carbon accumulation rate with decreasing lake size is strong enough to bias the distribution of carbon mass accumulation towards smaller lakes. This analytical framework provides a relatively simple approach to upscaling morphology and process that is easily generalizable to other ecosystem processes.

  19. Assessment of lake hydromorphological status within the French territory

    Science.gov (United States)

    Gay, Aurore; Argillier, Christine; Reynaud, Nathalie; Nicolas, Delphine; Baudoin, Jean-Marc

    2017-04-01

    In France, in accordance with the expectations of the European Water Framework Directive, the biological and physico-chemical status of lakes have been assessed thanks to the use of different indicators and threshold values (Argillier et al., 2013; Roubeix et al., 2016). However, the hydromorphological conditions have not been included in the final evaluation of the lakes ecological status yet, due to i) a lack of indicators to evaluate these conditions, ii) a lack of knowledge on the combined impact of hydromorphological changes on the biota, and iii) the difficulties in defining reference conditions for the hydromorphology of lakes. Recently, the LAKe HYdromorphological Conditions tool (LAKHYC tool, Gay et al., in prep) has been developed to overcome this lack and assess the hydromorphological conditions of lakes in Europe. The tool is successfully applied on the 201 French lakes for which accurate data are available, and which represents 42% of the total number of lakes in France with an area greater than 50ha. The first results indicate that the obtained LAKHYC values cover the entire range of possible values (between 0 and 1). The values are then grouped into 5 classes according to quintile thresholds to highlight lakes presenting a very bad/very high hydromorphological status. No sign of particular geographical distribution patterns is found. This first application of the LAKHYC tool represents an important step in the final evaluation of the ecological status of French lakes considering the biological, the physico-chemical and the hydromorphological compartments altogether. It will certainly help stakeholders to define priority lakes for financial support to implement conservation or restoration practices. As perspectives to this work, the forthcoming detailed level fluctuations data will ensure a finer and more robust estimation of the lakes hydromorphological quality. Moreover, further investigations on the link between hydromorphological degradation and

  20. Organic contamination in tree swallow (Tachycineta bicolor) nestlings at United States and binational great Lakes Areas of Concern

    Science.gov (United States)

    Custer, Thomas W.; Custer, Christine M.; Dummer, Paul; Goldberg, Diana R.; Franson, J. Christian; Erickson, Richard A.

    2017-01-01

    Contaminant exposure of tree swallows, Tachycineta bicolor, nesting in 27 Areas of Concern (AOCs) in the Great Lakes basin was assessed from 2010 to 2014 to assist managers and regulators in their assessments of Great Lakes AOCs. Contaminant concentrations in nestlings from AOCs were compared with those in nestlings from nearby non-AOC sites. Polychlorinated biphenyl (PCB) and polybrominated diphenyl ether concentrations in tree swallow nestling carcasses at 30% and 33% of AOCs, respectively, were below the mean concentration for non-AOCs. Polycyclic aromatic hydrocarbon (PAH) concentrations in nestling stomach contents and perfluorinated compound concentrations in nestling plasma at 67% and 64% of AOCs, respectively, were below the mean concentration for non-AOCs. Concentrations of PCBs in nestling carcasses were elevated at some AOCs but modest compared with highly PCB-contaminated sites where reproductive effects have been documented. Concentrations of PAHs in diet were sufficiently elevated at some AOCs to elicit a measurable physiological response. Among AOCs, concentrations of the perfluorinated compound perfluorooctane sulfonate in plasma were the highest on the River Raisin (MI, USA; geometric mean 330 ng/mL) but well below an estimated toxicity reference value (1700 ng/mL). Both PAH and PCB concentrations in nestling stomach contents and PCBs in carcasses were significantly correlated with concentrations in sediment previously reported, thereby reinforcing the utility of tree swallows to assess bioavailability of sediment contamination.

  1. Spatial trends, sources, and air-water exchange of organochlorine pesticides in the Great Lakes basin using low density polyethylene passive samplers.

    Science.gov (United States)

    Khairy, Mohammed; Muir, Derek; Teixeira, Camilla; Lohmann, Rainer

    2014-08-19

    Polyethylene passive samplers were deployed during summer and fall of 2011 in the lower Great Lakes to assess the spatial distribution and sources of gaseous and freely dissolved organochlorine pesticides (OCPs) and their air-water exchange. Average gaseous OCP concentrations ranged from nondetect to 133 pg/m(3). Gaseous concentrations of hexachlorobenzene, dieldrin, and chlordanes were significantly greater (Mann-Whitney test, p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression implied that both cropland and urban areas within 50 and 10 km buffer zones, respectively, were critical parameters to explain the total variability in atmospheric concentrations. Freely dissolved OCP concentrations (nondetect to 114 pg/L) were lower than previously reported. Aqueous half-lives generally ranged from 1.7 to 6.7 years. Nonetheless, concentrations of p,p'-DDE and chlordanes were higher than New York State Ambient Water Quality Standards for the protection of human health from the consumption of fish. Spatial distributions of freely dissolved OCPs in both lakes were influenced by loadings from areas of concern and the water circulation patterns. Flux calculations indicated net deposition of γ-hexachlorocyclohexane, heptachlor-epoxide, and α- and β-endosulfan (-0.02 to -33 ng/m(2)/day) and net volatilization of heptachlor, aldrin, trans-chlordane, and trans-nonachlor (0.0 to 9.0 ng/m(2)/day) in most samples.

  2. Salt Lake City Area Integrated Projects: Rate adjustment: Environmental assessment

    International Nuclear Information System (INIS)

    1990-08-01

    The Department of Energy (DOE) has determined that the proposed firm power rate increase for the Salt Lake City Area Integrated Projects (Integrated Projects) power would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA, 42 USC 4321, et seq.) and, as such, does not require the preparation of an environmental impact statement (EIS). This determination is based on an environmental assessment (EA) prepared by the Western Area Power Administration (Western) dated August 1990 (DOE/EA-0457). The EA identifies and evaluates the potential environmental and socioeconomic effects of the proposed action, and based on the analysis contained therein, DOE concludes that the impacts to the human environment resulting from the implementation of the rate increase would be insignificant

  3. A 31,000 year record of paleoenvironmental and lake-level change from Harding Lake, Alaska, USA

    Science.gov (United States)

    Finkenbinder, Matthew S.; Abbott, Mark B.; Edwards, Mary E.; Langdon, Catherine T.; Steinman, Byron A.; Finney, Bruce P.

    2014-03-01

    Physical and geochemical proxy analyses of sediment cores from Harding Lake in central Alaska are used to reconstruct paleoenvironmental change and millennial scale fluctuations in lake level for the last ˜31,000 years. We analyzed a composite 422 cm core from the lake depocenter (42.1 m water depth) and identified 4 distinct lithologic units based on variability in dry bulk density, organic matter, biogenic silica, carbon to nitrogen mass ratios (C/N), organic matter carbon isotopes (δ13C), pollen, and elemental abundances via scanning X-ray fluorescence, with age control provided by 16 Accelerator Mass Spectrometry radiocarbon dates and 210Pb dating. In addition, we analyzed a transect of cores from 7.1 m, 10.75 m, 15.91 m, and 38.05 m water depths to identify lake level fluctuations and to characterize sediment compositional changes as a function of water depth. Organic matter content and magnetic susceptibility values in surface sediments from all transect cores show a strong correlation with water depth. Interpretation of four lithologic units with well-dated contacts produced a record of water-depth variations that is consistent with independent climate records from eastern Beringia. Basal coarse-grained sediments (quartz pebble diamicton) were deposited prior to 30,700 calendar years before present (yr BP), possibly from fluvial reworking or deflation during a period of severe aridity. Unit 1 sediments were deposited between 30,700 and 15,700 yr BP and are characterized by a low organic matter content, a high magnetic susceptibility, and low biogenic silica concentrations resulting from very low lake levels, low terrestrial and in-lake productivity and a high flux of clastic sediment. An abrupt increase in organic matter and biogenic silica concentration marks the transition into Unit 2 sediments, which were deposited between 15,700 and 9,400 yr BP when lake levels were higher and variable (relative to Unit 1). The transition to full interglacial

  4. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Cuicui Mu

    2016-01-01

    Full Text Available Thermokarst lakes are widely distributed on the Qinghai-Tibetan Plateau (QTP, which accounts for 8% of the global permafrost area. These lakes probably promote organic matter biodegradation and thus accelerate the emission of carbon-based greenhouse gases. However, little is known about greenhouse gas concentrations and their stable isotopes characteristics of these lakes. In this study, we measured the concentrations of dissolved organic carbon (DOC, dissolved CO2 and CH4, as well as the distribution of δ13CCO2, δ13CCH4, and δ13COM (organic matter of lake sediments in thermokarst lakes on the QTP. Results showed that the OM of the lake sediments was highly decomposed. The concentrations of DOC, CO2 and CH4 in the lake water on the QTP were 1.2–49.6 mg L–1, 3.6–45.0 μmol L–1 and 0.28–3.0 μmol L–1, respectively. The highest CO2 and CH4 concentrations were recorded in July while the lowest values in September, which suggested that temperature had an effect on greenhouse gas production, although this pattern may also relate to thermal stratification of the water column. The results implied that thermokast lakes should be paid more attention to regarding carbon cycle and greenhouse gas emissions on the QTP.

  5. The radiological hazards of some radionuclides in Mariout and Brullus Lakes, Egypt

    International Nuclear Information System (INIS)

    Dar, M.A.; El Saharty, A.A.

    2012-01-01

    Mariout and Brullus were considered two of the highly fish productive lakes in Egypt as well as they widely used to drain huge quantities of industrial wastewater, sewage and agriculture drainage. Thousands of peoples inhabited the areas around the lakes and depend on them completely in their lives. The activities of 238 U, 232 Th and 40 K were measured in the upper most part of the surface sediments of the two lakes using gamma ray spectrophotometery. Brullus Lake recorded significantly higher 238 U and 232 Th and lower 40 K (17.22±2.49 Bq/kg, 10.0 ±56 Bq/kg and 299.7±17.78 Bq/kg) than Mariout Lake (12.65±1.53 Bq/kg, 7.24±0.76 Bq/kg and 518.75±46.24 Bq/kg respectively). Inversely, the mean average of absorbed dose rate (D), annual effective dose rate (mSvy -1 ), radium equivalent (Ra eq ), external hazard index (H ex ) and the representative level index (Iγr) were; 32.01 nGy/h, 0.04 mSv/y, 62.95 Bq/kg, 0.17 and 0.50 at Mariout Lake higher than those in Brullus lake (26.42 nGy/h, 0.03 mSv/y, 54.25 Bq/kg, 0.15 and 0.41) respectively. The recorded and calculated values were lower than the acceptable limits published in the different localities around the world. The activity distributions of the radiological hazards show the highest intensities in the western part of Mariout Lake and decreasing gradually eastward and north eastward affecting by the drainage agriculture water from Kabary Drain, Umum Drain, S.W. Basin and Nubaria Canal. At Brullus Lake, the radiological hazard intensities were concentrated in the west and southwest influenced by Zaglul Drain, Rosetta Drain, Brembal canal, Drain 11, Drain 9, Drain 8 and partially by Drain 1 while the lowest intensities were in the north and northeast affecting by the interaction with the Mediterranean Sea. K-40 recorded positive correlations and significant linear regression relationships with radiological hazard parameters at Mariout Like meaning that 40 K is the main gamma emitter in the lake, while the

  6. Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities

    Science.gov (United States)

    Sahoo, G. B; Forrest, A. L; Schladow, S. G ;; Reuter, J. E; Coats, R.; Dettinger, Michael

    2016-01-01

    Using water column temperature records collected since 1968, we analyzed the impacts of climate change on thermal properties, stability intensity, length of stratification, and deep mixing dynamics of Lake Tahoe using a modified stability index (SI). This new SI is easier to produce and is a more informative measure of deep lake stability than commonly used stability indices. The annual average SI increased at 16.62 kg/m2/decade although the summer (May–October) average SI increased at a higher rate (25.42 kg/m2/decade) during the period 1968–2014. This resulted in the lengthening of the stratification season by approximately 24 d. We simulated the lake thermal structure over a future 100 yr period using a lake hydrodynamic model driven by statistically downscaled outputs of the Geophysical Fluid Dynamics Laboratory Model (GFDL) for two different green house gas emission scenarios (the A2 in which greenhouse-gas emissions increase rapidly throughout the 21st Century, and the B1 in which emissions slow and then level off by the late 21st Century). The results suggest a continuation and intensification of the already observed trends. The length of stratification duration and the annual average lake stability are projected to increase by 38 d and 12 d and 30.25 kg/m2/decade and 8.66 kg/m2/decade, respectively for GFDLA2 and GFDLB1, respectively during 2014–2098. The consequences of this change bear the hallmarks of climate change induced lake warming and possible exacerbation of existing water quality, quantity and ecosystem changes. The developed methodology could be extended and applied to other lakes as a tool to predict changes in stratification and mixing dynamics.

  7. Lake Generated Microseisms at Yellowstone Lake as a Record of Ice Phenology

    Science.gov (United States)

    Mohd Mokhdhari, A. A.; Koper, K. D.; Burlacu, R.

    2017-12-01

    It has recently been shown that wave action in lakes produces microseisms, which generate noise peaks in the period range of 0.8-1.2 s as recorded by nearby seismic stations. Such noise peaks have been observed at seven seismic stations (H17A, LKWY, B208, B944, YTP, YLA, and YLT) located within 2 km of the Yellowstone Lake shoreline. Initial work using 2016 data shows that the variations in the microseism signals at Yellowstone Lake correspond with the freezing and thawing of lake ice: the seismic noise occurs more frequently in the spring, summer, and fall, and less commonly in the winter. If this can be confirmed, then lake-generated microseisms could provide a consistent measure of the freezing and melting dates of high-latitude lakes in remote areas. The seismic data would then be useful in assessing the effects of climate change on the ice phenology of those lakes. In this work, we analyze continuous seismic data recorded by the seven seismic stations around Yellowstone Lake for the years of 1995 to 2016. We generate probability distribution functions of power spectral density for each station to observe the broad elevation of energy near a period of 1 s. The time dependence of this 1-s seismic noise energy is analyzed by extracting the power spectral density at 1 s from every processed hour. The seismic observations are compared to direct measurements of the dates of ice-out and freeze-up as reported by rangers at Yellowstone National Park. We examine how accurate the seismic data are in recording the freezing and melting of Yellowstone Lake, and how the accuracy changes as a function of the number of stations used. We also examine how sensitive the results are to the particular range of periods that are analyzed.

  8. Multiscale Terrain Analysis of Multibeam Bathymetry Data for Lake Trout Spawning Habitat Mapping in the Drummond Island Refuge, northern Lake Huron

    Science.gov (United States)

    Wattrus, N. J.; Binder, T.

    2012-12-01

    . Bottom classification based upon backscatter measurements from the collected multibeam sonar data using Quester Tangent's Multiview software does not appear to readily resolve the various classes of rocky substrate, for example it appears to have difficulty differentiating between areas dominated by boulder sized rocks from areas covered predominantly by cobble sized fragments. The extremely shallow nature of the reef areas utilized by the spawning fish (z_av < 10 m) ensures that the bathymetric data has a very high spatial resolution (dx ~ 0.1m). Visual inspection of the bathymetry of the reefs clearly show variations in the texture and morphology of the lake floor that correlate with divers' observations of aggregations of fish in spawning condition. We describe the results of a study to investigate the application of terrain analysis for subdividing the reefs into regions based upon their texture and morphology. A variety of descriptors are evaluated as is the influence of scale on the analyses.

  9. Dynamic interactions between glacier and glacial lake in the Bhutan Himalaya

    Science.gov (United States)

    Tsutaki, S.; Fujita, K.; Yamaguchi, S.; Sakai, A.; Nuimura, T.; Komori, J.; Takenaka, S.; Tshering, P.

    2012-04-01

    A number of supraglacial lakes formed on the termini of debris-covered glaciers in the Bhutan Himalaya as a result of glacier retreat due to climate change. The terminal part of the lake-terminating glaciers flow faster than that of the land-terminating glaciers because the basal ice motion is enhanced by high subglacial water pressure generated by lake water. Increased ice flux caused by the accelerated glacier flow could be dissipated through the calving process which reduced the glacier thickness. It is important to understand the interaction between lake formation and glacier dynamics. Although glacier flow velocity has been measured by remote-sensing analysis in several regions of the Himalayas, glacier thinning rates have not been observed by neither in-situ nor remote-sensing approaches. The lack of field data raises limitation to interpretations for glacier dynamics. We investigate the influence of the presence/absence of glacial lakes on glacier dynamics and changes in surface elevation. We study two debris-covered glaciers in the Lunana region, the Bhutan Himalaya. Thorthormi Glacier is a land-terminating glacier with some supraglacial lakes while Lugge Glacier is a lake-terminating glaciers. We surveyed the surface elevation of debris-covered areas of the two glaciers in 2004 and 2011 by a differential GPS. Change in surface elevation of the lake-terminating Lugge Glacier (-5.4--2.4 m yr-1) was much more negative than that of the land-terminating Thorthormi Glacier (-3.3-0.6 m yr-1). Surface flow speed of the Thorthormi Glacier measured during 2002-2004 was faster in the upper reaches (~90 m yr-1) and reduced toward the downstream (40 m yr-1). In contrast, the surface flow speed at the Lugge Glacier measured in the same periods was 40-55 m yr-1 and the greatest at the lower most part. Observed spatial distribution of surface flow velocity at both glaciers were evaluated by a two-dimensional numerical flow model. Calculated emergence velocities are 1

  10. mHealth Application Areas and Technology Combinations.

    Science.gov (United States)

    Abaza, Haitham; Marschollek, Michael

    2017-01-01

    With the continuous and enormous spread of mobile technologies, mHealth has evolved as a new subfield of eHealth. While eHealth is broadly focused on information and communication technologies, mHealth seeks to explore more into mobile devices and wireless communication. Since mobile phone penetration has exceeded other infrastructure in low and middle-income countries (LMICs), mHealth is seen as a promising component to provide pervasive and patient-centered care. The aim of our research work for this paper is to examine the mHealth literature to identify application areas, target diseases, and mHealth service and technology types that are most appropriate for LMICs. Based on the 2011 WHO mHealth report, a combination of search terms, all including the word "mHealth", was identified. A literature review was conducted by searching the PubMed and IEEE Xplore databases. Articles were included if they were published in English, covered an mHealth solution/intervention, involved the use of a mobile communication device, and included a pilot evaluation study. Articles were excluded if they did not provide sufficient detail on the solution covered or did not focus on clinical efficacy/effectiveness. Cross-referencing was also performed on included articles. 842 articles were retrieved and analyzed, 255 of which met the inclusion criteria. North America had the highest number of applications (n=74) followed by Europe (n=50), Asia (n=44), Africa (n=25), and Australia (n=9). The Middle East (n=5) and South America (n=3) had the least number of studies. The majority of solutions addressed diabetes (n=51), obesity (n=25), CVDs (n=24), HIV (n=18), mental health (n=16), health behaviors (n=16), and maternal and child's health (MCH) (n=11). Fewer solutions addressed asthma (n=7), cancer (n=5), family health planning (n=5), TB (n=3), malaria (n=2), chronic obtrusive pulmonary disease (COPD) (n=2), vision care (n=2), and dermatology (n=2). Other solutions targeted stroke, dental

  11. Distance-decay and taxa-area relationships for bacteria, archaea and methanogenic archaea in a tropical lake sediment.

    Directory of Open Access Journals (Sweden)

    Davi Pedroni Barreto

    Full Text Available The study of of the distribution of microorganisms through space (and time allows evaluation of biogeographic patterns, like the species-area index (z. Due to their high dispersal ability, high reproduction rates and low rates of extinction microorganisms tend to be widely distributed, and they are thought to be virtually cosmopolitan and selected primarily by environmental factors. Recent studies have shown that, despite these characteristics, microorganisms may behave like larger organisms and exhibit geographical distribution. In this study, we searched patterns of spatial diversity distribution of bacteria and archaea in a contiguous environment. We collected 26 samples of a lake sediment, distributed in a nested grid, with distances between samples ranging from 0.01 m to 1000 m. The samples were analyzed using T-RFLP (Terminal restriction fragment length polymorphism targeting mcrA (coding for a subunit of methyl-coenzyme M reductase and the genes of Archaeal and Bacterial 16S rRNA. From the qualitative and quantitative results (relative abundance of operational taxonomic units we calculated the similarity index for each pair to evaluate the taxa-area and distance decay relationship slopes by linear regression. All results were significant, with mcrA genes showing the highest slope, followed by Archaeal and Bacterial 16S rRNA genes. We showed that the microorganisms of a methanogenic community, that is active in a contiguous environment, display spatial distribution and a taxa-area relationship.

  12. Changes in the flora of the eastern and southern shore area of lake Piaseczno in the years 2003-2010

    Directory of Open Access Journals (Sweden)

    Artur Serafin

    2012-12-01

    Full Text Available Changes in the flora composition of the eastern and southern shore area of Lake Piaseczno, with predominantly agricultural and recreational land use in the lake catchment, were examined in the years 2003 and 2010. Multifaceted analysis of the flora was made with regard to its botanical, syntaxonomical, and ecological aspects, the identified species were assigned to different historical-geographical groups and range groups, as well as the flora synanthropisation, anthropophytisation and apophytisation indices were calculated and compared. Both the species number and the species floristic composition of the Lake Piaseczno shore zone changed in seven years. The fact that the value of the synanthropisation index remained at a similar level and a slight increase in the anthropophytisation index values are probably related to the decrease in tourist traffic in this area and the diminishing pressure from extensive agriculture. The results of the flora analysis, in terms of the assignment of species to characteristic ecological groups, confirm the specific habitat conditions in the study area and, above all, significant permeability of the substrate and high soil nutrient availability.

  13. Lake sturgeon response to a spawning reef constructed in the Detroit river

    Science.gov (United States)

    Roseman, Edward F.; Manny, B.; Boase, J.; Child, M.; Kennedy, G.; Craig, J.; Soper, K.; Drouin, R.

    2011-01-01

    Prior to the First World War, the bi-national Detroit River provided vast areas of functional fish spawning and nursery habitat. However, ongoing conflicting human uses of these waters for activities such as waste disposal, water withdrawals, shoreline development, shipping, recreation, and fishing have altered many of the chemical, physical, and biological processes of the Detroit River. Of particular interest and concern to resource managers and stakeholders is the significant loss and impairment of fish spawning and nursery habitat that led to the decline in abundance of most fish species using this ecosystem. Lake sturgeon (Acipenser fulvescens) populations for example, were nearly extirpated by the middle of the 20th century, leaving only a small fraction of their former population. Fisheries managers recognized that the loss of suitable fish spawning habitat is a limiting factor in lake sturgeon population rehabilitation in the Detroit River. In efforts to remediate this beneficial water use impairment, a reef consisting of a mixture of natural rock and limestone was constructed at the upstream end of Fighting Island in 2008. This paper focuses on the response by lake sturgeon to the different replicates of suitable natural materials used to construct the fish spawning habitat at Fighting Island in the Detroit River. Pre-construction fisheries assessment during 2006–2008 showed that along with the presence of adult lake sturgeon, spawning conditions were favorable. However, no eggs were found in assessments conducted prior to reef construction. The 3300 m2 Fighting Island reef was placed at the upstream end of the island in October of 2008. The construction design included 12 spawning beds of three replicates each consisting of either round rock, small or large (shot-rock) diameter limestone or a mixture thereof. An observed response by spawning lake sturgeon occurred the following year when spawning-ready adults (ripe), viable eggs, and larvae were

  14. Evolution of Titan's Lakes and Seas: Insights from Recent Infrared Observations

    Science.gov (United States)

    Sotin, C.; Seignovert, B.; Lawrence, K.; Barnes, J. W.; Brown, R. H.; Hayes, A.; Le Mouelic, S.; Baines, K. H.; Buratti, B. J.; Clark, R. N.; Nicholson, P. D.

    2013-12-01

    Titan's North Pole has been illuminated since the spring equinox in August 2009, allowing optical remote sensing instruments to acquire images of the lakes and seas that were discovered by the radar instrument earlier in the Cassini mission [1]. The illumination geometry continually improves with the incidence angle decreasing to its minimum at the summer solstice in 2017. Combined with highly inclined flybys that allow for small values of the emission angle, the 2013 observations are much less affected by the haze scattering because the optical path through the atmosphere is much shorter. The Visual and Infrared Mapping Spectrometer (VIMS) can observe Titan's surface in seven infrared atmospheric windows between 0.96- and 5-μm. This study describes observations acquired during the recent T93 flyby on July 26, 2013. The footprint ranges from 10 km/pixel to 3 km/pixel. Maps of the three large seas (Ligeia Mare, Punga Mare, and Kraken Mare) at seven different wavelengths are being constructed and a mosaic of the lake area is being assembled. Ligeia Mare was previously imaged by the VIMS in June 2010 [2]. A preliminary analysis of the 2m map suggests that the shoreline has not evolved since 2010. The shape of the 2- μm atmospheric window will be compared between the two images and between the mare and the shore to investigate whether liquid ethane is present as is the case on Ontario lacus [3]. The lake area located between 0 and 90W was imaged with a resolution that allows comparison with the radar images. A preliminary comparison between the two data sets shows a very strong correlation. One part of Punga mare and a lake known as Kivu lacus were acquired on the same image. The northeastern part of Punga Mare seems entailed by a river network. No connections between Punga mare and Kivu lacus are observed on the VIMS image. Kivu lacus seems to lie in the center of a circular depression whose limit is bright at 2m. Equipotential maps are built from the

  15. Hydrochemical determination of source water contributions to Lake Lungo and Lake Ripasottile (central Italy

    Directory of Open Access Journals (Sweden)

    Claire Archer

    2016-12-01

    Full Text Available Lake Lungo and Lake Ripasottile are two shallow (4-5 m lakes located in the Rieti Basin, central Italy, that have been described previously as surface outcroppings of the groundwater table. In this work, the two lakes as well as springs and rivers that represent their potential source waters are characterized physio-chemically and isotopically, using a combination of environmental tracers. Temperature and pH were measured and water samples were analyzed for alkalinity, major ion concentration, and stable isotope (δ2H, δ18O, δ13C of dissolved inorganic carbon, and δ34S and δ18O of sulfate composition.  Chemical data were also investigated in terms of local meteorological data (air temperature, precipitation to determine the sensitivity of lake parameters to changes in the surrounding environment. Groundwater represented by samples taken from Santa Susanna Spring was shown to be distinct with SO42- and Mg2+ content of 270 and 29 mg/L, respectively, and heavy sulfate isotopic composition (δ34S=15.2 ‰ and δ18O=10‰. Outflow from the Santa Susanna Spring enters Lake Ripasottile via a canal and both spring and lake water exhibits the same chemical distinctions and comparatively low seasonal variability. Major ion concentrations in Lake Lungo are similar to the Vicenna Riara Spring and are interpreted to represent the groundwater locally recharged within the plain. The δ13CDIC exhibit the same groupings as the other chemical parameters, providing supporting evidence of the source relationships. Lake Lungo exhibited exceptional ranges of δ13CDIC (±5 ‰ and δ2H, δ18O (±5 ‰ and ±7 ‰, respectively, attributed to sensitivity to seasonal changes. The hydrochemistry results, particularly major ion data, highlight how the two lakes, though geographically and morphologically similar, represent distinct hydrochemical facies. These data also show a different response in each lake to temperature and precipitation patterns in the basin that

  16. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 1. Flow Patterns, Age of Groundwater, and Influence of Lake Water Leakage

    Science.gov (United States)

    Katz, Brian G.; Lee, Terrie M.; Plummer, L. Niel; Busenberg, Eurybiades

    1995-06-01

    Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.

  17. THE POTENTIAL OF VEGETATION SPECIES DIVERSITY FOR ECOTOROURISM DEVELOPMENT AT NATURE RESERVE OF PANJALU LAKE

    Directory of Open Access Journals (Sweden)

    Encep Rahman

    2017-06-01

    Full Text Available The Nature Reserve of Panjalu Lake is one of the oldest conservation area in Indonesia. As a conservation area, Panjalu Lake has different species of flora that are useful as germplasm conservation, science and education. This study aims to know the potential of vegetation species diversity for ecotourism development at Nature Reserve of Panjalu Lake. The inventory method used is line plot sampling with intensity 15 % in two paths of 500 m (adjusted according length of the area and 20 m width. Spacing between lines is 200 m and spacing between observation plot is 100 m. Within each path, 50 m x 20 m observation plots were established. The results showed that there are three species of seedlings with highest IVI, namely: Dysoxylum densiflorum Miq. (47.64 %, Calamus zollingerii (47.64 %, and Sterculia macrophylla Vent. (44.37 %. The four species at sapling stage with highest IVI are: Litsea cassiaefolia (114.29 %; Dysoxylum densiflorum Miq (57.14 %; Litsea sp. and Endiandra rubescens Miq (14.29 %. Three species at pole stage with highest IVI, namely: Dysoxylum densiflorum Miq. (143.04%; Litsea cassiaefolia (99.78 % and Artocarpus elasticus Reinw 9.53 %. Three species at tree stage with highest IVI, namely: Dysoxylum densiflorum Miq (147.924 %, Litsea cassiaefolia (68.753 %, and Eugenia fastigiata Miq ( 31.410 %.

  18. Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. L. [Texas AgriLife Research, College Station, TX (United States); Roelke, Daniel [Texas AgriLife Research, College Station, TX (United States); Brooks, Bryan [Texas AgriLife Research, College Station, TX (United States); Grover, James [Texas AgriLife Research, College Station, TX (United States)

    2010-10-11

    A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism's ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife and Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae

  19. Measured and modelled local wind field over a frozen lake in a mountainous area

    Energy Technology Data Exchange (ETDEWEB)

    Smedman, A.S.; Bergstroem, H.; Hoegstroem, U. [Uppsala Univ. (Sweden). Dept. of Meteorology

    1996-03-01

    The study is a follow-up of a previous paper and concentrates on two very characteristic flow regimes: forced channeling, where the driving geostrophic wind and the lake axis are roughly aligned, and pressure-driven channeling or gap winds, which are characterized by a geostrophic wind direction more or less perpendicular to the lake axis. Both situations produce winds along the main axis of the lake. In the forced channeling case the wind direction varies insignificantly with height and the wind speed increases monotonically with height. The gap wind flow, which can give supergeostrophic speed, is restricted to the lowest 500 m above the lake surface, drops in speed to near zero just above that layer, changing to an across-wind direction higher up. Gap winds are found to require slightly stable stratification for their existence; strong stability forces the flow to go round the mountains rather than over, and neutral conditions give a turbulent wake in the lee of the mountains. The gap wind starts at any occasion as a sudden warm front approaching from either of the two along-lake directions (115 or 295 degrees). It is argued that the relative warmth of the `gap wind air` is due to air originally flowing at mountain top height across the lake axis being gradually turned and accelerated along the synoptic pressure gradient while descending. The strongly sheared layer at the top of the gap wind region is dynamically highly unstable, giving rise to vertically coherent variations in wind speed and direction which appear to be triggered by gravity waves. When the driving geostrophic wind is high enough, the disturbed region reaches all the way down to the ground surface. Then periods with strong turbulence and low mean wind alternate with pronounced gap winds on typically a 10 minute scale. 11 refs, 18 figs

  20. The sodium fire tests performed in the FAUNA facility on up to 12m2 fire areas

    International Nuclear Information System (INIS)

    Cherdron, W.; Jordan, S.

    1983-08-01

    The FAUNA test facility started operation in 1979. It serves to investigate large area sodium fires in closed containments and to study the generation, behaviour and removal of sodium fire aerosols. In this report, the experimental results of the 6 sodium pool fires are described which were performed with up to 500 kg of sodium in fire pans of 2 m 2 , 5 m 2 and 12 m 2 surface area, respectively. Both, the thermodynamic data and the data of the reaction kinetics of the fires were determined. In addition, the behaviour of the released aerosols during and after the fire was studied. On the basis of measurements of the temperature profiles at various levels above the fire areas it was shown that the convective flows above fire areas of different sizes in closed containments differ markedly and, obviously, exert an influence on the development of the fire and the release of particles. Whilst in rather small fires the gas above the pan rises as in a chimney and flows back on the walls, no chimney effect can be observed in a large pool fire. In rather large fires higher burning rates and aerosol release rates were observed. Some meters above the fire area temperatures around 300-400 0 C, temporarily even up to 700 0 C, were measured. The tests F5 and F6 were performed above all to observe the fire behaviour in terms of thermodynamics and reaction kinetics in a fully closed containment. (orig./RW) [de

  1. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    Science.gov (United States)

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  2. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Stockholm (Sweden); Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Juston, John [DBE Sweden, Uppsala (Sweden)

    2005-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting site investigations at two different locations, the Forsmark and Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The results from the investigations at the sites are used as a basic input to the development of Site Descriptive Models (SDM). The SDM shall summarise the current state of knowledge of the site, and provide parameters and models to be used in further analyses within Safety Assessment, Repository Design and Environmental Impact Assessment. The present report is a background report describing the meteorological conditions and the modelling of surface hydrology and near-surface hydrogeology in support of the Forsmark version 1.2 SDM based on the data available in the Forsmark 1.2 'data freeze' (July 31, 2004). The groundwater is very shallow, with groundwater levels within one meter below ground as an annual mean for almost all groundwater monitoring wells. Also, the annual groundwater level amplitude is less than 1.5 m for most wells. The shallow groundwater levels mean that there is a strong interaction between evapotranspiration, soil moisture and groundwater. In the modelling, surface water and near-surface groundwater divides are assumed to coincide. The small-scale topography implies that many local, shallow groundwater flow systems are formed in the Quaternary deposits, overlaying more large-scale flow systems associated with groundwater flows at greater depths. Groundwater level time series from wells in till and bedrock within the same areas show a considerably higher groundwater level in the till than in the bedrock. The observed differences in levels are not fully consistent with the good hydraulic contact between overburden and bedrock indicated by the hydraulic tests in the Quaternary deposits. However, the relatively lower groundwater levels in the bedrock may be caused by the horizontal to sub-horizontal highly

  3. Investigation of land subsidence due to climate changes in surrounding areas of Urmia Lake (located in northwest of Iran) using wavelet coherence analysis of geodetic measurements and methodological data

    Science.gov (United States)

    Moghtased-Azar, K.; Mirzaei, A.; Nankali, H. R.; Tavakoli, F.

    2012-04-01

    Urmia Lake (salt lake in northwest of Iran) plays a valuable role in environment, wildlife and economy of Iran and the region, and now faces great challenges for survival. The Lake is in immediate and great danger and rapidly going to become salty desert. During the recent years and new heat wave, Iran, like many other countries are experiencing, is faced with relativity reduced rain fall. From a few years ago environment activists warned about potential dangers. Geodetic measurements, e.g., repeated leveling measurements of first order leveling network of Iran and continuous GPS measurements of Iranian Permanent GPS network of Iran (IPGN) showed that there is subsidence in surrounding areas of the lake. This paper investigates the relation between subsidence and climate changing in the area, using the wavelet coherence of the data of permanent GPS stations and daily methodological data. The results show that there is strong coherence between the subsidence phenomena induced by GPS data and climate warming from January 2009 up to end of August 2009. However, relative lake height variations computed from altimetry observations (TOPEX/POSEIDON (T/P), Jason-1 and Jason-2/OSTM) confirms maximum evaporation rates of the lake in this period.

  4. Distribution and behavior of radionuclides and stable elements in Lake Obuchi

    International Nuclear Information System (INIS)

    Ueda, Shinji; Hasegawa, Hidenao; Hisamatsu, Shun'ichi; Inaba, Jiro

    2000-01-01

    Distribution and behavior of radionuclides and related stable elements in the lake water of brackish Lake Obuchi were investigated by field observations. Concentrations of 238 U and stable elements were measured at various points in the lake, and compiled to obtain the elemental distributions and variation characteristics. The concentrations of 238 U in the lake water were higher in areas nearer to the Pacific Ocean, and correlated well with those of Na, K, Ca, Mg and Sr (r = 0.86 to 0.92). These observations implied that 238 U in the lake originated from seawater. The bottom layer water was reductive during July and September (stratified period) in deep areas (> 3 m). In this condition, concentrations of PO 4 3- -P, NH 4 + -N, Fe and Mn in the water increased. Concentration ratios of 238 U to those of Na strongly suggested the following conclusions. The concentrations of 238 U in the turn-over period were represented by a simple mixture of seawater and fresh water. However, in the stratified period, part of the 238 U was lost from the seawater near the bottom of the lake due to the reductive condition. (author)

  5. Regionalisation for lake level simulation – the case of Lake Tana in the Upper Blue Nile, Ethiopia

    Directory of Open Access Journals (Sweden)

    T. H. M. Rientjes

    2011-04-01

    Full Text Available In this study lake levels of Lake Tana are simulated at daily time step by solving the water balance for all inflow and outflow processes. Since nearly 62% of the Lake Tana basin area is ungauged a regionalisation procedure is applied to estimate lake inflows from ungauged catchments. The procedure combines automated multi-objective calibration of a simple conceptual model and multiple regression analyses to establish relations between model parameters and catchment characteristics.

    A relatively small number of studies are presented on Lake Tana's water balance. In most studies the water balance is solved at monthly time step and the water balance is simply closed by runoff contributions from ungauged catchments. Studies partly relied on simple ad-hoc procedures of area comparison to estimate runoff from ungauged catchments. In this study a regional model is developed that relies on principles of similarity of catchments characteristics. For runoff modelling the HBV-96 model is selected while multi-objective model calibration is by a Monte Carlo procedure. We aim to assess the closure term of Lake Tana's water balance, to assess model parameter uncertainty and to evaluate effectiveness of a multi-objective model calibration approach to make hydrological modeling results more plausible.

    For the gauged catchments, model performance is assessed by the Nash-Sutcliffe coefficient and Relative Volumetric Error and resulted in satisfactory to good performance for six, large catchments. The regional model is validated and indicated satisfactory to good performance in most cases. Results show that runoff from ungauged catchments is as large as 527 mm per year for the simulation period and amounts to approximately 30% of Lake Tana stream inflow. Results of daily lake level simulation over the simulation period 1994–2003 show a water balance closure term of 85 mm per year that accounts to 2.7% of the total lake inflow. Lake level

  6. Ice-dammed lakes reconstruction in the southeastern Scandinavian ice sheet periphery

    Science.gov (United States)

    Anisimov, Nikolai

    2017-04-01

    The study of glacier erosion processes, paleolake dynamics and topographical changes, together give us insight into both localized and broader landscape evolution patterns while also assisting human exploration. After carrying number of paleographic discoveries of North-West of Russia, we've gathered the data requiring generalizing, systemizing, visualizing. Objective: reconstruction of proglacial lakes based on lithostratigraphic and geomorphic analysis using GIS technology. GIS modeling of ice-dammed lakes was done via the ArcGIS Desktop 10 software package. The GIS was used as a means to categorize published, time mapped data and thereby fuse and unify the changes into a single, integrated prototype. Publications on limnologo-glaciological and geomorphological reconstructions of paleotopography and paleolakes north of the Russian plain, along with additional copyrighted and grant-funded GIS studies, together served as resources to authenticate the paleolake contour modeling. A quaternary sediments map and an updated topography map that was designed via semiautomatic vectorization of a topographical map, served as foundations for the electronic shape modeling paleoreconstructions. Based upon preliminary results from publication summaries, and initial data collected when analyzing the maps (quaternary sediments, geomorphological, topographical), the contours and maximum glacial lake rise levels in the southeastern Scandinavian ice sheet periphery, including the levels and contours of their coastline, have been duly identified. Boundary reconstruction of Late Pleistocene lake boundaries have been completed for five sections of the Scandinavian ice sheet: the Molovo-Sheksninskoy, the Belozersko-Kubensky, the Vozhe-Lachsko-Kubensky, the Vazhskoy, and the Severodvinskoy. The territories studied revealed 13 major paleobasins covering an area of more than 1,000 km2, which based upon their position most closely resemble periglacial, intraglacial and postglacial lakes. Of

  7. Fluvial sediment study of Fishtrap and Dewey Lakes drainage basins, Kentucky - Virginia

    Science.gov (United States)

    Curtis, William F.; Flint, Russell F.; George, Frederick H.; Santos, John F.

    1978-01-01

    Fourteen drainage basins above Fishtrap and Dewey Lakes in the Levisa Fork and Johns Creek drainage basins of eastern Kentucky and southwestern Virginia were studied to determine sedimentation rates and origin of sediment entering the two lakes. The basins ranged in size from 1.68 to 297 square miles. Sediment yields ranged from 2,890 to 21,000 tons per square mile where surface-mining techniques predominated, and from 732 to 3 ,470 tons per square mile where underground mining methods predominated. Yields, in terms of tons per acre-foot of runoff, ranged from 2.2 to 15 for surface-mined areas, and from 0.5 to 2.7 for underground-mined areas. Water and sediment discharges from direct runoff during storms were compared for selected surface-mined and underground-mined areas. Data points of two extensively surface-mined areas, one from the current project and one from a previous project in Beaver Creek basin, McCreary County, Kentucky, grouped similarly in magnitude and by season. Disturbed areas from mining activities determined from aerial photographs reached 17 percent in one study area where extensive surface mining was being practiced. For most areas where underground mining was practiced, percentage disturbed area was almost negligible. Trap efficiency of Fishtrap Lake was 89 percent, and was 62 percent for Dewey Lake. Average annual deposition rates were 464 and 146 acre-feet for Fishtrap and Dewey Lakes, respectively. The chemical quality of water in the Levisa Fork basin has been altered by man 's activities. (Woodard-USGS)

  8. 90% Below 10m: Summer Biomass and Productivity are Invisible to Satellites and Surface Transects in Modern Lake Michigan

    Science.gov (United States)

    Cuhel, R. L.; Aguilar, C.

    2013-12-01

    Deep biomass maxima, often identified through in vivo chlorophyll fluorescence profiles (DCM or deep chlorophyll maximum), have been common 'forever' in Lake Michigan. Usually present in the upper thermocline zone of 15-25m, summer DCM populations were characteristically dominated by diatoms. Increased light transmission in quagga mussel (QM) engineered Lake Michigan waters now has enabled phytoplankton to proliferate in discrete layers as deep as 50m. Instances of multiple fluorescence maxima and transmission minima, often not coincident, document the habitat diversity available in clear, often sequentially stratified offshore waters and MidLake Reef Complex locations. Phytoplankton population structure has also changed, and diatoms have become a much smaller component of algal biomass. Discrete layers of chromatically adapted picoplankton now dominate the deepest biomass maxima. Photosynthetic characteristics differ substantially among leading edge, principal biomass or fluorescence, and deep trailing edge populations. Saturation coefficients are often as low as 25 uEin/m2/sec, or 1% of midday summer surface radiance. In vivo fluorescence is only loosely related to biomass, which is greatest in shallower zones of beam transmission minima. On a daily basis, areal primary productivity post-QM is less than half of previous levels, and seasonality has been muted. Spring bloom enhancement no longer exists, and the depth zone of maximum productivity is 10-20m deeper than during the diatom epoch. Altered phytoplankton community structure and decreased productivity left strong signals in biogeochemical time series measurements. A clear discontinuity in silicate cycling indicates dampened diatom productivity and consequently lower silica loss through deposition and burial. Porewater analysis pre- and post-QM shows evidence of reduced organic sedimentation overall, with an especially strong signal in decreased potential silicate efflux. Biogeochemical consequences include

  9. Sulphate deposition by precipitation into Lake Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R W; Whelpdale, D M

    1973-01-01

    Measurements of sulphate concentration in precipitation from individual snow storms of several hours duration in the western Lake Ontario region indicate that approximately 9-66 mg/M/sub 2/ of SO/sub 4//sup 2 -/ is being deposited into the lake per storm. This amount is up to several times more than daily average values over long periods found by other workers. Using a mean sulphate concentration of 4 mg/l and an annual accumulation of precipitation of 760 mm, the yearly sulphate deposition by precipitation is about 0.1% of the total mass of sulphate in the lake; however, more significantly, it is of the same order of magnitude as that discharged directly into the lake by industry.

  10. First attempt to apply whole-lake food-web manipulation on a large scale in The Netherlands.

    NARCIS (Netherlands)

    Donk, van E.; Grimm, M.P.; Gulati, R.D.; Heuts, P.G.M.; Kloet, de W.A.; Liere, van L.

    1990-01-01

    Lake Breukeleveen is a compartment of the eutrophic Loosdrecht lakes system. In Lake Loosdrecht (dominated by filamentous cyanobacteria), due to water management measures taken from 1970-1984 (sewerage systems, dephosphorization) the external P load has been reduced from 1.2g m-2y-1 to 0.35g m-2y-1.

  11. Indications of human activity from amino acid and amino sugar analyses on Holocene sediments from lake Lonar, central India

    Science.gov (United States)

    Menzel, P.; Gaye, B.; Wiesner, M.; Prasad, S.; Basavaiah, N.; Stebich, M.; Anoop, A.; Riedel, N.; Brauer, A.

    2012-04-01

    The DFG funded HIMPAC (Himalaya: Modern and Past Climates) programme aims to reconstruct Holocene Indian Monsoon climate using a multi-proxy and multi-archive approach. First investigations made on sediments from a ca. 10 m long core covering the whole Holocene taken from the lake Lonar in central India's state Maharashtra, Buldhana District, serve to identify changes in sedimentation, lake chemistry, local vegetation and regional to supra-regional climate patterns. Lake Lonar occupies the floor of an impact crater that formed on the ~ 65 Ma old basalt flows of the Deccan Traps. It covers an area of ca. 1 km2 and is situated in India's core monsoon area. The modern lake has a maximum depth of about 5 m, is highly alkaline, and hyposaline, grouped in the Na-Cl-CO3 subtype of saline lakes. No out-flowing stream is present and only three small streams feed the lake, resulting in a lake level highly sensitive to precipitation and evaporation. The lake is eutrophic and stratified throughout most of the year with sub- to anoxic waters below 2 m depth. In this study the core sediments were analysed for their total amino acid (AA) and amino sugar (AS) content, the amino acid bound C and N percentage of organic C and total N in the sediment and the distribution of individual amino acids. The results roughly show three zones within the core separated by distinct changes in their AA content and distribution. (i) The bottom part of the core from ca. 12000 cal a BP to 11400 cal a BP with very low AA and AS percentage indicating high lithogenic contribution, most probably related to dry conditions. (ii) From 11400 cal a BP to 1200 cal a BP the sediments show moderate AA and AS percentages and low values for the ratios of proteinogenic AAs to their non-proteinogenic degradation products (e.g. ASP/β-ALA; GLU/γ-ABA). (iii) The top part of the core (land use. This hypothesis is corroborated by the dating of more than 10 temple ruins surrounding the lake, which were built in the 12

  12. Estimation of unregulated monthly, annual, and peak streamflows in Forest City Stream and lake levels in East Grand Lake, United States-Canada border between Maine and New Brunswick

    Science.gov (United States)

    Lombard, Pamela J.

    2018-04-30

    The U.S. Geological Survey, in cooperation with the International Joint Commission, compiled historical data on regulated streamflows and lake levels and estimated unregulated streamflows and lake levels on Forest City Stream at Forest City, Maine, and East Grand Lake on the United States-Canada border between Maine and New Brunswick to study the effects on streamflows and lake levels if two or all three dam gates are left open. Historical regulated monthly mean streamflows in Forest City Stream at the outlet of East Grand Lake (referred to as Grand Lake by Environment Canada) fluctuated between 114 cubic feet per second (ft3 /s) (3.23 cubic meters per second [m3 /s]) in November and 318 ft3 /s (9.01 m3 /s) in September from 1975 to 2015 according to Environment Canada streamgaging data. Unregulated monthly mean streamflows at this location estimated from regression equations for unregulated sites range from 59.2 ft3 /s (1.68 m3 /s) in September to 653 ft3 /s (18.5 m3 /s) in April. Historical lake levels in East Grand Lake fluctuated between 431.3 feet (ft) (131.5 meters [m]) in October and 434.0 ft (132.3 m) in May from 1969 to 2016 according to Environment Canada lake level data for East Grand Lake. Average monthly lake levels modeled by using the estimated hydrology for unregulated flows, and an outflow rating built from a hydraulic model with all gates at the dam open, range from 427.7 ft (130.4 m) in September to 431.1 ft (131.4 m) in April. Average monthly lake levels would likely be from 1.8 to 5.4 ft (0.55 to 1.6 m) lower with the gates at the dam opened than they have been historically. The greatest lake level changes would be from June through September.

  13. A Systematic Study of Zerbar Lake Restoration

    Science.gov (United States)

    Hosseini, Reza; Oveis Torabi, Seyed; Forman Asgharzadeh, Deonna

    2017-04-01

    The beautiful lake of Zerbar, located near Marivan City at the west of Iran, is a freshwater lake with an area of 20 km2 and average depth of 5 meters. The lake is created by regional tectonic activities and is mainly fed with natural spring water from bottom. During the past three decades, regional development has caused much disturbance to the natural environment of the lake and its watershed. Rescuing the lake is crucial to the sustainability of the whole region. The study of Zerbar Restoration was performed with the aim to restore its health indicators. Variety of human activities in the watershed, as well as the multidisciplinary nature of lake restoration studies, made it necessary to develop a systematic approach to conduct the study. In Step I of restoration studies, satellite images were investigated to identify the historical changes of watershed during the past 30 years. Meanwhile, documents since 50 years ago were studied. Results indicate that farmland and graze land areas have been relatively constant during the past 50 years. Also, the area of lake, its riparian canes and floating plants have not changed much. In fact, the only significant land use change observed was the significant spread of Marivan City that has stretched toward the lake. The main physical variation to the lake has been elevating the southern edge of the lake by a constructing a landfill dam which was done to control the lake's overflow discharge for irrigation of downstream farmland development. Step II consists of studies performed by disciplines of water resources, hydrogeology, water quality, wetland and watershed ecology, agriculture, animal farming and fishery. Study results indicate that eutrophication (TSL>100), mainly caused by sewage from Marivan City and the surrounding rural areas has been the main reason for lake ecosystem degradation. DPSIR framework, as a novel approach in lake restoration, was applied to synthesize the study results of different disciplines in a

  14. Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data

    DEFF Research Database (Denmark)

    Jiang, Liguang; Nielsen, Karina; Andersen, Ole Baltazar

    2017-01-01

    are comparable. Lakes in the northern part of the TP experienced pronounced rising (avg. 0.37 ± 0.10 m/yr), while lakes in southern part were steady or decreasing even in glaciated basins with high precipitation. Factor analysis indicates that driving factors for lake change are variable due to high spatial...

  15. Information support of territorial wildlife management of Lake Baikal and the surrounding areas (Russia)

    Science.gov (United States)

    Lesnykh, Svetlana

    2013-04-01

    The UNESCO World Heritage Committee inscribed Lake Baikal in the World Heritage List under all four natural criteria as the most outstanding example of a freshwater ecosystem. It is the oldest and deepest lake in the world, which is the main freshwater reserve surrounded by a system of protected areas that have high scientific and natural values. However, there is a conflict between three main interests within the territory: the preservation of the unique ecosystem of the lake and its surrounding areas, the need for regional economic development, and protection of interests of the population, living on the shores of Lake Baikal. Solutions to the current challenges are seen in the development of control mechanisms for the wildlife management to ensure sustainable development and conservation of lake and the surrounding regions. For development mechanisms of territorial management of the complex and valuable area it is necessary to analyze features of its functioning and self-control (adaptable possibilities), allowing ecosystems to maintain their unique properties under influence of various external factors: anthropogenic (emissions, waste water, streams of tourists) and natural (climate change) load. While determining the direction and usage intensity of the territory these possibilities and their limits should be considered. Also for development of management strategy it is necessary to consider the relation of people to land and water, types of wildlife management, ownership, rent, protection from the negative effects, and etc. The relation of people to the natural area gives a chance to prioritize the direction in the resource use and their protection. Results of the scientific researches (reaction of an ecosystem on influence of various factors and system of relations to wildlife management objects) are the basis for the nature protection laws in the field of wildlife management and environmental protection. The methodology of legal zoning of the territory was

  16. The comparative limnology of Lakes Nyos and Monoun, Cameroon

    Science.gov (United States)

    Kling, George; Evans, William C; Tanyileke, Gregory

    2015-01-01

    Lakes Nyos and Monoun are known for the dangerous accumulation of CO2 dissolved in stagnant bottom water, but the shallow waters that conceal this hazard are dilute and undergo seasonal changes similar to other deep crater lakes in the tropics. Here we discuss these changes with reference to climatic and water-column data collected at both lakes during the years following the gas release disasters in the mid-1980s. The small annual range in mean daily air temperatures leads to an equally small annual range of surface water temperatures (ΔT ~6–7 °C), reducing deep convective mixing of the water column. Weak mixing aids the establishment of meromixis, a requisite condition for the gradual buildup of CO2 in bottom waters and perhaps the unusual condition that most explains the rarity of such lakes. Within the mixolimnion, a seasonal thermocline forms each spring and shallow diel thermoclines may be sufficiently strong to isolate surface water and allow primary production to reduce PCO2 below 300 μatm, inducing a net influx of CO2 from the atmosphere. Surface water O2 and pH typically reach maxima at this time, with occasional O2 oversaturation. Mixing to the chemocline occurs in both lakes during the winter dry season, primarily due to low humidity and cool night time air temperature. An additional period of variable mixing, occasionally reaching the chemocline in Lake Monoun, occurs during the summer monsoon season in response to increased frequency of major storms. The mixolimnion encompassed the upper ~40–50 m of Lake Nyos and upper ~15–20 m of Lake Monoun prior to the installation of degassing pipes in 2001 and 2003, respectively. Degassing caused chemoclines to deepen rapidly. Piping of anoxic, high-TDS bottom water to the lake surface has had a complex effect on the mixolimnion. Algal growth stimulated by increased nutrients (N and P) initially stimulated photosynthesis and raised surface water O2 in Lake Nyos, but O2 removal through oxidation of iron

  17. A hydrological simulation of the water regime in two playa lakes ...

    Indian Academy of Sciences (India)

    The definition of the surface–groundwater rela- tionship of the two unaltered playa lakes. Ballestera (henceforth 'Ball') and Calderón. (henceforth 'Cald'). • The simulation of an altered water regime caused by an increased anthropogenic GW consumption within the watershed area of Ball playa-lake. 2. The area of research.

  18. Spatial distribution of seepage at a flow-through lake: Lake Hampen, Western Denmark

    DEFF Research Database (Denmark)

    Kidmose, Jacob Baarstrøm; Engesgaard, Peter Knudegaard; Nilsson, Bertel

    2011-01-01

    recharge patiern of the lake and relating these to the geologic history of the lake. Recharge of the surrounding aquifer by lake water occurs off shore in a narrow zone, as measured from lake–groundwater gradients. A 33-m-deep d18O profi le at the recharge side shows a lake d18O plume at depths...... that corroborates the interpretation of lake water recharging off shore and moving down gradient. Inclusion of lake bed heterogeneity in the model improved the comparison of simulated and observed discharge to the lake. The apparent age of the discharging groundwater to the lake was determined by CFCs, resulting...

  19. Fine-scale acoustic telemetry reveals unexpected lake trout, Salvelinus namaycush, spawning habitats in northern Lake Huron, North America

    Science.gov (United States)

    Binder, Thomas; Farha, Steve A.; Thompson, Henry T.; Holbrook, Christopher; Bergstedt, Roger A.; Riley, Stephen; Bronte, Charles R.; He, Ji; Krueger, Charles C.

    2018-01-01

    Previous studies of lake trout, Salvelinus namaycush, spawning habitat in the Laurentian Great Lakes have used time- and labour-intensive survey methods and have focused on areas with historic observations of spawning aggregations and on habitats prejudged by researchers to be suitable for spawning. As an alternative, we used fine-scale acoustic telemetry to locate, describe and compare lake trout spawning habitats. Adult lake trout were implanted with acoustic transmitters and tracked during five consecutive spawning seasons in a 19–27 km2 region of the Drummond Island Refuge, Lake Huron, using the VEMCO Positioning System. Acoustic telemetry revealed discrete areas of aggregation on at least five reefs in the study area, subsequently confirmed by divers to contain deposited eggs. Notably, several identified spawning sites would likely not have been discovered using traditional methods because either they were too small and obscure to stand out on a bathymetric map or because they did not conform to the conceptual model of spawning habitat held by many biologists. Our most unique observation was egg deposition in gravel and rubble substrates located at the base of and beneath overhanging edges of large boulders. Spawning sites typically comprised <10% of the reef area and were used consistently over the 5-year study. Evaluation of habitat selection from the perspective of fish behaviour through use of acoustic transmitters offers potential to expand current conceptual models of critical spawning habitat.

  20. Modelling assessment of oil sands pit lakes turn-over potential

    International Nuclear Information System (INIS)

    Mackenzie, I.; Vandenberg, J.; Lauzon, N.; Takyi, A.

    2006-01-01

    Pit lakes form when surface mining operations are discontinued and dewatering is terminated. Their use as a treatment step for oil sands surface mining reclamation waters was discussed. The goal of the End Pit Lake Subgroup of the Cumulative Environmental Management Association is to establish guidelines that will enable operators to achieve acceptable water quality for these lakes. Although both biological and physical processes affect turn-over potential, this presentation focused on the size of pit lakes, their depth, starting lake salinity concentrations, inflow rates and inflow salinity flux. These parameters where selected because of their influence on density gradients and turn-over potential. One-dimensional and two-dimensional modelling simulations were performed to examine turnover potential for a large range of pit lake configurations and conditions. The pit lake scenarios chosen for this modelling study included a wide range of changes in 3 lake sizes (1, 4 and 8 km 2 ), 3 lake depths (5, 20 and 50 m), 2 lake starting salinities (1 and 5 parts per thousand), 2 inflow rates (2 and 10 million m 3 per year), 3 starting inflow salinity concentrations (1, 2 and 4 parts per thousand) and 2 rates of influent salinity decrease (6- and 28- year half-life). Simulations showed that autumn is the governing season for determining turn-over potential. For the scenarios examined in this study, the expelling of salt from saline water upon ice formation and the effect of fresh water loading during spring melt events were not found to be significant factors governing turn-over potential. This presentation reviewed the DYRESM, CE-QUAL-W2, and RMA models used in this study. The conclusions reached by each model was also reviewed along with ongoing follow-up work

  1. INFORMATION MINING OF SPATIO-TEMPORAL EVOLUTION OF LAKES BASED ON MULTIPLE DYNAMIC MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    W. Feng

    2017-09-01

    Full Text Available Lakes are important water resources and integral parts of the natural ecosystem, and it is of great significance to study the evolution of lakes. The area of each lake increased and decreased at the same time in natural condition, only but the net change of lakes’ area is the result of the bidirectional evolution of lakes. In this paper, considering the effects of net fragmentation, net attenuation, swap change and spatial invariant part in lake evolution, a comprehensive evaluation indexes of lake dynamic evolution were defined,. Such degree contains three levels of measurement: 1 the swap dynamic degree (SDD reflects the space activity of lakes in the study period. 2 the attenuation dynamic degree (ADD reflects the net attenuation of lakes into non-lake areas. 3 the fragmentation dynamic degree (FDD reflects the trend of lakes to be divided and broken into smaller lakes. Three levels of dynamic measurement constitute the three-dimensional "Swap - attenuation – fragmentation" dynamic evolution measurement system of lakes. To show its effectiveness, the dynamic measurement was applied to lakes in Jianghan Plain, the middle Yangtze region of China for a more detailed analysis of lakes from 1984 to 2014. In combination with spatial-temporal location characteristics of lakes, the hidden information in lake evolution in the past 30 years can be revealed.

  2. Temporal-Spatial Evolution Analysis of Lake Size-Distribution in the Middle and Lower Yangtze River Basin Using Landsat Imagery Data

    Directory of Open Access Journals (Sweden)

    Lin Li

    2015-08-01

    Full Text Available Four natural lakes in the middle and lower reaches of the Yangtze River—Dongting Lake, Poyang Lake, Chaohu Lake and Taihu Lake—play a key role in the climate, environment, and ecology of this area. Upstream of these lakes, the Three Gorges Dam Project has been storing water for 12 years. Future monitoring and management of rivers and lakes can certainly benefit from research on the patterns of variation of natural lakes downstream of the Three Gorges Project. This research applies Landsat TM/ETM data to evaluate water area changes in the four lakes from 2002 to 2013. The water area is estimated using AWEI (Automated Water Extraction Index from satellite images. The average areas decreased respectively 452, 11, and 5 km2 (29.6%, 1.4% and 0.2% from 2002 to 2013 for Dongting, Chaohu, and Taihu Lakes. Meanwhile, it increased 300 km2 (11.0% for Poyang Lake. Precipitation and changes in river inflow may account for the fluctuation in the surface area to a large degree, especially between 2009 and 2013. The present study was undertaken to characterize the evolution of lakes and to explore the potential driving force of variation in order to assist the management of dams upstream in the river basin.

  3. Outflows of groundwater in lakes: case study of Lake Raduńske Górne

    Directory of Open Access Journals (Sweden)

    Cieśliński Roman

    2014-12-01

    Full Text Available The aim of the study was to locate and describe groundwater outflows in a selected lake basin. The study hypothesis was based on the fact that, according to the specialist literature, one of the forms of lake water supply is through groundwater outflows. It was also assumed that the lakes of the Kashubian Lake District are characterised by such a form of lake water supply. The time scope of the work included the period from January 2011 to September 2012. The spatial scope of the work included the area of Lake Raduńskie Górne, located in the Kashubian Lake District in north Poland. The research plot was in the north-eastern part of the lake. Office works were aimed at gathering and studying source materials and maps. Cartographic materials were analysed with the use of the MapInfo Professional 9.5. The purpose of the field work was to find the groundwater outflows in the basin of Lake Raduńskie Górne. During the field research diving was carried out in the lake. During the dive audiovisual documentation was conducted using a Nikon D90 camera with Ikelite underwater housing for Nikon D90 and an Ikelite DS 161 movie substrobe, as well as a GoPro HD HERO 2 Outdoor camera. During the project, four groundwater outflows were found. In order to examine these springs audiovisual and photographic documentation was made. To systematise the typology of the discovered springs, new nomenclature was suggested, namely under-lake springs with subtypes: an under-lake slope spring and under-lake offshore spring

  4. Response of the St. Joseph River to lake level changes during the last 12,000 years in the Lake Michigan basin

    Science.gov (United States)

    Kincare, K.A.

    2007-01-01

    The water level of the Lake Michigan basin is currently 177 m above sea level. Around 9,800 14C years B.P., the lake level in the Lake Michigan basin had dropped to its lowest level in prehistory, about 70 m above sea level. This low level (Lake Chippewa) had profound effects on the rivers flowing directly into the basin. Recent studies of the St. Joseph River indicate that the extreme low lake level rejuvenated the river, causing massive incision of up to 43 m in a valley no more than 1.6 km wide. The incision is seen 25 km upstream of the present shoreline. As lake level rose from the Chippewa low, the St. Joseph River lost competence and its estuary migrated back upstream. Floodplain and channel sediments partially refilled the recently excavated valley leaving a distinctly non-classical morphology of steep sides with a broad, flat bottom. The valley walls of the lower St. Joseph River are 12-18 m tall and borings reveal up to 30 m of infill sediment below the modern floodplain. About 3 ?? 108 m3 of sediment was removed from the St. Joseph River valley during the Chippewa phase lowstand, a massive volume, some of which likely resides in a lowstand delta approximately 30 km off-shore in Lake Michigan. The active floodplain below Niles, Michigan, is inset into an upper terrace and delta graded to the Calumet level (189 m) of Lake Chicago. In the lower portion of the terrace stratigraphy a 1.5-2.0 m thick section of clast-supported gravel marks the entry of the main St. Joseph River drainage above South Bend, Indiana, into the Lake Michigan basin. This gravel layer represents the consolidation of drainage that probably occurred during final melting out of ice-marginal kettle chains allowing stream piracy to proceed between Niles and South Bend. It is unlikely that the St. Joseph River is palimpsest upon a bedrock valley. The landform it cuts across is a glaciofluvial-deltaic feature rather than a classic unsorted moraine that would drape over pre-glacial topography

  5. Use of Cs-137 as tracer in lake sediment investigation

    International Nuclear Information System (INIS)

    Dinescu, L.; Vasile, E.; Timofte, L.; Cernisov, G.; Dorcioman, R.

    1997-01-01

    137 Cs vertical profile and total inventories were determined in four lakes located in Danube Delta and surroundings and in channel Dunavat. The radiocaesium total inventory of 1800 Bq/m 2 in Matita and Merhei-Middle Part, very closed to the atmospheric fallout value and a very low sedimentation rate, suggest a relative isolation of these two lakes related to the main Danube branches. The vertical profile obtained in Merhei lake (the Southern part) shows three distinct peaks corresponding to nuclear weapons tests performed in 1954 and 1963 and to Chernobyl event in 1986. Radiocaesium total inventory of 3270 Bq/m 2 was explained by an important 137 Cs contribution from the sediment transported by the channel linking lake Merhei to Dunarea Veche (Chilia branch). For the lakes Leahova and Razim, located in the immediate vicinity of the Black Sea, the total inventories of 600 Bq/m2 suggest an important transfer of sediments from the lakes to Black Sea. 137 Cs vertical profile in Dunavat channel shows two peaks, corresponding to Chernobyl event and nuclear tests. The total inventory of 2600 Bq/m 2 is due to atmospheric fallout and to the sediments transported by the river Danube and then by channel Dunavat. The sedimentation rate of 0.7 cm/year obtained from both peaks, suggests a constant sediment accumulation in the last 33 years. Other environmental tracers were used for recent lake sediment dating. The obtained results (considered as preliminary results) were compared with 137 Cs results. The results obtained from 137 Cs, 210 Pb and 241 Am measurements demonstrated that the environmental tracers are a valuable tool in sediment origin, transport and accumulation investigation. The research is in progress. (authors)

  6. Wapan Sakahikan : the making of a lake

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, D.

    2009-08-15

    This article discussed an ecosystem project built on reclaimed oil sands lands. The oil sands mine originally required the removal of sections of the Tar and Calumet rivers, tributaries of the Athabasca River. A 76.7 hectare lake was constructed in order to salvage over 100,000 fish. The reclamation included the development of a traditional gathering area for local First Nations and Metis. The lake included a variety of fish habitats and was supported by 5 years of monitoring. The lake will be home to 8 fish species and is 23 meters in depth with shallow areas of 5 meters. Biologists helped to build the habitats, which include deep channels with varying depth and widths; shoals; overhead vegetation; and a rearing habitat area. The lake's littoral zone is approximately 30 per cent of the lake's total area. The involvement of First Nations and Metis included a traditional ceremony on the empty lake bottom. 1 fig.

  7. Fish Lake, Utah - a promising long core site straddling the Great Basin to Colorado Plateau transition zone

    Science.gov (United States)

    Marchetti, D. W.; Abbott, M. B.; Bailey, C.; Wenrich, E.; Stoner, J. S.; Larsen, D. J.; Finkenbinder, M. S.; Anderson, L.; Brunelle, A.; Carter, V.; Power, M. J.; Hatfield, R. G.; Reilly, B.; Harris, M. S.; Grimm, E. C.; Donovan, J.

    2015-12-01

    Fish Lake (~7x1.5 km and 2696 m asl) is located on the Fish Lake Plateau in central Utah. The Lake occupies a NE-striking tectonic graben; one of a suite of grabens on the Plateau that cut 21-26 Ma volcanic rocks. The lake outflows via Lake Creek to the NE where it joins Sevenmile Creek to become the Fremont River, a tributary to the Colorado River. A bathymetric survey reveals a mean depth of 27 m and a max depth of 37.2 m. The lake bottom slopes from NW to SE with the deepest part near the SE wall, matching the topographic expression of the graben. Nearby Fish Lake Hightop (3545 m) was glaciated with an ice field and outlet glaciers. Exposure ages indicate moraine deposition during Pinedale (15-23 ka) and Bull Lake (130-150 ka) times. One outlet glacier at Pelican Canyon deposited moraines and outwash into the lake but the main basin of the lake was never glaciated. Gravity measurements indicate that lake sediments thicken toward the SE side of the lake and the thickest sediment package is modeled to be between 210 and 240 m. In Feb 2014 we collected cores from Fish Lake using a 9-cm diameter UWITECH coring system in 30.5 m of water. A composite 11.2-m-long core was constructed from overlapping 2 m drives that were taken in triplicate to ensure total recovery and good preservation. Twelve 14C ages and 3 tephra layers of known age define the age model. The oldest 14C age of 32.3±4.2 cal ka BP was taken from 10.6 m. Core lithology, CT scans, and magnetic susceptibility (ms) reveal three sediment packages: an organic-rich, low ms Holocene to post-glacial section, a fine-grained, minerogenic glacial section with high ms, and a short section of inferred pre-LGM sediment with intermediate composition. Extrapolating the age model to the maximum estimated sediment thicknesses suggest sediments may be older than 500-700 ka. Thus Fish Lake is an ideal candidate for long core retrieval as it likely contains paleoclimatic records extending over multiple glacial cycles.

  8. Predicting lake trophic state by relating Secchi-disk transparency measurements to Landsat-satellite imagery for Michigan inland lakes, 2003-05 and 2007-08

    Science.gov (United States)

    Fuller, L.M.; Jodoin, R.S.; Minnerick, R.J.

    2011-01-01

    Inland lakes are an important economic and environmental resource for Michigan. The U.S. Geological Survey and the Michigan Department of Natural Resources and Environment have been cooperatively monitoring the quality of selected lakes in Michigan through the Lake Water Quality Assessment program. Sampling for this program began in 2001; by 2010, 730 of Michigan’s 11,000 inland lakes are expected to have been sampled once. Volunteers coordinated by the Michigan Department of Natural Resources and Environment began sampling lakes in 1974 and continue to sample (in 2010) approximately 250 inland lakes each year through the Michigan Cooperative Lakes Monitoring Program. Despite these sampling efforts, it still is impossible to physically collect measurements for all Michigan inland lakes; however, Landsat-satellite imagery has been used successfully in Minnesota, Wisconsin, Michigan, and elsewhere to predict the trophic state of unsampled inland lakes greater than 20 acres by producing regression equations relating in-place Secchi-disk measurements to Landsat bands. This study tested three alternatives to methods previously used in Michigan to improve results for predicted statewide Trophic State Index (TSI) computed from Secchi-disk transparency (TSI (SDT)). The alternative methods were used on 14 Landsat-satellite scenes with statewide TSI (SDT) for two time periods (2003– 05 and 2007–08). Specifically, the methods were (1) satellitedata processing techniques to remove areas affected by clouds, cloud shadows, haze, shoreline, and dense vegetation for inland lakes greater than 20 acres in Michigan; (2) comparison of the previous method for producing a single open-water predicted TSI (SDT) value (which was based on an area of interest (AOI) and lake-average approach) to an alternative Gethist method for identifying open-water areas in inland lakes (which follows the initial satellite-data processing and targets the darkest pixels, representing the deepest water

  9. Some climatological factors of pine in the lake toba catchment area

    Science.gov (United States)

    Nasution, Z.

    2018-02-01

    The article deals with climatological factors of Pine at the Lake Toba Catchment Area also called drained basin, Pinus merkusii is a plant endemic in Sumatra. A central population of Pine in North Sumatra is located in the Tapanuli region to south of Lake Toba. Junghuhn discovered the species in the mountains range of Sipirok. He provisionally named the species as Pinus sumatrana. The article presents a detail analysis of approaches to climate factors, considers rainfall, air temperature, humidity, stemflow, throughfall and Interception following calculation of regression to determine relationship between precipitation with stemflow and interception. Stemflow, it is highly significant with significance of difference between correlation coefficients and z normal distribution. Temperature and relative humidity are the important components in the climate. These components influence the evaporation process and rainfall in the catchment. Pinus merkusii has the big crown interception. Stemflow and Interception has an opposite relation. Increasing of interception capacity will decrease stemflow. This type of Pine also has rough bark however significant channels so that, it flows water even during the wet season and caused the stemflow in Pinus merkusii relatively bigger.

  10. Current ecosystem processes in steppe near Lake Baikal

    Science.gov (United States)

    Vanteeva, Julia

    2015-04-01

    The steppes and forest steppes complexes of Priol'khonie at the Lake Baikal (southern Siberia, Russia) were studied in this research. Recreational activity has a significant impact on the Priol'khonie region. During soviet time this area was actively used for agriculture. Nowadays, this territory is the part of Pribaikalskyi National Park and special protection is needed. As the landscapes satisfy different human demands there are many land-management conflicts. The specific climate and soil conditions and human activity lead to erosion processes on study area. Sediment loads are transferred into the Lake Baikal and cause water pollution. Consequently, vegetation cover and phytomass play an important role for regulating hydrological processes in the ecosystems. The process of phytomass formation and its proactive role playing on sedimentation and mitigate silt detaching by rill and inter-rill erosion are considered in the research as important indicators of the ecosystem functions for steppe landscapes. These indicators were studied for the different land cover types identified on the area because the study area has a large variety of steppe and forest steppe complexes, differing in the form of relief, soil types, vegetation species composition and degree of land degradation. The fieldwork was conducted in the study area in the July and August of 2013. Thirty-two experimental sites (10 x 10 m) which characterized different types of ecosystem were established. The level of landscape degradation was estimated. The method of clipping was used for the valuation of above-ground herbaceous phytomass. The phytomass of tree stands was calculated using the volume-conversion rates for forest-steppe complexes. For the quantification of transferred silt by inter-rill erosion in different conditions (vegetation, slope, soil type, anthropogenic load) a portable rainfall simulator was created with taking into account the characteristics of the study area. The aboveground

  11. Post-glacial inflation-deflation cycles, tilting, and faulting in the Yellowstone Caldera based on Yellowstone Lake shorelines

    Science.gov (United States)

    Pierce, Kenneth L.; Cannon, Kenneth P.; Meyer, Grant A.; Trebesch, Matthew J.; Watts, Raymond D.

    2002-01-01

    The Yellowstone caldera, like many other later Quaternary calderas of the world, exhibits dramatic unrest. Between 1923 and 1985, the center of the Yellowstone caldera rose nearly one meter along an axis between its two resurgent domes (Pelton and Smith, 1979, Dzurisin and Yamashita, 1987). From 1985 until 1995-6, it subsided at about two cm/yr (Dzurisin and others, 1990). More recent radar interferometry studies show renewed inflation of the northeastern resurgent dome between 1995 and 1996; this inflation migrated to the southwestern resurgent dome from 1996 to 1997 (Wicks and others, 1998). We extend this record back in time using dated geomorphic evidence of postglacial Yellowstone Lake shorelines around the northern shore, and Yellowstone River levels in the outlet area. We date these shorelines using carbon isotopic and archeological methods. Following Meyer and Locke (1986) and Locke and Meyer (1994), we identify the modern shoreline as S1 (1.9 ? 0.3 m above the lake gage datum), map paleoshoreline terraces S2 to S6, and infer that the prominent shorelines were cut during intracaldera uplift episodes that produced rising water levels. Doming along the caldera axis reduces the gradient of the Yellowstone River from Le Hardys Rapids to the Yellowstone Lake outlet and ultimately causes an increase in lake level. The 1923-1985 doming is part of a longer uplift episode that has reduced the Yellowstone River gradient to a ?pool? with a drop of only 0.25 m over most of this 5 km reach. We also present new evidence that doming has caused submergence of some Holocene lake and river levels. Shoreline S5 is about 14 m above datum and estimated to be ~12.6 ka, because it post-dates a large hydrothermal explosion deposit from the Mary Bay area (MB-II) that occurred ~13 ka. S4 formed about 8 m above datum ~10.7 ka as dated by archeology and 14C, and was accompanied by offset on the Fishing Bridge fault. About 9.7 ka, the Yellowstone River eroded the ?S-meander?, followed

  12. An isotopic approach to study the recharge mechanism in Haripur plain contribution to the area from Tarbela and Khanpur lakes

    International Nuclear Information System (INIS)

    Sajjad, M.I.; Tasneem, M.A.; Khan, I.H.; Ahmad, M.; Akram, W.

    1992-01-01

    Environmental isotopic investigation were carried out in Haripur plain to determine the recharge mechanism in the area. The Haripur plain is bounded by river Doar (that falls in Tarbela lake) in the north mountain ranges in the east and west, while the river Haro flows on the south eastern boundary upon which Khanpur dam has been built. Effort were made to identify the different sources which recharge the aquifer in the area. Isotopic data reveals that the major source of recharge is the rainfall on adjoining hills There is no contribution of Tarbela and Khanpur lakes. The residence time varies from a few years to more than fifty years depending upon the geology of the area. 14 figs. (author)

  13. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    Science.gov (United States)

    Kristensen, Emil; Madsen-Østerbye, Mikkel; Massicotte, Philippe; Pedersen, Ole; Markager, Stiig; Kragh, Theis

    2018-02-01

    Groundwater-borne contaminants such as nutrients, dissolved organic carbon (DOC), coloured dissolved organic matter (CDOM) and pesticides can have an impact the biological quality of lakes. The sources of pollutants can, however, be difficult to identify due to high heterogeneity in groundwater flow patterns. This study presents a novel approach for fast hydrological surveys of small groundwater-fed lakes using multiple groundwater-borne tracers. Water samples were collected from the lake and temporary groundwater wells, installed every 50 m within a distance of 5-45 m to the shore, were analysed for tracer concentrations of CDOM, DOC, total dissolved nitrogen (TDN, groundwater only), total nitrogen (TN, lake only), total dissolved phosphorus (TDP, groundwater only), total phosphorus (TP, lake only), δ18O / δ16O isotope ratios and fluorescent dissolved organic matter (FDOM) components derived from parallel factor analysis (PARAFAC). The isolation of groundwater recharge areas was based on δ18O measurements and areas with a high groundwater recharge rate were identified using a microbially influenced FDOM component. Groundwater discharge sites and the fractions of water delivered from the individual sites were isolated with the Community Assembly via Trait Selection model (CATS). The CATS model utilized tracer measurements of TDP, TDN, DOC and CDOM from the groundwater samples and related these to the tracer measurements of TN, TP, DOC and CDOM in the lake. A direct comparison between the lake and the inflowing groundwater was possible as degradation rates of the tracers in the lake were taken into account and related to a range of water retention times (WRTs) of the lake (0.25-3.5 years in 0.25-year increments). These estimations showed that WRTs above 2 years required a higher tracer concentration of inflowing water than found in any of the groundwater wells around the lake. From the estimations of inflowing tracer concentration, the CATS model isolated

  14. Satellite Monitoring and Characterization of the 2010 Rockslide-Dammed Lake Gojal, North Pakistan

    Science.gov (United States)

    Leonard, G. J.; Kargel, J. S.; Crippen, R. E.; Evans, S. G.; Delaney, K. B.; Schneider, J. F.

    2010-12-01

    On January 4, 2010, a landslide blocked the Hunza River at Attabad, northern Pakistan (36.308°N, 74.820°E). The landslide destroyed the village of Attabad killing 19 people, and formed a dam approximately 1200m long, 350 meters wide, and 125 meters high. The flow of the Hunza river was blocked for 144 days, forming Lake Gojal. In addition to inundating several villages and submerging 22 km of the regionally critical Karakoram Highway, >25,000 people have been displaced or remain cut off from overland connection with the rest of the country. Lake overtopping began on May 29 via a 15m deep spillway excavated through the saddle of the dam. Remarkably, the slowly eroding natural structure remains largely intact and currently represents a new geologic feature, although a threat remains from possible catastrophic outburst flooding. We have monitored growth of the lake with multi-temporal satellite imagery collected from ASTER (Advanced Spaceborne Thermal and Reflection Radiometer) and ALI (Advanced Land Imager) sensors. We applied NASA’s ASTER Global Digital Elevation Model (GDEM) and SRTM-3 digital terrain data, along with field data obtained onsite by Schneider, and by Pakistan’s NDMA to derive volumes of the growing lake. Lake size peaked during mid-summer when it was ~22 km long, 12 km2, 119m deep, and contained 540 to 620 Mm3 water (SRTM-3 and GDEM +5m global correction estimates respectively). Our estimates indicated lake volumes three to four times higher than media quotes, and before spillover, were used to improve predictions of possible flood discharge and disaster management planning. Estimates of valley inflow based on a 31-year hydrographic history (Archer, D., 2003, Jour. Hydrology 274, 198-210) are consistent with our volume infilling estimates. As early as April 14 our volume assessments, coupled with hydrographic and seepage data were used to project a spillover date range of May 28-June 2, bracketing the actual overflow date. Additionally, we have

  15. Effects of the exotic zebra mussel (Dreissena polymorpha) on metal cycling in Lake Erie

    International Nuclear Information System (INIS)

    Klerks, P.L.; Fraleigh, P.C.; Lawniczak, J.E.

    1997-01-01

    This research demonstrated the impact of high densities of the zebra mussel (Dreissena polymorpha) on the cycling of copper, nickel, and zinc in a lake environment. Experiments with mussels on sedimentation traps in western Lake Erie and with mussels in flow-through tanks receiving Lake Erie water showed that zebra mussels remove metals from the water column, incorporate metals in their tissues, and deposit metals on the lake bottom. Removal of metals from the water column was estimated at 10-17%·day -1 of the amounts present. This material was largely deposited on the lake bottom; zebra mussels more than doubled the rate at which metals were being added to the lake bottom. Metal biodeposition rates were extremely high (e.g., 50 mg Zn·m -2 ·day -1 ) in high-turbidity areas with elevated metal levels. Two factors contributed to metal biodeposition by zebra mussels. First, their production of feces and pseudofeces increased the rate at which suspended matter was being added to the sediment (accounting for 92% of the increased metal biodeposition). Second, the material coming out of suspension had higher metal concentrations when zebra mussels were present (constituting 8% of the increased biodeposition). (author)

  16. A Survey on M2M Service Networks

    Directory of Open Access Journals (Sweden)

    Juhani Latvakoski

    2014-11-01

    Full Text Available The number of industrial applications relying on the Machine to Machine (M2M services exposed from physical world has been increasing in recent years. Such M2M services enable communication of devices with the core processes of companies. However, there is a big challenge related to complexity and to application-specific M2M systems called “vertical silos”. This paper focuses on reviewing the technologies of M2M service networks and discussing approaches from the perspectives of M2M information and services, M2M communication and M2M security. Finally, a discussion on technologies and approaches potentially enabling future autonomic M2M service networks are provided. According to our conclusions, it is seen that clear definition of the architectural principles is needed to solve the “vertical silo” problem and then, proceeding towards enabling autonomic capabilities for solving complexity problem appears feasible. Several areas of future research have been identified, e.g., autonomic information based services, optimization of communications with limited capability devices, real-time messaging, creation of trust and end to end security, adaptability, reliability, performance, interoperability, and maintenance.

  17. Uptake of Hg2+ by picocyanobacteria in natural water from four Andean lakes

    Directory of Open Access Journals (Sweden)

    Diéguez M.C.

    2014-07-01

    Full Text Available In lake food webs, planktonic bacteria and algae represent the greatest bioconcentration step for Hg2+ and monomethyl-Hg (MeHg. As they are the most abundant organisms in planktonic trophic webs and also the main food resource for herbivorous plankton, they can mobilize large amounts of Hg to higher trophic levels. In Andean Patagonian lakes (Argentina, dissolved organic matter (DOM concentration and character, coupled with photo-reactions, play a central role in the complexation of Hg2+ in the water column and can even regulate the uptake of Hg2+ by planktonic algae. In this investigation we evaluated the DOM character of natural waters (NW from four Andean lakes and studied its influence on the uptake of 197Hg2+ in a strain of the picocyanobacteria Synechococcus by using Hg2+ labeled with 197Hg2+. The uptake of radiolabeled Hg2+ by Synechococcus showed different magnitude in NW of lakes Moreno, El Trébol, Morenito and Escondido. Increasing lake DOM concentration reduced the bioavailability of Hg2+ as indicated by the lower uptakes rates found in NW with higher complexity and concentration of the DOM pool. Uptakes of Hg2+ by this picocyanobacteria contrasted among NW from pelagic (surface and bottom and littoral compartments of Lake Escondido which suggest that the entry of this metal may be highly variable even in the same environment. The study of the uptake of radiolabeled Hg2+ in a set of dilutions of NW from Lake Escondido demonstrated that the bioavailability of Hg2+ decrease with increasing DOM concentration.

  18. Monitoring Recent Fluctuations of the Southern Pool of Lake Chad Using Multiple Remote Sensing Data: Implications for Water Balance Analysis

    Directory of Open Access Journals (Sweden)

    Wenbin Zhu

    2017-10-01

    Full Text Available The drought episodes in the second half of the 20th century have profoundly modified the state of Lake Chad and investigation of its variations is necessary under the new circumstances. Multiple remote sensing observations were used in this paper to study its variation in the recent 25 years. Unlike previous studies, only the southern pool of Lake Chad (SPLC was selected as our study area, because it is the only permanent open water area after the serious lake recession in 1973–1975. Four satellite altimetry products were used for water level retrieval and 904 Landsat TM/ETM+ images were used for lake surface area extraction. Based on the water level (L and surface area (A retrieved (with coinciding dates, linear regression method was used to retrieve the SPLC’s L-A curve, which was then integrated to estimate water volume variations ( Δ V . The results show that the SPLC has been in a relatively stable phase, with a slight increasing trend from 1992 to 2016. On annual average scale, the increase rate of water level, surface area and water volume is 0.5 cm year−1, 0.14 km2 year−1 and 0.007 km3 year−1, respectively. As for the intra-annual variations of the SPLC, the seasonal variation amplitude of water level, lake area and water volume is 1.38 m, 38.08 km2 and 2.00 km3, respectively. The scatterplots between precipitation and Δ V indicate that there is a time lag of about one to two months in the response of water volume variations to precipitation, which makes it possible for us to predict Δ V . The water balance of the SPLC is significantly different from that of the entire Lake Chad. While evaporation accounts for 96% of the lake’s total water losses, only 16% of the SPLC’s losses are consumed by evaporation, with the other 84% offset by outflow.

  19. Contrasting responses to long-term climate change of carbon flows to benthic consumers in two different sized lakes in the Baltic area.

    Science.gov (United States)

    Belle, Simon; Freiberg, Rene; Poska, Anneli; Agasild, Helen; Alliksaar, Tiiu; Tõnno, Ilmar

    2018-05-01

    The study of lake sediments and archived biological remains is a promising approach to better understand the impacts of climate change on aquatic ecosystems. Small lakes have been shown to be strongly sensitive to past climate change, but similar information is lacking for large lakes. By identifying responses to climate change of carbon flows through benthic food web in two different sized lakes, we aimed to understand how lake morphometry can mediate the effects of climate change. We reconstructed the dynamics of phytoplankton community composition and carbon resources sustaining chironomid biomass during the Holocene from the combined analysis of sedimentary pigment quantification and carbon stable isotopic composition of subfossil chironomid head capsules (δ13CHC) in a large lake in the Baltic area (Estonia). Our results showed that chironomid biomass in the large lake was mainly sustained by phytoplankton, with no significant relationship between δ13CHC values and temperature fluctuations. We suggest that lake morphometry (including distance of the sampling zone to the shoreline, and lake volume for primary producers) mediates the effects of climate change, making large lakes less sensitive to climate change. Complementary studies are needed to better understand differences in organic matter dynamics in different sized lakes and to characterize the response of the aquatic carbon cycle to past climate change.

  20. Prehistory and History of the El Dorado Lake Area, Kansas. Phase II.

    Science.gov (United States)

    1981-01-01

    ae,()A5201018A520202,dosl ae (d) ~ ~ ~ ~ ~ , veta ae e 540100,dra ae f eta faeyg 510201 osa ae h eta ae(;~ 4308 Assuming that the sizes of edge...Anthropology Ŗ Project Rept..Xeries ’ e /-A. Number 47 Y / - REHISTORY AND HISTORY OF THE EL DORADO LAKE AREA, KANSAS (PHASE Z)/ ./-- °/ . 7 / Edited by...Mary J. dair Contributors: Mary J. Adair Joe Alan Artz Marie E . Brown Darrell Drew Ch4rie E . Haury Gary R. Leaf Ricky L. Roberts Matthew J. Root Mary

  1. Contaminant Monitoring Strategy for Henrys Lake, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    John S. Irving; R. P. Breckenridge

    1992-12-01

    Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface

  2. Late Pleistocene to Holocene lake levels of Lake Warner, Oregon (USA) and their effect on archaeological site distribution patterns

    Science.gov (United States)

    Wriston, T.; Smith, G. M.

    2017-12-01

    Few chronological controls are available for the rise and fall of small pluvial lake systems in the Northwestern Great Basin. Within Warner Basin this control was necessary for interpretation of known archaeological sites and for predicting where evidence of its earliest inhabitants might be expected. We trenched along relic beach ridges of Lake Warner, surveyed a stratified sample of the area for archaeological sites, and excavated some sites and a nearby rockshelter. These efforts produced new ages that we used to construct a lake level curve for Lake Warner. We found that the lake filled the valley floor between ca. 30,000 cal yr BP and ca. 10,300 cal yr BP. In nearby basins, several oscillations are evident before ca. 21,100 cal yr BP, but a steep rise to the LGM maximum occurred between 21,000 and 20,000 cal yr BP. Lake Warner likely mirrored these changes, dropped to the valley floor ca. 18,340 cal yr BP, and then rose to its maximum highstand when its waters briefly reached 1454 m asl. After this highstand the lake receded to moderately high levels. Following ca. 14,385 cal yr BP, the lake oscillated between moderate to moderately-high levels through the Bolling-Allerod interstadials and into the Younger Dryas stadial. The basin's first occupants arrived along its shore around this time, while the lake still filled the valley floor. These earliest people carried either Western Stemmed or Clovis projectile points, both of which are found along the lake margin. The lake receded into the valley floor ca. 10,300 cal yr BP and dune development began, ringing wetlands and small lakes that persisted in the footprint of the once large lake. By the time Mazama tephra fell 7,600 cal yr BP it blanketed pre-existing dunes and marsh peats. Our Lake Warner lake level curve facilitates interdisciplinary testing and refinement of it and similar curves throughout the region while helping us understand the history of lake and the people who lived along its shores.

  3. Paleoenvironments, Evolution, and Geomicrobiology in a Tropical Pacific Lake: The Lake Towuti Drilling Project (TOWUTI)

    Science.gov (United States)

    Vogel, Hendrik; Russell, James M.; Bijaksana, Satria; Crowe, Sean; Fowle, David; Haffner, Douglas; King, John; Marwoto, Ristiyanti; Melles, Martin; von Rintelen, Thomas; Stevenson, Janelle; Watkinson, Ian; Wattrus, Nigel

    2014-05-01

    Lake Towuti (2.5°S, 121°E) is a, 560 km2, 200-m deep tectonic lake at the downstream end of the Malili lake system, a set of five, ancient (1-2 MYr) tectonic lakes in central Sulawesi, Indonesia. Lake Towuti's location in central Indonesia provides a unique opportunity to reconstruct long-term paleoclimate change in a crucially important yet understudied region- the Indo-Pacific warm pool (IPWP), heart of the El Niño-Southern Oscillation. The Malili Lakes have extraordinarily high rates of floral and faunal endemism, and the lakes are surrounded by one of the most diverse tropical forests on Earth. Drilling in Lake Towuti will identify the age and origin of the lake and the environmental and climatic context that shaped the evolution of this unique lacustrine and terrestrial ecosystem. The ultramafic (ophiolitic) rocks and lateritic soils surrounding Lake Towuti provide metal substrates that feed a diverse, exotic microbial community, analogous to the microbial ecosystems that operated in the Archean Oceans. Drill core will provide unique insight into long-term changes in this ecosystem, as well as microbial processes operating at depth in the sediment column. High-resolution seismic reflection data (CHIRP and airgun) combined with numerous long sediment piston cores collected from 2007-2013 demonstrate the enormous promise of Lake Towuti for an ICDP drilling campaign. Well-stratified sequences of up to 150 m thickness, uninterrupted by unconformities or erosional truncation, are present in multiple sub-basins within Towuti, providing ideal sites for long-term environmental, climatic, and limnological reconstructions. Multiproxy analyses of our piston cores document a continuous and detailed record of moisture balance variations in Lake Towuti during the past 60 kyr BP. In detail our datasets show that wet conditions and rainforest ecosystems in central Indonesia persisted during Marine Isotope Stage 3 (MIS3) and the Holocene, and were interrupted by severe

  4. Expansion of Dreissena into offshore waters of Lake Michigan and potential impacts on fish populations

    Science.gov (United States)

    Bunnell, D.B.; Madenjian, C.P.; Holuszko, J.D.; Adams, J.V.; French, J. R. P.

    2009-01-01

    Lake Michigan was invaded by zebra mussels (Dreissena polymorpha) in the late 1980s and then followed by quagga mussels (D. bugensis) around 1997. Through 2000, both species (herein Dreissena) were largely restricted to depths less than 50??m. Herein, we provide results of an annual lake-wide bottom trawl survey in Lake Michigan that reveal the relative biomass and depth distribution of Dreissena between 1999 and 2007 (although biomass estimates from a bottom trawl are biased low). Lake-wide mean biomass density (g/m2) and mean depth of collection revealed no trend between 1999 and 2003 (mean = 0.7??g/m2 and 37??m, respectively). Between 2004 and 2007, however, mean lake-wide biomass density increased from 0.8??g/m2 to 7.0??g/m2, because of increased density at depths between 30 and 110??m, and mean depth of collection increased from 42 to 77??m. This pattern was confirmed by a generalized additive model. Coincident with the Dreissena expansion that occurred beginning in 2004, fish biomass density (generally planktivores) declined 71% between 2003 and 2007. Current understanding of fish population dynamics, however, indicates that Dreissena expansion is not the primary explanation for the decline of fish, and we provide a species-specific account for more likely underlying factors. Nonetheless, future sampling and research may reveal a better understanding of the potential negative interactions between Dreissena and fish in Lake Michigan and elsewhere.

  5. Lake eutrophication and its implications for organic carbon sequestration in Europe.

    Science.gov (United States)

    Anderson, N J; Bennion, H; Lotter, A F

    2014-09-01

    The eutrophication of lowland lakes in Europe by excess nitrogen (N) and phosphorus (P) is severe because of the long history of land-cover change and agricultural intensification. The ecological and socio-economic effects of eutrophication are well understood but its effect on organic carbon (OC) sequestration by lakes and its change overtime has not been determined. Here, we compile data from ~90 culturally impacted European lakes [~60% are eutrophic, Total P (TP) >30 μg P l(-1) ] and determine the extent to which OC burial rates have increased over the past 100-150 years. The average focussing corrected, OC accumulation rate (C ARFC ) for the period 1950-1990 was ~60 g C m(-2) yr(-1) , and for lakes with >100 μg TP l(-1) the average was ~100 g C m(-2) yr(-1) . The ratio of post-1950 to 1900-1950 C AR is low (~1.5) indicating that C accumulation rates have been high throughout the 20th century. Compared to background estimates of OC burial (~5-10 g C m(-2) yr(-1) ), contemporary rates have increased by at least four to fivefold. The statistical relationship between C ARFC and TP derived from this study (r(2) = 0.5) can be used to estimate OC burial at sites lacking estimates of sediment C-burial. The implications of eutrophication, diagenesis, lake morphometry and sediment focussing as controls of OC burial rates are considered. A conservative interpretation of the results of the this study suggests that lowland European meso- to eutrophic lakes with >30 μg TP l(-1) had OC burial rates in excess of 50 g C m(-2) yr(-1) over the past century, indicating that previous estimates of regional lake OC burial have seriously underestimated their contribution to European carbon sequestration. Enhanced OC burial by lakes is one positive side-effect of the otherwise negative impact of the anthropogenic disruption of nutrient cycles. © 2014 John Wiley & Sons Ltd.

  6. Predicting the locations of naturally fishless lakes

    Science.gov (United States)

    Schilling, Emily Gaenzle; Loftin, C.S.; Degoosh, K.E.; Huryn, Alexander D.; Webster, K.E.

    2008-01-01

    1. Fish have been introduced into many previously fishless lakes throughout North America over the past 100+ years. It is difficult to determine the historical distribution of fishless lakes, however, because these introductions have not always been well-documented. 2. Due to its glacial history and low human population density, the state of Maine (U.S.A.) may host the greatest number of naturally fishless lakes in the northeastern United States. However, less than one-quarter of Maine's 6000+ lakes have been surveyed for fish presence, and no accurate assessments of either the historical or current abundance and distribution of fishless lakes exist. 3. We developed methods to assess the abundance and distribution of Maine's naturally fishless lakes (0.6-10.1 ha). We hypothesized that the historical distribution of fishless lakes across a landscape is controlled by geomorphic and geographic conditions. 4. We used ArcGIS to identify landscape-scale geomorphic and geographic factors (e.g. connectivity, surrounding slope) correlated with fish absence in two geomorphic regions of Maine - the western and interior mountains and the eastern lowlands and foothills. By using readily available geographic information systems data our method was not limited to field-visited sites. We estimated the likelihood that a particular lake is fishless with a stepwise logistic regression model developed for each region. 5. The absence of fish from western lakes is related to altitude (+), minimum percent slope in the 500 m buffer (+), maximum percent slope in the 500 m buffer (+) and percent cover of herbaceous-emergent wetland in 1000 m buffer (-). The absence of fish from eastern lakes is related to the lack of a stream within 50 m of the lake. 6. The models predict that a total of 4% (131) of study lakes in the two regions were historically fishless, with the eastern region hosting a greater proportion than the western region. 7. We verified the model predictions with two

  7. CO2 diffuse emission from maar lake: An example in Changbai volcanic field, NE China

    Science.gov (United States)

    Sun, Yutao; Guo, Zhengfu; Liu, Jiaqi; Du, Jianguo

    2018-01-01

    Numerous maars and monogenetic volcanic cones are distributed in northeast China, which are related to westward deep subduction of the Pacific Ocean lithosphere, comprising a significant part of the "Pacific Ring of Fire". It is well known that diffuse CO2 emissions from monogenetic volcanoes, including wet (e.g., maar lake) and dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.), may contribute to budget of globally nature-derived greenhouse gases. However, their relationship between wet (e.g., maar lake) and concomitant dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.) related to monogenetic volcanic field is poorly understood. Yuanchi maar, one of the typical monogenetic volcanic systems, is located on the eastern flank of Tianchi caldera in Changbai volcanic field of northeast China, which displays all of three forms of CO2 degassing including the maar lake, soil micro-seepage and fault degassing. Measurements of efflux of CO2 diffusion from the Yuanchi maar system (YMS) indicate that the average values of CO2 emissions from soil micro-seepage, fault degassing and water-air interface diffusion are 24.3 ± 23.3 g m- 2 d- 1, 39.2 ± 22.4 g m- 2 d- 1 and 2.4 ± 1.1 g m- 2 d- 1, respectively. The minimum output of CO2 diffuse emission from the YMS to the atmosphere is about 176.1 ± 88.3 ton/yr, of which 80.4% results from the dry degassing system. Degassing from the fault contributes to the most of CO2 emissions in all of the three forms of degassing in the YMS. Contributions of mantle, crust, air and organic CO2 to the soil gas are 0.01-0.10%, 10-20%, 32-36% and 48-54%, respectively, which are quantitatively constrained by a He-C isotope coupling calculation model. We propose that CO2 exsolves from the upper mantle melting beneath the Tianchi caldera, which migrates to the crustal magma chamber and further transports to the surface of YMS along the deep fault system. During the transportation processes, the emission

  8. Short-Term Bluff Recession Behavior Along Pennsylvania's Great Lakes Coastline, USA

    Science.gov (United States)

    Foyle, A. M.; Naber, M. D.; Pluta, M. J.

    2011-12-01

    less than 0.3 m/yr which is consistent with known long-term rates. Very-short term rates of recession can locally exceed 11 m/yr. In general, bluffs retreat relatively linearly where poorly-vegetated glacial till dominates the bluff stratigraphy, while along higher-elevation strandplain-capped bluff sections, rotational earth slumps (<100 m diameter) are well developed. Retreat rates are highest at slump areas and at 1st - 2nd order ravines (100-300 m in length). Both of these settings are associated with focused groundwater discharge from thin lake plain and strandplain aquifers in particular. Other factors do influence bluff retreat temporally, but are not important at the scale of this study.

  9. Dry deposition of polychlorinated biphenyls in urban areas

    International Nuclear Information System (INIS)

    Holsen, T.M.; Noll, K.E.; Shiping Liu, Wenjhy Lee

    1991-01-01

    The PCB dry deposition flux was measured in Chicago with a greased, Mylar-covered smooth plate with a sharp leading edge pointed into the wind. The dry deposition flux of PCBs in Chicago averaged 3.8 μg/m 2 ·day between May and November 1989 and 6.0 μg/m 2 ·day for May and June 1990. A comparison of the PCB flux measured in Chicago to an estimated nonurban PCB flux shows that the flux of PCBs is up to 3 orders of magnitude higher in urban areas than in nonurban areas, indicating that Chicago and other urban areas near the Great Lakes must be considered as major source terms for deposition of PCBs into the lakes. The distribution of atmospheric PCBs between the gas and particle phase and the size distribution of particle-phase PCBs were also measured. The airborne PCB concentration as measured by the Noll rotary impactor (NRI) A stage (particles with aerodynamic diameters of > 6.5 μm) was higher in Chicago (0.94 ng/m 3 ) than in Los Angeles (0.52 ng/m 3 ), as was the mean particle-phase PCB concentration (47 vs 21 μg/g). PCBs were found to be associated with all sizes of atmospheric particles; however, their particle mass normalized concentration decreased with increasing particle size. PCBs associated with particles, particularly coarse particles, represented a significant fraction of the total PCB dry deposition flux even though PCBs in the ambient air were present primarily in the gas phase

  10. Recent lake ice-out phenology within and among lake districts of Alaska, U.S.A.

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido

    2013-01-01

    The timing of ice-out in high latitudes is a fundamental threshold for lake ecosystems and an indicator of climate change. In lake-rich regions, the loss of ice cover also plays a key role in landscape and climatic processes. Thus, there is a need to understand lake ice phenology at multiple scales. In this study, we observed ice-out timing on 55 large lakes in 11 lake districts across Alaska from 2007 to 2012 using satellite imagery. Sensor networks in two lake districts validated satellite observations and provided comparison with smaller lakes. Over this 6 yr period, the mean lake ice-out for all lakes was 27 May and ranged from 07 May in Kenai to 06 July in Arctic Coastal Plain lake districts with relatively low inter-annual variability. Approximately 80% of the variation in ice-out timing was explained by the date of 0°C air temperature isotherm and lake area. Shoreline irregularity, watershed area, and river connectivity explained additional variation in some districts. Coherence in ice-out timing within the lakes of each district was consistently strong over this 6 yr period, ranging from r-values of 0.5 to 0.9. Inter-district analysis of coherence also showed synchronous ice-out patterns with the exception of the two arctic coastal districts where ice-out occurs later (June–July) and climatology is sea-ice influenced. These patterns of lake ice phenology provide a spatially extensive baseline describing short-term temporal variability, which will help decipher longer term trends in ice phenology and aid in representing the role of lake ice in land and climate models in northern landscapes.

  11. The Spatial and Temporal Analysis of Steppe Fires in Lake Elton’s Area Based on RSD

    Directory of Open Access Journals (Sweden)

    Shinkarenko Stanislav Sergeevich

    2015-04-01

    Full Text Available The study analyzed the satellite imagery for the period of 1985-2014 in order to identify the causes of wildfires in Lake Elton’s surroundings. It was found that in the early 21st century fires have the greatest impact on the landscape, which is caused by the decrease in the number of livestock grazing and reduced steppe loads in the late 1990s. The map of the fire frequency in the researched area, and t he map of areas recovering from fires in different years were developed on the basis of remote sensing data (RSD. The investigation of Landsat space imagery found that 54 % of the territory since 2004 has been subject to a prairie fire at least once. The maximum frequency of occurrence is marked for the southern area of Buluhta-Lake where eight fires were registered for the last decad. Most fires are caused by human factors: deliberate or spontaneous arson, military trials. The factors limiting the fires are: degraded pastures, roads, landforms and the elements of the hydrological network. The resulting materials allow to effectively organize further ground survey of these areas for a complete description and assessment of revegetation and their relation to the duration of pyrogenic successions.

  12. The influence of climate change to European Lakes, with a special emphasis in the Balkan Region

    International Nuclear Information System (INIS)

    Kuusisto, Esko

    2004-01-01

    There are almost one and half million lakes in Europe, if small water bodies with an area down to 0.001 km 2 are included. The total area of lakes is over 200.000 km 2 , in addition the man-made reservoirs cover almost 100.000 km 2 . The largest lakes are located in the zone extending from southwestern Sweden through Finland to Russia, but there are many important lakes also in central and southern Europe. The Balkan countries have altogether about ten thousand lakes with a total area of over 4000 km 2 and total volume of almost loo km 3 . Over half of the total volume is in Lake Ohrid, which ranks the seventh in Europe both as to the volume and as to the maximum depth. However, there are around thirty lakes in Europe with their surface area larger than that of Lake Ohrid. In addition to the lakes, the Balkan countries also have thousands of reservoirs with a total water storage capacity of over 50 km 3 . The response of European lakes to climate change can be discussed by dividing the lakes into five categories: 1) deep temperate lakes, 2) shallow temperate lakes, 3) mountain lakes, 4) boreal lakes and 5) arctic lakes. The lakes in the Balkan region fall belong into the first three categories. Most of the deep temperate lakes are warm monomictic; convective overturn occurs in winter or early spring. The future climate change may suppress this overturn, giving these lakes the classification of oligomictic. This implies the enhancement of anoxic bottom conditions and an increased risk of eutrophication. The oxygen conditions can also be expected to deteriorate due to increased bacterial activity in deep waters and superficial bottom sediment. In shallow temperate lakes, higher water temperatures in the future will induce intensified primary production and bacterial decomposition. The probability of harmful extreme events, e.g. the mass production of algae, will increase. The impacts may extend to fishing and recreational use. In lakes with relatively long water

  13. Incorporation of inorganic mercury (Hg2+) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: The role of different plankton size fractions and species assemblages

    International Nuclear Information System (INIS)

    Soto Cárdenas, Carolina; Diéguez, Maria C.; Ribeiro Guevara, Sergio; Marvin-DiPasquale, Mark; Queimaliños, Claudia P.

    2014-01-01

    In lake food webs, pelagic basal organisms such as bacteria and phytoplankton incorporate mercury (Hg 2+ ) from the dissolved phase and pass the adsorbed and internalized Hg to higher trophic levels. This experimental investigation addresses the incorporation of dissolved Hg 2+ by four plankton fractions (picoplankton: 0.22.7 μm; pico + nanoplankton: 0.2–20 μm; microplankton: 20–50 μm; and mesoplankton: 50–200 μm) obtained from four Andean Patagonian lakes, using the radioisotope 197 Hg 2+ . Species composition and abundance were determined in each plankton fraction. In addition, morphometric parameters such as surface and biovolume were calculated using standard geometric models. The incorporation of Hg 2+ in each plankton fraction was analyzed through three concentration factors: BCF (bioconcentration factor) as a function of cell or individual abundance, SCF (surface concentration factor) and VCF (volume concentration factor) as functions of individual exposed surface and biovolume, respectively. Overall, this investigation showed that through adsorption and internalization, pico + nanoplankton play a central role leading the incorporation of Hg 2+ in pelagic food webs of Andean lakes. Larger planktonic organisms included in the micro- and mesoplankton fractions incorporate Hg 2+ by surface adsorption, although at a lesser extent. Mixotrophic bacterivorous organisms dominate the different plankton fractions of the lakes connecting trophic levels through microbial loops (e.g., bacteria–nanoflagellates–crustaceans; bacteria–ciliates–crustaceans; endosymbiotic algae–ciliates). These bacterivorous organisms, which incorporate Hg from the dissolved phase and through their prey, appear to explain the high incorporation of Hg 2+ observed in all the plankton fractions. - Highlights: • Hg 2+ incorporation in lake plankton fractions was studied using the isotope 197 Hg 2+ . • Hg 2+ incorporation was assessed using three different

  14. Methane emission by bubbling from Gatun Lake, Panama

    Science.gov (United States)

    Keller, Michael; Stallard, Robert F.

    1994-01-01

    We studied methane emission by bubbling from Gatun Lake, Panama, at water depths of less than 1 m to about 10 m. Gas bubbles were collected in floating traps deployed during 12- to 60-hour observation periods. Comparison of floating traps and floating chambers showed that about 98% of methane emission occurred by bubbling and only 2% occurred by diffusion. Average methane concentration of bubbles at our sites varied from 67% to 77%. Methane emission by bubbling occurred episodically, with greatest rates primarily between the hours of 0800 and 1400 LT. Events appear to be triggered by wind. The flux of methane associated with bubbling was strongly anticorrelated with water depth. Seasonal changes in water depth caused seasonal variation of methane emission. Bubble methane fluxes through the lake surface into the atmosphere measured during 24-hour intervals were least (10-200 mg/m2/d) at deeper sites (greater than 7 m) and greatest (300-2000 mg/m2/d) at shallow sites (less than 2 m).

  15. A comparison of interpolation methods on the basis of data obtained from a bathymetric survey of Lake Vrana, Croatia

    Science.gov (United States)

    Šiljeg, A.; Lozić, S.; Šiljeg, S.

    2015-08-01

    The bathymetric survey of Lake Vrana included a wide range of activities that were performed in several different stages, in accordance with the standards set by the International Hydrographic Organization. The survey was conducted using an integrated measuring system which consisted of three main parts: a single-beam sonar HydroStar 4300 and GPS devices; a Ashtech ProMark 500 base, and a Thales Z-Max® rover. A total of 12 851 points were gathered. In order to find continuous surfaces necessary for analysing the morphology of the bed of Lake Vrana, it was necessary to approximate values in certain areas that were not directly measured, by using an appropriate interpolation method. The main aims of this research were as follows: (a) to compare the efficiency of 14 different interpolation methods and discover the most appropriate interpolators for the development of a raster model; (b) to calculate the surface area and volume of Lake Vrana, and (c) to compare the differences in calculations between separate raster models. The best deterministic method of interpolation was multiquadric RBF (radio basis function), and the best geostatistical method was ordinary cokriging. The root mean square error in both methods measured less than 0.3 m. The quality of the interpolation methods was analysed in two phases. The first phase used only points gathered by bathymetric measurement, while the second phase also included points gathered by photogrammetric restitution. The first bathymetric map of Lake Vrana in Croatia was produced, as well as scenarios of minimum and maximum water levels. The calculation also included the percentage of flooded areas and cadastre plots in the case of a 2 m increase in the water level. The research presented new scientific and methodological data related to the bathymetric features, surface area and volume of Lake Vrana.

  16. Water and sediment quality of the Lake Andes and Choteau Creek basins, South Dakota, 1983-2000

    Science.gov (United States)

    Sando, Steven Kent; Neitzert, Kathleen M.

    2003-01-01

    different units, with medians that range from about 2.4 to 4.0 mg/L. Median whole-water phosphorus concentrations for the different Lake Andes units range from 0.2 to 0.5 mg/L, and decrease downstream through Lake Andes. Median selenium concentrations are substantially lower for Andes Creek (3 ?g/L (micrograms per liter)) than for the other tributary stations (34, 18, and 7 ?g/L). Median selenium concentrations for the lake stations (ranging from less than 1 to 2 ?g/L) are substantially lower than tributary stations. The pesticides 2,4-D and atrazine were the most commonly detected pesticides in Lake Andes. Median concentrations for 2,4-D for Lake Andes range from 0.07 to 0.11 ?g/L; the median concentration for Owens Bay is 0.04 ?g/L. Median concentrations for atrazine for Lake Andes range from 0.2 to 0.4 ?g/L; the median concentration for Owens Bay is less than 0.1 ?g/L. Concentrations of both 2,4-D and atrazine are largest for the most upstream part of Lake Andes that is most influenced by tributary inflow. Median suspended-sediment concentrations for Lake Andes tributaries range from 22 to 56 mg/L. Most of the suspended sediment transported in the Lake Andes tributaries consists of particles less than 63 ?m (micrometers) in diameter. Concentrations of most constituents in bottom sediments generally had similar ranges and medians for the Lake Andes tributaries. However, Andes Creek generally had lower concentrations of several metals. For Lake Andes, medians and ranges for most constituents generally were similar among the different units. However, selenium concentrations tended to be higher in the upstream part of the lake, and generally decreased downstream. Results of vertical sediment cores collected from a single site in the South Unit of Lake Andes in October 2000 indicate that selenium loading to Lake Andes increased during the period 1952 through 2000. Choteau Creek has a drainage area of 619 mi2. In the upstream part of the basin, Chotea

  17. Lakes and rivers as microcosms, version 2.0

    Directory of Open Access Journals (Sweden)

    David G. Jenkins

    2013-08-01

    Full Text Available Limnology has been greatly influenced by The Lake as a Microcosm (Forbes, 1887, which described a holistic focus on the internal machinations of singular, island-like aquatic ecosystems. I consider three persistent influences of The Lake as a Microcosm: as an organizing paradigm for the teaching of limnology relative to its practice; the idea that inland waters are like islands, and the replicability of types of inland waters. Based on inspection of recent peer-reviewed literature and 32 limnology texts, we teach limnology according to Forbes but do not practice it in that holistic context. Instead, we practice limnology as aquatic ecology. Based on novel analyses of species-area relationships for 275 inland waters and 392 islands, inland waters are more like continental habitat patches than islands; the island metaphor is poetic but not accurate. Based on a quantitative review of beta diversity (40 data sets representing 10,576 inland waters and 26 data sets representing 1529 terrestrial sites, aquatic systems are no more replicable than are terrestrial systems; a typological approach to limnology is no more justified than it is in terrestrial systems. I conclude that a former distinction between limnology and aquatic ecology no longer applies, and that we should define limnology as the ecology of inland waters. Also, we should not consider lakes and rivers as islands that represent other systems of the same type, but should consider them as open, interactive habitat patches that vary according to their geology and biogeography. I suggest modern limnology operates according to 3 paradigms, which combine to form 3 broad limnological disciplines and establish a basis for a plural, interactive view of lakes and rivers as microcosms. This model of modern limnology may help better connect it to ecology and biogeography and help limnology be even more relevant to science and society.

  18. Spatial characterization of acid rain stress in Canadian Shield Lakes

    Science.gov (United States)

    Tanis, Fred J.

    1987-01-01

    The acidification of lake waters from airborne pollution is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern U.S. and on the Canadian Shield is though to be enormous. How seasonal changes in lake transparency are related to annual acidic load was examined. The relationship between variations in lake acidification and ecophysical units was also examined. The utility of Thematic Mapper based observations to measure seasonal changes in the optical transparency in acid lakes was investigated. The potential for this optical response is related to a number of local ecophysical factors with bedrock geology being, perhaps, the most important. Other factors include sulfate deposition, vegetative cover, and terrain drainage/relief. The area of southern Ontario contains a wide variety of geologies from the most acid rain sensitive granite quartzite types to the least sensitive limestone dolomite sediments. Annual sulfate deposition ranges from 1.0 to 4.0 grams/sq m.

  19. Community structure and decadal changes in macrozoobenthic assemblages in Lake Poyang, the largest freshwater lake in China

    Directory of Open Access Journals (Sweden)

    Cai Y. J.

    2014-01-01

    Full Text Available Lake Poyang is the largest freshwater lake in China and contains unique and diverse biota within the Yangtze floodplain ecosystem. However, knowledge of its macrozoobenthic assemblages remains inadequate. To characterize the current community structure of these assemblages and to portray their decadal changes, quarterly investigations were conducted at 15 sites from February to November 2012. A total of 42 taxa were recorded, and Corbicula fluminea, Limnoperna fortunei, Gammaridae sp., Nephtys polybranchia, Polypedilum scalaenum and Branchiura sowerbyi were found to dominate the community in terms of abundance. The bivalves Corbicula fluminea, Lamprotula rochechouarti, Arconaia lanceolata and Lamprotula caveata dominated the community in biomass due to their large body size. The mean abundance of the total macrozoobenthos varied from 48 to 920 ind·m-2, the mean biomass ranged from 28 to 428 g·m-2. The substrate type affected strongly the abundance, biomass, and diversity of the macrozoobenthos, with muddy sand substrates showing the highest values. Compared with historical data, remarkable changes were observed in the abundance of macrozoobenthos and the identity of the dominant species. The mean total abundance decreased from 724 ind·m-2 in 1992 to 228 ind·m-2 in 2012. The dominant species have shifted dramatically. Large unionids were dominant before 1998, whereas pollution-tolerant species (e.g., Branchiura sowerbyi increased in dominance after 2008. Our findings should have implications for the conservation of the benthic biodiversity of this large Yangtze-connected lake.

  20. Utilization of bathymetry data to examine lead sediment contamination distributions in Lake Ontario

    Directory of Open Access Journals (Sweden)

    Chris H. Marvin

    2016-06-01

    Full Text Available Bathymetry data offer interesting opportunities for the analysis of contaminant distribution patterns. This research utilized lead surficial sediment sample data from Lake Ontario that were collected by the Canada Centre for Inland Waters in 1968 and 1998. Traditionally, two-dimensional analyses such as dot maps or proportional circle representation have been utilized to examine pollutant levels. Generating area estimates allows for expanded spatial analysis of contaminant distribution patterns. Lake-wide surfaces were derived using the ordinary kriging technique. These were then layered on bathymetry data to examine three-dimensional relationships between observed pollution patterns and lake-bottom features. Spatial variability was observed in both the 1968 and 1998 datasets. Contamination levels in 1998 dropped substantially, especially in areas that were previously the most heavily polluted and above the Probable Effect Level (4660.23 km2 or 26.72% of the common analysis area lake-bottom in 1998 versus 6189.07 km2 or 62.00% in 1968. Conversely, areas below the Threshold Effect Level increased from 922.09 km2 (5.29% in 1968 to 3484.22 km2 (19.98% in 1998. In both years, shallow and sill/ridge areas tended to have lower levels of contamination than deeper lake basins or contaminant inflow areas. The 1968 dataset likely provides a more detailed estimation surface as there were more points available for interpolation procedures. The kriging surfaces when combined with bathymetry, sedimentology information, and knowledge of physical processes provide a comprehensive illustration of the contaminant distributions whether they are high (1968 or when loadings are significantly reduced (1998. The results have implications for future sediment assessment programs and survey design on a lake-wide basis. The bathymetry data allowed for enhanced interpretation and an improved understanding of observed lead pollution patterns.

  1. Is Lake Chabot Eutrophic?

    Science.gov (United States)

    Pellegrini, K.; Logan, J.; Esterlis, P.; Lew, A.; Nguyen, M.

    2013-12-01

    Introduction/Abstract: Lake Chabot is an integral part of the East Bay watershed that provides habitats for animals and recreation for humans year-round. Lake Chabot has been in danger of eutrophication due to excessive dumping of phosphorous and nitrogen into the water from the fertilizers of nearby golf courses and neighboring houses. If the lake turned out to be eutrophified, it could seriously impact what is currently the standby emergency water supply for many Castro Valley residents. Eutrophication is the excessive richness of nutrients such as nitrogen and phosphorus in a lake, usually as a result of runoff. This buildup of nutrients causes algal blooms. The algae uses up most of the oxygen in the water, and when it dies, it causes the lake to hypoxify. The fish in the lake can't breathe, and consequently suffocate. Other oxygen-dependant aquatic creatures die off as well. Needless to say, the eutrophication of a lake is bad news for the wildlife that lives in or around it. The level of eutrophication in our area in Northern California tends to increase during the late spring/early summer months, so our crew went out and took samples of Lake Chabot on June 2. We focused on the area of the lake where the water enters, known on the map as Honker Bay. We also took readings a ways down in deeper water for comparison's sake. Visually, the lake looked in bad shape. The water was a murky green that glimmered with particulate matter that swirled around the boat as we went by. In the Honker Bay region where we focused our testing, there were reeds bathed in algae that coated the surface of the lake in thick, swirling patterns. Surprisingly enough, however, our test results didn't reveal any extreme levels of phosphorous or nitrogen. They were slightly higher than usual, but not by any significant amount. The levels we found were high enough to stimulate plant and algae growth and promote eutrophication, but not enough to do any severe damage. After a briefing with a

  2. Microplastic pollution in Vembanad Lake, Kerala, India: The first report of microplastics in lake and estuarine sediments in India.

    Science.gov (United States)

    Sruthy, S; Ramasamy, E V

    2017-03-01

    We present the first study of microplastics in the sediments of Vembanad Lake, a Ramsar site in India. Microplastics are emerging pollutants of increasing environmental concern with a particle size of microplastics pollution on the environment and biota is not well known. Vast data exist in the literature on marine microplastics while reports on freshwater ecosystems are scarce. In this context, to examine the occurrence of microplastic particles (MPs) in the Vembanad Lake, samples were collected from ten sites and processed for microplastic extraction through density separation. Identification of the polymer components of MPs was done using micro Raman spectroscopy. MPs were recovered from all sediment samples, indicating their extensive distribution in the lake. The abundance of MPs recorded from the sediment samples is in the range of 96-496 particles m -2 with a mean abundance of 252.80 ± 25.76 particles m -2 . Low density polyethylene has been identified as the dominant type of polymer component of the MPs. As clams and fishes are the major source of protein to the local population, the presence of MPs in the lake becomes critically important, posing a severe threat of contaminating the food web of this lake. This study, being the first report from India on MPs in lake sediments, provide impetus for further research on the distribution and impact of this emerging pollutant on the biota of many aquatic systems spread across India. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Cryosat-2 and Sentinel-3 tropospheric corrections: their evaluation over rivers and lakes

    Science.gov (United States)

    Fernandes, Joana; Lázaro, Clara; Vieira, Telmo; Restano, Marco; Ambrózio, Américo; Benveniste, Jérôme

    2017-04-01

    In the scope of the Sentinel-3 Hydrologic Altimetry PrototypE (SHAPE) project, errors that presently affect the tropospheric corrections i.e. dry and wet tropospheric corrections (DTC and WTC, respectively) given in satellite altimetry products are evaluated over inland water regions. These errors arise because both corrections, function of altitude, are usually computed with respect to an incorrect altitude reference. Several regions of interest (ROI) where CryoSat-2 (CS-2) is operating in SAR/SAR-In modes were selected for this evaluation. In this study, results for Danube River, Amazon Basin, Vanern and Titicaca lakes, and Caspian Sea, using Level 1B CS-2 data, are shown. DTC and WTC have been compared to those derived from ECMWF Operational model and computed at different altitude references: i) ECMWF orography; ii) ACE2 (Altimeter Corrected Elevations 2) and GWD-LR (Global Width Database for Large Rivers) global digital elevation models; iii) mean lake level, derived from Envisat mission data, or river profile derived in the scope of SHAPE project by AlongTrack (ATK) using Jason-2 data. Whenever GNSS data are available in the ROI, a GNSS-derived WTC was also generated and used for comparison. Overall, results show that the tropospheric corrections present in CS-2 L1B products are provided at the level of ECMWF orography, which can depart from the mean lake level or river profile by hundreds of metres. Therefore, the use of the model orography originates errors in the corrections. To mitigate these errors, both DTC and WTC should be provided at the mean river profile/lake level. For example, for the Caspian Sea with a mean level of -27 m, the tropospheric corrections provided in CS-2 products were computed at mean sea level (zero level), leading therefore to a systematic error in the corrections. In case a mean lake level is not available, it can be easily determined from satellite altimetry. In the absence of a mean river profile, both mentioned DEM

  4. High resolution analysis of northern Patagonia lake sediments

    Science.gov (United States)

    Jarvis, S. W.; Croudace, I. W.; Langdon, P. G.; Rindby, A.

    2009-04-01

    Sediment cores covering the period from the last glacial maximum through the Holocene to the present have been collected from sites in the Chacubuco valley, southern Chile (around 47°08'S, 72°25'W, to the east of the North Patagonian Icecap). Cores were taken from five lakes and one recently dried lake bed. Short cores (0.2 to 0.5m), covering approximately the last two hundred years, were taken from all the lakes. Additionally, long sequences were obtained from one of the lakes and from the dried lake bed, the latter sequence extending back to the last glacial maximum as indicated by thick clay at the base. Each of the lakes are small-medium sized and are open systems situated at 300-1000m above sea level. The shorter cores comprise predominantly clastic gyttja but show a number of distinct changes in colour and chemical composition that suggest major environmental changes over the period of sediment accumulation. This is also reflected in variations in the loss on ignition of samples from the cores and in elemental profiles produced by scanning the cores with the Itrax micro-XRF corescanner at 200μm resolution. The long sequence from the dried lake bed has very low organic content glacial clay at the base, interpreted as last glacial maximum basal clay following determination in the field that this layer exceeded 2m in thickness. Similar sediments occur within a stratigraphically discrete section of approximately 14cm and may relate to a stadial event. The latter section also shows a drop in organic content and appears to be glacial clay incorporating some coarse sandy components indicative of detrital input from the catchment. The second long sequence, from a carbonate lake, includes two mineral layers indicating increased detrital input from the catchment. The deeper and thicker of these layers appears similar to the 14cm layer in the first long sequence, while the upper layer comprises a fine grain size indicative of rock flour and hence also of glacial

  5. The Impact of Nutrient State and Lake Depth on Top-down Control in the Pelagic Zone of Lakes: A Study of 466 Lakes from the Temperate Zone to the Arctic

    DEFF Research Database (Denmark)

    Jeppesen, E.; Jensen, J. P.; Jensen, C.

    2003-01-01

    is unimodally related to TP and is highest in the most nutrient-rich and nutrient-poor lakes and generally higher in shallow than deep lakes, (b) the cascading effect of changes in predator control on phytoplankton decreases with increasing TP, and (c) these general patterns occur with significant variations......%, respectively, at all TP levels. Moreover, deep lakes (more than 6 m) had a higher percentage of Daphnia than shallow (less than 6 m) lakes. The median percentage of Daphnia peaked at 0.15 mg L-1 in shallow lakes and 0.09 mg L-1 in deep lakes. The assumption that fish are responsible for the unimodality...

  6. Stress transfer by the 1988-1989 M=5.3 and 5.4 Lake Elsman foreshocks to the Loma Prieta fault: Unclamping at the site of peak mainshock slip

    Science.gov (United States)

    Perfettini, H.; Stein, R.S.; Simpson, R.; Cocco, M.

    1999-01-01

    We study the stress transferred by the June 27, 1988, M=5.3 and August 8, 1989, M=5.4 Lake Elsman earthquakes, the largest events to strike within 15 km of the future Loma Prieta rupture zone during 74 years before the 1989 M=6.9 Loma Prieta earthquake. We find that the first Lake Elsman event brought the rupture plane of the second event 0.3-1.6 bars (0.03-0.16 MPa) closer to Coulomb failure but that the Lake Elsman events did not bring the future Loma Prieta hypocentral zone closer to failure. Instead, the Lake Elsman earthquakes are calculated to have reduced the normal stress on (or "undamped") the Loma Prieta rupture surface by 0.5-1.0 bar (0.05-0.10 MPa) at the site where the greatest slip subsequently occurred in the Loma Prieta earthquake. This association between the sites of peak unclamping and slip suggests that the Lake Elsman events did indeed influence the Loma Prieta rupture process. Unclamping the fault would have locally lowered the resistance to sliding. Such an effect could have been enhanced if the lowered normal stress permitted fluid infusion into the undamped part of the fault. Although less well recorded, the ML=5.0 1964 and ML=5.3 1967 Corralitos events struck within 10 km of the southwest end of the future Loma Prieta rupture. No similar relationship between the normal stress change and subsequent Loma Prieta slip is observed, although the high-slip patch southwest of the Loma Prieta epicenter corresponds roughly to the site of calculated Coulomb stress increase for a low coefficient of friction. The Lake Elsman-Loma Prieta result is similar to that for the 1987 M=6.2 Elmore Ranch and M=6.7 Superstition Hills earthquakes, suggesting that foreshocks might influence the distribution of mainshock slip rather than the site of mainshock nucleation. Copyright 1999 by the American Geophysical Union.

  7. Land use changing and land use optimization of Lake Baikal basin on the example of two key areas

    Science.gov (United States)

    Solodyankina, S.

    2012-04-01

    Lake Baikal contains roughly 20% of the world's unfrozen surface fresh water. It was declared a UNESCO World Heritage Site in 1996. Today levels of urbanization and economic stress on environmental resources is increasing on the shorts of the lake Baikal. The potential of economic development (industry, local tourism, and mining) of the Severobaykalsky and Sludyansky districts is rather high although they are characterized not only by beneficial features for local economy but also by considerable disadvantages for nature of this world valuable territory. This investigation show human-caused landscape changes during economic development of the two key areas in Baikal water catchment basin during 10 years (point of reference is 2000 year). Key areas are 1) the Baikalo-Patomskoe highland in the north of the Baikal catchment basin (Severobaykalsky district, Republic of Buryatia); 2) Khamar-Daban mountain system in the south of the Baikal catchment basin (Sludyansky districy, Irkutsk region). Since 2000 year land use of the territory has changed. Areas of agriculture were reduced but recreation activity on the bank of the lake was increased. Methods of GIS analysis and local statistic analysis of landscape characteristic were used. Nature, rural and urban areas ratio are estimated. Vegetation and soil condition assessment were made. The essence of this research is in helping to make decisions linked to upcoming problems: situation identification, evaluation and forecasting of the potential landscape condition, optimization of land use, mitigation of impact and mapping of territories and nature resources which have a high ecological value or endangered by industrial impact. For this purpose landscape maps of the territories on the base of the remote sensing information and field investigations were created. They used to calculate potential landscape functions of the territory without taking into account present impact of anthropogenic actions. Land use maps for years

  8. Accumulation and vertical distribution of heavy metals in sapropel of Gryaznoe Lake (Medvezh'egorsk district, Republic of Karelia

    Directory of Open Access Journals (Sweden)

    Slukovskii Z. I.

    2017-03-01

    Full Text Available The results of studying sapropel sediments and clay underlying sapropel of Gryaznoe Lake (the Medvezh'egorsk district, Republic of Karelia have been considered. Analysis of the small stock published literature and fund sources on reserves and quality of sapropel of this region gives an indication of the importance of studying this type of natural resources. This research focuses on studying heavy metal content in the sapropel to assess the ecological status of the water body and the prospect of using it sapropel deposits for practical purposes. The modern precision methods of research material have been used. The chemical analysis of the sediments of Gryaznoe Lake has been measured using X-ray fluorescence spectrometer ARL ADVANT'X and mass spectrometer XSeries-2 ICP-MS, and the particle-size distribution of the lake sediments has been determined using the multifunction particles' analyzer LS13 Series 320. Thus the results of studying particle-size distribution and content of the major components of Gryaznoe Lake as well as basic correlation patterns calculated from the data have been given. The studied sediments' column of this lake is 3,4 m, where the thickness of the sapropel layer is 3,1 m. The content of organic substance of sapropel of Gryaznoe Lake is from 55,2 to 70,2 %. According to the literature the studied sapropel sediments comply for the type of reddish-brown sapropels widespread in Karelia and suitable to various kinds of practical use. The content of heavy metals in entire thickness of sapropel of the lake does not exceed the established norms. A comparison of levels of heavy metals' accumulation in the sediments of Gryaznoe Lake and Lamba Lake located within the city of Petrozavodsk has been carried out. The negative impact of human activities on the urban areas on the deterioration of useful properties of sapropel deposits of small Karelian lakes has been clearly illustrated

  9. Lake-level fluctuations since the Last Glaciation in Selin Co (lake), Central Tibet, investigated using optically stimulated luminescence dating of beach ridges

    International Nuclear Information System (INIS)

    Li Dewen; Li Yingkui; Ma Baoqi; Zhao, Junxiang; Dong Guocheng; Wang Liqiang

    2009-01-01

    This paper presents a preliminary study on lake-level fluctuations since the Last Glaciation in Selin Co (lake), Central Tibet, by dating four groups of beach ridges using optically stimulated luminescence (OSL). The highest/oldest beach ridge group (>100 m higher than the current lake level) is dated back to 67.9 ± 2.4 ka BP, corresponding to the early stage of the Last Glaciation (marine isotope stage (MIS) 4). This date further supports that no plateau-scale ice sheet covered the Tibetan Plateau during the Last Glaciation. The other three groups produce OSL ages of 30.4 ± 2.9 to 18.6 ± 1.7, 12.5 ± 1.6 to 9.2 ± 0.5, and 6.9 ± 0.2 ka BP respectively, most likely corresponding to cold or wet climate periods of the late stage of the Last Glaciation (MIS 2), deglaciation, and Holocene Hypsithermal. On the plateau scale, these four beach ridge groups are almost synchronous with advances or standstills of Himalayan glaciers, indicating similar climate controls across the central and southern Tibetan Plateau, and being consistent with the conclusion, obtained from nearby ice core records, that this area is affected by the South Asia monsoon. Furthermore, beach ridges are also synchronous with fluvial terraces in the northern Tibetan Plateau, implying common driving forces during their formation. Therefore, some terraces may be formed as a result of climate events rather than being of tectonic origin.

  10. Historical changes to Lake Washington and route of the Lake Washington Ship Canal, King County, Washington

    Science.gov (United States)

    Chrzastowski, Michael J.

    1983-01-01

    Lake Washington, in the midst of the greater Seattle metropolitan area of the Puget Sound region (fig. 1), is an exceptional commercial, recreational, and esthetic resource for the region . In the past 130 years, Lake Washington has been changed from a " wild " lake in a wilderness setting to a regulated lake surrounded by a growing metropolis--a transformation that provides an unusual opportunity to study changes to a lake's shoreline and hydrologic characteristics -resulting from urbanization.

  11. Validation of CryoSat-2 SAR mode based lake levels

    DEFF Research Database (Denmark)

    Nielsen, Karina; Stenseng, Lars; Andersen, Ole Baltazar

    2015-01-01

    Lake level serve as an important indicator of the climate and continuous measurements are therefore essential. Satellite radar altimetry has now been used successfully for more than two decades to measure lake level as an addition to gauge measurements. The technique has, due to the large footprint...... with water levels obtained from Envisat. We find that the along-track precision of the mean based on CryoSat-2 is a few centimeter, even for the small lakes, which is a significant improvement compared to previous missions such as Envisat. When validating against gauge data we find RMS values of differences...

  12. Synthetic musk fragrances in Lake Michigan.

    Science.gov (United States)

    Peck, Aaron M; Hornbuckle, Keri C

    2004-01-15

    Synthetic musk fragrances are added to a wide variety of personal care and household products and are present in treated wastewater effluent. Here we report for the first time ambient air and water measurements of six polycyclic musks (AHTN, HHCB, ATII, ADBI, AHMI, and DPMI) and two nitro musks (musk xylene and musk ketone) in North America. The compounds were measured in the air and water of Lake Michigan and in the air of urban Milwaukee, WI. All of the compounds except DPMI were detected. HHCB and AHTN were found in the highest concentrations in all samples. Airborne concentrations of HHCB and AHTN average 4.6 and 2.9 ng/m3, respectively, in Milwaukee and 1.1 and 0.49 ng/m3 over the lake. The average water concentration of HHCB and AHTN in Lake Michigan was 4.7 and 1.0 ng/L, respectively. A lake-wide annual mass budget shows that wastewater treatment plant discharge is the major source (3470 kg/yr) of the synthetic musks while atmospheric deposition contributes less than 1%. Volatilization and outflow through the Straits of Mackinac are major loss mechanisms (2085 and 516 kg/yr for volatilization and outflow, respectively). Concentrations of HHCB are about one-half the predicted steady-state water concentrations in Lake Michigan.

  13. Sources and behaviour of nitrogen compounds in the shallow groundwater of agricultural areas (Poyang Lake basin, China).

    Science.gov (United States)

    Soldatova, Evgeniya; Guseva, Natalia; Sun, Zhanxue; Bychinsky, Valeriy; Boeckx, Pascal; Gao, Bai

    2017-07-01

    Nitrogen contamination of natural water is a typical problem for various territories throughout the world. One of the regions exposed to nitrogen pollution is located in the Poyang Lake basin. As a result of agricultural activity and dense population, the shallow groundwater of this area is characterised by a high concentration of nitrogen compounds, primarily NO 3 - , with the concentration varying from 0.1mg/L to 206mg/L. Locally, high ammonium content occurs in the shallow groundwater with low reduction potential Eh (shallow groundwater of the Poyang Lake basin has Eh>100mV. To identify sources of nitrogen species and the factors that determine their behaviour, the dual stable isotope approach (δ 15 N and δ 18 О) and physical-chemical modelling were applied. Actual data were collected by sampling shallow groundwater from domestic water supply wells around the lake. The δ 18 О values from -4.1‰ to 13.9‰ with an average value of 5.3 permille indicate a significant influence of nitrification on nitrogen balance. The enrichment of nitrate with the 15 N isotope indicates that manure and domestic sewage are the principal sources of nitrogen compounds. Inorganic nitrogen speciation and thermodynamic calculations demonstrate the high stability of nitrate in the studied groundwater. Computer simulation and field observations indicate the reducing conditions formed under joint effects of anthropogenic factors and appropriate natural conditions, such as the low-level topography in which decreased water exchange rate can occur. The simulation also demonstrates the growth in pH of the groundwater as a consequence of fertilisation, which, in turn, conduced to the clay mineral formation at lower concentrations of aqueous clay-forming components than the ones under the natural conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [Spatiotemporal characteristics of nitrogen and phosphorus in a mountainous urban lake].

    Science.gov (United States)

    Bao, Jing-Yue; Bao, Jian-Guo; Li, Li-Qing

    2014-10-01

    Longjing Lake in Chongqing Expo Garden is a typical representative of mountainous urban lake. Based on water quality monitoring of Longjing Lake, spatiotemporal characteristics of nitrogen and phosphorus and their relations were analyzed, combined with natural and human factors considered. The results indicated that annual average concentrations of TN and TP in overall lake were (1.42 ± 0.46) mg · L(-1) and (0.09 ± 0.03) mg · L(-1), nitrogen and phosphorus concentrations fluctuated seasonally which were lower during the flooding season than those during the dry season. Nitrogen and phosphorus concentration in main water area, open water areas and bay areas of Longjing Lake were distributed with temporal and spatial heterogeneity by different regional influencing factors. The seasonal variation of the main water area was basically consistent with overall lake. Two open water areas respectively connected the main water area with the upstream region, bay areas. TN and TP concentrations were gradually reduced along the flow direction. Upstream water quality and surrounding park functional layout impacted nitrogen and phosphorus nutrient concentrations of open water areas. Nutrient concentrations of typical bay areas were higher than those of main water area and open water areas. The mean mass fraction of PN/TN and PP/TP accounted for a large proportion (51.7% and 72.8%) during the flooding season, while NO(3-)-N/TN and SRP/TP accounted for more (42.0% and 59.4%) during the dry season. The mass fraction of ammonia nitrogen and dissolved organic nitrogen in total nitrogen were relatively stable. The annual mean of N/P ratio was 18.429 ± 7.883; the period of nitrogen limitation was 5.3% while was 21.2% for phosphorus limitation.

  15. The preglacial sediment record of Lake Ladoga, Russia - first results from a seismic survey and sediment coring in 2013

    Science.gov (United States)

    Melles, Martin; Krastel, Sebastian; Fedorov, Grigory; Subetto, Dmitry A.; Savelieva, Larisa A.; Andreev, Andrej; Wagner, Bernd

    2014-05-01

    The new German-Russian project PLOT (Paleolimnological Transect) aims at investigating the Late Quaternary climatic and environmental history along a more than 6000 km long longitudinal transect crossing northern Eurasia. Special emphasis is put on the preglacial history. For this purpose shallow and deep seismic surveys shall be carried out on five lakes, which potentially host preglacial sediment records, followed by sediment coring based on the results of the seismic campaigns. The well-studied Lake El'gygytgyn represents the eastern-most location of the transect and acts as reference site. Within the scope of a pilot phase for the PLOT project, funded by the German Federal Ministry of Education and Research, we were able to investigate Lake Ladoga, which is located close to St. Petersburg at the western end of the transect. Lake Ladoga is the largest lake in Europe, covering an area of almost 18.000 km2. The modern sedimentation as well as the late glacial and Holocene history of the lake were already studied in detail over the past decades. The older, preglacial lake history, however, is only rudimentary known from a core transect drilled in the southern lake in the 1930th. The cores of up to about 60 m length were only briefly described and are not existing any more. The results from these cores, known from unpublished reports only, suggest the existence of marine sediments of presumably Eemian age, representing a time when Lake Lagoga was part of a precursor of the Baltic Sea, which had a connection via Ladoga and Onega Lakes to the White Sea and further to the Arctic Ocean. In late August/early September 2013 we carried out a seismic survey on Lake Ladoga using a Mini-GI-Gun and a 32-channel seismic streamer. In total, 1500 km of seismic profiles were measured, covering most parts of the lake. The seismic lines typically show acoustically well stratified Holocene muds overlaying rather transparent postglacial varves. These sediment successions can reach

  16. Cyclic heliothermal behaviour of the shallow, hypersaline Lake Hayward, Western Australia

    Science.gov (United States)

    Turner, Jeffrey V.; Rosen, Michael R.; Coshell, Lee; Woodbury, Robert J.

    2018-05-01

    Lake Hayward is one of only about 30 hypersaline lakes worldwide that is meromictic and heliothermal and as such behaves as a natural salt gradient solar pond. Lake Hayward acts as a local groundwater sink, resulting in seasonally variable hypersaline lake water with total dissolved solids (TDS) in the upper layer (mixolimnion) ranging between 56 kg m-3 and 207 kg m-3 and the deeper layer (monimolimnion) from 153 kg m-3 to 211 kg m-3. This is up to six times the salinity of seawater and thus has the highest salinity of all eleven lakes in the Yalgorup National Park lake system. A program of continuously recorded water temperature profiles has shown that salinity stratification initiated by direct rainfall onto the lake's surface and local runoff into the lake results in the onset of heliothermal conditions within hours of rainfall onset. The lake alternates between being fully mixed and becoming thermally and chemically stratified several times during the annual cycle, with the longest extended periods of heliothermal behaviour lasting 23 and 22 weeks in the winters of 1992 and 1993 respectively. The objective was to quantify the heat budgets of the cyclical heliothermal behaviour of Lake Hayward. During the period of temperature profile logging, the maximum recorded temperature of the monimolimnion was 42.6 °C at which time the temperature of the mixolimnion was 29.4 °C. The heat budget of two closed heliothermal cycles initiated by two rainfall events of 50 mm and 52 mm in 1993 were analysed. The cycles prevailed for 11 and 20 days respectively and the heat budget showed net heat accumulations of 34.2 MJ m-3 and 15.4 MJ m-3, respectively. The corresponding efficiencies of lake heat gain to incident solar energy were 0.17 and 0.18 respectively. Typically, artificial salinity gradient solar ponds (SGSP) have a solar radiation capture efficiencies ranging from 0.10 up to 0.30. Results from Lake Hayward have implications for comparative biogeochemistry and its

  17. REGULARITIES OF CONGELATION ICE DEVELOPMENT IN SUBGLACIAL LAKE VOSTOK

    Directory of Open Access Journals (Sweden)

    V. Ya. Lipenkov

    2012-01-01

    Full Text Available Petrographic studies performed on the continuous basis along the two ice cores obtained from holes 5G-1 and 5G-2 at Vostok Station has allowed to characterize with great details the evolution of the ice texture and fabric in the 232-m thick stratum of accreted ice formed from theLakeVostokwater. Conventionally the whole thickness of accreted ice is divided into two strata: lake ice 1 and lake ice 2. Lake ice 1 (3537–3618 m, formed in the sallow strait50 kmupstream of Vostok, is characterized by presence of disseminated mineral inclusions of Lake Vostok sediments, as well as of «water pockets» that represent frozen water inclusions trapped during the ice accretion. The latter constitute less than 1% of the total ice volume, their mean size is about0.5 cm. Gases trapped by «water pockets» during ice formation transform into crystalline inclusions of mixed gas hydrates. Accretion of lake ice 2 (3618–3769 m proceeds in the deep part of the lake at a very small rate that does not assume trapping of liquid water inclusions and gases.Both strata of accreted ice are formed by orthotropic crystal growth from pure water. The main tendency in the evolution of accreted ice texture is growth of the mean crystal size with depth as the lake ice becomes younger towards the ice-water interface. The high-amplitude variations of crystal size and orientation observed around this general trend are shown to be linked with temporal and spatial variability of the supercooled melt-water flux from the northern part of the lake towards the ice formation site. The presence of supercooled water at the crystallization front supports persistent preferable growth of ice crystals with sub-horizontally oriented c-axes. The lack of supercooled water in turn support persistent growth of ice crystals with vertical or inclined with respect to the crystallization front c-axis orientation. It means that each of these preferred fabric orientations could serve as an indicator of

  18. Thinking like a duck: fall lake use and movement patterns of juvenile ring-necked ducks before migration.

    Science.gov (United States)

    Roy, Charlotte L; Fieberg, John; Scharenbroich, Christopher; Herwig, Christine M

    2014-01-01

    The post-fledging period is one of the least studied portions of the annual cycle in waterfowl. Yet, recruitment into the breeding population requires that young birds have sufficient resources to survive this period. We used radio-telemetry and generalized estimating equations to examine support for four hypotheses regarding the drivers of landscape scale habitat use and movements made by juvenile ring-necked ducks between the pre-fledging period and departure for migration. Our response variables included the probability of movement, distances moved, and use of different lake types: brood-rearing lakes, staging lakes, and lakes with low potential for disturbance. Birds increased their use of staging areas and lakes with low potential for disturbance (i.e., without houses or boat accesses, >100 m from roads, or big lakes with areas where birds could sit undisturbed) throughout the fall, but these changes began before the start of the hunting season and their trajectory was not changed by the onset of hunting. Males and females moved similar distances and had similar probabilities of movements each week. However, females were more likely than males to use brood-rearing lakes later in the fall. Our findings suggest juvenile ring-necked ducks require different lake types throughout the fall, and managing solely for breeding habitat will be insufficient for meeting needs during the post-fledging period. Maintaining areas with low potential for disturbance and areas suitable for staging will ensure that ring-necked ducks have access to habitat throughout the fall.

  19. A mass balance mercury budget for a mine-dominated lake: Clear Lake, California

    Science.gov (United States)

    Suchanek, T.H.; Cooke, J.; Keller, K.; Jorgensen, S.; Richerson, P.J.; Eagles-Smith, Collin A.; Harner, E.J.; Adam, D.P.

    2009-01-01

    The Sulphur Bank Mercury Mine (SBMM), active intermittently from 1873–1957 and now a USEPA Superfund site, was previously estimated to have contributed at least 100 metric tons (105 kg) of mercury (Hg) into the Clear Lake aquatic ecosystem. We have confirmed this minimum estimate. To better quantify the contribution of the mine in relation to other sources of Hg loading into Clear Lake and provide data that might help reduce that loading, we analyzed Inputs and Outputs of Hg to Clear Lake and Storage of Hg in lakebed sediments using a mass balance approach. We evaluated Inputs from (1) wet and dry atmospheric deposition from both global/regional and local sources, (2) watershed tributaries, (3) groundwater inflows, (4) lakebed springs and (5) the mine. Outputs were quantified from (1) efflux (volatilization) of Hg from the lake surface to the atmosphere, (2) municipal and agricultural water diversions, (3) losses from out-flowing drainage of Cache Creek that feeds into the California Central Valley and (4) biotic Hg removal by humans and wildlife. Storage estimates include (1) sediment burial from historic and prehistoric periods (over the past 150–3,000 years) from sediment cores to ca. 2.5m depth dated using dichloro diphenyl dichloroethane (DDD), 210Pb and 14C and (2) recent Hg deposition in surficial sediments. Surficial sediments collected in October 2003 (11 years after mine site remediation) indicate no reduction (but a possible increase) in sediment Hg concentrations over that time and suggest that remediation has not significantly reduced overall Hg loading to the lake. Currently, the mine is believed to contribute ca. 322–331 kg of Hg annually to Clear Lake, which represents ca. 86–99% of the total Hg loading to the lake. We estimate that natural sedimentation would cover the existing contaminated sediments within ca. 150–300 years.

  20. Landsat-based trend analysis of lake dynamics across northern permafrost regions

    Science.gov (United States)

    Nitze, Ingmar; Grosse, Guido; Jones, Benjamin M.; Arp, Christopher D.; Ulrich, Mathias; Federov, Alexander; Veremeeva, Alexandra

    2017-01-01

    Lakes are a ubiquitous landscape feature in northern permafrost regions. They have a strong impact on carbon, energy and water fluxes and can be quite responsive to climate change. The monitoring of lake change in northern high latitudes, at a sufficiently accurate spatial and temporal resolution, is crucial for understanding the underlying processes driving lake change. To date, lake change studies in permafrost regions were based on a variety of different sources, image acquisition periods and single snapshots, and localized analysis, which hinders the comparison of different regions. Here we present, a methodology based on machine-learning based classification of robust trends of multi-spectral indices of Landsat data (TM,ETM+, OLI) and object-based lake detection, to analyze and compare the individual, local and regional lake dynamics of four different study sites (Alaska North Slope, Western Alaska, Central Yakutia, Kolyma Lowland) in the northern permafrost zone from 1999 to 2014. Regional patterns of lake area change on the Alaska North Slope (-0.69%), Western Alaska (-2.82%), and Kolyma Lowland (-0.51%) largely include increases due to thermokarst lake expansion, but more dominant lake area losses due to catastrophic lake drainage events. In contrast, Central Yakutia showed a remarkable increase in lake area of 48.48%, likely resulting from warmer and wetter climate conditions over the latter half of the study period. Within all study regions, variability in lake dynamics was associated with differences in permafrost characteristics, landscape position (i.e. upland vs. lowland), and surface geology. With the global availability of Landsat data and a consistent methodology for processing the input data derived from robust trends of multi-spectral indices, we demonstrate a transferability, scalability and consistency of lake change analysis within the northern permafrost region.

  1. Evaluation of ground water nutrient loading to Priest Lake, Bonner County, Idaho

    International Nuclear Information System (INIS)

    Freeman, K.M.; Ralston, D.R.

    1994-01-01

    The quality of water of Idaho lakes is of increasing concern, particularly when related to waste disposal and land use practices within the watersheds. This study investigates the Kalispell Bay and Granite Creek areas. Conclusions are as follows: Both areas demonstrate direction of ground water towards Priest Lake. The Kalispell Bay area displays horizontal ground water flow throughout the entire area with an upward hydraulic gradient over a portion of the area. The Granite Creek Area displays strictly horizontal flow; both study areas contain particular sub-areas which display nutrient enrichment, particulary nitrogen, of ground water; the granite Creek study area contains a sub-area displaying both elevated nitrogen concentrations and positive tests for E. coli bacteria. 2 figs., 2 tabs

  2. Incorporation of inorganic mercury (Hg{sup 2+}) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: The role of different plankton size fractions and species assemblages

    Energy Technology Data Exchange (ETDEWEB)

    Soto Cárdenas, Carolina, E-mail: sotocardenascaro@gmail.com [Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro (Argentina); Diéguez, Maria C. [Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro (Argentina); Ribeiro Guevara, Sergio [Laboratorio de Análisis por Activación Neutrónica, CAB, CNEA, Av. Bustillo Km 9.5, 8400, San Carlos de Bariloche, Río Negro (Argentina); Marvin-DiPasquale, Mark [United States Geological Survey, 345 Middlefield Rd./MS 480, Menlo Park, CA 94025 (United States); Queimaliños, Claudia P. [Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro (Argentina)

    2014-10-01

    In lake food webs, pelagic basal organisms such as bacteria and phytoplankton incorporate mercury (Hg{sup 2+}) from the dissolved phase and pass the adsorbed and internalized Hg to higher trophic levels. This experimental investigation addresses the incorporation of dissolved Hg{sup 2+} by four plankton fractions (picoplankton: 0.22.7 μm; pico + nanoplankton: 0.2–20 μm; microplankton: 20–50 μm; and mesoplankton: 50–200 μm) obtained from four Andean Patagonian lakes, using the radioisotope {sup 197}Hg{sup 2+}. Species composition and abundance were determined in each plankton fraction. In addition, morphometric parameters such as surface and biovolume were calculated using standard geometric models. The incorporation of Hg{sup 2+} in each plankton fraction was analyzed through three concentration factors: BCF (bioconcentration factor) as a function of cell or individual abundance, SCF (surface concentration factor) and VCF (volume concentration factor) as functions of individual exposed surface and biovolume, respectively. Overall, this investigation showed that through adsorption and internalization, pico + nanoplankton play a central role leading the incorporation of Hg{sup 2+} in pelagic food webs of Andean lakes. Larger planktonic organisms included in the micro- and mesoplankton fractions incorporate Hg{sup 2+} by surface adsorption, although at a lesser extent. Mixotrophic bacterivorous organisms dominate the different plankton fractions of the lakes connecting trophic levels through microbial loops (e.g., bacteria–nanoflagellates–crustaceans; bacteria–ciliates–crustaceans; endosymbiotic algae–ciliates). These bacterivorous organisms, which incorporate Hg from the dissolved phase and through their prey, appear to explain the high incorporation of Hg{sup 2+} observed in all the plankton fractions. - Highlights: • Hg{sup 2+} incorporation in lake plankton fractions was studied using the isotope {sup 197}Hg{sup 2+}. • Hg{sup 2

  3. Mississippi River Headwaters Lakes in Minnesota. Feasibility Study. Appendices.

    Science.gov (United States)

    1982-09-01

    organisms by blanketing stream or lake bottoms, spawning beds, or other desirable bottom area. Suspended solids may kill fish and shellfish by causing...Tree S~rv Long-billed M~arsh Wren 0Ctlipping S;-arrcd Short-billed Marsh Wren N Clay-crod )rm: Mockingbird L. Field Sparrow Gray Catbird VH;;rris

  4. Great Lakes Environmental Database (GLENDA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Great Lakes Environmental Database (GLENDA) houses environmental data on a wide variety of constituents in water, biota, sediment, and air in the Great Lakes area.

  5. Effects of the exotic zebra mussel (Dreissena polymorpha) on metal cycling in Lake Erie

    Energy Technology Data Exchange (ETDEWEB)

    Klerks, P.L. [Univ. of Southwestern Louisiana, Dept. of Biology, Lafayette, Louisiana (United States)]. E-mail: klerks@usl.edu; Fraleigh, P.C.; Lawniczak, J.E. [Univ. of Toledo, Dept. of Biology, Toledo, Ohio (United States)

    1997-07-15

    This research demonstrated the impact of high densities of the zebra mussel (Dreissena polymorpha) on the cycling of copper, nickel, and zinc in a lake environment. Experiments with mussels on sedimentation traps in western Lake Erie and with mussels in flow-through tanks receiving Lake Erie water showed that zebra mussels remove metals from the water column, incorporate metals in their tissues, and deposit metals on the lake bottom. Removal of metals from the water column was estimated at 10-17%{center_dot}day{sup -1} of the amounts present. This material was largely deposited on the lake bottom; zebra mussels more than doubled the rate at which metals were being added to the lake bottom. Metal biodeposition rates were extremely high (e.g., 50 mg Zn{center_dot}m{sup -2}{center_dot}day{sup -1}) in high-turbidity areas with elevated metal levels. Two factors contributed to metal biodeposition by zebra mussels. First, their production of feces and pseudofeces increased the rate at which suspended matter was being added to the sediment (accounting for 92% of the increased metal biodeposition). Second, the material coming out of suspension had higher metal concentrations when zebra mussels were present (constituting 8% of the increased biodeposition). (author)

  6. Pollution at Lake Mariut

    International Nuclear Information System (INIS)

    Nour ElDin, H.; Halim, S. N.; Shalby, E.

    2004-01-01

    Lake Mariut, south Alexandria, Egypt suffered in the recent decades from intensive pollution as a result of a continuous discharge of huge amounts of agriculture wastewater that contains a large concentration of the washed pesticides and fertilizers in addition to domestic and industrial untreated wastewater. The over flow from the lake is discharged directly to the sea through El-Max pumping station via EI-Umum drain. Lake Mariout is surrounded by a huge number of different industrial activities and also the desert road is cutting the lake, this means that a huge number of various pollutants cycle through the air and settle down in the lake, by the time and during different seasons these pollutants after accumulation and different chemical interactions will release again from the lake to the surrounding area affecting the surrounding zone

  7. Determining the Frequency of Dry Lake Bed Formation in Semi-Arid Mongolia From Satellite Data

    Directory of Open Access Journals (Sweden)

    Yuta Demura

    2017-12-01

    Full Text Available In the Mongolian Plateau, the desert steppe, mountains, and dry lake bed surfaces may affect the process of dust storm emissions. Among these three surface types, dry lake beds are considered to contribute a substantial amount of global dust emissions and to be responsible for “hot spots” of dust outbreaks. The land cover types in the study area were broadly divided into three types, namely desert steppe, mountains, and dry lake beds, by a classification based on Normalized Difference Water Index (NDWI calculated from MODIS Terra satellite images, and Digital Elevation Model (DEM. This dry lake beds extracting method using remote sensing offers a new technique for identifying dust hot spots and potential untapped groundwater in the dry lands of the Gobi region. In the study area, frequencies of dry lake bed formation were calculated during the period of 2001 to 2014. The potential dry lake area corresponded well with the length of the river network based on hydrogeological characterization (R2 = 0.77, p < 0.001. We suggest that the threshold between dry lake bed areas and the formation of ephemeral lakes in semi-arid regions is eight days of total precipitation.

  8. Higher operation temperature quadrant photon detectors of 2-11 μm wavelength radiation with large photosensitive areas

    Science.gov (United States)

    Pawluczyk, J.; Sosna, A.; Wojnowski, D.; Koźniewski, A.; Romanis, M.; Gawron, W.; Piotrowski, J.

    2017-10-01

    We report on the quadrant photon HgCdTe detectors optimized for 2-11 μm wavelength spectral range and Peltier or no cooling, and photosensitive area of a quad-cell of 1×1 to 4×4 mm. The devices are fabricated as photoconductors or multiple photovoltaic cells connected in series (PVM). The former are characterized by a relatively uniform photosensitive area. The PVM photovoltaic cells are distributed along the wafer surface, comprising a periodical stripe structure with a period of 20 μm. Within each period, there is an insensitive gap/trench spot of size close to the period, but becomes negligible for the optimal spot size comparable to a quadrant-cell area. The photoconductors produce 1/f noise with about 10 kHz knee frequency, due to bias necessary for their operation. The PVM photodiodes are typically operated at 0 V bias, so they generate no 1/f noise and operation from DC is enabled. At 230 K, upper corner frequency of 16 to 100 MHz is obtained for photoconductor and 60 to 80 MHz for PVM, normalized detectivity D* 6×107 cm×Hz1/2/W to >1.4×108 cm×Hz1/2/W for photoconductor and >1.7×108 cm·Hz1/2/W for PVM, allowing for position control of the radiation beam with submicron accuracy at 16 MHz, 10.6 μm wavelength of pulsed radiation spot of 0.8 mm dia at the close-to-maximal input radiation power density in a range of detector linear operation.

  9. Towards monitoring surface and subsurface lakes on the Greenland Ice Sheet using Sentinel-1 SAR and Landsat-8 OLI imagery

    Science.gov (United States)

    Miles, Katie E.; Willis, Ian C.; Benedek, Corinne L.; Williamson, Andrew G.; Tedesco, Marco

    2017-07-01

    Supraglacial lakes are an important component of the Greenland Ice Sheet’s mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR) satellite to investigate supraglacial lakes in West Greenland. A semi-automated algorithm is developed to detect surface lakes from Sentinel-1 images during the 2015 summer. A combined Landsat-8 and Sentinel-1 dataset, which has a comparable temporal resolution to MODIS (3 days versus daily) but a higher spatial resolution (25-40 m versus 250-500 m), is then used together with a fully-automated lake drainage detection algorithm. Rapid (days) and slow (> 4 days) drainages are investigated for both small (summer. Drainage events of small lakes occur at lower elevations (mean 159 m), and slightly earlier (mean 4.5 days) in the melt season than those of large lakes. The analysis is extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August; 1270 m mean elevation). Finally, the Sentinel-1 imagery is used to detect subsurface lakes and, for the first time, their dates of appearance and freeze-through (mean 9 August and 7 October, respectively). These subsurface lakes occur at higher elevations than the surface lakes detected in this study (mean 1593 m and 1185 m, respectively). Sentinel-1 imagery therefore provides great potential for tracking melting, water movement and freezing within both the firn zone and ablation area of the Greenland Ice Sheet.

  10. Biodiversity of the Hypersaline Urmia Lake National Park (NW Iran

    Directory of Open Access Journals (Sweden)

    Alireza Asem

    2014-02-01

    Full Text Available Urmia Lake, with a surface area between 4000 to 6000 km2, is a hypersaline lake located in northwest Iran. It is the saltiest large lake in the world that supports life. Urmia Lake National Park is the home of an almost endemic crustacean species known as the brine shrimp, Artemia urmiana. Other forms of life include several species of algae, bacteria, microfungi, plants, birds, reptiles, amphibians and mammals. As a consequence of this unique biodiversity, this lake has been selected as one of the 59 biosphere reserves by UNESCO. This paper provides a comprehensive species checklist that needs to be updated by additional research in the future.

  11. Lake Roosevelt Fisheries Evaluation Program, Part B; Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shields, John; Spotts, Jim; Underwood, Keith

    2002-11-01

    The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. The 1998 Annual Report, Part B. Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington examined the limnology, primary production, and zooplankton at eleven locations throughout the reservoir. The 1998 research protocol required a continuation of the more complete examination of limnological parameters in Lake Roosevelt that began in 1997. Phytoplankton and periphyton speciation, phytoplankton and periphyton chlorophyll a analysis, complete zooplankton biomass analysis by taxonomic group, and an increased number of limnologic parameters (TDG, TDS, etc.) were examined and compared with 1997 results. Total dissolved gas levels were greatly reduced in 1998, compared with 1997, likely resulting from the relatively normal water year experienced in 1998. Mean water temperatures were similar to what was observed in past years, with a maximum of 22.7 C and a minimum of 2.6 C. Oxygen concentrations were also relatively normal, with a maximum of 16.6 mg/L, and a minimum of 0.9 mg/L. Phytoplankton in Lake Roosevelt was primarily composed of microplankton (29.6%), Cryptophyceae (21.7%), and Bacillriophyceae (17.0 %). Mean total phytoplankton chlorophyll a maximum concentration occurred in May (3.53 mg/m{sup 3}), and the minimum in January (0.39 mg/m{sup 3}). Phytoplankton chlorophyll a concentrations appear to be influenced by hydro-operations and temperature. Trophic status as indicated by phytoplankton chlorophyll a concentrations place Lake Roosevelt in the oligomesotrophic range. Periphyton colonization rates and biovolume were significantly greater at a depth

  12. Deliberations on Microbial Life in the Subglacial Lake Vostok, East Antarctica

    Science.gov (United States)

    Bulat, S.; Alekhina, I.; Lipenkov, V.; Lukin, V.; Marie, D.; Petit, J.

    2004-12-01

    The objective was to estimate microbial contents of accretion (lake originating) ice from the Lake Vostok buried beneath 4-km thick East Antarctic ice sheet with the ultimate goal to discover microbial life in this extreme icy environment featured by no light, close to freezing point temperature, ultra-low DOC contents, and an excess of oxygen. The PCR based bacterial and archaeal 16S ribosomal RNA gene sequencing constrained by Forensic Biology and Ancient DNA research criteria was used as a main approach. Epifluorescent and confocal microscopies as well as flow cytometry were implemented. DNA study showed that the accretion ice is essentially bacteria- and archaea-free. Up to now, the only accretion ice type 1 featured by mica-clay sediments presence and namely one horizon of four studied (3607m) allowed the recovery a few bacterial phylotypes. This unexpectedly included the chemolithoautotrophic thermophile Hydrogenophilus thermoluteolus and two more unclassified phylotypes all passing numerous contaminant controls. In contrast, the deeper and cleaner accretion ice 2 (three cores) with no sediments presence and near detection limit gas contents gave no reliable signals. The microbes detected in accretion ice 1 are unbelievable to resist an excess of oxygen in the lake water body (700 - 1300 mg O2/l). They are supposed to be thriving in rather warm anoxic sediments in deep faults at the lake bottom and sporadically flushing out along with sediments to the lake veins in a shallow depth bay due to a seismotectonic activity likely operating in the lake environment. A few geophysical and geological evidences support this scenario. In the bay the presence of mica-clay sediments, higher accretion rate due to relief rise and likely oxygen-depleted upper layer of water can provide microbes with a chance to escape the high oxygen tension by the rapid entrapment into accretion ice 1. Sediment-free accretion ice 2, which forms above a deeper part of the lake, shows no

  13. Ecohydrological Investigations of a Groundwater-Lake System

    DEFF Research Database (Denmark)

    Frandsen, Mette Cristine Schou

    are very dynamic systems on a spatial scale. Variability in meteorology can lead to variability in the hydrology, and in some cases ignite transient effects that are temporally distinct and difficult to capture. •To some extend the lakes acts as sentinel for all the in and out-puts to the system as well....... On densely vegetated areas (~9000 plants m-2), the vertical hydraulic conductivity was lower compared to non-vegetated sediment. Disturbing the top layer of the sediment lead to a significant increase in hydraulic conductivity on the vegetated sediment, whereas the non-vegetated sediment was not affected...... greatly qualifies the results of ecological studies....

  14. Sediment-water gas exchange in two Swedish lakes measured by Eddy Correlation

    Science.gov (United States)

    Kokic, J.; Sahlee, E.; Brand, A.; Sobek, S.

    2014-12-01

    Lake sediments are hotspots for carbon (C) cycling, acting both as sinks and sources through C burial and production of carbon dioxide (CO2) and methane. The fate of this CO2 in the water column is controlled by bottom water turbulence, a factor not accounted for in current estimates of sediment CO2 fluxes. This study is aimed to quantify the turbulent CO2 flux across the sediment-water interface (SWI) by measuring the oxygen (O2) flux with the non-invasive Eddy Correlation (EC) method that combines measurements of 3D velocity (ADV) and O2 fluctuations with a microsensor. Using the metabolic relation (respiratory quotient, RQ) of O2 and CO2 derived from a sediment incubation experiment we present the first estimates of turbulent lake sediment CO2 flux from two boreal lakes in Sweden (Erssjön and Erken, 0.07 km2 and 23.7 km2 respectively). Only ~10 % of the total dataset was extracted for flux calculations due to poor signal-to-noise ratio in the velocity and O2 signals. The sediment in Lake Erssjön was both consuming and producing O2, related to bacterial respiration and photosynthesis. Mean O2 flux was -0.19 and 0.17 μmol O2 m-2 sec-1, comparing to 0.04 μmol O2 m-2 sec-1 derived from the sediment incubation experiment. Fluxes for Lake Erken are still to be determined. Experimentally derived RQ of the both lake sediments were close to unity implying that in-situ CO2 fluxes are of similar magnitude as O2 fluxes, varying between -0.15 and 0.18 μmol C m-2 sec-1. The first measurement of turbulent sediment O2 flux and estimate of turbulent CO2 flux from a small boreal lake show higher and more variable fluxes than previously found in experimental studies. The low amount of data extracted for flux calculations (~10%) point towards the difficulties in EC measurement in low-turbulence environments. On-going work focuses on the turbulence structure in lakes and its influence on the gas fluxes at the SWI.

  15. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    Science.gov (United States)

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    of wet and dry seasons, and provided evidence for ground-water inflow generated from the upper basin. Annual water budgets showed how differences in timing of rainfall and pumping stresses affected lake stage and lake ground-water interactions. Lake evaporation measurements made during the study suggest that, on average, annual lake evaporation exceeds annual precipitation in the basin. Rainfall was close to the long-term average of 51.99 inches per year for the 2 years of the study (50.68 and 54.04 inches, respectively). Lake evaporation was 57.08 and 55.88 inches per year for the same 2 years, making net precipitation (rainfall minus evaporation) negative during both years. If net precipitation to seepage lakes in this area is negative over the long-term, then the ability to generate net ground-water inflow from the surrounding basin plays an important role in sustaining lake levels. Evaporation exceeded rainfall by a similar amount for both years of the study, but net ground-water flow differed substantially between the 2 years. The basin contributed net ground-water inflow to the lake in both years, however, net ground-water inflow was not sufficient to make up for the negative net precipitation during the first year, and the lake fell 4.9 inches. During the second year, net ground-water inflow exceeded the difference between evaporation and rainfall and the lake rose by 12.7 inches. The additional net ground-water inflow in the second year was due to both an increase in the amount of gross ground-water inflow and a decrease in lake leakage (ground-water outflow). Ground-water inflow was greater during the second year because more rain fell during the winter, when evaporative losses were low, resulting in greater ground-water recharge. However, decreased lake leakage during this year was probably at least as important as increased ground-water inflow in explaining the difference in net ground-water flow to the lake between the 2 years. Estimates of lake leakage

  16. Ecology of Meromictic Lakes

    NARCIS (Netherlands)

    Gulati, R.D.; Zadereev, E.S.; Degermendzhy, A.G.

    2017-01-01

    This volume presents recent advances in the research on meromictic lakes and a state-of-the art overview of this area. After an introduction to the terminology and geographic distribution of meromictic lakes, three concise chapters describe their physical, chemical and biological features. The

  17. Holocene climate on the Modoc Plateau, northern California, USA: The view from Medicine Lake

    Science.gov (United States)

    Starratt, Scott W.

    2009-01-01

    Medicine Lake is a small (165 ha), relatively shallow (average 7.3 m), intermediate elevation (2,036 m) lake located within the summit caldera of Medicine Lake volcano, Siskiyou County, California, USA. Sediment cores and high-resolution bathymetric and seismic reflection data were collected from the lake during the fall of 1999 and 2000. Sediments were analyzed for diatoms, pollen, density, grain size (sand/mud ratio), total organic carbon (TOC), and micro-scale fabric analysis. Using both 14C (AMS) dating and tephrochronology, the basal sediments were estimated to have been deposited about 11,400 cal year BP, thus yielding an estimated average sedimentation rate of about 20.66 cm/1,000 year. The lowermost part of the core (11,400–10,300 cal year BP) contains the transition from glacial to interglacial conditions. From about 11,000–5,500 cal year BP, Medicine Lake consisted of two small, steep-sided lakes or one lake with two steep-sided basins connected by a shallow shelf. During this time, both the pollen (Abies/Artemisia ratio) and the diatom (Cyclotella/Navicula ratio) evidences indicate that the effective moisture increased, leading to a deeper lake. Over the past 5,500 years, the pollen record shows that effective moisture continued to increase, and the diatom record indicates fluctuations in the lake level. The change in the lake level pattern from one of the increasing depths prior to about 6,000 cal year BP to one of the variable depths may be related to changes in the morphology of the Medicine Lake caldera associated with the movement of magma and the eruption of the Medicine Lake Glass Flow about 5,120 cal year BP. These changes in basin morphology caused Medicine Lake to flood the shallow shelf which surrounds the deeper part of the lake. During this period, the Cyclotella/Navicula ratio and the percent abundance of Isoetes vary, suggesting that the level of the lake fluctuated, resulting in changes in the shelf area

  18. Methane production and oxidation in lakes impacted by the May 18, 1980 eruption of Mount St. Helens

    International Nuclear Information System (INIS)

    Lilley, M.D.; Baross, J.A.; Dahm, C.N.

    1988-01-01

    The concentrations of CH 4 and CH 4 oxidation rates were measured in lakes impacted by the May 18, 1980 eruption of Mount St. Helens. The highest CH 4 concentrations were recorded during the first summer after the eruption and ranged in surface waters from 5 microM in the moderately impacted Ryan Lake to 28 microM in the heavily impacted North Coldwater Lake. At depths below the oxic/anoxic interface, CH 4 levels reached 250 microM in North Coldwater Lake, 184 microM in Spirit Lake, 70 microM in Castle Creek lake, and 60 microM in Ryan Lake. The CH 4 flux measurements from these lakes during the summer following the May 18, 1980 eruption were the highest ever recorded in lakes with ranges of 1.1-2.9 mmol CH 4 /sq m/day in the light to moderately impacted McBride and Ryan Lakes to ranges of 17.4-25.3 mmol CH 4 /sq m/day in the heavily impacted Castle Creek, North Coldwater, and Spirit Lakes. Evidence of CH 4 oxidation was seen in all of the lakes during the summer of 1981, and rates of CH 4 oxidation using C 14 -CH 4 were measured in spirit Lake from 1982 to 1986. The highest rates of CH 4 oxidation measured were during the summer stratification and ranged from 50 to 150 nmol CH 4 oxidized/L/day. methane oxidation rates were measured in waters having oxygen concentrations less than 100 microM with highest activity occurring at concentrations of 30-60 microM. 36 refs., 12 figs. 3 tabs

  19. Reduced phosphorus retention by anoxic bottom sediments after the remediation of an industrial acidified lake area: Indications from P, Al, and Fe sediment fractions.

    Science.gov (United States)

    Nürnberg, Gertrud K; Fischer, Rachele; Paterson, Andrew M

    2018-06-01

    Formerly acidified lakes and watersheds can become more productive when recovering from acidity, especially when exposed to anthropogenic disturbance and increased nutrient loading. Occasional toxic cyanobacterial blooms and other signs of eutrophication have been observed for a decade in lakes located in the Sudbury, Ontario, mining area that was severely affected by acid deposition before the start of smelter emission reductions in the 1970s. Oligotrophic Long Lake and its upstream lakes have been exposed to waste water input and development impacts from the City of Greater Sudbury and likely have a legacy of nutrient enrichment in their sediment. Based on observations from other published studies, we hypothesized that P, which was previously adsorbed by metals liberated during acidification caused by the mining activities, is now being released from the sediment as internal P loading contributing to increased cyanobacteria biomass. Support for this hypothesis includes (1) lake observations of oxygen depletion and hypolimnetic anoxia and slightly elevated hypolimnetic total P concentration and (2) P, Al, and Fe fractionation of two sediment layers (0-5, 5-10 cm), showing elevated concentrations of TP and iron releasable P (BD-fraction), decreased concentrations in fractions associated with Al, and fraction ratios indicating decreased sediment adsorption capacity. The comparison with two moderately enriched lakes within 200 km distance, but never directly affected by mining operations, supports the increasing similarity of Long Lake surficial sediment adsorption capacity with that of unaffected lakes. There is cause for concern that increased eutrophication including the proliferation of cyanobacteria of formerly acidic lakes is wide-spread and occurs wherever recovery coincides with anthropogenic disturbances and physical changes related to climate change. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Lake Mead National Recreational Area air tour management plan and planning and National Environmental Policy Act scoping document

    Science.gov (United States)

    2004-04-19

    The Federal Aviation Administration (FAA), in cooperation with the National Park Service (NPS), has initiated the development of an Air Tour Management Plan (ATMP) for Lake Mead National Recreation Area (LAME) pursuant to the National Parks Air Tour ...

  1. Resilience and Restoration of Lakes

    Directory of Open Access Journals (Sweden)

    Stephen R. Carpenter

    1997-06-01

    Full Text Available Lake water quality and ecosystem services are normally maintained by several feedbacks. Among these are nutrient retention and humic production by wetlands, nutrient retention and woody habitat production by riparian forests, food web structures that cha nnel phosphorus to consumers rather than phytoplankton, and biogeochemical mechanisms that inhibit phosphorus recycling from sediments. In degraded lakes, these resilience mechanisms are replaced by new ones that connect lakes to larger, regional economi c and social systems. New controls that maintain degraded lakes include runoff from agricultural and urban areas, absence of wetlands and riparian forests, and changes in lake food webs and biogeochemistry that channel phosphorus to blooms of nuisance al gae. Economic analyses show that degraded lakes are significantly less valuable than normal lakes. Because of this difference in value, the economic benefits of restoring lakes could be used to create incentives for lake restoration.

  2. Influence of catchment quality and altitude on the water and sediment composition of 68 small lakes in Central Europe

    NARCIS (Netherlands)

    Müller, B.; Lotter, A.F.; Sturm, M.; Ammann, A.

    1998-01-01

    68 lakes (63 Swiss, 2 French and 3 Italian) located in an altitudinal range between 334 and 2339 m spanning a wide range of land-use have been investigated. The aim of the study was to discuss influences of geographic location, vegetation and land-use in the catchment area on the water

  3. The performance and potentials of the CryoSat-2 SAR and SARIn modes for lake level estimation

    DEFF Research Database (Denmark)

    Nielsen, Karina; Stenseng, Lars; Andersen, Ole Baltazar

    2017-01-01

    Over the last few decades, satellite altimetry has proven to be valuable for monitoring lake levels. With the new generation of altimetry missions, CryoSat-2 and Sentinel-3, which operate in Synthetic Aperture Radar (SAR) and SAR Interferometric (SARIn) modes, the footprint size is reduced...... to approximately 300 m in the along-track direction. Here, the performance of these new modes is investigated in terms of uncertainty of the estimated water level from CryoSat-2 data and the agreement with in situ data. The data quality is compared to conventional low resolution mode (LRM) altimetry products from...... of that of the Envisat results. Generally, the CryoSat-2 lake levels also show a better agreement with the in situ data. The lower uncertainty of the CryoSat-2 results entails a more detailed description of water level variations....

  4. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    Directory of Open Access Journals (Sweden)

    E. Kristensen

    2018-02-01

    Full Text Available Groundwater-borne contaminants such as nutrients, dissolved organic carbon (DOC, coloured dissolved organic matter (CDOM and pesticides can have an impact the biological quality of lakes. The sources of pollutants can, however, be difficult to identify due to high heterogeneity in groundwater flow patterns. This study presents a novel approach for fast hydrological surveys of small groundwater-fed lakes using multiple groundwater-borne tracers. Water samples were collected from the lake and temporary groundwater wells, installed every 50 m within a distance of 5–45 m to the shore, were analysed for tracer concentrations of CDOM, DOC, total dissolved nitrogen (TDN, groundwater only, total nitrogen (TN, lake only, total dissolved phosphorus (TDP, groundwater only, total phosphorus (TP, lake only, δ18O ∕ δ16O isotope ratios and fluorescent dissolved organic matter (FDOM components derived from parallel factor analysis (PARAFAC. The isolation of groundwater recharge areas was based on δ18O measurements and areas with a high groundwater recharge rate were identified using a microbially influenced FDOM component. Groundwater discharge sites and the fractions of water delivered from the individual sites were isolated with the Community Assembly via Trait Selection model (CATS. The CATS model utilized tracer measurements of TDP, TDN, DOC and CDOM from the groundwater samples and related these to the tracer measurements of TN, TP, DOC and CDOM in the lake. A direct comparison between the lake and the inflowing groundwater was possible as degradation rates of the tracers in the lake were taken into account and related to a range of water retention times (WRTs of the lake (0.25–3.5 years in 0.25-year increments. These estimations showed that WRTs above 2 years required a higher tracer concentration of inflowing water than found in any of the groundwater wells around the lake. From the estimations of inflowing tracer concentration

  5. The Late-Glacial and Holocene Marboré Lake sequence (2612 m a.s.l., Central Pyrenees, Spain): Testing high altitude sites sensitivity to millennial scale vegetation and climate variability

    Science.gov (United States)

    Leunda, Maria; González-Sampériz, Penélope; Gil-Romera, Graciela; Aranbarri, Josu; Moreno, Ana; Oliva-Urcia, Belén; Sevilla-Callejo, Miguel; Valero-Garcés, Blas

    2017-10-01

    This paper presents the environmental, climate and vegetation changes reconstructed for the last 14.6 kyr cal BP from the Marboré Lake sedimentary sequence, the highest altitude record (2612 m a.s.l.) in the Pyrenees studied up to date. We investigate the sensitivity of this high altitude site to vegetational and climate dynamics and altitudinal shifts during the Holocene by comparing palynological spectra of the fossil sequence and pollen rain content from current moss pollsters. We hypothesize that the input of sediments in lakes at such altitude is strongly controlled by ice phenology (ice-free summer months) and that during cold periods Pollen Accumulation Rate (PAR) and Pollen Concentration (PC) reflect changes in ice-cover and thus is linked to temperature changes. Low sedimentation rates and low PC and PAR occurred during colder periods as the Younger Dryas (GS-1) and the Holocene onset (12.6-10.2 kyr cal BP), suggesting that the lake-surface remained ice-covered for most of the year during these periods. Warmer conditions are not evident until 10.2 kyr cal BP, when an abrupt increase in sedimentation rate, PC and PAR occur, pointing to a delayed onset of the Holocene temperature increase at high altitude. Well-developed pinewoods and deciduous forest dominated the mid montane belt since 9.3 kyr cal BP until mid-Holocene (5.2 kyr cal BP). A downwards shift in the deciduous forest occurred after 5.2 kyr cal BP, in agreement with the aridity trend observed at a regional and Mediterranean context. The increase of herbaceous taxa during the late-Holocene (3.5 kyr cal BP-present) reflects a general trend to reduced montane forest, as anthropogenic disturbances were not evident until 1.3 kyr cal BP when Olea proportions from lowland areas and other anthropogenic indicators clearly expand. Our study demonstrates the need to perform local experimental approaches to check the effect of ice phenology on high altitude lakes sensitivity to vegetation changes to obtain

  6. Multi-Elements in Waters and Sediments of Shallow Lakes: Relationships with Water, Sediment, and Watershed Characteristics.

    Science.gov (United States)

    Kissoon, La Toya T; Jacob, Donna L; Hanson, Mark A; Herwig, Brian R; Bowe, Shane E; Otte, Marinus L

    2015-06-01

    We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds.

  7. Postglacial evolution and recent siltation of the protected lake "Taferlklaussee" (Austria)

    Science.gov (United States)

    Bernsteiner, Heidi; Götz, Joachim; Salcher, Bernhard; Lang, Andreas

    2017-04-01

    structure of the sedimentary basin fill, we use DC-resistivity and ground-penetrating radar. Additionally, drill cores deliver stratigraphic information to validate geophysical data and to establish sedimentation rates (14C dating of organic remains). The recent siltation is analysed using historical maps, multi-temporal aerial photographs (from 1953 onwards), and short-term sedimentation rates based on 210PB analyses of the sediment core. Preliminary results indicate that the basin is rather shallow with a hard rock-base below the basin fill in 4-5 m depth. Sediment coring revealed a peat deposit overlaying basal till that is capped by lacustrine sediments; clearly indicating a two-stage development of the TKS from an initial peat basin to an artificial lake since water level has been risen. The most recent lake development as reconstructed from multi-temporal aerial photographs shows that two zones of siltation have strongly expanded since 1953 on the cost of a diminishing lake area.

  8. Dramatic and long-term lake level changes in the Qinghai-Tibet Plateau from Cryosat-2 altimeter: validation and augmentation by results from repeat altimeter missions and satellite imagery

    Science.gov (United States)

    Hwang, Cheinway; Huang, YongRuei; Cheng, Ys; Shen, WenBin; Pan, Yuanjin

    2017-04-01

    The mean elevation of the Qinghai-Tibet Plateau (QTP) exceeds 4000 m. Lake levels in the QTP are less affected by human activities than elsewhere, and may better reflect the state of contemporary climate change. Here ground-based lake level measurements are rare. Repeat altimeter missions, particularly those from the TOPEX and ERS series of altimetry, have provided long-term lake level observations in the QTP, but their large cross-track distances allow only few lakes to be monitored. In contrast, the Cryosat-2 altimeter, equipped with the new sensor SIRAL (interferometric/ synthetic aperture radar altimeter), provides a much better ranging accuracy and a finer spatial coverage than these repeated missions, and can detect water level changes over a large number of lakes in the QTP. In this study, Cryosat-2 data are used to determine lake level changes over 75˚E-100˚E and 28˚N-37.5˚N, where Cryosat-2 covers 60 lakes and SARAL/ AltiKa covers 32 lakes from 2013 to 2016. Over a lake, Cryosat-2 in different cycles can pass through different spots of the lake, making the numbers of observations non-uniform and requiring corrections for lake slopes. Four cases are investigated to cope with these situations: (1) neglecting inconsistency in data volume and lake slopes (2) considering data volume, (3) considering lake slopes only, and (4) considering both data volume and lake slopes. The CRYOSAT-2 result is then compared with the result from the SARAL to determine the best case. Because Cryosat-2 is available from 2010 to 2016, Jason-2 data are used to fill gaps between the time series of Cryosat-2 and ICESat (2003-2009) to obtain >10 years of lake level series. The Cryosat-2 result shows dramatic lake level rises in Lakes Kusai, Zhuoaihu and Salt in 2011 caused by floods. Landsat satellite imagery assists the determination and interpretation of such rises.

  9. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    Science.gov (United States)

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  10. Assessment of evolution and risks of glacier lake outbursts in the Djungarskiy Alatau, Central Asia, using Landsat imagery and glacier bed topography modelling

    Directory of Open Access Journals (Sweden)

    V. Kapitsa

    2017-10-01

    Full Text Available Changes in the abundance and area of mountain lakes in the Djungarskiy (Jetysu Alatau between 2002 and 2014 were investigated using Landsat imagery. The number of lakes increased by 6.2 % from 599 to 636 with a growth rate of 0.51 % a−1. The combined areas were 16.26 ± 0.85 to 17.35 ± 0.92 km2 respectively and the overall change was within the uncertainty of measurements. Fifty lakes, whose potential outburst can damage existing infrastructure, were identified. The glacier bed topography version 2 (GlabTop2 model was applied to simulate ice thickness and subglacial topography using glacier outlines for 2000 and SRTM DEM (Shuttle Radar Topography Mission digital elevation model as input data achieving realistic patterns of ice thickness. A total of 513 overdeepenings in the modelled glacier beds, presenting potential sites for the development of lakes, were identified with a combined area of 14.7 km2. Morphometric parameters of the modelled overdeepenings were close to those of the existing lakes. A comparison of locations of the overdeepenings and newly formed lakes in the areas de-glacierized in 2000–2014 showed that 67 % of the lakes developed at the sites of the overdeepenings. The rates of increase in areas of new lakes correlated with areas of modelled overdeepenings. Locations where hazardous lakes may develop in the future were identified. The GlabTop2 approach is shown to be a useful tool in hazard management providing data on the potential evolution of future lakes.

  11. Characteristics of sediment resuspension in Lake Taihu, China: A wave flume study

    Science.gov (United States)

    Ding, Yanqing; Sun, Limin; Qin, Boqiang; Wu, Tingfeng; Shen, Xia; Wang, Yongping

    2018-06-01

    Lake Taihu is a typical shallow lake which frequently happens sediment resuspension induced by wind-induced waves. The experiments are carried on to simulate the wave disturbance processes in wave flume by setting a series of wave periods (1.2 s, 1.5 s, 1.8 s) and wave heights (2 cm, 10 cm). It aims to analyze the characteristics of sediment resuspension and the mechanisms of nutrients release and to evaluate the effects of sediment dredging on sediment resuspension and nutrients release in Lake Taihu. The results show that wave shear stress during 2 cm and 10 cm wave height processes ranges 0.018-0.023 N/m2 and 0.221-0.307 N/m2, respectively. Wave shear stress has no significant differences between wave periods. Wave height has much more effects on sediment resuspension. Wave height of 2 cm could induce total suspended solids (TSS) reaching up to 5.21 g/m2 and resuspension flux of sediment (M) up to 1.74 g/m2. TSS sharply increases to 30.33-52.41 g/m2 and M reached up to 48.94 g/m2 when wave height reaches to 10 cm. The disturbance depth under different sediment bulk weights ranges from 0.089 to 0.161 mm. Variation of suspended solids in 3 layers (1 cm, 5 cm, 20 cm above sediment interface) has no significant differences. Organic matter, TN and TP have positive relationship with SS. Organic matter is only accounted for 5.7%-7.3% of SS. The experiments under different sediment bulk densities (1.34 g/cm3, 1.47 g/cm3 and 1.59 g/cm3) find that TSS and M fall by 44.2% and 39.8% with sediment bulk density increasing, respectively. Total TN, DTN, TP and DTP decrease by 24.3%-33.6%. It indicates that sediment dredging could effectively reduce SS concentration and nutrient levels in water column. The researches provide a theoretical basis for sediment dredging to control the shore zone of Lake Taihu for lake management.

  12. [Species composition, diversity and density of small fishes in two different habitats in Niushan Lake].

    Science.gov (United States)

    Ye, Shao-Wen; Li, Zhong-Jie; Cao, Wen-Xuan

    2007-07-01

    This paper studied the spatial distribution of small fishes in a shallow macrophytic lake, Niushan Lake in spring 2003, and its relations with habitat heterogeneity. Based on the macrophyte cover condition, distance from lake shore and water depth, two representative habitat types in the lake were selected. Habitat A was near the shore with dense submersed macrophyte, while habitat B was far from the shore with sparse submersed macrophyte. Small fishes were sampled quantitatively by block net (180 m2), and their densities within the net area were estimated by multiple mark-recapture or Zippin's removal method. The results showed that there were some differences in species composition, biodiversity measurement, and estimated density of small fishes between the two habitats: 1) the catches in habitat A consisted of 14 small fish species from 5 families, among which, benthopelagic species Rhodeus ocellatus, Paracheilognathus imberbis and Pseudorasbora parva were considered as dominant species, while those in habitat B consisted of 9 small fish species from 3 families, among which, bottom species Rhinogobius giurinus and Micropercops swinhonis were dominant; 2) the Bray-Curtis index between the two small fish communities was 0.222, reflecting their low structure similarity, and no significant difference was observed between their rank/ abundance distributions, both of which belonged to log series distribution; 3) the total density of 9 major species in habitat A was 8.71 ind x m(-2), while that of 5 major species in habitat B was only 3.54 ind x m(-2). The fact that the spatial distribution of the small fishes differed with habitats might be related to their habitat need for escaping predators, feeding, and breeding, and thus, aquatic macrophyte habitat should be of significance in the rational exploitation of small fish resources as well as the conservation of fish resource diversity.

  13. Changes in climate, catchment vegetation and hydrogeology as the causes of dramatic lake-level fluctuations in the Kurtna Lake District, NE Estonia

    Directory of Open Access Journals (Sweden)

    Marko Vainu

    2014-02-01

    Full Text Available Numerous lakes in the world serve as sensitive indicators of climate change. Water levels for lakes Ahnejärv and Martiska, two vulnerable oligotrophic closed-basin lakes on sandy plains in northeastern Estonia, fell more than 3 m in 1946–1987 and rose up to 2 m by 2009. Earlier studies indicated that changes in rates of groundwater abstraction were primarily responsible for the changes, but scientifically sound explanations for water-level fluctuations were still lacking. Despite the inconsistent water-level dataset, we were able to assess the importance of changing climate, catchment vegetation and hydrogeology in water-level fluctuations in these lakes. Our results from water-balance simulations indicate that before the initiation of ground­water abstraction in 1972 a change in the vegetation composition on the catchments triggered the lake-level decrease. The water-level rise in 1990–2009 was caused, in addition to the reduction of groundwater abstraction rates, by increased precipitation and decreased evaporation. The results stress that climate, catchment vegetation and hydrogeology must all be considered while evaluating the causes of modern water-level changes in lakes.

  14. Thermal remote sensing of water under flooded vegetation: New observations of inundation patterns for the ‘Small’ Lake Chad

    Science.gov (United States)

    Leblanc, M.; Lemoalle, J.; Bader, J.-C.; Tweed, S.; Mofor, L.

    2011-06-01

    SummaryLake Chad at the border of the Sahara desert in central Africa, is well known for its high sensitivity to hydroclimatic events. Gaps in in situ data have so far prevented a full assessment of the response of Lake Chad to the ongoing prolonged drought that started in the second half of the 20th century. Like many other wetlands and shallow lakes, the 'Small' Lake Chad includes large areas of water under aquatic vegetation which needs to be accounted for to obtain the total inundated area. In this paper, a methodology is proposed that uses Meteosat thermal maximum composite data (Tmax) to account for water covered by aquatic vegetation and provide a consistent monthly time series of total inundated area estimates for Lake Chad. Total inundation patterns in Lake Chad were reconstructed for a 15-yr period (1986-2001) which includes the peak of the drought (86-91) and therefore provides new observations on the hydrological functioning of the 'Small' Lake Chad. During the study period, Lake Chad remained below 16,400 km 2 (third quartile ˜8800 km 2). The variability of the inundated area observed in the northern pool (standard deviation σnorthern pool = 1980 km 2) is about 60% greater than that of the southern pool ( σsouthern pool = 1250 km 2). The same methodology could be applied to other large wetlands and shallow lakes in semi-arid or arid regions elsewehere using Meteosat (e.g. Niger Inland Delta, Sudd in Sudan, Okavango Delta) and other weather satellites (e.g., floodplains of the Lake Eyre Basin in Australia and Andean Altiplano Lakes in South America).

  15. Periodic outburst floods from an ice-dammed lake in East Greenland.

    Science.gov (United States)

    Grinsted, Aslak; Hvidberg, Christine S; Campos, Néstor; Dahl-Jensen, Dorthe

    2017-08-30

    We report evidence of four cycles of outburst floods from Catalina Lake, an ice-dammed lake in East Greenland, identified in satellite imagery between 1966-2016. The lake measures 20-25 km 2 , and lake level drops 130-150 m in each event, corresponding to a water volume of 2.6-3.4 Gt, and a release of potential energy of 10 16  J, among the largest outburst floods reported in historical times. The drainage cycle has shortened systematically, and the lake filling rate has increased over each cycle, suggesting that the drainage pattern is changing due to climate warming with possible implications for environmental conditions in Scoresbysund fjord.

  16. LAKE ICE DETECTION IN LOW-RESOLUTION OPTICAL SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    M. Tom

    2018-05-01

    Full Text Available Monitoring and analyzing the (decreasing trends in lake freezing provides important information for climate research. Multi-temporal satellite images are a natural data source to survey ice on lakes. In this paper, we describe a method for lake ice monitoring, which uses low spatial resolution (250 m–1000 m satellite images to determine whether a lake is frozen or not. We report results on four selected lakes in Switzerland: Sihl, Sils, Silvaplana and St. Moritz. These lakes have different properties regarding area, altitude, surrounding topography and freezing frequency, describing cases of medium to high difficulty. Digitized Open Street Map (OSM lake outlines are back-projected on to the image space after generalization. As a pre-processing step, the absolute geolocation error of the lake outlines is corrected by matching the projected outlines to the images. We define the lake ice detection as a two-class (frozen, non-frozen semantic segmentation problem. Several spectral channels of the multi-spectral satellite data are used, both reflective and emissive (thermal. Only the cloud-free (clean pixels which lie completely inside the lake are analyzed. The most useful channels to solve the problem are selected with xgboost and visual analysis of histograms of reference data, while the classification is done with non-linear support vector machine (SVM. We show experimentally that this straight-forward approach works well with both MODIS and VIIRS satellite imagery. Moreover, we show that the algorithm produces consistent results when tested on data from multiple winters.

  17. Limnology and plankton diversity of salt lakes from Transylvanian Basin (Romania: A review

    Directory of Open Access Journals (Sweden)

    Mircea Alexe

    2017-09-01

    Full Text Available In the present work, we review the current knowledge on genesis, limnology and biodiversity of salt lakes distributed around the inner contour of Eastern Carpathian arc (Transylvanian Basin, Central Romania. Transylvanian salt lakes formed on ancient halite (NaCl deposits following natural processes or quarrying activities.  Most of these lakes are located in eastern (Sovata area, southern (Ocna Sibiului, and western (Turda-Cojocna parts of the Transylvanian Basin, have small surfaces (0.1-4 ha, variable depths (2-100 m, are hypersaline (>10%, w/v, total salts, mainly NaCl and permanently stratified. As consequence of steady salinity/density gradient, heat entrapment below surface layer (i.e., heliothermy develops in several Transylvanian lakes. The physical and chemical water stratification is mirrored in the partition of plankton diversity. Lakes with less saline (2-10% salinity water layers appear to harbor halotolerant representatives of phyto- (e.g., marine native Picochlorum spp. and Synechococcus spp., zoo- (e.g., Moina salina, and bacterioplankton (e.g., Actinobacteria, Verrucomicobia, whereas halophilic plankton communities (e.g., green algae Dunaliella sp., brine shrimp Artemia sp., and members of Halobacteria class dominate in the oxic surface of hypersaline (>10% salinity lakes. Molecular approaches (e.g., PCR-DGGE, 16S rRNA gene-based clone libraries, and DNA metabarcoding showed that the O2-depleted bottom brines of deep meromictic Transylvanian lakes are inhabited by known extremely halophilic anaerobes (e.g. sulfate-reducing Delta-Proteobacteria, fermenting Clostridia, methanogenic and polymer-degrading archaea in addition to representatives of uncultured/unclassified prokaryotic lineages. Overall, the plankton communities thriving in saline Transylvanian lakes seem to drive full biogeochemical cycling of main elements. However, the trophic interactions (i.e., food web structure and energy flow as well as impact of human

  18. Recent geologic development of Lake Michigan (U.S.A.)

    Science.gov (United States)

    Gross, D.L.; Cahill, R.A.

    1983-01-01

    The stresses placed on Lake Michigan since the advent of industrialization require knowledge of the sedimentology of the whole lake in order to make informed decisions for environmental planning. Sediment accumulation rates are low: areas of the lake receiving the most sediment average only 1 mm a-1; deep-water basins average 0.1 to 0.5 mm a-1; and large areas are not receiving any sediment. Sediment was deposited rapidly (typically 5 mm a-1), in the form of rock flour, during the deglaciation of both Lake Michigan and Lake Superior Basins. Then the rate of accumulation decreased by 80-90% and has remained relatively constant since final deglaciation. Because active sedimentation occurs mostly in the deep water areas of the lake, the sediment remains undisturbed and contains a record of the chemical history of the lake. ?? 1983 Dr W. Junk Publishers.

  19. Primary production in a tropical large lake: The role of phytoplankton composition

    International Nuclear Information System (INIS)

    Darchambeau, F.; Sarmento, H.; Descy, J.-P.

    2014-01-01

    Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ 14 C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (P Bm ) was found, ranging between 1.15 and 7.21 g carbon g −1 chlorophyll a h −1 , and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (I k ) ranged between 91 and 752 μE m2 s −1 and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll a m2 (annual mean) and from 143 to 278 g carbon m2 y −1 , respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu. - Highlights: • We provide a 7-year dataset of primary production in a tropical great lake. • Specific photosynthetic rate was determined by community composition. • Annual primary production varied between 143 and 278 mg C m2 y −1 . • Pelagic production was highly

  20. Boron content of Lake Ulubat sediment: A key to interpret the morphological history of NW Anatolia, Turkey

    International Nuclear Information System (INIS)

    Kazanci, N.; Toprak, O.; Leroy, S.A.G.; Oncel, S.; Ileri, O.; Emre, O.; Costa, P.; Erturac, K.; McGee, E.

    2006-01-01

    Freshwater Lake Ulubat (c. 1.5 m deep and c. 138 km 2 ) receives sediment from a 10.414 km 2 area in the seismically active Susurluk Drainage Basin (SDB) of NW Turkey. The B and trace element contents of the lake infill seem to be a link between the fresh landforms of the SDB and the lacustrine sediment. Deposition in Lake Ulubat has been 1.60 cm a -1 for the last 50 a according to radionuclides; however the sedimentation rate over the last millennium was 0.37 cm a -1 based on 14 C dating. The B content of the lacustrine infill displays a slight increase at 0.50 m and a drastic increase at 4 m depth occurring c. 31 a and c. 1070 a ago, respectively. Probably the topmost change corresponds to the start of open mining in the SDB and the second one to the natural trenching of borate ore-deposits. These dates also show indirectly a 1.4 cm a -1 erosion rate during the last millennium as the borate beds were trenched up to 15 m. By extrapolation, it is possible to establish that the formation of some of the present morphological features of the southern Marmara region, especially river incision, began in the late Pleistocene, and developed especially over the last 75 ka