WorldWideScience

Sample records for lytic peptide cecropin

  1. Biological activities of cecropin B-thanatin hybrid peptides.

    Science.gov (United States)

    Hongbiao, W; Baolong, N; Mengkui, X; Lihua, H; Weifeng, S; Zhiqi, M

    2005-12-01

    Ten kinds of hybrid peptides containing the N-terminal residues of cecropin B (CB) and C-terminal of thanatin (TH) were constructed and expressed as gluthathion S-transferase (GST)-fusion proteins. Variants were screened for the better biological activity, which was paralleled with the degree of growth inhibition of the transformant cells. The hybrid CB-TH g was selected as the best one among those hybrids by in vivo monitoring method and was chemical synthesized for in vitro antimicrobial activity analysis. The hybrid peptide showed rescued activity against several test strains when compared with the truncated isoforms of TH, suggesting that the peptides with different structure and mechanism could be used as templates for hybrid peptides design.

  2. In vitro production and antifungal activity of peptide ABP-dHC-cecropin A.

    Science.gov (United States)

    Zhang, Jiaxin; Movahedi, Ali; Xu, Junjie; Wang, Mengyang; Wu, Xiaolong; Xu, Chen; Yin, Tongming; Zhuge, Qiang

    2015-04-10

    The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, testing of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve expression of this peptide in E. coli, ABP-dHC-cecropin A was cloned into a pSUMO vector and transformed into E. coli, resulting in the production of a pSUMO-ABP-dHC-cecropin A fusion protein. The soluble form of this protein was then purified by Ni-IDA chromatography, yielding a total of 496-mg protein per liter of fermentation culture. The SUMO-ABP-dHC-cecropin A fusion protein was then cleaved using a SUMO protease and re-purified by Ni-IDA chromatography, yielding a total of 158-mg recombinant ABP-dHC-cecropin A per liter of fermentation culture at a purity of ≥94%, the highest yield reported to date. Antifungal activity assays performed using this purified recombinant peptide revealed strong antifungal activity against both Candida albicans and Neurospora crassa, as well as Rhizopus, Fusarium, Alternaria, and Mucor species. Combined with previous analyses demonstrating strong antibacterial activity against a number of important bacterial pathogens, these results confirm the use of ABP-dHC-cecropin A as a broad-spectrum antimicrobial peptide, with significant therapeutic potential.

  3. Antibacterial Peptide CecropinB2 Production via Various Host and Construct Systems

    Directory of Open Access Journals (Sweden)

    Wei-Shiang Lai

    2016-01-01

    Full Text Available Cecropin is a cationic antibacterial peptide composed of 35–39 residues. This peptide has been identified as possessing strong antibacterial activity and low toxicity against eukaryotic cells, and it has been claimed that some types of the cecropin family of peptides are capable of killing cancer cells. In this study, the host effect of cloning antibacterial peptide cecropinB2 was investigated. Three different host expression systems were chosen, i.e., Escherichia coli, Bacillus subtilis and Pichia pastoris. Two gene constructs, cecropinB2 (cecB2 and intein-cecropinB2 (INT-cecB2, were applied. Signal peptide and propeptide from Armigeres subalbatus were also attached to the gene construct. The results showed that the best host for cloning cecropinB2 was P. pastoris SMD1168 harboring the gene of pGAPzαC-prepro-cecB2 via Western blot confirmation. The cecropinB2 that was purified using immobilized-metal affinity chromatography resin showed strong antibacterial activity against the Gram-negative strains, including the multi-drug-resistant bacteria Acinetobacter baumannii.

  4. Construction of Antibacterial Peptide CecropinB Eukaryotic Recombinant Vector and Its Expression in Dairy Goat Mammary Gland Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    GAO Xuejun; TONG Huili; YIN Deyun; ZHANG Li

    2008-01-01

    To investigate the expression of antibacterial peptide CecropinB eDNA in dairy goat mammary gland epithelial cells, the CecropinB gene was eloned and was inserted into a eukaryotic vector pECFP-Cl to construct the recombinant plasmid pECFP-B by genetic engineering technique. Recombinant plasmid pECFP-B was transfected into dairy goat mammary gland epithelial to detect the bactericidal activity of CeeropinB. The expression of CecropinB was also detected. The result of RT-PCR demonstrated CecropinB gene was expressed in transfeeted cells. CecropinB recombinant plasmid DNA was injected into udders and CecropinB was expressed in mammary gland, exhibiting bactericidal activity to Staphylococcus aureus in vivo experiments.

  5. [High expression of antimicrobial peptide Cecropin AD in Escherichia coli by fusion with EDDIE].

    Science.gov (United States)

    Zhang, Zhen; Ke, Tao; Zhou, Yuling; Ma, Xiangdong; Ma, Lixin

    2009-08-01

    In this study, we efficiently expressed the active antimicrobial peptide (CAD), which fused with the site-mutated coat protein (EDDIE) of the classical swine fever virus, in Escherichia coli. First, we obtained the e-cad fusion gene from the CAD gene and the EDDIE gene using overlapping PCR. Then to get the recombinant expression vector (pETED), the e-cad fusion gene was cloned into the pET30a vector by a site-directed homologous recombination technique. The EDDIE-CAD fusion protein expressed in E. coli as inclusion bodies, and its yield was more than 40% of total bacterial proteins. After renaturated in vitro and self-cleavage of the fusion protein, we obtained the antimicrobial peptide Cecropin AD. Antimicrobial experiments showed that the Cecropin AD efficiently inhibited the growth of G+ and G- bacteria, but it weakly inhibited the growth of Saccharomyces. This method provides an excellent way for high expression of antimicrobial peptides when fused with EDDIE.

  6. 抗菌肽Cecropin A基因原核表达及表达产物的鉴定%Prokaryotic expression of antibiotic peptide Cecropin A gene and identification of expression products

    Institute of Scientific and Technical Information of China (English)

    陈磊

    2011-01-01

    BACKGROUND: Cecropins are a kind of micromolecule protein with antibacterial activity. Eukaryotic cell-expressed or artificially synthesized Cecropins is characterized by low efficiency and high cost. OBJECTIVE: To clone and express an antibacterial peptide gene of Musca domestica Cecropin A, and to identify recombinant expression product. METHODS: Mature Musca domestica Cecropin A encoding nucleotide sequence was searched from the GenBank and amplified by RT-PCR. The gene of Musca domestica Cecropin A was cloned into prokaryotic expression vector pET32a and fused with gene of Thioredoxin (Trx) and expressed in E.coli BL2l (DE3). After induction by isopropyl-β-D-thiogalactoside, the sera of the immunized rabbits were collected after rabbits were immunized with the hemolymph of housefly larvae. Recombinant protein was identified by western blot analysis and N-[Tris(hydroxymethyl)methyl]glycine-sodium dodecylsulfate-polyacrylamide gel electrophoresis.RESULTS AND CONCLUSION: After induction by isopropyl-β-D-thiogalactoside, E.coli BL21 expressed mature Cecropin. Rabbit anti- housefly larvae sera, N-[Tris(hydroxymethyl)methyl]glycine-sodium dodecylsulfate-polyacrylamide gel electrophoresis and western blot analysis results confirmed that expression products were mature Cecropin. These suggest that prokaryotic expression system can be utilized to obtain natural mature Cecropin.%背景:Cecropins是一种具有抗菌活性的小分子蛋白质.采用真核细胞表达或人工合成Cecropins,效率低、成本高.目的:克隆表达家蝇抗菌肽基因Cecropin A,并对其重组表达产物进行鉴定.方法:依据GenBank中家蝇Cecropin A基因序列设计特异性引物,用RT-PCR从家蝇幼虫组织中扩增Cecropin A成熟肽基因,将其克隆入原核表达载体pET32a中,与表达载体中的Thioredoxin基因构成融合基因,并转化E.coli BL21.经异丙基-β-D硫代半乳糖苷诱导表达.采用家蝇幼虫血淋巴

  7. Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing.

    Science.gov (United States)

    Zou, Xiuping; Jiang, Xueyou; Xu, Lanzhen; Lei, Tiangang; Peng, Aihong; He, Yongrui; Yao, Lixiao; Chen, Shanchun

    2017-03-01

    Expression of synthesized cecropin B genes in the citrus phloem, where Candidatus Liberibacter asiaticus resides, significantly decreased host susceptibility to Huanglongbing. Huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus bacteria, is the most destructive disease of citrus worldwide. All of the commercial sweet orange cultivars lack resistance to this disease. The cationic lytic peptide cecropin B, isolated from the Chinese tasar moth (Antheraea pernyi), has been shown to effectively eliminate bacteria. In this study, we demonstrated that transgenic citrus (Citrus sinensis Osbeck) expressing the cecropin B gene specifically in the phloem had a decreased susceptibility to HLB. Three plant codon-optimized synthetic cecropin B genes, which were designed to secrete the cecropin B peptide into three specific sites, the extracellular space, the cytoplasm, and the endoplasmic reticulum, were constructed. Under the control of the selected phloem-specific promoter GRP1.8, these constructs were transferred into the citrus genome. All of the cecropin B genes were efficiently expressed in the phloem of transgenic plants. Over more than a year of evaluation, the transgenic lines exhibited reduced disease severity. Bacterial populations in transgenic lines were significantly lower than in the controls. Two lines, in which bacterial populations were significantly lower than in others, showed no visible symptoms. Thus, we demonstrated the potential application of the phloem-specific expression of an antimicrobial peptide gene to protect citrus plants from HLB.

  8. [Enhanced resistance to phytopathogenic bacteria in transgenic tobacco plants with synthetic gene of antimicrobial peptide cecropin P1].

    Science.gov (United States)

    Zakharchenko, N S; Rukavtsova, E B; Gudkov, A T; Bur'ianov, Ia I

    2005-11-01

    Plasmids with a synthetic gene of the mammalian antimicrobial peptide cecropin P1 (cecP1) controlled by the constitutive promoter 35S RNA of cauliflower mosaic virus were constructed. Agrobacterial transformation of tobacco plants was conducted using the obtained recombinant binary vector. The presence of gene cecP1 in the plant genome was confirmed by PCR. The expression of gene cecP1 in transgenic plants was shown by Northern blot analysis. The obtained transgenic plants exhibit enhanced resistance to phytopathogenic bacteria Pseudomonas syringae, P. marginata, and Erwinia carotovora. The ability of transgenic plants to express cecropin P1 was transmitted to the progeny. F1 and F2 plants had the normal phenotype (except for a changed coloration of flowers) and retained the ability to produce normal viable seeds upon self-pollination. Lines of F1 plants with Mendelian segregation of transgenic traits were selected.

  9. [Transgenic Belarussian-bred potato plants expressing genes for antimicrobial peptides of the cecropin-melittin type].

    Science.gov (United States)

    Vutto, N L; Gapeeva, T A; Pundik, A N; Tret'iakova, T G; Volotovskiĭ, I D

    2010-12-01

    Binary vectors for Agrobacterium-mediated transformation were constructed to express the genes for antimicrobial peptides (APs) of the cectropin-melittin type under the control of the cauliflower mosaic virus 35S RNA promoter in plants. It was shown with Escherichia coli and Agrobacterium tumefaciens cells that the cassettes could be cloned in pB1121-based vectors with deletion of the 3-D-glycuronidase gene only in the orientation opposite to that of the original vector. Transgenic potato plants were obtained using the Belarussian varieties Odyssey, Vetraz, and Scarb. Their cells expressed the MsrA1 or CEMA peptides of the cecropin-melittin type. The expression was shown to confer higher resistance to bacterial (Erwinia carotovora) infection and extremely high resistance to fungal (Phytophtora infestans and Alternarla solani) infections.

  10. Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco.

    Science.gov (United States)

    Yevtushenko, Dmytro P; Romero, Rafael; Forward, Benjamin S; Hancock, Robert E; Kay, William W; Misra, Santosh

    2005-06-01

    Expression of defensive genes from a promoter that is specifically activated in response to pathogen invasion is highly desirable for engineering disease-resistant plants. A plant transformation vector was constructed with transcriptional fusion between the pathogen-responsive win3.12T promoter from poplar and the gene encoding the novel cecropin A-melittin hybrid peptide (CEMA) with strong antimicrobial activity. This promoter-transgene combination was evaluated in transgenic tobacco (Nicotiana tabacum L. cv. Xanthi) for enhanced plant resistance against a highly virulent pathogenic fungus Fusarium solani. Transgene expression in leaves was strongly increased after fungal infection or mechanical wounding, and the accumulation of CEMA transcripts was found to be systemic and positively correlated with the number of transgene insertions. A simple and efficient in vitro regeneration bioassay for preliminary screening of transgenic lines against pathogenic fungi was developed. CEMA had strong antifungal activity in vitro, inhibiting conidia germination at concentrations that were non-toxic to tobacco protoplasts. Most importantly, the expression level of the CEMA peptide in vivo, regulated by the win3.12T promoter, was sufficient to confer resistance against F. solani in transgenic tobacco. The antifungal resistance of plants with high CEMA expression was strong and reproducible. In addition, leaf tissue extracts from transgenic plants significantly reduced the number of fungal colonies arising from germinated conidia. Accumulation of CEMA peptide in transgenic tobacco had no deleterious effect on plant growth and development. This is the first report showing the application of a heterologous pathogen-inducible promoter to direct the expression of an antimicrobial peptide in plants, and the feasibility of this approach to provide disease resistance in tobacco and, possibly, other crops.

  11. In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi.

    Science.gov (United States)

    Jaynes, J M; Burton, C A; Barr, S B; Jeffers, G W; Julian, G R; White, K L; Enright, F M; Klei, T R; Laine, R A

    1988-10-01

    Plasmodium falciparum and Trypanosoma cruzi were killed by two novel lytic peptides (SB-37 and Shiva-1) in vitro. Human erythrocytes infected with P. falciparum, and Vero cells infected with T. cruzi, were exposed to these peptides. The result, in both cases, was a significant decrease in the level of parasite infection. Furthermore, the peptides had a marked cytocidal effect on trypomastigote stages of T. cruzi in media, whereas host eukaryotic cells were unaffected by the treatments. In view of the worldwide prevalence of these protozoan diseases and the lack of completely suitable treatments, lytic peptides may provide new and unique chemotherapeutic agents for the treatment of these infections.

  12. Modeling the ion channel structure of cecropin.

    OpenAIRE

    Durell, S R; Raghunathan, G.; Guy, H R

    1992-01-01

    Atomic-scale computer models were developed for how cecropin peptides may assemble in membranes to form two types of ion channels. The models are based on experimental data and physiochemical principles. Initially, cecropin peptides, in a helix-bend-helix motif, were arranged as antiparallel dimers to position conserved residues of adjacent monomers in contact. The dimers were postulated to bind to the membrane with the NH2-terminal helices sunken into the head-group layer and the COOH-termin...

  13. Immunomodulating and Revascularizing Activity of Kalanchoe pinnata Synergize with Fungicide Activity of Biogenic Peptide Cecropin P1

    Directory of Open Access Journals (Sweden)

    N. S. Zakharchenko

    2017-01-01

    Full Text Available Previously transgenic Kalanchoe pinnata plants producing an antimicrobial peptide cecropin P1 (CecP1 have been reported. Now we report biological testing K. pinnata extracts containing CecP1 as a candidate drug for treatment of wounds infected with Candida albicans. The drug constitutes the whole juice from K. pinnata leaves (not ethanol extract sterilized with nanofiltration. A microbicide activity of CecP1 against an animal fungal pathogen in vivo was demonstrated for the first time. However, a favorable therapeutic effect of the transgenic K. pinnata extract was attributed to a synergism between the fungicide activity of CecP1 and wound healing (antiscar, revascularizing, and immunomodulating effect of natural biologically active components of K. pinnata. A commercial fungicide preparation clotrimazole eliminated C. albicans cells within infected wounds in rats with efficiency comparable to CecP1-enriched K. pinnata extract. But in contrast to K. pinnata extract, clotrimazole did not exhibit neither wound healing activity nor remodeling of the scar matrix. Taken together, our results allow assumption that CecP1-enriched K. pinnata extracts should be considered as a candidate drug for treatment of dermatomycoses, wounds infected with fungi, and bedsores.

  14. In vitro cytocidal effect of lytic peptides on several transformed mammalian cell lines.

    Science.gov (United States)

    Jaynes, J M; Julian, G R; Jeffers, G W; White, K L; Enright, F M

    1989-01-01

    Several types of transformed mammalian cells, derived from established cell lines, were found to be lysed in vitro by three novel lytic peptides (SB-37, SB-37*, and Shiva-1). This is in contrast with the behavior of normal cells, where the observed lytic activity of the peptides is greatly reduced. Based on experiments utilizing compounds which disrupt the cytoskeleton (colchicine and cytochalasin-D), it is surmised that alterations in the cytoskeleton of transformed cells increase their sensitivity to the cytolytic activity exerted by the peptides, primarily by causing a loss of osmotic integrity. Thus, a stable and regenerative cytoskeletal system, as that possessed by normal cells, would seem requisite to withstanding the lytic effects of the peptides.

  15. Antimicrobial peptide gene cecropin-2 and defensin respond to peptidoglycan infection in the female adult of oriental fruit fly, Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Liu, Shi-Huo; Wei, Dong; Yuan, Guo-Rui; Jiang, Hong-Bo; Dou, Wei; Wang, Jin-Jun

    2017-04-01

    Cecropins and defensins are important antimicrobial peptides in insects and are inducible after injection of immune triggers. In this study, we cloned the cDNAs of two antimicrobial peptides (AMPs), cecropin-2 (BdCec-2) and defensin (BdDef) from Bactrocera dorsalis (Hendel), a serious pest causing great economic losses to fruits and vegetables. The BdCec-2 sequence of 192bp encodes a protein of 63 amino acids residues with a predicted molecular weight of 6.78kD. The 282bp cDNA of BdDef encodes a protein of 93 residues with a predicted molecular weight of 9.81kD. Quantitative real-time PCR analyses showed that BdCec-2 and BdDef had similar expression profiles among development stages, the highest mRNA levels of these two AMP genes were observed in the adult stage. Among different adult body segments and tissues, both genes had similar transcriptional profiles, the highest mRNA levels appeared in abdomen and fat body, which was consistent with the reported fact that fat body was the main organ synthesizing AMPs in insects. The expression of BdCec-2 and BdDef were up-regulated after challenge with peptidoglycans from Escherichia coli (PGN-EB) and Staphylococcus aureus (PGN-SA), respectively, suggesting their antimicrobial activity against Gram-negative and Gram-positive microorganisms. These results describe for the first time the basic properties of the cecropin-2 and defensin genes from B. dorsalis that probably play an important role in the defense response against invading microbes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. N-Terminal Fatty Acid Substitution Increases the Leishmanicidal Activity of CA(1-7)M(2-9), a Cecropin-Melittin Hybrid Peptide

    Science.gov (United States)

    Chicharro, Cristina; Granata, Cesare; Lozano, Rosario; Andreu, David; Rivas, Luis

    2001-01-01

    In order to improve the leishmanicidal activity of the synthetic cecropin A-melittin hybrid peptide CA(1-7)M(2-9) (KWKLFKKIGAVLKVL-NH2), a systematic study of its acylation with saturated linear fatty acids was carried out. Acylation of the Nɛ-7 lysine residue led to a drastic decrease in leishmanicidal activity, whereas acylation at lysine 1, in either the α or the ɛ NH2 group, increased up to 3 times the activity of the peptide against promastigotes and increased up to 15 times the activity of the peptide against amastigotes. Leishmanicidal activity increased with the length of the fatty acid chain, reaching a maximum for the lauroyl analogue (12 carbons). According to the fast kinetics, dissipation of membrane potential, and parasite membrane permeability to the nucleic acid binding probe SYTOX green, the lethal mechanism was directly related to plasma membrane permeabilization. PMID:11502512

  17. How Cancer Cells Become Resistant to Cationic Lytic Peptides: It's the Sugar!

    Science.gov (United States)

    Pierce, Joshua G

    2017-02-16

    In this issue of Cell Chemical Biology, Ishikawa et al. (2017) demonstrate that the loss of cell-surface anionic saccharides can impart resistance toward anticancer peptides. This study provides the first insight into potential resistance mechanisms toward cationic lytic peptides and highlights the important, yet previously unappreciated, role cell-surface glycans can play in cellular resistance mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Investigating the lytic activity and structural properties of Staphylococcus aureus phenol soluble modulin (PSM) peptide toxins.

    Science.gov (United States)

    Laabei, Maisem; Jamieson, W David; Yang, Yi; van den Elsen, Jean; Jenkins, A Toby A

    2014-12-01

    The ubiquitous bacterial pathogen, Staphylococcus aureus, expresses a large arsenal of virulence factors essential for pathogenesis. The phenol-soluble modulins (PSMs) are a family of cytolytic peptide toxins which have multiple roles in staphylococcal virulence. To gain an insight into which specific factors are important in PSM-mediated cell membrane disruption, the lytic activity of individual PSM peptides against phospholipid vesicles and T cells was investigated. Vesicles were most susceptible to lysis by the PSMα subclass of peptides (α1-3 in particular), when containing between 10 and 30mol% cholesterol, which for these vesicles is the mixed solid ordered (so)-liquid ordered (lo) phase. Our results show that the PSMβ class of peptides has little effect on vesicles at concentrations comparable to that of the PSMα class and exhibited no cytotoxicity. Furthermore, within the PSMα class, differences emerged with PSMα4 showing decreased vesicle and cytotoxic activity in comparison to its counterparts, in contrast to previous studies. In order to understand this, peptides were studied using helical wheel projections and circular dichroism measurements. The degree of amphipathicity, alpha-helicity and properties such as charge and hydrophobicity were calculated, allowing a structure-function relationship to be inferred. The degree of alpha-helicity of the peptides was the single most important property of the seven peptides studied in predicting their lytic activity. These results help to redefine this class of peptide toxins and also highlight certain membrane parameters required for efficient lysis.

  19. 家蝇抗菌肽Cecropin对人源性肿瘤细胞增殖与凋亡的影响%Effect of antimicrobial peptide cecropin of Musca domestica on proliferation and apoptosis of human tumor cell

    Institute of Scientific and Technical Information of China (English)

    金小宝; 龚水明; 蒲俏虹; 朱家勇; 褚夫江; 梅寒芳

    2012-01-01

    Objective To observe the effect of antimicrobial peptide cecropin of Musca domestica on proliferation and apoptosis of human tumor cells in vitro. Methods Hie effect of housefly antimicrobial peptide cecropin on human lung cancer cell line A549, human breast cancer cell line MCF-7, human cervical cancer cell line Hela, human hepatoma cell line BEL -7402 and human normal liver cell line Changs, Liver was investigated by MTT colorimetric assay. The apoptosis of tumor cell were investigated by flow cytometry, and control group without cecropin. Result The growth of human tumor cells was inhibited by cecropin, and cecropin could induce apoptosis of tumor cells, but the effect on human liver cancer BEL-7402 cells was the strongest. Conclusion Housefly antimicrobial peptide cecropin pan affect growth and apoptosis of human tumor cell, but the mechanism needs further studying.%目的 分析家蝇抗菌肽Cecropin对人源性肿瘤细胞体外生长增殖与凋亡的影响.方法 采用四甲基偶氮噻唑蓝(MTT)MTT比色法测定家蝇抗菌肽Cecropin对人肺癌细胞株A549、人乳腺癌细胞株MCF-7、人宫颈癌细胞株Hela、人肝癌细胞株BEL-7402和人正常肝细胞株Changs,Liver生长增殖情况的影响,采用流式细胞术检测家蝇抗菌肽Cecropin作用后4株肿瘤细胞凋亡的情况,对照组不加家蝇抗菌肽Cecropin.结果 家蝇抗菌肽Cecropin对4株人源性肿瘤细胞的生长均有抑制作用,并能诱导肿瘤细胞发生凋亡,但对人肝癌细胞BEL-7402作用效果相对较强.结论 家蝇抗菌肽Cecropin能够影响人源性肿瘤细胞的生长与凋亡,作用机制需进一步研究.

  20. Viroporin potential of the lentivirus lytic peptide (LLP domains of the HIV-1 gp41 protein

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2007-11-01

    Full Text Available Abstract Background Mechanisms by which HIV-1 mediates reductions in CD4+ cell levels in infected persons are being intensely investigated, and have broad implications for AIDS drug and vaccine development. Virally induced changes in membrane ionic permeability induced by lytic viruses of many families contribute to cytopathogenesis. HIV-1 induces disturbances in plasma membrane ion transport. The carboxyl terminus of TM (gp41 contains potential amphipathic α-helical motifs identified through their structural similarities to naturally occurring cytolytic peptides. These sequences have been dubbed lentiviral lytic peptides (LLP -1, -2, and -3. Results Peptides corresponding to the LLP domains (from a clade B virus partition into lipid membranes, fold into α-helices and disrupt model membrane permeability. A peptide corresponding to the LLP-1 domain of a clade D HIV-1 virus, LLP-1D displayed similar activity to the LLP-1 domain of the clade B virus in all assays, despite a lack of amino acid sequence identity. Conclusion These results suggest that the C-terminal domains of HIV-1 Env proteins may form an ion channel, or viroporin. Increased understanding of the function of LLP domains and their role in the viral replication cycle could allow for the development of novel HIV drugs.

  1. Bactericide, Immunomodulating, and Wound Healing Properties of Transgenic Kalanchoe pinnata Synergize with Antimicrobial Peptide Cecropin P1 In Vivo

    Directory of Open Access Journals (Sweden)

    A. A. Lebedeva

    2017-01-01

    Full Text Available Procedure of manufacturing K. pinnata water extracts containing cecropin P1 (CecP1 from the formerly described transgenic plants is established. It included incubation of leaves at +4°C for 7 days, mechanical homogenization of leaves using water as extraction solvent, and heating at +70°C for inactivating plant enzymes. Yield of CecP1 (after heating and sterilizing filtration was 0.3% of total protein in the extract. The water extract of K. pinnata + CecP1 exhibits favorable effect on healing of wounds infected with S. aureus (equal to Cefazolin and with a combination of S. aureus with P. aeruginosa (better than Cefazolin. Wild-type K. pinnata extract exhibited evident microbicide activity against S. aureus with P. aeruginosa but it was substantially strengthened in K. pinnata + CecP1 extract. K. pinnata extracts (both wild-type and transgenic did not exhibit general toxicity and accelerated wound recovery. Due to immunomodulating activity, wild-type K. pinnata extract accelerated granulation of the wound bed and marginal epithelialization even better than K. pinnata + CecP1 extract. Immunomodulating and microbicide activity of K. pinnata synergizes with microbicide activity of CecP1 accelerating elimination of bacteria.

  2. Protozoacidal Trojan-Horse: use of a ligand-lytic peptide for selective destruction of symbiotic protozoa within termite guts.

    Science.gov (United States)

    Sethi, Amit; Delatte, Jennifer; Foil, Lane; Husseneder, Claudia

    2014-01-01

    For novel biotechnology-based termite control, we developed a cellulose bait containing freeze-dried genetically engineered yeast which expresses a protozoacidal lytic peptide attached to a protozoa-recognizing ligand. The yeast acts as a 'Trojan-Horse' that kills the cellulose-digesting protozoa in the termite gut, which leads to the death of termites, presumably due to inefficient cellulose digestion. The ligand targets the lytic peptide specifically to protozoa, thereby increasing its protozoacidal efficiency while protecting non-target organisms. After ingestion of the bait, the yeast propagates in the termite's gut and is spread throughout the termite colony via social interactions. This novel paratransgenesis-based strategy could be a good supplement for current termite control using fortified biological control agents in addition to chemical insecticides. Moreover, this ligand-lytic peptide system could be used for drug development to selectively target disease-causing protozoa in humans or other vertebrates.

  3. Overexpression of antimicrobial lytic peptides protects grapevine from Pierce's disease under greenhouse but not field conditions.

    Science.gov (United States)

    Li, Zhijian T; Hopkins, Donald L; Gray, Dennis J

    2015-10-01

    Pierce's disease (PD) caused by Xylella fastidiosa prevents cultivation of grapevine (Vitis vinifera) and susceptible hybrids in the southeastern United States and poses a major threat to the grape industry of California and Texas. Genetic resistance is the only proven control of X. fastidiosa. Genetic engineering offers an alternative to heretofore ineffective conventional breeding in order to transfer only PD resistance traits into elite cultivars. A synthetic gene encoding lytic peptide LIMA-A was introduced into V. vinifera and a Vitis hybrid to assess in planta inhibition of X. fastidiosa. Over 1050 independent transgenic plant lines were evaluated in the greenhouse, among which nine lines were selected and tested under naturally-inoculated field conditions. These selected plant lines in the greenhouse remain disease-free for 10 years, to date, even with multiple manual pathogen inoculations. However, all these lines in the field, including a grafted transgenic rootstock, succumbed to PD within 7 years. We conclude that in planta production of antimicrobial lytic peptides does not provide durable PD resistance to grapevine under field conditions.

  4. Cecropins from Plutella xylostella and Their Interaction with Metarhizium anisopliae.

    Science.gov (United States)

    Ouyang, Lina; Xu, Xiaoxia; Freed, Shoaib; Gao, Yanfu; Yu, Jing; Wang, Shuang; Ju, Wenyan; Zhang, Yuqing; Jin, Fengliang

    2015-01-01

    Cecropins are the most potent induced peptides to resist invading microorganisms. In the present study, two full length cDNA encoding cecropin2 (Px-cec2) and cecropin3 (Px-cec3) were obtained from P. xylostella by integrated analysis of genome and transcriptome data. qRT-PCR analysis revealed the high levels of transcripts of Px-cecs (Px-cec1, Px-cec2 and Px-cec3) in epidermis, fat body and hemocytes after 24, 30 and 36 h induction of Metarhizium anisopliae, respectively. Silencing of Spätzle and Dorsal separately caused the low expression of cecropins in the fat body, epidermis and hemocytes, and made the P.xylostella larvae more susceptible to M. anisopliae. Antimicrobial assays demonstrated that the purified recombinant cecropins, i.e., Px-cec1, Px-cec2 and Px-cec3, exerted a broad spectrum of antimicrobial activity against fungi, as well as Gram-positive and Gram-negative bacteria. Especially, Px-cecs showed higher activity against M. anisopliae than another selected fungi isolates. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that cecropins exerted the vital morphological alterations to the spores of M. anisopliae. Based on our results, cecropins played an imperative role in resisting infection of M. anisopliae, which will provide the foundation of biological control of insect pests by using cecorpins as a target in the future.

  5. Cecropins from Plutella xylostella and Their Interaction with Metarhizium anisopliae.

    Directory of Open Access Journals (Sweden)

    Lina Ouyang

    Full Text Available Cecropins are the most potent induced peptides to resist invading microorganisms. In the present study, two full length cDNA encoding cecropin2 (Px-cec2 and cecropin3 (Px-cec3 were obtained from P. xylostella by integrated analysis of genome and transcriptome data. qRT-PCR analysis revealed the high levels of transcripts of Px-cecs (Px-cec1, Px-cec2 and Px-cec3 in epidermis, fat body and hemocytes after 24, 30 and 36 h induction of Metarhizium anisopliae, respectively. Silencing of Spätzle and Dorsal separately caused the low expression of cecropins in the fat body, epidermis and hemocytes, and made the P.xylostella larvae more susceptible to M. anisopliae. Antimicrobial assays demonstrated that the purified recombinant cecropins, i.e., Px-cec1, Px-cec2 and Px-cec3, exerted a broad spectrum of antimicrobial activity against fungi, as well as Gram-positive and Gram-negative bacteria. Especially, Px-cecs showed higher activity against M. anisopliae than another selected fungi isolates. Scanning electron microscopy (SEM and transmission electron microscopy (TEM revealed that cecropins exerted the vital morphological alterations to the spores of M. anisopliae. Based on our results, cecropins played an imperative role in resisting infection of M. anisopliae, which will provide the foundation of biological control of insect pests by using cecorpins as a target in the future.

  6. Testing protozoacidal activity of ligand-lytic peptides against termite gut protozoa in vitro (protozoa culture) and in vivo (microinjection into termite hindgut).

    Science.gov (United States)

    Husseneder, Claudia; Sethi, Amit; Foil, Lane; Delatte, Jennifer

    2010-12-29

    We are developing a novel approach to subterranean termite control that would lead to reduced reliance on the use of chemical pesticides. Subterranean termites are dependent on protozoa in the hindguts of workers to efficiently digest wood. Lytic peptides have been shown to kill a variety of protozoan parasites (Mutwiri et al. 2000) and also protozoa in the gut of the Formosan subterranean termite, Coptotermes formosanus (Husseneder and Collier 2009). Lytic peptides are part of the nonspecific immune system of eukaryotes, and destroy the membranes of microorganisms (Leuschner and Hansel 2004). Most lytic peptides are not likely to harm higher eukaryotes, because they do not affect the electrically neutral cholesterol-containing cell membranes of higher eukaryotes (Javadpour et al. 1996). Lytic peptide action can be targeted to specific cell types by the addition of a ligand. For example, Hansel et al. (2007) reported that lytic peptides conjugated with cancer cell membrane receptor ligands could be used to destroy breast cancer cells, while lytic peptides alone or conjugated with non-specific peptides were not effective. Lytic peptides also have been conjugated to human hormones that bind to receptors on tumor cells for targeted destruction of prostate and testicular cancer cells (Leuschner and Hansel 2004). In this article we present techniques used to demonstrate the protozoacidal activity of a lytic peptide (Hecate) coupled to a heptapeptide ligand that binds to the surface membrane of protozoa from the gut of the Formosan subterranean termite. These techniques include extirpation of the gut from termite workers, anaerobic culture of gut protozoa (Pseudotrichonympha grassii, Holomastigotoides hartmanni,Spirotrichonympha leidyi), microscopic confirmation that the ligand marked with a fluorescent dye binds to the termite gut protozoa and other free-living protozoa but not to bacteria or gut tissue. We also demonstrate that the same ligand coupled to a lytic

  7. killerFLIP: a novel lytic peptide specifically inducing cancer cell death.

    Science.gov (United States)

    Pennarun, B; Gaidos, G; Bucur, O; Tinari, A; Rupasinghe, C; Jin, T; Dewar, R; Song, K; Santos, M T; Malorni, W; Mierke, D; Khosravi-Far, R

    2013-10-31

    One of the objectives in the development of effective cancer therapy is induction of tumor-selective cell death. Toward this end, we have identified a small peptide that, when introduced into cells via a TAT cell-delivery system, shows a remarkably potent cytoxicity in a variety of cancer cell lines and inhibits tumor growth in vivo, whereas sparing normal cells and tissues. This fusion peptide was named killerFLIP as its sequence was derived from the C-terminal domain of c-FLIP, an anti-apoptotic protein. Using structure activity analysis, we determined the minimal bioactive core of killerFLIP, namely killerFLIP-E. Structural analysis of cells using electron microscopy demonstrated that killerFLIP-E triggers cell death accompanied by rapid (within minutes) plasma membrane permeabilization. Studies of the structure of the active core of killerFLIP (-E) indicated that it possesses amphiphilic properties and self-assembles into micellar structures in aqueous solution. The biochemical properties of killerFLIP are comparable to those of cationic lytic peptides, which participate in defense against pathogens and have also demonstrated anticancer properties. We show that the pro-cell death effects of killerFLIP are independent of its sequence similarity with c-FLIPL as killerFLIP-induced cell death was largely apoptosis and necroptosis independent. A killerFLIP-E variant containing a scrambled c-FLIPL motif indeed induced similar cell death, suggesting the importance of the c-FLIPL residues but not of their sequence. Thus, we report the discovery of a promising synthetic peptide with novel anticancer activity in vitro and in vivo.

  8. Effects of cecropin-XJ on growth and adherence of oral cariogenic bacteria in vitro

    Institute of Scientific and Technical Information of China (English)

    HAO Yu-qing; ZHOU Xue-dong; XIAO Xiao-rong; LU Jun-jun; ZHANG Fu-chun; HU Tao; WU Hong-kun; CHEN Xin-mei

    2005-01-01

    Background Cecropin-XJ belongs to cecropin-B, which is the most potent antibacterial peptide found naturally. The aim of this study was to investigate the effects of cecropin-XJ on growth and adherence of oral cariogenic bacteria.Methods Four oral cariogenic bacteria (Streptococcus mutans, Lactobacillus acidophilus, Actinomyces viscosus and Actinomyces naeslundii) were chosen for this experiment. The minimal inhibitory concentrations (MICs) and reductive percent of bacterial growth were used to assay the antibacterial activity of cecropin-XJ. Mammalian cytotoxicity of cecropin-XJ was tested with human periodontal membrane fibroblasts by tetrazolium (MTT) colorimetric assay. The bacterial morphological changes induced by cecropin-XJ were examined on scanning electron microscope (SEM). The influence of cecropin-XJ on bacterial adhesion to saliva-coated hydroxyapatite (S-HA) was measured by scintillation counting.Results The MICs of cecropin-XJ for inhibition of the growth of four bacteria ranged from 4.0 to 42.8 μmol/L with the highest susceptible to A. Naeslundii and the lowest susceptible to L. Acidophilus. At pH 6.8, 5.5 and 8.2, 1/2 MIC of cecropin-XJ reduced the number of viable bacteria by 40.9%, 67.8% and 32.8% for S. Mutans and by 28.1%, 57.2% and 37.9% for L. Acidophilus. The activities against S.mutans and L. Acidophilus increased at pH 5.5 compared with pH 6.8 (P0.05, respectively), whereas almost no reduction counts were detected in the presence of 20% serum for both bacteria (P>0.05, respectively). Mammalian cytotoxicity of cecropin-XJ from 1.0 to 100 μmol/L exhibited no cytotoxicity against human periodontal membrane fibroblasts (P>0.05). Bacterial morphological changes induced by MIC of cecropin-XJ examined on SEM showed cell surface disruption. Furthermore, the ability of A. Naeslundii adhesion to S-HA decreased significantly with MIC of cecropin-XJ for 10 and 20 minutes (P=0.001 and 0.000, respectively), and S. Mutans, A. Viscosus to S-HA decreased

  9. Enhancement of lytic activity of leukemic cells by CD8+ cytotoxic T lymphocytes generated against a WT1 peptide analogue.

    Science.gov (United States)

    Al Qudaihi, Ghofran; Lehe, Cynthia; Negash, Muna; Al-Alwan, Monther; Ghebeh, Hazem; Mohamed, Said Yousuf; Saleh, Abu-Jafar Mohammed; Al-Humaidan, Hind; Tbakhi, Abdelghani; Dickinson, Anne; Aljurf, Mahmoud; Dermime, Said

    2009-02-01

    The Wilms tumor antigen 1 (WT1) antigen is over-expressed in human leukemias, making it an attractive target for immunotherapy. Most WT1-specific Cytotoxic T Lymphocytes (CTLs) described so far displayed low avidity, limiting its function. To improve the immunogenicity of CTL epitopes, we replaced the first-amino-acid of two known immunogenic WT1-peptides (126 and 187) with a tyrosine. This modification enhances 126Y analogue-binding ability, triggers significant number of IFN-gamma-producing T cells (P = 0.0003), induces CTL that cross-react with the wild-type peptide, exerts a significant lytic activity against peptide-loaded-targets (P = 0.0006) and HLA-A0201-matched-leukemic cells (P = 0.0014). These data support peptide modification as a feasible approach for the development of a leukemia-vaccine.

  10. High-level SUMO-mediated fusion expression of ABP-dHC-cecropin A from multiple joined genes in Escherichia coli.

    Science.gov (United States)

    Zhang, Jiaxin; Movahedi, Ali; Wei, Zhiheng; Sang, Ming; Wu, Xiaolong; Wang, Mengyang; Wei, Hui; Pan, Huixin; Yin, Tongming; Zhuge, Qiang

    2016-09-15

    The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, evaluation of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve the expression level of ABP-dHC-cecropin A in E. coli, tandem repeats of the ABP-dHC-cecropin A gene were constructed and expressed as fusion proteins (SUMO-nABP-dHC-cecropin, n = 1, 2, 3, 4) via pSUMO-nABP-dHC-cecropin A vectors (n = 1, 2, 3, 4). Comparison of the expression levels of soluble SUMO-nABP-dHC-cecropin A fusion proteins (n = 1, 2, 3, 4) suggested that BL21 (DE3)/pSUMO-3ABP-dHC-cecropin A is an ideal recombinant strain for ABP-dHC-cecropin A production. Under the selected conditions of cultivation and isopropylthiogalactoside (IPTG) induction, the expression level of ABP-dHC-cecropin A was as high as 65 mg/L, with ∼21.3% of the fusion protein in soluble form. By large-scale fermentation, protein production reached nearly 300 mg/L, which is the highest yield of ABP-dHC-cecropin A reported to date. In antibacterial experiments, the efficacy was approximately the same as that of synthetic ABP-dHC-cecropin A. This method provides a novel and effective means of producing large amounts of ABP-dHC-cecropin A.

  11. Interactions of a lytic peptide with supported lipid bilayers investigated by time-resolved evanescent wave-induced fluorescence spectroscopy

    Science.gov (United States)

    Rapson, Andrew C.; Gee, Michelle L.; Clayton, Andrew H. A.; Smith, Trevor A.

    2016-12-01

    We report investigations, using time-resolved and polarised evanescent wave-induced fluorescence methods, into the location, orientation and mobility of a fluorescently labelled form of the antimicrobial peptide, melittin, when it interacts with vesicles and supported lipid bilayers (SLBs). This melittin analogue, termed MK14-A430, was found to penetrate the lipid headgroup structure in pure, ordered-phase DPPC membranes but was located near the headgroup-water region when cholesterol was included. MK14-A430 formed lytic pores in SLBs, and an increase in pore formation with incubation time was observed through an increase in polarity and mobility of the probe. When associated with the Cholesterol-containing SLB, the probe displayed polarity and mobility that indicated a population distributed near the lipid headgroup-water interface with MK14-A430 arranged predominantly in a surface-aligned state. This study indicates that the lytic activity of MK14-A430 occurred through a pore-forming mechanism. The lipid headgroup environment experienced by the fluorescent label, where MK14-A430 displayed pore information, indicated that pore formation was best described by the toroidal pore model.

  12. Epinecidin-1, an antimicrobial peptide from fish (Epinephelus coioides) which has an antitumor effect like lytic peptides in human fibrosarcoma cells.

    Science.gov (United States)

    Lin, Wei-Ju; Chien, Yi-Lun; Pan, Chia-Yu; Lin, Tai-Lang; Chen, Jyh-Yih; Chiu, Shu-Jun; Hui, Cho-Fat

    2009-02-01

    Epinecidin-1, a synthetic 21-mer antimicrobial peptide originally identified from grouper (Epinephelus coioides), specifically exhibited high antimicrobial activities against both Gram-negative and Gram-positive bacteria. In the current study we report on the in vitro cytotoxicity of the peptide, an important factor before it can be considered for further applications in cancer therapy. The cytotoxicity of epinecidin-1 was investigated against several cancer cells (A549, HA59T/VGH, HeLa, HepG2, HT1080, RAW264.7, and U937) and normal cells (AML-12, NIH3T3, and WS-1) with the MTT assay, and the inhibition of cancer cell growth was confirmed by a soft agar assay and scanning electron microscopy. However, cell variations were detected with AO/EtBr staining, while apoptosis and necrosis gene expressions in HT1080 cells after treatment with the epinecidin-1 peptide and Nec-1 showed that epinecidin-1 had an anti-necrosis function in HT1080 cells. The data presented here indicate that epinecidin-1 has in vitro antitumor activity against the HT1080 cell line, and functions like lytic peptides. In addition, our results suggest that epinecidin-1 may prove to be an effective chemotherapeutic agent for human fibrosarcoma cells in the future.

  13. Modeling of the Ebola Virus Delta Peptide Reveals a Potential Lytic Sequence Motif

    Directory of Open Access Journals (Sweden)

    William R. Gallaher

    2015-01-01

    Full Text Available Filoviruses, such as Ebola and Marburg viruses, cause severe outbreaks of human infection, including the extensive epidemic of Ebola virus disease (EVD in West Africa in 2014. In the course of examining mutations in the glycoprotein gene associated with 2014 Ebola virus (EBOV sequences, a differential level of conservation was noted between the soluble form of glycoprotein (sGP and the full length glycoprotein (GP, which are both encoded by the GP gene via RNA editing. In the region of the proteins encoded after the RNA editing site sGP was more conserved than the overlapping region of GP when compared to a distant outlier species, Tai Forest ebolavirus. Half of the amino acids comprising the “delta peptide”, a 40 amino acid carboxy-terminal fragment of sGP, were identical between otherwise widely divergent species. A lysine-rich amphipathic peptide motif was noted at the carboxyl terminus of delta peptide with high structural relatedness to the cytolytic peptide of the non-structural protein 4 (NSP4 of rotavirus. EBOV delta peptide is a candidate viroporin, a cationic pore-forming peptide, and may contribute to EBOV pathogenesis.

  14. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites.

    Science.gov (United States)

    Husseneder, Claudia; Donaldson, Jennifer R; Foil, Lane D

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival.

  15. 新疆家蚕抗菌肽Cecropin-XJ与细菌DNA相互作用的光谱研究%Study on the Interaction Mechanism of Antimicrobial Peptide Cecropin-XJ in Xinjiang Silkworm and Staphylococcus Aureus DNA by Spectra

    Institute of Scientific and Technical Information of China (English)

    刘忠渊; 徐涛; 郑树涛; 张兰廷; 张富春

    2008-01-01

    抗菌肽的抗菌机理研究主要集中在抗菌肽与细菌细胞膜作用方面,抗菌肽是否与细菌的染色体DNA作用尚不清楚.为了探讨新疆家蚕抗菌肽Cecropin-XJ抗细菌的作用机理,利用紫外光谱及以溴化乙锭(Ethidium Bromide,EB)为荧光探针的荧光光谱方法研究抗菌肽Cecropin-XJ与金黄色葡萄球菌DNA在体外的相互作用,计算获得抗菌肽与DNA的结合常数和成键位点数.结果显示,抗菌肽使DNA发生了明显的增色效应,并使DNA的荧光强度增强,抗菌肽能与EB竞争性的结合DNA,表明抗菌肽可能与DNA双螺旋的沟槽结合;在抗菌肽存在下,DNA与EB作用的结合常数和成键位点数都发生变化,表明抗菌肽以嵌入和非嵌入两种方式与DNA相互作用.文章从分子水平上初步阐述了抗菌肽与细菌DNA的作用模式和结构特征,为深人研究抗菌肽的作用机理奠定了基础.

  16. Molecular structure, chemical synthesis, and antibacterial activity of ABP-dHC-cecropin A from drury (Hyphantria cunea).

    Science.gov (United States)

    Zhang, Jiaxin; Movahedi, Ali; Wang, Xiaoli; Wu, Xiaolong; Yin, Tongming; Zhuge, Qiang

    2015-06-01

    The increasing resistance of bacteria and fungi to currently available antibiotics is a major concern worldwide, leading to enormous efforts to develop new antibiotics with new modes of actions. In this paper, cDNA encoding cecropin A was amplified from drury (Hyphantria cunea) (dHC) pupa fatbody total RNA using RT-PCR. The full-length dHC-cecropin A cDNA encoded a protein of 63 amino acids with a predicted 26-amino acid signal peptide and a 37-amino acid functional domain. We synthesized the antibacterial peptide (ABP) from the 37-amino acid functional domain (ABP-dHC-cecropin A), and amidated it via the C-terminus. Time-of-flight mass spectrometry showed its molecular weight to be 4058.94. The ABP-dHC-cecropin A was assessed in terms of its protein structure using bioinformatics and CD spectroscopy. The protein's secondary structure was predicted to be α-helical. In an antibacterial activity analysis, the ABP-dHC-cecropin A exhibited strong antibacterial activity against E. coli K12D31 and Agrobacterium EHA105. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. 抗菌肽与抗生素饲喂肉鸡的效果比较%The Effect Comparison Between Antibacterial Peptide (Cecropin) and Antibiotic Used in Broiler Chickens

    Institute of Scientific and Technical Information of China (English)

    黄永彤; 黄自然; 黄建清; 毕英佐; 贺东生

    2004-01-01

    为寻求绿色安全饲料添加剂以提高畜禽及水产动物的生产性能,降低成本,减少对环境的污染,华南农业大学与深圳市艺鹏生物工程有限公司合作,开发抗菌肽(Cecropin)新型饲料添加剂。抗菌肽能促进肉鸡生产性能,对提

  18. The terminal structure plays an important role in the biological activity of cecropin CMIV

    Institute of Scientific and Technical Information of China (English)

    窦非; 谢维; 董雪吟; 徐贤秀

    1999-01-01

    Antibacterial peptides have received increasing attention as a new pharmaceutical substance. But the molecular mechanism of lysis is still poorly understood. CMIV gene and mutant CMIV gene in GST fusion system were expressed. After cleaving with different cleavage reagents, the peptide with an excess of N-terminus and with an un-amidated C-terminus stopped the activity while the peptide with an excess Asn at the C-terminus had the activity level the same as natural CMIV. The results showed that the terminal structure of cecropin CMIV played an important role in its biological activity.

  19. Production of antibacterial Bombyx mori cecropin A in mealworm-pathogenic Beauveria bassiana ERL1170.

    Science.gov (United States)

    Lee, Se Jin; Yu, Jeong Seon; Parker, Bruce L; Skinner, Margaret; Je, Yeon Ho; Kim, Jae Su

    2015-01-01

    Efforts are underway to produce antimicrobial peptides in yellow mealworms (Tenebrio molitor), which can be developed as more effective and safer animal feed additives. In this work, we expressed Bombyx mori (Bm) cecropin-A in mealworms by the infection of transformed entomopathogenic Beauveria bassiana ERL1170. The active domain of Bm cecropin A gene was tagged with a signal sequence of B. bassiana for extracellular secretion, and the fragment was inserted into ERL1170 by the restriction enzyme-mediated integration method. Transformant D-6 showed antibacterial activity against Bacillus subtilis and Listeria monocytogenes. Against T. molitor larvae, D-6 had similar mortality to wild-type, and D6-infected mealworm suspension showed strong antibacterial activity against the two bacteria, but not in the wild-type-infected mealworms, thereby increasing the value of mealworms as animal feed additives.

  20. Molecular cloning of cecropin B responsive endonucleases in Yersinia ruckeri

    Science.gov (United States)

    We have previously demonstrated that Yersinia ruckeri resists cecropin B in an inducible manner. In this study, we sought to identify the molecular changes responsible for the inducible cecropin B resistance of Y. ruckeri. Differences in gene expression associated with the inducible resistance were ...

  1. Unique functional properties of conserved arginine residues in the lentivirus lytic peptide domains of the C-terminal tail of HIV-1 gp41.

    Science.gov (United States)

    Kuhlmann, Anne-Sophie; Steckbeck, Jonathan D; Sturgeon, Timothy J; Craigo, Jodi K; Montelaro, Ronald C

    2014-03-14

    A previous study from our laboratory reported a preferential conservation of arginine relative to lysine in the C-terminal tail (CTT) of HIV-1 envelope (Env). Despite substantial overall sequence variation in the CTT, specific arginines are highly conserved in the lentivirus lytic peptide (LLP) motifs and are scarcely substituted by lysines, in contrast to gp120 and the ectodomain of gp41. However, to date, no explanation has been provided to explain the selective incorporation and conservation of arginines over lysines in these motifs. Herein, we address the functions in virus replication of the most conserved arginines by performing conservative mutations of arginine to lysine in the LLP1 and LLP2 motifs. The presence of lysine in place of arginine in the LLP1 motif resulted in significant impairment of Env expression and consequently virus replication kinetics, Env fusogenicity, and incorporation. By contrast, lysine exchanges in LLP2 only affected the level of Env incorporation and fusogenicity. Our findings demonstrate that the conservative lysine substitutions significantly affect Env functional properties indicating a unique functional role for the highly conserved arginines in the LLP motifs. These results provide for the first time a functional explanation to the preferred incorporation of arginine, relative to lysine, in the CTT of HIV-1 Env. We propose that these arginines may provide unique functions for Env interaction with viral or cellular cofactors that then influence overall Env functional properties.

  2. Expression of Tandem Repeat Cecropin B in Chlamydomonas reinhardtii and Its Antibacterial Effect%串联抗菌肽Cecropin B基因在莱茵衣藻中的表达及其抗菌活性分析

    Institute of Scientific and Technical Information of China (English)

    穆菲芸; 李辉; 胡章立

    2012-01-01

    To overcome the negative effects of antibiotics commonly employed in most aquaculture,here we present a study to examine the feasibility of expressing an antimicrobial peptide by microalga as alternative.An antimicrobial peptide Cecropin B gene was modified according to the codon bias of the nuclear genome in Chlamydomonas reinhardtii.Four repeats of the Cecropin B gene were fused in tandem and each repeat was separated by inserting a cleavable linker peptide sequence (LWMRFA).The artificial DNA (522 bp in length) was inserted into a site between hsp70-RBCS2 promoter and RBCS2 terminator for constructing the expression vector pCB124.A cell-wall deficient strain of C.reinhardtii CC-849 was transformed by using glass bead method with pCB124.A large number of transformants were selected on Tris-acetate-phosphate media containing 10 mg/L Zeomycin.PCR and RT-PCR analyses on the transformants revealed that tandem repeated Cecropin B gene had been integrated into the genome of C.reinhardtii and could express at transcriptional level.The Western blot results confirmed the presence of recombinant antimicrobial peptide Cecropin B in the transgenic algal cells.The total protein was extracted from transgenic algae and its antimicrobial activity was tested.The results indicated that the extracted proteins from transgenic alga showed very strong antimicrobial activity against both Gram negative bacterium (E.coli JM109) and Gram positive bacteria (Bacillus subtilis and Micrococcus lysodeikticus).This finding has provided a new approach for production and utilization of antibacterial bait-algae.%为了应对各种抗生素在水产养殖业所带来的副作用,我们在本文中尝试利用微藻对一种抗菌肽进行表达的可行性研究.根据莱茵衣藻核基因组偏爱密码子对抗菌肽Cecropin B基因进行改造,并将4个经改造的Cecropin B基因依次串联起来,中间加上莱茵衣藻的自剪切连接肽序列LWMRFA,人工合成总长度为522 bp的串联Cecropin

  3. Fusion expression of mutated cecropin CMIV in E. coli

    Institute of Scientific and Technical Information of China (English)

    谢维; 邱奇峰; 董雪吟; 华子春; 徐贤秀

    1997-01-01

    A cDNA coding mutated cecropin CMIV from Bombyx mori was synthesized according to its amino acid sequense using E .coli biased codons .The gene was cloned into the fusion expression vector pEZZ318 and was expressed in E .coli HB101.The fusion protein produced was purified by affinity chromatography to yield 26 mg/L fusion product .The anti-bacterial activities of recombinant cecropin CMIV were recovered after cleavage by chemical method.

  4. Effects of Cecropin A-Magainin Hybrid Peptide on Small Intestinal Mucosal Structure, Mucosal Immune Function and Intestinal Microflora in Mice%天蚕素 A-马盖宁杂合肽对小鼠小肠黏膜结构、小肠黏膜免疫功能和肠道菌群的影响

    Institute of Scientific and Technical Information of China (English)

    杨田田; 于龙魅; 刘二强; 陈香君; 朱明星; 王秀青

    2014-01-01

    本试验旨在研究天蚕素A-马盖宁杂合肽对小鼠小肠黏膜结构、黏膜免疫功能和肠道菌群的影响。选取18只健康且体重相近的 BALB/c 小鼠随机分成3组:对照组(生理盐水0.75 mL/d灌胃)、低剂量杂合肽组(0.26 mg/mL的杂合肽0.75 mL/d灌胃)、高剂量杂合肽组(0.52 mg/mL的杂合肽0.75 mL/d灌胃)。试验期为6周。结果表明:1)2个杂合肽组十二指肠绒毛长度均显著大于对照组( P<0.05),各段小肠的隐窝深度均显著低于对照组( P<0.05),各段小肠绒毛长度/隐窝深度均显著高于对照组( P<0.05)。2)与对照组相比,2个杂合肽组各段小肠黏膜内免疫球蛋白A阳性表达水平均显著升高(P<0.05)。3)2个杂合肽组小肠黏膜内白细胞介素(IL)-2、干扰素-γ(IFN-γ)及IL-4含量均显著高于对照组(P<0.05),而IFN-γ/IL-4各组之间差异不显著( P>0.05)。4)2个杂合肽组盲肠内容物中的大肠杆菌数量均显著低于对照组(P<0.05),双歧杆菌与乳酸杆菌数量均显著高于对照组(P<0.05)。由此得出,天蚕素A-马盖宁杂合肽灌胃能改善机体小肠黏膜结构;可促进免疫球蛋白A的表达来提高小肠黏膜免疫防御功能;可促进IL-2及IFN-γ的分泌来提高肠道细胞免疫水平,促进IL-4的分泌以提高肠道体液免疫水平并能够保持辅助性T细胞( Th)1/Th2的平衡状态;可有效降低肠道致病菌大肠杆菌的数量并显著增加肠道益生菌双歧杆菌和乳酸杆菌的数量。%This experiment was to study the effects of cecropin A-magainin hybrid peptide on small intestinal mucosal structure, mucosal immune function and intestinal microflora in mice. The eighteen healthy BALB/c mice with similar weight were randomly divided into three groups: control group ( given 0.75 mL saline water by gastric lavage) , low dose of hybrid peptide

  5. Cecropins as a marker of Spodoptera frugiperda immunosuppression during entomopathogenic bacterial challenge.

    Science.gov (United States)

    Duvic, B; Jouan, V; Essa, N; Girard, P-A; Pagès, S; Abi Khattar, Z; Volkoff, N-A; Givaudan, A; Destoumieux-Garzon, D; Escoubas, J-M

    2012-06-01

    An antimicrobial peptide (AMP) of the cecropin family was isolated by HPLC from plasma of the insect pest, Spodoptera frugiperda. Its molecular mass is 3910.9 Da as determined by mass spectrometry. Thanks to the EST database Spodobase, we were able to describe 13 cDNAs encoding six different cecropins which belong to the sub-families CecA, CecB, CecC and CecD. The purified peptide identified as CecB1 was chemically synthesized (syCecB1). It was shown to be active against Gram-positive and Gram-negative bacteria as well as fungi. Two closely related entomopathogenic bacteria, Xenorhabdus nematophila F1 and Xenorhabdus mauleonii VC01(T) showed different susceptibility to syCecB1. Indeed, X. nematophila was sensitive to syCecB1 whereas X. mauleonii had a minimal inhibitory concentration (MIC) eight times higher. Interestingly, injection of live X. nematophila into insects did not induce the expression of AMPs in hemolymph. This effect was not observed when this bacterium was heat-killed before injection. On the opposite, both live and heat-killed X. mauleonii induced the expression of AMPs in the hemolymph of S. frugiperda. The same phenomenon was observed for another immune-related protein lacking antimicrobial activity. Altogether, our data suggest that Xenorhabdus strains have developed different strategies to supplant the humoral defense mechanisms of S. frugiperda, either by increasing their resistance to AMPs or by preventing their expression during such host-pathogen interaction.

  6. Primary study on the resistance to bacterial blight (X. oryzae) in Cecropin B gene transgenic rices

    Institute of Scientific and Technical Information of China (English)

    HUAZhihua; HUANGDanian; XUERui; WANGXiaoling; GAOZhenya

    1998-01-01

    Bacterial blight (BB) is one of the major diseases to rice. Antibacterial Cecropin B gene has been cloned and transformed into rice. We studied the resistance to bacterial blight in Cecropin B gene tronsgenic rices.

  7. Structure-Activity Relationships of the Antimicrobial Peptide Arasin 1 — And Mode of Action Studies of the N-Terminal, Proline-Rich Region

    Science.gov (United States)

    Paulsen, Victoria S.; Blencke, Hans-Matti; Benincasa, Monica; Haug, Tor; Eksteen, Jacobus J.; Styrvold, Olaf B.; Scocchi, Marco; Stensvåg, Klara

    2013-01-01

    Arasin 1 is a 37 amino acid long proline-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. In this work the active region of arasin 1 was identified through structure-activity studies using different peptide fragments derived from the arasin 1 sequence. The pharmacophore was found to be located in the proline/arginine-rich NH2 terminus of the peptide and the fragment arasin 1(1–23) was almost equally active to the full length peptide. Arasin 1 and its active fragment arasin 1(1–23) were shown to be non-toxic to human red blood cells and arasin 1(1–23) was able to bind chitin, a component of fungal cell walls and the crustacean shell. The mode of action of the fully active N-terminal arasin 1(1–23) was explored through killing kinetic and membrane permeabilization studies. At the minimal inhibitory concentration (MIC), arasin 1(1–23) was not bactericidal and had no membrane disruptive effect. In contrast, at concentrations of 5×MIC and above it was bactericidal and interfered with membrane integrity. We conclude that arasin 1(1–23) has a different mode of action than lytic peptides, like cecropin P1. Thus, we suggest a dual mode of action for arasin 1(1–23) involving membrane disruption at peptide concentrations above MIC, and an alternative mechanism of action, possibly involving intracellular targets, at MIC. PMID:23326415

  8. Structure-activity relationships of the antimicrobial peptide arasin 1 - and mode of action studies of the N-terminal, proline-rich region.

    Directory of Open Access Journals (Sweden)

    Victoria S Paulsen

    Full Text Available Arasin 1 is a 37 amino acid long proline-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. In this work the active region of arasin 1 was identified through structure-activity studies using different peptide fragments derived from the arasin 1 sequence. The pharmacophore was found to be located in the proline/arginine-rich NH(2 terminus of the peptide and the fragment arasin 1(1-23 was almost equally active to the full length peptide. Arasin 1 and its active fragment arasin 1(1-23 were shown to be non-toxic to human red blood cells and arasin 1(1-23 was able to bind chitin, a component of fungal cell walls and the crustacean shell. The mode of action of the fully active N-terminal arasin 1(1-23 was explored through killing kinetic and membrane permeabilization studies. At the minimal inhibitory concentration (MIC, arasin 1(1-23 was not bactericidal and had no membrane disruptive effect. In contrast, at concentrations of 5×MIC and above it was bactericidal and interfered with membrane integrity. We conclude that arasin 1(1-23 has a different mode of action than lytic peptides, like cecropin P1. Thus, we suggest a dual mode of action for arasin 1(1-23 involving membrane disruption at peptide concentrations above MIC, and an alternative mechanism of action, possibly involving intracellular targets, at MIC.

  9. Structure-activity relationships of the antimicrobial peptide arasin 1 - and mode of action studies of the N-terminal, proline-rich region.

    Science.gov (United States)

    Paulsen, Victoria S; Blencke, Hans-Matti; Benincasa, Monica; Haug, Tor; Eksteen, Jacobus J; Styrvold, Olaf B; Scocchi, Marco; Stensvåg, Klara

    2013-01-01

    Arasin 1 is a 37 amino acid long proline-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. In this work the active region of arasin 1 was identified through structure-activity studies using different peptide fragments derived from the arasin 1 sequence. The pharmacophore was found to be located in the proline/arginine-rich NH(2) terminus of the peptide and the fragment arasin 1(1-23) was almost equally active to the full length peptide. Arasin 1 and its active fragment arasin 1(1-23) were shown to be non-toxic to human red blood cells and arasin 1(1-23) was able to bind chitin, a component of fungal cell walls and the crustacean shell. The mode of action of the fully active N-terminal arasin 1(1-23) was explored through killing kinetic and membrane permeabilization studies. At the minimal inhibitory concentration (MIC), arasin 1(1-23) was not bactericidal and had no membrane disruptive effect. In contrast, at concentrations of 5×MIC and above it was bactericidal and interfered with membrane integrity. We conclude that arasin 1(1-23) has a different mode of action than lytic peptides, like cecropin P1. Thus, we suggest a dual mode of action for arasin 1(1-23) involving membrane disruption at peptide concentrations above MIC, and an alternative mechanism of action, possibly involving intracellular targets, at MIC.

  10. 猪小肠抗菌肽Cecropin P1对猪呼吸道菌抑菌活性的研究%RESEARCH ON ANTIMICROBIAL ACTIVITY OF CECROPIN P1 TO PORCINE RESPIRATORY BACTERIA

    Institute of Scientific and Technical Information of China (English)

    李伦锋; 马志永; 魏建超; 谢春阳; 彭帅; 李蓓蓓; 刘珂; 邵东华; 邱亚峰; 史子学

    2016-01-01

    Antibacterial peptide cecropin P1 was originally isolated from the small intestines of the pigs. In the present study, the recombinant cecropin P1 produced in pichia pastoris was tested for its antibacterial activity against seven species of common swine respiratory bacteria including Streptococcussuis, Staphylococcusaureus, Pasteurella multocida, Actinobacilluspleuropneumoniae, swine Bordetella bronchiseptica, swine enteropathogenic E.coli and Streptococcus pyogenes. The recombinant cecropin P1 showed different degrees of bacteriostasis for these seven respiratory bacteria as measured by MIC (minimal inhibitory concentration). The most significant bacteristasis was observed for Streptococcus pyogenes, Pasteurella multocida and Staphylococcus aureus with MIC of 49.5 ug/mL, and moderate antibacterial activity for Sreptococcus suis and E.coli. In contrast, the recombinant cecropin P1 had the least bacteriostasis for swine Bordetella bronchiseptica as the MIC was 398 ug/mL. Currently, the vigorous use of antibiotics has caused the bacteria to have developed the high-level resistance. The availability of the recombinant cecropin P1 is of great significance as it possesses wide antimicrobial spectrum, toxin-free nature, high stability, less resistance and no residue in the body.%以猪链球菌、金黄色葡萄球菌、多杀性巴氏杆菌、猪胸膜肺炎放线杆菌、猪支气管败血波氏杆菌、猪致病性大肠杆菌、化脓性链球菌7株猪呼吸道常见菌为实验菌,检测猪小肠抗菌肽对常见的猪呼吸道菌的抑菌效果。结果显示,猪小肠抗菌肽对这7株呼吸道菌均有不同程度的抑菌作用,对化脓性链球菌、多杀性巴氏杆菌、金黄色葡萄球菌的抑菌作用最为明显,最小抑菌浓度均为49.5μg/mL,对猪链球菌和大肠杆菌也有较为明显的抑菌活性,而对猪支气管败血波氏杆菌的最小抑菌浓度为398μg/mL。当前在抗生素大量使用导致细菌产生广泛

  11. Expression and purification of an active cecropin-like recombinant protein against multidrug resistance Escherichia coli.

    Science.gov (United States)

    Téllez, Germán Alberto; Castaño-Osorio, Jhon Carlos

    2014-08-01

    Lucilin is a 36 residue cecropin antimicrobial peptide identified as a partial genetic sequence in Lucilia sericata maggots. The antimicrobial spectrum and toxicity profile of Lucilin is unknown. We first report the expression of Lucilin as an active recombinant fusion protein with a cysteine protease domain (CPD) tag. The fusion protein, GWLK-Lucilin-CPD-His8, showed maximum overexpression in Escherichia coli BL21 cells after 12h induction with 0.5mM IPTG (isopropyl beta-d-thiogalactoside) and growth conditions were 37 °C and 150 rpm shaking. The fusion protein was expressed as a soluble form and was purified by Ni-IMAC. The purified protein was active against E. coli ATCC 35218 with a MIC of 0.68 μM, and a clinical isolate of E. coli with extended spectrum beta-lactamase (ESBL) with a MIC of 0.8 μM. The recombinant GWLK-Lucilin-CPD-His8 was not toxic against human erythrocytes or Vero cells with a therapeutic index >63. The results suggest that GWLK-Lucilin-CPD-His8 represents a potential candidate for therapy against multidrug resistant Gram-negative bacteria.

  12. Bombyx mori cecropin A has a high antifungal activity to entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Lu, Dingding; Geng, Tao; Hou, Chengxiang; Huang, Yuxia; Qin, Guangxing; Guo, Xijie

    2016-05-25

    A cDNA encoding cecropin A (CecA) was cloned from the larvae of silkworm, Bombyx mori, using RT-PCR. It encodes a protein of 63 amino acids, containing a 22 amino acid signal peptide and a 37 amino acid mat peptide of functional domain. The CecA secondary structure contains two typical amphiphilic α-helices. Real-time qPCR analysis revealed that CecA was expressed in all the tissues tested, including cuticle, fat body, hemocytes, Malpighian tubule, midgut and silk gland in the silkworm larvae with the highest expression in the fat body and hemocytes. The gene expression of B. mori CecA was rapidly induced by Beauveria bassiana challenge and reached maximum levels at 36h after inoculation in third instar larvae. In the fifth instar larvae infected with B. bassiana, the relative expression level of CecA was upregulated in fat body and hemocytes, but not in cuticle, Malpighian tubule, midgut and silk gland. The cDNA segment of the CecA was inserted into the expression plasmid pET-30a(+) to construct a recombinant expression plasmid. Western blot results revealed that his-tagged fusion protein was successfully expressed and purified. Then the mat peptide of CecA was chemically synthesized with C-terminus amidation for in vivo antifungal assay and purity achieved 93.7%. Mass spectrometry and SDS-PAGE showed its molecular weight to be 4046.95Da. Antifungal assays indicated that the B. mori CecA had a high antifungal activity to entomopathogenic fungus B. bassiana both in vitro and in vivo in the silkworm larvae. This is the first report that the CecA is effective to inhibit B. bassiana inside the body of silkworm.

  13. The Site-directed Mutagenesis and Construction of A Highly Productive Expression Vector of the Cecropin Gene, An Antimicrobial Peptide From the Housefly (Musca domestica)%家蝇抗菌肽天蚕素基因的定点突变和高效表达质粒的构建

    Institute of Scientific and Technical Information of China (English)

    许小霞; 徐兴耀; 金丰良; 张古忍; 张文庆

    2004-01-01

    运用反转录聚合酶链式反应(RT-PCR)技术从家蝇体内扩增出抗菌肽天蚕素(cecropin)基因的开放阅读框(ORF),与pMD-18T载体重组,经限制性酶切片段分析和核苷酸序列分析,与GenBank中报道的序列一致.根据此ORF,重新合成1对引物,并在碳末端进行定点突变,加上Asn编码,使其末端酰氨化,再利用半嵌套式PCR扩增出家蝇cecropin基因的成熟肽,与双酶切的酵母表达载体pPICZαA连接,经PCR和双酶切鉴定,成功构建了分泌型表达质粒.

  14. Phage lytic enzymes: a history

    Institute of Scientific and Technical Information of China (English)

    David; Trudil

    2015-01-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of ‘bacteria-eaters’ or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well(Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specifi c disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay(Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes–from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  15. Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to Plasmodium.

    Science.gov (United States)

    Kim, Won; Koo, Hyeyoung; Richman, Adam M; Seeley, Douglas; Vizioli, Jacopo; Klocko, Andrew D; O'Brochta, David A

    2004-05-01

    Genetically altering the disease vector status of insects using recombinant DNA technologies is being considered as an alternative to eradication efforts. Manipulating the endogenous immune response of mosquitoes such as the temporal and special expression of antimicrobial peptides like cecropin may result in a refractory phenotype. Using transgenic technology a unique pattern of expression of cecropin A (cecA) in Anopheles gambiae was created such that cecA was expressed beginning 24 h after a blood meal in the posterior midgut. Two independent lines of transgenic An. gambiae were created using a piggyBac gene vector containing the An. gambiae cecA cDNA under the regulatory control of the Aedes aegypti carboxypeptidase promoter. Infection with Plasmodium berghei resulted in a 60% reduction in the number of oocysts in transgenic mosquitoes compared with nontransgenic mosquitoes. Manipulating the innate immune system of mosquitoes can negatively affect their capacity to serve as hosts for the development of disease-causing microbes.

  16. Transmission Electron Microscopic Morphological Study and Flow Cytometric Viability Assessment of Acinetobacter baumannii Susceptible to Musca domestica cecropin

    Directory of Open Access Journals (Sweden)

    Shuiqing Gui

    2014-01-01

    Full Text Available Multidrug-resistant (MDR Acinetobacter baumannii infections are difficult to treat owing to the extremely limited armamentarium. Expectations about antimicrobial peptides' use as new powerful antibacterial agents have been raised on the basis of their unique mechanism of action. Musca domestica cecropin (Mdc, a novel antimicrobial peptide from the larvae of Housefly (Musca domestica, has potently active against Gram-positive and Gram-negative bacteria standard strain. Here we evaluated the antibacterial activity of Mdc against clinical isolates of MDR-A. baumannii and elucidate the related antibacterial mechanisms. The minimal inhibitory concentration (MIC of Mdc was 4 μg/mL. Bactericidal kinetics of Mdc revealed rapid killing of A. baumannii (30 min. Flow cytometry using viability stain demonstrated that Mdc causes A. baumannii membrane permeabilization in a concentration- and time-dependent process, which correlates with the bactericidal action. Moreover, transmission electron microscopic (TEM examination showed that Mdc is capable of disrupting the membrane of bacterial cells, resulting in efflux of essential cytoplasmic components. Overall, Mdc could be a promising antibacterial agent for MDR-A. baumannii infections.

  17. Expression profiling of Bombyx mori gloverin2 gene and its synergistic antifungal effect with cecropin A against Beauveria bassiana.

    Science.gov (United States)

    Lü, Dingding; Geng, Tao; Hou, Chengxiang; Qin, Guangxing; Gao, Kun; Guo, Xijie

    2017-02-05

    Gloverin2 is a cationic and glycine-rich antimicrobial peptide whose expression can be induced in fat body of silkworm (Bombyx mori) larvae exposed to bacteria. The purpose of this study is to identify the roles of Bombyx mori gloverin2 (Bmgloverin2) during entomopathogenic fungus Beauveria bassiana infection. Fluorescent quantitative real-time PCR analysis indicated that the relative expression level of Bmgloverin2 gene was up-regulated in the silkworm larvae infected by B. bassiana. The cDNA of Bmgloverin2 was cloned from the silkworm by RT-PCR and the DNA segment of the Bmgloverin2 peptide (without signal peptide sequence) was inserted into pCzn1 expression plasmid and expressed in E. coli ArcticExpress (DE3). SDS-PAGE results revealed that soluble recombinant Bmgloverin2 was successfully expressed and purified. Polyclonal antibody against the Bmgloverin2 was successfully produced with the expressed recombinant protein. Western blot analysis indicated that Bmgloverin2 could be detected in the fat body of silkworm larvae infected with B. bassiana, suggesting that the expression of Bmgloverin2 could be induced by B. bassiana infection in silkworm. Antifungal assays indicated that the Bmgloverin2 had a synergistic antifungal activity with B. mori cecropin A (BmCecA) to entomopathogenic fungus B. bassiana both in vitro and in vivo in the silkworm larvae. This is the first report that Bmgloverin2 exhibits synergistic effect with BmCecA in antifungal activity against B. bassiana. The study demonstrates that Bmgloverin2 is an antifungal protein which plays an important role in synergistic antifungal activity with other antimicrobial peptide in silkworm.

  18. Introduction of cecropin B gene into rice (Oryza sativa L.) by particle bombardment and analysis of transgenic plants

    Institute of Scientific and Technical Information of China (English)

    黄大年; 朱冰; 杨炜; 薛锐; 肖晗; 田文忠; 李良材; 戴顺洪

    1996-01-01

    An expression vector pCBl suitable for rice transformation, harboring a synthesized cecropin B gene and a selectable marker gene (bar), was constructed. It was introduced into immature embryos of two japonica varieties by particle bombardment, and several transgenic plants were obtained. The results from Basta treatment, PCR analysis, dot and Southern blot analysis of cecropin B gene in transgenic plants indicated that both bar and cecropin B gene were integrated into the genome of transformed plants. Northern blot analysis of transgenic plants showed the expression of cecropin B gene at transcriptional level. Some of transgenic plants revealed improved resistances to two types of bacterial diseases, rice bacterial blight and rice bacterial streak to different extent.

  19. A novel inclusion complex (β-CD/ABP-dHC-cecropin A) with antibiotic propertiess for use as an anti-Agrobacterium additive in transgenic poplar rooting medium.

    Science.gov (United States)

    Zhang, Jiaxin; Li, Jianfeng; Movahedi, Ali; Sang, Ming; Xu, Chen; Xu, Junjie; Wei, Zhiheng; Yin, Tongming; Zhuge, Qiang

    2015-12-01

    The increasing resistance of bacteria and fungi to currently available antibiotics is a major concern worldwide, leading to enormous effort to develop novel antibiotics with new modes of action.We recently reported that ABP-dHC-cecropin A exhibited strong antibacterial and antifungal activity, making it a candidate antibiotic substitute. In this study, β-cyclodextrin (β-CD) combined with ABP-dHC-cecropin A enhanced the physical and chemical properties of ABP-dHC-cecropin A but did not significantly decrease its antibacterial activity. Thus, β-CD/ABP-dHC-cecropin A should be considered a novel antibacterial drug. We used β-CD/ABP-dHC-cecropin A as an anti-Agrobacterium compound to supplementtransgenic poplar medium. Sideeffects of the inclusion complex had little impact on plantgrowth. Thus, β-CD/ABP-dHC-cecropin A may be used as traditional antibiotics forpoplar transplantation with greater antibbacterial effects.

  20. Detection of selective cationic amphipatic antibacterial peptides by Hidden Markov models.

    Science.gov (United States)

    Polanco, Carlos; Samaniego, Jose L

    2009-01-01

    Antibacterial peptides are researched mainly for the potential benefit they have in a variety of socially relevant diseases, used by the host to protect itself from different types of pathogenic bacteria. We used the mathematical-computational method known as Hidden Markov models (HMMs) in targeting a subset of antibacterial peptides named Selective Cationic Amphipatic Antibacterial Peptides (SCAAPs). The main difference in the implementation of HMMs was focused on the detection of SCAAP using principally five physical-chemical properties for each candidate SCAAPs, instead of using the statistical information about the amino acids which form a peptide. By this method a cluster of antibacterial peptides was detected and as a result the following were found: 9 SCAAPs, 6 synthetic antibacterial peptides that belong to a subregion of Cecropin A and Magainin 2, and 19 peptides from the Cecropin A family. A scoring function was developed using HMMs as its core, uniquely employing information accessible from the databases.

  1. Anti-antimicrobial Peptides

    Science.gov (United States)

    Ryan, Lloyd; Lamarre, Baptiste; Diu, Ting; Ravi, Jascindra; Judge, Peter J.; Temple, Adam; Carr, Matthew; Cerasoli, Eleonora; Su, Bo; Jenkinson, Howard F.; Martyna, Glenn; Crain, Jason; Watts, Anthony; Ryadnov, Maxim G.

    2013-01-01

    Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance. PMID:23737519

  2. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    a cecropin-mellitin hybrid peptide and proved effective in killing colistin resistant Gram-negative A. baumannii in vitro. The molecule was improved with regard to toxicity, as measured by hemolytic ability. Further, this peptide is capable of specifically killing non-growing cells of colistin resistant A......Multi-drug resistance to antibiotics represents a global health challenge that results in increased morbidity and mortality rates. The annual death-toll is >700.000 people world-wide, rising to ~10 million by 2050. New antibiotics are lacking, and few are under development as return on investment...

  3. Antimicrobial Peptides with Differential Bacterial Binding Characteristics

    Science.gov (United States)

    2013-03-01

    Moderate CA-MA [22] KWKLFKKIGIGKFLHLAKKF Strong Strong HP-ME [23] AKKVFKRLGIGAVLKVLTTG Strong Strong Strong activity: MIC ≤ 10 µM; Moderate...activity: MIC = 10-100 µM; Weak activity: MIC ≥ 100 µM; n.d. = no data available; qual. = qualitative assessment of activity only. 4...Andersson, M., Jornvall, H., Mutt, V., & Boman, H. G. (1989). Antimicrobial peptides from pig intestine: Isolation of a mammalian cecropin

  4. Gene Expression Profiling of Cecropin B-Resistant Haemophilus parasuis

    NARCIS (Netherlands)

    Wang, Chunmei; Chen, Fangzhou; Hu, Han; Li, Wentao; Wang, Yang; Chen, Pin; Liu, Yingyu; Ku, Xugang; He, Qigai; Chen, Huanchun; Xue, Feiqun

    2014-01-01

    Synthetically designed antimicrobial peptides (AMPs) present the potential of replacing antibiotics in the treatment of bacterial infections. However, microbial resistance to AMPs has been reported and little is known regarding the underlying mechanism of such resistance. The naturally occurring AMP

  5. Differential Change Patterns of Main Antimicrobial Peptide Genes During Infection of Entomopathogenic Nematodes and Their Symbiotic Bacteria.

    Science.gov (United States)

    Darsouei, Reyhaneh; Karimi, Javad; Ghadamyari, Mohammad; Hosseini, Mojtaba

    2017-08-01

    The expression of antimicrobial peptides (AMPs) as the main humoral defense reactions of insects during infection by entomopathogenic nematodes (EPNs) and their symbiont is addressed herein. Three AMPs, attacin, cecropin, and spodoptericin, were evaluated in the fifth instar larvae of Spodoptera exigua Hübner (beet armyworm) when challenged with Steinernema carpocapsae or Heterorhabditis bacteriophora. The results indicated that attacin was expressed to a greater extent than either cecropin or spodoptericin. While spodoptericin was expressed to a much lesser extent, this AMP was induced against Gram-positive bacteria, and thus not expressed after penetration of Xenorhabdus nematophila and Photorhabdus luminescens. Attacin and cecropin in the larvae treated with S. carpocapsae at 8 hr post-injection (PI) attained the maximum expression levels and were 138.42-fold and 65.84-fold greater than those of larvae infected with H. bacteriophora, respectively. Generally, the ability of H. bacteriophora to suppress attacin, cecropin, and spodoptericin was greater than that of S. carpocapsae. According to the results, the expression of AMPs by Sp. exigua larvae against S. carpocapsae was determined in the 4 statuses of monoxenic nematode, axenic nematode, live symbiotic bacterium, and dead symbiotic bacterium. The expression of attacin in larvae treated with a monoxenic nematode and live bacterium at 8 and 2 hr PI, respectively, were increased to the maximum amount. Live X. nematophila was the strongest agent for the suppression of attacin. The expression of cecropin against monoxenic nematodes and live symbiotic bacteria at 8 and 4 hr PI, respectively, reached the maximum amount while the expression levels of attacin and cecropin for axenic nematodes were lesser and stable. The results highlighted that the ability of P. luminescens in AMPs suppression was much more than X. nematophila. The results also showed that the effect of symbiotic bacterium in suppressing attacin and

  6. A Herpesviral Lytic Protein Regulates the Structure of Latent Viral Chromatin

    Directory of Open Access Journals (Sweden)

    Priya Raja

    2016-05-01

    Full Text Available Latent infections by viruses usually involve minimizing viral protein expression so that the host immune system cannot recognize the infected cell through the viral peptides presented on its cell surface. Herpes simplex virus (HSV, for example, is thought to express noncoding RNAs such as latency-associated transcripts (LATs and microRNAs (miRNAs as the only abundant viral gene products during latent infection. Here we describe analysis of HSV-1 mutant viruses, providing strong genetic evidence that HSV-infected cell protein 0 (ICP0 is expressed during establishment and/or maintenance of latent infection in murine sensory neurons in vivo. Studies of an ICP0 nonsense mutant virus showed that ICP0 promotes heterochromatin and latent and lytic transcription, arguing that ICP0 is expressed and functional. We propose that ICP0 promotes transcription of LATs during establishment or maintenance of HSV latent infection, much as it promotes lytic gene transcription. This report introduces the new concept that a lytic viral protein can be expressed during latent infection and can serve dual roles to regulate viral chromatin to optimize latent infection in addition to its role in epigenetic regulation during lytic infection. An additional implication of the results is that ICP0 might serve as a target for an antiviral therapeutic acting on lytic and latent infections.

  7. High-level expression of housefly cecropin A in Escherichia coli using a fusion protein

    Institute of Scientific and Technical Information of China (English)

    Xueli Zheng; Wei Wang

    2010-01-01

    Objective:To investigate the effect of utilizing a molecular partner on high-level expression of Musca domestica (M. domestica) cecropin in Escherichia coli (E. coli) and to identify the expressed products. Methods:The genomic sequence of M. domestica cecropin A (MC) and M. domestica ubiquitin (UBI) were searched from Genbank and amplified by reverse transcriptase polymerase chain reaction (RT-PCR). Two expression plasmids, pET32a-MC and pET32a-UBI-MC, were constructed and transferred into E. coli and were then induced by Isopropylβ-D-1-Thiogalactopyranoside (IPTG). The expression of the fusion proteins Trx-MC and Trx-UBI-MC was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Fusion protein Trx-MC was verified by Western blot analysis. The bactericidal activity of the purified MC was quantitatively determined using E. coli BL21(DE3). Results:The result showed that the fusion proteins were successively expressed in E. coli BL21 cells. A band at the expected position of 24 kDa representing the Trx-MC target protein was positivelystained, and the band at 4 kDa representing the hydrolysis of mature MC protein was also observed at the expected position. The expression levels of Trx-UBI-MC were higher than that of Trx-MC in E. coli. MC exhibited antimicrobial activity. Conclusions:With high-level expression of housefly cecropin A in E. coli using a fusion protein, MC exhibited antimicrobial activity.

  8. Lytic to temperate switching of viral communities

    Science.gov (United States)

    Knowles, B.; Silveira, C. B.; Bailey, B. A.; Barott, K.; Cantu, V. A.; Cobián-Güemes, A. G.; Coutinho, F. H.; Dinsdale, E. A.; Felts, B.; Furby, K. A.; George, E. E.; Green, K. T.; Gregoracci, G. B.; Haas, A. F.; Haggerty, J. M.; Hester, E. R.; Hisakawa, N.; Kelly, L. W.; Lim, Y. W.; Little, M.; Luque, A.; McDole-Somera, T.; McNair, K.; de Oliveira, L. S.; Quistad, S. D.; Robinett, N. L.; Sala, E.; Salamon, P.; Sanchez, S. E.; Sandin, S.; Silva, G. G. Z.; Smith, J.; Sullivan, C.; Thompson, C.; Vermeij, M. J. A.; Youle, M.; Young, C.; Zgliczynski, B.; Brainard, R.; Edwards, R. A.; Nulton, J.; Thompson, F.; Rohwer, F.

    2016-03-01

    Microbial viruses can control host abundances via density-dependent lytic predator-prey dynamics. Less clear is how temperate viruses, which coexist and replicate with their host, influence microbial communities. Here we show that virus-like particles are relatively less abundant at high host densities. This suggests suppressed lysis where established models predict lytic dynamics are favoured. Meta-analysis of published viral and microbial densities showed that this trend was widespread in diverse ecosystems ranging from soil to freshwater to human lungs. Experimental manipulations showed viral densities more consistent with temperate than lytic life cycles at increasing microbial abundance. An analysis of 24 coral reef viromes showed a relative increase in the abundance of hallmark genes encoded by temperate viruses with increased microbial abundance. Based on these four lines of evidence, we propose the Piggyback-the-Winner model wherein temperate dynamics become increasingly important in ecosystems with high microbial densities; thus ‘more microbes, fewer viruses’.

  9. Translocation of cell-penetrating peptides into Candida fungal pathogens.

    Science.gov (United States)

    Gong, Zifan; Karlsson, Amy J

    2017-09-01

    Cell-penetrating peptides (CPPs) are small peptides capable of crossing cellular membranes while carrying molecular cargo. Although they have been widely studied for their ability to translocate nucleic acids, small molecules, and proteins into mammalian cells, studies of their interaction with fungal cells are limited. In this work, we evaluated the translocation of eleven fluorescently labeled peptides into the important human fungal pathogens Candida albicans and C. glabrata and explored the mechanisms of translocation. Seven of these peptides (cecropin B, penetratin, pVEC, MAP, SynB, (KFF)3 K, and MPG) exhibited substantial translocation (>80% of cells) into both species in a concentration-dependent manner, and an additional peptide (TP-10) exhibiting strong translocation into only C. glabrata. Vacuoles were involved in translocation and intracellular trafficking of the peptides in the fungal cells and, for some peptides, escape from the vacuoles and localization in the cytosol were correlated to toxicity toward the fungal cells. Endocytosis was involved in the translocation of cecropin B, MAP, SynB, MPG, (KFF)3 K, and TP-10, and cecropin B, penetratin, pVEC, and MAP caused membrane permeabilization during translocation. These results indicate the involvement of multiple translocation mechanisms for some CPPs. Although high levels of translocation were typically associated with toxicity of the peptides toward the fungal cells, SynB was translocated efficiently into Candida cells at concentrations that led to minimal toxicity. Our work highlights the potential of CPPs in delivering antifungal molecules and other bioactive cargo to Candida pathogens. © 2017 The Protein Society.

  10. Lytic clavicular lesions in fibromatosis colli

    Energy Technology Data Exchange (ETDEWEB)

    Sartoris, D.J.; Parker, B.R.; Mochizuki, R.M.

    1983-06-01

    Two patients with fibromatosis colli (congenital torticollis) presented with lytic lesions in the clavicle at the insertion of the fibrosed clavicular head of the sternocleidomastoid muscle. Biopsy of one lesion showed intraosseous fibrosis. These lesions are probably not uncommon but radiographs are rarely performed in uncomplicated cases.

  11. Functional divergence among silkworm antimicrobial peptide paralogs by the activities of recombinant proteins and the induced expression profiles.

    Directory of Open Access Journals (Sweden)

    Wanying Yang

    Full Text Available Antimicrobial peptides are small-molecule proteins that are usually encoded by multiple-gene families. They play crucial roles in the innate immune response, but reports on the functional divergence of antimicrobial peptide gene families are rare. In this study, 14 paralogs of antimicrobial peptides belonging to cecropin, moricin and gloverin families were recombinantly expressed in pET expression systems. By antimicrobial activity tests, peptides representing paralogs in the same family of cecropin and moricin families, displayed remarkable differences against 10 tested bacteria. The evolutionary rates were relatively fast in the two families, which presented obvious functional divergence among paralogs of each family. Four peptides of gloverin family had similar antimicrobial spectrum and activity against tested bacteria. The gloverin family showed similar antimicrobial function and slow evolutionary rates. By induced transcriptional activity, genes encoding active antimicrobial peptides were upregulated at obviously different levels when silkworm pupae were infected by three types of microbes. Association analysis of antimicrobial activities and induced transcriptional activities indicated that the antimicrobial activities might be positively correlated with induced transcriptional activities in the cecropin and moricin families. These results suggest that representative BmcecB6, BmcecD and Bmmor as the major effector genes have broad antimicrobial spectrum, strong antimicrobial activity and high microbe-induced expression among each family and maybe play crucial roles in eliminating microbial infection.

  12. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7.

    Science.gov (United States)

    Tan, Tingting; Wu, Di; Li, Weizhong; Zheng, Xin; Li, Weifen; Shan, Anshan

    2017-02-06

    Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH₂), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17-29) (FV-LL), FV7-magainin 2 (9-21) (FV-MA) and FV7-cecropin A (1-8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17-29) (LL), magainin 2 (9-21) (MA) and cecropin A (1-8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents.

  13. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7

    Science.gov (United States)

    Tan, Tingting; Wu, Di; Li, Weizhong; Zheng, Xin; Li, Weifen; Shan, Anshan

    2017-01-01

    Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH2), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17–29) (FV-LL), FV7-magainin 2 (9–21) (FV-MA) and FV7-cecropin A (1–8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17–29) (LL), magainin 2 (9–21) (MA) and cecropin A (1–8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents. PMID:28178190

  14. The dorsal-related immunity factor, Dif, is a sequence-specific trans-activator of Drosophila Cecropin gene expression.

    OpenAIRE

    Petersen, U M; Björklund, G; Ip, Y T; Engström, Y

    1995-01-01

    A new member of the Rel family of transcription factors, the dorsal-related immunity factor, Dif, was recently cloned and suggested to be involved in regulating the immune response in Drosophila. Despite its classification as a Rel family member, the Dif cDNA-encoded product has not been proven previously to be a transcription factor. We now present evidence that the Dif gene product trans-activates the Drosophila Cecropin A1 gene in co-transfection assays. The transactivation requires a 40 b...

  15. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria

    DEFF Research Database (Denmark)

    Ebbensgaard, Anna Elisabeth; Mordhorst, Hanne; Overgaard, Michael Toft

    2015-01-01

    The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various...... AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram......-negative bacteria. We compared the potency of Cap18, Cap11, Cap11-1-18m2, Cecropin P1, Cecropin B, Bac2A, Bac2A-NH2, Sub5-NH2, Indolicidin, Melittin, Myxinidin, Myxinidin-NH2, Pyrrhocoricin, Apidaecin and Metalnikowin I towards Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli...

  16. Transformação genética de laranja 'Valência' com o gene cecropin MB39 Genetic transformation of 'Valencia' sweet orange with the cecropin MB39 gene

    Directory of Open Access Journals (Sweden)

    Luis Gustavo de Paoli

    2007-11-01

    Full Text Available O objetivo deste trabalho foi obter plantas transgênicas de laranja 'Valência' com o gene cecropin MB39 controlado pelo promotor do gene da fenilalanina-amônia-liase de citros, visando a expressão gênica específica nos vasos do xilema. A transformação genética foi realizada via Agrobacterium tumefaciens por meio do co-cultivo de segmentos de epicótilo. Onze plantas transgênicas foram identificadas por PCR, pela amplificação do fragmento esperado de 189 pb, as quais foram aclimatizadas em casa de vegetação. A integração do transgene foi confirmada em três plantas pela análise de transferência de Southern.The objective of this work was to produce 'Valencia' sweet orange transgenic plants with the cecropin MB39 gene controlled by a phenylalanine ammonia-lyase gene promoter from citrus in order to direct gene expression in xylem vessels. The genetic transformation was mediated by Agrobacterium tumefaciens with the co-culture of epicotyl segments. Eleven transgenic plants were selected by PCR with the amplification of a 189 bp fragment, which were acclimatized to greenhouse. The integration of the transgene was confirmed in three plants by Southern blot analysis.

  17. Anti-antimicrobial peptides: folding-mediated host defense antagonists.

    Science.gov (United States)

    Ryan, Lloyd; Lamarre, Baptiste; Diu, Ting; Ravi, Jascindra; Judge, Peter J; Temple, Adam; Carr, Matthew; Cerasoli, Eleonora; Su, Bo; Jenkinson, Howard F; Martyna, Glenn; Crain, Jason; Watts, Anthony; Ryadnov, Maxim G

    2013-07-12

    Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance.

  18. An enhancer peptide for membrane-disrupting antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Zhang Hong

    2010-02-01

    Full Text Available Abstract Background NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4 by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn. Results In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus, whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P. Conclusions NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane.

  19. Viral reproductive strategies: How can lytic viruses be evolutionarily competitive?

    Science.gov (United States)

    Komarova, Natalia L

    2007-12-21

    Viral release strategies can be roughly classified as lytic (the ones that accumulate inside the host cell and exit in a burst, killing the cell), and budding (the ones that are produced and released from the host cell gradually). Here we study the evolutionary competition between the two strategies. If all the parameters, such as the rate of viral production, cell life-span and the neutralizing capacity of the antibodies, were the same for lytic and budding viruses, the budding life-strategy would have a large evolutionary advantage. The question arises what makes lytic viruses evolutionarily competitive. We propose that it is the different removal capacity of the antibodies against budding and lytic virions. The latter exit the cell in a large burst such that the antibodies are "flooded" and a larger proportion of virions can escape the immune system and spread to new cells. We create two spatial models of virus-antibody interaction and show that for realistic parameter values, the effect of antibody flooding can indeed take place. We also argue that the lytic life cycle, including a relatively large burst-size, has evolved to promote survival in the face of antibody attack. According to the calculations, in the absence of efficient antibodies, the optimal burst size of lytic viruses would be only a few virus particles, as opposed to the observed 10(2)-10(5) viral particles. Similarly, there is an evolutionary pressure to extend the life-span as a response to antibody action.

  20. 家蝇天蚕素-人溶菌酶融合蛋白的生物信息学分析%Bioinformatic analysis of Musca domestica cecropin-human lysozyme fusion protein

    Institute of Scientific and Technical Information of China (English)

    卢雪梅; 金小宝; 朱家勇; 黄演婷

    2012-01-01

    目的 利用生物信息学方法分析家蝇天蚕素-人溶菌酶融合基因推导的氨基酸序列.方法 用ProtParam Tool、CDD、ProtScal、sopma等软件对其理化性质、疏水性/亲水性、信号肽、功能结构域及蛋白质二级结构等重要参数进行预测.结果 家蝇天蚕素-人溶菌酶由l87个氨基酸组成,预测相对分子质量为20 131.7,理论等电点(pI)为9.69,分子式为C862 H1375 N277 O260 S11;半衰期预测结果显示其利于基因工程表达.融合蛋白的氨基酸序列含有天蚕素家族和溶菌酶家族二者的保守结构域,二级结构主要由α-螺旋、β-折叠、β-转角和无规则卷曲组成.结论 分析结果为家蝇天蚕素-人溶菌酶融合基因的原核表达及表达产物的生物学功能研究奠定了基础.%Objective To analyze the amino acid sequences of Musca domestica cecropin-human lysozyme (Mdc-HLY) fusion protein by bioinformatics analysis. Methods The physical-chemical properties, hydrophobicity or hydrophilicity, the signal peptide, the conserved domains and protein secondary structure of Mdc-HLY were analyzed by ProtParam Tool, CDD, ProtScal, sopma et al. Results Mdc-HLY was cationic molecules and was composed of 187 amino acids,with molecular weight of 20 131.7,theoretical PI of 9.69,the structural formula of C862H1375N277O260S11. The fusion protein included the conserved domains of both Musca domestica cecropin and human lysozyme. Instability index classified the protein as stable, and conducive to its expression using genetic engineering. The secondary structure of Mdc-HLY contained α-helix,β-sheet ,β-tum and random coil. Conclusion These results may provide foundation for further study on the expression and biological activity of Mdc-HLY.

  1. 含有FXa切割位点的抗菌肽X在大肠杆菌中的融合表达%Fusion Expression of Cecropin X Including the Cleavage of FXa in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    袁榴娣; 窦非; 梁玉璞; 谢维; 王芳; 张双全; 戴祝英

    2000-01-01

    PCR method was used to introduce the code sequence of Factor Xa cleavage site to the 5′ end of cecropin CMIV mutant gene X, then the gene was cloned into the expression vector pGEX-KG, and was highly expressed in E. coli BL21 by IPTG induction. The fusion protein was purified by affinity-chromatography and was cleaved by Factor Xa. Cecropin X with antibacterial activity was obtained after purified by ion-exchange chromatography.

  2. Construction of Eukaryotic Expression Vector and Sequence Analysis of Antimicrobial Peptide Gene Shiva 1a%抗菌肽Shiva1a基因真核表达载体的构建及序列分析

    Institute of Scientific and Technical Information of China (English)

    宫晓炜; 郑福英; 蔺国珍; 曹小安; 王光华; 周继章; 才学鹏

    2011-01-01

    为了探讨天蚕类抗菌肽在动物早期抗感染过程中的作用机理,本研究以Shiva 1a基因的成熟肽为模板设计4条引物,利用重叠延伸PCR技术获得目的基因,并在C端添加6×His的标签.将此序列与真核表达载体pIRES2 -EGFP进行重组,构建pIRES2-EGFP-Shiva 1a重组表达质粒,对重组质粒进行酶切和测序鉴定后,采用阳离子脂质体转染将重组质粒转染到CHO-K1细胞,荧光显微镜观察其表达情况.通过生物信息学软件对抗菌肽Shiva 1a的二级结构和三级结构进行预测分析.其结果为进一步研究Shiva 1a的抗菌活性和在动物抗病育种方面的应用奠定了基础.%To explore the effect mechanism of cecropin-class lytic peptide at early stage of infection. The mat peptide of Shiva la was amplified by overlap extension PCR and the C-terminus contained 6×His-marker. The gene sequence were recombi-nant with eukaryotic expression vector pIRES2-EGFP. After being identified by restriction enzyme digestion and sequencing, the recombinant plasmid pIRES2-EGFP-Shiva la was transfected into CHO-K1 cells by liposomes. The expression of the the recombinant plasmid pIRES2-EGFP-Shiva 1a was observed by fluorescence microscope. At the same time, the secondary structure and 3D structure were predicted by bioinformatics tools. The results lay the foundation in research of antimicrobial activities and applications of the antimicrobial peptide Shiva la in breeding for disease resistance of animals.

  3. Preparation and characterization of polyclonal antibody against Kaposi's sarcoma-associated herpesvirus lytic gene encoding RTA.

    Science.gov (United States)

    Fan, Weifei; Tang, Qiao; Shen, Chenyou; Qin, Di; Lu, Chun; Yan, Qin

    2015-11-01

    Replication and transcription activator (RTA) is a critical lytic protein encoded by Kaposi's sarcoma-associated herpesvirus (KSHV). To prepare rabbit polyclonal antibody against RTA, three antigenic polypeptides of KSHV RTA were initially synthesized. The fragment of RTA was cloned into p3FlagBsd to construct the recombinant plasmid, pRTA-Flag. 293 T and EA.hy926 cells were transfected with pRTA-Flag to obtain RTA-Flag fusion protein, which was detected using anti-Flag antibody. Next, New Zealand white rabbits were immunized with keyhole limpet hemocyanin-conjugated peptides to generate polyclonal antibodies against RTA. Enzyme-linked immunosorbent assays were performed to characterize the polyclonal antibodies, and the titers of the polyclonal antibodies against RTA were greater than 1:11,000. Western blotting and immunofluorescence assay revealed that the prepared antibody reacted specifically with the RTA-Flag fusion protein as well as the native viral protein in KSHV-infected primary effusion lymphoma cells. Collectively, our work successfully constructed the recombinant expression vector, pRTA-Flag, and prepared the polyclonal antibody against RTA, which was valuable for investigating the biochemical and biological functions of the critical KSHV lytic gene.

  4. Lytic and non-lytic permeabilization of cardiolipin-containing lipid bilayers induced by cytochrome C.

    Directory of Open Access Journals (Sweden)

    Jian Xu

    Full Text Available The release of cytochrome c (cyt c from mitochondria is an important early step during cellular apoptosis, however the precise mechanism by which the outer mitochondrial membrane becomes permeable to these proteins is as yet unclear. Inspired by our previous observation of cyt c crossing the membrane barrier of giant unilamellar vesicle model systems, we investigate the interaction of cyt c with cardiolipin (CL-containing membranes using the innovative droplet bilayer system that permits electrochemical measurements with simultaneous microscopy observation. We find that cyt c can permeabilize CL-containing membranes by induction of lipid pores in a dose-dependent manner, with membrane lysis eventually observed at relatively high (µM cyt c concentrations due to widespread pore formation in the membrane destabilizing its bilayer structure. Surprisingly, as cyt c concentration is further increased, we find a regime with exceptionally high permeability where a stable membrane barrier is still maintained between droplet compartments. This unusual non-lytic state has a long lifetime (>20 h and can be reversibly formed by mechanically separating the droplets before reforming the contact area between them. The transitions between behavioural regimes are electrostatically driven, demonstrated by their suppression with increasing ionic concentrations and their dependence on CL composition. While membrane permeability could also be induced by cationic PAMAM dendrimers, the non-lytic, highly permeable membrane state could not be reproduced using these synthetic polymers, indicating that details in the structure of cyt c beyond simply possessing a cationic net charge are important for the emergence of this unconventional membrane state. These unexpected findings may hold significance for the mechanism by which cyt c escapes into the cytosol of cells during apoptosis.

  5. Painful Lytic Lesions of the Foot : A Case Report

    Directory of Open Access Journals (Sweden)

    R Vaishya

    2015-03-01

    Full Text Available The presence of lytic lesions in the bones of foot raises a number of diagnostic possibilities ranging from infection, inflammatory pathology to neoplastic conditions. Although the radiological picture is not pathognomonic of any pathology, clinical history and histopathological examination can help to clinch the diagnosis. We present a case of multiple lytic lesions of the foot and discuss possible differential diagnoses. The patient was diagnosed as a case of madura foot and the lesions responded to surgical debridement and anti-fungal treatment with a good functional outcome. Madura foot is an uncommon, chronic granulomatous fungal or bacterial infection with a predilection in people who walk barefoot. Although known for a specific geographical distribution, madura foot should be kept as a possible diagnosis in patients presenting with lytic lesions of the foot due to population emigration across the world.

  6. The PDB database is a rich source of alpha-helical anti-microbial peptides to combat disease causing pathogens [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    2015-06-01

    Full Text Available The therapeutic potential of α-helical anti-microbial peptides (AH-AMP to combat pathogens is fast gaining prominence. Based on recently published open access software for characterizing α-helical peptides (PAGAL, we elucidate a search methodology (SCALPEL that leverages the massive structural data pre-existing in the PDB database to obtain AH-AMPs belonging to the host proteome. We provide in vitro validation of SCALPEL on plant pathogens (Xylella fastidiosa, Xanthomonas arboricola and Liberibacter crescens by identifying AH-AMPs that mirror the function and properties of cecropin B, a well-studied AH-AMP. The identified peptides include a linear AH-AMP present within the existing structure of phosphoenolpyruvate carboxylase (PPC20, and an AH-AMP mimicing the properties of the two α-helices of cecropin B from chitinase (CHITI25. The minimum inhibitory concentration of these peptides are comparable to that of cecropin B, while anionic peptides used as control failed to show any inhibitory effect on these pathogens. Substitute therapies in place of conventional chemotherapies using membrane permeabilizing peptides like these might also prove effective to target cancer cells. The use of native structures from the same organism could possibly ensure that administration of such peptides will be better tolerated and not elicit an adverse immune response. We suggest a similar approach to target Ebola epitopes, enumerated using PAGAL recently, by selecting suitable peptides from the human proteome, especially in wake of recent reports of cationic amphiphiles inhibiting virus entry and infection.

  7. Cortex Peptidoglycan Lytic Activity in Germinating Bacillus anthracis Spores▿

    OpenAIRE

    2008-01-01

    Bacterial endospore dormancy and resistance properties depend on the relative dehydration of the spore core, which is maintained by the spore membrane and its surrounding cortex peptidoglycan wall. During spore germination, the cortex peptidoglycan is rapidly hydrolyzed by lytic enzymes packaged into the dormant spore. The peptidoglycan structures in both dormant and germinating Bacillus anthracis Sterne spores were analyzed. The B. anthracis dormant spore peptidoglycan was similar to that fo...

  8. Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following Infection with Dengue Virus.

    Directory of Open Access Journals (Sweden)

    Natthanej Luplertlop

    2011-01-01

    Full Text Available The ultimate stage of the transmission of Dengue Virus (DENV to man is strongly dependent on crosstalk between the virus and the immune system of its vector Aedes aegypti (Ae. aegypti. Infection of the mosquito's salivary glands by DENV is the final step prior to viral transmission. Therefore, in the present study, we have determined the modulatory effects of DENV infection on the immune response in this organ by carrying out a functional genomic analysis of uninfected salivary glands and salivary glands of female Ae. aegypti mosquitoes infected with DENV. We have shown that DENV infection of salivary glands strongly up-regulates the expression of genes that encode proteins involved in the vector's innate immune response, including the immune deficiency (IMD and Toll signalling pathways, and that it induces the expression of the gene encoding a putative anti-bacterial, cecropin-like, peptide (AAEL000598. Both the chemically synthesized non-cleaved, signal peptide-containing gene product of AAEL000598, and the cleaved, mature form, were found to exert, in addition to antibacterial activity, anti-DENV and anti-Chikungunya viral activity. However, in contrast to the mature form, the immature cecropin peptide was far more effective against Chikungunya virus (CHIKV and, furthermore, had strong anti-parasite activity as shown by its ability to kill Leishmania spp. Results from circular dichroism analysis showed that the immature form more readily adopts a helical conformation which would help it to cause membrane permeabilization, thus permitting its transfer across hydrophobic cell surfaces, which may explain the difference in the anti-pathogenic activity between the two forms. The present study underscores not only the importance of DENV-induced cecropin in the innate immune response of Ae. aegypti, but also emphasizes the broad-spectrum anti-pathogenic activity of the immature, signal peptide-containing form of this peptide.

  9. A green-light inducible lytic system for cyanobacterial cells.

    Science.gov (United States)

    Miyake, Kotone; Abe, Koichi; Ferri, Stefano; Nakajima, Mitsuharu; Nakamura, Mayumi; Yoshida, Wataru; Kojima, Katsuhiro; Ikebukuro, Kazunori; Sode, Koji

    2014-01-01

    Cyanobacteria are an attractive candidate for the production of biofuel because of their ability to capture carbon dioxide by photosynthesis and grow on non-arable land. However, because huge quantities of water are required for cultivation, strict water management is one of the greatest issues in algae- and cyanobacteria-based biofuel production. In this study, we aim to construct a lytic cyanobacterium that can be regulated by a physical signal (green-light illumination) for future use in the recovery of biofuel related compounds. We introduced T4 bacteriophage-derived lysis genes encoding holin and endolysin under the control of the green-light regulated cpcG2 promoter in Synechocystis sp. PCC 6803. When cells harboring the lysis genes were illuminated with both red and green light, we observed a considerable decrease in growth rate, a significant increase in cellular phycocyanin released in the medium, and a considerable fraction of dead cells. These effects were not observed when these cells were illuminated with only red light, or when cells not containing the lysis genes were grown under either red light or red and green light. These results indicate that our constructed green-light inducible lytic system was clearly induced by green-light illumination, resulting in lytic cells that released intracellular phycocyanin into the culture supernatant. This property suggests a future possibility to construct photosynthetic genetically modified organisms that are unable to survive under sunlight exposure. Expression of the self-lysis system with green-light illumination was also found to greatly increase the fragility of the cell membrane, as determined by subjecting the induced cells to detergent, osmotic-shock, and freeze-thaw treatments. A green-light inducible lytic system was constructed in Synechocystis sp. PCC 6803. The engineered lytic cyanobacterial cells should be beneficial for the recovery of biofuels and related compounds from cells with minimal effort

  10. A novel transferrin receptor-targeted hybrid peptide disintegrates cancer cell membrane to induce rapid killing of cancer cells

    Directory of Open Access Journals (Sweden)

    Kawamoto Megumi

    2011-08-01

    Full Text Available Abstract Background Transferrin receptor (TfR is a cell membrane-associated glycoprotein involved in the cellular uptake of iron and the regulation of cell growth. Recent studies have shown the elevated expression levels of TfR on cancer cells compared with normal cells. The elevated expression levels of this receptor in malignancies, which is the accessible extracellular protein, can be a fascinating target for the treatment of cancer. We have recently designed novel type of immunotoxin, termed "hybrid peptide", which is chemically synthesized and is composed of target-binding peptide and lytic peptide containing cationic-rich amino acids components that disintegrates the cell membrane for the cancer cell killing. The lytic peptide is newly designed to induce rapid killing of cancer cells due to conformational change. In this study, we designed TfR binding peptide connected with this novel lytic peptide and assessed the cytotoxic activity in vitro and in vivo. Methods In vitro: We assessed the cytotoxicity of TfR-lytic hybrid peptide for 12 cancer and 2 normal cell lines. The specificity for TfR is demonstrated by competitive assay using TfR antibody and siRNA. In addition, we performed analysis of confocal fluorescence microscopy and apoptosis assay by Annexin-V binding, caspase activity, and JC-1 staining to assess the change in mitochondria membrane potential. In vivo: TfR-lytic was administered intravenously in an athymic mice model with MDA-MB-231 cells. After three weeks tumor sections were histologically analyzed. Results The TfR-lytic hybrid peptide showed cytotoxic activity in 12 cancer cell lines, with IC50 values as low as 4.0-9.3 μM. Normal cells were less sensitive to this molecule, with IC50 values > 50 μM. Competition assay using TfR antibody and knockdown of this receptor by siRNA confirmed the specificity of the TfR-lytic hybrid peptide. In addition, it was revealed that this molecule can disintegrate the cell membrane of T47

  11. Structural characterization of Lytic Polysaccharide MonoOxygenases

    DEFF Research Database (Denmark)

    Frandsen, Kristian Erik Høpfner

    Lytic polysaccharide monooxygenases (LPMOs) are a new class of copper-containingmetalloenzymes that have been found to oxidatively degrade polysaccharides (and recently alsooligosaccharides). They dependent on redox partners to provide them with electrons and they utilizemolecular oxygen to cleave......) and their interaction with substratehave been structurally characterized. A number of structures of LsAA9A have been obtained in complexwith a range of cellulosic- and hemicellulosic substrates and with the active site Cu in different redox state.Two of the LsAA9A structures with the active site Cu in essentially a Cu...

  12. Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii.

    Science.gov (United States)

    Merabishvili, Maia; Vandenheuvel, Dieter; Kropinski, Andrew M; Mast, Jan; De Vos, Daniel; Verbeken, Gilbert; Noben, Jean-Paul; Lavigne, Rob; Vaneechoutte, Mario; Pirnay, Jean-Paul

    2014-01-01

    Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively), high burst size (125 and 145, respectively), stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections.

  13. Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Maia Merabishvili

    Full Text Available Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively, high burst size (125 and 145, respectively, stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections.

  14. Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure

    Science.gov (United States)

    Villares, Ana; Moreau, Céline; Bennati-Granier, Chloé; Garajova, Sona; Foucat, Loïc; Falourd, Xavier; Saake, Bodo; Berrin, Jean-Guy; Cathala, Bernard

    2017-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are a class of powerful oxidative enzymes that breakdown recalcitrant polysaccharides such as cellulose. Here we investigate the action of LPMOs on cellulose fibers. After enzymatic treatment and dispersion, LPMO-treated fibers show intense fibrillation. Cellulose structure modifications visualized at different scales indicate that LPMO creates nicking points that trigger the disintegration of the cellulose fibrillar structure with rupture of chains and release of elementary nanofibrils. Investigation of LPMO action using solid-state NMR provides direct evidence of modification of accessible and inaccessible surfaces surrounding the crystalline core of the fibrils. The chains breakage likely induces modifications of the cellulose network and weakens fibers cohesion promoting their disruption. Besides the formation of new initiation sites for conventional cellulases, this work provides the first evidence of the direct oxidative action of LPMOs with the mechanical weakening of the cellulose ultrastructure. LPMOs can be viewed as promising biocatalysts for enzymatic modification or degradation of cellulose fibers. PMID:28071716

  15. Increased Lytic Efficiency of Bovine Macrophages Trained with Killed Mycobacteria

    Science.gov (United States)

    Juste, Ramon A.; Alonso-Hearn, Marta; Garrido, Joseba M.; Abendaño, Naiara; Sevilla, Iker A.; Gortazar, Christian; de la Fuente, José; Dominguez, Lucas

    2016-01-01

    Innate immunity is evolutionarily conserved in multicellular organisms and was considered to lack memory until very recently. One of its more characteristic mechanisms is phagocytosis, the ability of cells to engulf, process and eventually destroy any injuring agent. We report the results of an ex vivo experiment in bovine macrophages in which improved clearance of Mycobacterium bovis (M. bovis) was induced by pre-exposure to a heat killed M. bovis preparation. The effects were independent of humoral and cellular adaptive immune responses and lasted up to six months. Specifically, our results demonstrate the existence of a training effect in the lytic phase of phagocytosis that can be activated by killed mycobacteria, thus suggesting a new mechanism of vaccine protection. These findings are compatible with the recently proposed concept of trained immunity, which was developed to explain the observation that innate immune responses provide unspecific protection against pathogens including other than those that originally triggered the immune response. PMID:27820836

  16. Structural characterization of Lytic Polysaccharide MonoOxygenases

    DEFF Research Database (Denmark)

    Frandsen, Kristian Erik Høpfner

    Lytic polysaccharide monooxygenases (LPMOs) are a new class of copper-containingmetalloenzymes that have been found to oxidatively degrade polysaccharides (and recently alsooligosaccharides). They dependent on redox partners to provide them with electrons and they utilizemolecular oxygen to cleave......) and their interaction with substratehave been structurally characterized. A number of structures of LsAA9A have been obtained in complexwith a range of cellulosic- and hemicellulosic substrates and with the active site Cu in different redox state.Two of the LsAA9A structures with the active site Cu in essentially a Cu......(II) state show differences in thenature of the Cu-ligand with and without cellulosic substrate bound and provide structural insight into themechanistic action of LPMOs. Interestingly, for an LsAA9A complex structure with a hemicellulosicsubstrate (xylooligosaccharide) a corresponding difference...

  17. 5-hydroxymethylation of the EBV genome regulates the latent to lytic switch.

    Science.gov (United States)

    Wille, Coral K; Nawandar, Dhananjay M; Henning, Amanda N; Ma, Shidong; Oetting, Kayla M; Lee, Dennis; Lambert, Paul; Johannsen, Eric C; Kenney, Shannon C

    2015-12-29

    Latent Epstein-Barr virus (EBV) infection and cellular hypermethylation are hallmarks of undifferentiated nasopharyngeal carcinoma (NPC). However, EBV infection of normal oral epithelial cells is confined to differentiated cells and is lytic. Here we demonstrate that the EBV genome can become 5-hydroxymethylated and that this DNA modification affects EBV lytic reactivation. We show that global 5-hydroxymethylcytosine (5hmC)-modified DNA accumulates during normal epithelial-cell differentiation, whereas EBV+ NPCs have little if any 5hmC-modified DNA. Furthermore, we find that increasing cellular ten-eleven translocation (TET) activity [which converts methylated cytosine (5mC) to 5hmC] decreases methylation, and increases 5hmC modification, of lytic EBV promoters in EBV-infected cell lines containing highly methylated viral genomes. Conversely, inhibition of endogenous TET activity increases lytic EBV promoter methylation in an EBV-infected telomerase-immortalized normal oral keratinocyte (NOKs) cell line where lytic viral promoters are largely unmethylated. We demonstrate that these cytosine modifications differentially affect the ability of the two EBV immediate-early proteins, BZLF1 (Z) and BRLF1 (R), to induce the lytic form of viral infection. Although methylation of lytic EBV promoters increases Z-mediated and inhibits R-mediated lytic reactivation, 5hmC modification of lytic EBV promoters has the opposite effect. We also identify a specific CpG-containing Z-binding site on the BRLF1 promoter that must be methylated for Z-mediated viral reactivation and show that TET-mediated 5hmC modification of this site in NOKs prevents Z-mediated viral reactivation. Decreased 5-hydroxymethylation of cellular and viral genes may contribute to NPC formation.

  18. Complete Genome Sequences of Lytic Bacteriophages of Xanthomonas arboricola pv. juglandis.

    Science.gov (United States)

    Retamales, Julio; Vasquez, Ignacio; Santos, Leonardo; Segovia, Cristopher; Ayala, Manuel; Alvarado, Romina; Nuñez, Pablo; Santander, Javier

    2016-06-02

    Three bacteriophages, f20-Xaj, f29-Xaj, and f30-Xaj, with lytic activity against Xanthomonas arboricola pv. juglandis were isolated from walnut trees (VIII Bío Bío Region, Chile). These lytic bacteriophages have double-stranded DNA (dsDNA) genomes of 43,851 bp, 41,865 bp, and 44,262 bp, respectively. These are the first described bacteriophages with lytic activity against X. arboricola pv. juglandis that can be utilized as biocontrol agents.

  19. Properties of Brucella-phages lytic for non-smooth Brucella strains.

    Science.gov (United States)

    Corbel, M J

    1984-01-01

    A series of host-range mutants has been selected for brucella-phage R. Two of these mutants designated R/O and R/C have been used for typing purposes. Phage R/O is lytic for non-smooth strains of Brucella abortus and for B. ovis. It is genetically unstable however and produces mutants lytic for smooth B. obortus and B. suis. Phage R/C is lytic for non-smooth B. abortus and for B. ovis and B. canis. It is much more stable than phages R or R/O and shows little or no lytic activity on smooth Brucella strains. It has been effective in differentiating B. canis from B. suis in tests on a limited number of strains. In their properties, all of the brucella-phages of the R series resemble their parent phage.

  20. Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Dhananjay M Nawandar

    2015-10-01

    Full Text Available Epstein-Barr virus (EBV is a human herpesvirus associated with B-cell and epithelial cell malignancies. EBV lytically infects normal differentiated oral epithelial cells, where it causes a tongue lesion known as oral hairy leukoplakia (OHL in immunosuppressed patients. However, the cellular mechanism(s that enable EBV to establish exclusively lytic infection in normal differentiated oral epithelial cells are not currently understood. Here we show that a cellular transcription factor known to promote epithelial cell differentiation, KLF4, induces differentiation-dependent lytic EBV infection by binding to and activating the two EBV immediate-early gene (BZLF1 and BRLF1 promoters. We demonstrate that latently EBV-infected, telomerase-immortalized normal oral keratinocyte (NOKs cells undergo lytic viral reactivation confined to the more differentiated cell layers in organotypic raft culture. Furthermore, we show that endogenous KLF4 expression is required for efficient lytic viral reactivation in response to phorbol ester and sodium butyrate treatment in several different EBV-infected epithelial cell lines, and that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, is highly synergistic for inducing lytic EBV infection. We confirm that both KLF4 and BLIMP1 are expressed in differentiated, but not undifferentiated, epithelial cells in normal tongue tissue, and show that KLF4 and BLIMP1 are both expressed in a patient-derived OHL lesion. In contrast, KLF4 protein is not detectably expressed in B cells, where EBV normally enters latent infection, although KLF4 over-expression is sufficient to induce lytic EBV reactivation in Burkitt lymphoma cells. Thus, KLF4, together with BLIMP1, plays a critical role in mediating lytic EBV reactivation in epithelial cells.

  1. Enhancement of Lytic Activity by Leptin Is Independent From Lipid Rafts in Murine Primary Splenocytes.

    Science.gov (United States)

    Collin, Aurore; Noacco, Audrey; Talvas, Jérémie; Caldefie-Chézet, Florence; Vasson, Marie-Paule; Farges, Marie-Chantal

    2017-01-01

    Leptin, a pleiotropic adipokine, is known as a regulator of food intake, but it is also involved in inflammation, immunity, cell proliferation, and survival. Leptin receptor is integrated inside cholesterol-rich microdomains called lipid rafts, which, if disrupted or destroyed, could lead to a perturbation of lytic mechanism. Previous studies also reported that leptin could induce membrane remodeling. In this context, we studied the effect of membrane remodeling in lytic activity modulation induced by leptin. Thus, primary mouse splenocytes were incubated with methyl-β-cyclodextrin (β-MCD), a lipid rafts disrupting agent, cholesterol, a major component of cell membranes, or ursodeoxycholic acid (UDCA), a membrane stabilizer agent for 1 h. These treatments were followed by splenocyte incubation with leptin (absence, 10 and 100 ng/ml). Unlike β-MCD or cholesterol, UDCA was able to block leptin lytic induction. This result suggests that leptin increased the lytic activity of primary spleen cells against syngenic EO771 mammary cancer cells independently from lipid rafts but may involve membrane fluidity. Furthermore, natural killer cells were shown to be involved in the splenocyte lytic activity. To our knowledge it is the first publication in primary culture that provides the link between leptin lytic modulation and membrane remodeling. J. Cell. Physiol. 232: 101-109, 2017. © 2016 Wiley Periodicals, Inc.

  2. Insertion of Cecropin A and reconstitution of bacterial outer membrane protein FhuA variants in polymeric membranes

    OpenAIRE

    Muhammad, Noor

    2011-01-01

    Polymer based nanocompartments (polymersomes) have potential applications in synthetic biology (pathway engineering), medicine (drug release), and industrial biotechnology (chiral nanoreactors, multistep synthesis, bioconversions in non-aqueous environments, and selective product recovery). The aforementioned goals can be accomplished by polymer membrane functionalization through covalent bonding or inclusion of proteins/peptides, to obtain specific properties like recognition, catalytic acti...

  3. Discovery and industrial applications of lytic polysaccharide mono-oxygenases.

    Science.gov (United States)

    Johansen, Katja S

    2016-02-01

    The recent discovery of copper-dependent lytic polysaccharide mono-oxygenases (LPMOs) has opened up a vast area of research covering several fields of application. The biotech company Novozymes A/S holds patents on the use of these enzymes for the conversion of steam-pre-treated plant residues such as straw to free sugars. These patents predate the correct classification of LPMOs and the striking synergistic effect of fungal LPMOs when combined with canonical cellulases was discovered when fractions of fungal secretomes were evaluated in industrially relevant enzyme performance assays. Today, LPMOs are a central component in the Cellic CTec enzyme products which are used in several large-scale plants for the industrial production of lignocellulosic ethanol. LPMOs are characterized by an N-terminal histidine residue which, together with an internal histidine and a tyrosine residue, co-ordinates a single copper atom in a so-called histidine brace. The mechanism by which oxygen binds to the reduced copper atom has been reported and the general mechanism of copper-oxygen-mediated activation of carbon is being investigated in the light of these discoveries. LPMOs are widespread in both the fungal and the bacterial kingdoms, although the range of action of these enzymes remains to be elucidated. However, based on the high abundance of LPMOs expressed by microbes involved in the decomposition of organic matter, the importance of LPMOs in the natural carbon-cycle is predicted to be significant. In addition, it has been suggested that LPMOs play a role in the pathology of infectious diseases such as cholera and to thus be relevant in the field of medicine. © 2016 Authors; published by Portland Press Limited.

  4. Chromogranin A-derived peptides are involved in innate immunity.

    Science.gov (United States)

    Aslam, R; Atindehou, M; Lavaux, T; Haïkel, Y; Schneider, F; Metz-Boutigue, M-H

    2012-01-01

    New endogenous antimicrobial peptides (AMPs) derived from chromogranin A (CgA) are secreted by nervous, endocrine and immune cells during stress. They display antimicrobial activities by lytic effects at micromolar range using a pore-forming mechanism against Gram-positive bacteria, filamentous fungi and yeasts. These AMPs can also penetrate quickly into neutrophils (without lytic effects), where, similarly to "cell penetrating peptides", they interact with cytoplasmic calmodulin, and induce calcium influx via Store Operated Channels therefore triggering neutrophils activation. Staphylococcus aureus and Salmonella enteritis are bacteria responsible for severe infections. We investigated here the effects of S. aureus and S. enteritis bacterial proteases on CgA-derived peptides and evaluated their antimicrobial activities. We showed that the Glu-C protease produced by S. aureus V8 induces the loss of the AMPs antibacterial activities and produces new antifungal peptides. In addition, four antimicrobial CGA-derived peptides (chromofungin, procatestatin, human/bovine catestatin) are degraded when treated with bacterial supernatants from S. aureus and S. enteritis, whereas, cateslytin, the short active form of catestatin, resists to this degradation. Finally, we demonstrate that several antimicrobial CgA-derived peptides are able to act synergistically with antibiotics against bacteria and fungi indicating their roles in innate defense.

  5. Efficacy of lytic Staphylococcus aureus bacteriophage against multidrug-resistant Staphylococcus aureus in mice.

    Science.gov (United States)

    Oduor, Joseph Michael Ochieng'; Onkoba, Nyamongo; Maloba, Fredrick; Arodi, Washingtone Ouma; Nyachieo, Atunga

    2016-11-24

    The use of bacteriophages as an alternative treatment method against multidrug-resistant bacteria has not been explored in Kenya. This study sought to determine the efficacy of environmentally obtained lytic bacteriophage against multidrug-resistant Staphylococcus aureus (MDRSA) bacterium in mice. Staphylococcus aureus bacterium and S. aureus-specific lytic phage were isolated from sewage and wastewater collected within Nairobi County, Kenya. Thirty mice were randomly assigned into three groups: MDRSA infection group (n = 20), phage-infection group (n = 5), and non-infection group (n = 5). The MDRSA infection group was further subdivided into three groups: clindamycin treatment (8 mg/kg; n = 5), lytic phage treatment (108 PFU/mL (n = 5), and a combination treatment of clindamycin and lytic phage (n = 5). Treatments were done at either 24 or 72 hours post-infection (p.i), and data on efficacy, bacterial load, and animal physical health were collected. Treatment with phage was more effective (100%) than with clindamycin (62.25% at 24 hours p.i and 87.5% at 72 hours p.i.) or combination treatment (75% at 24 hours p.i. and 90% at 72 hours p.i.) (p aureus lytic bacteriophage has therapeutic potential against MDRSA bacterium in mice.

  6. TRIM5α Promotes Ubiquitination of Rta from Epstein–Barr Virus to Attenuate Lytic Progression

    Science.gov (United States)

    Huang, Hsiang-Hung; Chen, Chien-Sin; Wang, Wen-Hung; Hsu, Shih-Wei; Tsai, Hsiao-Han; Liu, Shih-Tung; Chang, Li-Kwan

    2017-01-01

    Replication and transcription activator (Rta), a key protein expressed by Epstein–Barr virus (EBV) during the immediate-early stage of the lytic cycle, is responsible for the activation of viral lytic genes. In this study, GST-pulldown and coimmunoprecipitation assays showed that Rta interacts in vitro and in vivo with TRIM5α, a host factor known to be involved in the restriction of retroviral infections. Confocal microscopy results revealed that Rta colocalizes with TRIM5α in the nucleus during lytic progression. The interaction involves 190 amino acids in the N-terminal of Rta and the RING domain in TRIM5α, and it was further found that TRIM5α acts as an E3 ubiquitin ligase to promote Rta ubiquitination. Overexpression of TRIM5α reduced the transactivating capabilities of Rta, while reducing TRIM5α expression enhanced EBV lytic protein expression and DNA replication. Taken together, these results point to a critical role for TRIM5α in attenuating EBV lytic progression through the targeting of Rta for ubiquitination, and suggest that the restrictive capabilities of TRIM5α may go beyond retroviral infections. PMID:28105027

  7. Inhibition of the Epstein-Barr virus lytic cycle by moronic acid.

    Science.gov (United States)

    Chang, Fang-Rong; Hsieh, Yi-Chung; Chang, Yung-Fu; Lee, Kuo-Hsiung; Wu, Yang-Chang; Chang, Li-Kwan

    2010-03-01

    Epstein-Barr virus (EBV) expresses two transcription factors, Rta and Zta, during the immediate-early stage of the lytic cycle to activate the transcription of viral lytic genes. Our immunoblotting and flow cytometry analyses find that moronic acid, found in galls of Rhus chinensis and Brazilian propolis, at 10microM inhibits the expression of Rta, Zta, and an EBV early protein, EA-D, after lytic induction with sodium butyrate. This study also finds that moronic acids inhibits the capacity of Rta to activate a promoter that contains an Rta-response element, indicating that moronic acid interferes with the function of Rta. On the other hand, moronic acid does not appear to influence with the transactivation function of Zta. Therefore, the lack of expression of Zta and EA-D after moronic acid treatment is attributable to the inhibition of the transactivation functions of Rta. Because the expression of Zta, EA-D and many EBV lytic genes depends on Rta, the treatment of P3HR1 cells with moronic acid substantially reduces the numbers of EBV particles produced by the cells after lytic induction. This study suggests that moronic acid is a new structural lead for anti-EBV drug development.

  8. The Lytic SA Phage Demonstrate Bactericidal Activity against Mastitis Causing Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Hamza Ameer

    2016-01-01

    Full Text Available Staphylococcus aureus is the major causative agent of mastitis among dairy animals as it causes intramammary gland infection. Due to antibiotic resistance and contamination of antibiotics in the milk of diseased animals; alternative therapeutic agents are required to cure mastitis. Lytic bacteriophages and their gene products can be potential therapeutic agents against bacteria as they are host specific and less harmful than antibiotics. In this study, Staphylococcus aureus were isolated from milk samples of the infected animals and identified biochemically. SA phage was isolated from sewage water showing lytic activity against Staphylococcus aureus isolates. The highest lytic activity of bacteriophages was observed at 37°C and pH 7, and the most suitable storage condition was at 4°C. SA phage efficiently reduced bacterial growth in the bacterial reduction assay. The characterization and bacterial growth reduction activity of the bacteriophages against Staphylococcus aureus signifies their underlying potential of phage therapy against mastitis.

  9. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase

    DEFF Research Database (Denmark)

    Paspaliari, Dafni Katerina; Loose, Jennifer S. M.; Larsen, Marianne Halberg

    2015-01-01

    B) and a multi-modular lytic polysaccharide monooxygenase (LmLPMO10). These enzymes have been related to virulence and their role in chitin metabolism is poorly understood. It is thus of interest to functionally characterize the individual enzymes in order to shed light on their roles in vivo. Our results......Chitinases and chitin-active lytic polysaccharide monooxygenases (LPMOs) are most commonly associated with chitin metabolism, but are also reported as virulence factors in pathogenic bacteria. Listeria monocytogenes, a well-known virulent bacterium, possesses two chitinases (ChiA and Chi...

  10. Undetectable bacterial resistance to phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88

    Science.gov (United States)

    The increase in antibiotic resistance world-wide revitalized the interest in the use of phage lysins to combat pathogenic bacteria. In this work, we tested for the emergence of resistant Staphylococcus aureus to any of three phage lytic proteins constructs. The investigated cell wall lytic enzymes w...

  11. Regional Variation in Lytic and Lysogenic Viral Infection in the Southern Ocean and Its Contribution to Biogeochemical Cycling

    NARCIS (Netherlands)

    Evans, C.; Brussaard, C.P.D.

    2012-01-01

    Lytic and lysogenic viral infection was investigated throughout the Southern Ocean at sites spanning the sub-Antarctic zone, the Antarctic Circumpolar Current, and an Antarctic continental sea. Higher lytic virus activity was recorded in the more productive sub-Antarctic zone than in the iron-limite

  12. Influence of heavy metals on biosynthesis, activity of lytic enzymes and growthstimulating factor of Streptomyces recifensis var. lyticus P-29

    Directory of Open Access Journals (Sweden)

    Т. P. Kilochok

    2005-02-01

    Full Text Available Influence of heavy metals on growth, biosynthesis, lytic action and growthstimulating activity enzymes complex of Streptomyces recifensis var. lyticus was studied. It was showed that salt of plumbum' has positive influence as on biosynthesis hydrolases (lytic endopeptidases, proteinases, amylases as well increase growthstimulating activity of preparation relatively the yeast

  13. Antimicrobial and immunomodulatory activities of PR-39 derived peptides.

    Directory of Open Access Journals (Sweden)

    Edwin J A Veldhuizen

    Full Text Available The porcine cathelicidin PR-39 is a host defence peptide that plays a pivotal role in the innate immune defence of the pig against infections. Besides direct antimicrobial activity, it is involved in immunomodulation, wound healing and several other biological processes. In this study, the antimicrobial- and immunomodulatory activity of PR-39, and N- and C-terminal derivatives of PR-39 were tested. PR-39 exhibited an unexpected broad antimicrobial spectrum including several Gram positive strains such as Bacillus globigii and Enterococcus faecalis. Of organisms tested, only Staphylococcus aureus was insensitive to PR-39. Truncation of PR-39 down to 15 (N-terminal amino acids did not lead to major loss of activity, while peptides corresponding to the C-terminal part of PR-39 were hampered in their antimicrobial activity. However, shorter peptides were all much more sensitive to inhibition by salt. Active peptides induced ATP leakage and loss of membrane potential in Bacillus globigii and Escherichia coli, indicating a lytic mechanism of action for these peptides. Finally, only the mature peptide was able to induce IL-8 production in porcine macrophages, but some shorter peptides also had an effect on TNF-α production showing differential regulation of cytokine induction by PR-39 derived peptides. None of the active peptides showed high cytotoxicity highlighting the potential of these peptides for use as an alternative to antibiotics.

  14. Antibacterial activity of a newly developed peptide-modified lysin against Acinetobacter baumannii and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hang eYang

    2015-12-01

    Full Text Available The global emergence of multidrug-resistant (MDR bacteria is a growing threat to public health worldwide. Natural bacteriophage lysins are promising alternatives in the treatment of infections caused by Gram-positive pathogens, but not Gram-negative ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial peptide was found able to break the barriers, and to kill Gram-negative pathogens. Herein, a new peptide-modified lysin (PlyA was constructed by fusing the cecropin A peptide residues 1–8 (KWKLFKKI with the OBPgp279 lysin and its antibacterial activity was studied. PlyA showed good and broad antibacterial activities against logarithmic phase A. baumannii and P. aeruginosa, but much reduced activities against the cells in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid could enhance the antibacterial activity of PlyA against stationary phase cells. Finally, no antibacterial activity of PlyA could be observed in some bio-matrices, such as culture media, milk, and sera. In conclusion, we reported here a novel peptide-modified lysin with significant antibacterial activity against both logarithmic (without OMPs and stationary phase (with OMPs A. baumannii and P. aeruginosa cells in buffer, but further optimization is needed to achieve broad activity in diverse bio-matrices.

  15. Cationic membrane-active peptides - anticancer and antifungal activity as well as penetration into human skin.

    Science.gov (United States)

    Do, Nhung; Weindl, Günther; Grohmann, Lisa; Salwiczek, Mario; Koksch, Beate; Korting, Hans Christian; Schäfer-Korting, Monika

    2014-05-01

    Cationic antimicrobial peptides are ancient natural broad-spectrum antibiotics, and several compounds also exhibit anticancer activity. However, most applications pertain to bacterial infections, and treatment for skin cancer is less frequently considered. The cytotoxicity of melittin, cecropin A, protegrin-1 and histatin 5 against squamous skin cancer cell lines and normal human keratinocytes was evaluated and compared to established drugs. The results show that melittin clearly outperforms 5-fluorouracil regarding antitumor activity. Importantly, combined melittin and 5-fluorouracil enhanced cytotoxic effects on cancer cells and reduced toxicity on normal keratinocytes. Additionally, minimum inhibitory concentrations indicate that melittin also shows superior activity against clinical and laboratory strains of Candida albicans compared to amphotericin B. To evaluate its potential for topical applications, human skin penetration of melittin was investigated ex vivo and compared to two non-toxic cell-penetrating peptides (CPPs), low molecular weight protamine (LMWP) and penetratin. The stratum corneum prevents penetration into viable epidermis over 6 h; however, the peptides gain access to the viable skin after 24 h. Inhibition of digestive enzymes during skin penetration significantly enhances the availability of intact peptide. In conclusion, melittin may represent an innovative agent for non-melanoma skin cancer and infectious skin diseases. In order to develop a drug candidate, skin absorption and proteolytic digestion by skin enzymes need to be addressed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Effectiveness of lytic bacteriophages in reducing E. coli O157:H7 populations introduced through cross-contamination on fresh cut lettuce

    Science.gov (United States)

    Previous research has shown that lytic bacteriophages (phages) can kill E. coli O157:H7 on produce surfaces. The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield) at 10^8 PFU/m...

  17. The Erwinia amylovora PhoPQ system is involved in resistance to antimicrobial peptide and suppresses gene expression of two novel type III secretion systems.

    Science.gov (United States)

    Nakka, Sridevi; Qi, Mingsheng; Zhao, Youfu

    2010-10-20

    The PhoPQ system is a pleiotropic two-component signal transduction system that controls many pathogenic properties in several mammalian and plant pathogens. Three different cues have been demonstrated to activate the PhoPQ system including a mild acidic pH, antimicrobial peptides, and low Mg(2+). In this study, our results showed that phoPQ mutants were more resistant to strong acidic conditions (pH 4.5 or 5) than that of the wild-type (WT) strain, suggesting that this system in Erwinia amylovora may negatively regulate acid resistance gene expression. Furthermore, the PhoPQ system negatively regulated gene expression of two novel type III secretion systems in E. amylovora. These results are in contrast to those reported for the PhoPQ system in Salmonella and Xanthomonas, where it positively regulates type III secretion system and acid resistance. In addition, survival of phoPQ mutants was about 10-fold lower than that of WT when treated with cecropin A at pH 5.5, suggesting that the PhoPQ system renders the pathogen more resistant to cecropin A.

  18. Complete Genome Sequence of a Lytic Siphoviridae Bacteriophage Infecting Several Serovars of Salmonella enterica

    Science.gov (United States)

    Paradiso, Rubina; Lombardi, Serena; Iodice, Maria Grazia; Riccardi, Marita Georgia; Orsini, Massimiliano; Bolletti Censi, Sergio; Galiero, Giorgio

    2016-01-01

    The bacteriophage 100268_sal2 was isolated from water buffalo feces in southern Italy, exhibiting lytic activity against several subspecies of Salmonella enterica. This bacteriophage belongs to the Siphoviridae family and has a 125,114-bp double-stranded DNA (ds-DNA) genome containing 188 coding sequences (CDSs). PMID:27688334

  19. Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication.

    Directory of Open Access Journals (Sweden)

    Giuseppe Balistreri

    2016-02-01

    Full Text Available Kaposi's sarcoma herpesvirus (KSHV causes Kaposi's sarcoma and certain lymphoproliferative malignancies. Latent infection is established in the majority of tumor cells, whereas lytic replication is reactivated in a small fraction of cells, which is important for both virus spread and disease progression. A siRNA screen for novel regulators of KSHV reactivation identified the E3 ubiquitin ligase MDM2 as a negative regulator of viral reactivation. Depletion of MDM2, a repressor of p53, favored efficient activation of the viral lytic transcription program and viral reactivation. During lytic replication cells activated a p53 response, accumulated DNA damage and arrested at G2-phase. Depletion of p21, a p53 target gene, restored cell cycle progression and thereby impaired the virus reactivation cascade delaying the onset of virus replication induced cytopathic effect. Herpesviruses are known to reactivate in response to different kinds of stress, and our study now highlights the molecular events in the stressed host cell that KSHV has evolved to utilize to ensure efficient viral lytic replication.

  20. The novel Shewanella putrefaciens-infecting bacteriophage Spp001: genome sequence and lytic enzymes.

    Science.gov (United States)

    Han, Feng; Li, Meng; Lin, Hong; Wang, Jingxue; Cao, Limin; Khan, Muhammad Naseem

    2014-06-01

    Shewanella putrefaciens has been identified as a specific spoilage organism commonly found in chilled fresh fish, which contributes to the spoilage of fish products. Limiting S. putrefaciens growth can extend the shelf-life of chilled fish. Endolysins, which are lytic enzymes produced by bacteriophages, have been considered an alternative to control bacterial growth, and have been useful in various applications, including food preservation. We report here, for the first time, the complete genome sequence of a novel phage Spp001, which lyses S. putrefaciens Sp225. The Spp001 genome comprises a 54,789-bp DNA molecule with 67 open reading frames and an average total G + C content of 49.42 %. In silico analysis revealed that the Spp001 open reading frames encode various putative functional proteins, including an endolysin (ORF 62); however, no sequence for genes encoding the holin polypeptides, which work in concert with endolysins, was identified. To examine further the lytic activity of Spp001, we analyzed the lytic enzyme-containing fraction from phages released at the end of the phage lytic cycle in S. putrefaciens, using diffusion and turbidimetric assays. The results show that the partially purified extract contained endolysin, as indicated by a high hydrolytic activity towards bacterial peptidoglycan decrease in the OD590 value by 0.160 in 15 min. The results will allow further investigation of the purification of natural Spp001 endolysin, the extension of Spp001 host range, and the applications of the phage-encoded enzymes.

  1. Crystal structure and mechanism of the lytic transglycosylase MltA from Escherichia coli

    NARCIS (Netherlands)

    van Straaten, Karin

    2006-01-01

    This thesis describes the determination and analysis of the 3D-structure of the lytic transglycosylase MltA from Escherichia coli by X-ray crystallography. This work aims to further increase our knowledge of the molecular details of the cleaving mechanism and the typical 1,6- anhydromuropeptide prod

  2. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase

    DEFF Research Database (Denmark)

    Lo Leggio, Leila; Simmons, Thomas J.; Poulsen, Jens-Christian Navarro

    2015-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are recently discovered enzymes that oxidatively deconstruct polysaccharides. LPMOs are fundamental in the effective utilization of these substrates by bacteria and fungi; moreover, the enzymes have significant industrial importance. We report here...... substrate to maltose by β-amylase. The detailed structure of the enzyme's active site yields insights into the mechanism of action of this important class of enzymes....

  3. Pain relief with percutaneous trochanteroplasty in a patient with bilateral trochanteric myelomatous lytic lesions.

    Science.gov (United States)

    Wahezi, Sayed E; Silva, Kyle; Najafi, Shervin

    2015-01-01

    Multiple myeloma is a hematologic malignancy associated with destructive bone loss. Lytic lesions, a hallmark of this cancer, can result in significant morbidity because of associated pain and structural osseous compromise. Osteoplasty has demonstrated efficacy in the treatment of myelomatous pain within the axial skeleton; however, there is limited evidence supporting the utility of osteoplasty to treat extra-spinal lesions. We describe a 67 year-old woman with stable IgA lambda multiple myeloma with sentinel bilateral greater trochanteric lytic lesions that was referred to our interventional pain management clinic for evaluation of bilateral lateral hip pain. Conservative treatment options including physical therapy, non-steroidal anti-inflammatory drugs (NSAIDs), oral opiates, and local corticosteroid injections to bilateral trochanteric bursae failed to offer pain relief. The patient underwent minimally invasive percutaneous trochanteroplasty with concomitant core biopsy of her bilateral trochanteric lytic lesions. The intended goals of this novel procedure were to determine the cause of the suspected lytic lesions, provide pain relief, and offer structural stability by safely implanting bone cement as part of a fracture prevention strategy. At 12 month follow-up, the patient's pain improved by 70% and she no longer required the use of pain medication. The patient also displayed a significant improvement in her day-to-day functioning and quality of life.

  4. The importance of lytic and nonlytic immune responses in viral infections

    DEFF Research Database (Denmark)

    Wodarz, Dominik; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2002-01-01

    Antiviral immune effector mechanisms can be divided broadly into lytic and nonlytic components. We use mathematical models to investigate the fundamental question of which type of response is required to combat different types of viral infection. According to our model, the relative roles...

  5. Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication.

    Science.gov (United States)

    Balistreri, Giuseppe; Viiliäinen, Johanna; Turunen, Mikko; Diaz, Raquel; Lyly, Lauri; Pekkonen, Pirita; Rantala, Juha; Ojala, Krista; Sarek, Grzegorz; Teesalu, Mari; Denisova, Oxana; Peltonen, Karita; Julkunen, Ilkka; Varjosalo, Markku; Kainov, Denis; Kallioniemi, Olli; Laiho, Marikki; Taipale, Jussi; Hautaniemi, Sampsa; Ojala, Päivi M

    2016-02-01

    Kaposi's sarcoma herpesvirus (KSHV) causes Kaposi's sarcoma and certain lymphoproliferative malignancies. Latent infection is established in the majority of tumor cells, whereas lytic replication is reactivated in a small fraction of cells, which is important for both virus spread and disease progression. A siRNA screen for novel regulators of KSHV reactivation identified the E3 ubiquitin ligase MDM2 as a negative regulator of viral reactivation. Depletion of MDM2, a repressor of p53, favored efficient activation of the viral lytic transcription program and viral reactivation. During lytic replication cells activated a p53 response, accumulated DNA damage and arrested at G2-phase. Depletion of p21, a p53 target gene, restored cell cycle progression and thereby impaired the virus reactivation cascade delaying the onset of virus replication induced cytopathic effect. Herpesviruses are known to reactivate in response to different kinds of stress, and our study now highlights the molecular events in the stressed host cell that KSHV has evolved to utilize to ensure efficient viral lytic replication.

  6. Crystal structure and mechanism of the lytic transglycosylase MltA from Escherichia coli

    NARCIS (Netherlands)

    van Straaten, Karin

    2006-01-01

    This thesis describes the determination and analysis of the 3D-structure of the lytic transglycosylase MltA from Escherichia coli by X-ray crystallography. This work aims to further increase our knowledge of the molecular details of the cleaving mechanism and the typical 1,6- anhydromuropeptide prod

  7. Characterization of the lytic-lysogenic switch of the lactococcal bacteriophage Tuc2009

    NARCIS (Netherlands)

    Kenny, JG; Leach, S; de la Hoz, AB; Venema, G; Kok, J; Fitzgerald, GF; Nauta, A; Alonso, JC; van Sinderen, D; Kenny, John G.; Hoz, Ana B. de la; Fitzgerald, Gerald F.; Alonso, Juan C.

    2006-01-01

    Tuc2009 is a temperate bacteriophage of Lactococcus lactis subsp. cremoris UC509 which encodes a CI- and Cro-type lysogenic-lytic switch region. A helix-swap of the 0 helices of the closely related Cl-type proteins from the lactococcal phages r1t and Tuc2009 revealed the crucial elements involved in

  8. STUDIES ON THE BACTERIOPHAGE OF D'HERELLE : I. IS THE LYTIC PRINCIPLE VOLATILE?

    Science.gov (United States)

    Bronfenbrenner, J J; Korb, C

    1925-01-01

    The lytic principle concerned in the phenomenon of transmissible lysis is not volatile. The results which have been taken to indicate volatility are, in our opinion, to be attributed to the transfer to the distillate of minute droplets of the original active filtrate.

  9. Adsorption mechanism of an antimicrobial peptide on carbonaceous surfaces: A molecular dynamics study.

    Science.gov (United States)

    Roccatano, Danilo; Sarukhanyan, Edita; Zangi, Ronen

    2017-02-21

    Peptides are versatile molecules with applications spanning from biotechnology to nanomedicine. They exhibit a good capability to unbundle carbon nanotubes (CNT) by improving their solubility in water. Furthermore, they are a powerful drug delivery system since they can easily be uptaken by living cells, and their high surface-to-volume ratio facilitates the adsorption of molecules of different natures. Therefore, understanding the interaction mechanism between peptides and CNT is important for designing novel therapeutical agents. In this paper, the mechanisms of the adsorption of antimicrobial peptide Cecropin A-Magainin 2 (CA-MA) on a graphene nanosheet (GNS) and on an ultra-short single-walled CNT are characterized using molecular dynamics simulations. The results show that the peptide coats both GNS and CNT surfaces through preferential contacts with aromatic side chains. The peptide packs compactly on the carbon surfaces where the polar and functionalizable Lys side chains protrude into the bulk solvent. It is shown that the adsorption is strongly correlated to the loss of the peptide helical structure. In the case of the CNT, the outer surface is significantly more accessible for adsorption. Nevertheless when the outer surface is already covered by other peptides, a spontaneous diffusion, via the amidated C-terminus into the interior of the CNT, was observed within 150 ns of simulation time. We found that this spontaneous insertion into the CNT interior can be controlled by the polarity of the entrance rim. For the positively charged CA-MA peptide studied, hydrogenated and fluorinated rims, respectively, hinder and promote the insertion.

  10. Adsorption mechanism of an antimicrobial peptide on carbonaceous surfaces: A molecular dynamics study

    Science.gov (United States)

    Roccatano, Danilo; Sarukhanyan, Edita; Zangi, Ronen

    2017-02-01

    Peptides are versatile molecules with applications spanning from biotechnology to nanomedicine. They exhibit a good capability to unbundle carbon nanotubes (CNT) by improving their solubility in water. Furthermore, they are a powerful drug delivery system since they can easily be uptaken by living cells, and their high surface-to-volume ratio facilitates the adsorption of molecules of different natures. Therefore, understanding the interaction mechanism between peptides and CNT is important for designing novel therapeutical agents. In this paper, the mechanisms of the adsorption of antimicrobial peptide Cecropin A-Magainin 2 (CA-MA) on a graphene nanosheet (GNS) and on an ultra-short single-walled CNT are characterized using molecular dynamics simulations. The results show that the peptide coats both GNS and CNT surfaces through preferential contacts with aromatic side chains. The peptide packs compactly on the carbon surfaces where the polar and functionalizable Lys side chains protrude into the bulk solvent. It is shown that the adsorption is strongly correlated to the loss of the peptide helical structure. In the case of the CNT, the outer surface is significantly more accessible for adsorption. Nevertheless when the outer surface is already covered by other peptides, a spontaneous diffusion, via the amidated C-terminus into the interior of the CNT, was observed within 150 ns of simulation time. We found that this spontaneous insertion into the CNT interior can be controlled by the polarity of the entrance rim. For the positively charged CA-MA peptide studied, hydrogenated and fluorinated rims, respectively, hinder and promote the insertion.

  11. Screening, Expression, Purification and Functional Characterization of Novel Antimicrobial Peptide Genes from Hermetia illucens (L.)

    Science.gov (United States)

    Elhag, Osama; Zhou, Dingzhong; Song, Qi; Soomro, Abdul Aziz; Cai, Minmin; Zheng, Longyu; Yu, Ziniu; Zhang, Jibin

    2017-01-01

    Antimicrobial peptides from a wide spectrum of insects possess potent microbicidal properties against microbial-related diseases. In this study, seven new gene fragments of three types of antimicrobial peptides were obtained from Hermetia illucens (L), and were named cecropinZ1, sarcotoxin1, sarcotoxin (2a), sarcotoxin (2b), sarcotoxin3, stomoxynZH1, and stomoxynZH1(a). Among these genes, a 189-basepair gene (stomoxynZH1) was cloned into the pET32a expression vector and expressed in the Escherichia coli as a fusion protein with thioredoxin. Results show that Trx-stomoxynZH1 exhibits diverse inhibitory activity on various pathogens, including Gram-positive bacterium Staphylococcus aureus, Gram-negative bacterium Escherichia coli, fungus Rhizoctonia solani Khün (rice)-10, and fungus Sclerotinia sclerotiorum (Lib.) de Bary-14. The minimum inhibitory concentration of Trx-stomoxynZH1 is higher against Gram-positive bacteria than against Gram-negative bacteria but similar between the fungal strains. These results indicate that H. illucens (L.) could provide a rich source for the discovery of novel antimicrobial peptides. Importantly, stomoxynZH1 displays a potential benefit in controlling antibiotic-resistant pathogens. PMID:28056070

  12. Functional Elucidation of Nemopilema nomurai and Cyanea nozakii Nematocyst Venoms’ Lytic Activity Using Mass Spectrometry and Zymography

    Directory of Open Access Journals (Sweden)

    Yang Yue

    2017-01-01

    Full Text Available Background: Medusozoans utilize explosively discharging penetrant nematocysts to inject venom into prey. These venoms are composed of highly complex proteins and peptides with extensive bioactivities, as observed in vitro. Diverse enzymatic toxins have been putatively identified in the venom of jellyfish, Nemopilema nomurai and Cyanea nozakii, through examination of their proteomes and transcriptomes. However, functional examination of putative enzymatic components identified in proteomic approaches to elucidate potential bioactivities is critically needed. Methods: In this study, enzymatic toxins were functionally identified using a combined approach consisting of in gel zymography and liquid chromatography tandem mass spectrometry (LC-MS/MS. The potential roles of metalloproteinases and lipases in hemolytic activity were explored using specific inhibitors. Results: Zymography indicated that nematocyst venom possessed protease-, lipase- and hyaluronidase-class activities. Further, proteomic approaches using LC-MS/MS indicated sequence homology of proteolytic bands observed in zymography to extant zinc metalloproteinase-disintegrins and astacin metalloproteinases. Moreover, pre-incubation of the metalloproteinase inhibitor batimastat with N. nomurai nematocyst venom resulted in an approximate 62% reduction of hemolysis compared to venom exposed sheep erythrocytes, suggesting that metalloproteinases contribute to hemolytic activity. Additionally, species within the molecular mass range of 14–18 kDa exhibited both egg yolk and erythrocyte lytic activities in gel overlay assays. Conclusion: For the first time, our findings demonstrate the contribution of jellyfish venom metalloproteinase and suggest the involvement of lipase species to hemolytic activity. Investigations of this relationship will facilitate a better understanding of the constituents and toxicity of jellyfish venom.

  13. A comparative study on the activity of fungal lytic polysaccharide monooxygenases for the depolymerization of cellulose in soybean spent flakes

    DEFF Research Database (Denmark)

    Pierce, Brian; Wittrup Agger, Jane; Zhang, Zhenghong

    2017-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes capable of the oxidative breakdown of polysaccharides. They are of industrial interest due to their ability to enhance the enzymatic depolymerization of recalcitrant substrates by glycoside hydrolases. In this paper, twenty-...

  14. Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification.

    Science.gov (United States)

    Piers, K L; Brown, M H; Hancock, R E

    1994-10-01

    Antimicrobial cationic peptides have been discovered in many different organisms and often possess a broad range of activity. In this study, we investigated the mechanisms of actions of melittin and two synthetic peptides, CEME (a cecropin-melittin hybrid) and CEMA, against gram-negative bacteria. CEMA was produced by recombinant DNA procedures and is an analog of CEME with a modified C terminus resulting in two additional positive charges. All three peptides showed good antimicrobial activity against four different gram-negative bacteria, but only CEMA was able to somewhat augment the activity of some conventional antibiotics in synergy studies. Studies using the bacteria Pseudomonas aeruginosa and Enterobacter cloacae showed that the peptides all possessed the ability to permeabilize bacterial outer membranes to the hydrophobic fluorophor 1-N-phenylnaphthylamine and the protein lysozyme, with CEMA being the most active. CEMA also had the strongest relative binding affinity for bacterial endotoxin (lipopolysaccharide). These data collectively indicated that these peptides all cross the outer membrane by the self-promoted uptake pathway and that CEMA is the peptide most effective at accessing this pathway.

  15. Lytic and lysogenic infection of diverse Escherichia coli and Shigella strains with a verocytotoxigenic bacteriophage.

    Science.gov (United States)

    James, C E; Stanley, K N; Allison, H E; Flint, H J; Stewart, C S; Sharp, R J; Saunders, J R; McCarthy, A J

    2001-09-01

    A verocytotoxigenic bacteriophage isolated from a strain of enterohemorrhagic Escherichia coli O157, into which a kanamycin resistance gene (aph3) had been inserted to inactivate the verocytotoxin gene (vt2), was used to infect Enterobacteriaceae strains. A number of Shigella and E. coli strains were susceptible to lysogenic infection, and a smooth E. coli isolate (O107) was also susceptible to lytic infection. The lysogenized strains included different smooth E. coli serotypes of both human and animal origin, indicating that this bacteriophage has a substantial capacity to disseminate verocytotoxin genes. A novel indirect plaque assay utilizing an E. coli recA441 mutant in which phage-infected cells can enter only the lytic cycle, enabling detection of all infective phage, was developed.

  16. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase.

    Science.gov (United States)

    O'Dell, William B; Agarwal, Pratul K; Meilleur, Flora

    2017-01-16

    Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. We have determined high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed "pre-bound" molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygen activation. These results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme-substrate complex. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Participation of the lytic replicon in bacteriophage P1 plasmid maintenance.

    OpenAIRE

    1989-01-01

    P1 bacteriophage carries at least two replicons: a plasmid replicon and a viral lytic replicon. Since the isolated plasmid replicon can maintain itself stably at the low copy number characteristic of intact P1 prophage, it has been assumed that this replicon is responsible for driving prophage replication. We provide evidence that when replication from the plasmid replicon is prevented, prophage replication continues, albeit at a reduced rate. The residual plasmid replication is due to incomp...

  18. Involvement of Noxa in mediating cellular ER stress responses to lytic virus infection

    OpenAIRE

    2011-01-01

    Noxa is a Bcl-2 homology domain-containing pro-apoptotic mitochondrial protein. Noxa mRNA and protein expression are upregulated by dsRNA or virus, and ectopic Noxa expression enhances cellular sensitivity to virus or dsRNA-induced apoptosis. Here we demonstrate that Noxa null baby mouse kidney (BMK) cells are deficient in normal cytopathic response to lytic viruses, and that reconstitution of the knockout cells with wild type Noxa restored normal cytopathic responses. Noxa regulation by viru...

  19. Regulation of the Spore Cortex Lytic Enzyme SleB in Bacillus anthracis

    OpenAIRE

    2014-01-01

    Bacillus anthracis is the causative agent of the disease anthrax and poses a threat due to its potential to be used as a biological weapon. The spore form of this bacterium is an extremely resistant structure, making spore decontamination exceptionally challenging. During spore germination, nutrient germinants interact with Ger receptors, triggering a cascade of events. A crucial event in this process is degradation of the cortex peptidoglycan by germination-specific lytic enzymes (GSLEs),...

  20. Bioactive Peptides

    Directory of Open Access Journals (Sweden)

    Eric Banan-Mwine Daliri

    2017-04-01

    Full Text Available The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  1. Bioactive Peptides.

    Science.gov (United States)

    Daliri, Eric Banan-Mwine; Oh, Deog H; Lee, Byong H

    2017-04-26

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  2. Murine gamma-herpesvirus 68 hijacks MAVS and IKKbeta to initiate lytic replication.

    Directory of Open Access Journals (Sweden)

    Xiaonan Dong

    2010-07-01

    Full Text Available Upon viral infection, the mitochondrial antiviral signaling (MAVS-IKKbeta pathway is activated to restrict viral replication. Manipulation of immune signaling events by pathogens has been an outstanding theme of host-pathogen interaction. Here we report that the loss of MAVS or IKKbeta impaired the lytic replication of gamma-herpesvirus 68 (gammaHV68, a model herpesvirus for human Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. gammaHV68 infection activated IKKbeta in a MAVS-dependent manner; however, IKKbeta phosphorylated and promoted the transcriptional activation of the gammaHV68 replication and transcription activator (RTA. Mutational analyses identified IKKbeta phosphorylation sites, through which RTA-mediated transcription was increased by IKKbeta, within the transactivation domain of RTA. Moreover, the lytic replication of recombinant gammaHV68 carrying mutations within the IKKbeta phosphorylation sites was greatly impaired. These findings support the conclusion that gammaHV68 hijacks the antiviral MAVS-IKKbeta pathway to promote viral transcription and lytic infection, representing an example whereby viral replication is coupled to host immune activation.

  3. Diversity of phage infection types and associated terminology: the problem with 'Lytic or lysogenic'.

    Science.gov (United States)

    Hobbs, Zack; Abedon, Stephen T

    2016-04-01

    Bacteriophages, or phages, are viruses of members of domain Bacteria. These viruses play numerous roles in shaping the diversity of microbial communities, with impact differing depending on what infection strategies specific phages employ. From an applied perspective, these especially are communities containing undesired or pathogenic bacteria that can be modified through phage-mediated bacterial biocontrol, that is, through phage therapy. Here we seek to categorize phages in terms of their infection strategies as well as review or suggest more descriptive, accurate or distinguishing terminology. Categories can be differentiated in terms of (1) whether or not virion release occurs (productive infections versus lysogeny, pseudolysogeny and/or the phage carrier state), (2) the means of virion release (lytic versus chronic release) and (3) the degree to which phages are genetically equipped to display lysogenic cycles (temperate versus non-temperate phages). We address in particular the use or overuse of what can be a somewhat equivocal phrase, 'Lytic or lysogenic', especially when employed as a means of distinguishing among phages types. We suggest that the implied dichotomy is inconsistent with both modern as well as historical understanding of phage biology. We consider, therefore, less ambiguous terminology for distinguishing between 'Lytic' versus 'Lysogenic' phage types.

  4. KSHV Targeted Therapy: An Update on Inhibitors of Viral Lytic Replication

    Directory of Open Access Journals (Sweden)

    Natacha Coen

    2014-11-01

    Full Text Available Kaposi’s sarcoma-associated herpesvirus (KSHV is the causative agent of Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman’s disease. Since the discovery of KSHV 20 years ago, there is still no standard treatment and the management of virus-associated malignancies remains toxic and incompletely efficacious. As the majority of tumor cells are latently infected with KSHV, currently marketed antivirals that target the virus lytic cycle have shown inconsistent results in clinic. Nevertheless, lytic replication plays a major role in disease progression and virus dissemination. Case reports and retrospective studies have pointed out the benefit of antiviral therapy in the treatment and prevention of KSHV-associated diseases. As a consequence, potent and selective antivirals are needed. This review focuses on the anti-KSHV activity, mode of action and current status of antiviral drugs targeting KSHV lytic cycle. Among these drugs, different subclasses of viral DNA polymerase inhibitors and compounds that do not target the viral DNA polymerase are being discussed. We also cover molecules that target cellular kinases, as well as the potential of new drug targets and animal models for antiviral testing.

  5. Host transcript accumulation during lytic KSHV infection reveals several classes of host responses.

    Directory of Open Access Journals (Sweden)

    Sanjay Chandriani

    Full Text Available Lytic infection by Kaposi's sarcoma-associated herpesvirus (KSHV is associated with an extensive shutoff of host gene expression, mediated chiefly by accelerated mRNA turnover due to expression of the viral SOX protein. We have previously identified a small number of host mRNAs that can escape SOX-mediated degradation. Here we present a detailed, transcriptome-wide analysis of host shutoff, with careful microarray normalization to allow rigorous determination of the magnitude and extent of transcript loss. We find that the extent of transcript reduction represents a continuum of susceptibilities of transcripts to virus-mediated shutoff. Our results affirm that the levels of over 75% of host transcripts are substantially reduced during lytic infection, but also show that another approximately 20% of cellular mRNAs declines only slightly (less than 2-fold during the course of infection. Approximately 2% of examined cellular genes are strongly upregulated during lytic infection, most likely due to transcriptional induction of mRNAs that display intrinsic SOX-resistance.

  6. Isolation and characterization of lytic phages TSE1-3 against Enterobacter cloacae

    Directory of Open Access Journals (Sweden)

    Khawaja Komal Ameer

    2016-01-01

    Full Text Available The emergence of antibiotic resistant bacterial pathogens is becoming a major challenge for patient care. The utilization of alternative therapies for infectious diseases other than antibiotics is an urgent need of today medical practice. The utilization of lytic bacteriophages and their gene products as therapeutic agents against antibiotic resistant bacteria is one of the convincing alternative approaches. Here we present the isolation and characterization of three lytic bacteriophages TSE1-3 against Enterobacter cloacae from sewage effluent. The isolates maintained antibacterial activity for 10 hours of incubation followed by the development of phage resistance. Their stability at different temperatures and pH, established their possible application in phage therapy. The highest activity of the phages was observed at 37°C and pH 7.0, while they gave lytic activity up to 60°C. The latent period of all the TSE phages was 20 minutes, while the burst size was 360 for TSE1, 270 for TSE2 and 311 for TSE3. The phages were harboring double-stranded DNA larger than 12kb in size. Further research into the phages genome and proteins, animal experiments, delivery parameters and clinical trials may lead to their utilization in phage therapy.

  7. An alpha-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression.

    Science.gov (United States)

    Scott, M G; Rosenberger, C M; Gold, M R; Finlay, B B; Hancock, R E

    2000-09-15

    Certain cationic antimicrobial peptides block the binding of LPS to LPS-binding protein and reduce the ability of LPS to induce the production of inflammatory mediators by macrophages. To gain a more complete understanding of how LPS activates macrophages and how cationic peptides influence this process, we have used gene array technology to profile gene expression patterns in macrophages treated with LPS in the presence or the absence of the insect-derived cationic antimicrobial peptide CEMA (cecropin-melittin hybrid). We found that CEMA selectively blocked LPS-induced gene expression in the RAW 264.7 macrophage cell line. The ability of LPS to induce the expression of >40 genes was strongly inhibited by CEMA, while LPS-induced expression of another 16 genes was relatively unaffected. In addition, CEMA itself induced the expression of a distinct set of 35 genes, including genes involved in cell adhesion and apoptosis. Thus, CEMA, a synthetic alpha-helical peptide, selectively modulates the transcriptional response of macrophages to LPS and can alter gene expression in macrophages.

  8. Non-Membrane Permeabilizing Modes of Action of Antimicrobial Peptides on Bacteria.

    Science.gov (United States)

    Scocchi, Marco; Mardirossian, Mario; Runti, Giulia; Benincasa, Monica

    2016-01-01

    Antimicrobial peptides (AMPs) are a large class of innate immunity effectors with a remarkable capacity to inactivate microorganisms. Their ability to kill bacteria by membranolytic effects has been well established. However, a lot of evidence points to alternative, non-lytic modes of action for a number of AMPs, which operate through interactions with specific molecular targets. It has been reported that non-membrane-permeabilizing AMPs can bind to and inhibit DNA, RNA or protein synthesis processes, inactivate essential intracellular enzymes, or affect membrane septum formation and cell wall synthesis. This minireview summarizes recent findings on these alternative, non-lytic modes of antimicrobial action with an emphasis to the experimental approaches used to clarify each step of their intracellular action, i.e. the cell penetration mechanism, intracellular localization and molecular mechanisms of antibacterial action. Despite the fact that such data exists for a large number of peptides, our analysis indicates that only for a small number of AMPs sufficient data have been collected to support a mode of action with an authentic and substantial contribution by intracellular targeting. In most cases, peptides with non-lytic features have not been thoroughly analyzed, or only a single aspect of their mode of action has been taken into consideration and therefore their mechanism of action can only be hypothesized. A more detailed knowledge of this class of AMPs would be important in the design of novel antibacterial agents against unexploited targets, endowed with the capacity to penetrate into pathogen cells and kill them from within.

  9. Comparison of the influence of humidity and D-mannitol on the organization of tetraethylene glycol-terminated self-assembled monolayers and immobilized antimicrobial peptides.

    Science.gov (United States)

    Goel, Mohit; Marsh, E Neil G; Chen, Zhan; Abbott, Nicholas L

    2014-06-24

    We report the use of polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) to characterize the effects of relative humidity (RH) and d-mannitol on the conformations of tetraethylene glycol (EG4)-terminated self-assembled monolayers (SAMs) and immobilized antimicrobial peptides (Cecropin P1 and a hybrid of Cecropin A (1-8) and Melittin (1-18)). These results are used to assess the extent to which d-mannitol can substitute for water in promoting conformational states of the SAMs and oligopeptides similar to those induced by hydration. Our measurements reveal a red shift of the COC asymmetric stretching vibration of the EG4-terminated SAMs with increasing humidity, consistent with a transition from a mixed all-trans/helical (7/2 helix) conformation at 0% RH to a predominantly helical conformation at 90% RH. Significantly, under dry conditions, a thin (2 nm in thickness) overlayer of d-mannitol generated the COC spectroscopic signature of the EG4-terminated SAM measured at high humidity. Comparisons of the effects of humidity and d-mannitol on the secondary structure of the two oligopeptides also revealed both to cause the amide I peak positions, which were measured in dry air (and without d-mannitol) to correspond to α-helical conformations, to undergo red-shifts. The magnitudes of the red-shifts, however, were more pronounced for dry d-mannitol than for high RH, with Cecropin P1 and the hybrid peptide exhibiting amide I peak positions under d-mannitol consistent with bulk aqueous solution secondary structures (random and β-sheet, respectively). These results are discussed in the context of prior reports of the tendency of d-mannitol to form glassy states in the absence of water. Overall, the results presented in this paper support the hypothesis that d-mannitol can substitute, in at least some ways, for the influence of water on the conformational states of biologically relevant molecules at interfaces. The results provide guidance for the

  10. Peptide identification

    Science.gov (United States)

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  11. 日粮中添加天蚕素抗菌肽对母猪繁殖性能的影响%Effect Cecropin on Reproductive Performance of Sows

    Institute of Scientific and Technical Information of China (English)

    李波; 杨利; 易学武; 谯仕彦

    2011-01-01

    为探讨日粮中添加天蚕素抗菌肽对母猪生产性能的影响,试验选取32头二胎经产母猪,采用单因子完全随机设计,分为试验组和对照组,试验组从母猪分娩前30 d到产后21 d添加400 kg/mg天蚕素抗菌肽,对照组按猪场正常药物保健程序进行(母猪产前产后在饲料中添加阿莫西林400 kg/mg和支原净300 kg/mg).结果表明,对照组的活仔率、健仔率均极显著低于试验组(P0.05);试验组的腹泻率显著低于对照组(P<0.05).%For discuss the effect of cecropin on reproduction performance of sows, to choose 32 sows of diplo-fetus multiparity, allotted mon-factor complete randomly design, to divide the experiment group and control group, the control group to add 400 ppm cecropin form ante parturn 30 d to postpartum 21 d, the control group was used normal meddicine heath protection process (add Amoxil 400 kg/mg and Zhiyuanjing 300 kg/mg from antepartum to postpartum of sows). The results indicated that the survival pigline rate and healthy pigline rate of control group were very significant lower than experiment group(P <0. 01). The born weigh in 21 d, the weight of end 21 d, daily gain and survival rate of experiment group were higher than control group(P>0.05), and the diarrhoea rate was significant lower than control group(P<0.05).

  12. How Membrane-Active Peptides Get into Lipid Membranes.

    Science.gov (United States)

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular

  13. Noncanonical microRNAs and endogenous siRNAs in lytic infection of murine gammaherpesvirus.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available MicroRNA (miRNA and endogenous small interfering RNA (endo-siRNA are two essential classes of small noncoding RNAs (sncRNAs in eukaryotes. The class of miRNA is diverse and there exist noncanonical miRNAs that bypass the canonical miRNA biogenesis pathway. In order to identify noncanonical miRNAs and endo-siRNAs responding to virus infection and study their potential function, we sequenced small-RNA species from cells lytically infected with murine gammaherpesvirus 68 (MHV68. In addition to three novel canonical miRNAs in mouse, two antisense miRNAs in virus and 25 novel noncanonical miRNAs, including miRNAs derived from transfer RNAs, small nucleolar RNAs and introns, in the host were identified. These noncanonical miRNAs exhibited features distinct from that of canonical miRNAs in lengths of hairpins, base pairings and first nucleotide preference. Many of the novel miRNAs are conserved in mammals. Besides several known murine endo-siRNAs detected by the sequencing profiling, a novel locus in the mouse genome was identified to produce endo-siRNAs. This novel endo-siRNA locus is comprised of two tandem inverted B4 short interspersed nuclear elements (SINEs. Unexpectedly, the SINE-derived endo-siRNAs were found in a variety of sequencing data and virus-infected cells. Moreover, a murine miRNA was up-regulated more than 35 fold in infected than in mock-treated cells. The putative targets of the viral and the up-regulated murine miRNAs were potentially involved in processes of gene transcription and protein phosphorylation, and localized to membranes, suggesting their potential role in manipulating the host basal immune system during lytic infection. Our results extended the number of noncanonical miRNAs in mammals and shed new light on their potential functions of lytic infection of MHV68.

  14. Induction of Epstein-Barr Virus Lytic Replication by Recombinant Adenoviruses Expressing the Zebra Gene with EBV Specific Promoters

    Institute of Scientific and Technical Information of China (English)

    Lu CHEN; Juan YIN; Yi CHEN; Jiang ZHONG

    2005-01-01

    The latent Epstein-Barr virus (EBV) is found in the cells of many tumors. For example, EBV is detectable in almost all cases, and in almost all tumor cells, of non-keratinizing nasopharyngeal carcinoma.Activating the latent virus, which will result in its lytic replication and the death of tumor cells, is a potential approach for the treatment of EBV-associated cancers. In this study, three recombinant adenoviruses were constructed to express the Zebra gene, an EBV gene responsible for switching from the latent state to lytic replication. EBV-specific promoters were used in order to limit Zebra expression in EBV-positive cells, and reduce the potential side effects. The EBV promoters used were Cp, Zp and a dual promoter combining both promoters, CpZp. The Zebra protein was detected in HEK293 cells as well as the EBV-positive D98-HR1 cells infected with recombinant viruses. An EBV lytic replication early antigen, EA-D, was also detected in infected D98-HR1, implying the initiation of lytic replication. In the cell viability assay, Zebra-expressing adenoviruses had little effect on EBV-negative HeLa cells, while significantly reducing the cell viability and proliferation of D98-HR1 cells. The results indicate that EBV virus promoters can be used in adenovirus vectors to express the Zebra gene and induce EBV lytic replication in D98-HR1 cells.

  15. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase.

    Science.gov (United States)

    Lo Leggio, Leila; Simmons, Thomas J; Poulsen, Jens-Christian N; Frandsen, Kristian E H; Hemsworth, Glyn R; Stringer, Mary A; von Freiesleben, Pernille; Tovborg, Morten; Johansen, Katja S; De Maria, Leonardo; Harris, Paul V; Soong, Chee-Leong; Dupree, Paul; Tryfona, Theodora; Lenfant, Nicolas; Henrissat, Bernard; Davies, Gideon J; Walton, Paul H

    2015-01-22

    Lytic polysaccharide monooxygenases (LPMOs) are recently discovered enzymes that oxidatively deconstruct polysaccharides. LPMOs are fundamental in the effective utilization of these substrates by bacteria and fungi; moreover, the enzymes have significant industrial importance. We report here the activity, spectroscopy and three-dimensional structure of a starch-active LPMO, a representative of the new CAZy AA13 family. We demonstrate that these enzymes generate aldonic acid-terminated malto-oligosaccharides from retrograded starch and boost significantly the conversion of this recalcitrant substrate to maltose by β-amylase. The detailed structure of the enzyme's active site yields insights into the mechanism of action of this important class of enzymes.

  16. Regulation of latency to lytic life cycle:multiple tricks by KSHV RTA

    Institute of Scientific and Technical Information of China (English)

    Jiemin Wong

    2010-01-01

    @@ Higher Education Press and Springer-Verlag Berlin Heidelberg 2010The herpesviruses are large enveloped DNA viruses that infect a wide spectrum hosts including human being. A key characteristic of all herpesviruses is their ability to establish life-time latency within the infected host and to periodically reactivate and enter the iytic replication to produce infectious virus progeny. During latency the 120-300 kb double-stranded DNA genomes of these viruses are maintained as multiple copies of circular episomes within the nuclei of the host cells. Lytic replication is marked by an increase in viral gene expression and the production of infectious virus progeny.

  17. Percutaneous aspiration biopsy in cervical spine lytic lesions. Indications and technique

    Energy Technology Data Exchange (ETDEWEB)

    Tampieri, D.; Weill, A.; Melanson, D.; Ethier, R. (Montreal Neurological Inst. and Hospital, PQ (Canada). Dept. of Neuroradiology)

    1991-02-01

    We describe the technique and the results of the percutaneous aspiration biopsy (PAB) in a series of 9 patients presenting with neck pain and different degrees of myelopathy, in whom the cervical spine X-ray demonstrated lytic lesions of unknown origin. PAB is a useful, relatively safe technique, and leads to histological diagnosis between metastatic and inflammatory processes. Furthermore, in inflammatory lesions with negative hemoculture, PAB may help in detecting the micro-organism responsible and therefore allow a better antibiotic treatment. (orig.).

  18. A synthetic peptide corresponding to the C-terminal 25 residues of phage MS2 coded lysis protein dissipates the protonmotive force in Escherichia coli membrane vesicles by generating hydrophilic pores

    NARCIS (Netherlands)

    Goessens, Wil H.F.; Driessen, Arnold J.M.; Wilschut, Jan; Duin, Jan van

    1988-01-01

    The RNA phage MS2 encodes a protein, 75 amino acids long, that is necessary and sufficient for lysis of the host cell. DNA deletion analysis has shown that the lytic activity is confined to the C-terminal half of the protein. We have examined the effects of a synthetic peptide, covering the C-termin

  19. Generation of novel cationic antimicrobial peptides from natural non-antimicrobial sequences by acid-amide substitution

    Directory of Open Access Journals (Sweden)

    Tamada Yasushi

    2011-03-01

    Full Text Available Abstract Background Cationic antimicrobial peptides (CAMPs are well recognized to be promising as novel antimicrobial and antitumor agents. To obtain novel skeletons of CAMPs, we propose a simple strategy using acid-amide substitution (i.e. Glu→Gln, Asp→Asn to confer net positive charge to natural non-antimicrobial sequences that have structures distinct from known CAMPs. The potential of this strategy was verified by a trial study. Methods The pro-regions of nematode cecropin P1-P3 (P1P-P3P were selected as parent sequences. P1P-P3P and their acid-amide-substituted mutants (NP1P-NP3P were chemically synthesized. Bactericidal and membrane-disruptive activities of these peptides were evaluated. Conformational changes were estimated from far-ultraviolet circular dichroism (CD spectra. Results NP1P-NP3P acquired potent bactericidal activities via membrane-disruption although P1P-P3P were not antimicrobial. Far-ultraviolet CD spectra of NP1P-NP3P were similar to those of their parent peptides P1P-P3P, suggesting that NP1P-NP3P acquire microbicidal activity without remarkable conformational changes. NP1P-NP3P killed bacteria in almost parallel fashion with their membrane-disruptive activities, suggesting that the mode of action of those peptides was membrane-disruption. Interestingly, membrane-disruptive activity of NP1P-NP3P were highly diversified against acidic liposomes, indicating that the acid-amide-substituted nematode cecropin pro-region was expected to be a unique and promising skeleton for novel synthetic CAMPs with diversified membrane-discriminative properties. Conclusions The acid-amide substitution successfully generated some novel CAMPs in our trial study. These novel CAMPs were derived from natural non-antimicrobial sequences, and their sequences were completely distinct from any categories of known CAMPs, suggesting that such mutated natural sequences could be a promising source of novel skeletons of CAMPs.

  20. 牛抗菌肽研究进展%Advances in the study of bovine antibacteial peptides

    Institute of Scientific and Technical Information of China (English)

    米宝明; 严作廷; 宗瑞谦; 王东升

    2009-01-01

    @@ 抗菌肽(antibacteial peptides)又称抗微生物肽(antibacteial peptides)、多肽抗生素(peptide antibiotics),氨基酸数目小于100,常带正电荷,是生物体内产生的一类具有强抗菌作用的阳离子多肽,是生物先天免疫的重要组成成分.1972年,瑞典科学家Boman 等[1]首次在果蝇中发现抗菌肽及其免疫功能,随后从惜古比天蚕蛹中诱导分离并命名为cecropin.起初,研究者认为cecropin是昆虫所特有的肽类物质,但1989 年当Lee等首次从猪小肠分离到抗菌肽cecropin P1时,这一认知被突破.

  1. Identification of Novel Small Organic Compounds with Diverse Structures for the Induction of Epstein-Barr Virus (EBV) Lytic Cycle in EBV-Positive Epithelial Malignancies.

    Science.gov (United States)

    Choi, Chung King; Ho, Dona N; Hui, Kwai Fung; Kao, Richard Y; Chiang, Alan K S

    2015-01-01

    Phorbol esters, which are protein kinase C (PKC) activators, and histone deacetylase (HDAC) inhibitors, which cause enhanced acetylation of cellular proteins, are the main classes of chemical inducers of Epstein-Barr virus (EBV) lytic cycle in latently EBV-infected cells acting through the PKC pathway. Chemical inducers which induce EBV lytic cycle through alternative cellular pathways may aid in defining the mechanisms leading to lytic cycle reactivation and improve cells' responsiveness towards lytic induction. We performed a phenotypic screening on a chemical library of 50,240 novel small organic compounds to identify novel class(es) of strong inducer(s) of EBV lytic cycle in gastric carcinoma (GC) and nasopharyngeal carcinoma (NPC) cells. Five hit compounds were selected after three successive rounds of increasingly stringent screening. All five compounds are structurally diverse from each other and distinct from phorbol esters or HDAC inhibitors. They neither cause hyperacetylation of histone proteins nor significant PKC activation at their working concentrations, suggesting that their biological mode of action are distinct from that of the known chemical inducers. Two of the five compounds with rapid lytic-inducing action were further studied for their mechanisms of induction of EBV lytic cycle. Unlike HDAC inhibitors, lytic induction by both compounds was not inhibited by rottlerin, a specific inhibitor of PKCδ. Interestingly, both compounds could cooperate with HDAC inhibitors to enhance EBV lytic cycle induction in EBV-positive epithelial cancer cells, paving way for the development of strategies to increase cells' responsiveness towards lytic reactivation. One of the two compounds bears structural resemblance to iron chelators and the other strongly activates the MAPK pathways. These structurally diverse novel organic compounds may represent potential new classes of chemicals that can be used to investigate any alternative mechanism(s) leading to EBV

  2. Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages.

    Science.gov (United States)

    Chen, Feng; Lu, Jingrang

    2002-05-01

    The genome of cyanophage P60, a lytic virus which infects marine Synechococcus WH7803, was completely sequenced. The P60 genome contained 47,872 bp with 80 potential open reading frames that were mostly similar to the genes found in lytic phages like T7, phi-YeO3-12, and SIO1. The DNA replication system, consisting of primase-helicase and DNA polymerase, appeared to be more conserved in podoviruses than in siphoviruses and myoviruses, suggesting that DNA replication genes could be the critical elements for lytic phages. Strikingly high sequence similarities in the regions coding for nucleotide metabolism were found between cyanophage P60 and marine unicellular cyanobacteria.

  3. C-Peptide Test

    Science.gov (United States)

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities C-peptide Share this page: Was this page helpful? Also known as: Insulin C-peptide; Connecting Peptide Insulin; Proinsulin C-peptide Formal ...

  4. Epstein-Barr virus (EBV Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells.

    Directory of Open Access Journals (Sweden)

    Yen-Ju Chen

    Full Text Available Epstein-Barr virus (EBV Rta belongs to a lytic switch gene family that is evolutionarily conserved in all gamma-herpesviruses. Emerging evidence indicates that cell cycle arrest is a common means by which herpesviral immediate-early protein hijacks the host cell to advance the virus's lytic cycle progression. To examine the role of Rta in cell cycle regulation, we recently established a doxycycline (Dox-inducible Rta system in 293 cells. In this cell background, inducible Rta modulated the levels of signature G1 arrest proteins, followed by induction of the cellular senescence marker, SA-β-Gal. To delineate the relationship between Rta-induced cell growth arrest and EBV reactivation, recombinant viral genomes were transferred into Rta-inducible 293 cells. Somewhat unexpectedly, we found that Dox-inducible Rta reactivated both EBV and Kaposi's sarcoma-associated herpesvirus (KSHV, to similar efficacy. As a consequence, the Rta-mediated EBV and KSHV lytic replication systems, designated as EREV8 and ERKV, respectively, were homogenous, robust, and concurrent with cell death likely due to permissive lytic replication. In addition, the expression kinetics of EBV lytic genes in Dox-treated EREV8 cells was similar to that of their KSHV counterparts in Dox-induced ERKV cells, suggesting that a common pathway is used to disrupt viral latency in both cell systems. When the time course was compared, cell cycle arrest was achieved between 6 and 48 h, EBV or KSHV reactivation was initiated abruptly at 48 h, and the cellular senescence marker was not detected until 120 h after Dox treatment. These results lead us to hypothesize that in 293 cells, Rta-induced G1 cell cycle arrest could provide (1 an ideal environment for virus reactivation if EBV or KSHV coexists and (2 a preparatory milieu for cell senescence if no viral genome is available. The latter is hypothetical in a transient-lytic situation.

  5. Epstein-Barr virus (EBV) Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells.

    Science.gov (United States)

    Chen, Yen-Ju; Tsai, Wan-Hua; Chen, Yu-Lian; Ko, Ying-Chieh; Chou, Sheng-Ping; Chen, Jen-Yang; Lin, Su-Fang

    2011-03-10

    Epstein-Barr virus (EBV) Rta belongs to a lytic switch gene family that is evolutionarily conserved in all gamma-herpesviruses. Emerging evidence indicates that cell cycle arrest is a common means by which herpesviral immediate-early protein hijacks the host cell to advance the virus's lytic cycle progression. To examine the role of Rta in cell cycle regulation, we recently established a doxycycline (Dox)-inducible Rta system in 293 cells. In this cell background, inducible Rta modulated the levels of signature G1 arrest proteins, followed by induction of the cellular senescence marker, SA-β-Gal. To delineate the relationship between Rta-induced cell growth arrest and EBV reactivation, recombinant viral genomes were transferred into Rta-inducible 293 cells. Somewhat unexpectedly, we found that Dox-inducible Rta reactivated both EBV and Kaposi's sarcoma-associated herpesvirus (KSHV), to similar efficacy. As a consequence, the Rta-mediated EBV and KSHV lytic replication systems, designated as EREV8 and ERKV, respectively, were homogenous, robust, and concurrent with cell death likely due to permissive lytic replication. In addition, the expression kinetics of EBV lytic genes in Dox-treated EREV8 cells was similar to that of their KSHV counterparts in Dox-induced ERKV cells, suggesting that a common pathway is used to disrupt viral latency in both cell systems. When the time course was compared, cell cycle arrest was achieved between 6 and 48 h, EBV or KSHV reactivation was initiated abruptly at 48 h, and the cellular senescence marker was not detected until 120 h after Dox treatment. These results lead us to hypothesize that in 293 cells, Rta-induced G1 cell cycle arrest could provide (1) an ideal environment for virus reactivation if EBV or KSHV coexists and (2) a preparatory milieu for cell senescence if no viral genome is available. The latter is hypothetical in a transient-lytic situation.

  6. Simian virus 40 late proteins possess lytic properties that render them capable of permeabilizing cellular membranes.

    Science.gov (United States)

    Daniels, Robert; Rusan, Nasser M; Wilbuer, Anne-Kathrin; Norkin, Leonard C; Wadsworth, Patricia; Hebert, Daniel N

    2006-07-01

    Many nonenveloped viruses have evolved an infectious cycle that culminates in the lysis or permeabilization of the host to enable viral release. How these viruses initiate the lytic event is largely unknown. Here, we demonstrated that the simian virus 40 progeny accumulated at the nuclear envelope prior to the permeabilization of the nuclear, endoplasmic reticulum, and plasma membranes at a time which corresponded with the release of the progeny. The permeabilization of these cellular membranes temporally correlated with late protein expression and was not observed upon the inhibition of their synthesis. To address whether one or more of the late proteins possessed an inherent capacity to induce membrane permeabilization, we examined the permeability of Escherichia coli that separately expressed the late proteins. VP2 and VP3, but not VP1, caused the permeabilization of bacterial membranes. Additionally, VP3 expression resulted in bacterial cell lysis. These findings demonstrate that VP3 possesses an inherent lytic property that is independent of eukaryotic signaling or cell death pathways.

  7. Calcium Signaling throughout the Toxoplasma gondii Lytic Cycle: A STUDY USING GENETICALLY ENCODED CALCIUM INDICATORS.

    Science.gov (United States)

    Borges-Pereira, Lucas; Budu, Alexandre; McKnight, Ciara A; Moore, Christina A; Vella, Stephen A; Hortua Triana, Miryam A; Liu, Jing; Garcia, Celia R S; Pace, Douglas A; Moreno, Silvia N J

    2015-11-01

    Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca(2+) oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca(2+) enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca(2+) changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca(2+) oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca(2+) influx. This is the first study showing, in real time, Ca(2+) signals preceding egress and their direct link with motility, an essential virulence trait.

  8. CTCF interacts with the lytic HSV-1 genome to promote viral transcription

    Science.gov (United States)

    Lang, Fengchao; Li, Xin; Vladimirova, Olga; Hu, Benxia; Chen, Guijun; Xiao, Yu; Singh, Vikrant; Lu, Danfeng; Li, Lihong; Han, Hongbo; Wickramasinghe, J. M. A. S. P.; Smith, Sheryl T.; Zheng, Chunfu; Li, Qihan; Lieberman, Paul M.; Fraser, Nigel W.; Zhou, Jumin

    2017-01-01

    CTCF is an essential chromatin regulator implicated in important nuclear processes including in nuclear organization and transcription. Herpes Simplex Virus-1 (HSV-1) is a ubiquitous human pathogen, which enters productive infection in human epithelial and many other cell types. CTCF is known to bind several sites in the HSV-1 genome during latency and reactivation, but its function has not been defined. Here, we report that CTCF interacts extensively with the HSV-1 DNA during lytic infection by ChIP-seq, and its knockdown results in the reduction of viral transcription, viral genome copy number and virus yield. CTCF knockdown led to increased H3K9me3 and H3K27me3, and a reduction of RNA pol II occupancy on viral genes. Importantly, ChIP-seq analysis revealed that there is a higher level of CTD Ser2P modified RNA Pol II near CTCF peaks relative to the Ser5P form in the viral genome. Consistent with this, CTCF knockdown reduced the Ser2P but increased Ser5P modified forms of RNA Pol II on viral genes. These results suggest that CTCF promotes HSV-1 lytic transcription by facilitating the elongation of RNA Pol II and preventing silenced chromatin on the viral genome. PMID:28045091

  9. Parosteal osteosarcoma dedifferentiating into telangiectatic osteosarcoma: importance of lytic changes and fluid cavities at imaging

    Energy Technology Data Exchange (ETDEWEB)

    Azura, M. [Istituto Ortopedico Rizzoli, Musculoskeletal Oncological Surgery Department, Bologna (Italy); University of Malaya, Department of Orthopaedic Surgery, Kuala Lumpur (Malaysia); Vanel, D. [Radiology, Istituto Ortopedico Rizzoli, Bologna (Italy); Istituti Rizzoli, Anatomia Patologica, Bologna (Italy); Alberghini, M. [Pathology, Istituto Ortopedico Rizzoli, Bologna (Italy); Picci, P.; Staals, E.; Mercuri, M. [Istituto Ortopedico Rizzoli, Musculoskeletal Oncological Surgery Department, Bologna (Italy)

    2009-07-15

    This study was performed to assess the imaging findings in cases of parosteal osteosarcoma dedifferentiated into telangiectatic osteosarcoma. Parosteal osteosarcoma is a low-grade well-differentiated malignant tumor. Dedifferentiation into a more aggressive lesion is frequent and usually visible on imaging as a central lytic area in a sclerotic mass. Only one case of differentiation into a telangiectatic osteosarcoma has been reported. As it has practical consequences, with a need for aggressive chemotherapy, we looked for this rather typical imaging pattern. Review of 199 cases of surface osteosarcomas (including 86 parosteal, of which 23 were dedifferentiated) revealed lesions suggesting a possible telangiectatic osteosarcoma on imaging examinations in five cases (cavities with fluid). Histology confirmed three cases (the two other only had hematoma inside a dedifferentiated tumor). There were three males, aged 24, 28, and 32. They had radiographs and CT, and two an MR examination. Lesions involved the distal femur, proximal tibia, and proximal humerus. The parosteal osteosarcoma was a sclerotic, regular mass, attached to the cortex. A purely lytic mass, partially composed of fluid cavities was easily detected on CT and MR. It involved the medullary cavity twice, and remained outside the bone once. Histology confirmed the two components in each case. Two patients died of pulmonary metastases and one is alive. Knowledge of this highly suggestive pattern should help guide the initial biopsy to diagnose the two components of the tumor, and guide aggressive treatment. (orig.)

  10. Preliminary survey of local bacteriophages with lytic activity against multi-drug resistant bacteria.

    Science.gov (United States)

    Latz, Simone; Wahida, Adam; Arif, Assuda; Häfner, Helga; Hoß, Mareike; Ritter, Klaus; Horz, Hans-Peter

    2016-10-01

    Bacteriophages (phages) represent a potential alternative for combating multi-drug resistant bacteria. Because of their narrow host range and the ever emergence of novel pathogen variants the continued search for phages is a prerequisite for optimal treatment of bacterial infections. Here we performed an ad hoc survey in the surroundings of a University hospital for the presence of phages with therapeutic potential. To this end, 16 aquatic samples of different origins and locations were tested simultaneously for the presence of phages with lytic activity against five current, but distinct strains each from the ESKAPE-group (i.e., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae). Phages could be isolated for 70% of strains, covering all bacterial species except S. aureus. Apart from samples from two lakes, freshwater samples were largely devoid of phages. By contrast, one liter of hospital effluent collected at a single time point already contained phages active against two-thirds of tested strains. In conclusion, phages with lytic activity against nosocomial pathogens are unevenly distributed across environments with the prime source being the immediate hospital vicinity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Global mRNA degradation during lytic gammaherpesvirus infection contributes to establishment of viral latency.

    Directory of Open Access Journals (Sweden)

    Justin M Richner

    2011-07-01

    Full Text Available During a lytic gammaherpesvirus infection, host gene expression is severely restricted by the global degradation and altered 3' end processing of mRNA. This host shutoff phenotype is orchestrated by the viral SOX protein, yet its functional significance to the viral lifecycle has not been elucidated, in part due to the multifunctional nature of SOX. Using an unbiased mutagenesis screen of the murine gammaherpesvirus 68 (MHV68 SOX homolog, we isolated a single amino acid point mutant that is selectively defective in host shutoff activity. Incorporation of this mutation into MHV68 yielded a virus with significantly reduced capacity for mRNA turnover. Unexpectedly, the MHV68 mutant showed little defect during the acute replication phase in the mouse lung. Instead, the virus exhibited attenuation at later stages of in vivo infections suggestive of defects in both trafficking and latency establishment. Specifically, mice intranasally infected with the host shutoff mutant accumulated to lower levels at 10 days post infection in the lymph nodes, failed to develop splenomegaly, and exhibited reduced viral DNA levels and a lower frequency of latently infected splenocytes. Decreased latency establishment was also observed upon infection via the intraperitoneal route. These results highlight for the first time the importance of global mRNA degradation during a gammaherpesvirus infection and link an exclusively lytic phenomenon with downstream latency establishment.

  12. Effect of metals on the lytic cycle of the coccolithovirus, EhV86.

    Directory of Open Access Journals (Sweden)

    Martha eGledhill

    2012-04-01

    Full Text Available In this study we show that metals, and in particular copper (Cu, can disrupt the lytic cycle in the Emiliania huxleyi - EhV86 host-virus system. Numbers of virus particles produced per E. huxleyi cell and E. huxleyi lysis rates were reduced by Cu at total metal concentrations over 500 nM in the presence of EDTA (ethylenediaminetetraacetic acid, and 250 nM in the absence of EDTA in acute short term exposure experiments. Zinc (Zn, cadmium (Cd and cobalt (Co were not observed to affect the lysis rate of EhV86 in these experiments. The cellular glutathione (GSH content increased in virus infected cells, but not as a result of metal exposure. In contrast, the cellular content of phytochelatins (PCs increased only in response to metal exposure. The increase in gluthatione content is consistent with increases in the production of reactive oxygen species (ROS on viral infection, while increases in PC content are likely linked to metal homeostasis and indicate that metal toxicity to the host was not affected by viral infection. We propose that Cu prevents lytic production of EhV86 by interfering with virus DNA (deoxyribonucleic acid synthesis through a transcriptional block, which ultimately suppresses the formation of ROS, a biochemical response required for successful virus infection.

  13. PARTIAL CHARACTERIZATION OF A LYTIC METHICILLIN RESISTANT-STAPHYLOCOCCUS AUREUS BACTERIOPHAGE

    Directory of Open Access Journals (Sweden)

    Sulaiman Al-Yousef

    2014-12-01

    Full Text Available A marked increase in the infection incidence caused by methicillin-resistant Staphylococcus aureus (MRSA strains has been noted in medical practice in recent years. This study was conducted to study the biological and characterize of MRSA-phage. Methicillin resistance of Staphylococcus aureus was detected and confirmed by determining of the MIC of oxacillin by the standard agar dilution method. Phage was biologically purified using single plaque technique, then phage characterization were studied using host range, adsorption time, particle morphology and its structural protein. MRSA phage showing lytic nature was purified by repeated plating after picking of single isolated plaques. This phage is active against all 11 isolates either of S. aureus or MRSA tested as hosts. Phage produced clear plaques indicating their lytic nature. This phage was concentrated employing polyethylene glycol (PEG-NaCl precipitation method. Morphologically, MRSA Phage has a hexagonal head having a long non-contractile tail, indicating his icosahedral nature. Adsorption studies showed 100% adsorption of MRSA-Phage after 35 minutes of exposure. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE experimentation indicated that the phage particles contain one major structural protein (about 30 Kda.

  14. Bronchogenic adenocarcinoma presenting as a synchronous solitary lytic skull lesion with ischaemic stroke--case report and literature review.

    LENUS (Irish Health Repository)

    O'Connell, David

    2011-01-01

    The authors describe a rare case of metastatic bronchogenic adenocarcinoma in a 55-year-old man presenting with concomittant solitary lytic skull lesion and ischaemic stroke. Metastatic bronchogenic carcinoma is known to present as lytic skull lesions. Primary brain tumours are also known to cause ischaemic brain injury. An underlying stroke risk may be exagerated by cranial tumour surgery. Patients with brain tumours are well known to be predisposed to an increased risk of developing thromboembolic disease. It is unusual to see metastatic bronchogenic adenocarcinoma presenting as ischaemic stroke with a background of concomittant cerebral metastasis. The aetio-pathogenesis of this rare occurrence is discussed with a review of literature.

  15. MID2 can substitute for MID1 and control exocytosis of lytic granules in cytotoxic T cells

    DEFF Research Database (Denmark)

    Boding, Lasse; Hansen, Ann K; Meroni, Germana;

    2015-01-01

    We have recently shown that the E3 ubiquitin ligase midline 1 (MID1) is upregulated in murine cytotoxic lymphocytes (CTL), where it controls exocytosis of lytic granules and the killing capacity. Accordingly, CTL from MID1 knock-out (MID1(-/-)) mice have a 25-30% reduction in exocytosis of lytic...... granules and cytotoxicity compared to CTL from wild-type (WT) mice. We wondered why the MID1 gene knock-out did not affect exocytosis and cytotoxicity more severely and speculated whether MID2, a close homologue of MID1, might partially compensate for the loss of MID1 in MID1(-/-) CTL. Here, we showed...

  16. The use of lytic bacteriophages to reduce E. coli O157:H7 on fresh cut lettuce introduced through cross-contamination

    Science.gov (United States)

    The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield) at 108 PFU/ml or a control (phosphate buffered saline, PBS) was applied to lettuce by either 1) spraying on to lettuce piec...

  17. Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci.

    Science.gov (United States)

    Horgan, Marianne; O'Flynn, Gary; Garry, Jennifer; Cooney, Jakki; Coffey, Aidan; Fitzgerald, Gerald F; Ross, R Paul; McAuliffe, Olivia

    2009-02-01

    A truncated derivative of the phage endolysin LysK containing only the CHAP (cysteine- and histidine-dependent amidohydrolase/peptidase) domain exhibited lytic activity against live clinical staphylococcal isolates, including methicillin-resistant Staphylococcus aureus. This is the first known report of a truncated phage lysin which retains high lytic activity against live staphylococcal cells.

  18. Isolation and Characterization of Lytic Properties of Bacteriophages Specific for M. haemolytica Strains.

    Directory of Open Access Journals (Sweden)

    Renata Urban-Chmiel

    Full Text Available The objective of this study was isolation and morphological characterization of temperate bacteriophages obtained from M. haemolytica strains and evaluation of their lytic properties in vitro against M. haemolytica isolated from the respiratory tract of calves.The material for the study consisted of the reference strain M. haemolytica serotype 1 (ATCC® BAA-410™, reference serotypes A1, A2, A5, A6, A7, A9 and A11, and wild-type isolates of M. haemolytica. Bacteriophages were induced from an overnight bacterial starter culture of all examined M. haemolytica strains treated with mitomycin C. The lytic properties and host ranges were determined by plaque assays. The morphology of the bacteriophages was examined in negative-stained smears with 5% uranyl acetate solution using a transmission electron microscope. The genetic analysis of the bacteriophages was followed by restriction analysis of bacteriophage DNA. This was followed by analysis of genetic material by polymerase chain reaction (PCR.Eight bacteriophages were obtained, like typical of the families Myoviridae, Siphoviridae and Podoviridae. Most of the bacteriophages exhibited lytic properties against the M. haemolytica strains. Restriction analysis revealed similarities to the P2-like phage obtained from the strain M. haemolytica BAA-410. The most similar profiles were observed in the case of bacteriophages φA1 and φA5. All of the bacteriophages obtained were characterized by the presence of additional fragments in the restriction profiles with respect to the P2-like reference phage. In the analysis of PCR products for the P2-like reference phage phi-MhaA1-PHL101 (DQ426904 and the phages of the M. haemolytica serotypes, a 734-bp phage PCR product was obtained. The primers were programmed in Primer-Blast software using the structure of the sequence DQ426904 of reference phage PHL101.The results obtained indicate the need for further research aimed at isolating and characterizing

  19. Isolation and Characterization of Lytic Properties of Bacteriophages Specific for M. haemolytica Strains.

    Science.gov (United States)

    Urban-Chmiel, Renata; Wernicki, Andrzej; Stęgierska, Diana; Dec, Marta; Dudzic, Anna; Puchalski, Andrzej

    2015-01-01

    The objective of this study was isolation and morphological characterization of temperate bacteriophages obtained from M. haemolytica strains and evaluation of their lytic properties in vitro against M. haemolytica isolated from the respiratory tract of calves. The material for the study consisted of the reference strain M. haemolytica serotype 1 (ATCC®) BAA-410™, reference serotypes A1, A2, A5, A6, A7, A9 and A11, and wild-type isolates of M. haemolytica. Bacteriophages were induced from an overnight bacterial starter culture of all examined M. haemolytica strains treated with mitomycin C. The lytic properties and host ranges were determined by plaque assays. The morphology of the bacteriophages was examined in negative-stained smears with 5% uranyl acetate solution using a transmission electron microscope. The genetic analysis of the bacteriophages was followed by restriction analysis of bacteriophage DNA. This was followed by analysis of genetic material by polymerase chain reaction (PCR). Eight bacteriophages were obtained, like typical of the families Myoviridae, Siphoviridae and Podoviridae. Most of the bacteriophages exhibited lytic properties against the M. haemolytica strains. Restriction analysis revealed similarities to the P2-like phage obtained from the strain M. haemolytica BAA-410. The most similar profiles were observed in the case of bacteriophages φA1 and φA5. All of the bacteriophages obtained were characterized by the presence of additional fragments in the restriction profiles with respect to the P2-like reference phage. In the analysis of PCR products for the P2-like reference phage phi-MhaA1-PHL101 (DQ426904) and the phages of the M. haemolytica serotypes, a 734-bp phage PCR product was obtained. The primers were programmed in Primer-Blast software using the structure of the sequence DQ426904 of reference phage PHL101. The results obtained indicate the need for further research aimed at isolating and characterizing bacteriophages

  20. Hepatocyte growth factor pathway upregulation in the bone marrow microenvironment in multiple myeloma is associated with lytic bone disease

    DEFF Research Database (Denmark)

    Kristensen, Ida B; Christensen, Jacob H; Lyng, Maria Bibi

    2013-01-01

    Lytic bone disease (LBD) in multiple myeloma (MM) is caused by osteoclast hyperactivation and osteoblast inhibition. Based on in vitro studies, the hepatocyte growth factor (HGF) pathway is thought to be central in osteoblast inhibition. We evaluated the gene expression of the HGF pathway in vivo...

  1. Lytic infection of Lactococcus lactis by bacteriophages Tuc2009 and c2 triggers alternative transcriptional host responses.

    Science.gov (United States)

    Ainsworth, Stuart; Zomer, Aldert; Mahony, Jennifer; van Sinderen, Douwe

    2013-08-01

    Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed throughout lytic infection. Whole-genome microarrays performed at various time points postinfection demonstrated a rather modest impact on host transcription. The majority of changes in the host transcriptome occur during late infection stages; few changes in host gene transcription occur during the immediate and early infection stages. Alterations in the L. lactis UC509.9 transcriptome during lytic infection appear to be phage specific, with relatively few differentially transcribed genes shared between cells infected with Tuc2009 and those infected with c2. Despite the apparent lack of a coordinated general phage response, three themes common to both infections were noted: alternative transcription of genes involved in catabolic flux and energy production, differential transcription of genes involved in cell wall modification, and differential transcription of genes involved in the conversion of ribonucleotides to deoxyribonucleotides. The transcriptional profiles of both bacteriophages during lytic infection generally correlated with the findings of previous studies and allowed the confirmation of previously predicted promoter sequences. In addition, the host transcriptional response to lysogenization with Tuc2009 was monitored along with tiling array analysis of Tuc2009 in the lysogenic state. Analysis identified 44 host genes with altered transcription during lysogeny, 36 of which displayed levels of transcription significantly reduced from those for uninfected cells.

  2. Probing the structure of glucan lyases – the lytic members of GH31 - by sequence analysis, circular dichroism and proteolysis

    DEFF Research Database (Denmark)

    Ernst, Heidi; Lo Leggio, Leila; Yu, Shukun

    2005-01-01

    Glucan lyase (GL) is a polysaccharide lyase with unique characteristics. It is involved in an alternative pathway for the degradation of alpha-glucans, the anhydrofructose pathway. Sequence similarity suggests that this lytic enzyme belongs to glycoside hydrolase family 31, for which until very r...

  3. Lytic Infection of Lactococcus lactis by Bacteriophages Tuc2009 and c2 Triggers Alternative Transcriptional Host Responses

    NARCIS (Netherlands)

    Ainsworth, S.; Zomer, A.L.; Mahony, J.; Sinderen, D. van

    2013-01-01

    Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed thro

  4. In vivo dynamics of EBNA1-oriP interaction during latent and lytic replication of Epstein-Barr virus.

    Science.gov (United States)

    Daikoku, Tohru; Kudoh, Ayumi; Fujita, Masatoshi; Sugaya, Yutaka; Isomura, Hiroki; Tsurumi, Tatsuya

    2004-12-24

    The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is required for maintenance of the viral genome DNA during the latent phase of EBV replication but continues to be synthesized after the induction of viral productive replication. An EBV genome-wide chromatin immunoprecipitation assay revealed that EBNA1 constantly binds to oriP of the EBV genome during not only latent but also lytic infection. Although the total levels of EBNA1 proved constant throughout the latter, the levels of the oriP-bound form were increased as lytic infection proceeded. EBV productive DNA replication occurs at discrete sites in nuclei, called replication compartments, where viral replication proteins are clustered. Confocal laser microscopic analyses revealed that whereas EBNA1 was distributed broadly in nuclei as fine punctate dots during the latent phase of infection, the protein became redistributed to the viral replication compartments and localized as distinct spots within and/or nearby the compartments after the induction of lytic replication. Taking these findings into consideration, oriP regions of the EBV genome might be organized by EBNA1 into replication domains that may set up scaffolding for lytic replication and transcription.

  5. Epiphyseal involvement in Erdheim-Chester disease: radiographic and scintigraphic findings in a case with lytic lesions

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Hernandez, G.; Tajahuerce-Romera, G.M.; Latorre-Ibanez, M.D.; Lara-Pomares, A. [Servicio de Medicina Nuclear, Hospital Provincial de Castellon (Spain); Vila-Fayos, V. [Servicio de Reumatologia, Hospital Comarcal de Vinaroz (Spain)

    2000-08-01

    We reported a symmetric increase of activity in lower links secondary to Erdheim-Chester disease and demonstrated by bone scans and radiographs. An inusual scintigraphic and radiographic appearance with epiphyseal involvement and lytic lesions is described. Differential diagnosis of bone scan and radiographic findings is discussed. (orig.)

  6. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase

    DEFF Research Database (Denmark)

    Pierce, Brian; Wittrup Agger, Jane; Wichmann, Jesper

    2017-01-01

    The auxiliary activity family 9 (AA9) copper-dependent lytic polysaccharide monooxygenase (LPMO) from Trichoderma reesei (EG4; TrCel61A) was investigated for its ability to oxidize the complex polysaccharides from soybean. The substrate specificity of the enzyme was assessed against a variety...

  7. Lytic Infection of Lactococcus lactis by Bacteriophages Tuc2009 and c2 Triggers Alternative Transcriptional Host Responses

    NARCIS (Netherlands)

    Ainsworth, S.; Zomer, A.L.; Mahony, J.; Sinderen, D. van

    2013-01-01

    Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed

  8. High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment

    NARCIS (Netherlands)

    Asselt, Erik J. van; Thunnissen, Andy-Mark W.H.; Dijkstra, Bauke W.

    1999-01-01

    The 70 kDa soluble lytic transglycosylase (Slt70) from Escherichia coli is an exo-muramidase, that catalyses the cleavage of the glycosidic bonds between N-acetylmuramic acid and N-acetylglucosamine residues in peptidoglycan, the main structural component of the bacterial cell wall. This cleavage is

  9. A subset of replication proteins enhances origin recognition and lytic replication by the Epstein-Barr virus ZEBRA protein.

    Directory of Open Access Journals (Sweden)

    Ayman El-Guindy

    Full Text Available ZEBRA is a site-specific DNA binding protein that functions as a transcriptional activator and as an origin binding protein. Both activities require that ZEBRA recognizes DNA motifs that are scattered along the viral genome. The mechanism by which ZEBRA discriminates between the origin of lytic replication and promoters of EBV early genes is not well understood. We explored the hypothesis that activation of replication requires stronger association between ZEBRA and DNA than does transcription. A ZEBRA mutant, Z(S173A, at a phosphorylation site and three point mutants in the DNA recognition domain of ZEBRA, namely Z(Y180E, Z(R187K and Z(K188A, were similarly deficient at activating lytic DNA replication and expression of late gene expression but were competent to activate transcription of viral early lytic genes. These mutants all exhibited reduced capacity to interact with DNA as assessed by EMSA, ChIP and an in vivo biotinylated DNA pull-down assay. Over-expression of three virally encoded replication proteins, namely the primase (BSLF1, the single-stranded DNA-binding protein (BALF2 and the DNA polymerase processivity factor (BMRF1, partially rescued the replication defect in these mutants and enhanced ZEBRA's interaction with oriLyt. The findings demonstrate a functional role of replication proteins in stabilizing the association of ZEBRA with viral DNA. Enhanced binding of ZEBRA to oriLyt is crucial for lytic viral DNA replication.

  10. Probing the structure of glucan lyases – the lytic members of GH31 - by sequence analysis, circular dichroism and proteolysis

    DEFF Research Database (Denmark)

    Ernst, Heidi; Lo Leggio, Leila; Yu, Shukun

    2005-01-01

    Glucan lyase (GL) is a polysaccharide lyase with unique characteristics. It is involved in an alternative pathway for the degradation of alpha-glucans, the anhydrofructose pathway. Sequence similarity suggests that this lytic enzyme belongs to glycoside hydrolase family 31, for which until very r...

  11. Isolation and characterization of lytic vibriophage against Vibrio cholerae O1 from environmental water samples in Kelantan, Malaysia.

    Science.gov (United States)

    Al-Fendi, Ali; Shueb, Rafidah Hanim; Ravichandran, Manickam; Yean, Chan Yean

    2014-10-01

    Water samples from a variety of sources in Kelantan, Malaysia (lakes, ponds, rivers, ditches, fish farms, and sewage) were screened for the presence of bacteriophages infecting Vibrio cholerae. Ten strains of V. cholerae that appeared to be free of inducible prophages were used as the host strains. Eleven bacteriophage isolates were obtained by plaque assay, three of which were lytic and further characterized. The morphologies of the three lytic phages were similar with each having an icosahedral head (ca. 50-60 nm in diameter), a neck, and a sheathed tail (ca. 90-100 nm in length) characteristic of the family Myoviridae. The genomes of the lytic phages were indistinguishable in length (ca. 33.5 kb), nuclease sensitivity (digestible with DNase I, but not RNase A or S1 nuclease), and restriction enzyme sensitivity (identical banding patterns with HindIII, no digestion with seven other enzymes). Testing for infection against 46 strains of V. cholerae and 16 other species of enteric bacteria revealed that all three isolates had a narrow host range and were only capable of infecting V. cholerae O1 El Tor Inaba. The similar morphologies, indistinguishable genome characteristics, and identical host ranges of these lytic isolates suggests that they represent one phage, or several very closely related phages, present in different water sources. These isolates are good candidates for further bio-phage-control studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. "Lytic" lesions in autologous bone grafts: demonstration of medullary air pockets on post mortem computed tomography.

    Science.gov (United States)

    Rotman, A; Hamilton, K; O'Donnell, C

    2007-12-01

    Donor bone grafts are an important aspect of orthopaedic surgery. The use of plain film as a pathological screening tool before donor bone dispatch has revealed "lytic" lesions in proximal humeri. Donor demographics did not support the diagnosis of myeloma and subsequent computed tomography (CT) scans of these bones identified the lesions as air, not pathology. In total, 27 long bones were scanned and 100% (27/27 cases) exhibited air within the trabecular bone. Three distinct patterns were found: ovoid, linear/branching, and broad channel. A longitudinal course of CT scans was performed to identify at which stage air appeared within the bone. Pre-retrieval, preprocessing, and postprocessing scans revealed that air originated between the retrieval and preprocessing stages of donor bone preparation. There may be multiple aetiology of this phenomenon, including bone retrieval and natural decomposition.

  13. Multiple Lytic Origins of Replication Are Required for Optimal Gammaherpesvirus Fitness In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Christine Sattler

    2016-03-01

    Full Text Available An unresolved question in herpesvirus biology is why some herpesviruses contain more than one lytic origin of replication (oriLyt. Using murine gammaherpesvirus 68 (MHV-68 as model virus containing two oriLyts, we demonstrate that loss of either of the two oriLyts was well tolerated in some situations but not in others both in vitro and in vivo. This was related to the cell type, the organ or the route of inoculation. Depending on the cell type, different cellular proteins, for example Hexim1 and Rbbp4, were found to be associated with oriLyt DNA. Overexpression or downregulation of these proteins differentially affected the growth of mutants lacking either the left or the right oriLyt. Thus, multiple oriLyts are required to ensure optimal fitness in different cell types and tissues.

  14. Lytic polysaccharide monooxygenases: a crystallographer's view on a new class of biomass-degrading enzymes

    Directory of Open Access Journals (Sweden)

    Kristian E. H. Frandsen

    2016-11-01

    Full Text Available Lytic polysaccharide monooxygenases (LPMOs are a new class of microbial copper enzymes involved in the degradation of recalcitrant polysaccharides. They have only been discovered and characterized in the last 5–10 years and have stimulated strong interest both in biotechnology and in bioinorganic chemistry. In biotechnology, the hope is that these enzymes will finally help to make enzymatic biomass conversion, especially of lignocellulosic plant waste, economically attractive. Here, the role of LPMOs is likely to be in attacking bonds that are not accessible to other enzymes. LPMOs have attracted enormous interest since their discovery. The emphasis in this review is on the past and present contribution of crystallographic studies as a guide to functional understanding, with a final look towards the future.

  15. Peptide arrays for screening cancer specific peptides.

    Science.gov (United States)

    Ahmed, Sahar; Mathews, Anu Stella; Byeon, Nara; Lavasanifar, Afsaneh; Kaur, Kamaljit

    2010-09-15

    In this paper, we describe a novel method to screen peptides for specific recognition by cancer cells. Seventy peptides were synthesized on a cellulose membrane in an array format, and a direct method to study the peptide-whole cell interaction was developed. The relative binding affinity of the cells for different peptides with respect to a lead 12-mer p160 peptide, identified by phage display, was evaluated using the CyQUANT fluorescence of the bound cells. Screening allowed identification of at least five new peptides that displayed higher affinity (up to 3-fold) for MDA-MB-435 and MCF-7 human cancer cells compared to the p160 peptide. These peptides showed very little binding to the control (noncancerous) human umbilical vein endothelial cells (HUVECs). Three of these peptides were synthesized separately and labeled with fluorescein isothiocyanate (FITC) to study their uptake and interaction with the cancer and control cells using confocal laser scanning microscopy and flow cytometry. The results confirmed the high and specific affinity of an 11-mer peptide 11 (RGDPAYQGRFL) and a 10-mer peptide 18 (WXEAAYQRFL) for the cancer cells versus HUVECs. Peptide 11 binds different receptors on target cancer cells as its sequence contains multiple recognition motifs, whereas peptide 18 binds mainly to the putative p160 receptor. The peptide array-whole cell binding assay reported here is a complementary method to phage display for further screening and optimization of cancer targeting peptides for cancer therapy and diagnosis.

  16. Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2008-10-01

    Full Text Available Abstract Background Despite the proven relevance of Pseudomonas fluorescens as a spoilage microorganism in milk, fresh meats and refrigerated food products and the recognized potential of bacteriophages as sanitation agents, so far no phages specific for P. fluorescens isolates from dairy industry have been closely characterized in view of their lytic efficiency. Here we describe the isolation and characterization of a lytic phage capable to infect a variety of P. fluorescens strains isolated from Portuguese and United States dairy industries. Results Several phages were isolated which showed a different host spectrum and efficiency of lysis. One of the phages, phage ϕIBB-PF7A, was studied in detail due to its efficient lysis of a wide spectrum of P. fluorescens strains and ribotypes. Phage ϕIBB-PF7A with a head diameter of about 63 nm and a tail size of about 13 × 8 nm belongs morphologically to the Podoviridae family and resembles a typical T7-like phage, as analyzed by transmission electron microscopy (TEM. The phage growth cycle with a detected latent period of 15 min, an eclipse period of 10 min, a burst size of 153 plaque forming units per infected cell, its genome size of approximately 42 kbp, and the size and N-terminal sequence of one of the protein bands, which gave similarity to the major capsid protein 10A, are consistent with this classification. Conclusion The isolated T7-like phage, phage ϕIBB-PF7A, is fast and efficient in lysing different P. fluorescens strains and may be a good candidate to be used as a sanitation agent to control the prevalence of spoilage causing P. fluorescens strains in dairy and food related environments.

  17. In vitro management of hospital Pseudomonas aeruginosa biofilm using indigenous T7-like lytic phage.

    Science.gov (United States)

    Ahiwale, Sangeeta; Tamboli, Nilofer; Thorat, Kiran; Kulkarni, Rajendra; Ackermann, Hans; Kapadnis, Balasaheb

    2011-02-01

    Pseudomonas aeruginosa, a human pathogen capable of forming biofilm and contaminating medical settings, is responsible for 65% mortality in the hospitals all over the world. This study was undertaken to isolate lytic phages against biofilm forming Ps. aeruginosa hospital isolates and to use them for in vitro management of biofilms in the microtiter plate. Multidrug resistant strains of Ps. aeruginosa were isolated from the hospital environment in and around Pimpri-Chinchwad, Maharashtra by standard microbiological methods. Lytic phages against these strains were isolated from the Pavana river water by double agar layer plaque assay method. A wide host range phage bacterial virus Ps. aeruginosa phage (BVPaP-3) was selected. Electron microscopy revealed that BVPaP-3 phage is a T7-like phage and is a relative of phage species gh-1. A phage at MOI-0.001 could prevent biofilm formation by Ps. aeruginosa hospital strain-6(HS6) on the pegs within 24 h. It could also disperse pre-formed biofilms of all hospital isolates (HS1-HS6) on the pegs within 24 h. Dispersion of biofilm was studied by monitoring log percent reduction in cfu and log percent increase in pfu of respective bacterium and phage on the peg as well as in the well. Scanning electron microscopy confirmed that phage BVPaP-3 indeed causes biofilm reduction and bacterial cell killing. Laboratory studies prove that BVPaP-3 is a highly efficient phage in preventing and dispersing biofilms of Ps. aeruginosa. Phage BVPaP-3 can be used as biological disinfectant to control biofilm problem in medical devices.

  18. The FIKK kinase of Toxoplasma gondii is not essential for the parasite's lytic cycle.

    Science.gov (United States)

    Skariah, S; Walwyn, O; Engelberg, K; Gubbels, M-J; Gaylets, C; Kim, N; Lynch, B; Sultan, A; Mordue, D G

    2016-05-01

    FIKK kinases are a novel family of kinases unique to the Apicomplexa. While most apicomplexans encode a single FIKK kinase, Plasmodium falciparum expresses 21 and piroplasms do not encode a FIKK kinase. FIKK kinases share a conserved C-terminal catalytic domain, but the N-terminal region is highly variable and contains no known functional domains. To date, FIKK kinases have been primarily studied in P. falciparum and Plasmodium berghei. Those that have been studied are exported from the parasite and associate with diverse locations in the infected erythrocyte cytosol or membrane. Deletion of individual P. falciparum FIKK kinases indicates that they may play a role in modification of the infected erythrocyte. The current study characterises the single FIKK gene in Toxoplasma gondii to evaluate the importance of the FIKK kinase in an apicomplexan that has a single FIKK kinase. The TgFIKK gene encoded a protein of approximately 280kDa. Endogenous tagging of the FIKK protein with Yellow Fluorescent Protein showed that the FIKK protein exclusively localised to the posterior end of tachyzoites. A Yellow Fluorescent Protein-tagged FIKK and a Ty-tagged FIKK both co-localised with T. gondii membrane occupation and recognition nexus protein to the basal complex and were localised apical to inner membrane complex protein-5 and Centrin2. Deletion of TgFIKK, surprisingly, had no detectable effect on the parasite's lytic cycle in vitro in human fibroblast cells or in acute virulence in vivo. Thus, our results clearly show that while the FIKK kinase is expressed in tachyzoites, it is not essential for the lytic cycle of T. gondii. Copyright © 2016 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  19. Trypanosome lytic factor, an antimicrobial high-density lipoprotein, ameliorates Leishmania infection.

    Directory of Open Access Journals (Sweden)

    Marie Samanovic

    2009-01-01

    Full Text Available Innate immunity is the first line of defense against invading microorganisms. Trypanosome Lytic Factor (TLF is a minor sub-fraction of human high-density lipoprotein that provides innate immunity by completely protecting humans from infection by most species of African trypanosomes, which belong to the Kinetoplastida order. Herein, we demonstrate the broader protective effects of human TLF, which inhibits intracellular infection by Leishmania, a kinetoplastid that replicates in phagolysosomes of macrophages. We show that TLF accumulates within the parasitophorous vacuole of macrophages in vitro and reduces the number of Leishmania metacyclic promastigotes, but not amastigotes. We do not detect any activation of the macrophages by TLF in the presence or absence of Leishmania, and therefore propose that TLF directly damages the parasite in the acidic parasitophorous vacuole. To investigate the physiological relevance of this observation, we have reconstituted lytic activity in vivo by generating mice that express the two main protein components of TLFs: human apolipoprotein L-I and haptoglobin-related protein. Both proteins are expressed in mice at levels equivalent to those found in humans and circulate within high-density lipoproteins. We find that TLF mice can ameliorate an infection with Leishmania by significantly reducing the pathogen burden. In contrast, TLF mice were not protected against infection by the kinetoplastid Trypanosoma cruzi, which infects many cell types and transiently passes through a phagolysosome. We conclude that TLF not only determines species specificity for African trypanosomes, but can also ameliorate an infection with Leishmania, while having no effect on T. cruzi. We propose that TLFs are a component of the innate immune system that can limit infections by their ability to selectively damage pathogens in phagolysosomes within the reticuloendothelial system.

  20. Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains.

    Science.gov (United States)

    Abatángelo, Virginia; Peressutti Bacci, Natalia; Boncompain, Carina A; Amadio, Ariel A; Carrasco, Soledad; Suárez, Cristian A; Morbidoni, Héctor R

    2017-01-01

    Staphylococcus aureus is a very successful opportunistic pathogen capable of causing a variety of diseases ranging from mild skin infections to life-threatening sepsis, meningitis and pneumonia. Its ability to display numerous virulence mechanisms matches its skill to display resistance to several antibiotics, including β-lactams, underscoring the fact that new anti-S. aureus drugs are urgently required. In this scenario, the utilization of lytic bacteriophages that kill bacteria in a genus -or even species- specific way, has become an attractive field of study. In this report, we describe the isolation, characterization and sequencing of phages capable of killing S. aureus including methicillin resistant (MRSA) and multi-drug resistant S. aureus local strains from environmental, animal and human origin. Genome sequencing and bio-informatics analysis showed the absence of genes encoding virulence factors, toxins or antibiotic resistance determinants. Of note, there was a high similarity between our set of phages to others described in the literature such as phage K. Considering that reported phages were obtained in different continents, it seems plausible that there is a commonality of genetic features that are needed for optimum, broad host range anti-staphylococcal activity of these related phages. Importantly, the high activity and broad host range of one of our phages underscores its promising value to control the presence of S. aureus in fomites, industry and hospital environments and eventually on animal and human skin. The development of a cocktail of the reported lytic phages active against S. aureus-currently under way- is thus, a sensible strategy against this pathogen.

  1. Revisiting the Cellulosimicrobium cellulans yeast-lytic β-1,3-glucanases toolbox: A review

    Directory of Open Access Journals (Sweden)

    Ferrer Pau

    2006-03-01

    Full Text Available Abstract Cellulosimicrobium cellulans (also known with the synonyms Cellulomonas cellulans, Oerskovia xanthineolytica, and Arthrobacter luteus is an actinomycete that excretes yeast cell wall lytic enzyme complexes containing endo-β-1,3-glucanases [EC 3.2.1.39 and 3.2.1.6] as key constituents. Three genes encoding endo-β-1,3-glucanases from two C. cellulans strains have been cloned and characterised over the past years. The βglII and βglIIA genes from strain DSM 10297 (also known as O. xanthineolytica LL G109 encoded proteins of 40.8 and 28.6 kDa, respectively, whereas the β-1,3-glucanase gene from strain ATCC 21606 (also known as A. luteus 73–14 encoded a 54.5 kDa protein. Alignment of their deduced amino acid sequences reveal that βglII and βglIIA have catalytic domains assigned to family 16 of glycosyl hydrolases, whereas the catalytic domain from the 54.5 kDa glucanase belongs to family 64. Notably, both βglII and the 54.5 kDa β-1,3-glucanase are multidomain proteins, having a lectin-like C-terminal domain that has been assigned to family 13 of carbohydrate binding modules, and that confers to β-1,3-glucanases the ability to lyse viable yeast cells. Furthermore, βglII may also undergo posttranslational proteolytic processing of its C-terminal domain, resulting in a truncated enzyme retaining its glucanase activity but with very low yeast-lytic activity. In this review, the diversity in terms of structural and functional characteristics of the C. cellulans β-1,3-glucanases has been compiled and compared.

  2. Lytic Characteristics and Identification of Two Alga-lysing Bacterial Strains

    Institute of Scientific and Technical Information of China (English)

    PEI Haiyan; HU Wenrong

    2006-01-01

    All previously reported bacterial species which are capable of lysing harmful algae have been isolated from coastal environments in which harmful algae blooms have occurred. Due to the low concentration of alga-lysing bacteria in an algal bloom, it is difficult to isolate the alga-lysing bacteria by existing methods. In this paper, two algae-lysing bacterial strains,P01 and P03, have been isolated from a biosystem immobilized on a sponge that was highly effective in removing algae and microcystins. Their lysing modes and effects on Microcystis aeruginosa have been studied. The results show that the degradation processes of these two strains for M. aeruginosa accorded with a first-order reaction model when the chlorophylla concentration was in the range from 0 to 1000 μg L-1. The degradation rate constants were 0.106 7, 0.127 4 and 0.279 2 for P01and0.0683, 0.0744 and 0.02897 for P03, when the bacterial densities were 8.6 × 105, 8.6 × 106 and 8.6 × 107cells mL 1, respectively. Moreover, the two bacterial strains had favourable lytic effects not only on M. aeruginosa, but also on Chlorella and Scene-desmus. Their lytic effect on M. aeruginosa did not require physical cell to cell contact, but proceeded by the production of an extracellular product. The bacterial strains were identified as Bacillus species by PCR amplification of the 16S rRNA gene, BLAST analysis, and comparison with sequences in the GenBank nucleotide database.

  3. Structure of the Bacteriophage [phi]KZ Lytic Transglycosylase gp144

    Energy Technology Data Exchange (ETDEWEB)

    Fokine, Andrei; Miroshnikov, Konstantin A.; Shneider, Mikhail M.; Mesyanzhinov, Vadim V.; Rossmann, Michael G. (SOIBC); (Purdue)

    2008-04-02

    Lytic transglycosylases are enzymes that act on the peptidoglycan of bacterial cell walls. They cleave the glycosidic linkage between N-acetylmuramoyl and N-acetylglucosaminyl residues with the concomitant formation of a 1,6-anhydromuramoyl product. The x-ray structure of the lytic transglycosylase gp144 from the Pseudomonas bacteriophage {phi}KZ has been determined to 2.5-{angstrom} resolution. This protein is probably employed by the bacteriophage in the late stage of the virus reproduction cycle to destroy the bacterial cell wall to release the phage progeny. {phi}KZ gp144 is a 260-residue {alpha}-helical protein composed of a 70-residue N-terminal cell wall-binding domain and a C-terminal catalytic domain. The fold of the N-terminal domain is similar to the peptidoglycan-binding domain from Streptomyces albus G d-Ala-d-Ala carboxypeptidase and to the N-terminal prodomain of human metalloproteinases that act on extracellular matrices. The C-terminal catalytic domain of gp144 has a structural similarity to the catalytic domain of the transglycosylase Slt70 from Escherichia coli and to lysozymes. The gp144 catalytic domain has an elongated groove that can bind at least five sugar residues at sites A-E. As in other lysozymes, the peptidoglycan cleavage (catalyzed by Glu{sup 115} in gp144) occurs between sugar-binding subsites D and E. The x-ray structure of the {phi}KZ transglycosylase complexed with the chitotetraose (N-acetylglucosamine){sub 4} has been determined to 2.6-{angstrom} resolution. The N-acetylglucosamine residues of the chitotetraose bind in sites A-D.

  4. Delta-9 tetrahydrocannabinol (THC inhibits lytic replication of gamma oncogenic herpesviruses in vitro

    Directory of Open Access Journals (Sweden)

    Friedman Herman

    2004-09-01

    Full Text Available Abstract Background The major psychoactive cannabinoid compound of marijuana, delta-9 tetrahydrocannabinol (THC, has been shown to modulate immune responses and lymphocyte function. After primary infection the viral DNA genome of gamma herpesviruses persists in lymphoid cell nuclei in a latent episomal circular form. In response to extracellular signals, the latent virus can be activated, which leads to production of infectious virus progeny. Therefore, we evaluated the potential effects of THC on gamma herpesvirus replication. Methods Tissue cultures infected with various gamma herpesviruses were cultured in the presence of increasing concentrations of THC and the amount of viral DNA or infectious virus yield was compared to those of control cultures. The effect of THC on Kaposi's Sarcoma Associated Herpesvirus (KSHV and Epstein-Barr virus (EBV replication was measured by the Gardella method and replication of herpesvirus saimiri (HVS of monkeys, murine gamma herpesvirus 68 (MHV 68, and herpes simplex type 1 (HSV-1 was measured by yield reduction assays. Inhibition of the immediate early ORF 50 gene promoter activity was measured by the dual luciferase method. Results Micromolar concentrations of THC inhibit KSHV and EBV reactivation in virus infected/immortalized B cells. THC also strongly inhibits lytic replication of MHV 68 and HVS in vitro. Importantly, concentrations of THC that inhibit virus replication of gamma herpesviruses have no effect on cell growth or HSV-1 replication, indicating selectivity. THC was shown to selectively inhibit the immediate early ORF 50 gene promoter of KSHV and MHV 68. Conclusions THC specifically targets viral and/or cellular mechanisms required for replication and possibly shared by these gamma herpesviruses, and the endocannabinoid system is possibly involved in regulating gamma herpesvirus latency and lytic replication. The immediate early gene ORF 50 promoter activity was specifically inhibited by THC

  5. Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy.

    Directory of Open Access Journals (Sweden)

    Alice C N Brown

    2011-09-01

    Full Text Available Natural Killer (NK cells are innate immune cells that secrete lytic granules to directly kill virus-infected or transformed cells across an immune synapse. However, a major gap in understanding this process is in establishing how lytic granules pass through the mesh of cortical actin known to underlie the NK cell membrane. Research has been hampered by the resolution of conventional light microscopy, which is too low to resolve cortical actin during lytic granule secretion. Here we use two high-resolution imaging techniques to probe the synaptic organisation of NK cell receptors and filamentous (F-actin. A combination of optical tweezers and live cell confocal microscopy reveals that microclusters of NKG2D assemble into a ring-shaped structure at the centre of intercellular synapses, where Vav1 and Grb2 also accumulate. Within this ring-shaped organisation of NK cell proteins, lytic granules accumulate for secretion. Using 3D-structured illumination microscopy (3D-SIM to gain super-resolution of ~100 nm, cortical actin was detected in a central region of the NK cell synapse irrespective of whether activating or inhibitory signals dominate. Strikingly, the periodicity of the cortical actin mesh increased in specific domains at the synapse when the NK cell was activated. Two-colour super-resolution imaging revealed that lytic granules docked precisely in these domains which were also proximal to where the microtubule-organising centre (MTOC polarised. Together, these data demonstrate that remodelling of the cortical actin mesh occurs at the central region of the cytolytic NK cell immune synapse. This is likely to occur for other types of cell secretion and also emphasises the importance of emerging super-resolution imaging technology for revealing new biology.

  6. Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy.

    Science.gov (United States)

    Brown, Alice C N; Oddos, Stephane; Dobbie, Ian M; Alakoskela, Juha-Matti; Parton, Richard M; Eissmann, Philipp; Neil, Mark A A; Dunsby, Christopher; French, Paul M W; Davis, Ilan; Davis, Daniel M

    2011-09-01

    Natural Killer (NK) cells are innate immune cells that secrete lytic granules to directly kill virus-infected or transformed cells across an immune synapse. However, a major gap in understanding this process is in establishing how lytic granules pass through the mesh of cortical actin known to underlie the NK cell membrane. Research has been hampered by the resolution of conventional light microscopy, which is too low to resolve cortical actin during lytic granule secretion. Here we use two high-resolution imaging techniques to probe the synaptic organisation of NK cell receptors and filamentous (F)-actin. A combination of optical tweezers and live cell confocal microscopy reveals that microclusters of NKG2D assemble into a ring-shaped structure at the centre of intercellular synapses, where Vav1 and Grb2 also accumulate. Within this ring-shaped organisation of NK cell proteins, lytic granules accumulate for secretion. Using 3D-structured illumination microscopy (3D-SIM) to gain super-resolution of ~100 nm, cortical actin was detected in a central region of the NK cell synapse irrespective of whether activating or inhibitory signals dominate. Strikingly, the periodicity of the cortical actin mesh increased in specific domains at the synapse when the NK cell was activated. Two-colour super-resolution imaging revealed that lytic granules docked precisely in these domains which were also proximal to where the microtubule-organising centre (MTOC) polarised. Together, these data demonstrate that remodelling of the cortical actin mesh occurs at the central region of the cytolytic NK cell immune synapse. This is likely to occur for other types of cell secretion and also emphasises the importance of emerging super-resolution imaging technology for revealing new biology.

  7. Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens.

    Science.gov (United States)

    Rustagi, Anjana; Kumar, Deepak; Shekhar, Shashi; Yusuf, Mohd Aslam; Misra, Santosh; Sarin, Neera Bhalla

    2014-06-01

    Cationic antimicrobial peptides (CAPs) have shown potential against broad spectrum of phytopathogens. Synthetic versions with desirable properties have been modeled on these natural peptides. MsrA1 is a synthetic chimera of cecropin A and melittin CAPs with antimicrobial properties. We generated transgenic Brassica juncea plants expressing the msrA1 gene aimed at conferring fungal resistance. Five independent transgenic lines were evaluated for resistance to Alternaria brassicae and Sclerotinia sclerotiorum, two of the most devastating pathogens of B. juncea crops. In vitro assays showed inhibition by MsrA1 of Alternaria hyphae growth by 44-62 %. As assessed by the number and size of lesions and time taken for complete leaf necrosis, the Alternaria infection was delayed and restricted in the transgenic plants with the protection varying from 69 to 85 % in different transgenic lines. In case of S. sclerotiorum infection, the lesions were more severe and spread profusely in untransformed control compared with transgenic plants. The sclerotia formed in the stem of untransformed control plants were significantly more in number and larger in size than those present in the transgenic plants where disease protection of 56-71.5 % was obtained. We discuss the potential of engineering broad spectrum biotic stress tolerance by transgenic expression of CAPs in crop plants.

  8. Antimicrobial peptides expressed in medicinal maggots of the blow fly Lucilia sericata show combinatorial activity against bacteria.

    Science.gov (United States)

    Pöppel, Anne-Kathrin; Vogel, Heiko; Wiesner, Jochen; Vilcinskas, Andreas

    2015-05-01

    The larvae of the common green bottle fly (Lucilia sericata) produce antibacterial secretions that have a therapeutic effect on chronic and nonhealing wounds. Recent developments in insect biotechnology have made it possible to use these larvae as a source of novel anti-infectives. Here, we report the application of next-generation RNA sequencing (RNA-Seq) to characterize the transcriptomes of the larval glands, crop, and gut, which contribute to the synthesis of antimicrobial peptides (AMPs) and proteins secreted into wounds. Our data confirm that L. sericata larvae have adapted in order to colonize microbially contaminated habitats, such as carrion and necrotic wounds, and are protected against infection by a diverse spectrum of AMPs. L. sericata AMPs include not only lucifensin and lucimycin but also novel attacins, cecropins, diptericins, proline-rich peptides, and sarcotoxins. We identified 47 genes encoding putative AMPs and produced 23 as synthetic analogs, among which some displayed activities against a broad spectrum of microbial pathogens, including Pseudomonas aeruginosa, Proteus vulgaris, and Enterococcus faecalis. Against Escherichia coli (Gram negative) and Micrococcus luteus (Gram positive), we found mostly additive effects but also synergistic activity when selected AMPs were tested in combination. The AMPs that are easy to synthesize are currently being produced in bulk to allow their evaluation as novel anti-infectives that can be formulated in hydrogels to produce therapeutic wound dressings and adhesive bandages.

  9. Immune response and anti-microbial peptides expression in Malpighian tubules of Drosophila melanogaster is under developmental regulation.

    Directory of Open Access Journals (Sweden)

    Puja Verma

    Full Text Available Malpighian tubules (MT of Drosophila melanogaster are osmoregulatory organs that maintain the ionic balance and remove toxic substances from the body. Additionally they act as autonomous immune sensing organs, which secrete antimicrobial peptides in response to invading microbial pathogens. We show that the antimicrobial peptides (AMP diptericin, cecropinA, drosocin and attacinA are constitutively expressed and are regulated in developmental stage specific manner. Their developmental expression begins from 3(rd instar larval stage and an immune challenge increases the expression several folds. Spatial variations in the level of expression along the MT tissue are observed. The mortality of 3(rd instar larvae fed on bacterial food is much less than that of the earlier larval stages, coinciding with the onset of innate immunity response in MT. Ectopic expression of AMP imparts better resistance to infection while, loss of function of one of the AMP through directed RNAi reduces host survival after immune challenge. The AMP secreted from the MT exhibit bactericidal activity. Expression of the NF-κB transcription factor, Relish, also coincides with activation of immune responsive genes in MT, demonstrating that immune regulation in MT is under developmental control and is governed by the Imd pathway.

  10. Involvement of Relish gene from Macrobrachium rosenbergii in the expression of anti-microbial peptides.

    Science.gov (United States)

    Shi, Yan-Ru; Jin, Min; Ma, Fu-Tong; Huang, Ying; Huang, Xin; Feng, Jin-Ling; Zhao, Ling-Ling; Chen, Yi-Hong; Ren, Qian

    2015-10-01

    Relish is an NF-kB transcription factor involved in immune-deficiency (IMD) signal pathway. In this study, a Relish gene (MrRelish) was identified from Macrobrachium rosenbergii. The full length of MrRelish comprises 5072 bp, including a 3510 bp open reading frame encoding a 1169 bp amino acid protein. MrRelish contains a Rel homology domain (RHD), a nucleus localization signal, an IκB-like domain (6 ankyrin repeats), and a death domain. Phylogenetic analysis showed that MrRelish and other Relish from crustaceans belong to one group. MrRelish was expressed in all detected tissues, with the highest expression level in hemocytes and intestines. MrRelish was also upregulated in hepatopancreas at 6 h after Vibrio anguillarum challenge. The over-expression of MrRelish could induce the expression of antimicrobial peptides (AMPs), such as Drosophila Metchnikowin (Mtk), Attacin (Atta), Drosomycin (Drs), and Cecropin (CecA) and shrimp Penaeidin (Pen4). The RNAi of MrRelish in gills showed that the expression of crustin (cru) 2, Cru5, Cru8, lysozyme (Lyso) 1, and Lyso2 was inhibited. However, the expression of anti-lipopolysaccharide factor (ALF) 1 and ALF3 did not change when MrRelish was knocked down. These results indicate that MrRelish may play an important role in innate immune defense against V. anguillarum in M. rosenbergii.

  11. Trinucleotide cassettes increase diversity of T7 phage-displayed peptide library

    Directory of Open Access Journals (Sweden)

    McMahon James B

    2007-10-01

    Full Text Available Abstract Background Amino acid sequence diversity is introduced into a phage-displayed peptide library by randomizing library oligonucleotide DNA. We recently evaluated the diversity of peptide libraries displayed on T7 lytic phage and M13 filamentous phage and showed that T7 phage can display a more diverse amino acid sequence repertoire due to differing processes of viral morphogenesis. Methods In this study, we evaluated and compared the diversity of a 12-mer T7 phage-displayed peptide library randomized using codon-corrected trinucleotide cassettes with a T7 and an M13 12-mer phage-displayed peptide library constructed using the degenerate codon randomization method. Results We herein demonstrate that the combination of trinucleotide cassette amino acid codon randomization and T7 phage display construction methods resulted in a significant enhancement to the functional diversity of a 12-mer peptide library. This novel library exhibited superior amino acid uniformity and order-of-magnitude increases in amino acid sequence diversity as compared to degenerate codon randomized peptide libraries. Comparative analyses of the biophysical characteristics of the 12-mer peptide libraries revealed the trinucleotide cassette-randomized library to be a unique resource. Conclusion The combination of T7 phage display and trinucleotide cassette randomization resulted in a novel resource for the potential isolation of binding peptides for new and previously studied molecular targets.

  12. DNA Damage Signaling Is Induced in the Absence of Epstein-Barr Virus (EBV) Lytic DNA Replication and in Response to Expression of ZEBRA.

    Science.gov (United States)

    Wang'ondu, Ruth; Teal, Stuart; Park, Richard; Heston, Lee; Delecluse, Henri; Miller, George

    2015-01-01

    Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.

  13. Activation and Repression of Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycles by Short- and Medium-Chain Fatty Acids

    Science.gov (United States)

    Gorres, Kelly L.; Daigle, Derek; Mohanram, Sudharshan

    2014-01-01

    ABSTRACT The lytic cycles of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are induced in cell culture by sodium butyrate (NaB), a short-chain fatty acid (SCFA) histone deacetylase (HDAC) inhibitor. Valproic acid (VPA), another SCFA and an HDAC inhibitor, induces the lytic cycle of KSHV but blocks EBV lytic reactivation. To explore the hypothesis that structural differences between NaB and VPA account for their functional effects on the two related viruses, we investigated the capacity of 16 structurally related short- and medium-chain fatty acids to promote or prevent lytic cycle reactivation. SCFAs differentially affected EBV and KSHV reactivation. KSHV was reactivated by all SCFAs that are HDAC inhibitors, including phenylbutyrate. However, several fatty acid HDAC inhibitors, such as isobutyrate and phenylbutyrate, did not reactivate EBV. Reactivation of KSHV lytic transcripts could not be blocked completely by any fatty acid tested. In contrast, several medium-chain fatty acids inhibited lytic activation of EBV. Fatty acids that blocked EBV reactivation were more lipophilic than those that activated EBV. VPA blocked activation of the BZLF1 promoter by NaB but did not block the transcriptional function of ZEBRA. VPA also blocked activation of the DNA damage response that accompanies EBV lytic cycle activation. Properties of SCFAs in addition to their effects on chromatin are likely to explain activation or repression of EBV. We concluded that fatty acids stimulate the two related human gammaherpesviruses to enter the lytic cycle through different pathways. IMPORTANCE Lytic reactivation of EBV and KSHV is needed for persistence of these viruses and plays a role in carcinogenesis. Our direct comparison highlights the mechanistic differences in lytic reactivation between related human oncogenic gammaherpesviruses. Our findings have therapeutic implications, as fatty acids are found in the diet and produced by the human microbiota

  14. Increased CD8+ T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Daniela F Angelini

    Full Text Available It has long been known that multiple sclerosis (MS is associated with an increased Epstein-Barr virus (EBV seroprevalence and high immune reactivity to EBV and that infectious mononucleosis increases MS risk. This evidence led to postulate that EBV infection plays a role in MS etiopathogenesis, although the mechanisms are debated. This study was designed to assess the prevalence and magnitude of CD8+ T-cell responses to EBV latent (EBNA-3A, LMP-2A and lytic (BZLF-1, BMLF-1 antigens in relapsing-remitting MS patients (n = 113 and healthy donors (HD (n = 43 and to investigate whether the EBV-specific CD8+ T cell response correlates with disease activity, as defined by clinical evaluation and gadolinium-enhanced magnetic resonance imaging. Using HLA class I pentamers, lytic antigen-specific CD8+ T cell responses were detected in fewer untreated inactive MS patients than in active MS patients and HD while the frequency of CD8+ T cells specific for EBV lytic and latent antigens was higher in active and inactive MS patients, respectively. In contrast, the CD8+ T cell response to cytomegalovirus did not differ between HD and MS patients, irrespective of the disease phase. Marked differences in the prevalence of EBV-specific CD8+ T cell responses were observed in patients treated with interferon-β and natalizumab, two licensed drugs for relapsing-remitting MS. Longitudinal studies revealed expansion of CD8+ T cells specific for EBV lytic antigens during active disease in untreated MS patients but not in relapse-free, natalizumab-treated patients. Analysis of post-mortem MS brain samples showed expression of the EBV lytic protein BZLF-1 and interactions between cytotoxic CD8+ T cells and EBV lytically infected plasma cells in inflammatory white matter lesions and meninges. We therefore propose that inability to control EBV infection during inactive MS could set the stage for intracerebral viral reactivation and disease relapse.

  15. BACTERIOCINS AND BACTERIOPHAGE LYTIC PROTEINS AS ALTERNATIVES TO ANTIBIOTICS FROM RUSSIAN FEDERATION AND USA COLLABORATIONS

    Science.gov (United States)

    Novel anti-microbial peptides (bacteriocins) were isolated and characterized in collaborative research between PMSRU, ARS-USDA scientists and representatives of the State Research Center for Applied Microbiology and Biotechnology (SRCAMB) in Obolensk, Russian Federation. The bacteriocins are effect...

  16. Cateslytin, a chromogranin A derived peptide is active against Staphylococcus aureus and resistant to degradation by its proteases.

    Directory of Open Access Journals (Sweden)

    Rizwan Aslam

    Full Text Available Innate immunity involving antimicrobial peptides represents an integrated and highly effective system of molecular and cellular mechanisms that protects host against infections. One of the most frequent hospital-acquired pathogens, Staphylococcus aureus, capable of producing proteolytic enzymes, which can degrade the host defence agents and tissue components. Numerous antimicrobial peptides derived from chromogranins, are secreted by nervous, endocrine and immune cells during stress conditions. These kill microorganisms by their lytic effect at micromolar range, using a pore-forming mechanism against Gram-positive bacteria, filamentous fungi and yeasts. In this study, we tested antimicrobial activity of chromogranin A-derived peptides (catestatin and cateslytin against S. aureus and analysed S. aureus-mediated proteolysis of these peptides using HPLC, sequencing and MALDI-TOF mass spectrometry. Interestingly, this study is the first to demonstrate that cateslytin, the active domain of catestatin, is active against S. aureus and is interestingly resistant to degradation by S. aureus proteases.

  17. Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice

    Directory of Open Access Journals (Sweden)

    Vinodkumar C

    2008-07-01

    Full Text Available Drug resistance is the major cause of increase in morbidity and mortality in neonates. One thousand six hundred forty-seven suspected septicemic neonates were subjected for microbiological analysis over a period of 5 years. Forty-two P. aeruginosa were isolated and the antibiogram revealed that 28 P. aeruginosa were resistant to almost all the common drugs used (multidrug-resistant. The emergence of antibiotic-resistant bacterial strains is one of the most critical problems of modern medicine. As a result, a novel and most effective approaches for treating infection caused by multidrug-resistant bacteria are urgently required. In this context, one intriguing approach is to use bacteriophages (viruses that kill bacteria in the treatment of infection caused by drug-resistant bacteria. In the present study, the utility of lytic bacteriophages to rescue septicemic mice with multidrug-resistant (MDR P. aeruginosa infection was evaluated. MDR P. aeruginosa was used to induce septicemia in mice by intraperitoneal (i.p. injection of 10 7 CFU. The resulting bacteremia was fatal within 48 hrs. The phage strain used in this study had lytic activity against a wide range of clinical isolates of MDR P. aeruginosa. A single i.p. injection of 3 x 10 9 PFU of the phage strain, administered 45 min after the bacterial challenge, was sufficient to rescue 100% of the animals. Even when treatment was delayed to the point where all animals were moribund, approximately 50% of them were rescued by a single injection of this phage preparation. The ability of this phage to rescue septicemic mice was demonstrated to be due to the functional capabilities of the phage and not to a nonspecific immune effect. The rescue of septicemic mice could be affected only by phage strains able to grow in vitro on the bacterial host used to infect the animals and when such strains are heat-inactivated, they lose their ability to rescue the infected mice. Multidrug-resistant bacteria have

  18. Survival of Salmonella Newport on Whole and Fresh-Cut Cucumbers Treated with Lytic Bacteriophages.

    Science.gov (United States)

    Sharma, Manan; Dashiell, Gwendolyn; Handy, Eric T; East, Cheryl; Reynnells, Russell; White, Chanelle; Nyarko, Esmond; Micallef, Shirley; Hashem, Fawzy; Millner, Patricia D

    2017-04-01

    Salmonella enterica associated with consumption of cucumbers ( Cucumis sativus ) has led to foodborne outbreaks in the United States. Whole and fresh-cut cucumbers are susceptible to S. enterica contamination during growing, harvesting, and postharvest handling. The application of lytic bacteriophages specific for S. enterica was evaluated to reduce Salmonella populations on cucumbers. Unwaxed cucumbers ('Lisboa' variety, or mini-cucumbers purchased at retail) were inoculated with Salmonella Newport (5 log CFU per cucumber) and were sprayed with 3.2 mL of phosphate-buffered saline (control) or 10 log PFU/ml of SalmoFresh, a Salmonella-specific bacteriophage preparation (phage), to deliver 4.76 × 10(7) PFU/cm(2). Cucumbers were stored at 10 or 22°C for 7 days. Inoculated mini-cucumbers were sliced with a sterile knife to investigate Salmonella transfer to mesocarp, and cut pieces were stored at 4°C for 2 days. Populations (log CFU per cucumber) of Salmonella Newport on phage-treated whole cucumbers were significantly (P cucumbers (4.27 ± 0.37) on day 0. Populations on phage-treated cucumbers stored at 10°C were 1.72 ± 0.77 and 1.56 ± 0.46, which were significantly lower than those on control-treated cucumbers (3.20 ± 0.48 and 2.33 ± 0.25) on days 1 and 4, respectively. Between days 0 and 1, populations on control-treated cucumbers stored at 10 and 22°C declined by 1.07 and 2.47 log CFU per cucumber, respectively. At 22°C, Salmonella Newport populations declined by 2.37 log CFU per cucumber between days 0 and 1. Phage application to whole cucumbers before slicing did not reduce the transfer of Salmonella Newport to fresh-cut slices. Lytic phage application may be a potential intervention to reduce Salmonella populations on whole cucumbers.

  19. A rapid quantitative activity assay shows that the Vibrio cholerae colonization factor GbpA is an active lytic polysaccharide monooxygenase

    NARCIS (Netherlands)

    Loose, Jennifer S. M.; Forsberg, Zarah; Fraaije, Marco W.; Eijsink, Vincent G. H.; Vaaje-Kolstad, Gustav

    2014-01-01

    The discovery of the copper-dependent lytic polysaccharide monooxygenases (LPMOs) has revealed new territory for chemical and biochemical analysis. These unique mononuclear copper enzymes are abundant, suggesting functional diversity beyond their established roles in the depolymerization of biomass

  20. A rapid quantitative activity assay shows that the Vibrio cholerae colonization factor GbpA is an active lytic polysaccharide monooxygenase

    NARCIS (Netherlands)

    Loose, Jennifer S. M.; Forsberg, Zarah; Fraaije, Marco W.; Eijsink, Vincent G. H.; Vaaje-Kolstad, Gustav

    2014-01-01

    The discovery of the copper-dependent lytic polysaccharide monooxygenases (LPMOs) has revealed new territory for chemical and biochemical analysis. These unique mononuclear copper enzymes are abundant, suggesting functional diversity beyond their established roles in the depolymerization of biomass

  1. Inhibition of Epstein-Barr Virus Lytic Cycle by an Ethyl Acetate Subfraction Separated from Polygonum cuspidatum Root and Its Major Component, Emodin

    Directory of Open Access Journals (Sweden)

    Ching-Yi Yiu

    2014-01-01

    Full Text Available Polygonum cuspidatum is widely used as a medicinal herb in Asia. In this study, we examined the ethyl acetate subfraction F3 obtained from P. cuspidatum root and its major component, emodin, for their capacity to inhibit the Epstein-Barr virus (EBV lytic cycle. The cell viability was determined by the MTT [3-(4,5-dimethyldiazol-2-yl-2,5-diphenyltetrazolium bromide] method. The expression of EBV lytic proteins was analyzed by immunoblot, indirect immunofluorescence and flow cytometric assays. Real-time quantitative PCR was used to assess the EBV DNA replication and the transcription of lytic genes, including BRLF1 and BZLF1. Results showed that the F3 and its major component emodin inhibit the transcription of EBV immediate early genes, the expression of EBV lytic proteins, including Rta, Zta, and EA-D and reduces EBV DNA replication, showing that F3 and emodin are potentially useful as an anti-EBV drug.

  2. A novel role of IL-17–producing lymphocytes in mediating lytic bone disease in multiple myeloma

    Science.gov (United States)

    Noonan, Kimberly; Marchionni, Luigi; Anderson, Judy; Pardoll, Drew; Roodman, G. David

    2010-01-01

    Osteoclast (OC)–mediated lytic bone disease remains a cause of major morbidity in multiple myeloma. Here we demonstrate the critical role of interleukin-17–producing marrow infiltrating lymphocytes (MILs) in OC activation and development of bone lesions in myeloma patients. Unlike MILs from normal bone marrow, myeloma MILs possess few regulatory T cells (Tregs) and demonstrate an interleukin-17 phenotype that enhances OC activation. In univariate analyses of factors mediating bone destruction, levels of cytokines that selectively induce and maintain the Th17 phenotype tightly correlated with the extent of bone disease in myeloma. In contrast, MILs activated under conditions that skew toward a Th1 phenotype significantly reduced formation of mature OC. These findings demonstrate that interleukin-17 T cells are critical to the genesis of myeloma bone disease and that immunologic manipulations shifting MILs from a Th17 to a Th1 phenotype may profoundly diminish lytic bone lesions in multiple myeloma. PMID:20664052

  3. The algae-lytic ability of bacterium DC10 and the influence of environmental factors on the ability

    Institute of Scientific and Technical Information of China (English)

    SHI Shunyu; LIU Yongding; SHEN Yinwu; LI Genbao

    2005-01-01

    A lysing-bacterium DC10, isolated from Dianchi Lake of Yunnan Province, was characterized to be Pseudomonas sp. It was able to lyse some algae well, such as Microcystis viridis, Selenastrum capricornutum, and so on. In this study, it was shown that the bacterium lysed the algae by releasing a substance; the best lytic effects were achieved at Iow temperatures and in the dark. Different concentrations of CaCI2 and NaNO3 influenced the lytic effects;the ability to lyse algae decreased in the following order: pH 4 > pH 9 > pH 7 > pH 5.5. It was significant to develop a special technology with this kind of bacterium for controlling the bloomforming planktonic microalgae.

  4. Phosphoproteomic Analysis of KSHV-Infected Cells Reveals Roles of ORF45-Activated RSK during Lytic Replication.

    Directory of Open Access Journals (Sweden)

    Denis Avey

    2015-07-01

    Full Text Available Kaposi's Sarcoma-Associated Herpesvirus (KSHV is an oncogenic virus which has adapted unique mechanisms to modulate the cellular microenvironment of its human host. The pathogenesis of KSHV is intimately linked to its manipulation of cellular signaling pathways, including the extracellular signal-regulated kinase (ERK mitogen-activated protein kinase (MAPK pathway. We have previously shown that KSHV ORF45 contributes to the sustained activation of both ERK and p90 ribosomal S6 kinase (RSK, a major functional mediator of ERK/MAPK signaling during KSHV lytic replication. ORF45-activated RSK is required for optimal KSHV lytic gene expression and progeny virion production, though the underlying mechanisms downstream of this activation are still unclear. We hypothesized that the activation of RSK by ORF45 causes differential phosphorylation of cellular and viral substrates, affecting biological processes essential for efficient KSHV lytic replication. Accordingly, we observed widespread and significant differences in protein phosphorylation upon induction of lytic replication. Mass-spectrometry-based phosphoproteomic screening identified putative substrates of ORF45-activated RSK in KSHV-infected cells. Bioinformatic analyses revealed that nuclear proteins, including several transcriptional regulators, were overrepresented among these candidates. We validated the ORF45/RSK-dependent phosphorylation of several putative substrates by employing KSHV BAC mutagenesis, kinase inhibitor treatments, and/or CRISPR-mediated knockout of RSK in KSHV-infected cells. Furthermore, we assessed the consequences of knocking out these substrates on ORF45/RSK-dependent regulation of gene expression and KSHV progeny virion production. Finally, we show data to support that ORF45 regulates the translational efficiency of a subset of viral/cellular genes with complex secondary structure in their 5' UTR. Altogether, these data shed light on the mechanisms by which KSHV ORF45

  5. Lytic enzyme production optimization using low-cost substrates and its application in the clarification of xanthan gum culture broth

    Science.gov (United States)

    da Silva, Cíntia Reis; Silva, Marilia Lordelo Cardoso; Kamida, Helio Mitoshi; Goes-Neto, Aristoteles; Koblitz, Maria Gabriela Bello

    2014-01-01

    Lytic enzymes are widely used in industrial biotechnology as they are able to hydrolyze the bacterial cell wall. One application of these enzymes is the clarification of the culture broth for the production of xanthan gum, because of its viability in viscous media and high specificity. The screening process for filamentous fungi producing lytic enzymes, the optimization of production of these enzymes by the selected microorganism, and the optimization of the application of the enzymes produced in the clarification of culture broth are presented in this article. Eleven fungal isolates were tested for their ability to produce enzymes able to increase the transmittance of the culture broth containing cells of Xanthomonas campestris. To optimize the secretion of lytic enzymes by the selected microorganism the following variables were tested: solid substrate, initial pH, incubation temperature, and addition of inducer (gelatin). Thereafter, secretion of the enzymes over time of incubation was assessed. To optimize the clarification process a central composite rotational design was applied in which the pH of the reaction medium, the dilution of the broth, and the reaction temperature were evaluated. The isolate identified as Aspergillus tamarii was selected for increasing the transmittance of the broth from 2.1% to 54.8%. The best conditions for cultivation of this microorganism were: use of coconut husk as solid substrate, with 90% moisture, at 30°C for 20 days. The lytic enzymes produced thereby were able to increase the transmittance of the culture broth from 2.1% to 70.6% at 65°C, without dilution and without pH adjustment. PMID:25473487

  6. Morphological diversity of cultured cold-active lytic bacteriophages isolated from the Napahai plateau wetland in China

    Institute of Scientific and Technical Information of China (English)

    Xiuling Ji; Chunjing Zhang; Anxiu Kuang; Jiankai Li; Yinshan Cui; Kunhao Qin; Lianbing Lin; Benxu Cheng; Qi Zhang; Yunlin Wei

    2015-01-01

    Dear Editor,Viruses are the most abundant,diverse,and ubiquitous entities(approximately 1031)on Earth.They play major roles in horizontal gene transfer,the regulation of bacterial community structures,as well as nutrient and energy cycles of marine ecosystems(Danovaro et al.,2008).In particular,lytic bacteriophages(phages)can infect and kill bacteria without harming human or animal

  7. In vitro and in vivo analyses of the Bacillus anthracis spore cortex lytic protein SleL

    OpenAIRE

    2012-01-01

    The bacterial endospore is the most resilient biological structure known. Multiple protective integument layers shield the spore core and promote spore dehydration and dormancy. Dormancy is broken when a spore germinates and becomes a metabolically active vegetative cell. Germination requires the breakdown of a modified layer of peptidoglycan (PG) known as the spore cortex. This study reports in vitro and in vivo analyses of the Bacillus anthracis SleL protein. SleL is a spore cortex lytic en...

  8. Sensibilidad in vitro de micobacterias a dos péptidos sintéticos híbridos con actividad antimicrobiana In-vitro activity of two hybrid synthetic peptides having antimicrobial activity against mycobacteria

    Directory of Open Access Journals (Sweden)

    E. Zerbini

    2006-12-01

    Full Text Available El aumento de aislamientos clínicos de Mycobacterium tuberculosis resistentes a las drogas esenciales y de casos de micobacteriosis diseminadas debidas al complejo Mycobacterium avium hacen necesario investigar nuevos agentes antimicobacterianos. Los péptidos antimicrobianos son un nuevo grupo de antibióticos que poseen un mecanismo de acción particular. Algunos de ellos, como la cecropina y la melitina, han sido aislados de insectos y han demostrado buena actividad in vitro contra bacterias gram positivas y gram negativas. Híbridos sintéticos de esos péptidos han presentado mayor actividad que los péptidos individuales. En este trabajo se evaluó la actividad in vitro de dos péptidos híbridos sintéticos de melitina y cecropina contra M. tuberculosis, complejo M. avium, Mycobacterium fortuitum y Mycobacterium smegmatis. Se determinó la concentración inhibitoria mínima empleando la técnica de macrodilución en caldo. Luego se estableció la concentración bactericida mínima en medio Lowenstein Jensen. Los péptidos evaluados mostraron ser activos in vitro contra M. smegmatis, mientras que no presentaron ninguna actividad contra las otras micobacterias estudiadas.The increase in both Mycobacterium tuberculosis human clinical isolates resistant to the essential drugs and cases of disseminated micobacteriosis due to Mycobacterium avium Complex, underlines the need to investigate new antimicobacterial agents. The antimicrobial peptides are a new group of active antibiotics with a particular mechanism of action. Some of them, like cecropin and melittin, isolated from insects, have demonstrated good in vitro activity against Gram-positive and Gram-negative bacteria. Synthetic hybrids of those peptides have been more active than individual peptides. In this study, the in vitro activity of two hybrid synthetic peptides from melittin and cecropin against M. tuberculosis, M. avium Complex, Mycobacterium fortuitum and Mycobacterium smegmatis

  9. Potential antiviral lignans from the roots of Saururus chinensis with activity against Epstein-Barr virus lytic replication.

    Science.gov (United States)

    Cui, Hui; Xu, Bo; Wu, Taizong; Xu, Jun; Yuan, Yan; Gu, Qiong

    2014-01-24

    Epstein-Barr virus (EBV) is a member of the γ-herpes virus subfamily and has been implicated in the pathogenesis of several human malignancies. Bioassay-guided fractionation was conducted on an EtOAc-soluble extract of the roots of Saururus chinensis and monitored using an EBV lytic replication assay. This led to the isolation of 19 new (1-19) and nine known (20-28) lignans. The absolute configurations of the new lignans were established by Mosher's ester, ECD, and computational methods. Eight lignans, including three sesquineolignans (19, 23, and 24) and five dineolignans (3, 4, 26, 27, and 28), exhibited inhibitory effects toward EBV lytic replication with EC50 values from 1.09 to 7.55 μM and SI values from 3.3 to 116.4. In particular, manassantin B (27) exhibited the most promising inhibition, with an EC50 of 1.72 μM, low cytotoxicity, CC50 > 200 μM, and SI > 116.4. This is the first study demonstrating that lignans possess anti-EBV lytic replication activity.

  10. Advanced lytic lesion is a poor mobilization factor in peripheral blood stem cell collection in patients with multiple myeloma.

    Science.gov (United States)

    Jung, Sung-Hoon; Yang, Deok-Hwan; Ahn, Jae-Sook; Kim, Yeo-Kyeoung; Kim, Hyeoung-Joon; Lee, Je-Jung

    2014-12-01

    This study examined the incidence and predictors of peripheral blood stem cell (PBSC) mobilization failure in patients with multiple myeloma (MM). Retrospective data for 104 patients who received granulocyte colony-stimulating factor (G-CSF) alone or with cyclophosphamide as mobilization regimens were analyzed. The rates of mobilization failure using two definitions of failure (mobilization failure were evaluated using logistic regression analysis which included age, advanced osteolytic lesions, bone marrow cellularity before mobilization, platelet count, body mass index before mobilization, and mobilization method. Lytic bone lesions were assessed using a conventional skeletal survey, and advanced osteolytic lesions were defined as lytic lesions in more than three skeletal sites regardless of the number of lytic lesions. On multivariate analysis, advanced osteolytic lesions [hazard ratio (HR) = 10.95, P = 0.001] and age ≥60 years (HR = 5.45, P = 0.016) were associated with a PBSC yield mobilization (HR = 4.72, P = 0.005), and G-CSF only mobilization (HR 10.52, P mobilization failure in MM patients.

  11. Biomimetic aqueous-core lipid nanoballoons integrating a multiple emulsion formulation: a suitable housing system for viable lytic bacteriophages.

    Science.gov (United States)

    Balcão, Victor M; Glasser, Cássia A; Chaud, Marco V; del Fiol, Fernando S; Tubino, Matthieu; Vila, Marta M D C

    2014-11-01

    The emergence of antibiotic-resistant bacterial strains and the weak penetration of antibiotics into bacterial biofilms put an emphasis in the need for safe and effective alternatives for antimicrobial treatments. The application of strictly lytic bacteriophages (or phages) has been proposed as an alternative (or complement) to conventional antibiotics, allowing release of the natural predators of bacteria directly to the site of infection. In the present research effort, production of bacteriophage derivatives (starting from lytic phage particle isolates), encompassing full stabilization of their three-dimensional structure, has been attempted via housing said bacteriophage particles within lipid nanovesicles integrating a multiple water-in-oil-in-water (W/O/W) emulsion. As a proof-of-concept for the aforementioned strategy, bacteriophage particles with broad lytic spectrum were entrapped within the aqueous core of lipid nanoballoons integrating a W/O/W multiple emulsion. Long-term storage of the multiple emulsions produced did not lead to leaching of phage particles, thus proving the effectiveness of the encapsulation procedure.

  12. Isolation and characterization of five lytic bacteriophages infecting a Vibrio strain closely related to Vibrio owensii.

    Science.gov (United States)

    Yu, Yan-Ping; Gong, Ting; Jost, Günter; Liu, Wen-Hua; Ye, De-Zan; Luo, Zhu-Hua

    2013-11-01

    Vibrio owensii is a potential bacterial pathogen in marine aquaculture system. In this study, five lytic phages specific against Vibrio strain B8D, closely related to V. owensii, were isolated from seawater of an abalone farm. The phages were characterized with respect to morphology, genome size, growth phenotype, as well as thermal, and pH stability. All phages were found to belong to the family Siphoviridae with long noncontractile tails and terminal fibers. Restriction analysis indicated that the five phages were dsDNA viruses with molecular weights ranging from c. 30 to 48 kb. One-step growth experiments revealed that the phages were heterogeneous in latent periods (10-70 min), rise periods (40-70 min), and burst sizes [23-331 plaque-forming units (PFU) per infected cell] at the same host strain. All phages were thermal stable and were tolerant to a wide range of pH. The results indicated that these phages could be potential candidates of a phage cocktail for biological control of V. owensii in aquaculture systems.

  13. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan.

    Science.gov (United States)

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz Ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract.

  14. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli

    Science.gov (United States)

    Tazzyman, Samuel J; Hall, Alex R

    2015-01-01

    The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods. PMID:25268496

  15. Characterization and function of kuruma shrimp lysozyme possessing lytic activity against Vibrio species.

    Science.gov (United States)

    Hikima, Sonomi; Hikima, Jun ichi; Rojtinnakorn, Jiraporn; Hirono, Ikuo; Aoki, Takashi

    2003-10-16

    Lysozyme cDNA was isolated from a kuruma shrimp, Marsupenaeus japonicus, hemocyte cDNA library. The cDNA consists of 1055 base pairs (bp) and encodes a chicken-type (c-type) lysozyme with a deduced amino acid sequence of 156 residues. The kuruma shrimp lysozyme has a high identity (79.7%) with pacific white shrimp lysozyme, and low to moderate identities (33.3-43.0%) with lysozymes of insects and vertebrates. Comparisons with other c-type lysozymes from invertebrates and vertebrates showed that the two catalytic residues (Glu58 and Asp75) and the eight cysteine residue motif were completely conserved. Two novel insertion sequences were also observed in the kuruma and pacific white shrimp lysozyme amino acid sequences. Interestingly, phylogenetic analysis revealed that the kuruma shrimp lysozyme was more closely related to vertebrate c-type lysozymes. Expression of the cDNA in insect cells, using a baculovirus expression system, yielded a recombinant lysozyme with optimum activity at pH 7.5 and 50 degrees C, as evaluated by a lysoplate assay. The kuruma shrimp lysozyme displayed lytic activities against several Vibrio species and fish pathogens, including Vibrio penaeicida (a pathogenic bacteria to the kuruma shrimp) and suggested that shrimp lysozyme affects a greater variety of pathogens.

  16. Hemoglobin is a co-factor of human trypanosome lytic factor.

    Directory of Open Access Journals (Sweden)

    Justin Widener

    2007-09-01

    Full Text Available Trypanosome lytic factor (TLF is a high-density lipoprotein (HDL subclass providing innate protection to humans against infection by the protozoan parasite Trypanosoma brucei brucei. Two primate-specific plasma proteins, haptoglobin-related protein (Hpr and apolipoprotein L-1 (ApoL-1, have been proposed to kill T. b. brucei both singularly or when co-assembled into the same HDL. To better understand the mechanism of T. b. brucei killing by TLF, the protein composition of TLF was investigated using a gentle immunoaffinity purification technique that avoids the loss of weakly associated proteins. HDL particles recovered by immunoaffinity absorption, with either anti-Hpr or anti-ApoL-1, were identical in protein composition and specific activity for T. b. brucei killing. Here, we show that TLF-bound Hpr strongly binds Hb and that addition of Hb stimulates TLF killing of T. b. brucei by increasing the affinity of TLF for its receptor, and by inducing Fenton chemistry within the trypanosome lysosome. These findings suggest that TLF in uninfected humans may be inactive against T. b. brucei prior to initiation of infection. We propose that infection of humans by T. b. brucei causes hemolysis that triggers the activation of TLF by the formation of Hpr-Hb complexes, leading to enhanced binding, trypanolytic activity, and clearance of parasites.

  17. Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells.

    Science.gov (United States)

    Estes, Kathleen A; Szumowski, Suzannah C; Troemel, Emily R

    2011-09-01

    The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo.

  18. Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay.

    Science.gov (United States)

    Kittl, Roman; Kracher, Daniel; Burgstaller, Daniel; Haltrich, Dietmar; Ludwig, Roland

    2012-10-26

    Recent studies demonstrate that enzymes from the glycosyl hydrolase family 61 (GH61) show lytic polysaccharide monooxygenase (PMO) activity. Together with cellobiose dehydrogenase (CDH) an enzymatic system capable of oxidative cellulose cleavage is formed, which increases the efficiency of cellulases and put PMOs at focus of biofuel research. Large amounts of purified PMOs, which are difficult to obtain from the native fungal producers, are needed to study their reaction kinetics, structure and industrial application. In addition, a fast and robust enzymatic assay is necessary to monitor enzyme production and purification. Four pmo genes from Neurospora crassa were expressed in P. pastoris under control of the AOX1 promoter. High yields were obtained for the glycosylated gene products PMO-01867, PMO-02916 and PMO-08760 (>300 mg L-1), whereas the yield of non-glycosylated PMO-03328 was moderate (~45 mg L-1). The production and purification of all four enzymes was specifically followed by a newly developed, fast assay based on a side reaction of PMO: the production of H2O2 in the presence of reductants. While ascorbate is a suitable reductant for homogeneous PMO preparations, fermentation samples require the specific electron donor CDH. P. pastoris is a high performing expression host for N. crassa PMOs. The pmo genes under control of the native signal sequence are correctly processed and active. The novel CDH-based enzyme assay allows fast determination of PMO activity in fermentation samples and is robust against interfering matrix components.

  19. Involvement of Noxa in mediating cellular ER stress responses to lytic virus infection.

    Science.gov (United States)

    Rosebeck, Shaun; Sudini, Kuladeep; Chen, Tiannan; Leaman, Douglas W

    2011-09-01

    Noxa is a Bcl-2 homology domain-containing pro-apoptotic mitochondrial protein. Noxa mRNA and protein expression are upregulated by dsRNA or virus, and ectopic Noxa expression enhances cellular sensitivity to virus or dsRNA-induced apoptosis. Here we demonstrate that Noxa null baby mouse kidney (BMK) cells are deficient in normal cytopathic response to lytic viruses, and that reconstitution of the knockout cells with wild-type Noxa restored normal cytopathic responses. Noxa regulation by virus mirrored its regulation by proteasome inhibitors or ER stress inducers and the ER stress response inhibitor salubrinal protected cells against viral cytopathic effects. Noxa mRNA and protein were synergistically upregulated by IFN or dsRNA when combined with ER stress inducers, leading to Noxa/Mcl-1 interaction, activation of Bax and pro-apoptotic caspases, degradation of Mcl-1, loss of mitochondrial membrane potential and initiation of apoptosis. These data highlight the importance of ER stress in augmenting the expression of Noxa following viral infection.

  20. Isolation and characterisation of lytic bacteriophages of Klebsiella pneumoniae and Klebsiella oxytoca.

    Science.gov (United States)

    Karumidze, Natia; Kusradze, Ia; Rigvava, Sophio; Goderdzishvili, Marine; Rajakumar, Kumar; Alavidze, Zemphira

    2013-03-01

    Klebsiella bacteria have emerged as an increasingly important cause of community-acquired nosocomial infections. Extensive use of broad-spectrum antibiotics in hospitalised patients has led to both increased carriage of Klebsiella and the development of multidrug-resistant strains that frequently produce extended-spectrum β-lactamases and/or other defences against antibiotics. Many of these strains are highly virulent and exhibit a strong propensity to spread. In this study, six lytic Klebsiella bacteriophages were isolated from sewage-contaminated river water in Georgia and characterised as phage therapy candidates. Two of the phages were investigated in greater detail. Biological properties, including phage morphology, nucleic acid composition, host range, growth phenotype, and thermal and pH stability were studied for all six phages. Limited sample sequencing was performed to define the phylogeny of the K. pneumoniae- and K. oxytoca-specific bacteriophages vB_Klp_5 and vB_Klox_2, respectively. Both of the latter phages had large burst sizes, efficient rates of adsorption and were stable under different adverse conditions. Phages reported in this study are double-stranded DNA bacterial viruses belonging to the families Podoviridae and Siphoviridae. One or more of the six phages was capable of efficiently lysing ~63 % of Klebsiella strains comprising a collection of 123 clinical isolates from Georgia and the United Kingdom. These phages exhibit a number of properties indicative of potential utility in phage therapy cocktails.

  1. Characterisation and genome sequence of the lytic Acinetobacter baumannii bacteriophage vB_AbaS_Loki

    Science.gov (United States)

    Wand, Matthew E.; Briers, Yves; Lavigne, Rob; Sutton, J. Mark; Reynolds, Darren M.

    2017-01-01

    Acinetobacter baumannii has emerged as an important nosocomial pathogen in healthcare and community settings. While over 100 of Acinetobacter phages have been described in the literature, relatively few have been sequenced. This work describes the characterisation and genome annotation of a new lytic Acinetobacter siphovirus, vB_AbaS_Loki, isolated from activated sewage sludge. Sequencing revealed that Loki encapsulates a 41,308 bp genome, encoding 51 predicted open reading frames. Loki is most closely related to Acinetobacter phage IME_AB3 and more distantly related to Burkholderia phage KL1, Paracoccus phage vB_PmaS_IMEP1 and Pseudomonas phages vB_Pae_Kakheti25, vB_PaeS_SCH_Ab26 and PA73. Loki is characterised by a narrow host range, among the 40 Acinetobacter isolates tested, productive infection was only observed for the propagating host, A. baumannii ATCC 17978. Plaque formation was found to be dependent upon the presence of Ca2+ ions and adsorption to host cells was abolished upon incubation with a mutant of ATCC 17978 encoding a premature stop codon in lpxA. The complete genome sequence of vB_AbaS_Loki was deposited in the European Nucleotide Archive (ENA) under the accession number LN890663. PMID:28207864

  2. Syntaxin 8 is required for efficient lytic granule trafficking in cytotoxic T lymphocytes.

    Science.gov (United States)

    Bhat, Shruthi S; Friedmann, Kim S; Knörck, Arne; Hoxha, Cora; Leidinger, Petra; Backes, Christina; Meese, Eckart; Keller, Andreas; Rettig, Jens; Hoth, Markus; Qu, Bin; Schwarz, Eva C

    2016-07-01

    Cytotoxic T lymphocytes (CTL) eliminate pathogen-infected and cancerous cells mainly by polarized secretion of lytic granules (LG, containing cytotoxic molecules like perforin and granzymes) at the immunological synapse (IS). Members of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) family are involved in trafficking (generation, transport and fusion) of vesicles at the IS. Syntaxin 8 (Stx8) is expressed in LG and colocalizes with the T cell receptor (TCR) upon IS formation. Here, we report the significance of Stx8 for human CTL cytotoxicity. We found that Stx8 mostly localized in late, recycling endosomal and lysosomal compartments with little expression in early endosomal compartments. Down-regulation of Stx8 by siRNA resulted in reduced cytotoxicity. We found that following perforin release of the pre-existing pool upon target cell contact, Stx8 down-regulated CTL regenerate perforin pools less efficiently and thus release less perforin compared to control CTL. CD107a degranulation, real-time and end-point population cytotoxicity assays, and high resolution microscopy support our conclusion that Stx8 is required for proper and timely sorting and trafficking of cytotoxic molecules to functional LG through the endosomal pathway in human CTL.

  3. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan

    Science.gov (United States)

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    Abstract This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract. PMID:26691463

  4. Parachlamydia acanthamoeba is endosymbiotic or lytic for Acanthamoeba polyphaga depending on the incubation temperature.

    Science.gov (United States)

    Greub, Gilbert; La Scola, Bernard; Raoult, Didier

    2003-06-01

    Parachlamydiaceae are potential emerging pathogens that naturally infect free-living amoebae. We investigated the affects of incubation temperature on the growth and cytopathic effect of P. acanthamoeba in Acanthamoeba polyphaga. A. polyphaga were infected with P. acanthamoeba and incubated at different temperatures for ten days. Bacterial growth was quantified by real-time PCR. Cytopathic effects were determined by counting the number of cysts and viable amoebae (unstained with trypan blue) in Nageotte counting chambers. Uninfected amoebae cultures were used as negative control. At 32, 35, and 37 degrees C, we observed a significant decrease in the number of viable A. polyphaga that contrasted with the delayed and smaller decrease in the number of living A. polyphaga observed at 25, 28, and 30 degrees C. Higher incubation temperature, which is associated with amoebal lysis, surprisingly was not associated with increased growth rate. P. acanthamoeba is lytic for A. polyphaga at 32-37 degrees C but endosymbiotic at 25-30 degrees C. This suggests that A. polyphaga may be a reservoir of endosymbionts at the lower temperature of the nasal mucosa, which may be liberated by lysis at higher temperature, for instance, when the amoeba is inhaled and reaches the lower respiratory tract.

  5. Identification of a membrane-bound prepore species clarifies the lytic mechanism of actinoporins

    CERN Document Server

    Morante, Koldo; Gil-Cartón, David; Redondo-Morata, Lorena; Sot, Jesús; Scheuring, Simon; Valle, Mikel; González-Mañas, Juan Manuel; Tsumoto, Kouhei; Caaveiro, Jose M M

    2016-01-01

    Pore-forming toxins (PFT) are cytolytic proteins belonging to the molecular warfare apparatus of living organisms. The assembly of the functional transmembrane pore requires several intermediate steps ranging from a water-soluble monomeric species to the multimeric ensemble inserted in the cell membrane. The non-lytic oligomeric intermediate known as prepore plays an essential role in the mechanism of insertion of the class of $\\beta$-PFT. However, in the class of $\\alpha$-PFT like the actinoporins produced by sea anemones, evidence of membrane-bound prepores is still lacking. We have employed single-particle cryo-electron microscopy (cryo-EM) and atomic force microscopy (AFM) to identify, for the first time, a prepore species of the actinoporin fragaceatoxin C (FraC) bound to lipid vesicles. The size of the prepore coincides that of the functional pore, except for the transmembrane region, which is absent in the prepore. Biochemical assays indicated that, in the prepore species, the N-terminus is not inserte...

  6. Characterization of potential lytic bacteriophage against Vibrio alginolyticus and its therapeutic implications on biofilm dispersal.

    Science.gov (United States)

    Sasikala, Dakshinamurthy; Srinivasan, Pappu

    2016-12-01

    Vibrio alginolyticus is a leading cause of vibriosis, presenting opportunistic infections to humans associated with raw seafood contamination. At present, phage therapy that acts as an alternative sanitizing agent is explored for targeting V. alginolyticus. The study outcome revealed that the phage VP01 with its extreme lytic effect showed a high potential impact on the growth of V. alginolyticus as well as biofilm formation. Electron microscopy revealed the phage resemblance to Myoviridae, based on its morphology. Further study clarified that the phage VP01 possesses a broad host spectrum and amazing phage sensitivity at different pH, high thermal stability, and high burst size of 415 PFU/cell. In addition, the investigation of phage co-culturing against this pathogen resulted in a significant growth reduction even at less MOIs 0.1 and 1. These results suggest that the phage could be a promising candidate for the control of V. alginolyticus infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Use of lytic bacteriophages to reduce Salmonella Enteritidis in experimentally contaminated chicken cuts

    Directory of Open Access Journals (Sweden)

    L Fiorentin

    2005-12-01

    Full Text Available Reducing Salmonella contamination in poultry is of major importance to prevent the introduction of this microorganism into the food chain. Salmonellae may spread during storage time (shelf life whenever pre-harvest control fails or post-harvest contamination occurs. Therefore, preventive measures should also be used in the post-harvest level of poultry production in order to control salmonellae. Chicken skin samples were experimentally contaminated by immersing whole legs (thighs and drumsticks in a suspension containing 10(6 colony forming units per milliliter (CFU/mL of Salmonella Enteritidis phage type 4 (SE PT4 at the slaughter day. One day later, samples from one group were immersed in a suspension pool containing 10(9 CFU/mL of each of three wild salmonella-lytic bacteriophages previously isolated from feces of free-range chickens. Salmonella counting was performed at three-day intervals in the chicken legs stored at 5°C and showed a significant reduction (P<0.05 of SE PT4 in bacteriophage-treated cuts on days 3, 6 and 9 post-treatment. These findings suggest that the use of bacteriophages may reduce SE PT4 in chicken skin. Further studies are encouraged and might demonstrate the potential of this approach as an efficient and safe technique to be routinelly used for Salmonella control in chicken products.

  8. Chromatin Modulation of Herpesvirus Lytic Gene Expression: Managing Nucleosome Density and Heterochromatic Histone Modifications

    Directory of Open Access Journals (Sweden)

    Thomas M. Kristie

    2016-03-01

    Full Text Available Like their cellular hosts, herpesviruses are subject to the regulatory impacts of chromatin assembled on their genomes. Upon infection, these viruses are assembled into domains of chromatin with heterochromatic signatures that suppress viral gene expression or euchromatic characteristics that promote gene expression. The organization and modulation of these chromatin domains appear to be intimately linked to the coordinated expression of the different classes of viral genes and thus ultimately play an important role in the progression of productive infection or the establishment and maintenance of viral latency. A recent report from the Knipe laboratory (J. S. Lee, P. Raja, and D. M. Knipe, mBio 7:e02007-15, 2016 contributes to the understanding of the dynamic modulation of chromatin assembled on the herpes simplex virus genome by monitoring the levels of characteristic heterochromatic histone modifications (histone H3 lysine 9 and 27 methylation associated with a model viral early gene during the progression of lytic infection. Additionally, this study builds upon previous observations that the viral immediate-early protein ICP0 plays a role in reducing the levels of heterochromatin associated with the early genes.

  9. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli.

    Science.gov (United States)

    Tazzyman, Samuel J; Hall, Alex R

    2015-03-17

    The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods.

  10. Characterisation and genome sequence of the lytic Acinetobacter baumannii bacteriophage vB_AbaS_Loki.

    Science.gov (United States)

    Turner, Dann; Wand, Matthew E; Briers, Yves; Lavigne, Rob; Sutton, J Mark; Reynolds, Darren M

    2017-01-01

    Acinetobacter baumannii has emerged as an important nosocomial pathogen in healthcare and community settings. While over 100 of Acinetobacter phages have been described in the literature, relatively few have been sequenced. This work describes the characterisation and genome annotation of a new lytic Acinetobacter siphovirus, vB_AbaS_Loki, isolated from activated sewage sludge. Sequencing revealed that Loki encapsulates a 41,308 bp genome, encoding 51 predicted open reading frames. Loki is most closely related to Acinetobacter phage IME_AB3 and more distantly related to Burkholderia phage KL1, Paracoccus phage vB_PmaS_IMEP1 and Pseudomonas phages vB_Pae_Kakheti25, vB_PaeS_SCH_Ab26 and PA73. Loki is characterised by a narrow host range, among the 40 Acinetobacter isolates tested, productive infection was only observed for the propagating host, A. baumannii ATCC 17978. Plaque formation was found to be dependent upon the presence of Ca2+ ions and adsorption to host cells was abolished upon incubation with a mutant of ATCC 17978 encoding a premature stop codon in lpxA. The complete genome sequence of vB_AbaS_Loki was deposited in the European Nucleotide Archive (ENA) under the accession number LN890663.

  11. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  12. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen;

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2...

  13. Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots

    Science.gov (United States)

    Gordya, Natalia; Yakovlev, Andrey; Kruglikova, Anastasia; Tulin, Dmitry; Potolitsina, Evdokia; Suborova, Tatyana; Bordo, Domenico; Rosano, Camillo; Chernysh, Sergey

    2017-01-01

    Biofilms, sedimented microbial communities embedded in a biopolymer matrix cause vast majority of human bacterial infections and many severe complications such as chronic inflammatory diseases and cancer. Biofilms’ resistance to the host immunity and antibiotics makes this kind of infection particularly intractable. Antimicrobial peptides (AMPs) are a ubiquitous facet of innate immunity in animals. However, AMPs activity was studied mainly on planktonic bacteria and little is known about their effects on biofilms. We studied structure and anti-biofilm activity of AMP complex produced by the maggots of blowfly Calliphora vicina living in environments extremely contaminated by biofilm-forming germs. The complex exhibits strong cell killing and matrix destroying activity against human pathogenic antibiotic resistant Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii biofilms as well as non-toxicity to human immune cells. The complex was found to contain AMPs from defensin, cecropin, diptericin and proline-rich peptide families simultaneously expressed in response to bacterial infection and encoded by hundreds mRNA isoforms. All the families combine cell killing and matrix destruction mechanisms, but the ratio of these effects and antibacterial activity spectrum are specific to each family. These molecules dramatically extend the list of known anti-biofilm AMPs. However, pharmacological development of the complex as a whole can provide significant advantages compared with a conventional one-component approach. In particular, a similar level of activity against biofilm and planktonic bacteria (MBEC/MIC ratio) provides the complex advantage over conventional antibiotics. Available methods of the complex in situ and in vitro biosynthesis make this idea practicable. PMID:28278280

  14. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens.

    Science.gov (United States)

    Sulakvelidze, Alexander

    2013-10-01

    Bacteriophages (also called 'phages') are viruses that kill bacteria. They are arguably the oldest (3 billion years old, by some estimates) and most ubiquitous (total number estimated to be 10(30) -10(32) ) known organisms on Earth. Phages play a key role in maintaining microbial balance in every ecosystem where bacteria exist, and they are part of the normal microflora of all fresh, unprocessed foods. Interest in various practical applications of bacteriophages has been gaining momentum recently, with perhaps the most attention focused on using them to improve food safety. That approach, called 'phage biocontrol', typically includes three main types of applications: (i) using phages to treat domesticated livestock in order to reduce their intestinal colonization with, and shedding of, specific bacterial pathogens; (ii) treatments for decontaminating inanimate surfaces in food-processing facilities and other food establishments, so that foods processed on those surfaces are not cross-contaminated with the targeted pathogens; and (iii) post-harvest treatments involving direct applications of phages onto the harvested foods. This mini-review primarily focuses on the last type of intervention, which has been gaining the most momentum recently. Indeed, the results of recent studies dealing with improving food safety, and several recent regulatory approvals of various commercial phage preparations developed for post-harvest food safety applications, strongly support the idea that lytic phages may provide a safe, environmentally-friendly, and effective approach for significantly reducing contamination of various foods with foodborne bacterial pathogens. However, some important technical and nontechnical problems may need to be addressed before phage biocontrol protocols can become an integral part of routine food safety intervention strategies implemented by food industries in the USA.

  15. Characterization of four lytic transducing bacteriophages of luminescent Vibrio harveyi isolated from shrimp (Penaeus monodon) hatcheries.

    Science.gov (United States)

    Thiyagarajan, Sanjeevi; Chrisolite, Bagthasingh; Alavandi, Shankar V; Poornima, Modem; Kalaimani, Natarajan; Santiago, T Chinnappan

    2011-12-01

    Four lytic bacteriophages designated as φVh1, φVh2, φVh3, and φVh4 were isolated from commercial shrimp hatcheries, possessing broad spectrum of infectivity against luminescent Vibrio harveyi isolates, considering their potential as biocontrol agent of luminescent bacterial disease in shrimp hatcheries, and were characterized by electron microscopy, genomic analysis, restriction enzyme analysis (REA), and pulsed-field gel electrophoresis (PFGE). Three phages φVh1, φVh2, and φVh4 had an icosahedral head of 60-115 nm size with a long, noncontractile tail of 130-329 × 1-17 nm, belonged to the family Siphoviridae. φVh3 had an icosahedral head (72 ± 5 nm) with a short tail (27 × 12 nm) and belonged to Podoviridae. REA with DraI and PFGE of genomic DNA digested with ScaI and XbaI and cluster analysis of their banding patterns indicated that φVh3 was distinct from the other three siphophages. PFGE-based genome mean size of the four bacteriophages φVh1, φVh2, φVh3, and φVh4 was estimated to be about 85, 58, 64, and 107 kb, respectively. These phages had the property of generalized transduction as demonstrated by transduction with plasmid pHSG 396 with frequencies ranging from 4.1 × 10(-7) to 2 × 10(-9) per plaque-forming unit, suggesting a potential ecological role in gene transfer among aquatic vibrios.

  16. Chemical modification of methionines in a cobra venom cytotoxin differentiates between lytic and binding domains.

    Science.gov (United States)

    Stevens-Truss, R; Hinman, C L

    1996-08-01

    Cytotoxin-III from Naja naja atra (CTX) was chemically modified at either or both of its two methionine residues: Over 50% oxidation of methionine-26 occurred with a 1:1 molar ratio of chloramine-T:methionine; at a 5:1 molar ratio, methionine-26 was almost completely oxidized, while methionine-24 was modified only 26%; at a 10:1 molar ratio, both methionines were completely oxidized. Each oxidized derivative demonstrated a lower toxicity toward T-cells than toward heart cells. Conversely, binding to heart cells was affected more than binding to T-cells. Cyanogen bromide cleaved native CTX at both methionines, excising phenyl-alanine-25 and methionine-26 and converting methionine-24 to homoserine lactone. This treatment of CTX eliminated cytotoxicity toward both heart and T-cells, but had only a modest effect upon T-cell binding, as had 50% oxidation of methionine-26, suggesting that CTX lytic and binding regions may be distinct. A selective loss in heart cell binding following oxidation of methionine-24 further suggests that different parts of CTX may interact with the two types of target cells. Perturbation of the relatively flat hydrophobic surface of the CTX' triple-stranded beta-sheet could result from the introduction of negative charge due to methionine-24 oxidation. Alternatively, amino acid side chain participation in a CTX binding domain may be altered by the potential formation of a new hydrogen bond between tyrosine-51 and methionine-24 sulfoxide, as revealed by computer modeling of the completely oxidized CTX derivative.

  17. Natural killer lytic-associated molecule plays a role in controlling tumor dissemination and metastasis

    Directory of Open Access Journals (Sweden)

    Richard Glenn Hoover

    2012-12-01

    Full Text Available Natural killer lytic-associated molecule (NKLAM is an E3 ubiquitin ligase that plays a major role in the cytolytic activity of NK cells. NKLAM is rapidly synthesized and then targeted to the granule membranes of NK cells upon NK activation. Previous studies have shown an essential role for NKLAM in NK killing activity in vitro. These findings were extended to an in vivo model of NK-mediated tumor killing in which NKLAM-deficient knockout (KO mice injected with B16 melanoma cells were found to have significantly higher numbers of pulmonary tumor nodules than wild type (WT mice. To further investigate the role of NKLAM and NK function in tumor immunity in vivo, we utilized additional tumor models to compare tumor development and progression in NKLAM KO and WT mice. Primary tumor growth, dissemination, and metastasis of RMA-S lymphoma cells and E0771 breast cancer cells were evaluated. Both tumor cell lines were stably transfected with constructs that allow expression of green fluorescent protein (GFP, which serves as a tumor-specific marker. Intravenous injection of NK-sensitive RMA-S lymphoma cells resulted in greater dissemination of lymphoma cells in NKLAM KO mice than in WT mice. Lymphoma cells were found in the lymph nodes and bone marrow of NKLAM KO mice two weeks after injection; few detectable tumor cells remained in WT mice. E0771 syngeneic breast cancer cells were injected into the mammary pads of NKLAM KO and WT mice. Primary tumor growth was greater in NKLAM KO than in WT mice. More significantly, there were four to five fold more tumor cells in the blood and lungs of NKLAM KO than in WT mice two weeks after injection of tumor cells into the mammary pad. These results indicate that NKLAM plays a role in tumor development in vivo, especially in controlling tumor dissemination and metastasis to distant sites.

  18. Analyzing Activities of Lytic Polysaccharide Monooxygenases by Liquid Chromatography and Mass Spectrometry.

    Science.gov (United States)

    Westereng, Bjørge; Arntzen, Magnus Ø; Agger, Jane Wittrup; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H

    2017-01-01

    Lytic polysaccharide monooxygenases perform oxidative cleavage of glycosidic bonds in various polysaccharides. The majority of LMPOs studied so far possess activity on either cellulose or chitin and analysis of these activities is therefore the main focus of this review. Notably, however, the number of LPMOs that are active on other polysaccharides is increasing. The products generated by LPMOs from cellulose are either oxidized in the downstream end (at C1) or upstream end (at C4), or at both ends. These modifications only result in small structural changes, which makes both chromatographic separation and product identification by mass spectrometry challenging. The changes in physicochemical properties that are associated with oxidation need to be considered when choosing analytical approaches. C1 oxidation leads to a sugar that is no longer reducing but instead has an acidic functionality, whereas C4 oxidation leads to products that are inherently labile at high and low pH and that exist in a keto-gemdiol equilibrium that is strongly shifted toward the gemdiol in aqueous solutions. Partial degradation of C4-oxidized products leads to the formation of native products, which could explain why some authors claim to have observed glycoside hydrolase activity for LPMOs. Notably, apparent glycoside hydrolase activity may also be due to small amounts of contaminating glycoside hydrolases since these normally have much higher catalytic rates than LPMOs. The low catalytic turnover rates of LPMOs necessitate the use of sensitive product detection methods, which limits the analytical possibilities considerably. Modern liquid chromatography and mass spectrometry have become essential tools for evaluating LPMO activity, and this chapter provides an overview of available methods together with a few novel tools. The methods described constitute a suite of techniques for analyzing oxidized carbohydrate products, which can be applied to LPMOs as well as other carbohydrate

  19. Antibacterial efficacy of lytic bacteriophages against antibiotic-resistant Klebsiella species.

    Science.gov (United States)

    Karamoddini, M Khajeh; Fazli-Bazzaz, B S; Emamipour, F; Ghannad, M Sabouri; Jahanshahi, A R; Saed, N; Sahebkar, A

    2011-07-07

    Bacterial resistance to antibiotics is a leading and highly prevalent problem in the treatment of infectious diseases. Bacteriophages (phages) appear to be effective and safe alternatives for the treatment of resistant infections because of their specificity for bacterial species and lack of infectivity in eukaryotic cells. The present study aimed to isolate bacteriophages against Klebsiella spp. and evaluate their efficacy against antibiotic-resistant species. Seventy-two antibiotic-resistant Klebsiella spp. were isolated from samples of patients who referred to the Ghaem Hospital (Mashhad, Iran). Lytic bacteriophages against Klebsiella spp. were isolated from wastewater of the septic tank of the same hospital. Bactericidal activity of phages against resistant Klebsiella spp. was tested in both liquid (tube method; after 1 and 24 h of incubation) and solid (double-layer agar plate method; after 24 h of incubation) phases. In each method, three different concentrations of bacteriophages (low: 10(7) PFU/mL) were used. Bacteriophages showed promising bactericidal activity at all assessed concentrations, regardless of the test method and duration of incubation. Overall, bactericidal effects were augmented at higher concentrations. In the tube method, higher activity was observed after 24 h of incubation compared to the 1-h incubation. The bactericidal effects were also higher in the tube method compared to the double-layer agar plate method after 24 h of incubation. The findings of the present study suggest that bacteriophages possess effective bactericidal activity against resistant Klebsiella spp. These bactericidal activities are influenced by phage concentration, duration of incubation, and test method.

  20. In vitro model for lytic replication, latency, and transformation of an oncogenic alphaherpesvirus.

    Science.gov (United States)

    Schermuly, Julia; Greco, Annachiara; Härtle, Sonja; Osterrieder, Nikolaus; Kaufer, Benedikt B; Kaspers, Bernd

    2015-06-09

    Marek's disease virus (MDV) is an alphaherpesvirus that causes deadly T-cell lymphomas in chickens and serves as a natural small animal model for virus-induced tumor formation. In vivo, MDV lytically replicates in B cells that transfer the virus to T cells in which the virus establishes latency. MDV also malignantly transforms CD4+ T cells with a T(reg) signature, ultimately resulting in deadly lymphomas. No in vitro infection system for primary target cells of MDV has been available due to the short-lived nature of these cells in culture. Recently, we characterized cytokines and monoclonal antibodies that promote survival of cultured chicken B and T cells. We used these survival stimuli to establish a culture system that allows efficient infection of B and T cells with MDV. We were able to productively infect with MDV B cells isolated from spleen, bursa or blood cultured in the presence of soluble CD40L. Virus was readily transferred from infected B to T cells stimulated with an anti-TCRαVβ1 antibody, thus recapitulating the in vivo situation in the culture dish. Infected T cells could then be maintained in culture for at least 90 d in the absence of TCR stimulation, which allowed the establishment of MDV-transformed lymphoblastoid cell lines (LCL). The immortalized cells had a signature comparable to MDV-transformed CD4+ α/β T cells present in tumors. In summary, we have developed a novel in vitro system that precisely reflects the life cycle of an oncogenic herpesivrus in vivo and will allow us to investigate the interaction between virus and target cells in an easily accessible system.

  1. Antibacterial Efficacy of Lytic Bacteriophages against Antibiotic-Resistant Klebsiella Species

    Directory of Open Access Journals (Sweden)

    M. Khajeh Karamoddini

    2011-01-01

    Full Text Available Bacterial resistance to antibiotics is a leading and highly prevalent problem in the treatment of infectious diseases. Bacteriophages (phages appear to be effective and safe alternatives for the treatment of resistant infections because of their specificity for bacterial species and lack of infectivity in eukaryotic cells. The present study aimed to isolate bacteriophages against Klebsiella spp. and evaluate their efficacy against antibiotic-resistant species. Seventy-two antibiotic-resistant Klebsiella spp. were isolated from samples of patients who referred to the Ghaem Hospital (Mashhad, Iran. Lytic bacteriophages against Klebsiella spp. were isolated from wastewater of the septic tank of the same hospital. Bactericidal activity of phages against resistant Klebsiella spp. was tested in both liquid (tube method; after 1 and 24 h of incubation and solid (double-layer agar plate method; after 24 h of incubation phases. In each method, three different concentrations of bacteriophages (low: 107 PFU/mL were used. Bacteriophages showed promising bactericidal activity at all assessed concentrations, regardless of the test method and duration of incubation. Overall, bactericidal effects were augmented at higher concentrations. In the tube method, higher activity was observed after 24 h of incubation compared to the 1-h incubation. The bactericidal effects were also higher in the tube method compared to the double-layer agar plate method after 24 h of incubation. The findings of the present study suggest that bacteriophages possess effective bactericidal activity against resistant Klebsiella spp. These bactericidal activities are influenced by phage concentration, duration of incubation, and test method.

  2. Cyclin-dependent kinase activity controls the onset of the HCMV lytic cycle.

    Directory of Open Access Journals (Sweden)

    Martin Zydek

    Full Text Available The onset of human cytomegalovirus (HCMV lytic infection is strictly synchronized with the host cell cycle. Infected G0/G1 cells support viral immediate early (IE gene expression and proceed to the G1/S boundary where they finally arrest. In contrast, S/G2 cells can be infected but effectively block IE gene expression and this inhibition is not relieved until host cells have divided and reentered G1. During latent infection IE gene expression is also inhibited, and for reactivation to occur this block to IE gene expression must be overcome. It is only poorly understood which viral and/or cellular activities maintain the block to cell cycle or latency-associated viral IE gene repression and whether the two mechanisms may be linked. Here, we show that the block to IE gene expression during S and G2 phase can be overcome by both genotoxic stress and chemical inhibitors of cellular DNA replication, pointing to the involvement of checkpoint-dependent signaling pathways in controlling IE gene repression. Checkpoint-dependent rescue of IE expression strictly requires p53 and in the absence of checkpoint activation is mimicked by proteasomal inhibition in a p53 dependent manner. Requirement for the cyclin dependent kinase (CDK inhibitor p21 downstream of p53 suggests a pivotal role for CDKs in controlling IE gene repression in S/G2 and treatment of S/G2 cells with the CDK inhibitor roscovitine alleviates IE repression independently of p53. Importantly, CDK inhibiton also overcomes the block to IE expression during quiescent infection of NTera2 (NT2 cells. Thus, a timely block to CDK activity not only secures phase specificity of the cell cycle dependent HCMV IE gene expression program, but in addition plays a hitherto unrecognized role in preventing the establishment of a latent-like state.

  3. Lytic effects of normal serum on isolated postonchospheral and metacestode stages of Taenia taeniaeformis.

    Science.gov (United States)

    Conder, G A; Picone, J; Geary, A M; deHoog, J; Williams, J F

    1983-06-01

    Postonchospheral stages of Taenia taeniaeformis liberated from rat livers by enzymatic digestion at 1 to 10 days postinfection (DPI) and metacestodes dissected from infected livers at 22, 34, and 69 DPI were exposed in vitro to immune rat serum (IRS) and to normal serum from rats (NRS), human beings (NHS), or guinea pigs (NGS). The onset of rapid and destructive tegumental changes in all organisms exposed to any of the sera was demonstrated to be complement-dependent because the reaction was: (a) inhibited by treatment of serum at 56 C for 30 min; (b) inhibited by prior incubation of serum with zymosan or with complement-fixing, soluble products derived from larvae of T. taeniaeformis maintained in vitro (IVP); and (c) abolished by the addition of EDTA. Lytic effects occurred on exposure to agammaglobulinemic sheep serum, and lysis in the presence of IRS and NRS was shown to result in consumption of available hemolytic complement. Surface changes consisted of vesiculation in the microvillar or microthrix layers followed by sloughing of the tegument, eventually leading to collapse of the cystic bladder and cessation of flame cell activity, or, in the case of early postonchospheral forms, complete disintegration of the organism. When IVP was added to NHS, reduction of hemolytic complement activity was associated with the electrophoretic conversion of C3, and Factor B, but there was little or no consumption of C1. The observations support the hypothesis that complement-mediated effector mechanisms must be counteracted to ensure survival of parasites in vivo, and that the capacity for release of soluble nonspecific complement-fixing factors by taeniid larvae may have an important role to play in this process.

  4. Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides.

    Science.gov (United States)

    Mattiuzzo, Maura; Bandiera, Antonella; Gennaro, Renato; Benincasa, Monica; Pacor, Sabrina; Antcheva, Nikolinka; Scocchi, Marco

    2007-10-01

    In contrast to many antimicrobial peptides, members of the proline-rich group of antimicrobial peptides inactivate Gram-negative bacteria by a non-lytic mechanism. Several lines of evidence indicate that they are internalized into bacteria and their activity mediated by interaction with unknown cellular components. With the aim of identifying such interactors, we selected mutagenized Escherichia coli clones resistant to the proline-rich Bac7(1-35) peptide and analysed genes responsible for conferring resistance, whose products may thus be involved in the peptide's mode of action. We isolated a number of genomic regions bearing such genes, and one in particular coding for SbmA, an inner membrane protein predicted to be part of an ABC transporter. An E. coli strain carrying a point mutation in sbmA, as well as other sbmA-null mutants, in fact showed resistance to several proline-rich peptides but not to representative membranolytic peptides. Use of fluorescently labelled Bac7(1-35) confirmed that resistance correlated with a decreased ability to internalize the peptide, suggesting that a bacterial protein, SbmA, is necessary for the transport of, and for susceptibility to, proline-rich antimicrobial peptides of eukaryotic origin.

  5. Interaction of antimicrobial peptide Plantaricin149a and four analogs with lipid bilayers and bacterial membranes

    Directory of Open Access Journals (Sweden)

    José Luiz de Souza Lopes

    2013-12-01

    Full Text Available The amidated analog of Plantaricin149, an antimicrobial peptide from Lactobacillus plantarum NRIC 149, directly interacts with negatively charged liposomes and bacterial membranes, leading to their lysis. In this study, four Pln149-analogs were synthesized with different hydrophobic groups at their N-terminus with the goal of evaluating the effect of the modifications at this region in the peptide's antimicrobial properties. The interaction of these peptides with membrane models, surface activity, their hemolytic effect on red blood cells, and antibacterial activity against microorganisms were evaluated. The analogs presented similar action of Plantaricin149a; three of them with no hemolytic effect (< 5% until 0.5 mM, in addition to the induction of a helical element when binding to negative liposomes. The N-terminus difference between the analogs and Plantaricin149a retained the antibacterial effect on S. aureus and P. aeruginosa for all peptides (MIC50 of 19 µM and 155 µM to Plantaricin149a, respectively but resulted in a different mechanism of action against the microorganisms, that was bactericidal for Plantaricin149a and bacteriostatic for the analogs. This difference was confirmed by a reduction in leakage action for the analogs. The lytic activity of Plantaricin149a is suggested to be a result of the peptide-lipid interactions from the amphipathic helix and the hydrophobic residues at the N-terminus of the antimicrobial peptide.

  6. Aberrant Glycosylation of Anchor-Optimized MUC1 Peptides Can Enhance Antigen Binding Affinity and Reverse Tolerance to Cytotoxic T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Latha B. Pathangey

    2016-06-01

    Full Text Available Cancer vaccines have often failed to live up to their promise, although recent results with checkpoint inhibitors are reviving hopes that they will soon fulfill their promise. Although mutation-specific vaccines are under development, there is still high interest in an off-the-shelf vaccine to a ubiquitous antigen, such as MUC1, which is aberrantly expressed on most solid and many hematological tumors, including more than 90% of breast carcinomas. Clinical trials for MUC1 have shown variable success, likely because of immunological tolerance to a self-antigen and to poor immunogenicity of tandem repeat peptides. We hypothesized that MUC1 peptides could be optimized, relying on heteroclitic optimizations of potential anchor amino acids with and without tumor-specific glycosylation of the peptides. We have identified novel MUC1 class I peptides that bind to HLA-A*0201 molecules with significantly higher affinity and function than the native MUC1 peptides. These peptides elicited CTLs from normal donors, as well as breast cancer patients, which were highly effective in killing MUC1-expressing MCF-7 breast cancer cells. Each peptide elicited lytic responses in greater than 6/8 of normal individuals and 3/3 breast cancer patients. The CTLs generated against the glycosylated-anchor modified peptides cross reacted with the native MUC1 peptide, STAPPVHNV, suggesting these analog peptides may offer substantial improvement in the design of epitope-based vaccines.

  7. Genome wide nucleosome mapping for HSV-1 shows nucleosomes are deposited at preferred positions during lytic infection.

    Science.gov (United States)

    Oh, Jaewook; Sanders, Iryna F; Chen, Eric Z; Li, Hongzhe; Tobias, John W; Isett, R Benjamin; Penubarthi, Sindura; Sun, Hao; Baldwin, Don A; Fraser, Nigel W

    2015-01-01

    HSV is a large double stranded DNA virus, capable of causing a variety of diseases from the common cold sore to devastating encephalitis. Although DNA within the HSV virion does not contain any histone protein, within 1 h of infecting a cell and entering its nucleus the viral genome acquires some histone protein (nucleosomes). During lytic infection, partial micrococcal nuclease (MNase) digestion does not give the classic ladder band pattern, seen on digestion of cell DNA or latent viral DNA. However, complete digestion does give a mono-nucleosome band, strongly suggesting that there are some nucleosomes present on the viral genome during the lytic infection, but that they are not evenly positioned, with a 200 bp repeat pattern, like cell DNA. Where then are the nucleosomes positioned? Here we perform HSV-1 genome wide nucleosome mapping, at a time when viral replication is in full swing (6 hr PI), using a microarray consisting of 50mer oligonucleotides, covering the whole viral genome (152 kb). Arrays were probed with MNase-protected fragments of DNA from infected cells. Cells were not treated with crosslinking agents, thus we are only mapping tightly bound nucleosomes. The data show that nucleosome deposition is not random. The distribution of signal on the arrays suggest that nucleosomes are located at preferred positions on the genome, and that there are some positions that are not occupied (nucleosome free regions -NFR or Nucleosome depleted regions -NDR), or occupied at frequency below our limit of detection in the population of genomes. Occupancy of only a fraction of the possible sites may explain the lack of a typical MNase partial digestion band ladder pattern for HSV DNA during lytic infection. On average, DNA encoding Immediate Early (IE), Early (E) and Late (L) genes appear to have a similar density of nucleosomes.

  8. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  9. Prospective study of the clinical performance of three BACTEC media in a modern emergency department: Plus Aerobic/F, Plus Anaerobic/F, and Anaerobic Lytic/F.

    Science.gov (United States)

    Rocchetti, Andrea; Di Matteo, Luigi; Bottino, Paolo; Foret, Benjamin; Gamalero, Elisa; Calabresi, Alessandra; Guido, Gianluca; Casagranda, Ivo

    2016-11-01

    The performance of 3 blood culture bottles (BACTEC Plus Aerobic/F, Plus Anaerobic/F, and Anaerobic Lytic/F) were analyzed with clinical specimens collected from 688 Emergency Department patients. A total of 270 strains belonging to 33 species were identified, with E. coli and S. aureus as the most frequently detected. Overall recovery rate (RR) of bacteria and yeast was equivalent in the Plus Aerobic/F vials (208 of 270 isolates; 77.0%) and Anaerobic Lytic/F vials (206 isolates; 76.3%) and significantly better than in the Plus Anaerobic/F vials (189 isolates; 70.0%). Median time to detection (TTD) was earliest with the Anaerobic Lytic/F vials (12.0h) compared with the Plus Aerobic/F (14.6h) and Plus Anaerobic/F vials (15.4h). Positivity rate (PR) was similar for Anaerobic Lytic/F vials (76.9%) and Plus Aerobic/F vials (76.5%), but better if compared with Plus Anaerobic/F vials (69.4%). The PR and TTD for the combination of Plus Aerobic/F with Anaerobic Lytic/F (94.5% and 12.3h, respectively) was significantly better than with Plus Aerobic/F with Plus Anaerobic/F (87.8% and 14.1h).

  10. The phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 display multiple active catalytic domains and do not trigger staphylococcal resistance.

    Directory of Open Access Journals (Sweden)

    Lorena Rodríguez-Rubio

    Full Text Available The increase in antibiotic resistance world-wide revitalized the interest in the use of phage lysins to combat pathogenic bacteria. In this work, we analyzed the specific cleavage sites on the staphylococcal peptidoglycan produced by three phage lytic proteins. The investigated cell wall lytic enzymes were the endolysin LysH5 derived from the S. aureus bacteriophage vB_SauS-phi-IPLA88 (phi-IPLA88 and two fusion proteins between lysostaphin and the virion-associated peptidoglycan hydrolase HydH5 (HydH5SH3b and HydH5Lyso. We determined that all catalytic domains present in these proteins were active. Additionally, we tested for the emergence of resistant Staphylococcus aureus to any of the three phage lytic proteins constructs. Resistant S. aureus could not be identified after 10 cycles of bacterial exposure to phage lytic proteins either in liquid or plate cultures. However, a quick increase in lysostaphin resistance (up to 1000-fold in liquid culture was observed. The lack of resistant development supports the use of phage lytic proteins as future therapeutics to treat staphylococcal infections.

  11. Inhibition of p38 MAP kinase pathway induces apoptosis and prevents Epstein Barr virus reactivation in Raji cells exposed to lytic cycle inducing compounds

    Directory of Open Access Journals (Sweden)

    Di Renzo Livia

    2009-03-01

    Full Text Available Abstract Background EBV lytic cycle activators, such as phorbol esters, anti-immunoglobulin, transforming growth factor β (TGFβ, sodium butyrate, induce apoptosis in EBV-negative but not in EBV-positive Burkitt's lymphoma (BL cells. To investigate the molecular mechanisms allowing EBV-infected cells to be protected, we examined the expression of viral and cellular antiapoptotic proteins as well as the activation of signal transduction pathways in BL-derived Raji cells exposed to lytic cycle inducing agents. Results Our data show that, following EBV activation, the latent membrane protein 1 (LMP1 and the cellular anti-apoptotic proteins MCL-1 and BCL-2 were quickly up-regulated and that Raji cells remained viable even when exposed simultaneously to P(BU2, sodium butyrate and TGFβ. We report here that inhibition of p38 pathway, during EBV activation, led to a three fold increment of apoptosis and largely prevented lytic gene expression. Conclusion These findings indicate that, during the switch from the latent to the lytic phase of EBV infection, p38 MAPK phosphorylation plays a key role both for protecting the host cells from apoptosis as well as for inducing viral reactivation. Because Raji cells are defective for late antigens expression, we hypothesize that the increment of LMP1 gene expression in the early phases of EBV lytic cycle might contribute to the survival of the EBV-positive cells.

  12. Rare presentation of pediatric acute promyelocytic leukemia as multiple lytic bone lesions: Case report and review of literature

    Directory of Open Access Journals (Sweden)

    Manjusha Nair

    2014-01-01

    Full Text Available Acute promyelocytic leukemia (APL is an uncommon malignancy in the pediatric population, accounting for only 5-10% of pediatric acute myeloid leukemias, and for this disease to present with bone lesions at diagnosis is extremely unusual. We wish to convey that very rarely, in a pediatric cancer patient presenting with multiple extensive lytic bone lesions, the diagnosis can be APL. The treatment protocol and prognostic implications are vastly different. Histopathology is the gold standard in arriving at a correct diagnosis and delivering proper treatment in such cases. This patient had excellent response to chemotherapy.

  13. Cello-Oligosaccharide Oxidation Reveals Differences between Two Lytic Polysaccharide Monooxygenases (Family GH61) from Podospora anserina

    OpenAIRE

    Bey, Mathieu; Zhou, Simeng; Poidevin, Laetitia; Henrissat, Bernard; Coutinho, Pedro M.; Berrin, Jean-Guy; Sigoillot, Jean-Claude

    2013-01-01

    The genome of the coprophilic ascomycete Podospora anserina encodes 33 different genes encoding copper-dependent lytic polysaccharide monooxygenases (LPMOs) from glycoside hydrolase family 61 (GH61). In this study, two of these enzymes (P. anserina GH61A [PaGH61A] and PaGH61B), which both harbored a family 1 carbohydrate binding module, were successfully produced in Pichia pastoris. Synergistic cooperation between PaGH61A or PaGH61B with the cellobiose dehydrogenase (CDH) of Pycnoporus cinnab...

  14. Primary intraosseous atypical inflammatory meningioma presenting as a lytic skull lesion: Case report with review of literature

    Directory of Open Access Journals (Sweden)

    Sangita Bohara

    2016-01-01

    Full Text Available Primary extradural meningiomas of the skull comprise 1% of all meningiomas, and lytic skull meningiomas are still rarer and are said to be more aggressive. We present a case of 38-year-old male with an extradural tumor which on histopathological examination showed features of inflammatory atypical meningioma (WHO Grade II. The intense inflammatory nature of osteolytic primary intraosseous meningioma has not been reported before. This entity deserves special mention because of the need for adjuvant therapy and proper follow-up.

  15. [Isolation of protoplasts from vegetable tissues using extracellular lytic enzymes from fusarium oxysporum f.sp. melonis].

    Science.gov (United States)

    Alconada, T M; Martínez, M J

    1995-01-01

    Fusarium oxysporum f.sp. melonis, a pathogen of melon (Cucumis melo L.), was grown in shaken cultures at 26 degrees C in a mineral salts medium containing glucose, xylan and apple pectin as carbon sources. The extracellular enzymic complex obtained from these cultures showed lytic activity on plant tissues, causing maceration of melon fruits, potato tubers and carrot roots. Protoplasts were isolated from melon fruits when the maceration was carried out under appropriate osmotic conditions. This fact suggest a possible relationship between the enzymes produced by Fusarium oxysporum f.sp. melonis and their pathogenicity on melon plants.

  16. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  17. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  18. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  19. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  20. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  1. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  2. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  3. Abortive lytic reactivation of KSHV in CBF1/CSL deficient human B cell lines.

    Directory of Open Access Journals (Sweden)

    Barbara A Scholz

    Full Text Available Since Kaposi's sarcoma associated herpesvirus (KSHV establishes a persistent infection in human B cells, B cells are a critical compartment for viral pathogenesis. RTA, the replication and transcription activator of KSHV, can either directly bind to DNA or use cellular DNA binding factors including CBF1/CSL as DNA adaptors. In addition, the viral factors LANA1 and vIRF4 are known to bind to CBF1/CSL and modulate RTA activity. To analyze the contribution of CBF1/CSL to reactivation in human B cells, we have successfully infected DG75 and DG75 CBF1/CSL knock-out cell lines with recombinant KSHV.219 and selected for viral maintenance by selective medium. Both lines maintained the virus irrespective of their CBF1/CSL status. Viral reactivation could be initiated in both B cell lines but viral genome replication was attenuated in CBF1/CSL deficient lines, which also failed to produce detectable levels of infectious virus. Induction of immediate early, early and late viral genes was impaired in CBF1/CSL deficient cells at multiple stages of the reactivation process but could be restored to wild-type levels by reintroduction of CBF1/CSL. To identify additional viral RTA target genes, which are directly controlled by CBF1/CSL, we analyzed promoters of a selected subset of viral genes. We show that the induction of the late viral genes ORF29a and ORF65 by RTA is strongly enhanced by CBF1/CSL. Orthologs of ORF29a in other herpesviruses are part of the terminase complex required for viral packaging. ORF65 encodes the small capsid protein essential for capsid shell assembly. Our study demonstrates for the first time that in human B cells viral replication can be initiated in the absence of CBF1/CSL but the reactivation process is severely attenuated at all stages and does not lead to virion production. Thus, CBF1/CSL acts as a global hub which is used by the virus to coordinate the lytic cascade.

  4. Genomic analysis of Bacillus subtilis lytic bacteriophage ϕNIT1 capable of obstructing natto fermentation carrying genes for the capsule-lytic soluble enzymes poly-γ-glutamate hydrolase and levanase.

    Science.gov (United States)

    Ozaki, Tatsuro; Abe, Naoki; Kimura, Keitarou; Suzuki, Atsuto; Kaneko, Jun

    2017-01-01

    Bacillus subtilis strains including the fermented soybean (natto) starter produce capsular polymers consisting of poly-γ-glutamate and levan. Capsular polymers may protect the cells from phage infection. However, bacteriophage ϕNIT1 carries a γ-PGA hydrolase gene (pghP) that help it to counteract the host cell's protection strategy. ϕNIT had a linear double stranded DNA genome of 155,631-bp with a terminal redundancy of 5,103-bp, containing a gene encoding an active levan hydrolase. These capsule-lytic enzyme genes were located in the possible foreign gene cluster regions between central core and terminal redundant regions, and were expressed at the late phase of the phage lytic cycle. All tested natto origin Spounavirinae phages carried both genes for capsule degrading enzymes similar to ϕNIT1. A comparative genomic analysis revealed the diversity among ϕNIT1 and Bacillus phages carrying pghP-like and levan-hydrolase genes, and provides novel understanding on the acquisition mechanism of these enzymatic genes.

  5. An Epstein-Barr Virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model.

    Science.gov (United States)

    Ma, Shi-Dong; Yu, Xianming; Mertz, Janet E; Gumperz, Jenny E; Reinheim, Erik; Zhou, Ying; Tang, Weihua; Burlingham, William J; Gulley, Margaret L; Kenney, Shannon C

    2012-08-01

    Immunosuppressed patients are at risk for developing Epstein-Barr Virus (EBV)-positive lymphomas that express the major EBV oncoprotein, LMP1. Although increasing evidence suggests that a small number of lytically infected cells may promote EBV-positive lymphomas, the impact of enhanced lytic gene expression on the ability of EBV to induce lymphomas is unclear. Here we have used immune-deficient mice, engrafted with human fetal hematopoietic stem cells and thymus and liver tissue, to compare lymphoma formation following infection with wild-type (WT) EBV versus infection with a "superlytic" (SL) mutant with enhanced BZLF1 (Z) expression. The same proportions (2/6) of the WT and SL virus-infected animals developed B-cell lymphomas by day 60 postinfection; the remainder of the animals had persistent tumor-free viral latency. In contrast, all WT and SL virus-infected animals treated with the OKT3 anti-CD3 antibody (which inhibits T-cell function) developed lymphomas by day 29. Lymphomas in OKT3-treated animals (in contrast to lymphomas in the untreated animals) contained many LMP1-expressing cells. The SL virus-infected lymphomas in both OKT3-treated and untreated animals contained many more Z-expressing cells (up to 30%) than the WT virus-infected lymphomas, but did not express late viral proteins and thus had an abortive lytic form of EBV infection. LMP1 and BMRF1 (an early lytic viral protein) were never coexpressed in the same cell, suggesting that LMP1 expression is incompatible with lytic viral reactivation. These results show that the SL mutant induces an "abortive" lytic infection in humanized mice that is compatible with continued cell growth and at least partially resistant to T-cell killing.

  6. De Novo Herpes Simplex Virus VP16 Expression Gates a Dynamic Programmatic Transition and Sets the Latent/Lytic Balance during Acute Infection in Trigeminal Ganglia.

    Science.gov (United States)

    Sawtell, Nancy M; Thompson, Richard L

    2016-09-01

    The life long relationship between herpes simplex virus and its host hinges on the ability of the virus to aggressively replicate in epithelial cells at the site of infection and transport into the nervous system through axons innervating the infection site. Interaction between the virus and the sensory neuron represents a pivot point where largely unknown mechanisms lead to a latent or a lytic infection in the neuron. Regulation at this pivot point is critical for balancing two objectives, efficient widespread seeding of the nervous system and host survival. By combining genetic and in vivo in approaches, our studies reveal that the balance between latent and lytic programs is a process occurring early in the trigeminal ganglion. Unexpectedly, activation of the latent program precedes entry into the lytic program by 12 -14hrs. Importantly, at the individual neuronal level, the lytic program begins as a transition out of this acute stage latent program and this escape from the default latent program is regulated by de novo VP16 expression. Our findings support a model in which regulated de novo VP16 expression in the neuron mediates entry into the lytic cycle during the earliest stages of virus infection in vivo. These findings support the hypothesis that the loose association of VP16 with the viral tegument combined with sensory axon length and transport mechanisms serve to limit arrival of virion associated VP16 into neuronal nuclei favoring latency. Further, our findings point to specialized features of the VP16 promoter that control the de novo expression of VP16 in neurons and this regulation is a key component in setting the balance between lytic and latent infections in the nervous system.

  7. Induction of epstein-barr virus (EBV lytic cycle in vitro causes lipid peroxidation, protein oxidation and DNA damage in lymphoblastoid B cell lines

    Directory of Open Access Journals (Sweden)

    benmansour Riadh

    2011-07-01

    Full Text Available Abstract Background We investigated the oxidative modifications of lipids, proteins and DNA, potential molecular targets of oxidative stress, in two lymphoblastoid cell lines: B95-8 and Raji, after EBV lytic cycle induction. Conjugated dienes level was measured as biomarker of lipid peroxidation. Malondialdehyde adduct and protein carbonyl levels, as well as protein thiol levels were measured as biomarkers of protein oxidation. DNA fragmentation was evaluated as biomarker of DNA oxidation. Results After 48 h (peak of lytic cycle, a significant increase in conjugated dienes level was observed in B95-8 and Raji cell lines (p = 0.0001 and p = 0.019 respectively. Malondialdehyde adduct, protein carbonyl levels were increased in B95-8 and Raji cell lines after EBV lytic cycle induction as compared to controls (MDA-adduct: p = 0.008 and p = 0.006 respectively; Carbonyl: p = 0.003 and p = 0.0039 respectively. Proteins thiol levels were decreased by induction in B95-8 and Raji cell lines (p = 0.046; p = 0.002 respectively. DNA fragmentation was also detected in B95-8 and Raji cell lines after EBV lytic cycle induction as compared to controls. Conclusion The results of this study demonstrate the presence of increased combined oxidative modifications in lipids, proteins in B95-8 and Raji cells lines after EBV lytic cycle induction. These results suggest that lipid peroxidation, protein oxidation and DNA fragmentation are generally induced during EBV lytic cycle induction and probably contribute to the cytopathic effect of EBV.

  8. Isolation, Characterization, and Bioinformatic Analyses of Lytic Salmonella Enteritidis Phages and Tests of Their Antibacterial Activity in Food.

    Science.gov (United States)

    Han, Han; Wei, Xiaoting; Wei, Yi; Zhang, Xiufeng; Li, Xuemin; Jiang, Jinzhong; Wang, Ran

    2017-02-01

    Salmonella Enteritidis remains a major threat for food safety. To take efforts to develop phage-based biocontrol for S. Enteritidis contamination in food, in this study, the phages against S. Enteritidis were isolated from sewage samples, characterized by host range assays, DNA restriction enzyme pattern analyses, and transmission electron microscope observations, and tested for antibacterial activity in food; some potent phages were further characterized by bioinformatic analyses. Results showed that based on the plaque quality and host range, seven lytic phages targeting S. Enteritidis were selected, considered as seven distinct phages through DNA physical maps, and classified as Myoviridae or Siphoviridae family by morphologic observations; the combined use of such seven strain phages as a "food additive" could succeed in controlling the artificial S. Enteritidis contamination in the different physical forms of food at a range of temperatures; by bioinformatic analyses, both selected phage BPS11Q3 and BPS15Q2 seemed to be newfound obligate lytic phage strains with no indications for any potentially harmful genes in their genomes. In conclusion, our results showed a potential of isolated phages as food additives for controlling S. Enteritidis contamination in some salmonellosis outbreak-associated food vehicles, and there could be minimized potential risk associated with using BPS11Q3 and BPS15Q2 in food.

  9. A comparative study on the activity of fungal lytic polysaccharide monooxygenases for the depolymerization of cellulose in soybean spent flakes.

    Science.gov (United States)

    Pierce, Brian C; Agger, Jane Wittrup; Zhang, Zhenghong; Wichmann, Jesper; Meyer, Anne S

    2017-09-08

    Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes capable of the oxidative breakdown of polysaccharides. They are of industrial interest due to their ability to enhance the enzymatic depolymerization of recalcitrant substrates by glycoside hydrolases. In this paper, twenty-four lytic polysaccharide monooxygenases (LPMOs) expressed in Trichoderma reesei were evaluated for their ability to oxidize the complex polysaccharides in soybean spent flakes, an abundant and industrially relevant substrate. TrCel61A, a soy-polysaccharide-active AA9 LPMO from T. reesei, was used as a benchmark in this evaluation. In total, seven LPMOs demonstrated activity on pretreated soy spent flakes, with the products from enzymatic treatments evaluated using mass spectrometry and high performance anion exchange chromatography. The hydrolytic boosting effect of the top-performing enzymes was evaluated in combination with endoglucanase and beta-glucosidase. Two enzymes (TrCel61A and Aspte6) showed the ability to release more than 36% of the pretreated soy spent flake glucose - a greater than 75% increase over the same treatment without LPMO addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Application of an Impedimetric Technique for the Detection of Lytic Infection of Salmonella spp. by Specific Phages

    Directory of Open Access Journals (Sweden)

    Lara R. P. Amorim

    2009-01-01

    Full Text Available This study was performed to evaluate the adaption of the impedimetric method to detect the lytic infection by Salmonella-specific bacteriophages and to provide a higher selectivity to this rapid method in detecting Salmonella spp. by using specific agents. Three bacteriophages and twelve strains of Salmonella spp. were tested. Each of the twelve strains was used separately to inoculate TSB together with each one of the phages. The inoculum concentration was between 106 and 107 cfu/mL, at a cell: phage ratio of 1 : 100. From the sample analysis, based on conductance (G measurements (37°C, the infection could be detected, by observation of both detection-time delay and distinct curve trends. The main conclusions were that kinetic detection by impedance microbiology with phage typing constitutes a method of determining whether a test microorganism is sensitive to the bacteriophage and a method to evaluate whether a lytic bacteriophage is present in a sample, by affecting bacterial growth rate/metabolic change.

  11. Effective inhibition of lytic development of bacteriophages λ, P1 and T4 by starvation of their host, Escherichia coli

    Directory of Open Access Journals (Sweden)

    Węgrzyn Alicja

    2007-02-01

    Full Text Available Abstract Background Bacteriophage infections of bacterial cultures cause serious problems in genetic engineering and biotechnology. They are dangerous not only because of direct effects on the currently infected cultures, i.e. their devastation, but also due to a high probability of spreading the phage progeny throughout a whole laboratory or plant, which causes a real danger for further cultivations. Therefore, a simple method for quick inhibition of phage development after detection of bacterial culture infection should be very useful. Results Here, we demonstrate that depletion of a carbon source from the culture medium, which provokes starvation of bacterial cells, results in rapid inhibition of lytic development of three Escherichia coli phages, λ, P1 and T4. Since the effect was similar for three different phages, it seems that it may be a general phenomenon. Moreover, similar effects were observed in flask cultures and in chemostats. Conclusion Bacteriophage lytic development can be inhibited efficiently by carbon source limitation in bacterial cultures. Thus, if bacteriophage contamination is detected, starvation procedures may be recommended to alleviate deleterious effects of phage infection on the culture. We believe that this strategy, in combination with the use of automated and sensitive bacteriophage biosensors, may be employed in the fermentation laboratory practice to control phage outbreaks in bioprocesses more effectively.

  12. Screening of the Human Kinome Identifies MSK1/2-CREB1 as an Essential Pathway Mediating Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication during Primary Infection

    Science.gov (United States)

    Cheng, Fan; Sawant, Tanvee Vinod; Lan, Ke; Lu, Chun; Jung, Jae U.

    2015-01-01

    ABSTRACT Viruses often hijack cellular pathways to facilitate infection and replication. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus etiologically associated with Kaposi's sarcoma, a vascular tumor of endothelial cells. Despite intensive studies, cellular pathways mediating KSHV infection and replication are still not well defined. Using an antibody array approach, we examined cellular proteins phosphorylated during primary KSHV infection of primary human umbilical vein endothelial cells. Enrichment analysis identified integrin/mitogen-activated protein kinase (integrin/MAPK), insulin/epidermal growth factor receptor (insulin/EGFR), and JAK/STAT as the activated networks during primary KSHV infection. The transcriptional factor CREB1 (cyclic AMP [cAMP]-responsive element-binding protein 1) had the strongest increase in phosphorylation. While knockdown of CREB1 had no effect on KSHV entry and trafficking, it drastically reduced the expression of lytic transcripts and proteins and the production of infectious virions. Chemical activation of CREB1 significantly enhanced viral lytic replication. In contrast, CREB1 neither influenced the expression of the latent gene LANA nor affected KSHV infectivity. Mechanistically, CREB1 was not activated through the classic cAMP/protein kinase A (cAMP/PKA) pathway or via the AKT, MK2, and RSK pathways. Rather, CREB1 was activated by the mitogen- and stress-activated protein kinases 1 and 2 (MSK1/2). Consequently, chemical inhibition or knockdown of MSKs significantly inhibited the KSHV lytic replication program; however, it had a minimal effect on LANA expression and KSHV infectivity. Together, these results identify the MSK1/2-CREB1 proteins as novel essential effectors of KSHV lytic replication during primary infection. The differential effect of the MSK1/2-CREB1 pathway on the expression of viral latent and lytic genes might control the robustness of viral lytic replication, and therefore the

  13. Differential scanning calorimetry of whole Escherichia coli treated with the antimicrobial peptide MSI-78 indicate a multi-hit mechanism with ribosomes as a novel target.

    Science.gov (United States)

    Brannan, Alexander M; Whelan, William A; Cole, Emma; Booth, Valerie

    2015-01-01

    Differential Scanning Calorimetry (DSC) of intact Escherichia coli (E. coli) was used to identify non-lipidic targets of the antimicrobial peptide (AMP) MSI-78. The DSC thermograms revealed that, in addition to its known lytic properties, MSI-78 also has a striking effect on ribosomes. MSI-78's effect on DSC scans of bacteria was similar to that of kanamycin, an antibiotic drug known to target the 30S small ribosomal subunit. An in vitro transcription/translation assay helped confirm MSI-78's targeting of ribosomes. The scrambled version of MSI-78 also affected the ribosome peak of the DSC scans, but required greater amounts of peptide to cause a similar effect to the unscrambled peptide. Furthermore, the effect of the scrambled peptide was not specific to the ribosomes; other regions of the DSC thermogram were also affected. These results suggest that MSI-78's effects on E. coli are at least somewhat dependent on its particular structural features, rather than a sole function of its overall charge and hydrophobicity. When considered along with earlier work detailing MSI-78's membrane lytic properties, it appears that MSI-78 operates via a multi-hit mechanism with multiple targets.

  14. Decalcified allograft in repair of lytic lesions of bone: A study to evolve bone bank in developing countries

    Directory of Open Access Journals (Sweden)

    Anil Kumar Gupta

    2016-01-01

    Full Text Available Background: The quest for ideal bone graft substitutes still haunts orthopedic researchers. The impetus for this search of newer bone substitutes is provided by mismatch between the demand and supply of autogenous bone grafts. Bone banking facilities such as deep frozen and freeze-dried allografts are not so widely available in most of the developing countries. To overcome the problem, we have used partially decalcified, ethanol preserved, and domestic refrigerator stored allografts which are economical and needs simple technology for procurement, preparation, and preservation. The aim of the study was to assess the radiological and functional outcome of the partially decalcified allograft (by weak hydrochloric acid in patients of benign lytic lesions of bone. Through this study, we have also tried to evolve, establish, and disseminate the concept of the bone bank. Materials and Methods: 42 cases of lytic lesions of bone who were treated by decalcified (by weak hydrochloric acid, ethanol preserved, allografts were included in this prospective study. The allograft was obtained from freshly amputated limbs or excised femoral heads during hip arthroplasties under strict aseptic conditions. The causes of lytic lesions were unicameral bone cyst ( n = 3, aneurysmal bone cyst ( n = 3, giant cell tumor ( n = 9, fibrous dysplasia ( n = 12, chondromyxoid fibroma, chondroma, nonossifying fibroma ( n = 1 each, tubercular osteomyelitis ( n = 7, and chronic pyogenic osteomyelitis ( n = 5. The cavity of the lesion was thoroughly curetted and compactly filled with matchstick sized allografts. Results: Quantitative assessment based on the criteria of Sethi et al. (1993 was done. There was complete assimilation in 27 cases, partial healing in 12 cases, and failure in 3 cases. Functional assessment was also done according to which there were 29 excellent results, 6 good, and 7 cases of failure (infection, recurrence, and nonunion of pathological fracture. We

  15. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    peptides are similar in size and structure, but oppositely charged at physiological pH. Both peptides were acylated with linear acyl chains of systematically increasing length, where sCT was furthermore acylated at two different positions on the peptide backbone. For GLP-2, we found that increasing acyl...... stems from a synergy between the positive peptide charge and membrane-active acyl moiety, supported by its pH-dependency, whereby the effect increased with decreasing pH and concomitant charge increase. The extent of permeation enhancing effect was highly dependent on acylation chain length and position...

  16. Topical peptides as cosmeceuticals

    Directory of Open Access Journals (Sweden)

    Varadraj Vasant Pai

    2017-01-01

    Full Text Available Peptides are known to have diverse biological roles, most prominently as signaling/regulatory molecules in a broad variety of physiological processes including defense, immunity, stress, growth, homeostasis and reproduction. These aspects have been used in the field of dermatology and cosmetology to produce short, stable and synthetic peptides for extracellular matrix synthesis, pigmentation, innate immunity and inflammation. The evolution of peptides over the century, which started with the discovery of penicillin, has now extended to their usage as cosmeceuticals in recent years. Cosmeceutical peptides may act as signal modulators of the extracellular matrix component, as structural peptides, carrier peptides and neurotransmitter function modulators. Transdermal delivery of peptides can be made more effective by penetration enhancers, chemical modification or encapsulation of peptides. The advantages of using peptides as cosmeceuticals include their involvement in many physiological functions of the skin, their selectivity, their lack of immunogenicity and absence of premarket regulatory requirements for their use. However, there are disadvantages: clinical evidence for efficacy is often weak, absorption may be poor due to low lipophilicity, high molecular weight and binding to other ingredients, and prices can be quite high.

  17. The loss of immunodominant epitopes affects interferon-γ production and lytic activity of the human influenza virus-specific cytotoxic T lymphocyte response in vitro

    NARCIS (Netherlands)

    E.G.M. Berkhoff (Eufemia); M.M. Geelhoed-Mieras (Martina); E.J. Verschuren (Esther); C.A. van Baalen (Carel); R.A. Gruters (Rob); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); G.F. Rimmelzwaan (Guus)

    2007-01-01

    textabstractIn the present study, we examined the effect of the loss of the human leucocyte antigen (HLA)-B*3501-restricted nucleoprotein (NP)418-426epitope on interferon (IFN)-γ-production and lytic activity of the human cytotoxic T lymphocyte (CTL) response in vitro. Extensive amino acid variation

  18. Bacteriophage formulated into a range of semisolid and solid dosage forms maintain lytic capacity against isolated cutaneous and opportunistic oral bacteria.

    Science.gov (United States)

    Brown, Teagan L; Thomas, Tereen; Odgers, Jessica; Petrovski, Steve; Spark, Marion Joy; Tucci, Joseph

    2017-03-01

    Resistance of bacteria to antimicrobial agents is of grave concern. Further research into the development of bacteriophage as therapeutic agents against bacterial infections may help alleviate this problem. To formulate bacteriophage into a range of semisolid and solid dosage forms and investigate the capacity of these preparations to kill bacteria under laboratory conditions. Bacteriophage suspensions were incorporated into dosage forms such as creams, ointments, pastes, pessaries and troches. These were applied to bacterial lawns in order to ascertain lytic capacity. Stability of these formulations containing phage was tested under various storage conditions. A range of creams and ointments were able to support phage lytic activity against Propionibacterium acnes. Assessment of the stability of these formulations showed that storage at 4 °C in light-protected containers resulted in optimal phage viability after 90 days. Pessaries/suppositories and troches were able to support phage lytic activity against Rhodococcus equi. We report here the in-vitro testing of semisolid and solid formulations of bacteriophage lytic against a range of bacteria known to contribute to infections of the epithelia. This study provides a basis for the future formulation of diverse phage against a range of bacteria that infect epithelial tissues. © 2016 Royal Pharmaceutical Society.

  19. 天蚕素B和表皮生长因子融合蛋白的原核表达、纯化与发酵%Prokaryotic Expression,Purification and Fermentation of Cecropin B and Epidermal Growth Factor Fusion Protein

    Institute of Scientific and Technical Information of China (English)

    万一; 沈卫荣; 韩丽萍; 王小霞; 李玥; 张月娟; 孙晓宇; 陈锐; 沈俭

    2009-01-01

    目的 原核表达天蚕素B和表皮生长因子融合蛋白,并进行纯化和发酵.方法 全基因合成带有凝血酶切割位点的天蚕素B和表皮生长因子融合基因.克隆人pET22b(+)-X表达载体中.构建重组质粒pET22b-Cecropin B-EGF,分别转化大肠杆菌BL21(DE3)和Rosetta-gami2(DE3),经IPTG诱导后.进行SDS-PAGE及Western blot分析.镍离子亲和层析纯化融合蛋白并复性后,对其促表皮生长活性进行测定,最后在5 L发酵罐中进行发酵.结果 酶切及测序结果显示,融合蛋白基因已克隆入pET22b(+)-X表达载体中;SDS-PAGE分析显示,天蚕素B和表皮生长因子融合蛋白在Rosetta-gami2(DE3)宿主菌中得到了有效表达,表达量约占全菌总蛋白的30%;Western blot分析显示,表达产物可与表皮生长因子单克隆抗体特异结合;融合蛋白的表达形式为包涵体;纯化、复性后的融合蛋白具有促BALB/c 3T3细胞生长的活性,在5 L发酵罐中进行发酵,1次可收获菌体约60 g.结论 已成功地在大肠杆菌Rosetta-gami2(DE3)中表达了天蚕素B和表皮生长因子融合蛋白,为研究具有抗菌和促伤口愈合的双功能药物奠定了基础.%Objective To express ceempin B and epidermal growth factor(EGF)fusion protein in prokaryotic cells,and purify and ferment the expressed product.Methods The full-length of cecropin B and EGF fusion gene,with the cleavage site of thrombin.was synthesized and cloned into expression vector pET22b(+)-X.The constructed recombinant plagmid pET22b-Cecropin B-EGF was transformed to E.coli BL21(DE3)and Rosetta-gami2(DE3)for expression under induction of IPTG.The expressed products were identified by SDS-PAGE and Western blot,then purified by nickel ion affinity chromatography,re-naturalized,determined for activity of promoting epidermal growth and,finally,fermented in a 5 L fermentor.Results Both restriction analysis and sequencing proved that cecropin B and EGF fusion gene wag cloned into expression vector p

  20. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase.

    Science.gov (United States)

    Pierce, Brian C; Agger, Jane Wittrup; Wichmann, Jesper; Meyer, Anne S

    2017-03-01

    The auxiliary activity family 9 (AA9) copper-dependent lytic polysaccharide monooxygenase (LPMO) from Trichoderma reesei (EG4; TrCel61A) was investigated for its ability to oxidize the complex polysaccharides from soybean. The substrate specificity of the enzyme was assessed against a variety of substrates, including both soy spent flake, a by-product of the soy food industry, and soy spent flake pretreated with sodium hydroxide. Products from enzymatic treatments were analyzed using mass spectrometry and high performance anion exchange chromatography. We demonstrate that TrCel61A is capable of oxidizing cellulose from both pretreated soy spent flake and phosphoric acid swollen cellulose, oxidizing at both the C1 and C4 positions. In addition, we show that the oxidative activity of TrCel61A displays a synergistic effect capable of boosting endoglucanase activity, and thereby substrate depolymerization of soy cellulose, by 27%. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effect of temperature on the production of cellulases, xylanases and lytic enzymes by selected Trichoderma reesei mutants

    Directory of Open Access Journals (Sweden)

    Piotr Janas

    2014-08-01

    Full Text Available The effect of temperature in the rangę of 26-38°C on the production of cellulases, xylanases and lytic enzymes by four mutant strains of Trichoderma reesei was analysed. On the basis of these investigations three thermosensitive strains (M-7. RUT C 30 and VTT-D-78085 which showed reduced excretion of the above mentioned enzymes as well as protein and a thermoresistant mutant (VTT-D-79I24 which grew within a temperature range of 26-34°C were characterized. Higher temperature caused an increase in the level of xylanolytic enzymes produced by the four mutants. In addition. it effected the complex composition of cellulolytic enzymes secreted by VTT-D-79l 24 (i.c. increased and reduced excertion of (β-glucosidase and β-1,4-endoglucanase respectively.

  2. Lipid mobilization and acid phosphatase activity in lytic compartments during conidium dormancy and appressorium formation of Colletotrichum graminicola.

    Science.gov (United States)

    Schadeck, R J; Leite, B; de Freitas Buchi, D

    1998-12-01

    Colletotrichum graminicola, a pathogen of sorghum and corn, was investigated prior and during germination as to certain aspects of acid phosphatase activity and lipid mobilization. Ungerminated conidia cytoplasm was filled with lipid deposits, which were mobilized during the germination process. Cytochemical ultrastructural examination showed that conidia vacuoles exhibit acid phosphatase activity, which is suggestive of lytic activity. Lipid bodies, stored in the ungerminated conidia cytoplasm, were internalized by vacuoles in a process analogous to microautophagy and were apparently digested inside them. The lipid bodies disappeared and vacuoles became enlarged in conidial cells during germination. Appressoria also showed acid phosphatase activity in multiple heterogeneous vesicles which were, in most cases, juxtaposed with lipid bodies. These results suggest that the vacuolar system plays an important role during C. graminicola germination and that the initial stages of lipid metabolization are taking place inside the vacuoles.

  3. Lytic polysaccharide monooxygenases: a crystallographer’s view on a new class of biomass-degrading enzymes

    Science.gov (United States)

    Frandsen, Kristian E. H.; Lo Leggio, Leila

    2016-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are a new class of microbial copper enzymes involved in the degradation of recalcitrant polysaccharides. They have only been discovered and characterized in the last 5–10 years and have stimulated strong interest both in biotechnology and in bioinorganic chemistry. In biotechnology, the hope is that these enzymes will finally help to make enzymatic biomass conversion, especially of lignocellulosic plant waste, economically attractive. Here, the role of LPMOs is likely to be in attacking bonds that are not accessible to other enzymes. LPMOs have attracted enormous interest since their discovery. The emphasis in this review is on the past and present contribution of crystallographic studies as a guide to functional understanding, with a final look towards the future. PMID:27840684

  4. Hydration water and peptide dynamics--two sides of a coin. A neutron scattering and adiabatic calorimetry study at low hydration and cryogenic temperatures.

    Science.gov (United States)

    Bastos, Margarida; Alves, Nuno; Maia, Sílvia; Gomes, Paula; Inaba, Akira; Miyazaki, Yuji; Zanotti, Jean-Marc

    2013-10-21

    In the present work we bridge neutron scattering and calorimetry in the study of a low-hydration sample of a 15-residue hybrid peptide from cecropin and mellitin CA(1-7)M(2-9) of proven antimicrobial activity. Quasielastic and low-frequency inelastic neutron spectra were measured at defined hydration levels - a nominally 'dry' sample (specific residual hydration h = 0.060 g/g), a H2O-hydrated (h = 0.49) and a D2O-hydrated one (h = 0.51). Averaged mean square proton mobilities were derived over a large temperature range (50-300 K) and the vibrational density of states (VDOS) were evaluated for the hydrated samples. The heat capacity of the H2O-hydrated CA(1-7)M(2-9) peptide was measured by adiabatic calorimetry in the temperature range 5-300 K, for different hydration levels. The glass transition and water crystallization temperatures were derived in each case. The existence of different types of water was inferred and their amounts calculated. The heat capacities as obtained from direct calorimetric measurements were compared to the values derived from the neutron spectroscopy by way of integrating appropriately normalized VDOS functions. While there is remarkable agreement with respect to both temperature dependence and glass transition temperatures, the results also show that the VDOS derived part represents only a fraction of the total heat capacity obtained from calorimetry. Finally our results indicate that both hydration water and the peptide are involved in the experimentally observed transitions.

  5. RTA Occupancy of the Origin of Lytic Replication during Murine Gammaherpesvirus 68 Reactivation from B Cell Latency

    Directory of Open Access Journals (Sweden)

    Alexis L. Santana

    2017-02-01

    Full Text Available RTA, the viral Replication and Transcription Activator, is essential for rhadinovirus lytic gene expression upon de novo infection and reactivation from latency. Lipopolysaccharide (LPS/toll-like receptor (TLR4 engagement enhances rhadinovirus reactivation. We developed two new systems to examine the interaction of RTA with host NF-kappaB (NF-κB signaling during murine gammaherpesvirus 68 (MHV68 infection: a latent B cell line (HE-RIT inducible for RTA-Flag expression and virus reactivation; and a recombinant virus (MHV68-RTA-Bio that enabled in vivo biotinylation of RTA in BirA transgenic mice. LPS acted as a second stimulus to drive virus reactivation from latency in the context of induced expression of RTA-Flag. ORF6, the gene encoding the single-stranded DNA binding protein, was one of many viral genes that were directly responsive to RTA induction; expression was further increased upon treatment with LPS. However, NF-κB sites in the promoter of ORF6 did not influence RTA transactivation in response to LPS in HE-RIT cells. We found no evidence for RTA occupancy of the minimal RTA-responsive region of the ORF6 promoter, yet RTA was found to complex with a portion of the right origin of lytic replication (oriLyt-R that contains predicted RTA recognition elements. RTA occupancy of select regions of the MHV-68 genome was also evaluated in our novel in vivo RTA biotinylation system. Streptavidin isolation of RTA-Bio confirmed complex formation with oriLyt-R in LPS-treated primary splenocytes from BirA mice infected with MHV68 RTA-Bio. We demonstrate the utility of reactivation-inducible B cells coupled with in vivo RTA biotinylation for mechanistic investigations of the interplay of host signaling with RTA.

  6. Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Gilmer, Daniel B; Schmitz, Jonathan E; Euler, Chad W; Fischetti, Vincent A

    2013-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pyogenes (group A streptococcus [GrAS]) cause serious and sometimes fatal human diseases. They are among the many Gram-positive pathogens for which resistance to leading antibiotics has emerged. As a result, alternative therapies need to be developed to combat these pathogens. We have identified a novel bacteriophage lysin (PlySs2), derived from a Streptococcus suis phage, with broad lytic activity against MRSA, vancomycin-intermediate S. aureus (VISA), Streptococcus suis, Listeria, Staphylococcus simulans, Staphylococcus epidermidis, Streptococcus equi, Streptococcus agalactiae (group B streptococcus [GBS]), S. pyogenes, Streptococcus sanguinis, group G streptococci (GGS), group E streptococci (GES), and Streptococcus pneumoniae. PlySs2 has an N-terminal cysteine-histidine aminopeptidase (CHAP) catalytic domain and a C-terminal SH3b binding domain. It is stable at 50 °C for 30 min, 37 °C for >24 h, 4°C for 15 days, and -80 °C for >7 months; it maintained full activity after 10 freeze-thaw cycles. PlySs2 at 128 μg/ml in vitro reduced MRSA and S. pyogenes growth by 5 logs and 3 logs within 1 h, respectively, and exhibited a MIC of 16 μg/ml for MRSA. A single, 2-mg dose of PlySs2 protected 92% (22/24) of the mice in a bacteremia model of mixed MRSA and S. pyogenes infection. Serially increasing exposure of MRSA and S. pyogenes to PlySs2 or mupirocin resulted in no observed resistance to PlySs2 and resistance to mupirocin. To date, no other lysin has shown such notable broad lytic activity, stability, and efficacy against multiple, leading, human bacterial pathogens; as such, PlySs2 has all the characteristics to be an effective therapeutic.

  7. RTA Occupancy of the Origin of Lytic Replication during Murine Gammaherpesvirus 68 Reactivation from B Cell Latency

    Science.gov (United States)

    Santana, Alexis L.; Oldenburg, Darby G.; Kirillov, Varvara; Malik, Laraib; Dong, Qiwen; Sinayev, Roman; Marcu, Kenneth B.; White, Douglas W.; Krug, Laurie T.

    2017-01-01

    RTA, the viral Replication and Transcription Activator, is essential for rhadinovirus lytic gene expression upon de novo infection and reactivation from latency. Lipopolysaccharide (LPS)/toll-like receptor (TLR)4 engagement enhances rhadinovirus reactivation. We developed two new systems to examine the interaction of RTA with host NF-kappaB (NF-κB) signaling during murine gammaherpesvirus 68 (MHV68) infection: a latent B cell line (HE-RIT) inducible for RTA-Flag expression and virus reactivation; and a recombinant virus (MHV68-RTA-Bio) that enabled in vivo biotinylation of RTA in BirA transgenic mice. LPS acted as a second stimulus to drive virus reactivation from latency in the context of induced expression of RTA-Flag. ORF6, the gene encoding the single-stranded DNA binding protein, was one of many viral genes that were directly responsive to RTA induction; expression was further increased upon treatment with LPS. However, NF-κB sites in the promoter of ORF6 did not influence RTA transactivation in response to LPS in HE-RIT cells. We found no evidence for RTA occupancy of the minimal RTA-responsive region of the ORF6 promoter, yet RTA was found to complex with a portion of the right origin of lytic replication (oriLyt-R) that contains predicted RTA recognition elements. RTA occupancy of select regions of the MHV-68 genome was also evaluated in our novel in vivo RTA biotinylation system. Streptavidin isolation of RTA-Bio confirmed complex formation with oriLyt-R in LPS-treated primary splenocytes from BirA mice infected with MHV68 RTA-Bio. We demonstrate the utility of reactivation-inducible B cells coupled with in vivo RTA biotinylation for mechanistic investigations of the interplay of host signaling with RTA. PMID:28212352

  8. CTCF and Rad21 act as host cell restriction factors for Kaposi's sarcoma-associated herpesvirus (KSHV lytic replication by modulating viral gene transcription.

    Directory of Open Access Journals (Sweden)

    Da-Jiang Li

    2014-01-01

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is a human herpesvirus that causes Kaposi's sarcoma and is associated with the development of lymphoproliferative diseases. KSHV reactivation from latency and virion production is dependent on efficient transcription of over eighty lytic cycle genes and viral DNA replication. CTCF and cohesin, cellular proteins that cooperatively regulate gene expression and mediate long-range DNA interactions, have been shown to bind at specific sites in herpesvirus genomes. CTCF and cohesin regulate KSHV gene expression during latency and may also control lytic reactivation, although their role in lytic gene expression remains incompletely characterized. Here, we analyze the dynamic changes in CTCF and cohesin binding that occur during the process of KSHV viral reactivation and virion production by high resolution chromatin immunoprecipitation and deep sequencing (ChIP-Seq and show that both proteins dissociate from viral genomes in kinetically and spatially distinct patterns. By utilizing siRNAs to specifically deplete CTCF and Rad21, a cohesin component, we demonstrate that both proteins are potent restriction factors for KSHV replication, with cohesin knockdown leading to hundred-fold increases in viral yield. High-throughput RNA sequencing was used to characterize the transcriptional effects of CTCF and cohesin depletion, and demonstrated that both proteins have complex and global effects on KSHV lytic transcription. Specifically, both proteins act as positive factors for viral transcription initially but subsequently inhibit KSHV lytic transcription, such that their net effect is to limit KSHV RNA accumulation. Cohesin is a more potent inhibitor of KSHV transcription than CTCF but both proteins are also required for efficient transcription of a subset of KSHV genes. These data reveal novel effects of CTCF and cohesin on transcription from a relatively small genome that resemble their effects on the cellular

  9. Cross talk between EBV and telomerase: the role of TERT and NOTCH2 in the switch of latent/lytic cycle of the virus.

    Science.gov (United States)

    Giunco, S; Celeghin, A; Gianesin, K; Dolcetti, R; Indraccolo, S; De Rossi, A

    2015-05-28

    Epstein-Barr virus (EBV)-associated malignancies, as well as lymphoblastoid cell lines (LCLs), obtained in vitro by EBV infection of B cells, express latent viral proteins and maintain their ability to grow indefinitely through inappropriate activation of telomere-specific reverse transcriptase (TERT), the catalytic component of telomerase. Our previous studies demonstrated that high levels of TERT expression in LCLs prevent the activation of EBV lytic cycle, which is instead triggered by TERT silencing. As lytic infection promotes the death of EBV-positive tumor cells, understanding the mechanism(s) by which TERT affects the latent/lytic status of EBV may be important for setting new therapeutic strategies. BATF, a transcription factor activated by NOTCH2, the major NOTCH family member in B cells, negatively affects the expression of BZLF1, the master regulator of viral lytic cycle. We therefore analyzed the interplay between TERT, NOTCH and BATF in LCLs and found that high levels of endogenous TERT are associated with high NOTCH2 and BATF expression levels. In addition, ectopic expression of TERT in LCLs with low levels of endogenous telomerase was associated with upregulation of NOTCH2 and BATF at both mRNA and protein levels. By contrast, infection of LCLs with retroviral vectors expressing functional NOTCH2 did not alter TERT transcript levels. Luciferase reporter assays, demonstrated that TERT significantly activated NOTCH2 promoter in a dose-dependent manner. We also found that NF-κB pathway is involved in TERT-induced NOTCH2 activation. Lastly, pharmacologic inhibition of NOTCH signaling triggers the EBV lytic cycle, leading to the death of EBV-infected cells. Overall, these results indicate that TERT contributes to preserve EBV latency in B cells mainly through the NOTCH2/BAFT pathway, and suggest that NOTCH2 inhibition may represent an appealing therapeutic strategy against EBV-associated malignancies.

  10. Role of protein kinase C in TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells.

    Science.gov (United States)

    Abraha, Abraham B; Rana, Krupa; Whalen, Margaret M

    2010-11-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposure of NK cells to tributyltin (TBT) greatly diminishes their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C(PKC) as well as MAPK activity. TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposure. TBT caused a 2–3-fold activation of PKC at concentrations ranging from 50 to 300 nM (16–98 ng/ml),indicating that activation of PKC occurs in response to TBT exposure. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells, validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that, in NK cells where PKC activation was blocked, there was no activation of the MAPK, p44/42 in response to TBT.However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including activation of p44/42 by TBT in NK cells.

  11. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  12. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.;

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields.......Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  13. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  14. Avian host defense peptides

    NARCIS (Netherlands)

    Cuperus, Tryntsje; Coorens, M.; van Dijk, A.; Haagsman, H.P.

    2013-01-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense

  15. Bacteriocin Inducer Peptides

    Science.gov (United States)

    Novel peptides produced by bacteriocin-producing bacteria stimulate the production of bacteriocins in vitro. The producer bacteria are cultured in the presence of a novel inducer bacteria and a peptide having a carboxy terminal sequence of VKGLT in order to achieve an increase in bacteriocin produc...

  16. APD: the Antimicrobial Peptide Database

    OpenAIRE

    Wang, Zhe; Wang, Guangshun

    2004-01-01

    An antimicrobial peptide database (APD) has been established based on an extensive literature search. It contains detailed information for 525 peptides (498 antibacterial, 155 antifungal, 28 antiviral and 18 antitumor). APD provides interactive interfaces for peptide query, prediction and design. It also provides statistical data for a select group of or all the peptides in the database. Peptide information can be searched using keywords such as peptide name, ID, length, net charge, hydrophob...

  17. Abortive lytic Epstein–Barr virus replication in tonsil-B lymphocytes in infectious mononucleosis and a subset of the chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Lerner AM

    2012-11-01

    Full Text Available A Martin Lerner,1 Safedin Beqaj21Department of Medicine, Oakland University William Beaumont School of Medicine, Rochester, MI, USA; 2Pathology Inc, Torrance, CA, USAAbstract: A systematic 2001–2007 review of 142 chronic fatigue syndrome (CFS patients identified 106 CFS patients with elevated serum IgG antibodies to the herpesviruses Epstein–Barr virus (EBV, cytomegalovirus, or human herpesvirus (HHV 6 in single or multiple infections, with no other co-infections detected. We named these 106 patients group-A CFS. Eighty-six of these 106 group-A CFS patients (81% had elevated EBV early antibody, early antigen (diffuse, serum titers. A small group of six patients in the group-A EBV subset of CFS, additionally, had repetitive elevated-serum titers of antibody to the early lytic replication-encoded proteins, EBV dUTPase, and EBV DNA polymerase. The presence of these serum antibodies to EBV dUTPase and EBV DNA polymerase indicated EBV abortive lytic replication in these 6 CFS patients. None of 20 random control people (age- and sex-matched, with blood drawn at a commercial laboratory had elevated serum titers of antibody to EBV dUTPase or EBV DNA polymerase (P < 0.01. This finding needs verification in a larger group of EBV CFS subset patients, but if corroborated, it may represent a molecular marker for diagnosing the EBV subset of CFS. We review evidence that EBV abortive lytic replication with unassembled viral proteins in the blood may be the same in infectious mononucleosis (IM and a subset of CFS. EBV-abortive lytic replication in tonsil plasma cells is dominant in IM. No complete lytic virion is in the blood of IM or CFS patients. Complications of CFS and IM include cardiomyopathy and encephalopathy. Circulating abortive lytic-encoded EBV proteins (eg, EBV dUTPase, EBV DNA polymerase, and others may be common to IM and CFS. The intensity and duration of the circulating EBV-encoded proteins might differentiate the IM and EBV subsets of CFS

  18. Phenotypic and Functional Maturation of Tumor Antigen-Reactive CD8+ T Lymphocytes in Patients Undergoing Multiple Course Peptide Vaccination

    Science.gov (United States)

    Powell, Daniel J.; Rosenberg, Steven A.

    2006-01-01

    Successful immunotherapy with peptide vaccines depends on the in vivo generation of sufficient numbers of anti-tumor T cells with appropriate phenotypic and functional characteristics to mediate tumor destruction. Herein, we report the induction of high frequencies of circulating CD8+ T cells (4.8% to 38.1%) directed against the native gp100:209-217 peptide derived from the gp100 melanoma-melanocyte tumor antigen in five HLA-A*0201 patients at high risk of recurrence of melanoma after multiple courses of immunization with modified gp100:209-217(210M) peptide in IFA. Longitudinal peripheral blood mononuclear cell (PBMC) analysis revealed a phenotypic shift of native peptide-specific CD8+ T cells from an early effector to an effector memory (CD27- CD28- CD62L- CD45RO+) phenotype with repeated immunizations and functional maturation that correlated with gp100:209-217 peptide-specific T-cell precursor frequencies. Postimmunization PBMC exhibited direct ex vivo recognition of melanoma cell lines in ELISPOT analysis, showed lytic capability against peptide-pulsed target cells, and proliferated in response to native peptide stimulation. One year after final immunization, circulating vaccine-specific CD8+ T cells persisted in patients’ PBMC with a maintained effector memory phenotype. The results herein demonstrate the efficacy of a multiple course peptide-immunization strategy for the generation of high frequencies of tumor antigen-specific T cells in vivo, and further show that continued peptide immunization results in the escalating generation of functionally mature, tumor-reactive effector memory CD8+ T lymphocytes. PMID:14676632

  19. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class...... examples of different peptide QSAR studies, this review highlights some of the missing links and illuminates some of the questions that would be interesting to challenge in a more systematic fashion. Expert opinion: Computer-aided peptide QSAR using molecular descriptors may provide the necessary edge...

  20. Posterior lumbar interbody fusion for lytic spondylolisthesis: restoration of sagittal balance using insert-and-rotate interbody spacers.

    Science.gov (United States)

    Sears, William

    2005-01-01

    The role of surgical correction of sagittal plane deformity in cases of lytic spondylolisthesis remains controversial. While some early evidence is emerging of the possible short- and long-term benefits of restoring spinal balance, many surgeons have been concerned about the associated risks. The insert-and-rotate posterior lumbar interbody fusion (PLIF) technique, first described by Jaslow in 1946, may enable surgeons to safely and effectively correct sagittal balance through a single posterior approach. To determine whether the focal kyphosis and subluxation associated with a lytic lumbosacral spondylolisthesis can be safely and effectively corrected using a single-stage posterior distraction/reduction technique and insert-and-rotate interbody fusion spacers. A prospective, single cohort, observational study of the clinical outcomes and retrospective radiological review, in a series of 18 consecutive patients with lytic spondylolisthesis Grades I to IV, operated between September 2000 and December 2002. Mean age of 50.2 years (range, 15.5 to 77.8 years). Principal indication for surgery was relief of radicular pain secondary to foraminal stenosis in 16 of 18 patients, and back pain was the principal symptom in 2 patients. Mean preoperative slip was 30.2% (range, 9% to 78%). Mean preoperative focal lordosis was 10.6 degrees (range, -12 to 33 degrees). Minimum 12-month follow-up was available on all patients except one, who died of unrelated causes after his 6-month visit. Patients completed Visual Analogue Pain Score (VAS), Low Back Outcome Score (LBOS), Short Form (SF)-12 and patient satisfaction questionnaires. Pre- and postoperative measurements of the percentage slip and lumbar lordosis of the involved segments were available on 13 patients. SURGICAL METHODS: Decompressive laminectomy was followed by reduction of the spondylolisthesis with the aid of intervertebral disc space spreaders and supplementary pedicle screw instrumentation. The vertebral bodies were

  1. Diversity-oriented peptide stapling

    DEFF Research Database (Denmark)

    Tran, Thu Phuong; Larsen, Christian Ørnbøl; Røndbjerg, Tobias

    2017-01-01

    as a powerful method for peptide stapling. However, to date CuAAC stapling has not provided a simple method for obtaining peptides that are easily diversified further. In the present study, we report a new diversity-oriented peptide stapling (DOPS) methodology based on CuAAC chemistry. Stapling of peptides...

  2. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  3. Human Herpesvirus 6B Downregulates Expression of Activating Ligands during Lytic Infection To Escape Elimination by Natural Killer Cells.

    Science.gov (United States)

    Schmiedel, Dominik; Tai, Julie; Levi-Schaffer, Francesca; Dovrat, Sarah; Mandelboim, Ofer

    2016-11-01

    The Herpesviridae family consists of eight viruses, most of which infect a majority of the human population. One of the less-studied members is human herpesvirus 6 (HHV-6) (Roseolovirus), which causes a mild, well-characterized childhood disease. Primary HHV-6 infection is followed by lifelong latency. Reactivation frequently occurs in immunocompromised patients, such as those suffering from HIV infection or cancer or following transplantation, and causes potentially life-threatening complications. In this study, we investigated the mechanisms that HHV-6 utilizes to remain undetected by natural killer (NK) cells, which are key participants in the innate immune response to infections. We revealed viral mechanisms which downregulate ligands for two powerful activating NK cell receptors: ULBP1, ULBP3, and MICB, which trigger NKG2D, and B7-H6, which activates NKp30. Accordingly, this downregulation impaired the ability of NK cells to recognize HHV-6-infected cells. Thus, we describe for the first time immune evasion mechanisms of HHV-6 that protect lytically infected cells from NK elimination. Human herpesvirus 6 (HHV-6) latently infects a large portion of the human population and can reactivate in humans lacking a functional immune system, such as cancer or AIDS patients. Under these conditions, it can cause life-threatening diseases. To date, the actions and interplay of immune cells, and particularly cells of the innate immune system, during HHV-6 infection are poorly defined. In this study, we aimed to understand how cells undergoing lytic HHV-6 infection interact with natural killer (NK) cells, innate lymphocytes constituting the first line of defense against viral intruders. We show that HHV-6 suppresses the expression of surface proteins that alert the immune cells by triggering two major receptors on NK cells, NKG2D and NKp30. As a consequence, HHV-6 can replicate undetected by the innate immune system and potentially spread infection throughout the body. This

  4. Antimicrobial Peptides in Echinoderms

    OpenAIRE

    Li, C; Haug, T; K Stensvåg

    2010-01-01

    Antimicrobial peptides (AMPs) are important immune effector molecules for invertebrates, including echinoderms, which lack a vertebrate-type adaptive immune system. Here we summarize the knowledge of such peptides in echinoderms. Strongylocins are a novel family of cysteine-rich AMPs, recently identified in the sea urchins, Strongylocentrotus droebachiensis and S. purpuratus. Although these molecules present diverse amino acid sequences, they share an identical cysteine arrangement pattern, d...

  5. Immunotherapy with Allergen Peptides

    OpenAIRE

    Larché Mark

    2007-01-01

    Specific allergen immunotherapy (SIT) is disease-modifying and efficacious. However, the use of whole allergen preparations is associated with frequent allergic adverse events during treatment. Many novel approaches are being designed to reduce the allergenicity of immunotherapy preparations whilst maintaining immunogenicity. One approach is the use of short synthetic peptides which representing dominant T cell epitopes of the allergen. Short peptides exhibit markedly reduced capacity to cro...

  6. High-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity.

    Science.gov (United States)

    Berisha, Arton; Mukherjee, Krishnendu; Vilcinskas, Andreas; Spengler, Bernhard; Römpp, Andreas

    2013-01-01

    The 'danger model' is an alternative concept for immune response postulating that the immune system reacts to entities that do damage (danger associated molecular patterns, DAMP) and not only to entities that are foreign (pathogen-associated molecular patterns, PAMP) as proposed by classical immunology concepts. In this study we used Galleria mellonella to validate the danger model in insects. Hemolymph of G. mellonella was digested with thermolysin (as a representative for virulence-associated metalloproteinases produced by humanpathogens) followed by chromatographic fractionation. Immune-stimulatory activity was tested by measuring lysozyme activity with the lytic zone assays against Micrococcus luteus cell wall components. Peptides were analyzed by nano-scale liquid chromatography coupled to high-resolution Fourier transform mass spectrometers. Addressing the lack of a genome sequence we complemented the rudimentary NCBI protein database with a recently established transcriptome and de novo sequencing methods for peptide identification. This approach led to identification of 127 peptides, 9 of which were identified in bioactive fractions. Detailed MS/MS experiments in comparison with synthetic analogues confirmed the amino acid sequence of all 9 peptides. To test the potential of these putative danger signals to induce immune responses we injected the synthetic analogues into G. mellonella and monitored the anti-bacterial activity against living Micrococcus luteus. Six out of 9 peptides identified in the bioactive fractions exhibited immune-stimulatory activity when injected. Hence, we provide evidence that small peptides resulting from thermolysin-mediated digestion of hemolymph proteins function as endogenous danger signals which can set the immune system into alarm. Consequently, our study indicates that the danger model also plays a role in insect immunity.

  7. Antibodies against lytic and latent Kaposi's sarcoma-associated herpes virus antigens and lymphoma in the European EpiLymph case–control study

    Science.gov (United States)

    Benavente, Y; Mbisa, G; Labo, N; Casabonne, D; Becker, N; Maynadie, M; Foretova, L; Cocco, P L; Nieters, A; Staines, A; Bofetta, P; Brennan, P; Whitby, D; de Sanjosé, S

    2011-01-01

    Background: Kaposi's sarcoma-associated herpes virus is associated with primary effusion lymphoma and multicentric Castleman's disease. Methods: Seropositivity to lytic and latent Kaposi's sarcoma herpes virus (KSHV) antigens were examined in 2083 lymphomas and 2013 controls from six European countries. Results: Antibodies against KSHV latent and lytic antigens were detectable in 4.5% and 3.4% of controls, respectively, and 3.6% of cases (P>0.05). The KSHV seropositivity was associated with splenic marginal zone lymphoma (SMZL) (odds ratio (OR)=4.11, 95% confidence interval (CI)=1.57–10.83) and multiple myeloma (OR=0.31, 95% CI=0.11–0.85). Conclusion: The KSHV is unlikely to contribute importantly to lymphomagenesis among immunocompetent subjects. However, the observed association with SMZL may underline a chronic antigen mechanism in its aetiology. PMID:21952625

  8. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity.

    Science.gov (United States)

    Takahashi, Daisuke; Shukla, Sanjeev K; Prakash, Om; Zhang, Guolong

    2010-09-01

    Antimicrobial host defense peptides (HDPs) are a critical component of the innate immunity with microbicidal, endotoxin-neutralizing, and immunostimulatory properties. HDPs kill bacteria primarily through non-specific membrane lysis, therefore with a less likelihood of provoking resistance. Extensive structure-activity relationship studies with a number of HDPs have revealed that net charge, amphipathicity, hydrophobicity, and structural propensity are among the most important physicochemical and structural parameters that dictate their ability to interact with and disrupt membranes. A delicate balance among these factors, rather than a mere alteration of a single factor, is critically important for HDPs to ensure the antimicrobial potency and target cell selectivity. With a better understanding of the structural determinants of HDPs for their membrane-lytic activities, it is expected that novel HDP-based antimicrobials with minimum toxicity to eukaryotic cells can be developed for resistant infections, which have become a global public health crisis.

  9. Kaposi's Sarcoma-Associated Herpesvirus K-bZIP Protein Is Necessary for Lytic Viral Gene Expression, DNA Replication, and Virion Production in Primary Effusion Lymphoma Cell Lines▿ †

    OpenAIRE

    Lefort, Sylvain; Flamand, Louis

    2009-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human proliferative disorders, namely, Kaposi's sarcoma, primary effusion lymphomas (PEL), and multicentric Castleman's disease. Lytic DNA replication of KSHV, which is essential for viral propagation, requires the binding of at least two KSHV proteins, replication and transactivation activator (RTA) and K-bZIP, on the lytic origin of replication. Moreover, K-bZIP physically interacts with RTA and represses its tra...

  10. The dlt operon of Bacillus cereus is required for resistance to cationic antimicrobial peptides and for virulence in insects.

    Science.gov (United States)

    Abi Khattar, Z; Rejasse, A; Destoumieux-Garzón, D; Escoubas, J M; Sanchis, V; Lereclus, D; Givaudan, A; Kallassy, M; Nielsen-Leroux, C; Gaudriault, S

    2009-11-01

    The dlt operon encodes proteins that alanylate teichoic acids, the major components of cell walls of gram-positive bacteria. This generates a net positive charge on bacterial cell walls, repulsing positively charged molecules and conferring resistance to animal and human cationic antimicrobial peptides (AMPs) in gram-positive pathogenic bacteria. AMPs damage the bacterial membrane and are the most effective components of the humoral immune response against bacteria. We investigated the role of the dlt operon in insect virulence by inactivating this operon in Bacillus cereus, which is both an opportunistic human pathogen and an insect pathogen. The Delta dlt(Bc) mutant displayed several morphological alterations but grew at a rate similar to that for the wild-type strain. This mutant was less resistant to protamine and several bacterial cationic AMPs, such as nisin, polymyxin B, and colistin, in vitro. It was also less resistant to molecules from the insect humoral immune system, lysozyme, and cationic AMP cecropin B from Spodoptera frugiperda. Delta dlt(Bc) was as pathogenic as the wild-type strain in oral infections of Galleria mellonella but much less virulent when injected into the hemocoels of G. mellonella and Spodoptera littoralis. We detected the dlt operon in three gram-negative genera: Erwinia (Erwinia carotovora), Bordetella (Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica), and Photorhabdus (the entomopathogenic bacterium Photorhabdus luminescens TT01, the dlt operon of which did not restore cationic AMP resistance in Delta dlt(Bc)). We suggest that the dlt operon protects B. cereus against insect humoral immune mediators, including hemolymph cationic AMPs, and may be critical for the establishment of lethal septicemia in insects and in nosocomial infections in humans.

  11. Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus

    Institute of Scientific and Technical Information of China (English)

    Xiuling; Ji; Chunjing; Zhang; Yuan; Fang; Qi; Zhang; Lianbing; Lin; Bing; Tang; Yunlin; Wei

    2015-01-01

    As a unique ecological system with low temperature and low nutrient levels, glaciers are considered a "living fossil" for the research of evolution. In this work, a lytic cold-active bacteriophage designated VMY22 against Bacillus cereus MYB41-22 was isolated from Mingyong Glacier in China, and its characteristics were studied. Electron microscopy revealed that VMY22 has an icosahedral head(59.2 nm in length, 31.9 nm in width) and a tail(43.2 nm in length). Bacteriophage VMY22 was classified as a Podoviridae with an approximate genome size of 18 to 20 kb. A one-step growth curve revealed that the latent and the burst periods were 70 and 70 min, respectively, with an average burst size of 78 bacteriophage particles per infected cell. The pH and thermal stability of bacteriophage VMY22 were also investigated. The maximum stability of the bacteriophage was observed to be at pH 8.0 and it was comparatively stable at p H 5.0–9.0. As VMY22 is a cold-active bacteriophage with low production temperature, its characterization and the relationship between MYB41-22 and Bacillus cereus bacteriophage deserve further study.

  12. Changes in coagulation and lytic activity of the blood and tissues at the pelvic trauma during anticoagulant therapy

    Directory of Open Access Journals (Sweden)

    A. P. Vlasov

    2014-01-01

    Full Text Available The purpose of our study was exploration of coagulation and lytic activity in blood and tissues during anticoagulation therapy in the early posttraumatic period in patients with pelvic bone fracture. The study was based on experiment researches using methods allowing to estimate coagulation activity in different tissues (skeletal muscles, liver, kidneys, heart, lungs and blood at pelvic trauma during anticoagulation therapy. It was established that at pelvic trauma using anticoagulation therapy (fraxiparine leads to hemostatic system modification in the early posttraumatic period. We observed fast decrease of a hypercoagulability in a blood plasma (organism level and growth fibrinolytic activity. In liver, kidneys, heart and lungs tissues (organ level we also registered correction the hemostatic disorders. However, the rate of these recovery processes in tissues is lower than in the blood. Especially low it was in skeletal muscles in the area of injury. Thus, it is proved that anticoagulant therapy at a pelvic trauma affects on the extrinsic coagulation pathway less than on the intrinsic coagulation pathway. The established regularity explains the risks of coagulation abnormalities in the early posttraumatic period during anticoagulation treatment.

  13. Acquisition of intact polar lipids from the Prymnesiophyte Phaeocystis globosa by its lytic virus PgV-07T

    Directory of Open Access Journals (Sweden)

    D. S. Maat

    2013-07-01

    Full Text Available Recent studies showed changes in phytoplankton lipid composition during viral infection and have indicated roles for specific lipids in the mechanisms of algal virus-host interaction. To investigate the generality of these findings and obtain a better understanding of the allocation of specific lipids to viruses, we studied the intact polar lipid (IPL composition of virally infected and non-infected cultures of the Prymnesiophyte Phaeocystis globosa G(A and its lytic virus PgV-07T. The P. globosa IPL composition was relatively stable over a diel cycle and not strongly affected by viral infection. Glycolipids, phospholipids and betaine lipids were present in both the host and virus, although specific groups such as the diacylglyceryl-hydroxymethyltrimethyl-β-alanines and the sulfoquinovosyldiacylglycerols, were present in a lower proportion or were not detected in the virus. Viral glycosphingolipids (vGSLs, which have been shown to play a role in the infection strategy of the virus EhV-86, infecting the Prymnesiophyte Emiliania huxleyi CCMP374, were not encountered. Our results show that the involvement of lipids in virus-algal host interactions can be very different amongst virus-algal host systems.

  14. Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina.

    Science.gov (United States)

    Bey, Mathieu; Zhou, Simeng; Poidevin, Laetitia; Henrissat, Bernard; Coutinho, Pedro M; Berrin, Jean-Guy; Sigoillot, Jean-Claude

    2013-01-01

    The genome of the coprophilic ascomycete Podospora anserina encodes 33 different genes encoding copper-dependent lytic polysaccharide monooxygenases (LPMOs) from glycoside hydrolase family 61 (GH61). In this study, two of these enzymes (P. anserina GH61A [PaGH61A] and PaGH61B), which both harbored a family 1 carbohydrate binding module, were successfully produced in Pichia pastoris. Synergistic cooperation between PaGH61A or PaGH61B with the cellobiose dehydrogenase (CDH) of Pycnoporus cinnabarinus on cellulose resulted in the formation of oxidized and nonoxidized cello-oligosaccharides. A striking difference between PaGH61A and PaGH61B was observed through the identification of the products, among which were doubly and triply oxidized cellodextrins, which were released only by the combination of PaGH61B with CDH. The mass spectrometry fragmentation patterns of these oxidized products could be consistent with oxidation at the C-6 position with a geminal diol group. The different properties of PaGH61A and PaGH61B and their effect on the interaction with CDH are discussed in regard to the proposed in vivo function of the CDH/GH61 enzyme system in oxidative cellulose hydrolysis.

  15. Characterization of the Newly Isolated Lytic Bacteriophages KTN6 and KT28 and Their Efficacy against Pseudomonas aeruginosa Biofilm.

    Directory of Open Access Journals (Sweden)

    Katarzyna Danis-Wlodarczyk

    Full Text Available We here describe two novel lytic phages, KT28 and KTN6, infecting Pseudomonas aeruginosa, isolated from a sewage sample from an irrigated field near Wroclaw, in Poland. Both viruses show characteristic features of Pbunalikevirus genus within the Myoviridae family with respect to shape and size of head/tail, as well as LPS host receptor recognition. Genome analysis confirmed the similarity to other PB1-related phages, ranging between 48 and 96%. Pseudomonas phage KT28 has a genome size of 66,381 bp and KTN6 of 65,994 bp. The latent period, burst size, stability and host range was determined for both viruses under standard laboratory conditions. Biofilm eradication efficacy was tested on peg-lid plate assay and PET membrane surface. Significant reduction of colony forming units was observed (70-90% in 24 h to 72 h old Pseudomonas aeruginosa PAO1 biofilm cultures for both phages. Furthermore, a pyocyanin and pyoverdin reduction tests reveal that tested phages lowers the amount of both secreted dyes in 48-72 h old biofilms. Diffusion and goniometry experiments revealed the increase of diffusion rate through the biofilm matrix after phage application. These characteristics indicate these phages could be used to prevent Pseudomonas aeruginosa infections and biofilm formation. It was also shown, that PB1-related phage treatment of biofilm caused the emergence of stable phage-resistant mutants growing as small colony variants.

  16. In vitro characterization and in vivo properties of Salmonellae lytic bacteriophages isolated from free-range layers

    Directory of Open Access Journals (Sweden)

    L Fiorentin

    2004-06-01

    Full Text Available Occurrence of food poisoning related to Salmonella-contaminated eggs and chicken meat has been frequent in humans. Salmonella Enteritidis (SE and Salmonella Typhimurium (ST are included among the most important paratyphoid salmonellae associated with chicken meat and eggs. Elimination of Salmonella at the pre-harvest stage can play a significant role in preventing the introduction of this pathogen into the food chain and consequently in the reduction of food poisoning in humans. Bactericidal bacteriophages may provide a natural, nontoxic, feasible and non-expensive component of the multi-factorial approach for a pre-harvest control of Salmonella in poultry. Five bacteriophages lytic for SE PT4 and ST were obtained from 107 samples of feces of free-range layers in Brazil. All bacteriophages were characterized in vitro and in vivo, showing head and tail morphology and dsDNA as nucleic acids. Results of "in vivo" studies suggested that bacteriophages do not remain in Salmonella-free birds longer than one day, whereas they multiply in Salmonella-infected birds for longer periods. Besides, selection for phage-resistant SE PT4 did not seem to occur in the short term. Isolated bacteriophages will be investigated for their potential for pre-harvest biocontrol of SE PT4 in poultry.

  17. Characterization of the Newly Isolated Lytic Bacteriophages KTN6 and KT28 and Their Efficacy against Pseudomonas aeruginosa Biofilm.

    Science.gov (United States)

    Danis-Wlodarczyk, Katarzyna; Olszak, Tomasz; Arabski, Michal; Wasik, Slawomir; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Gula, Grzegorz; Briers, Yves; Jang, Ho Bin; Vandenheuvel, Dieter; Duda, Katarzyna Anna; Lavigne, Rob; Drulis-Kawa, Zuzanna

    2015-01-01

    We here describe two novel lytic phages, KT28 and KTN6, infecting Pseudomonas aeruginosa, isolated from a sewage sample from an irrigated field near Wroclaw, in Poland. Both viruses show characteristic features of Pbunalikevirus genus within the Myoviridae family with respect to shape and size of head/tail, as well as LPS host receptor recognition. Genome analysis confirmed the similarity to other PB1-related phages, ranging between 48 and 96%. Pseudomonas phage KT28 has a genome size of 66,381 bp and KTN6 of 65,994 bp. The latent period, burst size, stability and host range was determined for both viruses under standard laboratory conditions. Biofilm eradication efficacy was tested on peg-lid plate assay and PET membrane surface. Significant reduction of colony forming units was observed (70-90%) in 24 h to 72 h old Pseudomonas aeruginosa PAO1 biofilm cultures for both phages. Furthermore, a pyocyanin and pyoverdin reduction tests reveal that tested phages lowers the amount of both secreted dyes in 48-72 h old biofilms. Diffusion and goniometry experiments revealed the increase of diffusion rate through the biofilm matrix after phage application. These characteristics indicate these phages could be used to prevent Pseudomonas aeruginosa infections and biofilm formation. It was also shown, that PB1-related phage treatment of biofilm caused the emergence of stable phage-resistant mutants growing as small colony variants.

  18. COX-2 induces lytic reactivation of EBV through PGE2 by modulating the EP receptor signaling pathway.

    Science.gov (United States)

    Gandhi, Jaya; Gaur, Nivedita; Khera, Lohit; Kaul, Rajeev; Robertson, Erle S

    2015-10-01

    Inflammation is one of the predisposing factors known to be associated with Epstein Barr Virus (EBV) mediated tumorigenesis. However it is not well understood whether inflammation in itself plays a role in regulating the life cycle of this infectious agent. COX-2, a key mediator of the inflammatory processes is frequently over-expressed in EBV positive cancer cells. In various tumors, PGE2 is the principle COX-2 regulated downstream product which exerts its effects on cellular processes through the EP1-4 receptors. In this study, we further elucidated how upregulated COX-2 levels can modulate the events in EBV life cycle related to latency-lytic reactivation. Our data suggest a role for upregulated COX-2 on modulation of EBV latency through its downstream effector PGE2. This study demonstrates a role for increased COX-2 levels in modulation of EBV latency. This is important for understanding the pathogenesis of EBV-associated cancers in people with chronic inflammatory conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. S-Layered Aneurinibacillus and Bacillus spp. Are Susceptible to the Lytic Action of Pseudomonas aeruginosa Membrane Vesicles

    Science.gov (United States)

    Kadurugamuwa, J. L.; Mayer, A.; Messner, P.; Sára, M.; Sleytr, U. B.; Beveridge, T. J.

    1998-01-01

    When S-layered strains of Bacillus stearothermophilus and Aneurinibacillus thermoaerophilus, possessing S-layers of different lattice type and lattice constant as well as S-(glyco)protein chemistry, and isogenic S-layerless variants were subjected to membrane vesicles (MVs) from P. aeruginosa during plaque assays on plates or CFU measurements on cell suspensions, all bacterial types lysed. Electron microscopy of negative stains, thin sections, and immunogold-labelled MV preparations revealed that the vesicles adhered to all bacterial surfaces, broke open, and digested the underlying peptidoglycan-containing cell wall of all cell types. Reassembled S-layer did not appear to be affected by MVs, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the S-(glyco)proteins remained intact. meso-Diaminopimelic acid, as a peptidoglycan breakdown product, was found in all culture supernatants after MV attack. These results suggest that even though MVs are much larger than the channels which penetrate these proteinaceous arrays, S-layers on gram-positive bacteria do not form a defensive barrier against the lytic action of MVs. The primary mode of attack is by the liberation from the MVs of a peptidoglycan hydrolase, which penetrates through the S-layer to digest the underlying peptidoglycan-containing cell wall. The S-layer is not affected by MV protease. PMID:9573179

  20. In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections.

    Science.gov (United States)

    Mendes, João J; Leandro, Clara; Mottola, Carla; Barbosa, Raquel; Silva, Filipa A; Oliveira, Manuela; Vilela, Cristina L; Melo-Cristino, José; Górski, Andrzej; Pimentel, Madalena; São-José, Carlos; Cavaco-Silva, Patrícia; Garcia, Miguel

    2014-08-01

    In patients with diabetes mellitus, foot infections pose a significant risk. These are complex infections commonly caused by Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii, all of which are potentially susceptible to bacteriophages. Here, we characterized five bacteriophages that we had determined previously to have antimicrobial and wound-healing potential in chronic S. aureus, P. aeruginosa and A. baumannii infections. Morphological and genetic features indicated that the bacteriophages were lytic members of the family Myoviridae or Podoviridae and did not harbour any known bacterial virulence genes. Combinations of the bacteriophages had broad host ranges for the different target bacterial species. The activity of the bacteriophages against planktonic cells revealed effective, early killing at 4 h, followed by bacterial regrowth to pre-treatment levels by 24 h. Using metabolic activity as a measure of cell viability within established biofilms, we found significant cell impairment following bacteriophage exposure. Repeated treatment every 4 h caused a further decrease in cell activity. The greatest effects on both planktonic and biofilm cells occurred at a bacteriophage : bacterium input multiplicity of 10. These studies on both planktonic cells and established biofilms allowed us to better evaluate the effects of a high input multiplicity and a multiple-dose treatment protocol, and the findings support further clinical development of bacteriophage therapy. © 2014 The Authors.

  1. Natriuretic Peptides, Diagnostic and Prognostic Biomarkers

    NARCIS (Netherlands)

    J.H.W. Rutten (Joost)

    2010-01-01

    textabstractIn humans, the natriuretic peptide family consists of three different types of peptides: atrial natriuretic peptide (synonym: atrial natriuretic factor), B-type natriuretic peptide (synonym: brain natriuretic peptide) and C-natriuretic peptide.1 Atrial natriuretic peptide (ANP) was the f

  2. (-)-Epigallocatechin-3-gallate inhibition of Epstein-Barr virus spontaneous lytic infection involves ERK1/2 and PI3-K/Akt signaling in EBV-positive cells.

    Science.gov (United States)

    Liu, Sufang; Li, Hongde; Chen, Lin; Yang, Lifang; Li, Lili; Tao, Yongguan; Li, Wei; Li, Zijian; Liu, Haidan; Tang, Min; Bode, Ann M; Dong, Zigang; Cao, Ya

    2013-03-01

    Epstein-Barr virus (EBV) reactivation into the lytic cycle plays certain roles in the development of EBV-associated diseases, including nasopharyngeal carcinoma and lymphoma. In this study, we investigated the effects of the tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) on EBV spontaneous lytic infection and the mechanism(s) involved in EBV-positive cells. We found that EGCG could effectively inhibit the constitutive lytic infection of EBV at the DNA, gene transcription and protein levels by decreasing the phosphorylation and activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt. By using cellular signaling pathway-specific inhibitors, we also explored the signaling mechanisms underlying the inhibitory effects of EGCG on EBV spontaneous lytic infection in cell models. Results show that specific inhibitors of Mitogen-Activated Protein Kinase Kinase (MEK) (PD98059) and phosphatidylinositol 3-kinase [PI3-K (LY294002)] markedly downregulated gene transcription and expression of BZLF1 and BMRF1 indicating that the MEK/ERK1/2 and PI3-K/Akt pathways are involved in the EBV spontaneous lytic cycle cascade. Therefore, one of the mechanisms by which EGCG inhibits EBV spontaneous lytic infection appears to involve the suppression of the activation of MEK/ERK1/2 and PI3-K/Akt signaling.

  3. Natriuretic Peptides, Diagnostic and Prognostic Biomarkers

    OpenAIRE

    Rutten, Joost

    2010-01-01

    textabstractIn humans, the natriuretic peptide family consists of three different types of peptides: atrial natriuretic peptide (synonym: atrial natriuretic factor), B-type natriuretic peptide (synonym: brain natriuretic peptide) and C-natriuretic peptide.1 Atrial natriuretic peptide (ANP) was the fi rst natriuretic peptide to be discovered and in humans ANP is predominantly formed in the cardiomyocytes of the atria.2 B-type natriuretic peptide (BNP) was fi rst discovered in porcine brain hen...

  4. Electron transfer in peptides.

    Science.gov (United States)

    Shah, Afzal; Adhikari, Bimalendu; Martic, Sanela; Munir, Azeema; Shahzad, Suniya; Ahmad, Khurshid; Kraatz, Heinz-Bernhard

    2015-02-21

    In this review, we discuss the factors that influence electron transfer in peptides. We summarize experimental results from solution and surface studies and highlight the ongoing debate on the mechanistic aspects of this fundamental reaction. Here, we provide a balanced approach that remains unbiased and does not favor one mechanistic view over another. Support for a putative hopping mechanism in which an electron transfers in a stepwise manner is contrasted with experimental results that support electron tunneling or even some form of ballistic transfer or a pathway transfer for an electron between donor and acceptor sites. In some cases, experimental evidence suggests that a change in the electron transfer mechanism occurs as a result of donor-acceptor separation. However, this common understanding of the switch between tunneling and hopping as a function of chain length is not sufficient for explaining electron transfer in peptides. Apart from chain length, several other factors such as the extent of the secondary structure, backbone conformation, dipole orientation, the presence of special amino acids, hydrogen bonding, and the dynamic properties of a peptide also influence the rate and mode of electron transfer in peptides. Electron transfer plays a key role in physical, chemical and biological systems, so its control is a fundamental task in bioelectrochemical systems, the design of peptide based sensors and molecular junctions. Therefore, this topic is at the heart of a number of biological and technological processes and thus remains of vital interest.

  5. Model membrane interaction and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom.

    Science.gov (United States)

    Bandyopadhyay, Susmita; Lee, Meryl; Sivaraman, J; Chatterjee, Chiradip

    2013-01-01

    Lasioglossins, a new family of antimicrobial peptide, have been shown to have strong antimicrobial activity with low haemo-lytic and mast cell degranulation activity, and exhibit cytotoxic activity against various cancer cells in vitro. In order to understand the active conformation of these pentadecapeptides in membranes, we have studied the interaction of Lasioglossin II (LL-II), one of the members of Lasioglossins family with membrane mimetic micelle Dodecylphosphocholine (DPC) by fluorescence, Circular Dichroism (CD) and two dimensional (2D) (1)H NMR spectroscopy. Fluorescence experiments provide evidence of interaction of the N-terminal tryptophan residue of LL-II with the hydrophobic core of DPC micelle. CD results show an extended chain conformation of LL-II in water which is converted to a partial helical conformation in the presence of DPC micelle. Moreover we have determined the first three-dimensional NMR structure of LL-II bound to DPC micelle with rmsd of 0.36Å. The solution structure of LL-II shows hydrophobic and hydrophilic core formation in peptide pointing towards different direction in the presence of DPC. This amphipathic structure may allow this peptide to penetrate deeply into the interfacial region of negatively charged membranes and leading to local membrane destabilization. Further we have elucidated the DNA binding ability of LL-II by agarose gel retardation and fluorescence quenching experiments.

  6. Bombyx mori E26 transformation-specific 2 (BmEts2), an Ets family protein, represses Bombyx mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in the silkworm Bombyx mori.

    Science.gov (United States)

    Tanaka, H; Sagisaka, A; Suzuki, N; Yamakawa, M

    2016-10-01

    E26 transformation-specific (Ets) family transcription factors are known to play roles in various biological phenomena, including immunity, in vertebrates. However, the mechanisms by which Ets proteins contribute to immunity in invertebrates remain poorly understood. In this study, we identified a cDNA encoding BmEts2, which is a putative orthologue of Drosophila Yan and human translocation-ets-leukemia/Ets-variant gene 6, from the silkworm Bombyx mori. Expression of the BmEts2 gene was significantly increased in the fat bodies of silkworm larvae in response to injection with Escherichia coli and Staphylococcus aureus. BmEts2 overexpression dramatically repressed B. mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in silkworm cells. Conversely, gene knockdown of BmEts2 significantly enhanced BmRels activity. In addition, two κB sites located on the 5' upstream region of cecropin B1 were found to be involved in the repression of BmRels-mediated promoter activation. Protein-competition analysis further demonstrated that BmEts2 competitively inhibited binding of BmRels to κB sites. Overall, BmEts2 acts as a repressor of BmRels-mediated transactivation of antimicrobial protein genes by inhibiting the binding of BmRels to κB sites. © 2016 The Royal Entomological Society.

  7. Comparative activity and mechanism of action of three types of bovine antimicrobial peptides against pathogenic Prototheca spp.

    Science.gov (United States)

    Tomasinsig, Linda; Skerlavaj, Barbara; Scarsini, Michele; Guida, Filomena; Piccinini, Renata; Tossi, Alessandro; Zanetti, Margherita

    2012-02-01

    The yeast-like algae of the genus Prototheca are ubiquitous saprophytes causing infections in immunocompromised patients and granulomatous mastitis in cattle. Few available therapies and the rapid spread of resistant strains worldwide support the need for novel drugs against protothecosis. Host defence antimicrobial peptides inactivate a wide array of pathogens and are a rich source of leads, with the advantage of being largely unaffected by microbial resistance mechanisms. Three structurally diverse bovine peptides [BMAP-28, Bac5 and lingual antimicrobial peptide (LAP)] have thus been tested for their capacity to inactivate Prototheca spp. In minimum inhibitory concentration (MIC) assays, they were all effective in the micromolar range against clinical mastitis isolates as well as a Prototheca wickerhamii reference strain. BMAP-28 sterilized Prototheca cultures within 30-60 min at its MIC, induced cell permeabilization with near 100% release of cellular adenosine triphosphate and resulted in extensive surface blebbing and release of intracellular material as observed by scanning electron microscopy. Bac5 and LAP inactivated Prototheca following 3-6 h incubation at fourfold their MIC and did not result in detectable surface damage despite 70-90% killing, suggesting they act via non-lytic mechanisms. In circular dichroism studies, the conformation of BMAP-28, but not that of Bac5 or LAP, was affected by interaction with liposomes mimicking algal membranes. Our results indicate that BMAP-28, Bac5 and LAP kill Prototheca with distinct potencies, killing kinetics, and modes of action and may be appropriate for protothecal mastitis treatment. In addition, the ability of Bac5 and LAP to act via non-lytic mechanisms may be exploited for the development of target-selective drugs.

  8. Dicyclopropylmethyl peptide backbone protectant.

    Science.gov (United States)

    Carpino, Louis A; Nasr, Khaled; Abdel-Maksoud, Adel Ali; El-Faham, Ayman; Ionescu, Dumitru; Henklein, Peter; Wenschuh, Holger; Beyermann, Michael; Krause, Eberhard; Bienert, Michael

    2009-08-20

    The N-dicyclopropylmethyl (Dcpm) residue, introduced into amino acids via reaction of dicyclopropylmethanimine hydrochloride with an amino acid ester followed by sodium cyanoborohydride or triacetoxyborohydride reduction, can be used as an amide bond protectant for peptide synthesis. Examples which demonstrate the amelioration of aggregation effects include syntheses of the alanine decapeptide and the prion peptide (106-126). Avoidance of cyclization to the aminosuccinimide followed substitution of Fmoc-(Dcpm)Gly-OH for Fmoc-Gly-OH in the assembly of sequences containing the sensitive Asp-Gly unit.

  9. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  10. β-PEPTIDES CYCLOBUTANIQUES

    OpenAIRE

    Fernandez, Carlos

    2008-01-01

    The synthesis of β-amino acids, structural analogues of?-Amino acids, is an issue essential in the development of oligopeptides. A lot of work has been conducted on the behavior of β-peptide (sequence of β-amino acids) as well as peptides mixed (mixed β-and β- amino acids). As a result, the conformational preference of β-amino acids will induce the appearance of a three-dimensional structure of the oligopeptide ordered. Thus, several types of helices, sheets and elbows were observed in β-olig...

  11. Immunotherapy with Allergen Peptides

    Directory of Open Access Journals (Sweden)

    Larché Mark

    2007-06-01

    Full Text Available Specific allergen immunotherapy (SIT is disease-modifying and efficacious. However, the use of whole allergen preparations is associated with frequent allergic adverse events during treatment. Many novel approaches are being designed to reduce the allergenicity of immunotherapy preparations whilst maintaining immunogenicity. One approach is the use of short synthetic peptides which representing dominant T cell epitopes of the allergen. Short peptides exhibit markedly reduced capacity to cross link IgE and activate mast cells and basophils, due to lack of tertiary structure. Murine pre-clinical studies have established the feasibility of this approach and clinical studies are currently in progress in both allergic and autoimmune diseases.

  12. Invertebrate FMRFamide related peptides.

    Science.gov (United States)

    Krajniak, Kevin G

    2013-06-01

    In 1977 the neuropeptide FMRFamide was isolated from the clam, Macrocallista nimbosa. Since then several hundred FMRFamide-related peptides (FaRPs) have been isolated from invertebrate animals. Precursors to the FaRPs likely arose in the cnidarians. With the transition to a bilateral body plan FaRPs became a fixture in the invertebrate phyla. They have come to play a critical role as neurotransmitters, neuromodulators, and neurohormones. FaRPs regulate a variety of body functions including, feeding, digestion, circulation, reproduction, movement. The evolution of the molecular form and function of these omnipresent peptides will be considered.

  13. Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function.

    Science.gov (United States)

    Busk, P K; Pilgaard, B; Lezyk, M J; Meyer, A S; Lange, L

    2017-04-12

    Carbohydrate-active enzymes are found in all organisms and participate in key biological processes. These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis for prediction of enzyme function. A fast and reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interest as demonstrated for the glycosyl hydrolase and the lytic polysaccharide monooxygenase families. This approach not only assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy. We identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition. The conserved peptides were matched to protein sequence for de novo annotation and functional prediction of carbohydrate-active enzymes with the Hotpep method. Annotation of protein sequences from 12 bacterial and 16 fungal genomes to families with Hotpep had an accuracy of 0.84 (measured as F1-score) compared to semiautomatic annotation by the CAZy database whereas the dbCAN HMM-based method had an accuracy of 0.77 with optimized parameters. Furthermore, Hotpep provided a functional prediction with 86% accuracy for the annotated genes. Hotpep is available as a stand-alone application for MS Windows. Hotpep is a state-of-the-art method for automatic annotation and functional prediction of carbohydrate-active enzymes.

  14. Implications of lipid monolayer charge characteristics on their selective interactions with a short antimicrobial peptide.

    Science.gov (United States)

    Ciumac, Daniela; Campbell, Richard A; Xu, Hai; Clifton, Luke A; Hughes, Arwel V; Webster, John R P; Lu, Jian R

    2017-02-01

    Many antimicrobial peptides (AMPs) target bacterial membranes and they kill bacteria by causing structural disruptions. One of the fundamental issues however lies in the selective responses of AMPs to different cell membranes as a lack of selectivity can elicit toxic side effects to mammalian host cells. A key difference between the outer surfaces of bacterial and mammalian cells is the charge characteristics. We report a careful study of the binding of one of the representative AMPs, with the general sequence G(IIKK)4I-NH2 (G4), to the spread lipid monolayers of DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and DPPG (1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt)) mimicking the charge difference between them, using the combined measurements from Langmuir trough, Brewster angle microscopy (BAM) and neutron reflection (NR). The difference in pressure rise upon peptide addition into the subphase clearly demonstrated the different interactions arising from different lipid charge features. Morphological changes from the BAM imaging confirmed the association of the peptide into the lipid monolayers, but there was little difference between them. However, NR studies revealed that the peptide bound 4 times more onto the DPPG monolayer than onto the DPPC monolayer. Importantly, whilst the peptide could only be associated with the head groups of DPPC it was well penetrated into the entire DPPG monolayer, showing that the electrostatic interaction strengthened the hydrophobic interaction and that the combined molecular interactive processes increased the power of G4 in disrupting the charged membranes. The results are discussed in the context of general antibacterial actions as observed from other AMPs and membrane lytic actions.

  15. Self-Assembling Peptide Amphiphiles for Targeted Drug Delivery

    Science.gov (United States)

    Moyer, Tyson

    The systemic delivery of therapeutics is currently limited by off-target side effects and poor drug uptake into the cells that need to be treated. One way to circumvent these issues is to target the delivery and release of therapeutics to the desired location while limiting systemic toxicity. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures for the development of targeted therapies. Specifically, the research has focused on the interrelationships between presentation of targeting moeities and the control of nanostructure morphology in the context of systemic delivery for targeting cancer and vascular injuries. The self-assembly region of the PA was systematically altered to achieve control of nanostructure widths, from 100 nm to 10 nm, by the addition of valine-glutamic acid dimers into the chemical structure, subsequently increasing the degree of nanostructure twist. For the targeting of tumors, a homing PA was synthesized to include a dimeric, cyclic peptide sequence known to target the cancer-specific, death receptor 5 (DR5) and initiate apoptosis through the oligomerization of DR5. This PA presented a multivalent display of DR5-binding peptides, resulting in improved binding affinity measured by surface plasmon resonance. The DR5-targeting PA also showed enhanced efficacy in both in vitro and in vivo tumor models relative to non-targeted controls. Alternative modifications to the PA-based antitumor therapies included the use of a cytotoxic, membrane-lytic PA coassembled with a pegylated PA, which showed enhanced biodistribution and in vivo activity after coassembly. The functionalization of the hydrophobic core was also accomplished through the encapsulation of the chemotherapy camptothecin, which was shown to be an effective treatment in vivo. Additionally, a targeted PA nanostructure was designed to bind to the site of vascular intervention by targeting collagen IV. Following balloon angioplasty

  16. Herpesviral ICP0 Protein Promotes Two Waves of Heterochromatin Removal on an Early Viral Promoter during Lytic Infection

    Directory of Open Access Journals (Sweden)

    Jennifer S. Lee

    2016-01-01

    Full Text Available Herpesviruses must contend with host cell epigenetic silencing responses acting on their genomes upon entry into the host cell nucleus. In this study, we confirmed that unchromatinized herpes simplex virus 1 (HSV-1 genomes enter primary human foreskin fibroblasts and are rapidly subjected to assembly of nucleosomes and association with repressive heterochromatin modifications such as histone 3 (H3 lysine 9-trimethylation (H3K9me3 and lysine 27-trimethylation (H3K27me3 during the first 1 to 2 h postinfection. Kinetic analysis of the modulation of nucleosomes and heterochromatin modifications over the course of lytic infection demonstrates a progressive removal that coincided with initiation of viral gene expression. We obtained evidence for three phases of heterochromatin removal from an early gene promoter: an initial removal of histones and heterochromatin not dependent on ICP0, a second ICP0-dependent round of removal of H3K9me3 that is independent of viral DNA synthesis, and a third phase of H3K27me3 removal that is dependent on ICP0 and viral DNA synthesis. The presence of ICP0 in transfected cells is also sufficient to promote removal of histones and H3K9me3 modifications of cotransfected genes. Overall, these results show that ICP0 promotes histone removal, a reduction of H3K9me3 modifications, and a later indirect reduction of H3K27me3 modifications following viral early gene expression and DNA synthesis. Therefore, HSV ICP0 promotes the reversal of host epigenetic silencing mechanisms by several mechanisms.

  17. An antisense RNA in a lytic cyanophage links psbA to a gene encoding a homing endonuclease.

    Science.gov (United States)

    Millard, Andrew D; Gierga, Gregor; Clokie, Martha R J; Evans, David J; Hess, Wolfgang R; Scanlan, David J

    2010-09-01

    Cyanophage genomes frequently possess the psbA gene, encoding the D1 polypeptide of photosystem II. This protein is believed to maintain host photosynthetic capacity during infection and enhance phage fitness under high-light conditions. Although the first documented cyanophage-encoded psbA gene contained a group I intron, this feature has not been widely reported since, despite a plethora of new sequences becoming available. In this study, we show that in cyanophage S-PM2, this intron is spliced during the entire infection cycle. Furthermore, we report the widespread occurrence of psbA introns in marine metagenomic libraries, and with psbA often adjacent to a homing endonuclease (HE). Bioinformatic analysis of the intergenic region between psbA and the adjacent HE gene F-CphI in S-PM2 showed the presence of an antisense RNA (asRNA) connecting these two separate genetic elements. The asRNA is co-regulated with psbA and F-CphI, suggesting its involvement with their expression. Analysis of scaffolds from global ocean survey datasets shows this asRNA to be commonly associated with the 3' end of cyanophage psbA genes, implying that this potential mechanism of regulating marine 'viral' photosynthesis is evolutionarily conserved. Although antisense transcription is commonly found in eukaryotic and increasingly also in prokaryotic organisms, there has been no indication for asRNAs in lytic phages so far. We propose that this asRNA also provides a means of preventing the formation of mobile group I introns within cyanophage psbA genes.

  18. Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials.

    Science.gov (United States)

    Sukumaran, Anuraj T; Nannapaneni, Rama; Kiess, Aaron; Sharma, Chander Shekhar

    2015-08-17

    The effectiveness of recently approved Salmonella lytic bacteriophage preparation (SalmoFresh™) in reducing Salmonella in vitro and on chicken breast fillets was examined in combination with lauric arginate (LAE) or cetylpyridinium chloride (CPC). In another experiment, a sequential spray application of this bacteriophage (phage) solution on Salmonella inoculated chicken skin after a 20s dip in chemical antimicrobials (LAE, CPC, peracetic acid, or chlorine) was also examined in reducing Salmonella counts on chicken skin. The application of phage in combination with CPC or LAE reduced S. Typhimurium, S. Heidelberg, and S. Enteritidis up to 5 log units in vitro at 4 °C. On chicken breast fillets, phage in combination with CPC or LAE resulted in significant (pSalmonella ranging from 0.5 to 1.3 log CFU/g as compared to control up to 7 days of refrigerated storage. When phage was applied sequentially with chemical antimicrobials, all the treatments resulted in significant reductions of Salmonella. The application of chlorine (30 ppm) and PAA (400 ppm) followed by phage spray (10(9)PFU/ml) resulted in highest Salmonella reductions of 1.6-1.7 and 2.2-2.5l og CFU/cm(2), respectively. In conclusion, the surface applications of phage in combination with LAE or CPC significantly reduced Salmonella counts on chicken breast fillets. However, higher reductions in Salmonella counts were achieved on chicken skin by the sequential application of chemical antimicrobials followed by phage spray. The sequential application of chlorine, PAA, and phage can provide additional hurdles to reduce Salmonella on fresh poultry carcasses or cut up parts.

  19. Hemorrhagic, coagulant and fibrino(geno)lytic activities of crude venom and fractions from mapanare (Bothrops colombiensis) snakes.

    Science.gov (United States)

    Girón, María E; Salazar, Ana M; Aguilar, Irma; Pérez, John C; Sánchez, Elda E; Arocha-Piñango, Carmen L; Rodríguez-Acosta, Alexis; Guerrero, Belsy

    2008-01-01

    Bothrops colombiensis venom from two similar geographical locations were tested for their hemostatic functions and characterized by gel-filtration chromatography and SDS-PAGE electrophoresis. The snakes were from Caucagua and El Guapo towns of the Venezuelan state of Miranda. Fibrino(geno)lytic, procoagulant, hemorrhagic, lethal activities, gel-filtration chromatography and SDS-PAGE profiles were analyzed and compared for both venoms. The highest hemorrhagic activity of 5.3 mug was seen in El Guapo venom while Caucagua venom had the lowest LD(50) of 5.8 mg/kg. Both venoms presented similar thrombin-like activity. El Guapo showed a factor Xa-like activity two times higher than Caucagua. Differences were observed in kallikrein-like and t-PA activities, being highest in El Guapo. Caucagua venom showed the maximum fibrin lysis. Both crude venom runs on Sephadex G-100 chromatography gave fraction SII with the high fibrinolytic activity. Proteases presented in SII fractions and eluted from Benzamidine-Sepharose (not bound to the column) provoked a fast degradation of fibrinogen alpha chains and a slower degradation of beta chains, which could possibly be due to a higher content of alpha fibrinogenases in these venoms. The fibrinogenolytic activity was decreased by metalloprotease inhibitors. The results suggested that metalloproteases in SII fractions were responsible for the fibrinolytic activity. The analysis of samples for fibrin-zymography of SII fractions showed an active band with a molecular mass of approximately 30 kDa. These results reiterate the importance of using pools of venoms for antivenom immunization, to facilitate the neutralization of the maximum potential number of toxins.

  20. Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells.

    Science.gov (United States)

    Cox, Christopher R; Coburn, Phillip S; Gilmore, Michael S

    2005-02-01

    The cytolysin is a novel, two-peptide lytic toxin produced by some strains of Enterococcus faecalis. It is toxic in animal models of enterococcal infection, and associated with acutely terminal outcome in human infection. The cytolysin exerts activity against a broad spectrum of cell types including a wide range of gram positive bacteria, eukaryotic cells such as human, bovine and horse erythrocytes, retinal cells, polymorphonuclear leukocytes, and human intestinal epithelial cells. The cytolysin likely originated as a bacteriocin involved with niche control in the complex microbial ecologies associated with eukaryotic hosts. However, additional anti-eukaryotic activities may have been selected for as enterococci adapted to eukaryotic cell predation in water or soil ecologies. Cytolytic activity requires two unique peptides that possess modifications characteristic of the lantibiotic bacteriocins, and these peptides are broadly similar in size to most cationic eukaryotic defensins. Expression of the cytolysin is tightly controlled by a novel mode of gene regulation in which the smaller peptide signals high-level expression of the cytolysin gene cluster. This complex regulation of cytolysin expression may have evolved to balance defense against eukaryotic predators with stealth.

  1. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    . An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  2. Peptide vectors for gene delivery: from single peptides to multifunctional peptide nanocarriers.

    Science.gov (United States)

    Raad, Markus de; Teunissen, Erik A; Mastrobattista, Enrico

    2014-07-01

    The therapeutic use of nucleic acids relies on the availability of sophisticated delivery systems for targeted and intracellular delivery of these molecules. Such a gene delivery should possess essential characteristics to overcome several extracellular and intracellular barriers. Peptides offer an attractive platform for nonviral gene delivery, as several functional peptide classes exist capable of overcoming these barriers. However, none of these functional peptide classes contain all the essential characteristics required to overcome all of the barriers associated with successful gene delivery. Combining functional peptides into multifunctional peptide vectors will be pivotal for improving peptide-based gene delivery systems. By using combinatorial strategies and high-throughput screening, the identification of multifunctional peptide vectors will accelerate the optimization of peptide-based gene delivery systems.

  3. Effects of N-terminus modifications on the conformation and permeation activities of the synthetic peptide L1A.

    Science.gov (United States)

    Zanin, Luciana Puia Moro; de Araujo, Alexandre Suman; Juliano, Maria Aparecida; Casella, Tiago; Nogueira, Mara Correa Lelles; Ruggiero Neto, João

    2016-06-01

    We investigate the effect of the N-terminus modification of the L1A, a synthetic octadecapeptide, on its helical content, affinity and lytic action in model membranes and on its hemolytic and antibacterial activities. L1A and its acetylated analog displayed a selective antibacterial activity to Gram-negative bacteria without being hemolytic. The covalently linked 2-aminobezoic acid to the N-terminus impaired the antibacterial efficacy and increased hemolysis. Despite their lower net charge (+2), N-terminus modifications resulted in enhanced affinity and improved lytic efficiency in anionic vesicles. The analogs also showed higher helical content and consequently higher amphipathicity in these vesicles. The conformational analysis by molecular dynamics simulations in 30 % of TFE/water showed that the hydrophobic faces of the peptides are in close contact with CF3 groups of TFE while the hydrophilic faces with water molecules. Due to the loss of the amino charge, the N-termini of the analogs are buried in TFE molecules. The analysis of the pair distribution functions, obtained for the center of mass of the charged groups, has evidenced that the state of the N-terminus has influenced the possibility of different ion-pairing. The higher complexity of the bacterial cells compared with anionic vesicles hampers to establish correlations structure-function for the analogs.

  4. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  5. An Epstein-Barr Virus-Encoded Protein Complex Requires an Origin of Lytic Replication In Cis to Mediate Late Gene Transcription.

    Directory of Open Access Journals (Sweden)

    Reza Djavadian

    2016-06-01

    Full Text Available Epstein-Barr virus lytic replication is accomplished by an intricate cascade of gene expression that integrates viral DNA replication and structural protein synthesis. Most genes encoding structural proteins exhibit "true" late kinetics-their expression is strictly dependent on lytic DNA replication. Recently, the EBV BcRF1 gene was reported to encode a TATA box binding protein homolog, which preferentially recognizes the TATT sequence found in true late gene promoters. BcRF1 is one of seven EBV genes with homologs found in other β- and γ-, but not in α-herpesviruses. Using EBV BACmids, we systematically disrupted each of these "βγ" genes. We found that six of them, including BcRF1, exhibited an identical phenotype: intact viral DNA replication with loss of late gene expression. The proteins encoded by these six genes have been found by other investigators to form a viral protein complex that is essential for activation of TATT-containing reporters in EBV-negative 293 cells. Unexpectedly, in EBV infected 293 cells, we found that TATT reporter activation was weak and non-specific unless an EBV origin of lytic replication (OriLyt was present in cis. Using two different replication-defective EBV genomes, we demonstrated that OriLyt-mediated DNA replication is required in cis for TATT reporter activation and for late gene expression from the EBV genome. We further demonstrate by fluorescence in situ hybridization that the late BcLF1 mRNA localizes to EBV DNA replication factories. These findings support a model in which EBV true late genes are only transcribed from newly replicated viral genomes.

  6. The Molecular Switch of Telomere Phages: High Binding Specificity of the PY54 Cro Lytic Repressor to a Single Operator Site

    Directory of Open Access Journals (Sweden)

    Jens Andre Hammerl

    2015-06-01

    Full Text Available Temperate bacteriophages possess a molecular switch, which regulates the lytic and lysogenic growth. The genomes of the temperate telomere phages N15, PY54 and ɸKO2 harbor a primary immunity region (immB comprising genes for the prophage repressor, the lytic repressor and a putative antiterminator. The roles of these products are thought to be similar to those of the lambda proteins CI, Cro and Q, respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ɸKO2 are also reminiscent of lambda-like phages. By contrast, in silico analyses revealed the presence of only one operator (O\\(_{\\rm{R}}\\3 in PY54. The purified PY54 Cro protein was used for EMSA studies demonstrating that it exclusively binds to a 16-bp palindromic site (O\\(_{\\rm{R}}\\3 upstream of the prophage repressor gene. The O\\(_{\\rm{R}}\\3 operator sequences of PY54 and ɸKO2/N15 only differ by their peripheral base pairs, which are responsible for Cro specificity. PY54 cI and cro transcription is regulated by highly active promoters initiating the synthesis of a homogenious species of leaderless mRNA. The location of the PY54 Cro binding site and of the identified promoters suggests that the lytic repressor suppresses cI transcription but not its own synthesis. The results indicate an unexpected diversity of the growth regulation mechanisms in lambda-related phages.

  7. APD: the Antimicrobial Peptide Database.

    Science.gov (United States)

    Wang, Zhe; Wang, Guangshun

    2004-01-01

    An antimicrobial peptide database (APD) has been established based on an extensive literature search. It contains detailed information for 525 peptides (498 antibacterial, 155 antifungal, 28 antiviral and 18 antitumor). APD provides interactive interfaces for peptide query, prediction and design. It also provides statistical data for a select group of or all the peptides in the database. Peptide information can be searched using keywords such as peptide name, ID, length, net charge, hydrophobic percentage, key residue, unique sequence motif, structure and activity. APD is a useful tool for studying the structure-function relationship of antimicrobial peptides. The database can be accessed via a web-based browser at the URL: http://aps.unmc.edu/AP/main.html.

  8. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  9. Salivary production of IgA and IgG to human herpes virus 8 latent and lytic antigens by patients in whom Kaposi's sarcoma has regressed.

    Science.gov (United States)

    Mbopi-Keou, Francois-Xavier; Legoff, Jerome; Piketty, Christophe; Hocini, Hakim; Malkin, Jean-Elie; Inoue, Naoki; Scully, Crispian M; Porter, Stephen R; Teo, Chong-Gee; Belec, Laurent

    2004-01-23

    IgG and IgA antibodies with specificities to a latent and a lytic antigen of human herpes virus 8 (HHV-8) were detectable in the saliva and serum of eight patients whose Kaposi's sarcoma had regressed, seven of whom were HIV-1 infected. The measurement of antibody-specific activity and secretion rate, and the detection of secretory IgA all indicate anti-HHV-8 antibody activity in saliva. The specific humoral responses possibly influence mucosal replication of HHV-8, and in turn, that of HIV.

  10. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes

    OpenAIRE

    KOJIMA, Yuka; Várnai, Anikó; Ishida, Takuya; Sunagawa, Naoki; Petrovic, Dejan M.; Igarashi, Kiyohiko; Jellison, Jody; GOODELL, BARRY; Alfredsen, Gry; Westereng, Bjørge; Vincent G H Eijsink; Yoshida, Makoto

    2016-01-01

    ABSTRACT Fungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such as Gloeophyllum trabeum, tend to have few LPMOs, and information on these enzymes is scarce. The genome of G. trabeum encodes four auxiliary activity 9 (AA9) LPMOs (GtLPMO9s), whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants of GtLPMO9A seem to be produced, a single-domain variant, GtLPMO9A-1, and...

  11. Open kyphoplasty in the treatment of a painful vertebral lytic lesion with spinal cord compression caused by multiple myeloma: A case report

    OpenAIRE

    Pan, Jun; QIAN, ZHONG-LAI; Sun, Zhi-Yong; Yang, Hui-Lin

    2013-01-01

    Multiple myeloma is a fatal hematological malignancy, with the most common localization being the spine. A 72-year-old male patient presented with progressive back pain and dysfunction of ambulation. Spinal computed tomography (CT) and magnetic resonance imaging (MRI) showed spinal cord compression at the T9-T10 level due to an extensive epidural mass in the spinal canal, a large lytic mass of T7-T12 with extraosseous extension and involvement of T9 and T10 vertebral pedicle and posterior wal...

  12. Avian host defense peptides.

    Science.gov (United States)

    Cuperus, Tryntsje; Coorens, Maarten; van Dijk, Albert; Haagsman, Henk P

    2013-11-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds.

  13. Antimicrobial peptides in Echinoderms

    Directory of Open Access Journals (Sweden)

    C Li

    2010-05-01

    Full Text Available Antimicrobial peptides (AMPs are important immune effector molecules for invertebrates, including echinoderms, which lack a vertebrate-type adaptive immune system. Here we summarize the knowledge of such peptides in echinoderms. Strongylocins are a novel family of cysteine-rich AMPs, recently identified in the sea urchins, Strongylocentrotus droebachiensis and S. purpuratus. Although these molecules present diverse amino acid sequences, they share an identical cysteine arrangement pattern, dissimilar to other known AMPs. A family of heterodimeric AMPs, named centrocins, are also present in S. droebachiensis. Lysozymes and fragments of larger proteins, such as beta-thymocins, actin, histone 2A and filamin A have also been shown to display antimicrobial activities in echinoderms. Future studies on AMPs should be aimed in revealing how echinoderms use these AMPs in the immune response against microbial pathogens.

  14. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  15. Clinical Manifestations of Kaposi Sarcoma Herpesvirus Lytic Activation: Multicentric Castleman Disease (KSHV–MCD and the KSHV Inflammatory Cytokine Syndrome

    Directory of Open Access Journals (Sweden)

    Mark N. Polizzotto

    2012-03-01

    Full Text Available Soon after the discovery of Kaposi sarcoma (KS-associated herpesvirus (KSHV, it was appreciated that this virus was associated with most cases of multicentric Castleman disease (MCD arising in patients infected with human immunodeficiency virus. It has subsequently been recognized that KSHV–MCD is a distinct entity from other forms of MCD. Like MCD that is unrelated to KSHV, the clinical presentation of KSHV–MCD is dominated by systemic inflammatory symptoms including fevers, cachexia, and laboratory abnormalities including cytopenias, hypoalbuminemia, hyponatremia, and elevated C-reactive protein. Pathologically KSHV–MCD is characterized by polyclonal, IgM-lambda restricted plasmacytoid cells in the intrafollicular areas of affected lymph nodes. A portion of these cells are infected with KSHV and a sizable subset of these cells express KSHV lytic genes including a viral homolog of interleukin-6 (vIL-6. Patients with KSHV–MCD generally have elevated KSHV viral loads in their peripheral blood. Production of vIL-6 and induction of human (h IL-6 both contribute to symptoms, perhaps in combination with overproduction of IL-10 and other cytokines. Until recently, the prognosis of patients with KSHV–MCD was poor. Recent therapeutic advances targeting KSHV-infected B cells with the anti-CD20 monoclonal antibody rituximab and utilizing KSHV enzymes to target KSHV-infected cells have substantially improved patient outcomes. Recently another KSHV-associated condition, the KSHV inflammatory cytokine syndrome (KICS has been described. Its clinical manifestations resemble those of KSHV–MCD but lymphadenopathy is not prominent and the pathologic nodal changes of KSHV–MCD are absent. Patients with KICS exhibit elevated KSHV viral loads and elevation of vIL-6, homolog of human interleukin-6 and IL-10 comparable to those seen in KSHV–MCD; the cellular origin of these is a matter of investigation. KICS may contribute to the inflammatory symptoms

  16. Induction of lytic pathways in T cell clones derived from wild-type or protein tyrosine kinase Fyn mutant mice.

    Science.gov (United States)

    Lancki, D W; Fields, P; Qian, D; Fitch, F W

    1995-08-01

    detected in CD8+ clones derived from fyn-/- mutant mice. Thus, Fyn is not required for expression of these components of antigen specific lysis by CD8+ alloreactive CTL clones. It appears that CD8+ clones that use multiple lytic mechanisms may selectively employ the perforin or Fas-based pathway depending on properties of the target cell or stimulus.(ABSTRACT TRUNCATED AT 400 WORDS)

  17. Lytic HSV-1 infection induces the multifunctional transcription factor Early Growth Response-1 (EGR-1 in rabbit corneal cells

    Directory of Open Access Journals (Sweden)

    McFerrin Harris E

    2011-05-01

    Full Text Available Abstract Background Herpes simplex virus type-1 (HSV-1 infections can cause a number of diseases ranging from simple cold sores to dangerous keratitis and lethal encephalitis. The interaction between virus and host cells, critical for viral replication, is being extensively investigated by many laboratories. In this study, we tested the hypothesis that HSV-1 lytic infection triggers the expression of important multi-functional transcription factor Egr1. The mechanisms of induction are mediated, at least in part, by signaling pathways such as NFκB and CREB. Methods SIRC, VERO, and 293HEK cell lines were infected with HSV-1, and the Egr-1 transcript and protein were detected by RT-PCR and Western blot, respectively. The localization and expression profile of Egr-1 were investigated further by immunofluorescence microscopy analyses. The recruitment of transcription factors to the Egr-1 promoter during infection was studied by chromatin immunoprecipitation (ChIP. Various inhibitors and dominant-negative mutant were used to assess the mechanisms of Egr-1 induction and their effects were addressed by immunofluorescence microscopy. Results Western blot analyses showed that Egr-1 was absent in uninfected cells; however, the protein was detected 24-72 hours post treatment, and the response was directly proportional to the titer of the virus used for infection. Using recombinant HSV-1 expressing EGFP, Egr-1 was detected only in the infected cells. ChIP assays demonstrated that NFкB and cAMP response element binding protein (CREB were recruited to the Egr-1 promoter upon infection. Additional studies showed that inhibitors of NFкB and dominant-negative CREB repressed the Egr-1 induction by HSV-1 infection. Conclusion Collectively, these results demonstrate that Egr-1 is expressed rapidly upon HSV-1 infection and that this novel induction could be due to the NFкB/CREB-mediated transactivation. Egr-1 induction might play a key role in the viral gene

  18. Peptides and Food Intake

    OpenAIRE

    Carmen Sobrino Crespo; Aranzazu Perianes Cachero; Lilian Puebla Jiménez; Vicente eBarrios; Eduardo eArilla

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the r...

  19. A peptidoglycan recognition protein (PxPGRP-SA) regulating the expression of antimicrobial peptides in Plutella xylostella (Lepidoptera: Plutellidae)%一个调控抗菌肽表达的小菜蛾肽聚糖识别蛋白(PxPGRP-SA)

    Institute of Scientific and Technical Information of China (English)

    郑志华; 许小霞; 余静; 高延富; 张玉清; 欧阳莉娜; 金丰良

    2016-01-01

    [目的]肽聚糖识别蛋白(peptidoglycan recognition proteins,PGRPs)是昆虫免疫系统中一类重要的模式识别蛋白.本研究旨在阐明经苏云金芽孢杆菌Bacillus thuringiensis侵染后,小菜蛾Plutella xylostella PGRP-SA基因(命名为PxPGRP-SA)在体内的表达模式和对抗菌肽基因的表达调控.[方法]本研究利用实时荧光定量PCR (qRT-PCR)技术分析B.thuringiensis侵染小菜蛾幼虫后PxPGRP-SA的转录模式,通过RNAi技术结合抗血清封闭实验检测PxPGRP-SA对小菜蛾抗茵肽基因的表达调控作用.[结果]qRT-PCR检测表明,小菜蛾4龄幼虫在注射具有活性的B.thuringiensis 6 h后,PxPGRP-SA在脂肪体和血细胞中表达量迅速上升,其中脂肪体中的表达量在注射24 h后达到高峰,而在血细胞中的表达量在18 h后达到高峰.RNAi沉默小菜蛾4龄幼虫PxPGRP-SA的转录后,可显著降低小菜蛾脂肪体中cecropin,moricin-2,lysozyme和defensin4个抗茵肽基因及Dorsal和Sp(a)tzle基因的mRNA转录水平;注射anti-PxPGRP-SA封闭小菜蛾体内PxPGRP-SA的活性后,也可降低小菜蛾脂肪体中4个抗菌肽基因的mRNA转录水平;PxPGRP-SA转录沉默后,同时导致添食B.thuringiensis的小菜蛾幼虫的存活率明显降低.[结论]PxPGRP-SA参与了小菜蛾体内抗茵肽cecropin,moricin-2,lysozyme和defensin基因的表达调控,并在免疫防御B.thuringiensis的侵染过程中起了重要的作用.%[Aim] Peptidoglycan recognition proteins (PGRPs) are one kind of important pattern recognition proteins in insect immune system.In this study,we aim to investigate the expression patterns of PGRP-SA from Plutella xylostella (designated as PxPGRP-SA) and its involvement in the regulation of the expression of antimicrobial peptide genes in P.xylostella after infection by Bacillus thuringiensis.[Methods] The transcription pattern of PxPGRP-SA in P.xylostella larvae infected by B.thuringiensis was analyzed by quantitative real-time reverse transcription

  20. [C-peptide physiological effects].

    Science.gov (United States)

    Shpakov, A O; Granstrem, O K

    2013-02-01

    In the recent years there were numerous evidences that C-peptide, which was previously considered as a product of insulin biosynthesis, is one of the key regulators of physiological processes. C-peptide via heterotrimeric G(i/o) protein-coupled receptors activates a wide range of intracellular effector proteins and transcription factors and, thus, controls the inflammatory and neurotrophic processes, pain sensitivity, cognitive function, macro- and microcirculation, glomerular filtration. These effects of C-peptide are mainly expressed in its absolute or relative deficiency occurred in type 1 diabetes mellitus and they are less pronounced when the level of C-peptide is close to normal. Replacement therapy with C-peptide prevents many complications of type 1 diabetes, such as atherosclerosis, diabetic peripheral neuropathy, and nephropathy. C-peptide interacts with the insulin hexamer complexes and induces their dissociation and, as a result, regulates the functional activity of the insulin signaling system. At the same time, C-peptide at the concentrations above physiological may demonstrate pro-inflammatory effects on the endothelial cells and cause atherosclerotic changes in the vessels, which should be considered in the study of pathogenic mechanisms of complications of type 2 diabetes mellitus, where the level of C peptide is increased, as well as in the development of approaches for C-peptide application in clinic. This review is devoted contemporary achievements and unsolved problems in the study of C-peptide, as an important regulator of physiological and biochemical processes.

  1. Produção, purificação, clonagem e aplicação de enzimas líticas Production, purification, cloning and application of lytic enzymes

    Directory of Open Access Journals (Sweden)

    Luciana Francisco Fleuri

    2005-10-01

    Full Text Available Lytic enzymes such as beta-1,3 glucanases, proteases and chitinases are able to hydrolyse, respectively, beta-1,3 glucans, mannoproteins and chitin, as well as the cell walls of many yeast species. Lytic enzymes are useful in a great variety of applications including the preparation of protoplasts; the extraction of proteins, enzymes, pigments and functional carbohydrates; pre-treatment for the mechanical rupture of cells; degradation of residual yeast cell mass for the preparation of animal feed; analysis of the yeast cell wall structure and composition; study of the yeast cell wall synthesis and the control of pathogenic fungi. This review presents the most important aspects with respect to lytic enzymes, especially their production, purification, cloning and application.

  2. A decay-accelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells.

    Science.gov (United States)

    Shafren, D R; Williams, D T; Barry, R D

    1997-12-01

    The composition of the cellular receptor complex for coxsackievirus B3 (CVB3) has been an area of much contention for the last 30 years. Recently, two individual components of a putative CVB3 cellular receptor complex have been identified as (i) decay-accelerating factor (DAF) and (ii) the coxsackievirus-adenovirus receptor protein (CAR). The present study elucidates the individual roles of DAF and CAR in cell entry of CVB3 Nancy. First, we confirm that the DAF-binding phenotype of CVB3 correlates to the presence of key amino acids located in the viral capsid protein, VP2. Second, using antibody blockade, we show that complete protection of permissive cells from infection by high input multiplicities of CVB3 requires a combination of both anti-DAF and anti-CAR antibodies. Finally, it is shown that expression of the CAR protein on the surface of nonpermissive DAF-expressing RD cells renders them highly susceptible to CVB3-mediated lytic infection. Therefore, although the majority of CVB3 Nancy attaches to the cell via DAF, only virus directly interacting with the CAR protein mediates lytic infection. The role of DAF in CVB3 cell infection may be analogous to that recently described for coxsackievirus A21 (D. R. Shafren, D. J. Dorahy, R. A. Ingham, G. F. Burns, and R. D. Barry, J. Virol. 71:4736-4743, 1997), in that DAF may act as a CVB3 sequestration site, enhancing viral presentation to the functional CAR protein.

  3. The HSV-1 Latency-Associated Transcript Functions to Repress Latent Phase Lytic Gene Expression and Suppress Virus Reactivation from Latently Infected Neurons.

    Science.gov (United States)

    Nicoll, Michael P; Hann, William; Shivkumar, Maitreyi; Harman, Laura E R; Connor, Viv; Coleman, Heather M; Proença, João T; Efstathiou, Stacey

    2016-04-01

    Herpes simplex virus 1 (HSV-1) establishes life-long latent infection within sensory neurons, during which viral lytic gene expression is silenced. The only highly expressed viral gene product during latent infection is the latency-associated transcript (LAT), a non-protein coding RNA that has been strongly implicated in the epigenetic regulation of HSV-1 gene expression. We have investigated LAT-mediated control of latent gene expression using chromatin immunoprecipitation analyses and LAT-negative viruses engineered to express firefly luciferase or β-galactosidase from a heterologous lytic promoter. Whilst we were unable to determine a significant effect of LAT expression upon heterochromatin enrichment on latent HSV-1 genomes, we show that reporter gene expression from latent HSV-1 genomes occurs at a greater frequency in the absence of LAT. Furthermore, using luciferase reporter viruses we have observed that HSV-1 gene expression decreases during long-term latent infection, with a most marked effect during LAT-negative virus infection. Finally, using a fluorescent mouse model of infection to isolate and culture single latently infected neurons, we also show that reactivation occurs at a greater frequency from cultures harbouring LAT-negative HSV-1. Together, our data suggest that the HSV-1 LAT RNA represses HSV-1 gene expression in small populations of neurons within the mouse TG, a phenomenon that directly impacts upon the frequency of reactivation and the maintenance of the transcriptionally active latent reservoir.

  4. A novel Pseudomonas aeruginosa bacteriophage, Ab31, a chimera formed from temperate phage PAJU2 and P. putida lytic phage AF: characteristics and mechanism of bacterial resistance.

    Directory of Open Access Journals (Sweden)

    Libera Latino

    Full Text Available A novel temperate bacteriophage of Pseudomonas aeruginosa, phage vB_PaeP_Tr60_Ab31 (alias Ab31 is described. Its genome is composed of structural genes related to those of lytic P. putida phage AF, and regulatory genes similar to those of temperate phage PAJU2. The virion structure resembles that of phage AF and other lytic Podoviridae (S. enterica Epsilon 15 and E. coli phiv10 with similar tail spikes. Ab31 was able to infect P. aeruginosa strain PA14 and two genetically related strains called Tr60 and Tr162, out of 35 diverse strains from cystic fibrosis patients. Analysis of resistant host variants revealed different phenotypes, including induction of pigment and alginate overproduction. Whole genome sequencing of resistant variants highlighted the existence of a large deletion of 234 kbp in two strains, encompassing a cluster of genes required for the production of CupA fimbriae. Stable lysogens formed by Ab31 in strain Tr60, permitted the identification of the insertion site. During colonization of the lung in cystic fibrosis patients, P. aeruginosa adapts by modifying its genome. We suggest that bacteriophages such as Ab31 may play an important role in this adaptation by selecting for bacterial characteristics that favor persistence of bacteria in the lung.

  5. Functional characterization of a novel lytic phage EcSw isolated from Sus scrofa domesticus and its potential for phage therapy.

    Science.gov (United States)

    Easwaran, Maheswaran; Paudel, Sarita; De Zoysa, Mahanama; Shin, Hyun-Jin

    2015-06-01

    In this study, multi-drug resistant Escherichia coli Sw1 (E. coli Sw1) and active lytic phage EcSw was isolated from feces samples of Sus scrofa domesticus (piglet) suffering from diarrhea. Transmission electron microscopy (TEM) indicated that isolated EcSw belongs to the Myoviridae family with an icosahedral head (80 ± 4) and a long tail (180 ± 5 nm). The EcSw phage genome size was estimated to be approximately 75 Kb of double-stranded DNA (dsDNA). Phage dynamic studies show that the latent period and burst size of EcSw were approximately 20 min and 28 PFU per cell, respectively. Interestingly, the EcSw phage can tolerate a wide range of environmental conditions, such as temperature, pH and ions (Ca(2+) and Mg(2+)). Furthermore, genome sequence analysis revealed that the lytic genes of the EcSw phage are notably similar to those of enterobacteria phages. In addition, phage-antibiotic synergy has notable effects compared with the effects of phages or antibiotics alone. Inhibition of E. coli Sw1 and 0157:H7 strains showed that the limitations of host specificity and infectivity of EcSw. Even though, it has considerable potential for phage therapy for handling the problem of the emergence of multidrug resistant pathogens.

  6. Binding of cellular export factor REF/Aly by Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein is not required for efficient KSHV lytic replication.

    Science.gov (United States)

    Li, Da-Jiang; Verma, Dinesh; Swaminathan, Sankar

    2012-09-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein is expressed early during lytic KSHV replication, enhances expression of many KSHV genes, and is essential for virus production. ORF57 is a member of a family of proteins conserved among all human and many animal herpesviruses that are multifunctional regulators of gene expression and act posttranscriptionally to increase accumulation of their target mRNAs. The mechanism of ORF57 action is complex and may involve effects on mRNA transcription, stability, and export. ORF57 directly binds to REF/Aly, a cellular RNA-binding protein component of the TREX complex that mediates RNA transcription and export. We analyzed the effects of an ORF57 mutation known to abrogate REF/Aly binding and demonstrate that the REF-binding mutant is impaired in activation of viral mRNAs and noncoding RNAs confined to the nucleus. Although the inability to bind REF leads to decreased ORF57 activity in enhancing gene expression, there is no demonstrable effect on nuclear export of viral mRNA or the ability of ORF57 to support KSHV replication and virus production. These data indicate that REF/Aly-ORF57 interaction is not essential for KSHV lytic replication but may contribute to target RNA stability independent of effects on RNA export, suggesting a novel role for REF/Aly in viral RNA metabolism.

  7. Analysis of nanomechanical properties of Borrelia burgdorferi spirochetes under the influence of lytic factors in an in vitro model using atomic force microscopy.

    Science.gov (United States)

    Tokarska-Rodak, Małgorzata; Kozioł-Montewka, Maria; Skrzypiec, Krzysztof; Chmielewski, Tomasz; Mendyk, Ewaryst; Tylewska-Wierzbanowska, Stanisława

    2015-11-12

    Atomic force microscopy (AFM) is an experimental technique which recently has been used in biology, microbiology, and medicine to investigate the topography of surfaces and in the evaluation of mechanical properties of cells. The aim of this study was to evaluate the influence of the complement system and specific anti-Borrelia antibodies in in vitro conditions on the modification of nanomechanical features of B. burgdorferi B31 cells. In order to assess the influence of the complement system and anti-Borrelia antibodies on B. burgdorferi s.s. B31 spirochetes, the bacteria were incubated together with plasma of identified status. The samples were applied on the surface of mica disks. Young's modulus and adhesive forces were analyzed with a NanoScope V, MultiMode 8 AFM microscope (Bruker) by the PeakForce QNM technique in air using NanoScope Analysis 1.40 software (Bruker). The average value of flexibility of spirochetes' surface expressed by Young's modulus was 10185.32 MPa, whereas the adhesion force was 3.68 nN. AFM is a modern tool with a broad spectrum of observational and measurement abilities. Young's modulus and the adhesion force can be treated as parameters in the evaluation of intensity and changes which take place in pathogenic microorganisms under the influence of various lytic factors. The visualization of the changes in association with nanomechanical features provides a realistic portrayal of the lytic abilities of the elements of the innate and adaptive human immune system.

  8. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptides...... can be modified to obtain desired properties or conformation, tagged for purification, isotopically labeled for protein quantitation or conjugated to immunogens for antibody production. The antibodies that bind to these peptides represent an invaluable tool for biological research and discovery...

  9. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  10. The Pig PeptideAtlas

    DEFF Research Database (Denmark)

    Hesselager, Marianne Overgaard; Codrea, Marius; Sun, Zhi;

    2016-01-01

    underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within...... the veterinary proteomics domain, and this article demonstrates how the expression of isoform-unique peptides can be observed across distinct tissues and body fluids. The Pig PeptideAtlas is a unique resource for use in animal proteome research, particularly biomarker discovery and for preliminary design of SRM...

  11. Biodiscovery of aluminum binding peptides

    Science.gov (United States)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  12. Antitumor Peptides from Marine Organisms

    Directory of Open Access Journals (Sweden)

    Mi Sun

    2011-10-01

    Full Text Available The biodiversity of the marine environment and the associated chemical diversity constitute a practically unlimited resource of new antitumor agents in the field of the development of marine bioactive substances. In this review, the progress on studies of antitumor peptides from marine sources is provided. The biological properties and mechanisms of action of different marine peptides are described; information about their molecular diversity is also presented. Novel peptides that induce apoptosis signal pathway, affect the tubulin-microtubule equilibrium and inhibit angiogenesis are presented in association with their pharmacological properties. It is intended to provide useful information for further research in the fields of marine antitumor peptides.

  13. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective.......This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  14. Peptides and Food Intake

    Science.gov (United States)

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  15. Anticancer peptides from bacteria

    Directory of Open Access Journals (Sweden)

    Tomasz M. Karpiński

    2013-08-01

    Full Text Available Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data regarding the properties, action and anticancer activity of listed peptides.

  16. Exploring Protein-Peptide Binding Specificity through Computational Peptide Screening.

    Directory of Open Access Journals (Sweden)

    Arnab Bhattacherjee

    2013-10-01

    Full Text Available The binding of short disordered peptide stretches to globular protein domains is important for a wide range of cellular processes, including signal transduction, protein transport, and immune response. The often promiscuous nature of these interactions and the conformational flexibility of the peptide chain, sometimes even when bound, make the binding specificity of this type of protein interaction a challenge to understand. Here we develop and test a Monte Carlo-based procedure for calculating protein-peptide binding thermodynamics for many sequences in a single run. The method explores both peptide sequence and conformational space simultaneously by simulating a joint probability distribution which, in particular, makes searching through peptide sequence space computationally efficient. To test our method, we apply it to 3 different peptide-binding protein domains and test its ability to capture the experimentally determined specificity profiles. Insight into the molecular underpinnings of the observed specificities is obtained by analyzing the peptide conformational ensembles of a large number of binding-competent sequences. We also explore the possibility of using our method to discover new peptide-binding pockets on protein structures.

  17. Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools

    Science.gov (United States)

    Sayeh, Naser Ali

    the well-known, highly cationic CPPs, such as TAT and Arg9, which do not translocate across phospholipid bilayers, and enter cells mostly by active endocytosis. Alternatively, researchers have found that an effective cellular delivery vector can be improved developed by conjugating a CPP with a fatty acid chain. Amphiphilic peptides have also become a subject of major interest as potent antibacterial agents. Antimicrobial peptides (AMPs) are produced naturally by bacteria and are considered as the first line of host defense protecting living organisms from microorganisms. Various types of AMPs has been discovered, such as defensins, cecropins, magainins and cathelicidins, with significant different structures and bioactivity profiles. The mechanism of actions for these peptides were reported as effectors and regulators of the innate immune system by increasing production and release of chemokine, and enhancing wound healing and angiogenesis. They were able to suppress biofilm formation and induce the dissolution of existing biofilms. Thus, design of new AMPs and more cost effective sequences with highly activity are urgently needed. Although a number of cyclic peptides were discovered and reported as efficient cellular delivery agents or antimicrobial agent, a more systematic investigation is required to identify design rules for optimal entrapment, drug loading, and stability. The balance of many small forces determines the overall morphology, size, and functionality of the structures. A deeper understanding of these factors is required for guiding future research, and for customizing cyclic peptides for drug loading and cellular delivery applications. Thus, additional amphiphilic cyclic and linear peptides were designed with variable electrostatic and hydrophobic residues to optimize drug encapsulation. The diversity in ring size, amino acid number, position and sequences, number of rings, net charge, and hydrophobicity of side chains in cyclic peptides will allow

  18. High Selective Performance of Designed Antibacterial and Anticancer Peptide Amphiphiles.

    Science.gov (United States)

    Chen, Cuixia; Chen, Yucan; Yang, Cheng; Zeng, Ping; Xu, Hai; Pan, Fang; Lu, Jian Ren

    2015-08-12

    Short designed peptide amphiphiles are attractive at killing bacteria and inhibiting cancer cell growth, and the flexibility in their structural design offers a great potential for improving their potency and biocompatibility to mammalian host cells. Amino acid sequences such as G(IIKK)nI-NH2 (n≥3) have been shown to be membrane lytic, but terminal amino acid modifications could impose a huge influence on their performance. We report in this work how terminal amino acid modifications to G(IIKK)3I-NH2 influence its α-helical structure, membrane penetrating ability, and selective actions against different cell types. Deletion of an N-terminal Gly or a C-terminal Ile did not affect their antibacterial activity much, an observation consistent with their binding behavior to negatively charged membrane lipid monolayers. However, the cytotoxicity against mammalian cells was much worsened by the N-terminal Gly deletion, consistent with an increase in its helical content. Despite little impact on the antibacterial activity of G(IIKK)3I-NH2, deletion of both terminal amino acids greatly reduced its antitumor activity. Cholesterol present in tumor cell membrane-mimic was thought to constrain (IIKK)3-NH2 from penetrating into the cancerous membranes, evident from its lowest surface physical activity at penetrating model lipid membranes. On the other hand, its low toxicity to normal mammalian cells and high antibacterial activity in vitro and in vivo made it an attractive antibacterial agent. Thus, terminal modifications can help rebalance the different interactions involved and are highly effective at manipulating their selective membrane responses.

  19. Endogenous opioid peptides and epilepsy

    NARCIS (Netherlands)

    J. Haffmans (Judith)

    1985-01-01

    textabstractIn recent years a large number of pept:ides, many of which were originall.y characterized in non-neural tissues, have been reported to be present in the central nervous system ( CNS) . The detection of these peptides within the CNS has raised many questions regarding their source and mec

  20. Endocrine cells producing regulatory peptides.

    Science.gov (United States)

    Solcia, E; Usellini, L; Buffa, R; Rindi, G; Villani, L; Zampatti, C; Silini, E

    1987-07-15

    Recent data on the immunolocalization of regulatory peptides and related propeptide sequences in endocrine cells and tumors of the gastrointestinal tract, pancreas, lung, thyroid, pituitary (ACTH and opioids), adrenals and paraganglia have been revised and discussed. Gastrin, xenopsin, cholecystokinin (CCK), somatostatin, motilin, secretin, GIP (gastric inhibitory polypeptide), neurotensin, glicentin/glucagon-37 and PYY (peptide tyrosine tyrosine) are the main products of gastrointestinal endocrine cells; glucagon, CRF (corticotropin releasing factor), somatostatin, PP (pancreatic polypeptide) and GRF (growth hormone releasing factor), in addition to insulin, are produced in pancreatic islet cells; bombesin-related peptides are the main markers of pulmonary endocrine cells; calcitonin and CGRP (calcitonin gene-related peptide) occur in thyroid and extrathyroid C cells; ACTH and endorphins in anterior and intermediate lobe pituitary cells, alpha-MSH and CLIP (corticotropin-like intermediate lobe peptide) in intermediate lobe cells; met- and leu-enkephalins and related peptides in adrenal medullary and paraganglionic cells as well as in some gut (enterochromaffin) cells; NPY (neuropeptide Y) in adrenaline-type adrenal medullary cells, etc.. Both tissue-appropriate and tissue-inappropriate regulatory peptides are produced by endocrine tumours, with inappropriate peptides mostly produced by malignant tumours.

  1. Urinary Peptides in Rett Syndrome.

    Science.gov (United States)

    Solaas, K. M.; Skjeldal, O.; Gardner, M. L. G.; Kase, B. F.; Reichelt, K. L.

    2002-01-01

    A study found a significantly higher level of peptides in the urine of 53 girls with Rett syndrome compared with controls. The elevation was similar to that in 35 girls with infantile autism. Levels of peptides were lower in girls with classic Rett syndrome than those with congenital Rett syndrome. (Contains references.) (Author/CR)

  2. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...

  3. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the uni

  4. Lytic activity of the virion-associated peptidoglycan hydrolase HydH5 of Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88

    Directory of Open Access Journals (Sweden)

    Donovan David M

    2011-06-01

    Full Text Available Abstract Background Staphylococcus aureus is a food-borne pathogen and the most common cause of infections in hospitalized patients. The increase in the resistance of this pathogen to antibacterials has made necessary the development of new anti-staphylococcal agents. In this context, bacteriophage lytic enzymes such as endolysins and structural peptidoglycan (PG hydrolases have received considerable attention as possible antimicrobials against gram-positive bacteria. Results S. aureus bacteriophage vB_SauS-phiIPLA88 (phiIPLA88 contains a virion-associated muralytic enzyme (HydH5 encoded by orf58, which is located in the morphogenetic module. Comparative bioinformatic analysis revealed that HydH5 significantly resembled other peptidoglycan hydrolases encoded by staphylococcal phages. The protein consists of 634 amino acid residues. Two putative lytic domains were identified: an N-terminal CHAP (cysteine, histidine-dependent amidohydrolase/peptidase domain (135 amino acid residues, and a C-terminal LYZ2 (lysozyme subfamily 2 domain (147 amino acid residues. These domains were also found when a predicted three-dimensional structure of HydH5 was made which provided the basis for deletion analysis. The complete HydH5 protein and truncated proteins containing only each catalytic domain were overproduced in E. coli and purified from inclusion bodies by subsequent refolding. Truncated and full-length HydH5 proteins were all able to bind and lyse S. aureus Sa9 cells as shown by binding assays, zymogram analyses and CFU reduction analysis. HydH5 demonstrated high antibiotic activity against early exponential cells, at 45°C and in the absence of divalent cations (Ca2+, Mg2+, Mn2+. Thermostability assays showed that HydH5 retained 72% of its activity after 5 min at 100°C. Conclusions The virion-associated PG hydrolase HydH5 has lytic activity against S. aureus, which makes it attractive as antimicrobial for food biopreservation and anti

  5. Murine Gammaherpesvirus 68 ORF48 Is an RTA-Responsive Gene Product and Functions in both Viral Lytic Replication and Latency during In Vivo Infection.

    Science.gov (United States)

    Qi, Jing; Han, Chuanhui; Gong, Danyang; Liu, Ping; Zhou, Sheng; Deng, Hongyu

    2015-06-01

    Replication and transcription activator (RTA) of gammaherpesvirus is an immediate early gene product and regulates the expression of many downstream viral lytic genes. ORF48 is also conserved among gammaherpesviruses; however, its expression regulation and function remained largely unknown. In this study, we characterized the transcription unit of ORF48 from murine gammaherpesvirus 68 (MHV-68) and analyzed its transcriptional regulation. We showed that RTA activates the ORF48 promoter via an RTA-responsive element (48pRRE). RTA binds to 48pRRE directly in vitro and also associates with ORF48 promoter in vivo. Mutagenesis of 48pRRE in the context of the viral genome demonstrated that the expression of ORF48 is activated by RTA through 48pRRE during de novo infection. Through site-specific mutagenesis, we generated an ORF48-null virus and examined the function of ORF48 in vitro and in vivo. The ORF48-null mutation remarkably reduced the viral replication efficiency in cell culture. Moreover, through intranasal or intraperitoneal infection of laboratory mice, we showed that ORF48 is important for viral lytic replication in the lung and establishment of latency in the spleen, as well as viral reactivation from latency. Collectively, our study identified ORF48 as an RTA-responsive gene and showed that ORF48 is important for MHV-68 replication both in vitro and in vivo. The replication and transcription activator (RTA), conserved among gammaherpesviruses, serves as a molecular switch for the virus life cycle. It works as a transcriptional regulator to activate the expression of many viral lytic genes. However, only a limited number of such downstream genes have been uncovered for MHV-68. In this study, we identified ORF48 as an RTA-responsive gene of MHV-68 and mapped the cis element involved. By constructing a mutant virus that is deficient in ORF48 expression and through infection of laboratory mice, we showed that ORF48 plays important roles in different stages of

  6. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......Although peptide-oligonucleotide conjugates (POCs) are well-known for nucleic acids delivery and therapy, reports on internal attachment of peptides to oligonucleotides are limited in number. To develop a convenient route for preparation of internally labeled POCs with improved biomedical......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  7. Lab-on-fiber optofluidic platform for in-situ study of therapeutic peptides and bacterial response (Rising Researcher Presentation) (Conference Presentation)

    Science.gov (United States)

    Tian, Fei; Yang, Fan; Liang, Junfeng

    2017-05-01

    Hospital acquired infections in indwelling device have become a life-threatening issue accompanied by the wide use of medical devices and implants. The infection process typically involves the attachment, growth and eventual assemblage of microbial cells into biofilms, with the latter exhibiting extremely higher antibiotic tolerance than planktonic bacteria. Surface constructed antimicrobial coatings offer a viable solution for bacteria responsive antibiotic strategy in medical devices such as catheter and stents. Therapeutic peptide has pioneered the field for their attractive pharmacological profile with broad antibacterial spectrum, great efficacy and long life-span. It has been a common practice to separately assess bacteria responses through commercially available activity assay kits after their exposure to antibiotic coatings, limiting the assessment of their activity in vitro with a discontinuous fashion. We developed and demonstrated an innovative all-optical lab-on-fiber optofluidic platform (LOFOP) to fill in this technical gap by allowing in situ measurement of the bacteria attachment in a continuous manner. This LOFOP allows for evaluation of drug release and resultant bacterial response by integrating glass capillary with lytic peptide-containing LbL-coated long period graing (LPG) as its core. S. aureus suspension is introduced through the assembled optofluidic platform with the capillary and the peptide-coated LPG. The efficacy of the peptide-containing coating is evaluated in situ by monitoring the attachment of bacteria and the ensuing development of biofilms using the LPG. LPG without antimicrobial coatings will be explored and compared as control.

  8. Cationic peptides as RNA compaction agents: a study on the polyA compaction activity of a linear alpha,epsilon-oligo-L-lysine.

    Science.gov (United States)

    Roviello, Giovanni N; Musumeci, Domenica; Roviello, Valentina

    2015-05-15

    In this work, we investigate the compaction activity of a sequential alpha,epsilon-peptide composed of l-lysines towards two RNA targets, in view of its possible pharmaceutical application in RNA-targeting and RNA delivery. The basic oligolysine, object of the present study, proved not only to be efficient in compacting the single-stranded polyA RNA, but also to strongly interact with the polyA·polyU complex, as evidenced by CD-binding and UV-melting experiments. In particular, the marked differences in the CD spectra of the RNA targets upon addition of the peptide, as well as the different UV melting behaviour for the polyA·polyU complex in the presence and absence of the peptide, sustain the hypothesis of a strong RNA compaction capacity of the alpha,epsilon-oligolysine. Finally, by using HPLC analysis, we found a good resistance of the peptide against the lytic action of human serum, an important requirement in view of in vitro/in vivo biological assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Purification and use of E. coli peptide deformylase for peptide deprotection in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia; Sonke, Theo; Quaedflieg, Peter J.; Janssen, Dick B.

    2013-01-01

    Peptide deformylases (PDFs) catalyze the removal of the formyl group from the N-terminal methionine residue in nascent polypeptide chains in prokaryotes. Its deformylation activity makes PDF an attractive candidate for the biocatalytic deprotection of formylated peptides that are used in chemoenzyma

  10. Application of zinc chloride precipitation method for rapid isolation and concentration of infectious Pectobacterium spp. and Dickeya spp. lytic bacteriophages from surface water and plant and soil extracts.

    Science.gov (United States)

    Czajkowski, Robert; Ozymko, Zofia; Lojkowska, Ewa

    2016-01-01

    This is the first report describing precipitation of bacteriophage particles with zinc chloride as a method of choice to isolate infectious lytic bacteriophages against Pectobacterium spp. and Dickeya spp. from environmental samples. The isolated bacteriophages are ready to use to study various (ecological) aspects of bacteria-bacteriophage interactions. The method comprises the well-known precipitation of phages from aqueous extracts of the test material by addition of ZnCl2, resuscitation of bacteriophage particles in Ringer's buffer to remove the ZnCl2 excess and a soft agar overlay assay with the host bacterium to isolate infectious individual phage plaques. The method requires neither an enrichment step nor other steps (e. g., PEG precipitation, ultrafiltration, or ultracentrifugation) commonly used in other procedures and results in isolation of active viable bacteriophage particles.

  11. Lysis to Kill: Evaluation of the Lytic Abilities, and Genomics of Nine Bacteriophages Infective for Gordonia spp. and Their Potential Use in Activated Sludge Foam Biocontrol.

    Directory of Open Access Journals (Sweden)

    Zoe A Dyson

    Full Text Available Nine bacteriophages (phages infective for members of the genus Gordonia were isolated from wastewater and other natural water environments using standard enrichment techniques. The majority were broad host range phages targeting more than one Gordonia species. When their genomes were sequenced, they all emerged as double stranded DNA Siphoviridae phages, ranging from 17,562 to 103,424 bp in size, and containing between 27 and 127 genes, many of which were detailed for the first time. Many of these phage genomes diverged from the expected modular genome architecture of other characterized Siphoviridae phages and contained unusual lysis gene arrangements. Whole genome sequencing also revealed that infection with lytic phages does not appear to prevent spontaneous prophage induction in Gordonia malaquae lysogen strain BEN700. TEM sample preparation techniques were developed to view both attachment and replication stages of phage infection.

  12. Conversion of α-chitin substrates with varying particle size and crystallinity reveals substrate preferences of the chitinases and lytic polysaccharide monooxygenase of Serratia marcescens.

    Science.gov (United States)

    Nakagawa, Yuko S; Eijsink, Vincent G H; Totani, Kazuhide; Vaaje-Kolstad, Gustav

    2013-11-20

    Industrial depolymerization of chitinous biomass generally requires numerous steps and the use of deleterious substances. Enzymatic methods provide an alternative, but fundamental knowledge that could direct potential development of industrial enzyme cocktails is scarce. We have studied the contribution of monocomponent chitinases (ChiA, -B, and -C) and the lytic polysaccharide monooxygenase (LPMO) from Serratia marcescens on depolymerization of α-chitin substrates with varying particle size and crystallinity that were generated using a converge mill. For all chitinases activity was positively correlated to a decline in particle size and crystallinity. Especially ChiC, the only nonprocessive endochitinase from the S. marcescens chitinolytic machinery, benefited from mechanical pretreatment. Combining the chitinases revealed clear synergies for all substrates tested. CBP21, the chitin-active LPMO from S. marcescens, increased solubilization of substrates with high degrees of crystallinity when combined with each of the three chitinases, but this synergy was reduced upon decline in crystallinity.

  13. Reduction of Salmonella on chicken breast fillets stored under aerobic or modified atmosphere packaging by the application of lytic bacteriophage preparation SalmoFreshTM.

    Science.gov (United States)

    Sukumaran, Anuraj T; Nannapaneni, Rama; Kiess, Aaron; Sharma, Chander Shekhar

    2016-03-01

    The present study evaluated the efficacy of recently approved Salmonella lytic bacteriophage preparation (SalmoFresh™) in reducing Salmonella on chicken breast fillets, as a surface and dip application. The effectiveness of phage in combination with modified atmosphere packaging (MAP) and the ability of phage preparation in reducing Salmonella on chicken breast fillets at room temperature was also evaluated. Chicken breast fillets inoculated with a cocktail of Salmonella Typhimurium, S. Heidelberg, and S. Enteritidis were treated with bacteriophage (10(9) PFU/mL) as either a dip or surface treatment. The dip-treated samples were stored at 4°C aerobically and the surface-treated samples were stored under aerobic and MAP conditions (95% CO2/5% O2) at 4°C for 7 d. Immersion of Salmonella-inoculated chicken breast fillets in bacteriophage solution reduced Salmonella (P chicken breast fillets when the samples were surface treated with phage and stored under MAP conditions. The Salmonella counts were reduced by 1.2, 1.1, and 1.2 log CFU/g on d 0, 1, and 7 of storage, respectively. Bacteriophage surface application on chicken breast fillets stored at room temperature reduced the Salmonella counts by 0.8, 0.9, and 0.4 log CFU/g after 0, 4, and 8 h, respectively, compared to the untreated positive control. These findings indicate that lytic phage preparation was effective in reducing Salmonella on chicken breast fillets stored under aerobic and modified atmosphere conditions.

  14. Co-therapy using lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA from diabetic foot infections.

    Directory of Open Access Journals (Sweden)

    Sanjay Chhibber

    Full Text Available BACKGROUND: Staphylococcus aureus remains the predominant pathogen in diabetic foot infections and prevalence of methicillin resistant S.aureus (MRSA strains further complicates the situation. The incidence of MRSA in infected foot ulcers is 15-30% and there is an alarming trend for its increase in many countries. Diabetes acts as an immunosuppressive state decreasing the overall immune functioning of body and to worsen the situation, wounds inflicted with drug resistant strains represent a morbid combination in diabetic patients. Foot infections caused by MRSA are associated with an increased risk of amputations, increased hospital stay, increased expenses and higher infection-related mortality. Hence, newer, safer and effective treatment strategies are required for treating MRSA mediated diabetic foot infections. The present study focuses on the use of lytic bacteriophage in combination with linezolid as an effective treatment strategy against foot infection in diabetic population. METHODOLOGY: Acute hindpaw infection with S.aureus ATCC 43300 was established in alloxan induced diabetic BALB/c mice. Therapeutic efficacy of a well characterized broad host range lytic bacteriophage, MR-10 was evaluated alone as well as in combination with linezolid in resolving the course of hindpaw foot infection in diabetic mice. The process of wound healing was also investigated. RESULTS AND CONCLUSIONS: A single administration of phage exhibited efficacy similar to linezolid in resolving the course of hindpaw infection in diabetic animals. However, combination therapy using both the agents was much more effective in arresting the entire infection process (bacterial load, lesion score, foot myeloperoxidase activity and histopathological analysis. The entire process of tissue healing was also hastened. Use of combined agents has been known to decrease the frequency of emergence of resistant mutants, hence this approach can serve as an effective strategy in

  15. Consumption of purple sweet potato leaves modulates human immune response: T-lymphocyte functions, lytic activity of natural killer cell and antibody production

    Institute of Scientific and Technical Information of China (English)

    Chiao-Ming Chen; Sing-Chung Li; Ya-Ling Lin; Ching-Yun Hsu; Ming-Jer Shieh; Jen-Fang Liu

    2005-01-01

    AIM: To study the immunological effects of physiological doses of purple sweet potato leaves (PSPL).METHODS: The randomized crossover study (two periods,each lasting for 2 wk) involved 16 healthy non-smoking adults of normal weight. The 6-wk study consisted of a run-in (wk 1) PSPL diet (daily consumption of 200 g PSPL) or a control diet (low polyphenols, with the amount of carotenoids adjusted to the same level as that of PSPL) (wk 2-3), washout diet (wk 4), and switched diet (wk 5-6). Fasting blood was collected weekly in the morning. T-lymphocyte function was assessed via the proliferation and secretion of immunoreactive cytokines.Salivary IgA secretion and the specific cytotoxic activities of cytotoxic T lymphocytes and natural killer (NK) cells were determined.RESULTS: The plasma β-carotene level increased with time in both groups, while the plasma polyphenol level decreased in the control group, and no significant difference was detected between the two groups.Although plasma polyphenol levels did not significantly increase in the PSPL group at the end of the study, they were significantly elevated in urine. PSPL consumption produced a significant increase in proliferation responsiveness of peripheral blood mononuclear cells (PBMC) and their secretion of immunoreactive IL-2 and IL-4. As well, lytic activity in NK cells was elevated in a time-dependent fashion. Salivary TgA secretion significantly decreased in control group after 2 wk, and returned to baseline following dietary switch to PSPL.CONCLUSION: Consumption of PSPL modulates various immune functions including increased proliferation responsiveness of PBMC, secretion of cytokines IL-2 and IL-4, and the lytic activity of NK cells. The responsible determinants of PSPL remain to be elucidated, as does the biological significance of the present observations.

  16. Fungal cell-wall lytic enzymes, antifungal metabolite(s) production, and characterization from Streptomyces exfoliatus MT9 for controlling fruit-rotting fungi.

    Science.gov (United States)

    Choudhary, Bharti; Nagpure, Anand; Gupta, Rajinder K

    2014-12-01

    An antifungal actinomycete strain MT9 was isolated from Loktak Lake, Manipur, India and its cultural characteristics, fatty acid methyl ester, 16S rRNA gene analysis suggests that strain MT9 is identical to Streptomyces exfoliatus. Strain MT9 displayed strong and broad-spectrum antagonism towards several fruit-rotting fungi by mycelial growth suppression. Crude fungal cell-wall lytic enzymes, i.e., chitinase, β-1,3-glucanase, and protease produced by S. exfoliatus MT9 were optimally active at pH 8.0 and 50 °C, pH 5.0 and 60 °C, pH 9.0 and 70 °C, respectively. All three mycolytic enzymes had good stability over a wide pH range of 5.0-10.0, with protease being more thermostable than both chitinase and β-1,3-glucanase. Interestingly zymogram analysis revealed that S. exfoliatus MT9 secretes six distinct chitinase isoenzymes with approximate molecular weights of 9.42, 13.93, 27.87, 36.43, 54.95, 103.27 kDa, six active protease isoenzymes with apparent molecular weights of 12.45, 30.20, 37.45, 46.32, 52.46, 131.46 kDa, and an active band of 119.39 kDa as β-1,3-glucanase enzyme. Extracellular fluid and its organic solvent extracts also exhibited inhibitory activity to various fruit-rotting fungi. The MIC value of n-butanol extract was 2-25 µg/ml against tested fruit-rotting fungi. Antifungal secondary metabolite(s) was found to be polyene in nature. To the best of our knowledge, this is the first report on extracellular production of fungal cell-wall lytic enzymes and antifungal metabolites by bioactive S. exfoliatus MT9 under submerged fermentation.

  17. Potential of phage-displayed peptide library technology to identify functional targeting peptides

    Science.gov (United States)

    Krumpe, Lauren RH; Mori, Toshiyuki

    2010-01-01

    Combinatorial peptide library technology is a valuable resource for drug discovery and development. Several peptide drugs developed through phage-displayed peptide library technology are presently in clinical trials and the authors envision that phage-displayed peptide library technology will assist in the discovery and development of many more. This review attempts to compile and summarize recent literature on targeting peptides developed through peptide library technology, with special emphasis on novel peptides with targeting capacity evaluated in vivo. PMID:20150977

  18. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  19. New vasoactive peptides in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Goetze, Jens Peter; Bendtsen, Flemming;

    2014-01-01

    BACKGROUND: Patients with cirrhosis have substantial circulatory imbalance between vasoconstrictive and vasodilating forces. The study of circulatory vasoactive peptides may provide important pathophysiological information. This study aimed to assess concentrations, organ extraction and relations...... to haemodynamic changes in the pro-peptides copeptin, proadrenomedullin and pro-atrial natriuretic peptide (proANP) in patients with cirrhosis. MATERIALS AND METHODS: Fifty-four cirrhotic patients and 15 controls were characterized haemodynamically during a liver vein catheterization. Copeptin, proadrenomedullin...... found no extraction of copeptin, proadrenomedullin or proANP over the liver. Copeptin correlated with portal pressure (R=0·50, P

  20. Next generation natriuretic peptide measurement

    DEFF Research Database (Denmark)

    Hunter, Ingrid; Goetze, Jens P

    2012-01-01

    Plasma measurement of natriuretic peptides is a "must" for clinical laboratories. For the next generation measurement, the unraveling of the molecular complexity of the peptides points toward a more qualitative assessment, as the posttranslational processing also changes with disease. Changes...... in the molecular heterogeneity could in itself contain valuable information of clinical status, and the time seems right for industry and dedicated researchers in the field to get together and discuss the next generation natriuretic peptide measurement. In such an environment, new strategies can be developed...

  1. Peptide primary messengers in plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The peptide primary messengers regulate embryonic development,cell growth and many other activities in animal cells. But recent evidence verified that peptide primary messengers are also involved in plant defense responses, the recognition between pollen and stigma and keep the balance between cell proliferation and differentiations in shoot apical meristems. Those results suggest that plants may actually make wide use of peptide primary messengers, both in embryonic development and late life when they rally their cells to defend against pathogens and insect pests. The recent advance in those aspects is reviewed.

  2. Targeting the Eph System with Peptides and Peptide Conjugates.

    Science.gov (United States)

    Riedl, Stefan J; Pasquale, Elena B

    2015-01-01

    Eph receptor tyrosine kinases and ephrin ligands constitute an important cell communication system that controls development, tissue homeostasis and many pathological processes. Various Eph receptors/ephrins are present in essentially all cell types and their expression is often dysregulated by injury and disease. Thus, the 14 Eph receptors are attracting increasing attention as a major class of potential drug targets. In particular, agents that bind to the extracellular ephrin-binding pocket of these receptors show promise for medical applications. This pocket comprises a broad and shallow groove surrounded by several flexible loops, which makes peptides particularly suitable to target it with high affinity and selectivity. Accordingly, a number of peptides that bind to Eph receptors with micromolar affinity have been identified using phage display and other approaches. These peptides are generally antagonists that inhibit ephrin binding and Eph receptor/ ephrin signaling, but some are agonists mimicking ephrin-induced Eph receptor activation. Importantly, some of the peptides are exquisitely selective for single Eph receptors. Most identified peptides are linear, but recently the considerable advantages of cyclic scaffolds have been recognized, particularly in light of potential optimization towards drug leads. To date, peptide improvements have yielded derivatives with low nanomolar Eph receptor binding affinity, high resistance to plasma proteases and/or long in vivo half-life, exemplifying the merits of peptides for Eph receptor targeting. Besides their modulation of Eph receptor/ephrin function, peptides can also serve to deliver conjugated imaging and therapeutic agents or various types of nanoparticles to tumors and other diseased tissues presenting target Eph receptors.

  3. Screening of TACE Peptide Inhibitors from Phage Display Peptide Library

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To obtain the recombinant tumor necrosis factor-α converting enzyme (TACE) ectodomain and use it as a selective molecule for the screening of TACE peptide inhibitors, the cDNA coding catalytic domain (T800) and full-length ectodomain (T1300) of TACE were amplified by RTPCR, and the expression plasmids were constructed by inserting T800 and T1300 into plasmid pET28a and pET-28c respectively. The recombinant T800 and T1300 were induced by IPTG, and SDSPAGE and Western blotting analysis results revealed that T800 and T1300 were highly expressed in the form of inclusion body. After Ni2+-NTA resin affinity chromatography, the recombinant proteins were used in the screening of TACE-binding peptides from phage display peptide library respectively. After 4 rounds of biopanning, the positive phage clones were analyzed by ELISA, competitive inhibition assay and DNA sequencing. A common amino acid sequence (TRWLVYFSRPYLVAT) was found and synthesized. The synthetic peptide could inhibit the TNF-α release from LPS-stimulated human peripheral blood mononuclear cells (PBMC) up to 60.3 %. FACS analysis revealed that the peptide mediated the accumulation of TNF-α on the cell surface. These results demonstrate that the TACE-binding peptide is an effective antagonist of TACE.

  4. Viral O-GalNAc peptide epitopes

    DEFF Research Database (Denmark)

    Olofsson, Sigvard; Blixt, Klas Ola; Bergström, Tomas

    2016-01-01

    on a novel three-step procedure that identifies any reactive viral O-glycosyl peptide epitope with respect to (i) relevant peptide sequence, (ii) the reactive glycoform out of several possible glycopeptide isomers of that peptide sequence, and (iii) possibly tolerated carbohydrate or peptide structural...

  5. Neoglycolipidation for modulating peptide properties

    DEFF Research Database (Denmark)

    van Witteloostuijn, Søren Blok

    The alarming increase in the prevalence of obesity and associated comorbidities such as type 2 diabetes emphasizes the urgent need for new drugs with both anorectic and antidiabetic eects. Several peptide hormones secreted from the gastrointestinal tract play an important role in the physiological...... regulation of appetite, food intake, and glucose homeostasis, and many of these peptides display a signicant potential for treatment of obesity and/or type 2 diabetes. This Ph.D. thesis describes three novel approaches for utilizing gut peptides as the starting point for developing obesity and diabetes drugs...... of food intake, which was enhanced compared to native NMU. Project II explored the design, synthesis, and characterization of neoglycolipidated analogs of glucagon-like peptide 1 (GLP-1). Neoglycolipidation reduced lipophilicity and maintained or even improved in vitro potency towards the GLP-1 receptor...

  6. Neoglycolipidation for modulating peptide properties

    DEFF Research Database (Denmark)

    van Witteloostuijn, Søren Blok

    regulation of appetite, food intake, and glucose homeostasis, and many of these peptides display a signicant potential for treatment of obesity and/or type 2 diabetes. This Ph.D. thesis describes three novel approaches for utilizing gut peptides as the starting point for developing obesity and diabetes drugs...... of this thesis contribute to emphasize the tremendous therapeutic potential of gut peptides for treatment of obesity and diabetes.......The alarming increase in the prevalence of obesity and associated comorbidities such as type 2 diabetes emphasizes the urgent need for new drugs with both anorectic and antidiabetic eects. Several peptide hormones secreted from the gastrointestinal tract play an important role in the physiological...

  7. Therapeutical Potential of Venom Peptides

    Directory of Open Access Journals (Sweden)

    İlker Kelle

    2006-01-01

    Full Text Available The term of pharmazooticals is known as a few amount of drugs derived from natural sources such as plants, venomous species of snakes, spiders, scorpions, frogs, lizards and cone snails. Peptide components of venoms are directed against wide variety of pharmacological targets such as ion channels and receptors. At the beginning, a number of these peptides have been used in experimental studies for defining the physiological, biochemical and immunological activities of organisms like mammalians. In recent studies, it has been shown that venom peptides can be valuable in treatment of acute and chronic pain, autoimmune and cardiovascular diseases, neurological disorders and chronic inflammatory and tumoral processes. Therefore particularly in clinical approaches, these peptide molecules or their synthetic analogues are considered as alternative agents that can be used instead of classical drugs for many clinical disorders due to their potent activity besides very few side effects.

  8. Antimicrobial peptides from Capsicum sp.

    African Journals Online (AJOL)

    ajl yemi

    2011-12-30

    Dec 30, 2011 ... pathogens, it is a challenge to sustain food production. *Corresponding ... Genetically modified plants (GMPs) resistance to plant pathogens are an .... tically developed peptides have been tested in topic treatments during ...

  9. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  10. Antimicrobial peptides in crustaceans

    Directory of Open Access Journals (Sweden)

    RD Rosa

    2010-11-01

    Full Text Available Crustaceans are a large and diverse invertebrate animal group that mounts a complex and efficient innate immune response against a variety of microorganisms. The crustacean immune system is primarily related to cellular responses and the production and release of important immune effectors into the hemolymph. Antimicrobial proteins and/or peptides (AMPs are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, 15 distinct AMP families are currently recognized, although the great majority (14 families comes from members of the order Decapoda. Crustacean AMPs are generally cationic, gene-encoded molecules that are mainly produced by circulating immune-competent cells (hemocytes or are derived from unrelated proteins primarily involved in other biological functions. In this review, we tentatively classified the crustacean AMPs into four main groups based on their amino acid composition, structural features and multi-functionality. We also attempted to summarize the current knowledge on their implication both in an efficient response to microbial infections and in crustacean survival.

  11. Antimicrobial peptides in annelids

    Directory of Open Access Journals (Sweden)

    A Tasiemski

    2008-06-01

    Full Text Available Gene encoded antimicrobial peptides (AMPs are widely distributed among living organisms including plants, invertebrates and vertebrates. They constitute important effectors of the innate immune response by exerting multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cytokine release, cell proliferation, angiogenesis, wound healing, chemotaxis and immune induction. In invertebrates, most of the data describe the characterization and/or the function of AMPs in the numerically and economically most representative group which are arthropods. Annelids are among the first coelomates and are therefore of special phylogenetic interest. Compared to other invertebrate groups, data on annelid’s immunity reveal heavier emphasis on the cellular than on the humoral response suggesting that immune defense of annelids seems to be principally developed as cellular immunity.This paper gives an overview of the variety of AMPs identified in the three classes of annelids, i.e. polychaetes, oligochaetes and achaetes. Their functions, when they have been studied, in the humoral or cellular response of annelids are also mentioned.

  12. Release of Periplasmic Nucleotidase Induced by Human Antimicrobial Peptide in E. coli Causes Accumulation of the Immunomodulator Adenosine.

    Directory of Open Access Journals (Sweden)

    Andreia Bergamo Estrela

    Full Text Available Previous work by our group described that human β-defensin-2 induces accumulation of extracellular adenosine (Ado in E. coli cultures through a non-lytic mechanism causing severe plasmolysis. Here, we investigate the presence of AMP as a direct precursor and the involvement of a bacterial enzyme in the generation of extracellular Ado by treated bacteria. Following hBD-2 treatment, metabolites were quantified in the supernatants using targeted HPLC-MS/MS analysis. Microbial growth was monitored by optical density and cell viability was determined by colony forming units counts. Phosphatase activity was measured using chromogenic substrate pNPP. The results demonstrate that defensin-treated E. coli strain W releases AMP in the extracellular space, where it is converted to Ado by a bacterial soluble factor. An increase in phosphatase activity in the supernatant was observed after peptide treatment, similar to the effect of sucrose-induced osmotic stress, suggesting that the periplasmic 5'nucleotidase (5'-NT is released following the plasmolysis event triggered by the peptide. Ado accumulation was enhanced in the presence of Co2+ ion and inhibited by EDTA, further supporting the involvement of a metallo-phosphatase such as 5'-NT in extracellular AMP conversion into Ado. The comparative analysis of hBD-induced Ado accumulation in different E. coli strains and in Pseudomonas aeruginosa revealed that the response is not correlated to the peptide's effect on cell viability, but indicates it might be dependent on the subcellular distribution of the nucleotidase. Taken together, these data shed light on a yet undescribed mechanism of host-microbial interaction: a human antimicrobial peptide inducing selective release of a bacterial enzyme (E. coli 5'-NT, leading to the formation of a potent immunomodulator metabolite (Ado.

  13. Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus's natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter.

    Science.gov (United States)

    Kraus, Richard J; Yu, Xianming; Cordes, Blue-Leaf A; Sathiamoorthi, Saraniya; Iempridee, Tawin; Nawandar, Dhananjay M; Ma, Shidong; Romero-Masters, James C; McChesney, Kyle G; Lin, Zhen; Makielski, Kathleen R; Lee, Denis L; Lambert, Paul F; Johannsen, Eric C; Kenney, Shannon C; Mertz, Janet E

    2017-06-01

    When confronted with poor oxygenation, cells adapt by activating survival signaling pathways, including the oxygen-sensitive transcriptional regulators called hypoxia-inducible factor alphas (HIF-αs). We report here that HIF-1α also regulates the life cycle of Epstein-Barr virus (EBV). Incubation of EBV-positive gastric carcinoma AGS-Akata and SNU-719 and Burkitt lymphoma Sal and KemIII cell lines with a prolyl hydroxylase inhibitor, L-mimosine or deferoxamine, or the NEDDylation inhibitor MLN4924 promoted rapid and sustained accumulation of both HIF-1α and lytic EBV antigens. ShRNA knockdown of HIF-1α significantly reduced deferoxamine-mediated lytic reactivation. HIF-1α directly bound the promoter of the EBV primary latent-lytic switch BZLF1 gene, Zp, activating transcription via a consensus hypoxia-response element (HRE) located at nt -83 through -76 relative to the transcription initiation site. HIF-1α did not activate transcription from the other EBV immediate-early gene, BRLF1. Importantly, expression of HIF-1α induced EBV lytic-gene expression in cells harboring wild-type EBV, but not in cells infected with variants containing base-pair substitution mutations within this HRE. Human oral keratinocyte (NOK) and gingival epithelial (hGET) cells induced to differentiate by incubation with either methyl cellulose or growth in organotypic culture accumulated both HIF-1α and Blimp-1α, another cellular factor implicated in lytic reactivation. HIF-1α activity also accumulated along with Blimp-1α during B-cell differentiation into plasma cells. Furthermore, most BZLF1-expressing cells observed in lymphomas induced by EBV in NSG mice with a humanized immune system were located distal to blood vessels in hypoxic regions of the tumors. Thus, we conclude that HIF-1α plays central roles in both EBV's natural life cycle and EBV-associated tumorigenesis. We propose that drugs that induce HIF-1α protein accumulation are good candidates for development of a lytic

  14. Peptides and Anti-peptide Antibodies for Small and Medium Scale Peptide and Anti-peptide Affinity Microarrays: Antigenic Peptide Selection, Immobilization, and Processing.

    Science.gov (United States)

    Zhang, Fan; Briones, Andrea; Soloviev, Mikhail

    2016-01-01

    This chapter describes the principles of selection of antigenic peptides for the development of anti-peptide antibodies for use in microarray-based multiplex affinity assays and also with mass-spectrometry detection. The methods described here are mostly applicable to small to medium scale arrays. Although the same principles of peptide selection would be suitable for larger scale arrays (with 100+ features) the actual informatics software and printing methods may well be different. Because of the sheer number of proteins/peptides to be processed and analyzed dedicated software capable of processing all the proteins and an enterprise level array robotics may be necessary for larger scale efforts. This report aims to provide practical advice to those who develop or use arrays with up to ~100 different peptide or protein features.

  15. Peptides and Food Intake

    Directory of Open Access Journals (Sweden)

    Carmen Sobrino Crespo

    2014-04-01

    Full Text Available Nutrients created by the digestion of food are proposed to active G protein coupled receptors on the luminal side of enteroendocrine cells e.g. the L-cell. This stimulates the release of gut hormones. Hormones released from the gut and adipose tissue play an important rol in the regulation of food intake and energy expenditure (1.Many circulating signals, including gut hormones, can influence the activity of the arcuate nucleus (ARC neurons directly, after passing across the median eminence. The ARC is adjacent to the median eminence, a circumventricular organ with fenestrated capillaries and hence an incomplete blood-brain barrier (2. The ARC of the hypothalamus is believed to play a crucial role in the regulation of food intake and energy homeostasis. The ARC contains two populations of neurons with opposing effect on food intake (3. Medially located orexigenic neurons (i.e those stimulating appetite express neuropeptide Y (NPY and agouti-related protein (AgRP (4-5. Anorexigenic neurons (i.e. those inhibiting appetite in the lateral ARC express alpha-melanocyte stimulating hormone (α-MSH derived from pro-opiomelanocortin (POMC and cocaine and amphetamine-regulated transcript (CART (6. The balance between activities of these neuronal circuits is critical to body weight regulation.In contrast, other peripheral signals influence the hypothalamus indirectly via afferent neuronal pathway and brainstem circuits. In this context gastrointestinal’s vagal afferents are activated by mechanoreceptors and chemoreceptors, and converge in the nucleus of the tractus solitaries (NTS of the brainstem. Neuronal projections from the NTS, in turn, carry signals to the hypotalamus (1, 7. Gut hormones also alter the activity of the ascending vagal pathway from the gut to the brainstem. In the cases of ghrelin and Peptide tyrosine tyrosine (PYY, there are evidences for both to have a direct action on the arcuate nucleus and an action via the vagus nerve a

  16. Versatile Peptide C-Terminal Functionalization via a Computationally Engineered Peptide Amidase

    NARCIS (Netherlands)

    Wu, Bian; Wijma, Hein J.; Song, Lu; Rozeboom, Henriette J.; Poloni, Claudia; Tian, Yue; Arif, Muhammad I.; Nuijens, Timo; Quaedflieg, Peter J. L. M.; Szymanski, Wiktor; Feringa, Ben L.; Janssen, Dick B.

    2016-01-01

    The properties of synthetic peptides, including potency, stability, and bioavailability, are strongly influenced by modification of the peptide chain termini. Unfortunately, generally applicable methods for selective and mild C-terminal peptide functionalization are lacking. In this work, we explore

  17. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  18. Perspectives and Peptides of the Next Generation

    Science.gov (United States)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  19. Peptides: A new class of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Ryszard Smolarczyk

    2009-07-01

    Full Text Available Peptides are a novel class of anticancer agents embracing two distinct categories: natural antibacterial peptides, which are preferentially bound by cancer cells, and chemically synthesized peptides, which bind specifically to precise molecular targets located on the surface of tumor cells. Antibacterial peptides bind to both cell and mitochondrial membranes. Some of these peptides attach to the cell membrane, resulting in its disorganization. Other antibacterial peptides penetrate cancer cells without causing cell membrane damage, but they disrupt mitochondrial membranes. Thanks to phage and aptamer libraries, it has become possible to obtain synthetic peptides blocking or activating some target proteins found in cancer cells as well as in cells forming the tumor environment. These synthetic peptides can feature anti-angiogenic properties, block enzymes indispensable for sustained tumor growth, and reduce tumor ability to metastasize. In this review the properties of peptides belonging to both categories are discussed and attempts of their application for therapeutic purposes are outlined.

  20. Exploration of the Medicinal Peptide Space.

    Science.gov (United States)

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs.

  1. Peptide synthesis using unprotected peptides through orthogonal coupling methods.

    Science.gov (United States)

    Tam, J P; Lu, Y A; Liu, C F; Shao, J

    1995-01-01

    We describe an approach to the synthesis of peptides from segments bearing no protecting groups through an orthogonal coupling method to capture the acyl segment as a thioester that then undergoes an intramolecular acyl transfer to the amine component with formation of a peptide bond. Two orthogonal coupling methods to give the covalent ester intermediate were achieved by either a thiol-thioester exchange mediated by a trialkylphosphine and an alkylthiol or a thioesterification by C alpha-thiocarboxylic acid reacting with a beta-bromo amino acid. With this approach, unprotected segments ranging from 4 to 37 residues were coupled to aqueous solution to give free peptides up to 54 residues long with high efficiency. Images Fig. 1 PMID:8618926

  2. Twilight reloaded: the peptide experience

    Science.gov (United States)

    Weichenberger, Christian X.; Pozharski, Edwin; Rupp, Bernhard

    2017-01-01

    The de facto commoditization of biomolecular crystallography as a result of almost disruptive instrumentation automation and continuing improvement of software allows any sensibly trained structural biologist to conduct crystallo­graphic studies of biomolecules with reasonably valid outcomes: that is, models based on properly interpreted electron density. Robust validation has led to major mistakes in the protein part of structure models becoming rare, but some depositions of protein–peptide complex structure models, which generally carry significant interest to the scientific community, still contain erroneous models of the bound peptide ligand. Here, the protein small-molecule ligand validation tool Twilight is updated to include peptide ligands. (i) The primary technical reasons and potential human factors leading to problems in ligand structure models are presented; (ii) a new method used to score peptide-ligand models is presented; (iii) a few instructive and specific examples, including an electron-density-based analysis of peptide-ligand structures that do not contain any ligands, are discussed in detail; (iv) means to avoid such mistakes and the implications for database integrity are discussed and (v) some suggestions as to how journal editors could help to expunge errors from the Protein Data Bank are provided. PMID:28291756

  3. Peptide-enhanced oral delivery of therapeutic peptides and proteins

    DEFF Research Database (Denmark)

    Kristensen, Mie; Foged, Camilla; Berthelsen, Jens;

    2013-01-01

    throughout the gastrointestinal (GI) tract, chemical stability is an inherent challenge when employing amino acid-based excipients for oral delivery, and multiple approaches have been investigated to improve this. The exact mechanisms of transepithelial translocation are discussed, and it is believed......Systemic therapy upon oral delivery of biologics, such as peptide and protein drugs is limited due to their large molecular size, their low enzymatic stability and their inability to cross the intestinal epithelium. Ways to overcome the epithelial barrier include the use of peptide-based excipients...

  4. Cellular internalization and cytotoxicity of the antimicrobial proline-rich peptide Bac7(1-35) in monocytes/macrophages, and its activity against phagocytosed Salmonella typhimurium.

    Science.gov (United States)

    Pelillo, Chiara; Benincasa, Monica; Scocchi, Marco; Gennaro, Renato; Tossi, Alessandro; Pacor, Sabrina

    2014-04-01

    Bac7(1-35) is an active fragment of the bovine cathelicidin antimicrobial peptide Bac7, which selectively inactivates Gram-negative bacteria both in vitro and in mice infected with Salmonella typhimurium. It has a non-lytic mechanism of action, is rapidly internalized by susceptible bacteria and mammalian cells and likely acts by binding to internal targets. In this study we show that Bac7(1-35) accumulates selectively within primed macrophages with respect to resting monocytes. Confocal microscopy analysis showed that the peptide mainly distributes in the cytoplasm and perinuclear region of macrophages within 3 hours of incubation, without affecting cell viability. Cytotoxicity studies showed that the peptide does not induce necrotic or apoptotic damage up to concentrations 50-100-fold higher than minimal inhibitory concentrations (MIC). Moreover, Bac7(1-35) did not affect the ability of macrophages to engulf S. typhimurium, a species that may proliferate within this cell type. Conversely, when added to macrophages after phagocytosis, Bac7(1-35) caused a significant reduction in the number of recovered bacteria, indicating that it can kill the engulfed microorganisms directly and/or indirectly, via activation of the defense response of the cells.

  5. Intracellular peptides: From discovery to function

    Directory of Open Access Journals (Sweden)

    Emer S. Ferro

    2014-06-01

    Full Text Available Peptidomics techniques have identified hundreds of peptides that are derived from proteins present mainly in the cytosol, mitochondria, and/or nucleus; these are termed intracellular peptides to distinguish them from secretory pathway peptides that function primarily outside of the cell. The proteasome and thimet oligopeptidase participate in the production and metabolism of intracellular peptides. Many of the intracellular peptides are common among mouse tissues and human cell lines analyzed and likely to perform a variety of functions within cells. Demonstrated functions include the modulation of signal transduction, mitochondrial stress, and development; additional functions will likely be found for intracellular peptides.

  6. Recent development of peptide self-assembly

    Institute of Scientific and Technical Information of China (English)

    Xiubo Zhao; Fang Pan; Jian R. Lu

    2008-01-01

    Amino acids are the building blocks to build peptides and proteins. Recent development in peptide synthesis has however enabled us to mimic this natural process by preparing various long and short peptides possessing different conformations and biological functions. The self-assembly of short designed peptides into molecular nanostructures is becoming a growing interest in nanobiotechnology. Self-assembled peptides exhibit several attractive features for applications in tissue regeneration, drug delivery, biological surface engineering as well as in food science, cosmetic industry and antibiotics. The aim of this review is to introduce the readers to a number of representative studies on peptide self-assembly.

  7. Characterization of Synthetic Peptides by Mass Spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala K; Mirza, Osman; Højrup, Peter;

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI-TOF-MS an......Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI...

  8. Exo-exo synergy between Cel6A and Cel7A from Hypocrea jecorina: Role of carbohydrate binding module and the endo-lytic character of the enzymes.

    Science.gov (United States)

    Badino, Silke F; Christensen, Stefan J; Kari, Jeppe; Windahl, Michael S; Hvidt, Søren; Borch, Kim; Westh, Peter

    2017-08-01

    Synergy between cellulolytic enzymes is essential in both natural and industrial breakdown of biomass. In addition to synergy between endo- and exo-lytic enzymes, a lesser known but equally conspicuous synergy occurs among exo-acting, processive cellobiohydrolases (CBHs) such as Cel7A and Cel6A from Hypocrea jecorina. We studied this system using microcrystalline cellulose as substrate and found a degree of synergy between 1.3 and 2.2 depending on the experimental conditions. Synergy between enzyme variants without the carbohydrate binding module (CBM) and its linker was strongly reduced compared to the wild types. One plausible interpretation of this is that exo-exo synergy depends on the targeting role of the CBM. Many earlier works have proposed that exo-exo synergy was caused by an auxiliary endo-lytic activity of Cel6A. However, biochemical data from different assays suggested that the endo-lytic activity of both Cel6A and Cel7A were 10(3) -10(4) times lower than the common endoglucanase, Cel7B, from the same organism. Moreover, the endo-lytic activity of Cel7A was 2-3-fold higher than for Cel6A, and we suggest that endo-like activity of Cel6A cannot be the main cause for the observed synergy. Rather, we suggest the exo-exo synergy found here depends on different specificities of the enzymes possibly governed by their CBMs. Biotechnol. Bioeng. 2017;114: 1639-1647. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Antimicrobial Peptides from Marine Proteobacteria

    Directory of Open Access Journals (Sweden)

    Yannick Fleury

    2013-09-01

    Full Text Available After years of inadequate use and the emergence of multidrug resistant (MDR strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs, synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs, obtained through the linkage of (unusual amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs.

  10. Antiviral active peptide from oyster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster (Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10-5 kDa, 5-1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10?5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  11. NCAM Mimetic Peptides: An Update

    DEFF Research Database (Denmark)

    Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    pharmacological tools interfering with NCAM functions. Recent progress in our understanding of the structural basis of NCAM-mediated cell adhesion and signaling has allowed a structure-based design of NCAM mimetic peptides. Using this approach a number of peptides termed P2, P1-B, P-3-DE and P-3-G, whose...... sequences contain one or several NCAM homophilic binding sites involved in NCAM binding to itself, have been identified. By means of NMR titration analysis and molecular modeling a number of peptides derived from NCAM and targeting NCAM heterophilic ligands such as the fibroblast growth factor receptor...... in vitro and in vivo, making them attractive pharmacological tools suitable for drug development for the treatment of neurodegenerative disorders and impaired memory....

  12. Technological application of an extracellular cell lytic enzyme in xanthan gum clarification Aplicação tecnológica de uma enzima celulolítica para clarificação de goma xantana

    Directory of Open Access Journals (Sweden)

    Suresh Shastry

    2005-03-01

    Full Text Available An extracellular cell lytic enzyme from Pseudomonas sp. was active on heat killed cells of Xanthomonas campestris. The lytic activity caused enzymatic digestion of X.campestris xanthan gum. Digestion was effective for highly viscous native xanthan 2.0% (w/v and 2.5% (w/v commercial Sigma xanthan. Scanning electron microscopy and SDS-PAGE observations confirmed the cell lytic action on X.campestris cells.Uma enzima extracelular celulolítica produzida por Pseudomonas sp. foi ativa sobre células de Xanthomonas campestris mortas pelo calor. A atividade lítica causou a digestão enzimática de goma xantana de X. campestris. A digestão foi eficiente tanto para xantana nativa altamante viscosa (2,0% w/v como para xantana comercial Sigma (2,5% w/v. Observações por microscopia eletrônica de varredura demonstraram a ação celulolítica sobre células de X. campestris.

  13. Evidence of a dominant lineage of Vibrio cholerae-specific lytic bacteriophages shed by cholera patients over a 10-year period in Dhaka, Bangladesh.

    Science.gov (United States)

    Seed, Kimberley D; Bodi, Kip L; Kropinski, Andrew M; Ackermann, Hans-Wolfgang; Calderwood, Stephen B; Qadri, Firdausi; Camilli, Andrew

    2011-01-01

    Lytic bacteriophages are hypothesized to contribute to the seasonality and duration of cholera epidemics in Bangladesh. However, the bacteriophages contributing to this phenomenon have yet to be characterized at a molecular genetic level. In this study, we isolated and sequenced the genomes of 15 bacteriophages from stool samples from cholera patients spanning a 10-year surveillance period in Dhaka, Bangladesh. Our results indicate that a single novel bacteriophage type, designated ICP1 (for the International Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) is present in all stool samples from cholera patients, while two other bacteriophage types, one novel (ICP2) and one T7-like (ICP3), are transient. ICP1 is a member of the Myoviridae family and has a 126-kilobase genome comprising 230 open reading frames. Comparative sequence analysis of ICP1 and related isolates from this time period indicates a high level of genetic conservation. The ubiquitous presence of ICP1 in cholera patients and the finding that the O1 antigen of lipopolysaccharide (LPS) serves as the ICP1 receptor suggest that ICP1 is extremely well adapted to predation of human-pathogenic V. cholerae O1.

  14. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD).

    Science.gov (United States)

    Bateman, A; Bycroft, M

    2000-06-16

    The LysM domain is a widespread protein module. It was originally identified in enzymes that degrade bacterial cell walls but is also present in many other bacterial proteins. Several proteins that contain the domain, such as Staphylococcal IgG binding proteins and Escherichia coli intimin, are involved in bacterial pathogenesis. LysM domains are also found in some eukaryotic proteins, apparently as a result of horizontal gene transfer from bacteria. The available evidence suggests that the LysM domain is a general peptidoglycan-binding module. We have determined the structure of this domain from E. coli membrane-bound lytic murein transglycosylase D. The LysM domain has a betaalphaalphabeta secondary structure with the two helices packing onto the same side of an anti- parallel beta sheet. The structure shows no similarity to other bacterial cell surface domains. A potential binding site in a shallow groove on surface of the protein has been identified. Copyright 2000 Academic Press.

  15. Disruption of the cell wall lytic enzyme CwlO affects the amount and molecular size of poly-γ-glutamic acid produced by Bacillus subtilis (natto).

    Science.gov (United States)

    Mitsui, Nobuo; Murasawa, Hisashi; Sekiguchi, Junichi

    2011-01-01

    Poly-γ-glutamic acid (γPGA), a polymer of glutamic acid, is a component of the viscosity substance of natto, a traditional Japanese food made from soybeans fermented with Bacillus subtilis (natto). Here we investigate the effects of the cell wall lytic enzymes belonging to the D,L-endopeptidases (LytE, LytF, CwlO and CwlS) on γPGA production by B. subtilis (natto). γPGA levels in a cwlO disruptant were about twofold higher than that of the wild-type strain, whereas disruption of the lytE, lytF and cwlS genes had little effect on γPGA production. The molecular size of γPGA in the cwlO disruptant was larger than that of the wild-type strain. A complementary strain was constructed by insertion of the entire cwlO gene into the amyE locus of the CwlO mutant genome, and γPGA production was restored to wild-type levels in this complementary strain. These results indicated that the peptidoglycan degradation enzyme, CwlO, plays an important role in γPGA production and affects the molecular size of γPGA.

  16. Isolation and characterization of φkm18p, a novel lytic phage with therapeutic potential against extensively drug resistant Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Gwan-Han Shen

    Full Text Available AIMS: To isolate phages against extensively drug resistant Acinetobacter baumannii (XDRAB and characterize the highest lytic capability phage as a model to evaluate the potential on phage therapy. METHODS AND RESULTS: Eight phages were isolated from hospital sewage and showed narrow host spectrum. Phage φkm18p was able to effectively lyse the most XDRAB. It has a dsDNA genome of 45 kb in size and hexagonal head of about 59 nm in diameter and no tail. Bacterial population decreased quickly from 10(8 CFU ml(-1 to 10(3 CFU ml(-1 in 30 min by φkm18p. The 185 kDa lysis protein encoded by φkm18p genome was detected when the extracted protein did not boil before SDS-PAGE; it showed that the lysis protein is a complex rather than a monomer. Phage φkm18p improved human lung epithelial cells survival rates when they were incubated with A. baumannii. Combination of phages (φkm18p, φTZ1 and φ314 as a cocktail could lyse all genotype-varying XDRAB isolates. CONCLUSION: Infections with XDRAB are extremely difficult to treat and development of a phage cocktails therapy could be a therapeutic alternative in the future. Phage φkm18p is a good candidate for inclusion in phage cocktails.

  17. The bacteriophage P1 hot gene, encoding a homolog of the E. coli DNA polymerase III theta subunit, is expressed during both lysogenic and lytic growth stages.

    Science.gov (United States)

    Chikova, Anna K; Schaaper, Roel M

    2007-11-01

    The bacteriophage P1 hot gene product is a homolog of the theta subunit of E. coli DNA polymerase III. Previous studies with hot cloned on a plasmid have shown that Hot protein can substitute for theta, as evidenced by its stabilizing effect on certain dnaQ mutator mutants carrying an unstable pol III proofreading subunit (epsilon subunit). These results are consistent with Hot, like theta, being a replication protein involved in stabilizing the intrinsically unstable epsilon proofreading function. However, the function of hot for the viral life cycle is less clear. In the present study, we show that the hot gene is not essential. Based on its promoter structure, hot has been previously classified as a "late" phage gene, a property that is not easily reconciled with a presumed replication function. Here, we clarify this issue by demonstrating that P1 hot is actively expressed both during the lysogenic state and in the early stages of a lytic induction, in addition to its expression in the late stage of phage development. The results indicate that P1 hot has a complex expression pattern, compatible with a model in which Hot may affect the host replication machinery to benefit overall phage replication.

  18. Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered Pichia pastoris for X-ray and neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    O' Dell, William B.; Swartz, Paul D.; Weiss, Kevin L.; Meilleur, Flora

    2017-01-19

    Lytic polysaccharide monooxygenases (LPMOs) are carbohydrate-disrupting enzymes secreted by bacteria and fungi that break glycosidic bondsviaan oxidative mechanism. Fungal LPMOs typically act on cellulose and can enhance the efficiency of cellulose-hydrolyzing enzymes that release soluble sugars for bioethanol production or other industrial uses. The enzyme PMO-2 fromNeurospora crassa(NcPMO-2) was heterologously expressed inPichia pastoristo facilitate crystallographic studies of the fungal LPMO mechanism. Diffraction resolution and crystal morphology were improved by expressingNcPMO-2 from a glycoengineered strain ofP. pastorisand by the use of crystal seeding methods, respectively. These improvements resulted in high-resolution (1.20 Å) X-ray diffraction data collection at 100 K and the production of a largeNcPMO-2 crystal suitable for room-temperature neutron diffraction data collection to 2.12 Å resolution.

  19. Identification of lytic bacteriophage MmP1, assigned to a new member of T7-like phages infecting Morganella morganii.

    Science.gov (United States)

    Zhu, Junmin; Rao, Xiancai; Tan, Yinling; Xiong, Kun; Hu, Zhen; Chen, Zhijin; Jin, Xiaolin; Li, Shu; Chen, Yao; Hu, Fuquan

    2010-09-01

    MmP1 (Morganella morganii phage 1) is a lytic bacteriophage newly isolated from the host bacterium M. morganii. The entire genome was sequenced, and final assembly yielded a 38,234bp linear double-stranded DNA (dsDNA) with a G+C content of 46.5%. In the MmP1 genome, 49 putative genes, 10 putative promoters and 2 predicted sigma-independent terminators were determined through bioinformatic analysis. A striking feature of the MmP1 genome is its high degree of similarity to the T7 group of phages. All of the 49 predicted genes exist on the same DNA strand, and functions were assigned to 35 genes based on the similarity of the homologues deposited in GenBank, which share 30-80% identity to their counterparts in T7-like phages. The analyses of MmP1 using CoreGenes, phylogenetic tree of RNA polymerase and structural proteins have demonstrated that bacteriophage MmP1 should be assigned as a new member of T7-like phages but as a relatively distant member of this family. This is the first report that a T7-like phage adaptively parasitizes in M. morganii, and this will advance our understanding of biodiversity and adaptive evolution of T7-like phages.

  20. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  1. Peptides and the new endocrinology

    Science.gov (United States)

    Schwyzer, Robert

    1982-01-01

    The discovery of regulatory peptides common to the nervous and the endocrine systems (brain, gut, and skin) has brought about a revolution in our concepts of endocrinology and neurology. We are beginning to understand some of the complex interrelationships between soma and psyche that might, someday, be important for an integrated treatment of diseases. Examples of the actions of certain peptides in the periphery and in the central nervous system are given, and their biosynthesis and molecular anatomy as carriers for information are discussed.

  2. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies...... are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors...... such as structure, accessibility and amino acid composition are crucial. Since small peptides tend not to be immunogenic, it may be necessary to conjugate them to carrier proteins in order to enhance immune presentation. Several strategies for conjugation of peptide-carriers applied for immunization exist...

  3. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  4. Part 1. Antimicrobial and Immunomodulatory Peptides

    African Journals Online (AJOL)

    Furthermore, some peptides have been shown to have mineral ... immunopotentiating and antimicrobial properties including .... that this will give a clarion call to focus on the benefits ..... peptide could also be used in cosmetic, eye-care, oral.

  5. Recent advances in solid phase peptide synthesis

    OpenAIRE

    White, P.D.

    2016-01-01

    Since its introduction by Merrifield half a century ago, solid phase peptide synthesis has evolved to become the enabling technology for the development of peptide therapeutics. Using modern methods, 100 - 1000s of peptides can be routinely synthesised in parallel for screening as leads for drug development and peptide APIs are produced in ton scale. In this talk I consider the state of art and report on recent advances to overcome remaining issues such as aspartimide formation, racemisation ...

  6. Development and use of engineered peptide deformylase in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia

    2012-01-01

    Deze thesis beschrijft het onderzoek naar potentieel van het gebruik van het peptide deformylase (PDF) in chemo enzymatische peptide synthese. PDF is geschikt voor selective N terminale deformylatie van bepaalde N-formyl-peptides zonder gelijktijdige hydrolyse van de peptide binding. Door de uitdagi

  7. Water drives peptide conformational transitions

    CERN Document Server

    Nerukh, Dmitry

    2011-01-01

    Transitions between metastable conformations of a dipeptide are investigated using classical molecular dynamics simulation with explicit water molecules. The distribution of the surrounding water at different moments before the transitions and the dynamical correlations of water with the peptide's configurational motions indicate that water is the main driving force of the conformational changes.

  8. Glucagon-like peptide-1

    DEFF Research Database (Denmark)

    Deacon, C F; Holst, Jens Juul; Carr, R D

    1999-01-01

    Type 2 diabetes mellitus is a metabolic disease resulting in raised blood sugar which, if not satisfactorily controlled, can cause severe and often debilitating complications. Unfortunately, for many patients, the existing therapies do not give adequate control. Glucagon-like peptide-1 (GLP-1) is...

  9. Glucagon-like peptide-1

    DEFF Research Database (Denmark)

    Holst, Jens Juul

    2006-01-01

    The incretin hormones are intestinal polypeptides that enhance postprandial insulin secretion. Gastric inhibitory polypeptide (GIP) was initially thought to regulate gastric acid secretion, whereas glucagon-like peptide-1 (GLP-1) was discovered as a result of a systematic search for intestinal...

  10. The evolution of peptide hormones.

    Science.gov (United States)

    Niall, H D

    1982-01-01

    Despite limitations in our present knowledge it is already possible to discern the main features of peptide hormone evolution, since the same mechanisms (and indeed the same hormone molecules) function in many different ways. This underlying unity of organization has its basis in the tendency of biochemical networks, once established, to survive and diversify. The most surprising recent findings in endocrinology have been the discovery of vertebrate peptide hormones in multiple sites within the same organism, and the reports, persuasive but requiring confirmation, of vertebrate hormones in primitive unicellular organisms (20, 20a). Perhaps the major challenge for the future is to define the roles and interactions of the many peptide hormones identified in brain (18). The most primitive bacteria and the human brain, though an enormous evolutionary distance apart, may have more in common than we have recognized until now. As Axelrod & Hamilton have pointed out in a recent provocative article, "The Evolution of Cooperation" (1), bacteria, though lacking a brain, are capable of adaptive behavior that can be analysed in terms of game theory. It is clear that we can learn a great deal about the whole evolutionary process from a study of the versatile and durable peptide hormones molecules.

  11. Solid Phase Chemical Synthesis and Structure - Activity Study of Brevinin - 2R and Analogues as Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Hashem Yaghoubi

    2015-10-01

    Full Text Available Background: Brevinin-2R, as 25 amino acids peptide of the skin of Rana ridibunda frog, possesses potent antimicrobial and low hemolytic activity. It has an N-terminal hydrophilic region and a C-terminal loop that is delineated by an intra-disulfide bridge. In our study, Brevinin-2R and its diastereomer as well  as its  cyclic  analogue  were  synthesized  and  characterized  in  order  to investigate its structural features and biological implications.Methods: MIC determination is based on the recommended classical method of national comittee for labratory safety standard (NCLSS and standard by Hancock With some change on cationic peptides. In this study All bacterial strains were obtained from Industrial-Scientific Research center.Results: Both analogues showed lower antimicrobial activities compared to Brevinin-2R. In spite of Brevinin-2R peptide which shows low hemolytic activity, these analogues failed to show any hemolytic activity even at higherconcentrations (up to 400 µ g/ml. Based on proteolytic stability measurements,diastereomer and cyclic analogues displayed 90% and 60% residual antimicrobial activity, respectively, while antimicrobial activity of Brevinin-2R was 20%. The CD analysis revealed that amphipathic α-helical conformation of the synthesized peptides is involved in antimicrobial effects.Conclusion: CD studies and HPLC based measurement of retention time using a reverse phase column indicated that the Brevinin-2R can form an amphipathic loop  resulting  in  an  enhanced  hydrophobicity.  The  hemolytic  activity  ofBrevinin-2R and its analogues appeared to correlate with the retention time aswell as the α-helicity. Accordingly, it seems that the combination of incorporating of D-amino acids into lytic peptides and their cyclization may result in developing new antimicrobial peptides with improved properties for treating infectious diseases.

  12. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  13. Peptides and metallic nanoparticles for biomedical applications.

    NARCIS (Netherlands)

    Kogan, M.J.; Olmedo, I.; Hosta, L.; Guerrero, A.R.; Cruz Ricondo, L.J.; Albericio, F.

    2007-01-01

    In this review, we describe the contribution of peptides to the biomedical applications of metallic nanoparticles. We also discuss strategies for the preparation of peptide-nanoparticle conjugates and the synthesis of the peptides and metallic nanoparticles. An overview of the techniques used for th

  14. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of <200-nm bilayer vesicles composed of anionic and neutral lipids as well as cholesterol. Vesicle disruption, or peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  15. Diverse CLE peptides from cyst nematode species

    Science.gov (United States)

    Plant CLAVATA3/ESR (CLE)-like peptides play diverse roles in plant growth and development including maintenance of the stem cell population in the root meristem. Small secreted peptides sharing similarity to plant CLE signaling peptides have been isolated from several cyst nematode species including...

  16. Activity of Cathelicidin Peptides against Chlamydia spp.

    Science.gov (United States)

    Donati, Manuela; Di Leo, Korinne; Benincasa, Monica; Cavrini, Francesca; Accardo, Silvia; Moroni, Alessandra; Gennaro, Renato; Cevenini, Roberto

    2005-01-01

    The in vitro activity of six cathelicidin peptides against 25 strains of Chlamydia was investigated. SMAP-29 proved to be the most active peptide, reducing the inclusion numbers of all 10 strains of Chlamydia trachomatis tested by ≥50% at 10 μg/ml. This peptide was also active against C. pneumoniae and C. felis. PMID:15728927

  17. Single-molecule studies on individual peptides and peptide assemblies on surfaces.

    Science.gov (United States)

    Yang, Yanlian; Wang, Chen

    2013-10-13

    This review is intended to reflect the recent progress in single-molecule studies of individual peptides and peptide assemblies on surfaces. The structures and the mechanism of peptide assembly are discussed in detail. The contents include the following topics: structural analysis of single peptide molecules, adsorption and assembly of peptides on surfaces, folding structures of the amyloid peptides, interaction between amyloid peptides and dye or drug molecules, and modulation of peptide assemblies by small molecules. The explorations of peptide adsorption and assembly will benefit the understanding of the mechanisms for protein-protein interactions, protein-drug interactions and the pathogenesis of amyloidoses. The investigations on peptide assembly and its modulations could also provide a potential approach towards the treatment of the amyloidoses.

  18. Peptide crosslinked micelles: a new strategy for the design and synthesis of peptide vaccines

    OpenAIRE

    Hao, Jihua; Kwissa, Marcin; Pulendran, Bali; Murthy, Niren

    2006-01-01

    This report presents a new and simple methodology for the synthesis of multicomponent peptide vaccines, named the peptide crosslinked micelles (PCMs). The PCMs are core shell micelles designed to deliver peptide antigens and immunostimulatory DNA to antigen-presenting cells (APCs). They are composed of immunostimulatory DNA, peptide antigen, and a thiopyridal derived poly(ethylene glycol)-polylysine block copolymer. The peptide antigen acts as a crosslinker in the PCM strategy, which allows t...

  19. Antimicrobial Peptides: Effects on Small Intestinal Mucosal Morphology and Immune Active Cell Number in Hy-Line Brown Young Roosters%抗菌肽对海兰褐仔公鸡小肠黏膜形态结构及免疫活性细胞数量的影响

    Institute of Scientific and Technical Information of China (English)

    刘莉如; 杨开伦; 滑静; 王晓霞; 刘亭婷

    2013-01-01

    本试验旨在探讨饲粮中添加不同水平天蚕素抗菌肽对海兰褐仔公鸡小肠黏膜形态结构及免疫活性细胞数量的影响.选择336只1日龄健康海兰褐仔公鸡,随机分为7个处理,每个处理4个重复,每个重复12只鸡.7个处理分别为对照组(饲喂基础饲粮),抗生素组(150mg/kg金霉素),抗菌肽Ⅰ(饲喂基础饲粮+150 mg/kg天蚕素抗菌肽)、Ⅱ(饲喂基础饲粮+200mg/kg天蚕素抗菌肽)、Ⅲ(饲喂基础饲粮+250 mg/kg天蚕素抗菌肽)、Ⅳ(饲喂基础饲粮+300 mg/kg天蚕素抗菌肽)、V组(饲喂基础饲粮+350 mg/kg天蚕素抗菌肽),饲养试验期为42 d.结果表明:各处理肠黏膜结构与对照组相比较完整,除十二指肠隐窝深度、空肠肌层厚度各处理之间无显著性差异(P>0.05)外,不同添加水平的抗菌肽组绒毛高度、黏膜厚度、肌层厚度均在一定程度上高于对照组,隐窝深度均在一定程度上低于对照组,抗菌肽V组效果最为显著(P<0.05).抗菌肽V组空肠上皮内淋巴细胞数量显著高于对照组(P<0.05),抗菌肽Ⅲ、Ⅳ、Ⅴ组与对照组相比可显著提高十二指肠、空肠及回肠杯状细胞数量(P<0.05).由此可见,饲粮添加天蚕素抗菌肽可显著改善海兰褐仔公鸡小肠黏膜上皮细胞形态,同时也增加了小肠免疫活性细胞的数量.其中抗菌肽V组添加效果最好,天蚕素抗菌肽添加量为350mg/kg.%This experiment is conducted to study the effects of dietary antimicrobial peptides ( ABPs) - cecropin on small intestinal mucosal morphology and the number of immune active cells in Hy-Line Brown young roosters. Three hundred and thirty-six young roosters were selected, and randomly divided into seven treatments with four replicates in each treatment and twelve chicks in each replicate. The seven treatments were control group (fed a basal diet) , antibiotics group (fed basal diet + 150 mg/kg chlortetracycline) , and 150, 200, 250, 300, 350 mg/kg ABPs

  20. Peptide array-based characterization and design of ZnO-high affinity peptides.

    Science.gov (United States)

    Okochi, Mina; Sugita, Tomoya; Furusawa, Seiji; Umetsu, Mitsuo; Adschiri, Tadafumi; Honda, Hiroyuki

    2010-08-15

    Peptides with both an affinity for ZnO and the ability to generate ZnO nanoparticles have attracted attention for the self-assembly and templating of nanoscale building blocks under ambient conditions with compositional uniformity. In this study, we have analyzed the specific binding sites of the ZnO-binding peptide, EAHVMHKVAPRP, which was identified using a phage display peptide library. The peptide binding assay against ZnO nanoparticles was performed using peptides synthesized on a cellulose membrane using the spot method. Using randomized rotation of amino acids in the ZnO-binding peptide, 125 spot-synthesized peptides were assayed. The peptide binding activity against ZnO nanoparticles varied greatly. This indicates that ZnO binding does not depend on total hydrophobicity or other physical parameters of these peptides, but rather that ZnO recognizes the specific amino acid alignment of these peptides. In addition, several peptides were found to show higher binding ability compared with that of the original peptides. Identification of important binding sites in the EAHVMHKVAPRP peptide was investigated by shortened, stepwise sequence from both termini. Interestingly, two ZnO-binding sites were found as 6-mer peptides: HVMHKV and HKVAPR. The peptides identified by amino acid substitution of HKVAPR were found to show high affinity and specificity for ZnO nanoparticles.

  1. Fabrication of Odor Sensor Using Peptide

    Science.gov (United States)

    Hotokebuchi, Yuta; Hayashi, Kenshi; Toko, Kiyoshi; Chen, Ronggang; Ikezaki, Hidekazu

    We report fabrication of an odor sensor using peptides. Peptides were designed to acquire the specific reception for a target odor molecule. Au surface of the sensor electrode was coated by the designed peptide using the method of self assembled monolayers (SAMs). Functionalized Au surfaces by the peptides were confirmed by ellipsometry and cyclic voltammetry. The odorants of vanillin, phenethyl alcohol and hexanol were discriminated by QCM sensor with the peptide surface. Moreover, we verified specific interaction between amino acid (Trp) and vanillin by fluorescence assay.

  2. Brain natriuretic peptide measurement in pulmonary medicine.

    Science.gov (United States)

    Salerno, Daniel; Marik, Paul E

    2011-12-01

    Serum levels of natriuretic peptides are well established as important biomarkers in patients with cardiac disease. Less attention has been placed on the role of natriuretic peptides in patients with pulmonary conditions. In several well-defined groups of patients with pulmonary disease natriuretic peptides provide the clinician with clinically valuable information. A limitation of the interpretation of natriuretic peptides in pulmonary disease is the confounding effect of concurrent conditions such as heart failure, hypoxia, sepsis and renal failure. The present paper reviews the role of natriuretic peptides for diagnosis, risk stratification and prognosis of several pulmonary disorders.

  3. Towards the MHC-peptide combinatorics.

    Science.gov (United States)

    Kangueane, P; Sakharkar, M K; Kolatkar, P R; Ren, E C

    2001-05-01

    The exponentially increased sequence information on major histocompatibility complex (MHC) alleles points to the existence of a high degree of polymorphism within them. To understand the functional consequences of MHC alleles, 36 nonredundant MHC-peptide complexes in the protein data bank (PDB) were examined. Induced fit molecular recognition patterns such as those in MHC-peptide complexes are governed by numerous rules. The 36 complexes were clustered into 19 subgroups based on allele specificity and peptide length. The subgroups were further analyzed for identifying common features in MHC-peptide binding pattern. The four major observations made during the investigation were: (1) the positional preference of peptide residues defined by percentage burial upon complex formation is shown for all the 19 subgroups and the burial profiles within entries in a given subgroup are found to be similar; (2) in class I specific 8- and 9-mer peptides, the fourth residue is consistently solvent exposed, however this observation is not consistent in class I specific 10-mer peptides; (3) an anchor-shift in positional preference is observed towards the C terminal as the peptide length increases in class II specific peptides; and (4) peptide backbone atoms are proportionately dominant at the MHC-peptide interface.

  4. Therapeutic uses of gastrointestinal peptides.

    Science.gov (United States)

    Redfern, J S; O'Dorisio, T M

    1993-12-01

    The GI tract is one of nature's great pharmacies. Most, if not all, biologically active peptides can be found there, and it is quite likely that others remain to be discovered. Our ability to exploit this resource has expanded considerably over the past two decades. Advances in analytical techniques have allowed investigators to rapidly isolate and purify new compounds from tissue extracts. Sequencing and de novo synthesis of newly discovered peptides are now routine, and the structural modifications required to alter activity and tailor a compound to a particular use are easily made. A number of gastrointestinal peptides or their analogues for use in clinical studies are available from commercial sources (see Table 7). Somatostatin is the first gut peptide to successfully complete development and yield a pharmaceutical compound with a broad range of action. Several of the peptides discussed in this article have similar potential. TRH stands out as a candidate because of its effectiveness in the treatment of experimental spinal cord injury and a variety of shock states. Such a broad range of action in critical fields may justify the intensive development required to yield potent, long-acting, and highly specific analogues. Similarly, the antimetastatic and immunostimulant properties of the enkephalins offer promise for new therapies in the treatment of AIDS, ARC, and cancer. Studies with amylin may lead to new and more precise regimens of blood sugar control in insulin-dependent diabetics and could in turn, prevent some of the worst long-term effects of the disease. The development of effective intranasal forms of GHRH could spare children with GH-GHRH deficiency the distress of repeated injections and help to prevent excessive GH blood levels. Secretin, glucagon, or CGRP might be used one day in cardiovascular emergencies, and VIP or its analogues could prove effective in the treatment of asthma. Although preliminary results with many of these peptides are

  5. Clinical Manifestations of Kaposi Sarcoma Herpesvirus (KSHV Lytic Activation: Multicentric Castleman Disease (KSHV-MCD and the KSHV Inflammatory Cytokine Syndrome (KICS

    Directory of Open Access Journals (Sweden)

    Mark N. Polizzotto

    2012-03-01

    Full Text Available Soon after the discovery of Kaposi sarcoma associated herpesvirus (KSHV, it was appreciated that this virus was associated with most cases of multicentric Castleman disease (MCD arising in patients infected with human immunodeficiency virus (HIV. It has subsequently been recognized that KSHV-MCD is a distinct entity from other forms of MCD. Like MCD that is unrelated to KSHV, the clinical presentation of KSHV-MCD is dominated by systemic inflammatory symptoms including fevers, cachexia and laboratory abnormalities including cytopenias, hypoalbuminemia, hyponatremia, and elevated C-reactive protein. Pathologically KSHV-MCD is characterized by polyclonal, IgM-lambda restricted plasmacytoid cells in the intrafollicular areas of affected lymph nodes. A portion of these cells are infected with KSHV and a sizable subset of these cells express KSHV lytic genes including a viral homolog of interleukin-6 (vIL-6. Patients with KSHV-MCD generally have elevated KSHV viral loads in their peripheral blood. Production of vIL-6 and induction of human (h IL-6 both contribute to symptoms, perhaps in combination with overproduction of IL-10 and other cytokines. Until recently, the prognosis of patients with KSHV-MCD was poor. Recent therapeutic advances targeting KSHV-infected B cells with the anti-CD20 monoclonal antibody rituximab and utilizing KSHV enzymes to target KSHV-infected cells have substantially improved patient outcomes. Recently another KSHV-associated condition, the KSHV inflammatory cytokine syndrome (KICS has been described. Its clinical manifestations resemble those of KSHV-MCD but lymphadenopathy is not prominent and the pathologic nodal changes of KSHV-MCD are absent. Patients with KICS exhibit elevated KSHV viral loads and elevation of vIL-6, hIL-6 and IL-10 comparable to those seen in KSHV-MCD; the cellular origin of these is a matter of investigation. KICS may contribute to the inflammatory symptoms seen in some patients with severe Kaposi

  6. Characterization of the replication, transfer, and plasmid/lytic phage cycle of the Streptomyces plasmid-phage pZL12.

    Science.gov (United States)

    Zhong, Li; Cheng, Qiuxiang; Tian, Xinli; Zhao, Liqian; Qin, Zhongjun

    2010-07-01

    We report here the isolation and recombinational cloning of a large plasmid, pZL12, from endophytic Streptomyces sp. 9R-2. pZL12 comprises 90,435 bp, encoding 112 genes, 30 of which are organized in a large operon resembling bacteriophage genes. A replication locus (repA) and a conjugal transfer locus (traA-traC) were identified in pZL12. Surprisingly, the supernatant of a 9R-2 liquid culture containing partially purified phage particles infected 9R-2 cured of pZL12 (9R-2X) to form plaques, and a phage particle (phiZL12) was observed by transmission electron microscopy. Major structural proteins (capsid, portal, and tail) of phiZL12 virions were encoded by pZL12 genes. Like bacteriophage P1, linear phiZL12 DNA contained ends from a largely random pZL12 sequence. There was also a hot end sequence in linear phiZL12. phiZL12 virions efficiently infected only one host, 9R-2X, but failed to infect and form plaques in 18 other Streptomyces strains. Some 9R-2X spores rescued from lysis by infection of phiZL12 virions contained a circular pZL12 plasmid, completing a cycle comprising autonomous plasmid pZL12 and lytic phage phiZL12. These results confirm pZL12 as the first example of a plasmid-phage in Streptomyces.

  7. KSHV miRNAs Decrease Expression of Lytic Genes in Latently Infected PEL and Endothelial Cells by Targeting Host Transcription Factors

    Directory of Open Access Journals (Sweden)

    Karlie Plaisance-Bonstaff

    2014-10-01

    Full Text Available Kaposi’s sarcoma-associated herpesvirus (KSHV microRNAs are encoded in the latency-associated region. Knockdown of KSHV miR-K12-3 and miR-K12-11 increased expression of lytic genes in BC-3 cells, and increased virus production from latently infected BCBL-1 cells. Furthermore, iSLK cells infected with miR-K12-3 and miR-K12-11 deletion mutant viruses displayed increased spontaneous reactivation and were more sensitive to inducers of reactivation than cells infected with wild type KSHV. Predicted binding sites for miR-K12-3 and miR-K12-11 were found in the 3’UTRs of the cellular transcription factors MYB, Ets-1, and C/EBPα, which activate RTA, the KSHV replication and transcription activator. Targeting of MYB by miR-K12-11 was confirmed by cloning the MYB 3’UTR downstream from the luciferase reporter. Knockdown of miR‑K12-11 resulted in increased levels of MYB transcript, and knockdown of miR-K12-3 increased both C/EBPα and Ets-1 transcripts. Thus, miR-K12-11 and miR-K12-3 contribute to maintenance of latency by decreasing RTA expression indirectly, presumably via down‑regulation of MYB, C/EBPα and Ets-1, and possibly other host transcription factors.

  8. Ocean acidification and viral replication cycles: Frequency of lytically infected and lysogenic cells during a mesocosm experiment in the NW Mediterranean Sea

    Science.gov (United States)

    Tsiola, Anastasia; Pitta, Paraskevi; Giannakourou, Antonia; Bourdin, Guillaume; Marro, Sophie; Maugendre, Laure; Pedrotti, Maria Luiza; Gazeau, Frédéric

    2017-02-01

    The frequency of lytically infected and lysogenic cells (FLIC and FLC, respectively) was estimated during an in situ mesocosm experiment studying the impact of ocean acidification on the plankton community of a low nutrient low chlorophyll (LNLC) system in the north-western Mediterranean Sea (Bay of Villefranche, France) in February/March 2013. No direct effect of elevated partial pressure of CO2 (pCO2) on viral replication cycles could be detected. FLC variability was negatively correlated to heterotrophic bacterial and net community production as well as the ambient bacterial abundance, confirming that lysogeny is a prevailing life strategy under unfavourable-for-the-hosts conditions. Further, the phytoplankton community, assessed by chlorophyll a concentration and the release of >0.4 μm transparent exopolymeric particles, was correlated with the occurrence of lysogeny, indicating a possible link between photosynthetic processes and bacterial growth. Higher FLC was found occasionally at the highest pCO2-treated mesocosm in parallel to subtle differences in the phytoplankton community. This observation suggests that elevated pCO2 could lead to short-term alterations in lysogenic dynamics coupled to phytoplankton-derived processes. Correlation of FLIC with any environmental parameter could have been obscured by the sampling time or the synchronization of lysis to microbial processes not assessed in this experiment. Furthermore, alterations in microbial and viral assemblage composition and gene expression could be a confounding factor. Viral-induced modifications in organic matter flow affect bacterial growth and could interact with ocean acidification with unpredictable ecological consequences.

  9. An improved system for the surface immobilisation of proteins on Bacillus thuringiensis vegetative cells and spores through a new spore cortex-lytic enzyme anchor.

    Science.gov (United States)

    Shao, Xiaohu; Ni, Hong; Lu, Ting; Jiang, Mengtian; Li, Hua; Huang, Xinfeng; Li, Lin

    2012-02-15

    An improved surface-immobilisation system was engineered to target heterologous proteins onto vegetative cells and spores of Bacillus thuringiensis plasmid-free recipient strain BMB171. The sporulation-dependent spore cortex-lytic enzyme from B. thuringiensis YBT-1520, SceA, was expressed in vegetative cells and used as the surface anchoring motif. Green fluorescent protein (GFP) and a Bacillus endo-β-1,3-1,4-glucanase (BglS) were used as the fusion partners to test the binding efficiency and the functional activities of immobilised surface proteins. The surface localisation of the SceA-GFP fusion protein on vegetative cells and spores was confirmed by Western blot, immunofluorescence microscopy and flow cytometry. The GFP fluorescence intensity from both vegetative cells and spores was measured and compared to a previously characterised surface display system using a peptidoglycan hydrolase anchor (Mbg). Results demonstrated comparable efficiency of SceA- and Mbg-mediated immobilisation on vegetative cells but a more efficient immobilisation on spores using the SceA anchor, suggesting SceA has greater potential for spore-based applications. The SceA protein was then applied to target BglS onto vegetative cells and spores, and the surface immobilisation was verified by the substantial whole-cell enzymatic activity and enhanced whole-spore enzymatic activity compared to vegetative cells. A dually active B. thuringiensis vegetative cell and spore display system could prove especially valuable for the development of regenerable and heat-stable biocatalysts that function under adverse environmental conditions, for example, an effective feed additive for improved digestion and nutrient absorption by livestock.

  10. Edwardsiella tarda Ivy, a lysozyme inhibitor that blocks the lytic effect of lysozyme and facilitates host infection in a manner that is dependent on the conserved cysteine residue.

    Science.gov (United States)

    Wang, Chong; Hu, Yong-hua; Sun, Bo-guang; Li, Jun; Sun, Li

    2013-10-01

    Edwardsiella tarda is a Gram-negative bacterial pathogen with a broad host range that includes fish and humans. In this study, we examined the activity and function of the lysozyme inhibitor Ivy (named IvyEt) identified in the pathogenic E. tarda strain TX01. IvyEt possesses the Ivy signature motif CKPHDC in the form of (82)CQPHNC(87) and contains several highly conserved residues, including a tryptophan (W55). For the purpose of virulence analysis, an isogenic TX01 mutant, TXivy, was created. TXivy bears an in-frame deletion of the ivyEt gene. A live infection study in a turbot (Scophthalmus maximus) model showed that, compared to TX01, TXivy exhibited attenuated overall virulence, reduced tissue dissemination and colonization capacity, an impaired ability to replicate in host macrophages, and decreased resistance against the bactericidal effect of host serum. To facilitate functional analysis, recombinant IvyEt (rIvy) and three mutant proteins, i.e., rIvyW55A, rIvyC82S, and rIvyH85D, which bear Ala, Ser, and Asp substitutions at W55, C82, and H85, respectively, were prepared. In vitro studies showed that rIvy, rIvyW55A, and rIvyH85D were able to block the lytic effect of lysozyme on a Gram-positive bacterium, whereas rIvyC82S could not do so. Likewise, rIvy, but not rIvyC82S, inhibited the serum-facilitated killing effect of lysozyme on E. tarda. In vivo analysis showed that rIvy, but not rIvyC82S, restored the lost pathogenicity of TXivy and enhanced the infectivity of TX01. Together these results indicate that IvyEt is a lysozyme inhibitor and a virulence factor that depends on the conserved C82 for biological activity.

  11. Suppression of injuries caused by a lytic RNA virus (mengovirus) and their uncoupling from viral reproduction by mutual cell/virus disarmament.

    Science.gov (United States)

    Mikitas, Olga V; Ivin, Yuri Y; Golyshev, Sergey A; Povarova, Natalia V; Galkina, Svetlana I; Pletjushkina, Olga Y; Nadezhdina, Elena S; Gmyl, Anatoly P; Agol, Vadim I

    2012-05-01

    Viruses often elicit cell injury (cytopathic effect [CPE]), a major cause of viral diseases. CPE is usually considered to be a prerequisite for and/or consequence of efficient viral growth. Recently, we proposed that viral CPE may largely be due to host defensive and viral antidefensive activities. This study aimed to check the validity of this proposal by using as a model HeLa cells infected with mengovirus (MV). As we showed previously, infection of these cells with wild-type MV resulted in necrosis, whereas a mutant with incapacitated antidefensive ("security") viral leader (L) protein induced apoptosis. Here, we showed that several major morphological and biochemical signs of CPE (e.g., alterations in cellular and nuclear shape, plasma membrane, cytoskeleton, chromatin, and metabolic activity) in cells infected with L(-) mutants in the presence of an apoptosis inhibitor were strongly suppressed or delayed for long after completion of viral reproduction. These facts demonstrate that the efficient reproduction of a lytic virus may not directly require development of at least some pathological alterations normally accompanying infection. They also imply that L protein is involved in the control of many apparently unrelated functions. The results also suggest that the virus-activated program with competing necrotic and apoptotic branches is host encoded, with the choice between apoptosis and necrosis depending on a variety of intrinsic and extrinsic conditions. Implementation of this defensive suicidal program could be uncoupled from the viral reproduction. The possibility of such uncoupling has significant implications for the pathogenesis and treatment of viral diseases.

  12. Inhibitory and lytic effects of phenothiazine derivatives and related tricyclic neuroleptic compounds, on Entamoeba histolytica HK9 and HM1 trophozoites.

    Science.gov (United States)

    Ondarza, R N; Hernández, E; Iturbe, A; Hurtado, G

    2000-08-01

    It has been shown previously that tricyclic neuroleptics like clomipramine and chlorpromazine have lethal effects on Leishmania donovani and L. major, and other studies indicate that the phenothiazine inhibitors of trypanothione reductase are potential anti-trypanosomal and anti-leishmanial drugs. With this in mind and our original observation on the presence of trypanothione in Entamoeba histolytica HK9, we examined the possible inhibitory effects of various phenothiazine and tricyclic derivatives on this human parasite. We found that drugs like clomipramine (KD002), the most potent in vitro inhibitor of trypanothione reductase among 30 tricyclic compounds tested, at 25 microM after 24 h of culture under aerobic conditions, caused a substantial decrease in the number of E. histolytica HK9 trophozoites, from approx. 15 x 10(6) to 5.37 x 10(6) cells, and at 100 microM to 0.8 x 10(6) cells. A substantial inhibitory effect on cell proliferation could also be demonstrated with metronidazol (used clinically against amoebiasis). Under similar experimental conditions other tricyclic and phenothiazine derivatives (OFKs), designed originally to inhibit the trypanothione reductase of trypanosomatides, had an inhibitory effect of 16 to 95%. For comparison, similar results were obtained using clomipramine and a phenothiazine derivative (OFK006) with Trypanosoma cruzi and Crithidia luciliae, except that with the latter the inhibitory effect of clomipramine was less dramatic. Experiments comparing two E. histolytica strains showed that normal cell proliferation under anaerobiosis was higher in strain HK9 than in HM1, which is highly virulent, but that metronidazol and clomipramine were less effective against HM1. Two other drugs tested, diphenydramine (KD005) and a phenothiazine derivative (OFK008), also had significant but lower inhibitory effects on both strains. The inhibitory activity on cell proliferation and the lytic effects on this human parasite by the tricyclic

  13. The first salamander defensin antimicrobial peptide.

    Directory of Open Access Journals (Sweden)

    Ping Meng

    Full Text Available Antimicrobial peptides have been widely identified from amphibian skins except salamanders. A novel antimicrobial peptide (CFBD was isolated and characterized from skin secretions of the salamander, Cynops fudingensis. The cDNA encoding CFBD precursor was cloned from the skin cDNA library of C. fudingensis. The precursor was composed of three domains: signal peptide of 17 residues, mature peptide of 41 residues and intervening propeptide of 3 residues. There are six cysteines in the sequence of mature CFBD peptide, which possibly form three disulfide-bridges. CFBD showed antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Candida albicans and Escherichia coli. This peptide could be classified into family of β-defensin based on its sequence similarity with β-defensins from other vertebrates. Evolution analysis indicated that CFBD was close to fish β-defensin. As far as we know, CFBD is the first β-defensin antimicrobial peptide from salamanders.

  14. Computer-Aided Design of Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Hancock, Robert E.W.; Jenssen, Håvard

    2010-01-01

    chemical parameters with biological activities of the peptide, using statistical methods. In this review we will discuss two different in silico strategies of computer-aided antibacterial peptide design, a linear correlation model build as an extension of traditional principal component analysis (PCA......) and a non-linear artificial neural network model. Studies on structurally diverse peptides, have concluded that the PCA derived model are able to guide the antibacterial peptide design in a meaningful way, however requiring rather a high homology between the peptides in the test-set and the in silico...... library, to ensure a successful prediction. In contrast, the neural network model, though significantly less explored in relation to antimicrobial peptide design, has proven extremely promising, demonstrating impressive prediction success and ranking of random peptide libraries correlating well...

  15. Biology of the CAPA peptides in insects.

    Science.gov (United States)

    Predel, R; Wegener, C

    2006-11-01

    CAPA peptides have been isolated from a broad range of insect species as well as an arachnid, and can be grouped into the periviscerokinin and pyrokinin peptide families. In insects, CAPA peptides are the characteristic and most abundant neuropeptides in the abdominal neurohemal system. In many species, CAPA peptides exert potent myotropic effects on different muscles such as the heart. In others, including blood-sucking insects able to transmit serious diseases, CAPA peptides have strong diuretic or anti-diuretic effects and thus are potentially of medical importance. CAPA peptides undergo cell-type-specific sorting and packaging, and are the first insect neuropeptides shown to be differentially processed. In this review, we discuss the current knowledge on the structure, distribution, receptors and physiological actions of the CAPA peptides.

  16. Anionic phospholipids modulate peptide insertion into membranes.

    Science.gov (United States)

    Liu, L P; Deber, C M

    1997-05-06

    While the insertion of a hydrophobic peptide or membrane protein segment into the bilayer can be spontaneous and driven mainly by the hydrophobic effect, anionic lipids, which comprise ca. 20% of biological membranes, provide a source of electrostatic attractions for binding of proteins/peptides into membranes. To unravel the interplay of hydrophobicity and electrostatics in the binding of peptides into membranes, we designed peptides de novo which possess the typical sequence Lys-Lys-Ala-Ala-Ala-X-Ala-Ala-Ala-Ala-Ala-X-Ala-Ala-Trp-Ala-Ala-X-Ala-Al a-Ala-Lys-Lys-Lys-Lys-amide, where X residues correspond to "guest" residues which encompass a range of hydrophobicity (Leu, Ile, Gly, and Ser). Circular dichroism spectra demonstrated that peptides were partially (40-90%) random in aqueous buffer but were promoted to form 100% alpha-helical structures by anionic lipid micelles. In neutral lipid micelles, only the relatively hydrophobic peptides (X = L and I) spontaneously adopted the alpha-helical conformation, but when 25% of negatively charged lipids were mixed in to mimic the content of anionic lipids in biomembranes, the less hydrophobic (X = S and G) peptides then formed alpha-helical conformations. Consistent with these findings, fluorescence quenching by the aqueous-phase quencher iodide indicated that in anionic (dimyristoylphosphatidylglycerol) vesicles, the peptide Trp residue was buried in the lipid vesicle hydrophobic core, while in neutral (dimyristoylphosphatidylcholine) vesicles, only hydrophobic (X = L and I) peptides were shielded from the aqueous solution. Trp emission spectra of peptides in the presence of phospholipids doxyl-labeled at the 5-, 7-, 10-, 12-, and 16-fatty acid positions implied not only a transbilayer orientation for inserted peptides but also that mixed peptide populations (transbilayer + surface-associated) may arise. Overall results suggest that for hydrophobic peptides with segmental threshold hydrophobicity below that which

  17. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    Multi-drug resistance to antibiotics represents a global health challenge that results in increased morbidity and mortality rates. The annual death-toll is >700.000 people world-wide, rising to ~10 million by 2050. New antibiotics are lacking, and few are under development as return on investment...... is considered poor compared to medicines for lifestyle diseases. According to the WHO we could be moving towards a post-antibiotic era in which previously treatable infections become fatal. Of special importance are multidrug resistant bacteria from the ESKAPE group (Enterococcus faecium, Staphylococcus aureus...... and toxicity by utilizing of the fruit fly Drosophila melanogaster as a whole animal model. This was carried out by testing of antimicrobial peptides targeting Gram-positive bacteria exemplified by the important human pathogen methicillin resistant S. aureus (MRSA). The peptide BP214 was developed from...

  18. [Heterogenous expression of antimicrobial peptides].

    Science.gov (United States)

    Song, Shanshan; Hu, Guobin; Dong, Xianzhi

    2009-12-01

    Antimicrobial peptides (AMPs), a class of short proteins with a broad spectrum of antibacterial activities, are isolated from a wide variety of animals, both vertebrates and invertebrates, and plants as well as from bacteria and fungi. They are a key component of the innate immune response in most multicellular organisms. Owing to their potent, broad-spectrum antibacterial activities and uneasy developing of drug resistance, these peptides are of great clinical significance. However, preparation of AMPs at a large scale is a severe challenge to the development of the commercial products. Undoubtedly, construction of high-level biological expression systems for the production of AMPs is the key in its clinical application process. Herein, we summarize the progress in researches on heterogenous expression of AMPs in prokaryotic expression systems and eukaryotic expression systems.

  19. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions

    DEFF Research Database (Denmark)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco

    2016-01-01

    . In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited...... for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions...... determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide...

  20. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    Science.gov (United States)

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes.