WorldWideScience

Sample records for lysosomes degrade intracytoplasmic

  1. Lysosome

    National Research Council Canada - National Science Library

    Ursula Matte BSc, PhD; Gabriela Pasqualim BSc, MSc

    2016-01-01

    Since Christian de Duve first described the lysosome in the 1950s, it has been generally presented as a membrane-bound compartment containing acid hydrolases that enables the cell to degrade molecules...

  2. Lysosome

    Directory of Open Access Journals (Sweden)

    Ursula Matte BSc, PhD

    2016-12-01

    Full Text Available Since Christian de Duve first described the lysosome in the 1950s, it has been generally presented as a membrane-bound compartment containing acid hydrolases that enables the cell to degrade molecules without being digested by autolysis. For those working on the field of lysosomal storage disorders, the lack of one such hydrolase would lead to undegraded or partially degraded substrate storage inside engorged organelles disturbing cellular function by yet poorly explored mechanisms. However, in recent years, a much more complex scenario of lysosomal function has emerged, beyond and above the cellular “digestive” system. Knowledge on how the impairment of this organelle affects cell functioning may shed light on signs and symptoms of lysosomal disorders and open new roads for therapy.

  3. Secondary Lysosomal Changes in Liver in Preclinical Drug Development

    Institute of Scientific and Technical Information of China (English)

    Vincent P. Meador; D. V. M.; Ph. D.; Diplomate ACVP

    2005-01-01

    @@ Lysosomes are intracytoplasmic membrane-bound organelles that function to degrade intracellular substances by enzymatic digestion. They occur normally in all cells, being especially prominent in phagocytic cells of the reticuloendothelial system.

  4. Rab2 promotes autophagic and endocytic lysosomal degradation.

    Science.gov (United States)

    Lőrincz, Péter; Tóth, Sarolta; Benkő, Péter; Lakatos, Zsolt; Boda, Attila; Glatz, Gábor; Zobel, Martina; Bisi, Sara; Hegedűs, Krisztina; Takáts, Szabolcs; Scita, Giorgio; Juhász, Gábor

    2017-07-03

    Rab7 promotes fusion of autophagosomes and late endosomes with lysosomes in yeast and metazoan cells, acting together with its effector, the tethering complex HOPS. Here we show that another small GTPase, Rab2, is also required for autophagosome and endosome maturation and proper lysosome function in Drosophila melanogaster We demonstrate that Rab2 binds to HOPS, and that its active, GTP-locked form associates with autolysosomes. Importantly, expression of active Rab2 promotes autolysosomal fusions unlike that of GTP-locked Rab7, suggesting that its amount is normally rate limiting. We also demonstrate that RAB2A is required for autophagosome clearance in human breast cancer cells. In conclusion, we identify Rab2 as a key factor for autophagic and endocytic cargo delivery to and degradation in lysosomes. © 2017 Lőrincz et al.

  5. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin.

    Science.gov (United States)

    Yang, Nai-Di; Tan, Shi-Hao; Ng, Shukie; Shi, Yin; Zhou, Jing; Tan, Kevin Shyong Wei; Wong, Wai-Shiu Fred; Shen, Han-Ming

    2014-11-28

    Artesunate (ART) is an anti-malaria drug that has been shown to exhibit anti-tumor activity, and functional lysosomes are reported to be required for ART-induced cancer cell death, whereas the underlying molecular mechanisms remain largely elusive. In this study, we aimed to elucidate the molecular mechanisms underlying ART-induced cell death. We first confirmed that ART induces apoptotic cell death in cancer cells. Interestingly, we found that ART preferably accumulates in the lysosomes and is able to activate lysosomal function via promotion of lysosomal V-ATPase assembly. Furthermore, we found that lysosomes function upstream of mitochondria in reactive oxygen species production. Importantly, we provided evidence showing that lysosomal iron is required for the lysosomal activation and mitochondrial reactive oxygen species production induced by ART. Finally, we showed that ART-induced cell death is mediated by the release of iron in the lysosomes, which results from the lysosomal degradation of ferritin, an iron storage protein. Meanwhile, overexpression of ferritin heavy chain significantly protected cells from ART-induced cell death. In addition, knockdown of nuclear receptor coactivator 4, the adaptor protein for ferritin degradation, was able to block ART-mediated ferritin degradation and rescue the ART-induced cell death. In summary, our study demonstrates that ART treatment activates lysosomal function and then promotes ferritin degradation, subsequently leading to the increase of lysosomal iron that is utilized by ART for its cytotoxic effect on cancer cells. Thus, our data reveal a new mechanistic action underlying ART-induced cell death in cancer cells.

  6. Mild MPP(+) exposure impairs autophagic degradation through a novel lysosomal acidity-independent mechanism.

    Science.gov (United States)

    Miyara, Masatsugu; Kotake, Yaichiro; Tokunaga, Wataru; Sanoh, Seigo; Ohta, Shigeru

    2016-10-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but its underlying cause remains unknown. Although recent studies using PD-related neurotoxin MPP(+) suggest autophagy involvement in the pathogenesis of PD, the effect of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of PD, remains largely unclear. We examined the effect of mild MPP(+) exposure (10 and 200 μM for 48 h), which induces a more slowly developing cell death, on autophagic processes and the mechanistic differences with acute MPP(+) toxicity (2.5 and 5 mM for 24 h). In SH-SY5Y cells, mild MPP(+) exposure predominantly inhibited autophagosome degradation, whereas acute MPP(+) exposure inhibited both autophagosome degradation and basal autophagy. Mild MPP(+) exposure reduced lysosomal hydrolase cathepsin D activity without changing lysosomal acidity, whereas acute exposure decreased lysosomal density. Lysosome biogenesis enhancers trehalose and rapamycin partially alleviated mild MPP(+) exposure induced impaired autophagosome degradation and cell death, but did not prevent the pathogenic response to acute MPP(+) exposure, suggesting irreversible lysosomal damage. We demonstrated impaired autophagic degradation by MPP(+) exposure and mechanistic differences between mild and acute MPP(+) toxicities. Mild MPP(+) toxicity impaired autophagosome degradation through novel lysosomal acidity-independent mechanisms. Sustained mild lysosomal damage may contribute to PD. We examined the effects of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of Parkinson's disease, in SH-SY5Y cells. This study demonstrated impaired autophagic degradation through a reduction in lysosomal cathepsin D activity without altering lysosomal acidity by mild MPP(+) exposure. Mechanistic differences between acute and mild MPP(+) toxicity were also observed. Sustained mild damage of lysosome may be an underlying cause

  7. Autophagy-lysosomal pathway is involved in lipid degradation in rat liver.

    Science.gov (United States)

    Skop, V; Cahová, M; Papáčková, Z; Páleníčková, E; Daňková, H; Baranowski, M; Zabielski, P; Zdychová, J; Zídková, J; Kazdová, L

    2012-01-01

    We present data supporting the hypothesis that the lysosomal-autophagy pathway is involved in the degradation of intracellular triacylglycerols in the liver. In primary hepatocytes cultivated in the absence of exogenous fatty acids (FFA), both inhibition of autophagy flux (asparagine) or lysosomal activity (chloroquine) decreased secretion of VLDL (very low density lipoproteins) and formation of FFA oxidative products while the stimulation of autophagy by rapamycine increased some of these parameters. Effect of rapamycine was completely abolished by inactivation of lysosomes. Similarly, when autophagic activity was influenced by cultivating the hepatocytes in "starving" (amino-acid poor medium) or "fed" (serum-supplemented medium) conditions, VLDL secretion and FFA oxidation mirrored the changes in autophagy being higher in starvation and lower in fed state. Autophagy inhibition as well as lysosomal inactivation depressed FFA and DAG (diacylglycerol) formation in liver slices in vitro. In vivo, intensity of lysosomal lipid degradation depends on the formation of autophagolysosomes, i.e. structures bringing the substrate for degradation and lysosomal enzymes into contact. We demonstrated that lysosomal lipase (LAL) activity in liver autophagolysosomal fraction was up-regulated in fasting and down-regulated in fed state together with the increased translocation of LAL and LAMP2 proteins from lysosomal pool to this fraction. Changes in autophagy intensity (LC3-II/LC3-I ratio) followed a similar pattern.

  8. Oxidant-induced autophagy and ferritin degradation contribute to epithelial–mesenchymal transition through lysosomal iron

    Science.gov (United States)

    Sioutas, Apostolos; Vainikka, Linda K; Kentson, Magnus; Dam-Larsen, Sören; Wennerström, Urban; Jacobson, Petra; Persson, Hans Lennart

    2017-01-01

    Purpose Transforming growth factor (TGF)-β1 triggers epithelial–mesenchymal transition (EMT) through autophagy, which is partly driven by reactive oxygen species (ROS). The aim of this study was to determine whether leaking lysosomes and enhanced degradation of H-ferritin could be involved in EMT and whether it could be possible to prevent EMT by iron chelation targeting of the lysosome. Materials and methods EMT, H-ferritin, and autophagy were evaluated in TGF-β1-stimulated A549 human lung epithelial cells cultured in vitro using Western blotting, with the additional morphological assessment of EMT. By using immunofluorescence and flow cytometry, lysosomes and ROS were assessed by acridine orange and 6-carboxy-2′,7′-dichlorodihydrofluorescein acetate assays, respectively. Results TGF-β1-stimulated cells demonstrated a loss of H-ferritin, which was prevented by the antioxidant N-acetyl-L-cysteine (NAC) and inhibitors of lysosomal degradation. TGF-β1 stimulation generated ROS and autophagosome formation and led to EMT, which was further promoted by the additional ROS-generating cytokine, tumor necrosis factor-α. Lysosomes of TGF-β1-stimulated cells were sensitized to oxidants but also completely protected by lysosomal loading with dextran-bound deferoxamine (DFO). Autophagy and EMT were prevented by NAC, DFO, and inhibitors of autophagy and lysosomal degradation. Conclusion The findings of this study support the role of enhanced autophagic degradation of H-ferritin as a mechanism for increasing the vulnerability of lysosomes to iron-driven oxidant injury that triggers further autophagy during EMT. This study proposes that lysosomal leakage is a novel pathway of TGF-β1-induced EMT that may be prevented by iron-chelating drugs that target the lysosome.

  9. Targeting Androgen Receptor by Lysosomal Degradation in Prostate Cancer

    Science.gov (United States)

    2014-09-01

    were done as described.13 Protein Sample Preparation and Mass Spectrometry Tandem Affinity Purification of FLAG-His-EWS-Fli-1- Interacting Proteins . Forty...incubated with Ni-NTA agarose (Qiagen), FLAG-His-EWS-Fli-1 and its interacting proteins were collected by centrifugation, washed three times with TN buffer...the lysosome fraction was loaded at 100x compared to the input. ■ RESULTS AND DISCUSSION Proteomic Analysis of the EWS-Fli-1- Interacting Proteins To

  10. uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV

    DEFF Research Database (Denmark)

    Kjøller, Lars; Engelholm, Lars H; Høyer-Hansen, Maria

    2004-01-01

    transmembrane glycoprotein urokinase plasminogen activator receptor-associated protein (uPARAP/endo180) directs collagen IV for lysosomal delivery and degradation. In wild-type fibroblasts, fluorescently labeled collagen IV was first internalized into vesicular structures with diffuse fluorescence eventually...... appearing uniformly within the wild-type cells after longer incubation times. In these cells, some collagen-containing vesicles were identified as lysosomes by staining for LAMP-1. In contrast, collagen IV remained extracellular and associated with fiber-like structures on uPARAP/endo180-deficient...... fibroblasts. Blocking lysosomal cysteine proteases with the inhibitor E64d resulted in strong accumulation of collagen IV in lysosomes in wild-type cells, but only very weak intracellular fluorescence accumulation in uPARAP/endo180-deficient fibroblasts. We conclude that uPARAP/endo180 is critical...

  11. Chaperone-Mediated Autophagy Targets IFNAR1 for Lysosomal Degradation in Free Fatty Acid Treated HCV Cell Culture.

    Directory of Open Access Journals (Sweden)

    Ramazan Kurt

    Full Text Available Hepatic steatosis is a risk factor for both liver disease progression and an impaired response to interferon alpha (IFN-α-based combination therapy in chronic hepatitis C virus (HCV infection. Previously, we reported that free fatty acid (FFA-treated HCV cell culture induces hepatocellular steatosis and impairs the expression of interferon alpha receptor-1 (IFNAR1, which is why the antiviral activity of IFN-α against HCV is impaired.To investigate the molecular mechanism by which IFNAR1 expression is impaired in HCV cell culture with or without free fatty acid-treatment.HCV-infected Huh 7.5 cells were cultured with or without a mixture of saturated (palmitate and unsaturated (oleate long-chain free fatty acids (FFA. Intracytoplasmic fat accumulation in HCV-infected culture was visualized by oil red staining. Clearance of HCV in FFA cell culture treated with type I IFN (IFN-α and Type III IFN (IFN-λ was determined by Renilla luciferase activity, and the expression of HCV core was determined by immunostaining. Activation of Jak-Stat signaling in the FFA-treated HCV culture by IFN-α alone and IFN-λ alone was examined by Western blot analysis and confocal microscopy. Lysosomal degradation of IFNAR1 by chaperone-mediated autophagy (CMA in the FFA-treated HCV cell culture model was investigated.FFA treatment induced dose-dependent hepatocellular steatosis and lipid droplet accumulation in HCV-infected Huh-7.5 cells. FFA treatment of infected culture increased HCV replication in a concentration-dependent manner. Intracellular lipid accumulation led to reduced Stat phosphorylation and nuclear translocation, causing an impaired IFN-α antiviral response and HCV clearance. Type III IFN (IFN-λ, which binds to a separate receptor, induces Stat phosphorylation, and nuclear translocation as well as antiviral clearance in FFA-treated HCV cell culture. We show here that the HCV-induced autophagy response is increased in FFA-treated cell culture

  12. WNK4 enhances the degradation of NCC through a sortilin-mediated lysosomal pathway.

    Science.gov (United States)

    Zhou, Bo; Zhuang, Jieqiu; Gu, Dingying; Wang, Hua; Cebotaru, Liudmila; Guggino, William B; Cai, Hui

    2010-01-01

    WNK kinase is a serine/threonine kinase that plays an important role in electrolyte homeostasis. WNK4 significantly inhibits the surface expression of the sodium chloride co-transporter (NCC) by enhancing the degradation of NCC through a lysosomal pathway, but the mechanisms underlying this trafficking are unknown. Here, we investigated the effect of the lysosomal targeting receptor sortilin on NCC expression and degradation. In Cos-7 cells, we observed that the presence of WNK4 reduced the steady-state amount of NCC by approximately half. Co-transfection with truncated sortilin (a dominant negative mutant) prevented this WNK4-induced reduction in NCC. NCC immunoprecipitated with both wild-type sortilin and, to a lesser extent, truncated sortilin. Immunostaining revealed that WNK4 increased the co-localization of NCC with the lysosomal marker cathepsin D, and NCC co-localized with wild-type sortilin, truncated sortilin, and WNK4 in the perinuclear region. These findings suggest that WNK4 promotes NCC targeting to the lysosome for degradation via a mechanism involving sortilin.

  13. Lysine suppresses protein degradation through autophagic-lysosomal system in C2C12 myotubes.

    Science.gov (United States)

    Sato, Tomonori; Ito, Yoshiaki; Nedachi, Taku; Nagasawa, Takashi

    2014-06-01

    Muscle mass is determined between protein synthesis and protein degradation. Reduction of muscle mass leads to bedridden condition and attenuation of resistance to diseases. Moreover, bedridden condition leads to additional muscle loss due to disuse muscle atrophy. In our previous study (Sato et al. 2013), we showed that administered lysine (Lys), one of essential amino acid, suppressed protein degradation in skeletal muscle. In this study, we investigated that the mechanism of the suppressive effects of Lys on skeletal muscle proteolysis in C2C12 cell line. C2C12 myotubes were incubated in the serum-free medium containing 10 mM Lys or 20 mM Lys, and myofibrillar protein degradation was determined by the rates of 3-methylhistidine (MeHis) release from the cells. The mammalian target of rapamycin (mTOR) activity from the phosphorylation levels of p70-ribosormal protein S6 kinase 1 and eIF4E-binding protein 1 and the autophagic-lysosomal system activity from the ratio of LC3-II/I in C2C12 myotubes stimulated by 10 mM Lys for 0-3 h were measured. The rates of MeHis release were markedly reduced by addition of Lys. The autophagic-lysosomal system activity was inhibited upon 30 min of Lys supplementation. The activity of mTOR was significantly increased upon 30 min of Lys supplementation. The suppressive effect of Lys on the proteolysis by the autophagic-lysosomal system was maintained partially when mTOR activity was inhibited by 100 nM rapamycin, suggesting that some regulator other than mTOR signaling, for example, Akt, might also suppress the autophagic-lysosomal system. From these results, we suggested that Lys suppressed the activity of the autophagic-lysosomal system in part through activation of mTOR and reduced myofibrillar protein degradation in C2C12 myotubes.

  14. Elimination of paternal mitochondria through the lysosomal degradation pathway in C.elegans

    Institute of Scientific and Technical Information of China (English)

    Qinghua Zhou; Haimin Li; Ding Xue

    2011-01-01

    In mammals,the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal,despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization.The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown.We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans,and that the lysosomal pathway actively participates in this process.Molecular and cell biological analyses indicate that in wild-type animals paternal mitoehondria and mtDNA are destroyed within two hours after fertilization.In animals with compromised lysosomes,paternal mitochondria persist until late embryonic stages.Therefore,the lysosomal pathway plays an important role in degrading paternal mitochondria introduced into the oocyte during fertilization.Our study indicates that C.elegans is an excellent animal model for understanding and dissecting this conserved biological process critical for animal development and reproduction.

  15. Evidence for lysosomal exocytosis and release of aggrecan-degrading hydrolases from hypertrophic chondrocytes, in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Edward R. Bastow

    2012-02-01

    The abundant proteoglycan, aggrecan, is resorbed from growth plate cartilage during endochondral bone ossification, yet mice with genetically-ablated aggrecan-degrading activity have no defects in bone formation. To account for this apparent anomaly, we propose that lysosomal hydrolases degrade extracellular, hyaluronan-bound aggrecan aggregates in growth plate cartilage, and that lysosomal hydrolases are released from hypertrophic chondrocytes into growth plate cartilage via Ca2+-dependent lysosomal exocytosis. In this study we confirm that hypertrophic chondrocytes release hydrolases via lysosomal exocytosis in vitro and we show in vivo evidence for lysosomal exocytosis in hypertrophic chondrocytes during skeletal development. We show that lysosome-associated membrane protein 1 (LAMP1 is detected at the cell surface following in vitro treatment of epiphyseal chondrocytes with the calcium ionophore, ionomycin. Furthermore, we show that in addition to the lysosomal exocytosis markers, cathepsin D and β-hexosaminidase, ionomycin induces release of aggrecan- and hyaluronan-degrading activity from cultured epiphyseal chondrocytes. We identify VAMP-8 and VAMP7 as v-SNARE proteins with potential roles in lysosomal exocytosis in hypertrophic chondrocytes, based on their colocalisation with LAMP1 at the cell surface in secondary ossification centers in mouse tibiae. We propose that resorbing growth plate cartilage involves release of destructive hydrolases from hypertrophic chondrocytes, via lysosomal exocytosis.

  16. uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV

    DEFF Research Database (Denmark)

    Kjøller, Lars; Engelholm, Lars H; Høyer-Hansen, Maria

    2004-01-01

    transmembrane glycoprotein urokinase plasminogen activator receptor-associated protein (uPARAP/endo180) directs collagen IV for lysosomal delivery and degradation. In wild-type fibroblasts, fluorescently labeled collagen IV was first internalized into vesicular structures with diffuse fluorescence eventually......Collagen turnover is crucial for tissue homeostasis and remodeling and pathological processes such as cancer invasion, but the underlying molecular mechanisms are poorly understood. A major pathway appears to be internalization and degradation by fibroblasts. We now show that the endocytic...... appearing uniformly within the wild-type cells after longer incubation times. In these cells, some collagen-containing vesicles were identified as lysosomes by staining for LAMP-1. In contrast, collagen IV remained extracellular and associated with fiber-like structures on uPARAP/endo180-deficient...

  17. Constitutively internalized dopamine transporter is targeted to late endosomes and lysosomal degradation in heterologous cell lines and dopaminergic neurons

    DEFF Research Database (Denmark)

    Eriksen, Jacob; Madsen, Kenneth; Vægter, Christian Bjerggaard;

    (leupeptin, chloroquine, or ammonium chloride) increased the amount of transporter accumulated intracellularly over time, suggesting that constitutively endocytosed transporter was targeted to lysosomal degradation. This was further supported by expression of Tac-DAT in the immortalized dopaminergic cell...

  18. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The lysosomal degradation pathway.

    Science.gov (United States)

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S; Ambudkar, Suresh V

    2015-10-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7±1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1±0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp- expressing cancer cells towards chemotherapeutic drugs.

  19. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The Lysosomal Degradation Pathway

    Science.gov (United States)

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S.; Ambudkar, Suresh V.

    2015-01-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7 ± 1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1± 0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp expressing cancer cells towards chemotherapeutic drugs. PMID:26057472

  20. Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation

    Science.gov (United States)

    Seydoux, Emilie; Rothen-Rutishauser, Barbara; Nita, Izabela M; Balog, Sandor; Gazdhar, Amiq; Stumbles, Philip A; Petri-Fink, Alke; Blank, Fabian; von Garnier, Christophe

    2014-01-01

    Introduction Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. Methods Bone marrow–derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4+ T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. Results The frequency of PS particle–positive CD11c+/CD11b+ BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4+ T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. Conclusion These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4+ T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the

  1. Sulindac metabolites induce proteosomal and lysosomal degradation of the epidermal growth factor receptor.

    Science.gov (United States)

    Pangburn, Heather A; Ahnen, Dennis J; Rice, Pamela L

    2010-04-01

    The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. In response to ligand, EGFR is internalized and degraded by the ubiquitin-proteasome/lysosome pathway. We previously reported that metabolites of the nonsteroidal anti-inflammatory drug sulindac downregulate the expression of EGFR and inhibit basal and EGF-induced EGFR signaling through extracellular signal-regulated kinase 1/2. We now have evaluated the mechanisms of sulindac metabolite-induced downregulation of EGFR. EGF-induced downregulation of EGFR occurs within 10 minutes and lasts for 24 hours. By contrast, downregulation of EGFR by sulindac sulfide and sulindac sulfone was first evident at 4 and 24 hours, respectively, with maximal downregulation at 72 hours. Pretreatment with either the lysosomal inhibitor chloroquine or the proteosomal inhibitor MG132 blocked sulindac metabolite-induced downregulation of EGFR. Sulindac metabolites also increased the ubiquitination of EGFR. Whereas sulindac metabolites inhibited phosphorylation of EGFR pY1068, they increased phosphorylation of EGFR pY1045, the docking site where c-Cbl binds, thereby enabling receptor ubiquitination and degradation. Immunofluorescence analysis of EGF and EGFR distribution confirmed the biochemical observations that sulindac metabolites alter EGFR localization and EGFR internalization in a manner similar to that seen with EGF treatment. Expression of ErbB family members HER2 and HER3 was also downregulated by sulindac metabolites. We conclude that downregulation of EGFR expression by sulindac metabolites is mediated via lysosomal and proteosomal degradation that may be due to drug-induced phosphorylation at pY1045 with resultant ubiquitination of EGFR. Thus, sulindac metabolite-induced downregulation of EGFR seems to be mediated through mechanism(s) similar, at least in part, to those involved in EGF-induced downregulation of EGFR.

  2. Unfolded protein response activates glycogen synthase kinase-3 via selective lysosomal degradation.

    Science.gov (United States)

    Nijholt, Diana A T; Nölle, Anna; van Haastert, Elise S; Edelijn, Hessel; Toonen, Ruud F; Hoozemans, Jeroen J M; Scheper, Wiep

    2013-07-01

    The unfolded protein response (UPR) is a stress response that is activated upon disturbed homeostasis in the endoplasmic reticulum. In Alzheimer's disease, as well as in other tauopathies, the UPR is activated in neurons that contain early tau pathology. A recent genome-wide association study identified genetic variation in a UPR transducer as a risk factor for tauopathy, supporting a functional connection between UPR activation and tau pathology. Here we show that UPR activation increases the activity of the major tau kinase glycogen synthase kinase (GSK)-3 in vitro via a selective removal of inactive GSK-3 phosphorylated at Ser(21/9). We demonstrate that this is mediated by the autophagy/lysosomal pathway. In brain tissue from patients with different tauopathies, lysosomal accumulations of pSer(21/9) GSK-3 are found in neurons with markers for UPR activation. Our data indicate that UPR activation increases the activity of GSK-3 by a novel mechanism, the lysosomal degradation of the inactive pSer(21/9) GSK-3. This may provide a functional explanation for the close association between UPR activation and early tau pathology in neurodegenerative diseases.

  3. LINGO-1 promotes lysosomal degradation of amyloid-β protein precursor.

    Science.gov (United States)

    de Laat, Rian; Meabon, James S; Wiley, Jesse C; Hudson, Mark P; Montine, Thomas J; Bothwell, Mark

    2015-01-01

    Sequential proteolytic cleavages of amyloid-β protein precursor (AβPP) by β-secretase and γ-secretase generate amyloid β (Aβ) peptides, which are thought to contribute to Alzheimer's disease (AD). Much of this processing occurs in endosomes following endocytosis of AβPP from the plasma membrane. However, this pathogenic mode of processing AβPP may occur in competition with lysosomal degradation of AβPP, a common fate of membrane proteins trafficking through the endosomal system. Following up on published reports that LINGO-1 binds and promotes the amyloidogenic processing of AβPP we have examined the consequences of LINGO-1/AβPP interactions. We report that LINGO-1 and its paralogs, LINGO-2 and LINGO-3, decrease processing of AβPP in the amyloidogenic pathway by promoting lysosomal degradation of AβPP. We also report that LINGO-1 levels are reduced in AD brain, representing a possible pathogenic mechanism stimulating the generation of Aβ peptides in AD.

  4. LINGO-1 promotes lysosomal degradation of amyloid-β protein precursor

    Directory of Open Access Journals (Sweden)

    Rian de Laat

    2015-03-01

    Full Text Available Sequential proteolytic cleavages of amyloid-β protein precursor (AβPP by β-secretase and γ-secretase generate amyloid β (Aβ peptides, which are thought to contribute to Alzheimer's disease (AD. Much of this processing occurs in endosomes following endocytosis of AβPP from the plasma membrane. However, this pathogenic mode of processing AβPP may occur in competition with lysosomal degradation of AβPP, a common fate of membrane proteins trafficking through the endosomal system. Following up on published reports that LINGO-1 binds and promotes the amyloidogenic processing of AβPP we have examined the consequences of LINGO-1/AβPP interactions. We report that LINGO-1 and its paralogs, LINGO-2 and LINGO-3, decrease processing of AβPP in the amyloidogenic pathway by promoting lysosomal degradation of AβPP. We also report that LINGO-1 levels are reduced in AD brain, representing a possible pathogenic mechanism stimulating the generation of Aβ peptides in AD.

  5. Debra, a protein mediating lysosomal degradation, is required for long-term memory in Drosophila.

    Science.gov (United States)

    Kottler, Benjamin; Lampin-Saint-Amaux, Aurélie; Comas, Daniel; Preat, Thomas; Goguel, Valérie

    2011-01-01

    A central goal of neuroscience is to understand how neural circuits encode memory and guide behavior changes. Many of the molecular mechanisms underlying memory are conserved from flies to mammals, and Drosophila has been used extensively to study memory processes. To identify new genes involved in long-term memory, we screened Drosophila enhancer-trap P(Gal4) lines showing Gal4 expression in the mushroom bodies, a specialized brain structure involved in olfactory memory. This screening led to the isolation of a memory mutant that carries a P-element insertion in the debra locus. debra encodes a protein involved in the Hedgehog signaling pathway as a mediator of protein degradation by the lysosome. To study debra's role in memory, we achieved debra overexpression, as well as debra silencing mediated by RNA interference. Experiments conducted with a conditional driver that allowed us to specifically restrict transgene expression in the adult mushroom bodies led to a long-term memory defect. Several conclusions can be drawn from these results: i) debra levels must be precisely regulated to support normal long-term memory, ii) the role of debra in this process is physiological rather than developmental, and iii) debra is specifically required for long-term memory, as it is dispensable for earlier memory phases. Drosophila long-term memory is the only long-lasting memory phase whose formation requires de novo protein synthesis, a process underlying synaptic plasticity. It has been shown in several organisms that regulation of proteins at synapses occurs not only at translation level of but also via protein degradation, acting in remodeling synapses. Our work gives further support to a role of protein degradation in long-term memory, and suggests that the lysosome plays a role in this process.

  6. Preubiquitinated chimeric ErbB2 is constitutively endocytosed and subsequently degraded in lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Vuong, Tram Thu [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Berger, Christian [Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway); Bertelsen, Vibeke; Rødland, Marianne Skeie [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Stang, Espen [Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway); Madshus, Inger Helene, E-mail: i.h.madshus@medisin.uio.no [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway)

    2013-02-01

    The oncoprotein ErbB2 is endocytosis-deficient, probably due to its interaction with Heat shock protein 90. We previously demonstrated that clathrin-dependent endocytosis of ErbB2 is induced upon incubation of cells with Ansamycin derivatives, such as geldanamycin and its derivative 17-AAG. Furthermore, we have previously demonstrated that a preubiquitinated chimeric EGFR (EGFR-Ub{sub 4}) is constitutively endocytosed in a clathrin-dependent manner. We now demonstrate that also an ErbB2-Ub{sub 4} chimera is endocytosed constitutively and clathrin-dependently. Upon expression, the ErbB2-Ub{sub 4} was further ubiquitinated, and by Western blotting, we demonstrated the formation of both Lys48-linked and Lys63-linked polyubiquitin chains. ErbB2-Ub{sub 4} was constitutively internalized and eventually sorted to late endosomes and lysosomes where the fusion protein was degraded. ErbB2-Ub{sub 4} was not cleaved prior to internalization. Interestingly, over-expression of Ubiquitin Interaction Motif-containing dominant negative fragments of the clathrin adaptor proteins epsin1 and Eps15 negatively affected endocytosis of ErbB2. Altogether, this argues that ubiquitination is sufficient to induce clathrin-mediated endocytosis and lysosomal degradation of the otherwise plasma membrane localized ErbB2. Also, it appears that C-terminal cleavage is not required for endocytosis. -- Highlights: ► A chimera containing ErbB2 and a tetra-Ubiquitin chain internalizes constitutively. ► Receptor fragmentation is not required for endocytosis of ErbB2. ► Ubiquitination is sufficient to induce endocytosis and degradation of ErbB2. ► ErbB2-Ub4 is internalized clathrin-dependently.

  7. Debra, a protein mediating lysosomal degradation, is required for long-term memory in Drosophila.

    Directory of Open Access Journals (Sweden)

    Benjamin Kottler

    Full Text Available A central goal of neuroscience is to understand how neural circuits encode memory and guide behavior changes. Many of the molecular mechanisms underlying memory are conserved from flies to mammals, and Drosophila has been used extensively to study memory processes. To identify new genes involved in long-term memory, we screened Drosophila enhancer-trap P(Gal4 lines showing Gal4 expression in the mushroom bodies, a specialized brain structure involved in olfactory memory. This screening led to the isolation of a memory mutant that carries a P-element insertion in the debra locus. debra encodes a protein involved in the Hedgehog signaling pathway as a mediator of protein degradation by the lysosome. To study debra's role in memory, we achieved debra overexpression, as well as debra silencing mediated by RNA interference. Experiments conducted with a conditional driver that allowed us to specifically restrict transgene expression in the adult mushroom bodies led to a long-term memory defect. Several conclusions can be drawn from these results: i debra levels must be precisely regulated to support normal long-term memory, ii the role of debra in this process is physiological rather than developmental, and iii debra is specifically required for long-term memory, as it is dispensable for earlier memory phases. Drosophila long-term memory is the only long-lasting memory phase whose formation requires de novo protein synthesis, a process underlying synaptic plasticity. It has been shown in several organisms that regulation of proteins at synapses occurs not only at translation level of but also via protein degradation, acting in remodeling synapses. Our work gives further support to a role of protein degradation in long-term memory, and suggests that the lysosome plays a role in this process.

  8. Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation

    Directory of Open Access Journals (Sweden)

    Seydoux E

    2014-08-01

    Full Text Available Emilie Seydoux,1,2 Barbara Rothen-Rutishauser,1,3 Izabela M Nita,1 Sandor Balog,3 Amiq Gazdhar,1 Philip A Stumbles,4,5 Alke Petri-Fink,3,6 Fabian Blank,1,* Christophe von Garnier1,*1Department of Respiratory Medicine, Inselspital, Bern University Hospital, Department of Clinical Research, University of Bern, 2Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; 3Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland; 4School of Veterinary and Life Sciences, Molecular and Biomedical Sciences, Murdoch University, Perth, WA, Australia; 5Telethon Kids Institute, Perth, WA, Australia; 6Department of Chemistry, University of Fribourg, Fribourg, Switzerland*These authors contributed equally to the manuscriptIntroduction: Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. Methods: Bone marrow–derived DCs (BMDCs were exposed in vitro to 20 or 1,000 nm polystyrene (PS particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4+ T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. Results: The frequency of PS particle–positive CD11c+/CD11b+ BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity

  9. Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein.

    Science.gov (United States)

    Parr, Callum; Carzaniga, Raffaela; Gentleman, Steve M; Van Leuven, Fred; Walter, Jochen; Sastre, Magdalena

    2012-11-01

    Alzheimer's disease (AD) has been associated with altered activity of glycogen synthase kinase 3 (GSK3) isozymes, which are proposed to contribute to both neurofibrillary tangles and amyloid plaque formation. However, the molecular basis by which GSK3 affects the formation of Aβ remains unknown. Our aim was to identify the underlying mechanisms of GSK3-dependent effects on the processing of amyloid precursor protein (APP). For this purpose, N2a cells stably expressing APP carrying the Swedish mutation were treated with specific GSK3 inhibitors or transfected with GSK3α/β short interfering RNA. We show that inhibition of GSK3 leads to decreased expression of APP by enhancing its degradation via an increase in the number of lysosomes. This induction of the lysosomal/autophagy pathway was associated with nuclear translocation of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis. Our data indicate that GSK3 inhibition reduces Aβ through an increase of the degradation of APP and its carboxy-terminal fragment (CTF) by activation of the lysosomal/autophagy pathway. These results suggest that an increased propensity toward autophagic/lysosomal alterations in AD patients could have consequences for neuronal function.

  10. Ouabain-induced internalization and lysosomal degradation of the Na+/K+-ATPase.

    Science.gov (United States)

    Cherniavsky-Lev, Marina; Golani, Ofra; Karlish, Steven J D; Garty, Haim

    2014-01-10

    Internalization of the Na(+)/K(+)-ATPase (the Na(+) pump) has been studied in the human lung carcinoma cell line H1299 that expresses YFP-tagged α1 from its normal genomic localization. Both real-time imaging and surface biotinylation have demonstrated internalization of α1 induced by ≥100 nm ouabain which occurs in a time scale of hours. Unlike previous studies in other systems, the ouabain-induced internalization was insensitive to Src or PI3K inhibitors. Accumulation of α1 in the cells could be augmented by inhibition of lysosomal degradation but not by proteosomal inhibitors. In agreement, the internalized α1 could be colocalized with the lysosomal marker LAMP1 but not with Golgi or nuclear markers. In principle, internalization could be triggered by a conformational change of the ouabain-bound Na(+)/K(+)-ATPase molecule or more generally by the disruption of cation homeostasis (Na(+), K(+), Ca(2+)) due to the partial inhibition of active Na(+) and K(+) transport. Overexpression of ouabain-insensitive rat α1 failed to inhibit internalization of human α1 expressed in the same cells. In addition, incubating cells in a K(+)-free medium did not induce internalization of the pump or affect the response to ouabain. Thus, internalization is not the result of changes in the cellular cation balance but is likely to be triggered by a conformational change of the protein itself. In physiological conditions, internalization may serve to eliminate pumps that have been blocked by endogenous ouabain or other cardiac glycosides. This mechanism may be required due to the very slow dissociation of the ouabain·Na(+)/K(+)-ATPase complex.

  11. CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3.

    Science.gov (United States)

    Seo, Jinho; Lee, Eun-Woo; Sung, Hyerim; Seong, Daehyeon; Dondelinger, Yves; Shin, Jihye; Jeong, Manhyung; Lee, Hae-Kyung; Kim, Jung-Hoon; Han, Su Yeon; Lee, Cheolju; Seong, Je Kyung; Vandenabeele, Peter; Song, Jaewhan

    2016-03-01

    Receptor-interacting protein kinase 3 (RIPK3) functions as a key regulator of necroptosis. Here, we report that the RIPK3 expression level is negatively regulated by CHIP (carboxyl terminus of Hsp70-interacting protein; also known as STUB1) E3 ligase-mediated ubiquitylation. Chip(-/-) mouse embryonic fibroblasts and CHIP-depleted L929 and HT-29 cells exhibited higher levels of RIPK3 expression, resulting in increased sensitivity to necroptosis induced by TNF (also known as TNFα). These phenomena are due to the CHIP-mediated ubiquitylation of RIPK3, which leads to its lysosomal degradation. Interestingly, RIPK1 expression is also negatively regulated by CHIP-mediated ubiquitylation, validating the major role of CHIP in necrosome formation and sensitivity to TNF-mediated necroptosis. Chip(-/-) mice (C57BL/6) exhibit inflammation in the thymus and massive cell death and disintegration in the small intestinal tract, and die within a few weeks after birth. These phenotypes are rescued by crossing with Ripk3(-/-) mice. These results imply that CHIP is a bona fide negative regulator of the RIPK1-RIPK3 necrosome formation leading to desensitization of TNF-mediated necroptosis.

  12. Cellular Anti-Melanogenic Effects of a Euryale ferox Seed Extract Ethyl Acetate Fraction via the Lysosomal Degradation Machinery

    Directory of Open Access Journals (Sweden)

    Seung-Hwa Baek

    2015-04-01

    Full Text Available The aim of this study was to investigate the effect of ethyl acetate fraction of Euryale ferox seed extracts (Efse-EA on melanogenesis in immortalized mouse melanocyte cell line, melan-a. Efse-EA showed strong dose-dependent mushroom tyrosinase inhibitory activity. Treatment of melan-a cells with 30 μg/mL Efse-EA produced strong inhibition of cellular tyrosinase and melanin synthesis. Efse-EA significantly reduced the levels of melanogenesis-related proteins, such as tyrosinase, tyrosinase-related proteins 1 and 2, and microphthalmia-associated transcription factor. Because Efse-EA treatment reduced tyrosinase protein levels without changing its mRNA expression, we investigated whether this decrease was related to proteasomal or lysosomal degradation of tyrosinase. We found that chloroquine, a lysosomal proteolysis inhibitor, almost completely abolished both the down-regulation of tyrosinase and the inhibition of melanin synthesis induced by Efse-EA. These results suggested that Efse-EA may contribute to the inhibition of melanogenesis by altering lysosomal degradation of tyrosinase, and that this extract may provide a new cosmetic skin-whitening agent.

  13. Cellular Anti-Melanogenic Effects of a Euryale ferox Seed Extract Ethyl Acetate Fraction via the Lysosomal Degradation Machinery.

    Science.gov (United States)

    Baek, Seung-Hwa; Nam, In-Jeong; Kwak, Hyeong Seob; Kim, Ki-Chan; Lee, Sang-Han

    2015-04-23

    The aim of this study was to investigate the effect of ethyl acetate fraction of Euryale ferox seed extracts (Efse-EA) on melanogenesis in immortalized mouse melanocyte cell line, melan-a. Efse-EA showed strong dose-dependent mushroom tyrosinase inhibitory activity. Treatment of melan-a cells with 30 μg/mL Efse-EA produced strong inhibition of cellular tyrosinase and melanin synthesis. Efse-EA significantly reduced the levels of melanogenesis-related proteins, such as tyrosinase, tyrosinase-related proteins 1 and 2, and microphthalmia-associated transcription factor. Because Efse-EA treatment reduced tyrosinase protein levels without changing its mRNA expression, we investigated whether this decrease was related to proteasomal or lysosomal degradation of tyrosinase. We found that chloroquine, a lysosomal proteolysis inhibitor, almost completely abolished both the down-regulation of tyrosinase and the inhibition of melanin synthesis induced by Efse-EA. These results suggested that Efse-EA may contribute to the inhibition of melanogenesis by altering lysosomal degradation of tyrosinase, and that this extract may provide a new cosmetic skin-whitening agent.

  14. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation.

    Science.gov (United States)

    Fielding, Ceri A; Aicheler, Rebecca; Stanton, Richard J; Wang, Eddie C Y; Han, Song; Seirafian, Sepehr; Davies, James; McSharry, Brian P; Weekes, Michael P; Antrobus, P Robin; Prod'homme, Virginie; Blanchet, Fabien P; Sugrue, Daniel; Cuff, Simone; Roberts, Dawn; Davison, Andrew J; Lehner, Paul J; Wilkinson, Gavin W G; Tomasec, Peter

    2014-05-01

    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1-6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA

  15. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation.

    Directory of Open Access Journals (Sweden)

    Ceri A Fielding

    2014-05-01

    Full Text Available NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC A andB, and UL16-binding proteins (ULBP1-6 induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV have aided both the identification and characterization of NKG2D ligands (NKG2DLs. HCMV immediate early (IE gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US

  16. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation.

    Directory of Open Access Journals (Sweden)

    Ceri A Fielding

    2014-05-01

    Full Text Available NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC A andB, and UL16-binding proteins (ULBP1-6 induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV have aided both the identification and characterization of NKG2D ligands (NKG2DLs. HCMV immediate early (IE gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US

  17. Intracytoplasmic sperm injection

    Science.gov (United States)

    Intracytoplasmic sperm injection, or ICSI, is a form of in vitro fertilization in which fertilization occurs outside of the ... laboratory dish. Within a few hours, a single sperm is injected through a fine needle into the ...

  18. The LXR-IDOL axis defines a clathrin-, caveolae-, and dynamin-independent endocytic route for LDLR internalization and lysosomal degradation[S

    Science.gov (United States)

    Sorrentino, Vincenzo; Nelson, Jessica K.; Maspero, Elena; Marques, André R. A.; Scheer, Lilith; Polo, Simona; Zelcer, Noam

    2013-01-01

    Low density lipoprotein (LDL) cholesterol is taken up into cells via clathrin-mediated endocytosis of the LDL receptor (LDLR). Following dissociation of the LDLR-LDL complex, LDL is directed to lysosomes whereas the LDLR recycles to the plasma membrane. Activation of the sterol-sensing nuclear receptors liver X receptors (LXRs) enhances degradation of the LDLR. This depends on the LXR target gene inducible degrader of the LDLR (IDOL), an E3-ubiquitin ligase that promotes ubiquitylation and lysosomal degradation of the LDLR. How ubiquitylation of the LDLR by IDOL controls its endocytic trafficking is currently unknown. Using genetic- and pharmacological-based approaches coupled to functional assessment of LDL uptake, we show that the LXR-IDOL axis targets a LDLR pool present in lipid rafts. IDOL-dependent internalization of the LDLR is independent of clathrin, caveolin, macroautophagy, and dynamin. Rather, it depends on the endocytic protein epsin. Consistent with LDLR ubiquitylation acting as a sorting signal, degradation of the receptor can be blocked by perturbing the endosomal sorting complex required for transport (ESCRT) or by USP8, a deubiquitylase implicated in sorting ubiquitylated cargo to multivesicular bodies. In summary, we provide evidence for the existence of an LXR-IDOL-mediated internalization pathway for the LDLR that is distinct from that used for lipoprotein uptake. PMID:23733886

  19. Lysosome Biogenesis and Autophagy

    NARCIS (Netherlands)

    Reggiori, Fulvio; Klumperman, Judith|info:eu-repo/dai/nl/075097273

    2016-01-01

    Lysosomes degrade biological components acquired by endocytosis, the major cellular pathway for internalization of extracellular material, and macroautophagy. This chapter presents an overview of these two major degradative intracellular pathways, and highlights the emerging cross talks between

  20. The phylogeny and evolution of deoxyribonuclease II: An enzyme essential for lysosomal DNA degradation

    OpenAIRE

    Shpak, Max; Kugelman, Jeffrey R.; Varela-Ramirez, Armando; Aguilera, Renato J.

    2007-01-01

    Deoxyribonuclease II (DNase II) is an endonuclease with optimal activity at low pH, localized within the lysosomes of higher eukaryotes. The origin of this enzyme remains in dispute, and its phylogenetic distribution leaves many questions about its subsequent evolutionary history open. Earlier studies have documented its presence in various metazoans, as well as in Dictyostelium, Trichomonas and, anomalously, a single genus of bacteria (Burkholderia). This study makes use of searches of the g...

  1. Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells.

    Science.gov (United States)

    Bomberger, Jennifer M; Coutermarsh, Bonita A; Barnaby, Roxanna L; Stanton, Bruce A

    2012-05-18

    Arsenic exposure significantly increases respiratory bacterial infections and reduces the ability of the innate immune system to eliminate bacterial infections. Recently, we observed in the gill of killifish, an environmental model organism, that arsenic exposure induced the ubiquitinylation and degradation of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that is essential for the mucociliary clearance of respiratory pathogens in humans. Accordingly, in this study, we tested the hypothesis that low dose arsenic exposure reduces the abundance and function of CFTR in human airway epithelial cells. Arsenic induced a time- and dose-dependent increase in multiubiquitinylated CFTR, which led to its lysosomal degradation, and a decrease in CFTR-mediated chloride secretion. Although arsenic had no effect on the abundance or activity of USP10, a deubiquitinylating enzyme, siRNA-mediated knockdown of c-Cbl, an E3 ubiquitin ligase, abolished the arsenic-stimulated degradation of CFTR. Arsenic enhanced the degradation of CFTR by increasing phosphorylated c-Cbl, which increased its interaction with CFTR, and subsequent ubiquitinylation of CFTR. Because epidemiological studies have shown that arsenic increases the incidence of respiratory infections, this study suggests that one potential mechanism of this effect involves arsenic-induced ubiquitinylation and degradation of CFTR, which decreases chloride secretion and airway surface liquid volume, effects that would be proposed to reduce mucociliary clearance of respiratory pathogens.

  2. The serotonin transporter undergoes constitutive internalization and is primarily sorted to late endosomes and lysosomal degradation

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Troels; Bay, Tina; Eriksen, Jacob

    2014-01-01

    The serotonin transporter (SERT) plays a critical role in regulating serotonin signaling by mediating reuptake of serotonin from the extracellular space. The molecular and cellular mechanisms controlling SERT levels in the membrane remain poorly understood. To study trafficking of surface resident....... Furthermore, internalized SERT co-localized with the lysosomal marker LysoTracker and not with transferrin. The sorting pattern was further confirmed by visualizing internalization of SERT using the fluorescent cocaine analogue JHC1-64, and by reversible and pulse chase biotinylation assays showing evidence...

  3. BECN1/Beclin 1 sorts cell-surface APP/amyloid β precursor protein for lysosomal degradation.

    Science.gov (United States)

    Swaminathan, Gayathri; Zhu, Wan; Plowey, Edward D

    2016-12-01

    The regulation of plasma membrane (PM)-localized transmembrane protein/receptor trafficking has critical implications for cell signaling, metabolism and survival. In this study, we investigated the role of BECN1 (Beclin 1) in the degradative trafficking of PM-associated APP (amyloid β precursor protein), whose metabolism to amyloid-β, an essential event in Alzheimer disease, is dependent on divergent PM trafficking pathways. We report a novel interaction between PM-associated APP and BECN1 that recruits macroautophagy/endosomal regulatory proteins PIK3C3 and UVRAG. We found that BECN1 promotes surface APP internalization and sorting predominantly to endosomes and endolysosomes. BECN1 also promotes the targeting of a smaller fraction of internalized APP to LC3-positive phagophores, suggesting a role for BECN1-dependent PM macroautophagy in APP degradation. Furthermore, BECN1 facilitates lysosomal degradation of surface APP and reduces the secretion of APP metabolites (soluble ectodomains, sAPP). The association between APP and BECN1 is dependent on the evolutionarily conserved domain (ECD) of BECN1 (amino acids 267-337). Deletion of a BECN1 ECD subregion (amino acids 285-299) did not impair BECN1- PIK3C3 interaction, PtdIns3K function or macroautophagy, but was sufficient to impair the APP-BECN1 interaction and BECN1's effects on surface APP internalization and degradation, resulting in increased secretion of sAPPs. Interestingly, both the BECN1-APP association and BECN1-dependent APP endocytosis and degradative trafficking were negatively regulated by active AKT. Our results further implicate phosphorylation of the BECN1 Ser295 residue in the inhibition of APP degradation by AKT. Our studies reveal a novel function for BECN1 in the sorting of a plasma membrane protein for endolysosomal and macroautophagic degradation.

  4. 15-Deoxy-Delta(12,14)-prostaglandin-J(2) reveals a new pVHL-independent, lysosomal-dependent mechanism of HIF-1alpha degradation.

    Science.gov (United States)

    Olmos, Gemma; Arenas, María I; Bienes, Raquel; Calzada, María Jose; Aragonés, Julián; Garcia-Bermejo, Maria Laura; Landazuri, Manuel O; Lucio-Cazaña, Javier

    2009-07-01

    Hypoxia-inducible factor-1alpha (HIF-1alpha) protein is degraded under normoxia by its association to von Hippel-Lindau protein (pVHL) and further proteasomal digestion. However, human renal cells HK-2 treated with 15-deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)) accumulate HIF-1alpha in normoxic conditions. Thus, we aimed to investigate the mechanism involved in this accumulation. We found that 15d-PGJ(2) induced an over-accumulation of HIF-1alpha in RCC4 cells, which lack pVHL and in HK-2 cells treated with inhibitors of the pVHL-proteasome pathway. These results indicated that pVHL-proteasome-independent mechanisms are involved, and therefore we aimed to ascertain them. We have identified a new lysosomal-dependent mechanism of HIF-1alpha degradation as a target for 15d-PGJ(2) based on: (1) HIF-1alpha colocalized with the specific lysosomal marker Lamp-2a, (2) 15d-PGJ(2) inhibited the activity of cathepsin B, a lysosomal protease, and (3) inhibition of lysosomal activity did not result in over-accumulation of HIF-1alpha in 15d-PGJ(2)-treated cells. Therefore, expression of HIF-1alpha is also modulated by lysosomal degradation.

  5. A hedgehog-responsive region in the Drosophila wing disc is defined by debra-mediated ubiquitination and lysosomal degradation of Ci.

    Science.gov (United States)

    Dai, Ping; Akimaru, Hiroshi; Ishii, Shunsuke

    2003-06-01

    Transcription factor Ci mediates Hedgehog (Hh) signaling to determine the anterior/posterior (A/P) compartment of Drosophila wing disc. While Hh-inducible genes are expressed in A compartment cells abutting the A/P border, it is unclear how the boundaries of this region are established. Here, we have identified a Ci binding protein, Debra, that is expressed at relatively high levels in the band abutting the border of the Hh-responsive A compartment region. Debra mediates the polyubiquitination of full-length Ci, which then leads to its lysosomal degradation. Debra is localized in the multivesicular body, suggesting that the polyubiquitination of Ci directs its sorting into lysosome. Thus, Debra defines the border of the Hh-responsive region in the A compartment by inducing the lysosomal degradation of Ci.

  6. Internalization, lysosomal degradation and new synthesis of surface membrane CD4 in phorbol ester-activated T-lymphocytes and U-937 cells

    DEFF Research Database (Denmark)

    Petersen, C M; Christensen, E I; Andresen, B S

    1992-01-01

    degradation was low in resting cells. Endocytosis and/or degradation of anti-CD4 mAb was suppressed by H7, and by inhibitors of membrane traffic (Monensin) and lysosome function (methylamine, chloroquine). Immunocytochemistry localized CD4 to the surface of unstimulated T-cells. Upon PMA stimulation...... occasional labeling was seen in endosomes but whole cell CD4 decreased dramatically. However, methylamine-treated PMA blasts showed accumulation of CD4 in lysosomes and accordingly, pulse-chase experiments in biolabeled cell cultures suggested a manifest reduction of CD4 half-life in response to PMA. Despite...... in activated cells was further evidenced by metabolic labeling and Northern blot analysis demonstrating unaltered or slightly increased CD4 protein and mRNA levels resulting from PMA. Our findings demonstrate that phorbol esters downregulate the cellular CD4 pool by endocytosis and subsequent lysosomal...

  7. Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    Xin Zhou; Chun Yang; Yufeng Liu; Peng Li; Huiying Yang; Jingxing Dai; Rongmei Qu; Lin Yuan

    2014-01-01

    Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei-mer’s disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer’s disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg-radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer’s disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer’s disease treatment.

  8. Urothelial endocytic vesicle recycling and lysosomal degradative pathway regulated by lipid membrane composition.

    Science.gov (United States)

    Grasso, E J; Calderón, R O

    2013-02-01

    The urothelium, a specialized epithelium that covers the mucosa cell surface of the urinary bladder, undergoes dramatic morphological changes during the micturition cycle that involve a membrane apical traffic. This traffic was first described as a lysosomal pathway, in addition to the known endocytosis/exocytosis membrane recycling. In an attempt to understand the role of membrane lipid composition in those effects, we previously described the lipid-dependent leakage of the endocytosed vesicle content. In this work, we demonstrated clear differences in the traffic of both the fluid probe and the membrane-bound probe in urothelial umbrella cells by using spectrofluorometry and/or confocal and epifluorescence microscopy. Different membrane lipid compositions were established by using three diet formulae enriched in oleic acid, linoleic acid and a commercial formula. Between three and five animals for each dietary treatment were used for each analysis. The decreased endocytosis of both fluid and membrane-bound probes (approximately 32 and 49 % lower, respectively) in oleic acid-derived umbrella cells was concomitant with an increased recycling (approximately 4.0 and 3.7 times, respectively) and diminished sorting to the lysosome (approximately 23 and 37 %, respectively) when compared with the control umbrella cells. The higher intravesicular pH and the impairment of the lysosomal pathway of oleic acid diet-derived vesicles compared to linoleic acid diet-derived vesicles and control diet-derived vesicles correlate with our findings of a lower V-ATPase activity previously reported. We integrated the results obtained in the present and previous work to determine the sorting of endocytosed material (fluid and membrane-bound probes) into the different cell compartments. Finally, the weighted average effect of the individual alterations on the intracellular distribution was evaluated. The results shown in this work add evidences for the modulatory role of the membrane

  9. CUP-5, the C. elegans ortholog of the mammalian lysosomal channel protein MLN1/TRPML1, is required for proteolytic degradation in autolysosomes.

    Science.gov (United States)

    Sun, Tao; Wang, Xingwei; Lu, Qun; Ren, Haiyan; Zhang, Hong

    2011-11-01

    The process of macroautophagy (herein referred to as autophagy) involves the formation of a closed double-membrane structure, called the autophagosome, and its subsequent fusion with lysosomes to form an autolysosome. Lysosomes are regenerated from autolysosomes after degradation of the sequestrated materials. In this study, we showed that mutations in cup-5, encoding the C. elegans Mucolipin 1 homolog, cause defects in the autophagy pathway. In cup-5 mutants, a variety of autophagy substrates accumulate in enlarged vacuoles that display characteristics of late endosomes and lysosomes, indicating defective proteolytic degradation in autolysosomes. We further revealed that lysosomes in coelomocytes (scavenger cells located in the body cavity) are smaller in size and more numerous in mutants with loss of autophagy activity. Furthermore, the enlarged vacuole accumulation abnormality and embryonic lethality of cup-5 mutants are partially suppressed by reduced autophagy activity. Our results indicate that the basal constitutive level of autophagy activity regulates the size and number of lysosomes and provides insights into the molecular mechanisms underlying mucolipidosis type IV disease.

  10. Turnover of C99 is Controlled by a Crosstalk between ERAD and Ubiquitin-Independent Lysosomal Degradation in Human Neuroglioma Cells

    Science.gov (United States)

    Bustamante, Hianara A.; Rivera-Dictter, Andrés; Cavieres, Viviana A.; Muñoz, Vanessa C.; González, Alexis; Lin, Yimo; Mardones, Gonzalo A.; Burgos, Patricia V.

    2013-01-01

    Alzheimer’s disease (AD) is characterized by the buildup of amyloid-β peptides (Aβ) aggregates derived from proteolytic processing of the β-amyloid precursor protein (APP). Amyloidogenic cleavage of APP by β-secretase/BACE1 generates the C-terminal fragment C99/CTFβ that can be subsequently cleaved by γ-secretase to produce Aβ. Growing evidence indicates that high levels of C99/CTFβ are determinant for AD. Although it has been postulated that γ-secretase-independent pathways must control C99/CTFβ levels, the contribution of organelles with degradative functions, such as the endoplasmic reticulum (ER) or lysosomes, is unclear. In this report, we investigated the turnover and amyloidogenic processing of C99/CTFβ in human H4 neuroglioma cells, and found that C99/CTFβ is localized at the Golgi apparatus in contrast to APP, which is mostly found in endosomes. Conditions that localized C99/CTFβ to the ER resulted in its degradation in a proteasome-dependent manner that first required polyubiquitination, consistent with an active role of the ER associated degradation (ERAD) in this process. Furthermore, when proteasomal activity was inhibited C99/CTFβ was degraded in a chloroquine (CQ)-sensitive compartment, implicating lysosomes as alternative sites for its degradation. Our results highlight a crosstalk between degradation pathways within the ER and lysosomes to avoid protein accumulation and toxicity. PMID:24376644

  11. The proteome of lysosomes.

    Science.gov (United States)

    Schröder, Bernd A; Wrocklage, Christian; Hasilik, Andrej; Saftig, Paul

    2010-11-01

    Lysosomes are organelles of eukaryotic cells that are critically involved in the degradation of macromolecules mainly delivered by endocytosis and autophagocytosis. Degradation is achieved by more than 60 hydrolases sequestered by a single phospholipid bilayer. The lysosomal membrane facilitates interaction and fusion with other compartments and harbours transport proteins catalysing the export of catabolites, thereby allowing their recycling. Lysosomal proteins have been addressed in various proteomic studies that are compared in this review regarding the source of material, the organelle/protein purification scheme, the proteomic methodology applied and the proteins identified. Distinguishing true constituents of an organelle from co-purifying contaminants is a central issue in subcellular proteomics, with additional implications for lysosomes as being the site of degradation of many cellular and extracellular proteins. Although many of the lysosomal hydrolases were identified by classical biochemical approaches, the knowledge about the protein composition of the lysosomal membrane has remained fragmentary for a long time. Using proteomics many novel lysosomal candidate proteins have been discovered and it can be expected that their functional characterisation will help to understand functions of lysosomes at a molecular level that have been characterised only phenomenologically so far and to generally deepen our understanding of this indispensable organelle.

  12. Lysosomal degradation of receptor-bound urokinase-type plasminogen activator is enhanced by its inhibitors in human trophoblastic choriocarcinoma cells

    DEFF Research Database (Denmark)

    Jensen, Poul Henning; Christensen, Erik Ilsø; Ebbesen, P.

    1990-01-01

    in an apparently intact form in the medium or was still cell associated. The degradation could be inhibited by inhibitors of vesicle transport and lysosomal hydrolases. By electron microscopic autoradiography, both 125I-u-PA and 125I-u-PA-inhibitor complexes were located over the cell membrane at 4 degrees C......, with the highest density of grains over the membrane at cell-cell interphases, but, after incubation at 37 degrees C, 17 and 27% of the grains for u-PA and u-PA-PAI-1 complexes, respectively, appeared over lysosomal-like bodies. These findings suggest that the u-PA receptor possesses a clearance function...

  13. Activation of the cAMP/PKA pathway induces UT-A1 urea transporter monoubiquitination and targets it for lysosomal degradation.

    Science.gov (United States)

    Su, Hua; Chen, Minguang; Sands, Jeff M; Chen, Guangping

    2013-12-15

    Regulation of urea transporter UT-A1 in the kidney is important for the urinary concentrating mechanism. We previously reported that activation of the cAMP/PKA pathway by forskolin (FSK) leads to UT-A1 ubiquitination, endocytosis, and degradation. In this study, we discovered that FSK-induced UT-A1 ubiquitination is monoubiquitination as judged by immunoblotting with specific ubiquitin antibodies to the different linkages of the ubiquitin chain. UT-A1 monoubiquitination induced by FSK was processed mainly on the cell plasma membrane. Monoubiquitination facilitates UT-A1 endocytosis, and internalized UT-A1 is accumulated in the early endosome. Inhibition of ubiquitination by E1 ubiquitin-activating enzyme inhibitor PYR-41 significantly reduced FSK-induced UT-A1 endocytosis and degradation. Interestingly, FSK-stimulated UT-A1 degradation occurs through a lysosomal protein degradation system. We further found that the PKA phosphorylation sites of UT-A1 at Ser486 and Ser499 are required for FSK-induced UT-A1 monoubiquitination. The physiological significance was confirmed using rat kidney inner medullary collecting duct suspensions, which showed that vasopressin treatment promotes UT-A1 ubiquitination. We conclude that unlike under basal conditions in which UT-A1 is subject to polyubiquitination and proteasome-mediated protein degradation, activation of UT-A1 by FSK induces UT-A1 monoubiquitination and protein lysosomal degradation.

  14. Severe Ankyrin-R deficiency results in impaired surface retention and lysosomal degradation of RhAG in human erythroblasts

    Science.gov (United States)

    Satchwell, Timothy J.; Bell, Amanda J.; Hawley, Bethan R.; Pellegrin, Stephanie; Mordue, Kathryn E.; van Deursen, Cees Th. B. M.; Braak, Nicole Heitink-ter; Huls, Gerwin; Leers, Mathie P.G; Overwater, Eline; Tamminga, Rienk Y. J.; van der Zwaag, Bert; Fermo, Elisa; Bianchi, Paola; van Wijk, Richard; Toye, Ashley M.

    2016-01-01

    Ankyrin-R provides a key link between band 3 and the spectrin cytoskeleton that helps to maintain the highly specialized erythrocyte biconcave shape. Ankyrin deficiency results in fragile spherocytic erythrocytes with reduced band 3 and protein 4.2 expression. We use in vitro differentiation of erythroblasts transduced with shRNAs targeting ANK1 to generate erythroblasts and reticulocytes with a novel ankyrin-R ‘near null’ human phenotype with less than 5% of normal ankyrin expression. Using this model, we demonstrate that absence of ankyrin negatively impacts the reticulocyte expression of a variety of proteins, including band 3, glycophorin A, spectrin, adducin and, more strikingly, protein 4.2, CD44, CD47 and Rh/RhAG. Loss of band 3, which fails to form tetrameric complexes in the absence of ankyrin, alongside GPA, occurs due to reduced retention within the reticulocyte membrane during erythroblast enucleation. However, loss of RhAG is temporally and mechanistically distinct, occurring predominantly as a result of instability at the plasma membrane and lysosomal degradation prior to enucleation. Loss of Rh/RhAG was identified as common to erythrocytes with naturally occurring ankyrin deficiency and demonstrated to occur prior to enucleation in cultures of erythroblasts from a hereditary spherocytosis patient with severe ankyrin deficiency but not in those exhibiting milder reductions in expression. The identification of prominently reduced surface expression of Rh/RhAG in combination with direct evaluation of ankyrin expression using flow cytometry provides an efficient and rapid approach for the categorization of hereditary spherocytosis arising from ankyrin deficiency. PMID:27247322

  15. Actin cytoskeleton-dependent Rab GTPase-regulated angiotensin type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Li, Hewang; Yu, Peiying; Sun, Yuansheng; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.

    2010-09-01

    The dynamic regulation of the cellular trafficking of human angiotensin (Ang) type 1 receptor (AT1R) is not well understood. Therefore, we investigated the cellular trafficking of AT1R-enhanced green fluorescent protein (EGFP) (AT1R-EGFP) heterologously expressed in HEK293 cells by determining the change in donor lifetime (AT1R-EGFP) in the presence or absence of acceptor(s) using fluorescence lifetime imaging-fluorescence resonance energy transfer (FRET) microscopy. The average lifetime of AT1R-EGFP in our donor-alone samples was ~2.33 ns. The basal state lifetime was shortened slightly in the presence of Rab5 (2.01+/-0.10 ns) or Rab7 (2.11+/-0.11 ns) labeled with Alexa 555, as the acceptor fluorophore. A 5-min Ang II treatment markedly shortened the lifetime of AT1R-EGFP in the presence of Rab5-Alexa 555 (1.78+/-0.31 ns) but was affected minimally in the presence of Rab7-Alexa 555 (2.09+/-0.37 ns). A 30-min Ang II treatment further decreased the AT1R-EGFP lifetime in the presence of both Rab5- and Rab7-Alexa 555. Latrunculin A but not nocodazole pretreatment blocked the ability of Ang II to shorten the AT1R-EGFP lifetime. The occurrence of FRET between AT1R-EGFP (donor) and LAMP1-Alexa 555 (acceptor) with Ang II stimulation was impaired by photobleaching the acceptor. These studies demonstrate that Ang II-induced AT1R lysosomal degradation through its association with LAMP1 is regulated by Rab5/7 via mechanisms that are dependent on intact actin cytoskeletons.

  16. Epidermal Growth Factor Cytoplasmic Domain Affects ErbB Protein Degradation by the Lysosomal and Ubiquitin-Proteasome Pathway in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Aleksandra Glogowska

    2012-05-01

    Full Text Available The cytoplasmic domains of EGF-like ligands, including EGF cytoplasmic domain (EGFcyt, have important biological functions. Using specific constructs and peptides of human EGF cytoplasmic domain, we demonstrate that EGFcyt facilitates lysosomal and proteasomal protein degradation, and this coincided with growth inhibition of human thyroid and glioma carcinoma cells. EGFcyt and exon 22–23-encoded peptide (EGF22.23 enhanced procathepsin B (procathB expression and procathB-mediated lysosomal degradation of EGFR/ErbB1 as determined by inhibitors for procathB and the lysosomal ATPase inhibitor BafA1. Presence of mbEGFctF, EGFcyt, EGF22.23, and exon 23-encoded peptides suppressed the expression of the deubiqitinating enzyme ubiquitin C-terminal hydrolase-L1 (UCH-L1. This coincided with hyperubiquitination of total cellular proteins and ErbB1/2 and reduced proteasome activity. Upon small interfering RNA-mediated silencing of endogenously expressed UCH-L1, a similar hyperubiquitinylation phenotype, reduced ErbB1/2 content, and attenuated growth was observed. The exon 23-encoded peptide region of EGFcyt was important for these biologic actions. Structural homology modeling of human EGFcyt showed that this molecular region formed an exposed surface loop. Peptides derived from this EGFcyt loop structure may aid in the design of novel peptide therapeutics aimed at inhibiting growth of cancer cells.

  17. The Inactivation of RabGAP Function of AS160 Promotes Lysosomal Degradation of GLUT4 and Causes Postprandial Hyperglycemia and Hyperinsulinemia.

    Science.gov (United States)

    Xie, Bingxian; Chen, Qiaoli; Chen, Liang; Sheng, Yang; Wang, Hong Yu; Chen, Shuai

    2016-11-01

    The AS160 (Akt substrate of 160 kDa) is a Rab-GTPase activating protein (RabGAP) with several other functional domains, and its deficiency in mice or human patients lowers GLUT4 protein levels and causes severe insulin resistance. How its deficiency causes diminished GLUT4 proteins remains unknown. We found that the deletion of AS160 decreased GLUT4 levels in a cell/tissue-autonomous manner. Consequently, skeletal muscle-specific deletion of AS160 caused postprandial hyperglycemia and hyperinsulinemia. The pathogenic effects of AS160 deletion are mainly, if not exclusively, due to the loss of its RabGAP function since the RabGAP-inactive AS160(R917K) mutant mice phenocopied the AS160 knockout mice. The inactivation of RabGAP of AS160 promotes lysosomal degradation of GLUT4, and the inhibition of lysosome function could restore GLUT4 protein levels. Collectively, these findings demonstrate that the RabGAP activity of AS160 maintains GLUT4 protein levels in a cell/tissue-autonomous manner and its inactivation causes lysosomal degradation of GLUT4 and postprandial hyperglycemia and hyperinsulinemia.

  18. Lysosomal cell death at a glance

    DEFF Research Database (Denmark)

    Aits, Sonja; Jaattela, Marja

    2013-01-01

    Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form...... of cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream...... mechanisms that lead to lysosomal membrane permeabilization....

  19. Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens

    Science.gov (United States)

    Gao, Jie; Ochyl, Lukasz J; Yang, Ellen; Moon, James J

    2017-01-01

    Cationic liposomes (CLs) have been widely examined as vaccine delivery nanoparticles since they can form complexes with biomacromolecules, promote delivery of antigens and adjuvant molecules to antigen-presenting cells (APCs), and mediate cellular uptake of vaccine components. CLs are also known to trigger antigen cross-presentation – the process by which APCs internalize extracellular protein antigens, degrade them into minimal CD8+ T-cell epitopes, and present them in the context of major histocompatibility complex-I (MHC-I). However, the precise mechanisms behind CL-mediated induction of cross-presentation and cross-priming of CD8+ T-cells remain to be elucidated. In this study, we have developed two distinct CL systems and examined their impact on the lysosomal pH in dendritic cells (DCs), antigen degradation, and presentation of peptide:MHC-I complexes to antigen-specific CD8+ T-cells. To achieve this, we have used 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as the prototypical components of CLs with tertiary amine groups and compared the effect of CLs and anionic liposomes on lysosomal pH, antigen degradation, and cross-presentation by DCs. Our results showed that CLs, but not anionic liposomes, elevated the lysosomal pH in DCs and reduced antigen degradation, thereby promoting cross-presentation and cross-priming of CD8+ T-cell responses. These studies shed new light on CL-mediated cross-presentation and suggest that intracellular fate of vaccine components and subsequent immunological responses can be controlled by rational design of nanomaterials. PMID:28243087

  20. Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens.

    Science.gov (United States)

    Gao, Jie; Ochyl, Lukasz J; Yang, Ellen; Moon, James J

    2017-01-01

    Cationic liposomes (CLs) have been widely examined as vaccine delivery nanoparticles since they can form complexes with biomacromolecules, promote delivery of antigens and adjuvant molecules to antigen-presenting cells (APCs), and mediate cellular uptake of vaccine components. CLs are also known to trigger antigen cross-presentation - the process by which APCs internalize extracellular protein antigens, degrade them into minimal CD8(+) T-cell epitopes, and present them in the context of major histocompatibility complex-I (MHC-I). However, the precise mechanisms behind CL-mediated induction of cross-presentation and cross-priming of CD8(+) T-cells remain to be elucidated. In this study, we have developed two distinct CL systems and examined their impact on the lysosomal pH in dendritic cells (DCs), antigen degradation, and presentation of peptide:MHC-I complexes to antigen-specific CD8(+) T-cells. To achieve this, we have used 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as the prototypical components of CLs with tertiary amine groups and compared the effect of CLs and anionic liposomes on lysosomal pH, antigen degradation, and cross-presentation by DCs. Our results showed that CLs, but not anionic liposomes, elevated the lysosomal pH in DCs and reduced antigen degradation, thereby promoting cross-presentation and cross-priming of CD8(+) T-cell responses. These studies shed new light on CL-mediated cross-presentation and suggest that intracellular fate of vaccine components and subsequent immunological responses can be controlled by rational design of nanomaterials.

  1. The lysosome and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Lisha Zhang; Rui Sheng; Zhenghong Qin

    2009-01-01

    It has long been believed that the lysosome is an important digestive organelle. There is increasing evidence that the lysosome is also involved in pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Abnormal protein degradation and deposition induced by lysosoreal dysfunction may be the primary contributor to age-related neurodegeneration. In this review, the possible relationship between lysosome and various neurodegenerative diseases is described.

  2. Lysosomal cell death mechanisms in aging.

    Science.gov (United States)

    Gómez-Sintes, Raquel; Ledesma, María Dolores; Boya, Patricia

    2016-12-01

    Lysosomes are degradative organelles essential for cell homeostasis that regulate a variety of processes, from calcium signaling and nutrient responses to autophagic degradation of intracellular components. Lysosomal cell death is mediated by the lethal effects of cathepsins, which are released into the cytoplasm following lysosomal damage. This process of lysosomal membrane permeabilization and cathepsin release is observed in several physiopathological conditions and plays a role in tissue remodeling, the immune response to intracellular pathogens and neurodegenerative diseases. Many evidences indicate that aging strongly influences lysosomal activity by altering the physical and chemical properties of these organelles, rendering them more sensitive to stress. In this review we focus on how aging alters lysosomal function and increases cell sensitivity to lysosomal membrane permeabilization and lysosomal cell death, both in physiological conditions and age-related pathologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Expression of HIV-1 Vpu leads to loss of the viral restriction factor CD317/Tetherin from lipid rafts and its enhanced lysosomal degradation.

    Directory of Open Access Journals (Sweden)

    Ruth Rollason

    Full Text Available CD317/tetherin (aka BST2 or HM1.24 antigen is an interferon inducible membrane protein present in regions of the lipid bilayer enriched in sphingolipids and cholesterol (often termed lipid rafts. It has been implicated in an eclectic mix of cellular processes including, most notably, the retention of fully formed viral particles at the surface of cells infected with HIV and other enveloped viruses. Expression of the HIV viral accessory protein Vpu has been shown to lead to intracellular sequestration and degradation of tetherin, thereby counteracting the inhibition of viral release. There is evidence that tetherin interacts directly with Vpu, but it remains unclear where in the cell this interaction occurs or if Vpu expression affects the lipid raft localisation of tetherin. We have addressed these points using biochemical and cell imaging approaches focused on endogenous rather than ectopically over-expressed tetherin. We find i no evidence for an interaction between Vpu and endogenous tetherin at the cell surface, ii the vast majority of endogenous tetherin that is at the cell surface in control cells is in lipid rafts, iii internalised tetherin is present in non-raft fractions, iv expression of Vpu in cells expressing endogenous tetherin leads to the loss of tetherin from lipid rafts, v internalised tetherin enters early endosomes, and late endosomes, in both control cells and cells expressing Vpu, but the proportion of tetherin molecules destined for degradation rather than recycling is increased in cells expressing Vpu vi lysosomes are the primary site for degradation of endogenous tetherin in cells expressing Vpu. Our studies underlie the importance of studying endogenous tetherin and let us propose a model in which Vpu intercepts newly internalised tetherin and diverts it for lysosomal destruction rather than recycling to the cell surface.

  4. Cx31 is assembled and trafficked to cell surface by ER-Golgi pathway and degraded by proteasomal or lysosomal pathways

    Institute of Scientific and Technical Information of China (English)

    Li Qiang HE; Zhi Gao LONG; He Ping DAI; Kun XIA; Jia Hui XIA; Zhuo Hua ZHANG; Fang CAI; Yu LIU; Mu Jun LIU; Zhi Ping TAN; Qian PAN; Fai Yan FANG; De Sheng LIANG; Ling Qian WU

    2005-01-01

    Gap junctions, consisting of connexins, allow the exchange of small molecules (<1 kD) between adjacent cells, thus providing a mechanism for synchronizing the responses of groups of cells to environmental stimuli. Connexin 31 is a member of the connexin family. Mutations on connexin 31 are associated with erythrokeratodermia variabilis, hearing impairment and peripheral neuropathy. However, the pathological mechanism for connexin 31 mutants in these diseases are still unknown. In this study, we analyzed the assembly, trafficking and metabolism of connexin 31 in HeLa cells stably expressing connexin 31. Calcein transfer assay showed that calcein transfer was inhibited when cells were treated with Brefeldin A or cytochalasin D, but not when treated with nocodazole or α-glycyrrhetinic acid, suggesting that Golgi apparatus and actin filaments, but not microtubules, are crucial to the trafficking and assembly of connexin 31, as well as the formation of gap junction intercellular communication by connexin 31. Additionally, α-glycyrrhetinic acid did not effectively inhibit gap junctional intercellular communication formed by connexin 31. Pulse-chase assay revealed that connexin 31 had a half-life of about 6 h. Moreover, Western blotting and fluorescent staining demonstrated that in HeLa cells stably expressing connexin 31, the amount of connexin 31 was significantly increased after these cells were treated with proteasomal or lysosomal inhibitors. These findings indicate that connexin 31 was rapidly renewed,and possibly degraded by both proteasomal and lysosomal pathways.

  5. DNA damage, lysosomal degradation and Bcl-xL deamidation in doxycycline- and minocycline-induced cell death in the K562 leukemic cell line.

    Science.gov (United States)

    Fares, Mona; Abedi-Valugerdi, Manuchehr; Hassan, Moustapha; Potácová, Zuzana

    2015-07-31

    We investigated mechanisms of cytotoxicity induced by doxycycline (doxy) and minocycline (mino) in the chronic myeloid leukemia K562 cell line. Doxy and mino induced cell death in exposure-dependent manner. While annexin V/propidium iodide staining was consistent with apoptosis, the morphological changes in Giemsa staining were more equivocal. A pancaspase inhibitor Z-VAD-FMK partially reverted cell death morphology, but concurrently completely prevented PARP cleavage. Mitochondrial involvement was detected as dissipation of mitochondrial membrane potential and cytochrome C release. DNA double strand breaks detected with γH2AX antibody and caspase-2 activation were found early after the treatment start, but caspase-3 activation was a late event. Decrement of Bcl-xL protein levels and electrophoretic shift of Bcl-xL molecule were induced by both drugs. Phosphorylation of Bcl-xL at serine 62 was ruled out. Similarly, Bcr/Abl tyrosine kinase levels were decreased. Lysosomal inhibitor chloroquine restored Bcl-xL and Bcr/Abl protein levels and inhibited caspase-3 activation. Thus, the cytotoxicity of doxy and mino in K562 cells is mediated by DNA damage, Bcl-xL deamidation and lysosomal degradation with activation of mitochondrial pathway of apoptosis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Salinomycin co-treatment enhances tamoxifen cytotoxicity in luminal A breast tumor cells by facilitating lysosomal degradation of receptor tyrosine kinases.

    Science.gov (United States)

    Sommer, Ann-Katrin; Hermawan, Adam; Mickler, Frauke Martina; Ljepoja, Bojan; Knyazev, Pjotr; Bräuchle, Christoph; Ullrich, Axel; Wagner, Ernst; Roidl, Andreas

    2016-08-02

    Luminal A breast cancer is the most common breast cancer subtype which is usually treated with selective estrogen receptor modulators (SERMS) like tamoxifen. Nevertheless, one third of estrogen receptor positive breast cancer patients initially do not respond to endocrine therapy and about 40% of luminal A breast tumors recur in five years. In this study, we investigated an alternative treatment approach by combining tamoxifen and salinomycin in luminal A breast cancer cell lines. We have found that salinomycin induces an additional cytotoxic effect by inhibiting the ligand independent activation of ERα. Thereby salinomycin increases the intracellular calcium level. This leads to a premature fusion of endosomes with lysosomes and thus to the degradation of Egfr family members. Since this process is essential for luminal A breast cancer cells to circumvent tamoxifen treatment, the combination of both drugs induces cytotoxicity in tamoxifen sensitive as well as resistant luminal A breast cancer cell lines.

  7. Deficiency of Neuronal p38α MAPK Attenuates Amyloid Pathology in Alzheimer Disease Mouse and Cell Models through Facilitating Lysosomal Degradation of BACE1.

    Science.gov (United States)

    Schnöder, Laura; Hao, Wenlin; Qin, Yiren; Liu, Shirong; Tomic, Inge; Liu, Xu; Fassbender, Klaus; Liu, Yang

    2016-01-29

    Amyloid β (Aβ) damages neurons and triggers microglial inflammatory activation in the Alzheimer disease (AD) brain. BACE1 is the primary enzyme in Aβ generation. Neuroinflammation potentially up-regulates BACE1 expression and increases Aβ production. In Alzheimer amyloid precursor protein-transgenic mice and SH-SY5Y cell models, we specifically knocked out or knocked down gene expression of mapk14, which encodes p38α MAPK, a kinase sensitive to inflammatory and oxidative stimuli. Using immunological and biochemical methods, we observed that reduction of p38α MAPK expression facilitated the lysosomal degradation of BACE1, decreased BACE1 protein and activity, and subsequently attenuated Aβ generation in the AD mouse brain. Inhibition of p38α MAPK also enhanced autophagy. Blocking autophagy by treating cells with 3-methyladenine or overexpressing dominant-negative ATG5 abolished the deficiency of the p38α MAPK-induced BACE1 protein reduction in cultured cells. Thus, our study demonstrates that p38α MAPK plays a critical role in the regulation of BACE1 degradation and Aβ generation in AD pathogenesis.

  8. Lysosomal stress: a new player in perturbed lipid metabolism

    NARCIS (Netherlands)

    Gabriel, T.L.

    2017-01-01

    Lysosomes are involved in many different essential cellular processes, among others organelle and molecule degradation, exocytosis, cell energy metabolism, cholesterol and sphingolipid level regulation. Lysosomal stress has a strong impact on the immune system, affecting specially macrophages as the

  9. Lysosomal stress: a new player in perturbed lipid metabolism

    NARCIS (Netherlands)

    Gabriel, T.L.

    2017-01-01

    Lysosomes are involved in many different essential cellular processes, among others organelle and molecule degradation, exocytosis, cell energy metabolism, cholesterol and sphingolipid level regulation. Lysosomal stress has a strong impact on the immune system, affecting specially macrophages as the

  10. MIR125B1 represses the degradation of the PML-RARA oncoprotein by an autophagy-lysosomal pathway in acute promyelocytic leukemia.

    Science.gov (United States)

    Zeng, Cheng-Wu; Chen, Zhen-Hua; Zhang, Xing-Ju; Han, Bo-Wei; Lin, Kang-Yu; Li, Xiao-Juan; Wei, Pan-Pan; Zhang, Hua; Li, Yangqiu; Chen, Yue-Qin

    2014-10-01

    Acute promyelocytic leukemia (APL) is characterized by the t(15;17)-associated PML-RARA fusion gene. We have previously found that MIR125B1 is highly expressed in patients with APL and may be associated with disease pathogenesis; however, the mechanism by which MIR125B1 exerts its oncogenic potential has not been fully elucidated. Here, we demonstrated that MIR125B1 abundance correlates with the PML-RARA status. MIR125B1 overexpression enhanced PML-RARA expression and inhibited the ATRA-induced degradation of the PML-RARA oncoprotein. RNA-seq analysis revealed a direct link between the PML-RARA degradation pathway and MIR125B1-arrested differentiation. We further demonstrated that the MIR125B1-mediated blockade of PML-RARA proteolysis was regulated via an autophagy-lysosomal pathway, contributing to the inhibition of APL differentiation. Furthermore, we identified DRAM2 (DNA-damage regulated autophagy modulator 2), a critical regulator of autophagy, as a novel target that was at least partly responsible for the function of MIR125B1 involved in autophagy. Importantly, the knockdown phenotypes for DRAM2 are similar to the effects of overexpressing MIR125B1 as impairment of PML-RARA degradation, inhibition of autophagy, and myeloid cell differentiation arrest. These effects of MIR125B1 and its target DRAM2 were further confirmed in an APL mouse model. Thus, MIR125B1 dysregulation may interfere with the effectiveness of ATRA-mediated differentiation through an autophagy-dependent pathway, representing a novel potential APL therapeutic target.

  11. A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Di Malta, Chiara; Wen, Jiayu

    2014-01-01

    Sulfatases are key enzymatic regulators of sulfate homeostasis with several biological functions including degradation of glycosaminoglycans (GAGs) and other macromolecules in lysosomes. In a severe lysosomal storage disorder, multiple sulfatase deficiency (MSD), global sulfatase activity...

  12. Children conceived after intracytoplasmic sperm injection (ICSI)

    DEFF Research Database (Denmark)

    Mau, C; Juul, A; Main, K M;

    2004-01-01

    The aim of the study was to evaluate current medical knowledge about children born after intracytoplasmic sperm injection (ICSI) with respect to congenital malformations, chromosome abnormalities and postnatal growth.......The aim of the study was to evaluate current medical knowledge about children born after intracytoplasmic sperm injection (ICSI) with respect to congenital malformations, chromosome abnormalities and postnatal growth....

  13. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation.

    Science.gov (United States)

    Li, Xinran; Rydzewski, Nicholas; Hider, Ahmad; Zhang, Xiaoli; Yang, Junsheng; Wang, Wuyang; Gao, Qiong; Cheng, Xiping; Xu, Haoxing

    2016-04-01

    To mediate the degradation of biomacromolecules, lysosomes must traffic towards cargo-carrying vesicles for subsequent membrane fusion or fission. Mutations of the lysosomal Ca(2+) channel TRPML1 cause lysosomal storage disease (LSD) characterized by disordered lysosomal membrane trafficking in cells. Here we show that TRPML1 activity is required to promote Ca(2+)-dependent centripetal movement of lysosomes towards the perinuclear region (where autophagosomes accumulate) following autophagy induction. ALG-2, an EF-hand-containing protein, serves as a lysosomal Ca(2+) sensor that associates physically with the minus-end-directed dynactin-dynein motor, while PtdIns(3,5)P(2), a lysosome-localized phosphoinositide, acts upstream of TRPML1. Furthermore, the PtdIns(3,5)P(2)-TRPML1-ALG-2-dynein signalling is necessary for lysosome tubulation and reformation. In contrast, the TRPML1 pathway is not required for the perinuclear accumulation of lysosomes observed in many LSDs, which is instead likely to be caused by secondary cholesterol accumulation that constitutively activates Rab7-RILP-dependent retrograde transport. Ca(2+) release from lysosomes thus provides an on-demand mechanism regulating lysosome motility, positioning and tubulation.

  14. Factors and processes modulating phenotypes in neuronopathic lysosomal storage diseases

    OpenAIRE

    Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Banecka-Majkutewicz, Zyta; Banecki, Bogdan; Węgrzyn, Alicja; Węgrzyn, Grzegorz

    2013-01-01

    Lysosomal storage diseases are inherited metabolic disorders caused by genetic defects causing deficiency of various lysosomal proteins, and resultant accumulation of non-degraded compounds. They are multisystemic diseases, and in most of them (>70 %) severe brain dysfunctions are evident. However, expression of various phenotypes in particular diseases is extremely variable, from non-neuronopathic to severely neurodegenerative in the deficiency of the same enzyme. Although all lysosomal stor...

  15. Regulation of lysosomal ion homeostasis by channels and transporters.

    Science.gov (United States)

    Xiong, Jian; Zhu, Michael X

    2016-08-01

    Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H(+), Ca(2+), Na(+), K(+), and Cl(-) across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease.

  16. Lysosomal proteolysis: effects of aging and insulin.

    Science.gov (United States)

    Gromakova, I A; Konovalenko, O A

    2003-07-01

    Age-related characteristics of the effect of insulin on the activity of lysosomal proteolytic enzymes were studied. The relationship between the insulin effect on protein degradation and insulin degradation was analyzed. The effect of insulin on the activities of lysosomal enzymes was opposite in young and old rats (inhibitory in 3-month-old and stimulatory in 24-month-old animals). The activities of proteolytic enzymes were regulated by insulin in a glucose-independent manner: similar hypoglycemic effects of insulin in animals of different ages were accompanied by opposite changes in the activities of lysosomal enzymes. The inhibition of lysosomal enzymes by insulin in 3-month-old rats is consistent with a notion on the inhibitory effect of insulin on protein degradation. An opposite insulin effect in 24-month-old rats (i.e., stimulation of proteolytic activity by insulin) may be partly associated with attenuation of the degradation of insulin, resulting in disturbances in signaling that mediates the regulatory effects of insulin on protein degradation.

  17. Slow degradation in phagocytic astrocytes can be enhanced by lysosomal acidification%溶酶体酸化可增强吞噬性星形胶质细胞的消化功能

    Institute of Scientific and Technical Information of China (English)

    Kelly R. Monk; M. Laura Feltri; Carla Taveggia; Camilla Lööv; Claire H. Mitchell; Martin Simonsson; Anna Erlandsson1

    2015-01-01

    Inefficient lysosomal degradation is central in the development of various brain disorders, but the un-derlying mechanisms and the involvement of different cell types remains elusive. We have previously shown that astrocytes effectively engulf dead cells, but then store, rather than degrade the ingested material. In the present study we identify reasons for the slow digestion and ways to accelerate degradation in primary astrocytes. Our re-sults show that actin-rings surround the phagosomes for long periods of time, which physically inhibit the pha-go-lysosome fusion. Furthermore, astrocytes express high levels of Rab27a, a protein known to reduce the acidity of lysosomes by Nox2 recruitment, in order to preserve antigens for presentation. We found that Nox2 colocalizes with the ingested material, indicating that it may influence antigen processing also in astrocytes, as they express MHC class II. By inducing long-time acidification of astrocytic lysosomes using acidic nanoparticles, we could increase the digestion of astrocyte-ingested, dead cells. The degradation was, however, normalized over time, in-dicating that inhibitory pathways are up-regulated in response to the enhanced acidification.%低效的溶酶体降解是多种脑部疾病发展的中心环节,但其具体机制及参与的细胞种类仍不清楚。既往研究显示,星形胶质细胞大量吞噬死亡的细胞,但将这些吞噬的物质储存在细胞内而不是进行降解。本研究对星形胶质细胞降解消化功能减弱的原因进行研究,并探索增强星形胶质细胞降解消化功能的方法。结果显示,长期存在于吞噬泡周围的肌动环阻碍了溶酶体的吞噬溶解作用。此外,Rab27a 蛋白可以通过Nox2减少溶酶体的酸化,而星形胶质细胞高表达 Rab27a 蛋白,阻碍抗原呈递。本研究还发现,Nox2与星形胶质细胞摄取的物质共定位,且表达主要组织相容性复合体 II,提示这可能影响星形

  18. Deletion of the highly conserved N-glycan at Asn260 of HIV-1 gp120 affects folding and lysosomal degradation of gp120, and results in loss of viral infectivity.

    Directory of Open Access Journals (Sweden)

    Leen Mathys

    Full Text Available N-linked glycans covering the surface of the HIV-1 glycoprotein gp120 are of major importance for the correct folding of this glycoprotein. Of the, on average, 24 N-linked glycans present on gp120, the glycan at Asn260 was reported to be essential for the correct expression of gp120 and gp41 in the virus particle and deletion of the N260 glycan in gp120 heavily compromised virus infectivity. We show here that gp160 containing the N260Q mutation reaches the Golgi apparatus during biosynthesis. Using pulse-chase experiments with [35S] methionine/cysteine, we show that oxidative folding was slightly delayed in case of mutant N260Q gp160 and that CD4 binding was markedly compromised compared to wild-type gp160. In the search of compensatory mutations, we found a mutation in the V1/V2 loop of gp120 (S128N that could partially restore the infectivity of mutant N260Q gp120 virus. However, the mutation S128N did not enhance any of the above-mentioned processes so its underlying compensatory mechanism must be a conformational effect that does not affect CD4 binding per se. Finally, we show that mutant N260Q gp160 was cleaved to gp120 and gp41 to a much lower extent than wild-type gp160, and that it was subject of lysosomal degradation to a higher extent than wild-type gp160 showing a prominent role of this process in the breakdown of N260-glycan-deleted gp160, which could not be counteracted by the S128N mutation. Moreover, at least part of the wild-type or mutant gp160 that is normally targeted for lysosomal degradation reached a conformation that enabled CD4 binding.

  19. TRPML and lysosomal function.

    Science.gov (United States)

    Zeevi, David A; Frumkin, Ayala; Bach, Gideon

    2007-08-01

    Mucolipin 1 (MLN1), also known as TRPML1, is a member of the mucolipin family. The mucolipins are the only lysosomal proteins within the TRP superfamily. Mutations in the gene coding for TRPML1 result in a lysosomal storage disorder (LSD). This review summarizes the current knowledge related to this protein and the rest of the mucolipin family.

  20. A lysosome-centered view of nutrient homeostasis.

    Science.gov (United States)

    Mony, Vinod K; Benjamin, Shawna; O'Rourke, Eyleen J

    2016-01-01

    Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks, cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their substrates by fusing with endosomes or autophagosomes, or through specialized translocation mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their substrates using up to 60 different soluble hydrolases and release their products either to the cytosol through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a signaling hub that can integrate and relay external and internal nutritional information to promote cellular and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to the past and future discoveries of how the lysosome simultaneously executes and controls cellular homeostasis.

  1. ASSAYING OF AUTOPHAGIC PROTEIN DEGRADATION

    NARCIS (Netherlands)

    C. Bauvy; A.J. Meijer; P. Codogno

    2009-01-01

    Macroautophagy is a three-step process: (1) autophagosomes form and mature, (2) the autophagosomes fuse with lysosomes, and (3) the autophagic cargo is degraded in the lysosomes. It is this lysosomal degradation of the autophagic cargo that constitutes the autophagic flux. As in the case of metaboli

  2. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yusuke; Nada, Shigeyuki; Mori, Shunsuke; Soma-Nagae, Taeko; Oneyama, Chitose [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Masato, E-mail: okadam@biken.osaka-u.ac.jp [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. Black-Right-Pointing-Pointer We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. Black-Right-Pointing-Pointer The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. Black-Right-Pointing-Pointer Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. Black-Right-Pointing-Pointer The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome-lysosome fusion, which is required for processing of various macromolecules.

  3. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity

    Directory of Open Access Journals (Sweden)

    Stern Stephan T

    2012-06-01

    Full Text Available Abstract The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  4. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity.

    Science.gov (United States)

    Stern, Stephan T; Adiseshaiah, Pavan P; Crist, Rachael M

    2012-06-14

    The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy) pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  5. Tumor necrosis factor (TNF) receptor-associated factor 7 is required for TNFα-induced Jun NH2-terminal kinase activation and promotes cell death by regulating polyubiquitination and lysosomal degradation of c-FLIP protein.

    Science.gov (United States)

    Scudiero, Ivan; Zotti, Tiziana; Ferravante, Angela; Vessichelli, Mariangela; Reale, Carla; Masone, Maria C; Leonardi, Antonio; Vito, Pasquale; Stilo, Romania

    2012-02-17

    The pro-inflammatory cytokine tumor necrosis factor (TNF) α signals both cell survival and death. The biological outcome of TNFα treatment is determined by the balance between survival factors and Jun NH(2)-terminal kinase (JNK) signaling, which promotes cell death. Here, we show that TRAF7, the most recently identified member of the TNF receptor-associated factors (TRAFs) family of proteins, is essential for activation of JNK following TNFα stimulation. We also show that TRAF6 and TRAF7 promote unconventional polyubiquitination of the anti-apoptotic protein c-FLIP(L) and demonstrate that degradation of c-FLIP(L) also occurs through a lysosomal pathway. RNA interference-mediated depletion of TRAF7 correlates with increased c-FLIP(L) expression level, which, in turn, results in resistance to TNFα cytotoxicity. Collectively, our results indicate an important role for TRAF7 in the activation of JNK following TNFα stimulation and clearly point to an involvement of this protein in regulating the turnover of c-FLIP and, consequently, cell death.

  6. Tumor Necrosis Factor (TNF) Receptor-associated Factor 7 Is Required for TNFα-induced Jun NH2-terminal Kinase Activation and Promotes Cell Death by Regulating Polyubiquitination and Lysosomal Degradation of c-FLIP Protein*

    Science.gov (United States)

    Scudiero, Ivan; Zotti, Tiziana; Ferravante, Angela; Vessichelli, Mariangela; Reale, Carla; Masone, Maria C.; Leonardi, Antonio; Vito, Pasquale; Stilo, Romania

    2012-01-01

    The pro-inflammatory cytokine tumor necrosis factor (TNF) α signals both cell survival and death. The biological outcome of TNFα treatment is determined by the balance between survival factors and Jun NH2-terminal kinase (JNK) signaling, which promotes cell death. Here, we show that TRAF7, the most recently identified member of the TNF receptor-associated factors (TRAFs) family of proteins, is essential for activation of JNK following TNFα stimulation. We also show that TRAF6 and TRAF7 promote unconventional polyubiquitination of the anti-apoptotic protein c-FLIPL and demonstrate that degradation of c-FLIPL also occurs through a lysosomal pathway. RNA interference-mediated depletion of TRAF7 correlates with increased c-FLIPL expression level, which, in turn, results in resistance to TNFα cytotoxicity. Collectively, our results indicate an important role for TRAF7 in the activation of JNK following TNFα stimulation and clearly point to an involvement of this protein in regulating the turnover of c-FLIP and, consequently, cell death. PMID:22219201

  7. [Micro-insemination with intracytoplasmic sperm injection].

    Science.gov (United States)

    Andersen, A G; Ziebe, S; Andersen, A N

    1996-11-18

    Intracytoplasmic sperm injection (ICSI) is now established in the treatment of infertility. Fertilization is achieved by microinjection of a single spermatozoon into the ooplasma. Oligoasthenoteratozoospermia is the main indication, but ICSI is also used in cases of failed fertilization after standard IVF, retrograde ejaculation and male immunological infertility. In obstructive azoospermia ICSI is performed after aspiration of epididymal or testicular spermatozoa. In some anejaculatoric men spermatozon can be obtained following penile vibration or electro-stimulation, but they often have poor motility and ICSI may be used for fertilization. ICSI may also be used after thawing of semen cryopreserved prior to treatment of a malignant disease. Since 1991 the ICSI technique has been improved, and today the pregnancy rates are at least as good as after standard IVF. So far, studies of the foetuses and children born after ICSI show that the number of malformations and abnormal karyotypes is within the range of the normal population.

  8. Endosome-lysosomes and neurodegeneration.

    Science.gov (United States)

    Mayer, R J; Tipler, C; Laszlo, L; Arnold, J; Lowe, J; Landon, M

    1994-01-01

    A number of the major human and animal neurodegenerative diseases, such as Alzheimer's disease and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins. Although our knowledge concerning these diseases is increasing, they remain largely untreatable. Recently, attention has focussed on the mechanisms of production of different types of amyloid and the likely involvement within cells of acid compartments called endosome-lysosomes. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials. These subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Common features of the disease processes give new direction to therapeutic intervention.

  9. Lysosome/lipid droplet interplay in metabolic diseases.

    Science.gov (United States)

    Dugail, Isabelle

    2014-01-01

    Lysosomes and lipid droplets are generally considered as intracellular compartments with divergent roles in cell metabolism, lipid droplets serving as lipid reservoirs in anabolic pathways, whereas lysosomes are specialized in the catabolism of intracellular components. During the last few years, new insights in the biology of lysosomes has challenged this view by providing evidence for the importance of lysosome recycling as a sparing mechanism to maintain cellular fitness. On the other hand the understanding of lipid droplets has evolved from an inert intracellular deposit toward the status of an intracellular organelle with dynamic roles in cellular homeostasis beyond storage. These unrelated aspects have also recently converged in the finding of unexpected lipid droplet/lysosome communication through autophagy, and the discovery of lysosome-mediated lipid droplet degradation called lipopagy. Furthermore, adipocytes which are professional cells for lipid droplet formation were also shown to be active in peptide antigen presentation a pathway requiring lysosomal activity. The potential importance of lipid droplet/lysosome interplay is discussed in the context of metabolic diseases and the setting of chronic inflammation.

  10. Intracytoplasmic sperm injection (ICSI) and chromosomally abnormal spermatozoa

    NARCIS (Netherlands)

    P.A. in 't Veld; F.J.M. Broekmans (Frank); H.F. de France; P.L. Pearson; M.H. Pieters; R.J. van Kooij

    1997-01-01

    textabstractAn infertile couple was referred for intracytoplasmic sperm injection (ICSI) because of primary infertility and oligoasthenoteratozoospermia (OAT) in the male. It was observed that although the sperm cells presented with an unusual head size and multiple tai

  11. Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH.

    Science.gov (United States)

    Lu, Yingying; Hao, Bai-Xia; Graeff, Richard; Wong, Connie W M; Wu, Wu-Tian; Yue, Jianbo

    2013-08-16

    Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca(2+) mobilizing messengers, elicits Ca(2+) release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca(2+) signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression.

  12. Inhibition of lysosomal degradation rescues pentamidine-mediated decreases of K(IR)2.1 ion channel expression but not that of K(v)11.1.

    Science.gov (United States)

    Nalos, Lukas; de Boer, Teun P; Houtman, Marien J C; Rook, Martin B; Vos, Marc A; van der Heyden, Marcel A G

    2011-02-10

    The antiprotozoal drug pentamidine inhibits two types of cardiac rectifier potassium currents, which can precipitate life-threatening arrhythmias. Here, we use pentamidine as a tool to investigate whether a single drug affects trafficking of two structurally different potassium channels by identical or different mechanisms, and whether the adverse drug effect can be suppressed in a channel specific fashion. Whole cell patch clamp, Western blot, real time PCR, and confocal laser scanning microscopy were used to determine potassium current density, ion channel protein levels, mRNA expression levels, and subcellular localization, respectively. We demonstrate that pentamidine inhibits delayed (I(Kr)) and inward (I(K1)) rectifier currents in cultured adult canine cardiomyocytes. In HEK293 cells, pentamidine inhibits functional K(v)11.1 channels, responsible for I(Kr), by interfering at the level of full glycosylation, yielding less mature form of K(v)11.1 at the plasma membrane. In contrast, total K(IR)2.1 expression levels, underlying I(K1), are strongly decreased, which cannot be explained from mRNA expression levels. No changes in molecular size of K(IR)2.1 protein were observed, excluding interference in overt glycosylation. Remaining K(IR)2.1 protein is mainly expressed at the plasma membrane. Inhibition of lysosomal protein degradation is able to partially rescue K(IR)2.1 levels, but not those of K(v)11.1. We conclude that 1) a single drug can interfere in cardiac potassium channel trafficking in a subtype specific mode and 2) adverse drug effects can be corrected in a channel specific manner.

  13. Neuroinflammatory paradigms in lysosomal storage diseases

    Directory of Open Access Journals (Sweden)

    Megan Elizabeth Bosch

    2015-10-01

    Full Text Available Lysosomal storage diseases (LSDs include approximately 70 distinct disorders that collectively account for 14% of all inherited metabolic diseases. LSDs are caused by mutations in various enzymes/proteins that disrupt lysosomal function, which impairs macromolecule degradation following endosome-lysosome and phagosome-lysosome fusion and autophagy, ultimately disrupting cellular homeostasis. LSDs are pathologically typified by lysosomal inclusions composed of a heterogeneous mixture of various proteins and lipids that can be found throughout the body. However, in many cases the CNS is dramatically affected, which may result from heightened neuronal vulnerability based on their post-mitotic state. Besides intrinsic neuronal defects, another emerging factor common to many LSDs is neuroinflammation, which may negatively impact neuronal survival and contribute to neurodegeneration. Microglial and astrocyte activation is a hallmark of many LSDs that affect the CNS, which often precedes and predicts regions where eventual neuron loss will occur. However, the timing, intensity, and duration of neuroinflammation may ultimately dictate the impact on CNS homeostasis. For example, a transient inflammatory response following CNS insult/injury can be neuroprotective, as glial cells attempt to remove the insult and provide trophic support to neurons. However, chronic inflammation, as seen in several LSDs, can promote neurodegeneration by creating a neurotoxic environment due to elevated levels of cytokines, chemokines, and pro-apoptotic molecules. Although neuroinflammation has been reported in several LSDs, the cellular basis and mechanisms responsible for eliciting neuroinflammatory pathways are just beginning to be defined. This review highlights the role of neuroinflammation in select LSDs and its potential contribution to neuron loss.

  14. Disruption of Lysosome Function Promotes Tumor Growth and Metastasis in Drosophila *

    OpenAIRE

    Chi, Congwu; Zhu, Huanhu; Han,Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-01-01

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the RasV12 cells....

  15. Autophagic flux promotes cisplatin resistance in human ovarian carcinoma cells through ATP-mediated lysosomal function.

    Science.gov (United States)

    Ma, Liwei; Xu, Ye; Su, Jing; Yu, Huimei; Kang, Jinsong; Li, Hongyan; Li, Xiaoning; Xie, Qi; Yu, Chunyan; Sun, Liankun; Li, Yang

    2015-11-01

    Lysosomes are involved in promoting resistance of cancer cells to chemotherapeutic agents. However, the mechanisms underlying lysosomal influence of cisplatin resistance in ovarian cancer remain incompletely understood. We report that, compared with cisplatin-sensitive SKOV3 cells, autophagy increases in cisplatin-resistant SKOV3/DDP cells treated with cisplatin. Inhibition of early-stage autophagy enhanced cisplatin-mediated cytotoxicity in SKOV3/DDP cells, but autophagy inhibition at a later stage by disturbing autophagosome-lysosome fusion is more effective. Notably, SKOV3/DDP cells contained more lysosomes than cisplatin-sensitive SKOV3 cells. Abundant lysosomes and lysosomal cathepsin D activity were required for continued autolysosomal degradation and maintenance of autophagic flux in SKOV3/DDP cells. Furthermore, SKOV3/DDP cells contain abundant lysosomal ATP required for lysosomal function, and inhibition of lysosomal ATP accumulation impaired lysosomal function and blocked autophagic flux. Therefore, our findings suggest that lysosomes at least partially contribute to cisplatin resistance in ovarian cancer cells through their role in cisplatin-induced autophagic processes, and provide insight into the mechanism of cisplatin resistance in tumors.

  16. Intracytoplasmic sperm injection (ICSI)--what are the risks?

    Science.gov (United States)

    Alukal, Joseph P; Lamb, Dolores J

    2008-05-01

    In vitro fertilization used in combination with intracytoplasmic sperm injection allows otherwise sterile couples to become parents. Despite recent studies on the safety of these technologies, there is still only an incomplete picture of the risks associated with the usage of these assisted reproductive techniques to offspring. The risk of multiple gestations continues to be of major concern because of its association with low birth weight, preterm delivery, and increased perinatal mortality. This article outlines the risks associated with in vitro fertilization/intracytoplasmic sperm injection as a well-defined treatment for couples with severe male factor infertility.

  17. Glycogenosis type II : cloning and characterization of the human lysosomal α-glucosidase gene

    NARCIS (Netherlands)

    E.H. Hoefsloot (Lies)

    1991-01-01

    textabstractGlycogenosis type II is a lysosomal storage disorder. Characteristic features are heart failure and generalized muscle weakness. The disease is caused by the inherited deficiency of acid α-glucosidase, the enzyme responsible for the degradation of lysosomal glycogen. The aim of the work

  18. Cancer-associated lysosomal changes

    DEFF Research Database (Denmark)

    Kallunki, T; Olsen, O D; Jaattela, Marja

    2013-01-01

    Rapidly dividing and invasive cancer cells are strongly dependent on effective lysosomal function. Accordingly, transformation and cancer progression are characterized by dramatic changes in lysosomal volume, composition and cellular distribution. Depending on one's point of view, the cancer-asso......:10.1038/onc.2012.292....

  19. LYSOSOMAL DISRUPTION BY BACTERIAL TOXINS

    Science.gov (United States)

    Bernheimer, Alan W.; Schwartz, Lois L.

    1964-01-01

    Bernheimer, Alan W. (New York University School of Medicine, New York), and Lois L. Schwartz. Lysosomal disruption by bacterial toxins. J. Bacteriol. 87:1100–1104. 1964.—Seventeen bacterial toxins were examined for capacity (i) to disrupt rabbit leukocyte lysosomes as indicated by decrease in turbidity of lysosomal suspensions, and (ii) to alter rabbit liver lysosomes as measured by release of β-glucuronidase and acid phosphatase. Staphylococcal α-toxin, Clostridium perfringens α-toxin, and streptolysins O and S affected lysosomes in both systems. Staphylococcal β-toxin, leucocidin and enterotoxin, Shiga neurotoxin, Serratia endotoxin, diphtheria toxin, tetanus neurotoxin, C. botulinum type A toxin, and C. perfringens ε-toxin were not active in either system. Staphylococcal δ-toxin, C. histolyticum collagenase, crude C. perfringens β-toxin, and crude anthrax toxin caused lysosomal damage in only one of the test systems. There is a substantial correlation between the hemolytic property of a toxin and its capacity to disrupt lysosomes, lending support to the concept that erythrocytes and lysosomes are bounded by similar membranes. PMID:5874534

  20. Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose.

    Science.gov (United States)

    Jung, Minjeong; Lee, Jaemeun; Seo, Hye-Young; Lim, Ji Sun; Kim, Eun-Kyoung

    2015-01-01

    Autophagy is a lysosomal degradative pathway that plays an important role in maintaining cellular homeostasis. We previously showed that the inhibition of autophagy causes pancreatic β-cell apoptosis, suggesting that autophagy is a protective mechanism for the survival of pancreatic β-cells. The current study demonstrates that treatment with inhibitors and knockdown of the lysosomal cysteine proteases such as cathepsins B and L impair autophagy, enhancing the caspase-dependent apoptosis of INS-1 cells and islets upon exposure to high concentration of glucose. Interestingly, treatment with cathepsin B and L inhibitors prevented the proteolytic processing of cathepsins B, D and L, as evidenced by gradual accumulation of the respective pro-forms. Of note, inhibition of aspartic cathepsins had no effect on autophagy and cell viability, suggesting the selective role of cathepsins B and L in the regulation of β-cell autophagy and apoptosis. Lysosomal localization of accumulated pro-cathepsins in the presence of cathepsin B and L inhibitors was verified via immunocytochemistry and lysosomal fractionation. Lysotracker staining indicated that cathepsin B and L inhibitors led to the formation of severely enlarged lysosomes in a time-dependent manner. The abnormal accumulation of pro-cathepsins following treatment with inhibitors of cathepsins B and L suppressed normal lysosomal degradation and the processing of lysosomal enzymes, leading to lysosomal dysfunction. Collectively, our findings suggest that cathepsin defects following the inhibition of cathepsin B and L result in lysosomal dysfunction and consequent cell death in pancreatic β-cells.

  1. TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress.

    Science.gov (United States)

    Raben, Nina; Puertollano, Rosa

    2016-10-06

    In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.

  2. The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation.

    Science.gov (United States)

    Moskot, Marta; Montefusco, Sandro; Jakóbkiewicz-Banecka, Joanna; Mozolewski, Paweł; Węgrzyn, Alicja; Di Bernardo, Diego; Węgrzyn, Grzegorz; Medina, Diego L; Ballabio, Andrea; Gabig-Cimińska, Magdalena

    2014-06-13

    Genistein (5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) has been previously proposed as a potential drug for use in substrate reduction therapy for mucopolysaccharidoses, a group of inherited metabolic diseases caused by mutations leading to inefficient degradation of glycosaminoglycans (GAGs) in lysosomes. It was demonstrated that this isoflavone can cross the blood-brain barrier, making it an especially desirable potential drug for the treatment of neurological symptoms present in most lysosomal storage diseases. So far, no comprehensive genomic analyses have been performed to elucidate the molecular mechanisms underlying the effect elicited by genistein. Therefore, the aim of this work was to identify the genistein-modulated gene network regulating GAG biosynthesis and degradation, taking into consideration the entire lysosomal metabolism. Our analyses identified over 60 genes with known roles in lysosomal biogenesis and/or function whose expression was enhanced by genistein. Moreover, 19 genes whose products are involved in both GAG synthesis and degradation pathways were found to be remarkably differentially regulated by genistein treatment. We found a regulatory network linking genistein-mediated control of transcription factor EB (TFEB) gene expression, TFEB nuclear translocation, and activation of TFEB-dependent lysosome biogenesis to lysosomal metabolism. Our data indicate that the molecular mechanism of genistein action involves not only impairment of GAG synthesis but more importantly lysosomal enhancement via TFEB. These findings contribute to explaining the beneficial effects of genistein in lysosomal storage diseases as well as envisage new therapeutic approaches to treat these devastating diseases.

  3. Cancer-associated lysosomal changes

    DEFF Research Database (Denmark)

    Kallunki, T; Olsen, O D; Jaattela, Marja

    2013-01-01

    Rapidly dividing and invasive cancer cells are strongly dependent on effective lysosomal function. Accordingly, transformation and cancer progression are characterized by dramatic changes in lysosomal volume, composition and cellular distribution. Depending on one's point of view, the cancer-associated......-targeting anti-cancer drugs. In this review we compile our current knowledge on cancer-associated changes in lysosomal composition and discuss the consequences of these alterations to cancer progression and the possibilities they can bring to cancer therapy.Oncogene advance online publication, 9 July 2012; doi...

  4. A group-specific inhibitor of lysosomal cysteine proteinases selectively inhibits both proteolytic degradation and presentation of the antigen dinitrophenyl-poly-L-lysine by guinea pig accessory cells to T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    of antigens by guinea pig accessory cells. The proteinase inhibitor benzyloxycarbonyl-phenylalanylalanine-diazomethyl-ketone, which selectively inhibits cysteine proteinases, was used to block this set of enzymes in cultured cells. We demonstrate that the selective inhibition of the cysteine proteinases...... inhibitor. Another inhibitor, pepstatin A, which selectively blocks aspartic proteinases, did not block the presentation of dinitrophenyl-poly-L-lysine. The results identify cysteine proteinases, probably lysosomal, as one of the groups of enzymes involved in antigen processing....

  5. Importance of lysosomal cysteine proteases in lung disease

    Directory of Open Access Journals (Sweden)

    Chapman Harold A

    2000-11-01

    Full Text Available Abstract The human lysosomal cysteine proteases are a family of 11 proteases whose members include cathepsins B, C, H, L, and S. The biology of these proteases was largely ignored for decades because of their lysosomal location and the belief that their function was limited to the terminal degradation of proteins. In the past 10 years, this view has changed as these proteases have been found to have specific functions within cells. This review highlights some of these functions, specifically their roles in matrix remodeling and in regulating the immune response, and their relationship to lung diseases.

  6. Lysosomal Storage Disorders and Malignancy

    Directory of Open Access Journals (Sweden)

    Gregory M. Pastores

    2017-02-01

    Full Text Available Lysosomal storage disorders (LSDs are infrequent to rare conditions caused by mutations that lead to a disruption in the usual sequential degradation of macromolecules or their transit within the cell. Gaucher disease (GD, a lipidosis, is among the most common LSD, with an estimated incidence of 1 in 40,000 among the Caucasian, non-Jewish population. Studies have indicated an increased frequency of polyclonal and monoclonal gammopathy among patients with GD. It has been shown that two major sphingolipids that accumulate in GD, namely, β-glucosylceramide 22:0 (βGL1-22 and glucosylsphingosine (LGL1, can be recognized by a distinct subset of CD1d-restricted human and murine type II natural killer T (NKT cells. Investigations undertaken in an affected mouse model revealed βGL1-22- and LGL1-specific NKT cells were present and constitutively promoted the expression of a T-follicular helper (TFH phenotype; injection of these lipids led to downstream induction of germinal center B cells, hypergammaglobulinemia, and the production of antilipid antibodies. Subsequent studies have found clonal immunoglobulin in 33% of sporadic human monoclonal gammopathies is also specific for the lysolipids LGL1 and lysophosphatidylcholine (LPC. Furthermore, substrate reduction ameliorated GD-associated gammopathy in mice. It had been hypothesized that chronic antigenic stimulation by the abnormal lipid storage and associated immune dysregulation may be the underlying mechanism for the increased incidence of monoclonal and polyclonal gammopathies, as well as an increased incidence of multiple myeloma in patients with GD. Current observations support this proposition and illustrate the value of investigations into rare diseases, which as ‘experiments of nature’ may provide insights into conditions found in the general population that continue to remain incompletely understood.

  7. Degradation of paternal mitochondria after fertilization: implications for heteroplasmy, assisted reproductive technologies and mtDNA inheritance.

    Science.gov (United States)

    Sutovsky, Peter; Van Leyen, Klaus; McCauley, Tod; Day, Billy N; Sutovsky, Miriam

    2004-01-01

    Maternal inheritance of mitochondrial DNA has long been regarded as a major paradox in developmental biology. While some confusion may still persist in popular science, research data clearly document that the paternal sperm-borne mitochondria of most mammalian species enter the ooplasm at fertilization and are specifically targeted for degradation by the resident ubiquitin system. Ubiquitin is a proteolytic chaperone that forms covalently linked polyubiquitin chains on the targeted proteinaceous substrates. The polyubiquitin tag redirects the substrate proteins to a 26-S proteasome, a multi-subunit proteolytic organelle. Thus, specific proteasomal inhibitors reversibly block sperm mitochondrial degradation in ooplasm. Lysosomal degradation and the activity of membrane-lipoperoxidating enzyme 15-lipoxygenase (15-LOX) may also contribute to sperm mitochondrial degradation in the ooplasm, but probably is not crucial. Prohibitin, the major protein of the inner mitochondrial membrane, appears to be ubiquitinated in the sperm mitochondria. Occasional occurrence of paternal inheritance of mtDNA has been suggested in mammals including humans. While most such evidence has been widely disputed, it warrants further examination. Of particular concern is the documented heteroplasmy, i.e. mixed mtDNA inheritance after ooplasmic transplantation. Intracytoplasmic sperm injection (ICSI) has inherent potential for delaying the degradation of sperm mitochondria. However, paternal mtDNA inheritance after ICSI has not been documented so far.

  8. Salinomycin kills cancer stem cells by sequestering iron in lysosomes

    Science.gov (United States)

    Mai, Trang Thi; Hamaï, Ahmed; Hienzsch, Antje; Cañeque, Tatiana; Müller, Sebastian; Wicinski, Julien; Cabaud, Olivier; Leroy, Christine; David, Amandine; Acevedo, Verónica; Ryo, Akihide; Ginestier, Christophe; Birnbaum, Daniel; Charafe-Jauffret, Emmanuelle; Codogno, Patrice; Mehrpour, Maryam; Rodriguez, Raphaël

    2017-10-01

    Cancer stem cells (CSCs) represent a subset of cells within tumours that exhibit self-renewal properties and the capacity to seed tumours. CSCs are typically refractory to conventional treatments and have been associated to metastasis and relapse. Salinomycin operates as a selective agent against CSCs through mechanisms that remain elusive. Here, we provide evidence that a synthetic derivative of salinomycin, which we named ironomycin (AM5), exhibits a more potent and selective activity against breast CSCs in vitro and in vivo, by accumulating and sequestering iron in lysosomes. In response to the ensuing cytoplasmic depletion of iron, cells triggered the degradation of ferritin in lysosomes, leading to further iron loading in this organelle. Iron-mediated production of reactive oxygen species promoted lysosomal membrane permeabilization, activating a cell death pathway consistent with ferroptosis. These findings reveal the prevalence of iron homeostasis in breast CSCs, pointing towards iron and iron-mediated processes as potential targets against these cells.

  9. Gaucher disease: a lysosomal neurodegenerative disorder.

    Science.gov (United States)

    Huang, W J; Zhang, X; Chen, W W

    2015-04-01

    Gaucher disease is a multisystemic disorder that affects men and woman in equal numbers and occurs in all ethnic groups at any age with racial variations and an estimated worldwide incidence of 1/75,000. It is caused by a genetic deficient activity of the lysosomal enzyme glucocerebrosidase due to mutations in the β-glucocerebrosidase gene, and resulting in lack of glucocerebroside degradation. The subsequent accumulation of glucocerebroside in lysosomes of tissue macrophages primarily in the liver, bone marrow and spleen, causes damage in haematological, skeletal and nervous systems. The clinical manifestations show a high degree of variability with symptoms that varies according to organs involved. In many cases, these disorders do not correlate with mutations in the β-glucocerebrosidase gene. Although several mutations have been identified as responsible for the deficient activity of glucocerebrosidase, mechanisms by which this enzymatic defect leads to Gaucher disease remain poorly understood. Recent reports indicate the implication of complex mechanisms, including enzyme deficiency, substrate accumulation, unfolded protein response, and macrophage activation. Further elucidating these mechanisms will advance understanding of Gaucher disease and related disorders.

  10. Ubiquitin trafficking to the lysosome: keeping the house tidy and getting rid of unwanted guests.

    Science.gov (United States)

    Purdy, Georgiana E; Russell, David G

    2007-01-01

    Bacterial killing by autophagic delivery to the lysosomal compartment has been shown for Mycobacteria, Streptococcus, Shigella, Legionella and Salmonella, indicating an important role for this conserved trafficking pathway for the control of intracellular bacterial pathogens.(1-5) In a recent study we found that solubilized lysosomes isolated from bone marrow-derived macrophages had potent antibacterial properties against M. tuberculosis and M. smegmatis that were associated with ubiquitin and ubiquitin-derived peptides. We propose that ubiquitinated proteins are delivered to the lysosomal compartment, where degradation by lysosomal proteinases generates ubiquitin-derived peptides with antimycobacterial properties. This surprising finding provokes a number of questions regarding the nature and trafficking of ubiquitin and ubiquitin-modified proteins in mammalian cells. We discuss the possible role(s) that the multivesicular body (MVB), the late endosome and the autophagosome may play in trafficking of ubiquitinated proteins to the lysosome.

  11. Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis

    Directory of Open Access Journals (Sweden)

    Fares Hanna

    2010-06-01

    Full Text Available Abstract Background CUP-5 is a Transient Receptor Potential protein in C. elegans that is the orthologue of mammalian TRPML1. Loss of TRPML1 results in the lysosomal storage disorder Mucolipidosis type IV. Loss of CUP-5 results in embryonic lethality and the accumulation of enlarged yolk granules in developing intestinal cells. The embryonic lethality of cup-5 mutants is rescued by mutations in mrp-4, which is required for gut granule differentiation. Gut granules are intestine-specific lysosome-related organelles that accumulate birefringent material. This link between CUP-5 and gut granules led us to determine the roles of CUP-5 in lysosome and gut granule biogenesis in developing intestinal cells. Results We show that CUP-5 protein localizes to lysosomes, but not to gut granules, in developing intestinal cells. Loss of CUP-5 results in defects in endo-lysosomal transport in developing intestinal cells of C. elegans embryos. This ultimately leads to the appearance of enlarged terminal vacuoles that show defective lysosomal degradation and that have lysosomal and endosomal markers. In contrast, gut granule biogenesis is normal in the absence of CUP-5. Furthermore, loss of CUP-5 does not result in inappropriate fusion or mixing of content between lysosomes and gut granules. Conclusions Using an in vivo model of MLIV, we show that there is a defect in lysosomal transport/biogenesis that is earlier than the presumed function of TRPML1 in terminal lysosomes. Our results indicate that CUP-5 is required for the biogenesis of lysosomes but not of gut granules. Thus, cellular phenotypes in Mucolipidosis type IV are likely not due to defects in lysosome-related organelle biogenesis, but due to progressive defects in lysosomal transport that lead to severe lysosomal dysfunction.

  12. Biomarkers in Lysosomal Storage Diseases

    Directory of Open Access Journals (Sweden)

    Joaquin Bobillo Lobato

    2016-12-01

    Full Text Available A biomarker is generally an analyte that indicates the presence and/or extent of a biological process, which is in itself usually directly linked to the clinical manifestations and outcome of a particular disease. The biomarkers in the field of lysosomal storage diseases (LSDs have particular relevance where spectacular therapeutic initiatives have been achieved, most notably with the introduction of enzyme replacement therapy (ERT. There are two main types of biomarkers. The first group is comprised of those molecules whose accumulation is directly enhanced as a result of defective lysosomal function. These molecules represent the storage of the principal macro-molecular substrate(s of a specific enzyme or protein, whose function is deficient in the given disease. In the second group of biomarkers, the relationship between the lysosomal defect and the biomarker is indirect. In this group, the biomarker reflects the effects of the primary lysosomal defect on cell, tissue, or organ functions. There is no “gold standard” among biomarkers used to diagnosis and/or monitor LSDs, but there are a number that exist that can be used to reasonably assess and monitor the state of certain organs or functions. A number of biomarkers have been proposed for the analysis of the most important LSDs. In this review, we will summarize the most promising biomarkers in major LSDs and discuss why these are the most promising candidates for screening systems.

  13. Exploring the Cytoskeleton During Intracytoplasmic Sperm Injection in Humans

    Science.gov (United States)

    Rawe, Vanesa Y.; Chemes, Héctor

    Understanding the cellular events during fertilization in mammals is a major challenge that can contribute to the improvement of future infertility treatments in humans and reproductive performance in farm animals. Of special interest is the role of the oocyte and sperm cytoskeleton during the initial interaction between gametes. The aim of this chapter is to describe methods for studying cytoskeletal features during in vitro fertilization after intracytoplasmic sperm injection (ICSI) in humans. The following protocols will provide a detailed description of how to perform immunodetection and imaging of human eggs, zygotes, and sperm by fluorescence (confocal and epifluorescence) and electron microscopy.

  14. Reduction of mutant huntingtin accumulation and toxicity by lysosomal cathepsins D and B in neurons

    OpenAIRE

    Ouyang Xiaosen; Liang Qiuli; Schneider Lonnie; Zhang Jianhua

    2011-01-01

    Abstract Background Huntington's disease is caused by aggregation of mutant huntingtin (mHtt) protein containing more than a 36 polyQ repeat. Upregulation of macroautophagy was suggested as a neuroprotective strategy to degrade mutant huntingtin. However, macroautophagy initiation has been shown to be highly efficient in neurons whereas lysosomal activities are rate limiting. The role of the lysosomal and other proteases in Huntington is not clear. Some studies suggest that certain protease a...

  15. Observation of intracellular interactions between DNA origami and lysosomes by the fluorescence localization method.

    Science.gov (United States)

    Fu, Meifang; Dai, Luru; Jiang, Qiao; Tang, Yunqing; Zhang, Xiaoming; Ding, Baoquan; Li, Junbai

    2016-07-28

    We obtained the fluorescence localization images of tube DNA origami nanostructures in NIH 3T3 cells for the first time. The fluorescence localization images of tube DNA origami nanostructures and TIRF images of lysosomes were combined and they revealed the detailed interactions between the two structures. Quantitative analysis illustrated that the tube origami can be captured as well as degraded by lysosomes with time.

  16. Fertilization after intracytoplasmic sperm injection with cryopreserved testicular spermatozoa.

    Science.gov (United States)

    Romero, J; Remohí, J; Mínguez, Y; Rubio, C; Pellicer, A; Gil-Salom, M

    1996-04-01

    To assess the possibility of cryopreserving testicular tissue extracted sperm for intracytoplasmic sperm injection (ICSI). A report of two cases. Our study was approved by the Ethical Committee at the Instituto Valenciano de Infertilidad. In vitro fertilization program at the Instituto Valenciano de Infertilidad. Two azoospermic patients with severe spermatogenic failure but with focal spermatogenesis on testicular biopsies. In both cases, a first ICSI attempt with fresh testicular biopsy extracted sperm was unsuccessful. Cryopreservation of testicular spermatozoa in 100-micro L "pills." Intracytoplasmic sperm injection with thawed testicular spermatozoa. Fertilization rate, cleavage rate, embryo quality, clinical pregnancy. Fertilization rates were 36 percent and 100 percent after ICSI with fresh testicular spermatozoa, and 63 percent and 57 percent after ICSI with cryopreserved testicular sperm. In both cases, cleavage rates and embryo quality were similar when using fresh and cryopreserved testicular spermatozoa. No clinical pregnancies were achieved. High fertilization rates can be obtained after ICSI with frozen-thawed testicular tissue extracted spermatozoa. Cryopreservation of testicular sperm may avoid repetition of testicular biopsies in azoospermic patients in whom the only source of spermatozoa is the testicle.

  17. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  18. Brief exposure to copper activates lysosomal exocytosis.

    Science.gov (United States)

    Peña, Karina; Coblenz, Jessica; Kiselyov, Kirill

    2015-04-01

    Copper (Cu) is essential mineral, but its toxicity necessitates existence of powerful machinery responsible for the extraction of excess Cu from the cell. Cu exposure was recently shown to induce the translocation of Cu pump ATP7B to the lysosomes followed by lysosomal exocytosis. Here we sought to investigate the mechanisms underlying the effect of Cu on lysosomal exocytosis. We found that brief exposure to Cu activates lysosomal exocytosis, which was measured as a release of the lysosomal digestive enzyme β-hexosaminidase (β-hex) into the extracellular medium and by the presence lysosomal protein LAMP1 at the plasma membrane. Such release depends on calcium (Ca) and on the lysosomal SNARE VAMP7. ATP7B knockdown using RNAi suppressed the basal lysosomal exocytosis, but did not affect the ability of Cu to activate it. ATP7B knockdown was associated with sustained oxidative stress. The removal of Ca from the extracellular medium suppressed the Cu-dependent component of the lysosomal exocytosis. We propose that Cu promotes lysosomal exocytosis by facilitating a Ca-dependent step of the lysosomal exocytosis.

  19. Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting La degradación intracelular de proteínas: Desde una vaga idea, a través del lisosoma y el sistema ubiquitina-proteosoma a las enfermedades humanas y el blanco de las drogas

    Directory of Open Access Journals (Sweden)

    Aaron Ciechanover

    2010-04-01

    Full Text Available Between the 1950s and 1980s, scientists were focusing mostly on how the genetic code is transcribed to RNA and translated to proteins, but how proteins are degraded has remained a neglected research area. With the discovery of the lysosome by Christian de Duve it was assumed that cellular proteins are degraded within this organelle. Yet, several independent lines of experimental evidence strongly suggested that intracellular proteolysis is largely non-lysosomal, but the mechanisms involved remained obscure. The discovery of the ubiquitin-proteasome system resolved the enigma. We now recognize that degradation of intracellular proteins is involved in regulation of a broad array of cellular processes, such as cell cycle and division, regulation of transcription factors, and assurance of the cellular quality control. Not surprisingly, aberrations in the system have been implicated in the pathogenesis of human disease, such as malignancies and neurodegenerative disorders, which led subsequently to an increasing effort to develop mechanism-based drugs.Entre los años 1950 y 1980 los científicos focalizaron sus estudios sobre la forma en que el código genético es transcripto al ARN y traducido a las proteínas, dejando de lado la forma en que éstas se degradan. Con el descubrimiento de los lisosomas por Christian de Duve se asumió que las proteínas se degradaban en el interior de esa organela. Sin embargo, varias líneas de trabajo independientes sugerían fuertemente que la proteólisis intracelular era en su mayor parte no lisosómica, aunque se desconocían sus mecanismos. El descubrimiento del sistema ubiquitina-proteosoma resolvió el enigma. Ahora sabemos que la degradación intracelular de proteínas participa en la regulación de un amplio espectro de procesos celulares como la división y el ciclo celular, la regulación de los factores de transcripción y el control de la calidad celular. No es sorpresa entonces que las aberraciones

  20. Inhibitors of lysosomal cysteine proteases

    Directory of Open Access Journals (Sweden)

    Lyanna O. L.

    2011-04-01

    Full Text Available The review is devoted to the inhibitors of cysteine proteinases which are believed to be very important in many biochemical processes of living organisms. They participate in the development and progression of numerous diseases that involve abnormal protein turnover. One of the main regulators of these proteinases is their specific inhibitors: cystatins. The aim of this review was to present current knowledge about endogenous inhibitors of lysosomal cysteine proteases and their synthetic analogs.

  1. Chlamydia species-dependent differences in the growth requirement for lysosomes.

    Directory of Open Access Journals (Sweden)

    Scot P Ouellette

    Full Text Available Genome reduction is a hallmark of obligate intracellular pathogens such as Chlamydia, where adaptation to intracellular growth has resulted in the elimination of genes encoding biosynthetic enzymes. Accordingly, chlamydiae rely heavily on the host cell for nutrients yet their specific source is unclear. Interestingly, chlamydiae grow within a pathogen-defined vacuole that is in close apposition to lysosomes. Metabolically-labeled uninfected host cell proteins were provided as an exogenous nutrient source to chlamydiae-infected cells, and uptake and subsequent labeling of chlamydiae suggested lysosomal degradation as a source of amino acids for the pathogen. Indeed, Bafilomycin A1 (BafA1, an inhibitor of the vacuolar H(+/ATPase that blocks lysosomal acidification and functions, impairs the growth of C. trachomatis and C. pneumoniae, and these effects are especially profound in C. pneumoniae. BafA1 induced the marked accumulation of material within the lysosomal lumen, which was due to the inhibition of proteolytic activities, and this response inhibits chlamydiae rather than changes in lysosomal acidification per se, as cathepsin inhibitors also inhibit the growth of chlamydiae. Finally, the addition of cycloheximide, an inhibitor of eukaryotic protein synthesis, compromises the ability of lysosomal inhibitors to block chlamydial growth, suggesting chlamydiae directly access free amino acids in the host cytosol as a preferred source of these nutrients. Thus, chlamydiae co-opt the functions of lysosomes to acquire essential amino acids.

  2. DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX

    Science.gov (United States)

    Guan, J-J; Zhang, X-D; Sun, W; Qi, L; Wu, J-C; Qin, Z-H

    2015-01-01

    DRAM1 (DNA damage-regulated autophagy modulator 1) is a TP53 target gene that modulates autophagy and apoptosis. We previously found that DRAM1 increased autophagy flux by promoting lysosomal acidification and protease activation. However, the molecular mechanisms by which DRAM1 regulates apoptosis are not clearly defined. Here we report a novel pathway by which DRAM1 regulates apoptosis involving BAX and lysosomes. A549 or HeLa cells were treated with the mitochondrial complex II inhibitor, 3-nitropropionic acid (3NP), or an anticancer drug, doxorubicin. Changes in the protein and mRNA levels of BAX and DRAM1 and the role of DRAM1 in BAX induction were determined. The interaction between DRAM1 and BAX and its effect on BAX degradation, BAX lysosomal localization, the release of cathepsin B and cytochrome c by BAX and the role of BAX in 3NP- or doxorubicin-induced cell death were studied. The results showed that BAX, a proapoptotic protein, was induced by DRAM1 in a transcription-independent manner. BAX was degraded by autophagy under basal conditions; however, its degradation was inhibited when DRAM1 expression was induced. There was a protein interaction between DRAM1 and BAX and this interaction prolonged the half-life of BAX. Furthermore, upregulated DRAM1 recruited BAX to lysosomes, leading to the release of lysosomal cathepsin B and cleavage of BID (BH3-interacting domain death agonist). BAX mediated the release of mitochondrial cytochrome c, activation of caspase-3 and cell death partially through the lysosome-cathepsin B-tBid pathway. These results indicate that DRAM1 regulates apoptosis by inhibiting BAX degradation. In addition to mitochondria, lysosomes may also be involved in BAX-initiated apoptosis. PMID:25633293

  3. Selection of physiological spermatozoa during intracytoplasmic sperm injection.

    Science.gov (United States)

    Torki-Boldaji, B; Tavalaee, M; Bahadorani, M; Nasr-Esfahani, M H

    2017-02-01

    Sperm genomic integrity has a significant effect on intracytoplasmic sperm injection (ICSI) outcomes, especially post-implantation. Spermatozoa selected based on motility and morphology do not guarantee the genomic integrity of spermatozoa. Nearly fifty percentage of spermatozoa in infertile men with normal morphology present different degrees of DNA fragmentation. However, capacitated or hyperactivated spermatozoa show lower degrees of DNA fragmentation. Therefore, selection of hyperactivated spermatozoa may improve ICSI outcome. Routinely, for ICSI, fast-moving spermatozoa with A or B motility pattern are mainly selected for injection. The result of this study shows that in processed semen samples, hyperactivated spermatozoa are mainly observed in B motility pattern while, in viscous medium like polyvinylpyrrolidone (PVP), hyperactivated spermatozoa are mainly present in spermatozoa with C pattern of motility (nonprogressive). Therefore, we propose spermatozoa with C motility pattern which contains the main population of physiological or hyperactivated spermatozoa should be selected for ICSI.

  4. GNeosomes: Highly Lysosomotropic Nanoassemblies for Lysosomal Delivery.

    Science.gov (United States)

    Wexselblatt, Ezequiel; Esko, Jeffrey D; Tor, Yitzhak

    2015-01-01

    GNeosomes, lysosomotropic lipid vesicles decorated with guanidinoneomycin, can encapsulate and facilitate the cellular internalization and lysosomal delivery of cargo ranging from small molecules to high molecular weight proteins, in a process that is exclusively dependent on cell surface glycosaminoglycans. Their cellular uptake mechanism and co-localization with lysosomes, as well as the delivery, release, and activity of internalized cargo, are quantified. GNeosomes are proposed as a universal platform for lysosomal delivery with potential as a basic research tool and a therapeutic vehicle.

  5. Endosome-lysosomes, ubiquitin and neurodegeneration.

    Science.gov (United States)

    Mayer, R J; Tipler, C; Arnold, J; Laszlo, L; Al-Khedhairy, A; Lowe, J; Landon, M

    1996-01-01

    Before the advent of ubiquitin immunochemistry and immunogold electron microscopy, there was no known intracellular molecular commonality between neurodegenerative diseases. The application of antibodies which primarily detect ubiquitin protein conjugates has shown that all of the human and animal idiopathic and transmissible chronic neurodegenerative diseases, (including Alzheimer's disease (AD), Lewy body disease (LBD), amyotrophic lateral sclerosis (ALS), Creutzfeldt-Jakob disease (CJD) and scrapie) are related by some form of intraneuronal inclusion which contains ubiquitin protein conjugates. In addition, disorders such as Alzheimer's disease, CJD and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins which may be associated with cytoskeletal reorganisation. Although our knowledge about these diseases is increasing, they remain largely untreatable. Recently, attention has focused on the mechanisms of production of different types of amyloid and the likely involvement within cells of the endosome-lysosome system, organelles which are immuno-positive for ubiquitin protein conjugates. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials or their precursors which subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Such common features of the disease processes give new direction to therapeutic intervention.

  6. Case report: epithelial intracytoplasmic herpes viral inclusions associated with an outbreak of duck virus enteritis

    Science.gov (United States)

    Barr, B.C.; Jessup, David A.; Docherty, Douglas E.; Lownestine, L.J.

    1992-01-01

    Several muscovy ducks from a free-roaming flock of 65 muscovy and mallard ducks died over a 3-week period. Three muscovy ducks were necropsied. Gross and microscopic changes were compatible with duck virus enteritis, and the virus was isolated. In addition to intranuclear viral inclusion bodies in several tissues, intracytoplasmic inclusion bodies were present in esophageal and cloacal epithelium, By electron microscopy, the membrane-bound intracytoplasmic inclusions were found to contain enveloped herpesvirus, and nuclei contained herpes viral nucleocapsids.

  7. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation.

    Science.gov (United States)

    Wang, Wuyang; Gao, Qiong; Yang, Meimei; Zhang, Xiaoli; Yu, Lu; Lawas, Maria; Li, Xinran; Bryant-Genevier, Marthe; Southall, Noel T; Marugan, Juan; Ferrer, Marc; Xu, Haoxing

    2015-03-17

    Upon nutrient starvation, autophagy digests unwanted cellular components to generate catabolites that are required for housekeeping biosynthesis processes. A complete execution of autophagy demands an enhancement in lysosome function and biogenesis to match the increase in autophagosome formation. Here, we report that mucolipin-1 (also known as TRPML1 or ML1), a Ca(2+) channel in the lysosome that regulates many aspects of lysosomal trafficking, plays a central role in this quality-control process. By using Ca(2+) imaging and whole-lysosome patch clamping, lysosomal Ca(2+) release and ML1 currents were detected within hours of nutrient starvation and were potently up-regulated. In contrast, lysosomal Na(+)-selective currents were not up-regulated. Inhibition of mammalian target of rapamycin (mTOR) or activation of transcription factor EB (TFEB) mimicked a starvation effect in fed cells. The starvation effect also included an increase in lysosomal proteostasis and enhanced clearance of lysosomal storage, including cholesterol accumulation in Niemann-Pick disease type C (NPC) cells. However, this effect was not observed when ML1 was pharmacologically inhibited or genetically deleted. Furthermore, overexpression of ML1 mimicked the starvation effect. Hence, lysosomal adaptation to environmental cues such as nutrient levels requires mTOR/TFEB-dependent, lysosome-to-nucleus regulation of lysosomal ML1 channels and Ca(2+) signaling.

  8. BK Channels Alleviate Lysosomal Storage Diseases by Providing Positive Feedback Regulation of Lysosomal Ca2+ Release.

    Science.gov (United States)

    Cao, Qi; Zhong, Xi Zoë; Zou, Yuanjie; Zhang, Zhu; Toro, Ligia; Dong, Xian-Ping

    2015-05-26

    Promoting lysosomal trafficking represents a promising therapeutic approach for lysosome storage diseases. Efficient Ca(2+) mobilization from lysosomes is important for lysosomal trafficking. Ca(2+) release from lysosomes could generate a negative potential in the lumen to disturb subsequent Ca(2+) release in the absence of counter ion flux. Here we report that lysosomes express big-conductance Ca(2+)-activated potassium (BK) channels that form physical and functional coupling with the lysosomal Ca(2+) release channel, TRPML1. Ca(2+) release via TRPML1 causes BK activation, which in turn facilitates further lysosomal Ca(2+) release and membrane trafficking. Importantly, BK overexpression rescues the impaired TRPML1-mediated Ca(2+) release and abnormal lysosomal storage in cells from Niemann-Pick C1 patients. Therefore, we have identified a lysosomal K(+) channel that provides a positive feedback mechanism to facilitate TRPML1-mediated Ca(2+) release and membrane trafficking. Our findings suggest that upregulating BK may be a potential therapeutic strategy for certain lysosomal storage diseases and common neurodegenerative disorders.

  9. Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content.

    Directory of Open Access Journals (Sweden)

    Hanna Appelqvist

    Full Text Available Alterations in lipid homeostasis are implicated in several neurodegenerative diseases, although the mechanisms responsible are poorly understood. We evaluated the impact of cholesterol accumulation, induced by U18666A, quinacrine or mutations in the cholesterol transporting Niemann-Pick disease type C1 (NPC1 protein, on lysosomal stability and sensitivity to lysosome-mediated cell death. We found that neurons with lysosomal cholesterol accumulation were protected from oxidative stress-induced apoptosis. In addition, human fibroblasts with cholesterol-loaded lysosomes showed higher lysosomal membrane stability than controls. Previous studies have shown that cholesterol accumulation is accompanied by the storage of lipids such as sphingomyelin, glycosphingolipids and sphingosine and an up regulation of lysosomal associated membrane protein-2 (LAMP-2, which may also influence lysosomal stability. However, in this study the use of myriocin and LAMP deficient fibroblasts excluded these factors as responsible for the rescuing effect and instead suggested that primarily lysosomal cholesterol content determineD the cellular sensitivity to toxic insults. Further strengthening this concept, depletion of cholesterol using methyl-β-cyclodextrin or 25-hydroxycholesterol decreased the stability of lysosomes and cells became more prone to undergo apoptosis. In conclusion, cholesterol content regulated lysosomal membrane permeabilization and thereby influenced cell death sensitivity. Our data suggests that lysosomal cholesterol modulation might be used as a therapeutic strategy for conditions associated with accelerated or repressed apoptosis.

  10. Disorders of lysosomal acidification-The emerging role of v-ATPase in aging and neurodegenerative disease.

    Science.gov (United States)

    Colacurcio, Daniel J; Nixon, Ralph A

    2016-12-01

    Autophagy and endocytosis deliver unneeded cellular materials to lysosomes for degradation. Beyond processing cellular waste, lysosomes release metabolites and ions that serve signaling and nutrient sensing roles, linking the functions of the lysosome to various pathways for intracellular metabolism and nutrient homeostasis. Each of these lysosomal behaviors is influenced by the intraluminal pH of the lysosome, which is maintained in the low acidic range by a proton pump, the vacuolar ATPase (v-ATPase). New reports implicate altered v-ATPase activity and lysosomal pH dysregulation in cellular aging, longevity, and adult-onset neurodegenerative diseases, including forms of Parkinson disease and Alzheimer disease. Genetic defects of subunits composing the v-ATPase or v-ATPase-related proteins occur in an increasingly recognized group of familial neurodegenerative diseases. Here, we review the expanding roles of the v-ATPase complex as a platform regulating lysosomal hydrolysis and cellular homeostasis. We discuss the unique vulnerability of neurons to persistent low level lysosomal dysfunction and review recent clinical and experimental studies that link dysfunction of the v-ATPase complex to neurodegenerative diseases across the age spectrum. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Cross-talk between TRPML1 channel, lipids and lysosomal storage diseases.

    Science.gov (United States)

    Weiss, Norbert

    2012-03-01

    Described by the Belgian cytologist Christian De Duve in 1949,(1) lysosomes (from the Greek "digestive bodies") are ubiquitous specialized intracellular organelles that ensure the degradation/recycling of macromolecules (proteins, lipids, membranes) through the activity of specific enzymes (i.e., acid hydrolases). They receive their substrates through different internalization pathways (i.e., endocytosis, phagocytosis and autophagy) and are involved in a wide range of physiological functions from cell death and signaling to cholesterol homeostasis and plasma membrane repair.(2) In Mammals, 50 soluble lysosomal hydrolases have been described, each targeting specific substrates. They are confined in the lumen of the lysosome and require an optimum pH (i.e., pH 4.5) to work. This acidic pH compared with the slightly alkaline pH of the cytosol (i.e., ~pH 7.2) is maintained by the activity of integral lysosomal membrane proteins (LMPs, that represent the second class of lysosomal proteins), including the V-type proton (H(+))-ATPase(3) and the chloride ion channel CLC7(4) that pumps protons from the cytosol across the lysosomal membrane.

  12. Reduction of mutant huntingtin accumulation and toxicity by lysosomal cathepsins D and B in neurons

    Directory of Open Access Journals (Sweden)

    Ouyang Xiaosen

    2011-06-01

    Full Text Available Abstract Background Huntington's disease is caused by aggregation of mutant huntingtin (mHtt protein containing more than a 36 polyQ repeat. Upregulation of macroautophagy was suggested as a neuroprotective strategy to degrade mutant huntingtin. However, macroautophagy initiation has been shown to be highly efficient in neurons whereas lysosomal activities are rate limiting. The role of the lysosomal and other proteases in Huntington is not clear. Some studies suggest that certain protease activities may contribute to toxicity whereas others are consistent with protection. These discrepancies may be due to a number of mechanisms including distinct effects of the specific intermediate digestion products of mutant huntingtin generated by different proteases. These observations suggested a critical need to investigate the consequence of upregulation of individual lysosomal enzyme in mutant huntingtin accumulation and toxicity. Results In this study, we used molecular approaches to enhance lysosomal protease activities and examined their effects on mutant huntingtin level and toxicity. We found that enhanced expression of lysosomal cathepsins D and B resulted in their increased enzymatic activities and reduced both full-length and fragmented huntingtin in transfected HEK cells. Furthermore, enhanced expression of cathepsin D or B protected against mutant huntingtin toxicity in primary neurons, and their neuroprotection is dependent on macroautophagy. Conclusions These observations demonstrate a neuroprotective effect of enhancing lysosomal cathepsins in reducing mutant huntingtin level and toxicity in transfected cells. They highlight the potential importance of neuroprotection mediated by cathepsin D or B through macroautophagy.

  13. Loss of β-glucocerebrosidase activity does not affect alpha-synuclein levels or lysosomal function in neuronal cells.

    Science.gov (United States)

    Dermentzaki, Georgia; Dimitriou, Evangelia; Xilouri, Maria; Michelakakis, Helen; Stefanis, Leonidas

    2013-01-01

    To date, a plethora of studies have provided evidence favoring an association between Gaucher disease (GD) and Parkinson's disease (PD). GD, the most common lysosomal storage disorder, results from the diminished activity of the lysosomal enzyme β-glucocerebrosidase (GCase), caused by mutations in the β-glucocerebrosidase gene (GBA). Alpha-synuclein (ASYN), a presynaptic protein, has been strongly implicated in PD pathogenesis. ASYN may in part be degraded by the lysosomes and may itself aberrantly impact lysosomal function. Therefore, a putative link between deficient GCase and ASYN, involving lysosomal dysfunction, has been proposed to be responsible for the risk for PD conferred by GBA mutations. In this current work, we aimed to investigate the effects of pharmacological inhibition of GCase on ASYN accumulation/aggregation, as well as on lysosomal function, in differentiated SH-SY5Y cells and in primary neuronal cultures. Following profound inhibition of the enzyme activity, we did not find significant alterations in ASYN levels, or any changes in the clearance or formation of its oligomeric species. We further observed no significant impairment of the lysosomal degradation machinery. These findings suggest that additional interaction pathways together with aberrant GCase and ASYN must govern this complex relation between GD and PD.

  14. Intracytoplasmic sperm injection (ICSI)-mediated transgenesis in mice.

    Science.gov (United States)

    Moreira, Pedro N; Montoliu, Lluís

    2014-01-01

    Over the years many well-described techniques for the introduction of transgene DNA into host organisms have been used, including pronuclear injection, in vitro fertilization-mediated transgenesis, transfection of ES and spermatogenic cells, nuclear transfer of somatic cell nuclei, and lentiviral vectors. The application of these techniques has been limited however either by the time and effort to be executed or by their narrow efficiency with large transgenes. The greatest advantage of intracytoplasmic sperm injection (ICSI)-mediated transgenesis is precisely its ability to stably introduce large DNA molecules into the genome of host organisms with relatively high efficiency, as compared to alternative procedures. In mice, this procedure has been shown to be a reproducible method to generate transgenic offspring with a high efficiency. Recently, it proved also to be a viable method to generate transgenic rats and pigs, and as such, it is foreseen with great interest for the production of transgenic farm animals, where it would constitute an important tool for the production of recombinant proteins and livestock improvement.

  15. The birth of quail chicks after intracytoplasmic sperm injection.

    Science.gov (United States)

    Mizushima, Shusei; Hiyama, Gen; Shiba, Kogiku; Inaba, Kazuo; Dohra, Hideo; Ono, Tamao; Shimada, Kiyoshi; Sasanami, Tomohiro

    2014-10-01

    Intracytoplasmic sperm injection (ICSI) has been successfully used to produce offspring in several mammalian species including humans. However, ICSI has not been successful in birds because of the size of the egg and difficulty in mimicking the physiological polyspermy that takes place during normal fertilization. Microsurgical injection of 20 or more spermatozoa into an egg is detrimental to its survival. Here, we report that injection of a single spermatozoon with a small volume of sperm extract (SE) or its components led to the development and birth of healthy quail chicks. SE contains three factors - phospholipase Cζ (PLCZ), aconitate hydratase (AH) and citrate synthase (CS) - all of which are essential for full egg activation and subsequent embryonic development. PLCZ induces an immediate, transient Ca(2+) rise required for the resumption of meiosis. AH and CS are required for long-lasting, spiral-like Ca(2+) oscillations within the activated egg, which are essential for cell cycle progression in early embryos. We also found that co-injection of cRNAs encoding PLCZ, AH and CS support the full development of ICSI-generated zygotes without the use of SE. These findings will aid our understanding of the mechanism of avian fertilization and embryo development, as well as assisting in the manipulation of the avian genome and the production of transgenic and cloned birds.

  16. Piezo-actuated mouse intracytoplasmic sperm injection (ICSI).

    Science.gov (United States)

    Yoshida, Naoko; Perry, Anthony C F

    2007-01-01

    The mouse is a genetically tractable model organism widely used to study mammalian development and disease. However, mouse metaphase II (mII) oocytes are exquisitely sensitive and intracytoplasmic sperm injection (ICSI) with conventional pipettes generally kills them. This problem can be solved with piezo-actuated micromanipulation, in which the piezo-electric effect (crystal deformation in response to an externally applied voltage) propels a microinjection needle tip forward in a precise and rapid movement. Piezo-actuated micromanipulation enhances the penetration of membranes and matrices, and mouse ICSI is a major application. Here we describe a comprehensive, step-by-step mouse piezo ICSI protocol for non-specialists that can be completed in 2-4 h. The protocol is a basic prelude to multiple applications, including nuclear transfer cloning, spermatid injection, blastocyst injection, mII transgenesis, and streamlining micromanipulation in primates and livestock. Moreover, piezo ICSI can be used to obtain offspring from 'dead' (non-motile) sperm, enabling trivial sperm freezing protocols for mouse strain storage and shipment.

  17. Eps8 is recruited to lysosomes and subjected to chaperone-mediated autophagy in cancer cells.

    Science.gov (United States)

    Welsch, Thilo; Younsi, Alexander; Disanza, Andrea; Rodriguez, Jose Antonio; Cuervo, Ana Maria; Scita, Giorgio; Schmidt, Jan

    2010-07-15

    Eps8 controls actin dynamics directly through its barbed end capping and actin-bundling activity, and indirectly by regulating Rac-activation when engaged into a trimeric complex with Eps8-Abi1-Sos1. Recently, Eps8 has been associated with promotion of various solid malignancies, but neither its mechanisms of action nor its regulation in cancer cells have been elucidated. Here, we report a novel association of Eps8 with the late endosomal/lysosomal compartment, which is independent from actin polymerization and specifically occurs in cancer cells. Endogenous Eps8 localized to large vesicular lysosomal structures in metastatic pancreatic cancer cell lines, such as AsPC-1 and Capan-1 that display high Eps8 levels. Additionally, ectopic expression of Eps8 increased the size of lysosomes. Structure-function analysis revealed that the region encompassing the amino acids 184-535 of Eps8 was sufficient to mediate lysosomal recruitment. Notably, this fragment harbors two KFERQ-like motifs required for chaperone-mediated autophagy (CMA). Furthermore, Eps8 co-immunoprecipitated with Hsc70 and LAMP-2, which are key elements for the CMA degradative pathway. Consistently, in vitro, a significant fraction of Eps8 bound to (11.9+/-5.1%) and was incorporated into (5.3+/-6.5%) lysosomes. Additionally, Eps8 binding to lysosomes was competed by other known CMA-substrates. Fluorescence recovery after photobleaching revealed that Eps8 recruitment to the lysosomal membrane was highly dynamic. Collectively, these results indicate that Eps8 in certain human cancer cells specifically localizes to lysosomes, and is directed to CMA. These results open a new field for the investigation of how Eps8 is regulated and contributes to tumor promotion in human cancers.

  18. The Phosphoinositide-Gated Lysosomal Ca(2+) Channel, TRPML1, Is Required for Phagosome Maturation.

    Science.gov (United States)

    Dayam, Roya M; Saric, Amra; Shilliday, Ryan E; Botelho, Roberto J

    2015-09-01

    Macrophages internalize and sequester pathogens into a phagosome. Phagosomes then sequentially fuse with endosomes and lysosomes, converting into degradative phagolysosomes. Phagosome maturation is a complex process that requires regulators of the endosomal pathway including the phosphoinositide lipids. Phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2 ), which respectively control early endosomes and late endolysosomes, are both required for phagosome maturation. Inhibition of PIKfyve, which synthesizes PtdIns(3,5)P2 , blocked phagosome-lysosome fusion and abated the degradative capacity of phagosomes. However, it is not known how PIKfyve and PtdIns(3,5)P2 participate in phagosome maturation. TRPML1 is a PtdIns(3,5)P2 -gated lysosomal Ca(2+) channel. Because Ca(2+) triggers membrane fusion, we postulated that TRPML1 helps mediate phagosome-lysosome fusion. Using Fcγ receptor-mediated phagocytosis as a model, we describe our research showing that silencing of TRPML1 hindered phagosome acquisition of lysosomal markers and reduced the bactericidal properties of phagosomes. Specifically, phagosomes isolated from TRPML1-silenced cells were decorated with lysosomes that docked but did not fuse. We could rescue phagosome maturation in TRPML1-silenced and PIKfyve-inhibited cells by forcible Ca(2+) release with ionomycin. We also provide evidence that cytosolic Ca(2+) concentration increases upon phagocytosis in a manner dependent on TRPML1 and PIKfyve. Overall, we propose a model where PIKfyve and PtdIns(3,5)P2 activate TRPML1 to induce phagosome-lysosome fusion.

  19. Intracytoplasmic sperm injection (ICSI in extreme cases of male infertility.

    Directory of Open Access Journals (Sweden)

    Gianpiero D Palermo

    Full Text Available INTRODUCTION: Severely compromised spermatogenesis typical of men with virtual azoospermia or non-obstructive azoospermia requires an extreme search for spermatozoa. Our goal was to evaluate the usefulness of a meticulous search carried out in ejaculated or surgically retrieved specimens in achieving pre- and post-implantation embryo development. PATIENTS AND METHODS: In a retrospective cohort study carried out in an academic institution, intracytoplasmic sperm injection (ICSI outcomes were reviewed as a function of length of microscopic sperm search in ejaculated and surgically retrieved specimens. Couples whose male partner presented with either virtual or non-obstructive azoospermia were treated by ICSI and categorized according to the time spent in identifying and retrieving enough spermatozoa to inject all the oocyte cohort. Semen parameter, fertilization, pregnancies, deliveries, and child welfare in relation to increasing search time were analyzed and compared. RESULT(S: The maternal and paternal ages were comparable in both ejaculated and testicular sperm extraction (TESE groups along with the oocytes retrieved. The fertilization rates for both ejaculated and TESE progressively decreased with increasing time (P<0.0001. Clinical pregnancies in the ejaculated cohort remained satifactory. In the TESE cohort, there was a decrease in pregnancy rate with increasing time, from 44% to 23%. In a limited number of cases, offspring health was evaluated in both semen sources and appeared reassuring. CONCLUSION(S: An extensive and at time exhaustive sperm quest yields kinetically and morphologically impaired spermatozoa without apparent impact on embryo developmental competence. Retrieval of spermatozoa from the seminiferous tubules provided more consistent fertilization and pregnancy outcomes than those retrieved from the ejaculate. A trend indicated that pregnancy rate decreased as search time increased in the TESE group. The utilization of the

  20. Fertilization rate and its determinants in intracytoplasmic sperm injection

    Science.gov (United States)

    Jawed, Shireen; Rehman, Rehana; Ali, Mohammad Ashfaq; Abdullah, Umme Hani; Gul, Hina

    2016-01-01

    Objective: To identify predictors of fertilization rate in patients of unexplained infertility after intracytoplasmic sperm injection (ICSI). Methods: Retrospective analysis of females (282) enrolled in quasi experimental design for ICSI at “Islamabad Clinic Serving Infertile Couples” was carried out from July 2013 till June 2014. Females with unexplained infertility were included, whereas well defined male and female causes of infertility were excluded. Fertilization rate (FR) was calculated as percentage transformation of micro injected oocytes into two pronuclei. Categorical variable of FR defined on the basis of 50% FR grouped females; Group I with FR ≤50% and Group II with FR >50%. The groups were compared in terms of demographic variables, base line hormones and oocyte parameters. Univariate logistic regression was executed to obtain odds ratio with 95% confidence interval to quantify the association of predictors like age, duration of infertility, oocytes parameters, hormones; Estradiol, progesterone, follicle stimulating hormone (FSH), luteinizing hormone, prolactin and cytokines interleukin-Iβ (IL-Iβ) with the FR. Results: In our study out of 282 females, 19 (6.73%) were in group I and 263 (93.26%) comprised of Group II. Females with high FR(group II) had low Progesterone and FSH (p=0.04, p=0.02) respectively. Mature oocytes (OR: 0.35; 95% CI 1 – 2.56) and IL-Iβ in follicular phase (OR: 1.04; 95% CI: 0.000- 1.20) were significant positive predictors of FR while peak progesterone and FSH had significant negative effect on it Conclusion: Fertilization of oocytes in females of unexplained infertility depended on maturity of oocytes and optimal amounts of ILI- β released by developing follicles in the follicular phase of stimulation cycles of ICSI. PMID:27022334

  1. Lysosomal enlargement and lysosomal membrane destabilisation in mussel digestive cells measured by an integrative index

    Energy Technology Data Exchange (ETDEWEB)

    Izagirre, Urtzi [Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Cell Biology, School of Sciences and Technology, University of the Basque Country, P.O. box 644, E-48080 Bilbo (Spain); Marigomez, Ionan, E-mail: ionan.marigomez@ehu.e [Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Cell Biology, School of Sciences and Technology, University of the Basque Country, P.O. box 644, E-48080 Bilbo (Spain)

    2009-05-15

    Lysosomal responses (enlargement and membrane destabilisation) in mussel digestive cells are well-known environmental stress biomarkers in pollution effects monitoring in marine ecosystems. Presently, in laboratory and field studies, both responses were measured separately (in terms of lysosomal volume density - Vv - and labilisation period -LP) and combined (lysosomal response index - LRI) in order to contribute to their understanding and to develop an index useful for decisions makers. LRI integrates Vv and LP, which are not necessarily dependent lysosomal responses. It is unbiased and more sensitive than Vv and LP alone and diminishes background due to confounding factors. LRI provides a simple numerical index (consensus reference = 0; critical threshold = 1) directly related to the pollution impact degree. Moreover, LRI can be represented in a way that allows the interpretation of lysosomal responses, which is useful for environmental scientists. - Lysosomal responses to pollutants measured by an integrative index.

  2. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

    Science.gov (United States)

    Varga, Rita-Eva; Khundadze, Mukhran; Damme, Markus; Nietzsche, Sandor; Hoffmann, Birgit; Stauber, Tobias; Koch, Nicole; Hennings, J Christopher; Franzka, Patricia; Huebner, Antje K; Kessels, Michael M; Biskup, Christoph; Jentsch, Thomas J; Qualmann, Britta; Braulke, Thomas; Kurth, Ingo; Beetz, Christian; Hübner, Christian A

    2015-08-01

    Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

  3. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

    Directory of Open Access Journals (Sweden)

    Rita-Eva Varga

    2015-08-01

    Full Text Available Hereditary spastic paraplegia (HSP is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs. Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

  4. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

    Directory of Open Access Journals (Sweden)

    Rita-Eva Varga

    2015-08-01

    Full Text Available Hereditary spastic paraplegia (HSP is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs. Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

  5. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11

    Science.gov (United States)

    Varga, Rita-Eva; Khundadze, Mukhran; Damme, Markus; Nietzsche, Sandor; Hoffmann, Birgit; Stauber, Tobias; Koch, Nicole; Hennings, J. Christopher; Franzka, Patricia; Huebner, Antje K.; Kessels, Michael M.; Biskup, Christoph; Jentsch, Thomas J.; Qualmann, Britta; Braulke, Thomas; Kurth, Ingo; Beetz, Christian; Hübner, Christian A.

    2015-01-01

    Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice. PMID:26284655

  6. Amyloid-β secretion, generation, and lysosomal sequestration in response to proteasome inhibition

    DEFF Research Database (Denmark)

    Agholme, Lotta; Hallbeck, Martin; Benedikz, Eirikur

    2012-01-01

    that proteasome inhibition resulted in autophagy-dependent accumulation of Aβ in lysosomes, and increased levels of intracellular and secreted Aβ. The enhanced levels of Aβ could not be explained by increased amounts of AβPP. Instead, reduced degradation of the C-terminal fragment of AβPP (C99) by the proteasome....... Furthermore, proteasome inhibition caused a reduction in cellular viability, which was reverted by inhibition of autophagy. Dysfunction of the proteasome could cause lysosomal accumulation of Aβ, as well as increased generation and secretion of Aβ, which is partly facilitated by autophagy. As a decrease...

  7. Lysosomal exoglycosidases in nasal polyps.

    Science.gov (United States)

    Chojnowska, Sylwia; Minarowska, Alina; Knaś, Małgorzata; Niemcunowicz-Janica, Anna; Kołodziejczyk, Paweł; Zalewska-Szajda, Beata; Kępka, Alina; Minarowski, Łukasz; Waszkiewicz, Napoleon; Zwierz, Krzysztof; Szajda, Sławomir Dariusz

    2013-01-01

    Nasal polyps are smooth outgrowths assuming a shape of grapes, formed from the nasal mucosa, limiting air flow by projecting into a lumen of a nasal cavity. Up to now the surgical resection is the best method of their treatment, but etiology and pathogenesis of the nasal polyps is not yet fully established. The aim of the study was the assessment of the selected lysosomal exoglycosidases activity in the nasal polyps. In this study the activity of β-galactosidase, α-mannosidase and α-fucosidase was determined in the tissue of the nasal polyps obtained from 40 patients (10F, 30M) and control tissues derived from mucosa of lower nasal conchas obtained during mucotomy from 20 patients (10F, 10M). We observed significant lower values of GAL, FUC and tendency to decrease of MAN and GLU concentration in nasal polyps (P) in comparison to control healthy nasal mucosa (C). In nasal polyp tissue (P) no differences of GAL, MAN and FUC specific activity in comparison to control mucosa (C) were found. Our research supports bioelectrical theory of the nasal polyps pathogenesis and directs attention at research on glycoconjugates and glycosidases of the nasal mucosa extracellular matrix. Copyright © 2013 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  8. Presenilin 1 maintains lysosomal Ca2+ homeostasis by regulating vATPase-mediated lysosome acidification

    Science.gov (United States)

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M.; Haslett, Luke J.; Kumar, Asok; Sato, Yutaka; Lie, Pearl P. Y.; Mohan, Panaiyur; Coffey, Erin E.; Kompella, Uday; Mitchell, Claire H.; Lloyd-Evans, Emyr; Nixon, Ralph A.

    2015-01-01

    Summary Presenilin-1 (PS1) deletion or Alzheimer’s Disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss of function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism. PMID:26299959

  9. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release.

    Science.gov (United States)

    Shen, Dongbiao; Wang, Xiang; Li, Xinran; Zhang, Xiaoli; Yao, Zepeng; Dibble, Shannon; Dong, Xian-ping; Yu, Ting; Lieberman, Andrew P; Showalter, Hollis D; Xu, Haoxing

    2012-03-13

    Lysosomal lipid accumulation, defects in membrane trafficking and altered Ca(2+) homoeostasis are common features in many lysosomal storage diseases. Mucolipin transient receptor potential channel 1 (TRPML1) is the principle Ca(2+) channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca(2+) release, measured using a genetically encoded Ca(2+) indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells. Sphingomyelins (SMs) are plasma membrane lipids that undergo sphingomyelinase (SMase)-mediated hydrolysis in the lysosomes of normal cells, but accumulate distinctively in lysosomes of NP cells. Patch-clamp analyses revealed that TRPML1 channel activity is inhibited by SMs, but potentiated by SMases. In NP-type C cells, increasing TRPML1's expression or activity was sufficient to correct the trafficking defects and reduce lysosome storage and cholesterol accumulation. We propose that abnormal accumulation of luminal lipids causes secondary lysosome storage by blocking TRPML1- and Ca(2+)-dependent lysosomal trafficking.

  10. Extreme spermatogenesis failure: andrological phenotype and intracytoplasmic sperm injection outcomes.

    Science.gov (United States)

    Plouvier, P; Barbotin, A-L; Boitrelle, F; Dewailly, D; Mitchell, V; Rigot, J-M; Lefebvre-Khalil, V; Robin, G

    2017-03-01

    Patients with very low sperm count through direct sperm examination can exhibit extreme oligozoospermia or cryptozoospermia (after centrifugation). The management of these patients is a real challenge for both clinicians and biologists. In this retrospective and comparative cohort study, we compared the andrological phenotype of patients with extreme alterations of spermatogenesis and assessed whether the origin of spermatozoa (testicular or ejaculate) had any influence on intracytoplasmic sperm injection (ICSI) outcomes. A total of 161 ICSI cycles were performed using ejaculated spermatozoa from 75 patients with extreme oligozoospermia (EOS) or cryptozoospermia (CS) and 150 ICSI cycles using extracted testicular spermatozoa from 74 patients with non-obstructive azoospermia (NOA). Physical, hormonal, ultrasound assessments, and ICSI outcomes were performed in each group. Cryptorchidism was significantly more frequent in the NOA group (60.8% vs. 22.6%, p = 0.001). FSH levels were significantly higher [18.9 IU/L (5.9-27.0) vs. 15.3 IU/L (9.0-46.5), p = 0.001] and the majority of inhibin B levels measured were found mostly undetectable in the NOA group as compared to EOS/CS group (31.1% vs. 10.7%, p = 0.0004). Moreover, we found no significant differences in the respect to the fertilization rates (48.9% and 43.3%, p = 0.43), implantation rates (17.4% and 15.9%, p = 0.77), and percentage of top quality embryo (22.4% and 20.4%, p = 0.73) between the two groups. The clinical pregnancy rates per embryo transferred were comparable in both groups (28.3% and 27.4%, p = 0.89). In this study, we showed for the first time a different andrological phenotype between EOS/CS and NOA groups. Indeed, cryptorchidism was significantly more frequent with more severe endocrine parameters found in the NOA group. These results reflect a more profound alteration in spermatogenesis in NOA patients. However, there was no difference in ICSI outcomes between NOA and EOS

  11. Interactions between autophagic and endo-lysosomal markers in endothelial cells.

    Science.gov (United States)

    Oeste, Clara L; Seco, Esther; Patton, Wayne F; Boya, Patricia; Pérez-Sala, Dolores

    2013-05-01

    Autophagic and endo-lysosomal degradative pathways are essential for cell homeostasis. Availability of reliable tools to interrogate these pathways is critical to unveil their involvement in physiology and pathophysiology. Although several probes have been recently developed to monitor autophagic or lysosomal compartments, their specificity has not been validated through co-localization studies with well-known markers. Here, we evaluate the selectivity and interactions between one lysosomal (Lyso-ID) and one autophagosomal (Cyto-ID) probe under conditions modulating autophagy and/or endo-lysosomal function in live cells. The probe for acidic compartments Lyso-ID was fully localized inside vesicles positive for markers of late endosome-lysosomes, including Lamp1-GFP and GFP-CINCCKVL. Induction of autophagy by amino acid deprivation in bovine aortic endothelial cells caused an early and potent increase in the fluorescence of the proposed autophagy dye Cyto-ID. Cyto-ID-positive compartments extensively co-localized with the autophagosomal fluorescent reporter RFP-LC3, although the time and/or threshold for organelle detection was different for each probe. Interestingly, use of Cyto-ID in combination with Lysotracker Red or Lyso-ID allowed the observation of structures labeled with either one or both probes, the extent of co-localization increasing upon treatment with protease inhibitors. Inhibition of the endo-lysosomal pathway with chloroquine or U18666A resulted in the formation of large Cyto-ID and Lyso-ID-positive compartments. These results constitute the first assessment of the selectivity of Cyto-ID and Lyso-ID as probes for the autophagic and lysosomal pathways, respectively. Our observations show that these probes can be used in combination with protein-based markers for monitoring the interactions of both pathways in live cells.

  12. [Application of lysosomal detection in marine pollution monitoring: research progress].

    Science.gov (United States)

    Weng, You-Zhu; Fang, Yong-Qiang; Zhang, Yu-Sheng

    2013-11-01

    Lysosome is an important organelle existing in eukaryotic cells. With the development of the study on the structure and function of lysosome in recent years, lysosome is considered as a target of toxic substances on subcellular level, and has been widely applied abroad in marine pollution monitoring. This paper summarized the biological characteristics of lysosomal marker enzyme, lysosome-autophagy system, and lysosomal membrane, and introduced the principles and methods of applying lysosomal detection in marine pollution monitoring. Bivalve shellfish digestive gland and fish liver are the most sensitive organs for lysosomal detection. By adopting the lysosomal detection techniques such as lysosomal membrane stability (LMS) test, neutral red retention time (NRRT) assay, morphological measurement (MM) of lysosome, immunohistochemical (Ih) assay of lysosomal marker enzyme, and electron microscopy (EM), the status of marine pollution can be evaluated. It was suggested that the lysosome could be used as a biomarker for monitoring marine environmental pollution. The advantages and disadvantages of lysosomal detection and some problems worthy of attention were analyzed, and the application prospects of lysosomal detection were discussed.

  13. Lysosomal exoglycosidases in serum and urine of patients with pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Anna Stypułkowska

    2010-11-01

    Full Text Available Lysosomal exoglycosidases: N-acetyl-β-D-hexosaminidase (HEX, β-D-galactosidase (GAL, ι-L-fucosidase (FUC and ι-D-mannosidase (MAN modify oligosaccharide chains of glycoconjugates in endoplasmatic reticulum and/or Golgi apparatus and degrade them in lysosomes. In acid environment of lysosome, exoglycosidases degrade oligosaccharide chains of glycoproteins, glycolipids and glycosaminoglycans by eliminating single sugars from the edges of oligosaccharide chains. Neoplasms change biochemical processes in tissues and may significantly change the activity of many enzymes including the activity of lysosomal exoglycosidasses in serum and urine of persons with neoplasmatic diseases. The aim of the present paper was evaluation the activity of HEX, GAL, FUC and MAN in serum and urine of patients with pancreatic adenocarcinoma. Serum and urine samples were collected from 15 patients with adenocarcinoma of the pancreas and 15 healthy persons. The activity of lysosomal exoglycosidases was determined by the method of Marciniak et al. adapted to serum and urine of patients with adenocarcinoma of the pancreas. Our results indicate significant decrease in activity of GAL (p=0.037 in serum of patients with pancreatic adenocarcinoma, significant increase in activity of HEX (p<0.001 and FUC (p=0.027 in serum, and HEX (p=0.003 in urine, as well as significant decrease of FUC (p=0.016 and MAN (p=0.029 in urine o patients with adenocarcinoma of the pancreas, in comparison to the control group. Increase in activity of some lysosomal enzymes in serum and urine of pancreatic adenocarcinoma patients, may indicate on destruction of pancreatic tissue by pancreatic adenocarcinoma. Determination of the HEX, GAL, FUC and MAN in serum and urine may be useful in diagnostics of pancreatic adenocarcinoma.

  14. LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes.

    Science.gov (United States)

    Hubert, Virginie; Peschel, Andrea; Langer, Brigitte; Gröger, Marion; Rees, Andrew; Kain, Renate

    2016-10-15

    Autophagy is an evolutionarily conserved process used for removing surplus and damaged proteins and organelles from the cytoplasm. The unwanted material is incorporated into autophagosomes that eventually fuse with lysosomes, leading to the degradation of their cargo. The fusion event is mediated by the interaction between the Qa-SNARE syntaxin-17 (STX17) on autophagosomes and the R-SNARE VAMP8 on lysosomes. Cells deficient in lysosome membrane-associated protein-2 (LAMP-2) have increased numbers of autophagosomes but the underlying mechanism is poorly understood. By transfecting LAMP-2-deficient and LAMP-1/2--double-deficient mouse embryonic fibroblasts (MEFs) with a tandem fluorescent-tagged LC3 we observed a failure of fusion between the autophagosomes and the lysosomes that could be rescued by complementation with LAMP-2A. Although we observed no change in expression and localization of VAMP8, its interacting partner STX17 was absent from autophagosomes of LAMP-2-deficient cells. Thus, LAMP-2 is essential for STX17 expression by the autophagosomes and this absence is sufficient to explain their failure to fuse with lysosomes. The results have clear implications for situations associated with a reduction of LAMP-2 expression.

  15. Color reduction of melanin by lysosomal and peroxisomal enzymes isolated from mammalian cells.

    Science.gov (United States)

    Park, Dong Jun; Sekhon, Simranjeet Singh; Yoon, Jihee; Kim, Yang-Hoon; Min, Jiho

    2016-02-01

    Lysosomes and peroxisomes are organelles with many functions in all eukaryotic cells. Lysosomes contain hydrolytic enzymes (lysozyme) that degrade molecules, whereas peroxisomes contain enzymes such as catalase that convert hydrogen peroxide (H2O2) to water and oxygen and neutralize toxicity. In contrast, melanin is known as a helpful element to protect the skin against harmful ultraviolet rays. However, a high quantity of melanin leads to hyperpigmentation or skin cancer in human. New materials have already been discovered to inhibit tyrosinase in melanogenesis; however, melanin reduction does not suggest their preparation. In this study, we report that the color intensity because of melanin decreased by the cellular activation of lysosomes and peroxisomes. An increase in the superficial intensity of lysosome and peroxisome activities of HeLa cells was observed. In addition, a decrease in the amount of melanin has also been observed in mammalian cells without using any other chemical, showing that the process can work in vivo for treating melanin. Therefore, the results of this study indicate that the amount of melanin decreases by the lysosome and peroxisome activity after entering the cells, and functional organelles are effective in color reduction. This mechanism can be used in vivo for treating melanin.

  16. Disruption of lysosome function promotes tumor growth and metastasis in Drosophila.

    Science.gov (United States)

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-07-09

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the Ras(V12) cells. Knocking down either of the two other components of the Class C VPS complex, carnation (car) and vps16A, also renders Ras(V12) cells capable for uncontrolled growth and metastatic behavior. Finally, chemical disruption of the lysosomal function by feeding animals with antimalarial drugs, chloroquine or monensin, leads to malignant tumor growth of the Ras(V12) cells. Taken together, our data provide evidence for a causative role of lysosome dysfunction in tumor growth and invasion and indicate that members of the Class C VPS complex behave as tumor suppressors.

  17. Targeting Androgen Receptor by Lysosomal Degradation in Prostate Cancer

    Science.gov (United States)

    2015-11-01

    of the sample was reduced by passing it through an 18 gauge needle followed by sonication. Triton X 100 was added to 2% final concentration, and the...Enrichment Kit for Tissue and Cultured Cells ( #89839, Pierce/ Thermo Scientific) following the manufacturer’s protocol. Briefly, cells were lysed by...A L; AebeJSOld, R A guided tour of the Trans Proteomic Pipeline. Prokomics 2010, 10 (6), 1150- 9. 3790 i@tiM ( 15) Keller, A; Nesviiliskii, A L

  18. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology

    DEFF Research Database (Denmark)

    Kirkegaard, Thomas; Roth, Anke G; Petersen, Nikolaj H T

    2010-01-01

    inhibition of ASM, effectively revert the Hsp70-mediated stabilization of lysosomes. Notably, the reduced ASM activity in cells from patients with Niemann-Pick disease (NPD) A and B-severe lysosomal storage disorders caused by mutations in the sphingomyelin phosphodiesterase 1 gene (SMPD1) encoding for ASM...

  19. ErbB2-associated changes in the lysosomal proteome

    DEFF Research Database (Denmark)

    Nylandsted, Jesper; Becker, Andrea C; Bunkenborg, Jakob

    2011-01-01

    Late endosomes and lysosomes (hereafter referred to as lysosomes) play an essential role in the turnover of cellular macromolecules and organelles. Their biochemical characterization has so far depended on purification methods based on either density gradient centrifugations or magnetic...... purification of iron-loaded organelles. Owing to dramatic changes in lysosomal density and stability associated with lysosomal diseases and cancer, these methods are not optimal for the comparison of normal and pathological lysosomes. Here, we introduce an efficient method for the purification of intact...... lysosomes by magnetic immunoprecipitation with antibodies against the vacuolar-type H(+) -ATPase. Quantitative MS-based proteomics analysis of the obtained lysosomal membranes identified 60 proteins, most of which have previously been associated with the lysosomal compartment. Interestingly, the lysosomal...

  20. Mitochondrial Dysfunction in Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Mario de la Mata

    2016-10-01

    Full Text Available Lysosomal storage diseases (LSDs describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS, where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm, diminished ATP production and increased generation of reactive oxygen species (ROS. Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD, the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase. Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer and glucosylsphingosine (GlcSph in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs.

  1. A detailed cost analysis of in vitro fertilization and intracytoplasmic sperm injection treatment.

    NARCIS (Netherlands)

    Bouwmans, C.A.; Lintsen, B.M.; Eijkemans, M.J.; Habbema, J.D.; Braat, D.D.M.; Hakkaart, L.

    2008-01-01

    OBJECTIVE: To provide detailed information about costs of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) treatment stages and to estimate the cost per IVF and ICSI treatment cycle and ongoing pregnancy. DESIGN: Descriptive micro-costing study. SETTING: Four Dutch IVF center

  2. Lysosomal Ca(2+) homeostasis: role in pathogenesis of lysosomal storage diseases.

    Science.gov (United States)

    Lloyd-Evans, Emyr; Platt, Frances M

    2011-08-01

    Disrupted cellular Ca(2+) signaling is believed to play a role in a number of human diseases including lysosomal storage diseases (LSD). LSDs are a group of ∼50 diseases caused predominantly by mutations in lysosomal proteins that result in accumulation of macromolecules within the lysosome. We recently reported that Niemann-Pick type C (NPC) is the first human disease to be associated with defective lysosomal Ca(2+) uptake and defective NAADP-mediated lysosomal Ca(2+) release. These defects in NPC cells leads to the disruption in endocytosis and subsequent lipid storage that is a feature of this disease. In contrast, Chediak-Higashi Syndrome cells have been reported to have enhanced lysosomal Ca(2+) uptake whilst the TRPML1 protein defective in mucolipidosis type IV is believed to function as a Ca(2+) channel. In this review we provide a summary of the current knowledge on the role of lysosomal Ca(2+) signaling in the pathogenesis of this group of diseases.

  3. Endo-lysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin.

    Directory of Open Access Journals (Sweden)

    Ekaterina A Ivanova

    Full Text Available Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles.

  4. Lysosomal exoglycosidases and cathepsin D in colon adenocarcinoma.

    Science.gov (United States)

    Waszkiewicz, Napoleon; Zalewska-Szajda, Beata; Szajda, Sławomir D; Kępka, Alina; Waszkiewicz, Magdalena; Roszkowska-Jakimiec, Wiesława; Wojewódzka-Żeleźniakowicz, Marzena; Milewska, Anna J; Dadan, Jacek; Szulc, Agata; Zwierz, Krzysztof; Ladny, Jerzy R

    2012-01-01

    Changes in the structure of membrane glycoconjugates and activity of glycosidases and proteases are important in tumor formation. The aim of the study was to compare the specific activity of lysosomal exoglycosidases: N-acetyl-β-D-hexosaminidase (HEX), its isoenzymes A (HEX A) and B (HEX B), β-D-galactosidase (GAL), α-fucosidase (FUC), and α-mannosidase (MAN) with the activity of cathepsin D (CD) in serum, urine, and carcinoma tissue of patients with colon adenocarcinoma. The specific activity of HEX, HEX A, HEX B, GAL, FUC, MAN, and CD was assayed in serum, urine, and carcinoma tissue of 12 patients with colon adenocarcinoma. Lysosomal exoglycosidases and CD have similar specific activity in colon adenocarcinoma tissue and urine, which is higher than their activity in serum (with the exception of the highest specific activity of CD in urine). A positive correlation was observed between the specific activity of CD and that of HEX, HEX A, FUC, and MAN in the carcinoma tissue and urine as well as between CD and GAL in the urine of patients with colon adenocarcinoma. Negative correlations were observed between protein levels and the specific activity of HEX, HEX A, FUC, MAN, and CD in the carcinoma tissue and urine, and between protein levels and GAL in urine. Increased degradation and remodeling of glycoconjugates in the colon adenocarcinoma tissue is reflected by increased specific activity of exoglycosidases and CD. The results suggest a strong effect of exoglycosidase action on tissue degradation and a potential role of exoglycosidases in the initiation of proteolysis.

  5. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion

    Institute of Scientific and Technical Information of China (English)

    Jing Zhou; Shi-Hao Tan; Valérie Nicolas; Chantal Bauvy; Nai-Di Yang; Jianbin Zhang; Yuan Xue

    2013-01-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy.In this study,we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torinl),but not by an allosteric inhibitor (rapamycin),leads to activation of lysosomal function.Second,we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1),but not mTORC2,and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function.Third,we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation.Finally,Atg5 or Atg7deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation,suggesting that lysosomal activation occurring in the course of autophagy is dependent on antophagosome-lysosome fusion.Taken together,this study demonstrates that in the course of autophagy,lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  6. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion.

    Science.gov (United States)

    Zhou, Jing; Tan, Shi-Hao; Nicolas, Valérie; Bauvy, Chantal; Yang, Nai-Di; Zhang, Jianbin; Xue, Yuan; Codogno, Patrice; Shen, Han-Ming

    2013-04-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  7. TPC1 has two variant isoforms, and their removal has different effects on endo-lysosomal functions compared to loss of TPC2.

    Science.gov (United States)

    Ruas, Margarida; Chuang, Kai-Ting; Davis, Lianne C; Al-Douri, Areej; Tynan, Patricia W; Tunn, Ruth; Teboul, Lydia; Galione, Antony; Parrington, John

    2014-11-01

    Organelle ion homeostasis within the endo-lysosomal system is critical for physiological functions. Two-pore channels (TPCs) are cation channels that reside in endo-lysosomal organelles, and overexpression results in endo-lysosomal trafficking defects. However, the impact of a lack of TPC expression on endo-lysosomal trafficking is unknown. Here, we characterize Tpcn1 expression in two transgenic mouse lines (Tpcn1(XG716) and Tpcn1(T159)) and show expression of a novel evolutionarily conserved Tpcn1B transcript from an alternative promoter, raising important questions regarding the status of Tpcn1 expression in mice recently described to be Tpcn1 knockouts. We show that the transgenic Tpcn1(T159) line lacks expression of both Tpcn1 isoforms in all tissues analyzed. Using mouse embryonic fibroblasts (MEFs) from Tpcn1(-/-) and Tpcn2(-/-) animals, we show that a lack of Tpcn1 or Tpcn2 expression has no significant impact on resting endo-lysosomal pH or morphology. However, differential effects in endo-lysosomal function were observed upon the loss of Tpcn1 or Tpcn2 expression; thus, while Tpcn1(-/-) MEFs have impaired trafficking of cholera toxin from the plasma membrane to the Golgi apparatus, Tpcn2(-/-) MEFs show slower kinetics of ligand-induced platelet-derived growth factor receptor β (PDGFRβ) degradation, which is dependent on trafficking to lysosomes. Our findings indicate that TPC1 and TPC2 have important but distinct roles in the endo-lysosomal pathway.

  8. Polyketide synthase (PKS) reduces fusion of Legionella pneumophila-containing vacuoles with lysosomes and contributes to bacterial competitiveness during infection.

    Science.gov (United States)

    Shevchuk, Olga; Pägelow, Dennis; Rasch, Janine; Döhrmann, Simon; Günther, Gabriele; Hoppe, Julia; Ünal, Can Murat; Bronietzki, Marc; Gutierrez, Maximiliano Gabriel; Steinert, Michael

    2014-11-01

    L. pneumophila-containing vacuoles (LCVs) exclude endocytic and lysosomal markers in human macrophages and protozoa. We screened a L. pneumophila mini-Tn10 transposon library for mutants, which fail to inhibit the fusion of LCVs with lysosomes by loading of the lysosomal compartment with colloidal iron dextran, mechanical lysis of infected host cells, and magnetic isolation of LCVs that have fused with lysosomes. In silico analysis of the mutated genes, D. discoideum plaque assays and infection assays in protozoa and U937 macrophage-like cells identified well established as well as novel putative L. pneumophila virulence factors. Promising candidates were further analyzed for their co-localization with lysosomes in host cells using fluorescence microscopy. This approach corroborated that the O-methyltransferase, PilY1, TPR-containing protein and polyketide synthase (PKS) of L. pneumophila interfere with lysosomal degradation. Competitive infections in protozoa and macrophages revealed that the identified PKS contributes to the biological fitness of pneumophila strains and may explain their prevalence in the epidemiology of Legionnaires' disease.

  9. Differentiation of norm and pathology during selective biochemical skreening of lysosomal storage diseases with increased excretion of oligosaccharides

    Directory of Open Access Journals (Sweden)

    N. Y. Mytsyk

    2015-06-01

    Full Text Available Oligosaccharides are a class of polymeric carbohydrates, which are constituents of a glycoside portion of glycoprotein and glycolipid molecules. The lysosomal hydrolase dysfunction due to lysosomal storage disorders results in partial or complete failure of degradation of some glycoproteins and glycolipids, causing the accumulation of specific undegraded substrates in the lysosomes of cells, the formation of the great number of oligosaccharide chains and their increased excretion with urine. Our work was aimed at detailed study of the specificities of interpreting the results of thin-layer chromatography (TLC of urine oligosaccharides in healthy persons of different age groups with the purpose of further application of these data while differentiating the norm and pathology in the course of primary selective screening of lysosomal storage disorders. The results obtained demonstrated that TLC plates for the majority of healthy persons had insignificant excretion of a number of oligosaccharides (from monosaccharides to hexasaccharides with Rlac > 0.15, which can be characterized as physiological oligosacchariduria, conditioned by the metabolism specificities in lysosomes. Therefore while interpreting the urine samples of patients with the suspected lysosomal storage disorder it is diagnostically reasonable to examine the TLC plates for the presence of both oligosaccharide groups, absent in the samples of healthy persons, and all the fractions with Rlac < 0.15.

  10. Mucolipidosis type IV protein TRPML1-dependent lysosome formation.

    Science.gov (United States)

    Miller, Austin; Schafer, Jessica; Upchurch, Cameron; Spooner, Ellen; Huynh, Julie; Hernandez, Sebastian; McLaughlin, Brooke; Oden, Liam; Fares, Hanna

    2015-03-01

    Lysosomes are dynamic organelles that undergo cycles of fusion and fission with themselves and with other organelles. Following fusion with late endosomes to form hybrid organelles, lysosomes are reformed as discrete organelles. This lysosome reformation or formation is a poorly understood process that has not been systematically analyzed and that lacks known regulators. In this study, we quantitatively define the multiple steps of lysosome formation and identify the first regulator of this process.

  11. Effects of ethanol, acetaldehyde and cholesteryl esters on pancreatic lysosomes.

    OpenAIRE

    Wilson, J S; Apte, M V; Thomas, M. C.; Haber, P S; Pirola, R C

    1992-01-01

    Recent studies indicate that altered lysosomal function may be involved in the early stages of pancreatic injury. Chronic consumption of ethanol increases rat pancreatic lysosomal fragility. The aim of this study is to determine whether the lysosomal fragility observed after chronic ethanol consumption is mediated by ethanol per se, its oxidative metabolite acetaldehyde or cholesteryl esters (substances which accumulate in the pancreas after ethanol consumption). Pancreatic lysosomes from cho...

  12. Lysosomal storage disease 2 - Pompe's disease

    NARCIS (Netherlands)

    van der Ploeg, Ans T.; Reuser, Arnold J. J.

    2008-01-01

    Pompe's disease, glycogen-storage disease type II, and acid maltase deficiency are alternative names for the same metabolic disorder. It is a pan-ethnic autosomal recessive trait characterised by acid alpha-glucosidase deficiency leading to lysosomal glycogen storage. Pompe's disease is also

  13. Transport of Lysosome-Related Organelles

    NARCIS (Netherlands)

    Jordens, Ingrid

    2005-01-01

    Many intracellular compartments, including (MHC class II-containing) lysosomes, melanosomes and phagosomes, move along microtubules in a bi-directional manner due to the alternating activities of the plus-end directed kinesin motor and the minus-end directed dynein-dynactin motor. However, it is lar

  14. Transport of Lysosome-Related Organelles

    NARCIS (Netherlands)

    Jordens, Ingrid

    2005-01-01

    Many intracellular compartments, including (MHC class II-containing) lysosomes, melanosomes and phagosomes, move along microtubules in a bi-directional manner due to the alternating activities of the plus-end directed kinesin motor and the minus-end directed dynein-dynactin motor. However, it is

  15. Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells.

    Science.gov (United States)

    Canonico, B; Campana, R; Luchetti, F; Arcangeletti, M; Betti, M; Cesarini, E; Ciacci, C; Vittoria, E; Galli, L; Papa, S; Baffone, W

    2014-08-01

    Campylobacter jejuni is the most common cause of bacterial gastroenteritis in humans. The synthesis of cytolethal distending toxin appears essential in the infection process. In this work we evaluated the sequence of lethal events in HeLa cells exposed to cell lysates of two distinct strains, C. jejuni ATCC 33291 and C. jejuni ISS3. C. jejuni cell lysates (CCLys) were added to HeLa cell monolayers which were analysed to detect DNA content, death features, bcl-2 and p53 status, mitochondria/lysosomes network and finally, CD54 and CD59 alterations, compared to cell lysates of C. jejuni 11168H cdtA mutant. We found mitochondria and lysosomes differently targeted by these bacterial lysates. Death, consistent with apoptosis for C. jejuni ATCC 33291 lysate, occurred in a slow way (>48 h); concomitantly HeLa cells increase their endolysosomal compartment, as a consequence of toxin internalization besides a simultaneous and partial lysosomal destabilization. C. jejuni CCLys induces death in HeLa cells mainly via a caspase-dependent mechanism although a p53 lysosomal pathway (also caspase-independent) seems to appear in addition. In C. jejuni ISS3-treated cells, the p53-mediated oxidative degradation of mitochondrial components seems to be lost, inducing the deepest lysosomal alterations. Furthermore, CD59 considerably decreases, suggesting both a degradation or internalisation pathway. CCLys-treated HeLa cells increase CD54 expression on their surface, because of the action of lysate as its double feature of toxin and bacterial peptide. In conclusion, we revealed that C. jejuni CCLys-treated HeLa cells displayed different features, depending on the particular strain.

  16. Glucolipotoxicity diminishes cardiomyocyte TFEB and inhibits lysosomal autophagy during obesity and diabetes.

    Science.gov (United States)

    Trivedi, Purvi C; Bartlett, Jordan J; Perez, Lester J; Brunt, Keith R; Legare, Jean Francois; Hassan, Ansar; Kienesberger, Petra C; Pulinilkunnil, Thomas

    2016-12-01

    Impaired cardiac metabolism in the obese and diabetic heart leads to glucolipotoxicity and ensuing cardiomyopathy. Glucolipotoxicity causes cardiomyocyte injury by increasing energy insufficiency, impairing proteasomal-mediated protein degradation and inducing apoptosis. Proteasome-evading proteins are degraded by autophagy in the lysosome, whose metabolism and function are regulated by master regulator transcription factor EB (TFEB). Limited studies have examined the impact of glucolipotoxicity on intra-lysosomal signaling proteins and their regulators. By utilizing a mouse model of diet-induced obesity, type-1 diabetes (Akita) and ex-vivo model of glucolipotoxicity (H9C2 cells and NRCM, neonatal rat cardiomyocyte), we examined whether glucolipotoxicity negatively targets TFEB and lysosomal proteins to dysregulate autophagy and cause cardiac injury. Despite differential effects of obesity and diabetes on LC3B-II, expression of proteins facilitating autophagosomal clearance such as TFEB, LAMP-2A, Hsc70 and Hsp90 were decreased in the obese and diabetic heart. In-vivo data was recapitulated in H9C2 and NRCM cells, which exhibited impaired autophagic flux and reduced TFEB content when exposed to a glucolipotoxic milieu. Notably, overloading myocytes with a saturated fatty acid (palmitate) but not an unsaturated fatty acid (oleate) depleted cellular TFEB and suppressed autophagy, suggesting a fatty acid specific regulation of TFEB and autophagy in the cardiomyocyte. The effect of glucolipotoxicity to reduce TFEB content was also confirmed in heart tissue from patients with Class-I obesity. Therefore, during glucolipotoxicity, suppression of lysosomal autophagy was associated with reduced lysosomal content, decreased cathepsin-B activity and diminished cellular TFEB content likely rendering myocytes susceptible to cardiac injury.

  17. TRPML: transporters of metals in lysosomes essential for cell survival?

    Science.gov (United States)

    Kiselyov, Kirill; Colletti, Grace A; Terwilliger, Austen; Ketchum, Kathleen; Lyons, Christopher W P; Quinn, James; Muallem, Shmuel

    2011-09-01

    Key aspects of lysosomal function are affected by the ionic content of the lysosomal lumen and, therefore, by the ion permeability in the lysosomal membrane. Such functions include regulation of lysosomal acidification, a critical process in delivery and activation of the lysosomal enzymes, release of metals from lysosomes into the cytoplasm and the Ca(2+)-dependent component of membrane fusion events in the endocytic pathway. While the basic mechanisms of lysosomal acidification have been largely defined, the lysosomal metal transport system is not well understood. TRPML1 is a lysosomal ion channel whose malfunction is implicated in the lysosomal storage disease Mucolipidosis Type IV. Recent evidence suggests that TRPML1 is involved in Fe(2+), Ca(2+) and Zn(2+) transport across the lysosomal membrane, ascribing novel physiological roles to this ion channel, and perhaps to its relatives TRPML2 and TRPML3 and illuminating poorly understood aspects of lysosomal function. Further, alterations in metal transport by the TRPMLs due to mutations or environmental factors may contribute to their role in the disease phenotype and cell death.

  18. Reactivation of Lysosomal Ca2+ Efflux Rescues Abnormal Lysosomal Storage in FIG4-Deficient Cells.

    Science.gov (United States)

    Zou, Jianlong; Hu, Bo; Arpag, Sezgi; Yan, Qing; Hamilton, Audra; Zeng, Yuan-Shan; Vanoye, Carlos G; Li, Jun

    2015-04-29

    Loss of function of FIG4 leads to Charcot-Marie-Tooth disease Type 4J, Yunis-Varon syndrome, or an epilepsy syndrome. FIG4 is a phosphatase with its catalytic specificity toward 5'-phosphate of phosphatidylinositol-3,5-diphosphate (PI3,5P2). However, the loss of FIG4 decreases PI3,5P2 levels likely due to FIG4's dominant effect in scaffolding a PI3,5P2 synthetic protein complex. At the cellular level, all these diseases share similar pathology with abnormal lysosomal storage and neuronal degeneration. Mice with no FIG4 expression (Fig4(-/-)) recapitulate the pathology in humans with FIG4 deficiency. Using a flow cytometry technique that rapidly quantifies lysosome sizes, we detected an impaired lysosomal fission, but normal fusion, in Fig4(-/-) cells. The fission defect was associated with a robust increase of intralysosomal Ca(2+) in Fig4(-/-) cells, including FIG4-deficient neurons. This finding was consistent with a suppressed Ca(2+) efflux of lysosomes because the endogenous ligand of lysosomal Ca(2+) channel TRPML1 is PI3,5P2 that is deficient in Fig4(-/-) cells. We reactivated the TRPML1 channels by application of TRPML1 synthetic ligand, ML-SA1. This treatment reduced the intralysosomal Ca(2+) level and rescued abnormal lysosomal storage in Fig4(-/-) culture cells and ex vivo DRGs. Furthermore, we found that the suppressed Ca(2+) efflux in Fig4(-/-) culture cells and Fig4(-/-) mouse brains profoundly downregulated the expression/activity of dynamin-1, a GTPase known to scissor organelle membranes during fission. This downregulation made dynamin-1 unavailable for lysosomal fission. Together, our study revealed a novel mechanism explaining abnormal lysosomal storage in FIG4 deficiency. Synthetic ligands of the TRPML1 may become a potential therapy against diseases with FIG4 deficiency.

  19. Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer.

    Science.gov (United States)

    Pangarkar, Chinmay; Dinh, Anh-Tuan; Mitragotri, Samir

    2012-08-20

    Lysosomes play a critical role in intracellular drug delivery. For enzyme-based therapies, they represent a potential target site whereas for nucleic acid or many protein drugs, they represent the potential degradation site. Either way, understanding the mechanisms and processes involved in routing of materials to lysosomes after cellular entry is of high interest to the field of drug delivery. Most therapeutic cargoes other than small hydrophobic molecules enter the cells through endocytosis. Endocytosed cargoes are routed to lysosomes via microtubule-based transport and are ultimately shared by various lysosomes via tethering and clustering of endocytic vesicles followed by exchange of their contents. Using a combined experimental and numerical approach, here we studied the rates of mass transfer into and among the endocytic vesicles in a model cell line, 3T3 fibroblasts. In order to understand the relationship of mass transfer with microtubular transport and vesicle clustering, we varied both properties through various pharmacological agents. At the same time, microtubular transport and vesicle clustering were modeled through diffusion-advection equations and the Smoluchowski equations, respectively. Our analysis revealed that the rate of mass transfer is optimally related to microtubular transport and clustering properties of vesicles. Further, the rate of mass transfer is highest in the innate state of the cell. Any perturbation to either microtubular transport or vesicle aggregation led to reduced mass transfer to lysosome. These results suggest that in the absence of an external intervention the endocytic pathway appears to maximize molecular delivery to lysosomes. Strategies are discussed to reduce mass transfer to lysosomes so as to extend the residence time of molecules in endosomes or late endosomes, thus potentially increasing the likelihood of their escape before disposition in the lysosomes.

  20. Comparison of intracytoplasmic sperm injection outcome of oligoasthenoteratozoospermic and azoospermic men

    Directory of Open Access Journals (Sweden)

    Marzieh Mehrafza

    2014-07-01

    Full Text Available Background: With introduction of intracytoplasmic sperm injection with testicular sperm extraction or precutaneouse epididymal sperm aspiration, effective treatment was provided for azoospermic men. The aim of present study was to compare clinical outcome following intracytoplasmic sperm injection using extracted testicular/epididymal sperm or ejaculated severe oligoasthenoteratozoospermic sperm. Methods: After retrospective evaluation of more than four hundred medical records of patients undergoing intracytoplasmic sperm injection Mehr medical institute (between 2011-2012, 45 cycles with severe eligoasthenoteratozoospermia and 34 cycles with azoospermia were included. Patients were treated with gonadotropin releasing hormone agonist. The clinical characteristics and intracytoplasmic sperm injection outcome such as the rate of fertilization, implantation and clinical pregnancy were compared between the two groups. Results were presented as mean±standard deviation and number (percent. Differences between variables were analyzed using student's t test and the chi-square test was used to examine differences between categorical variables. P value less than 0.05 were considered as statistically significant. Results: Mean of female age (29±4.9 vs. 30.2±5.8, body mass index (26.9±5.3 vs. 26.9±3.8, estradiol level on human chorionic gonadotropin administration day (1375.6±843.9 vs. 1181.8±673.1, total number of retrieved oocytes (9.7±5.3 vs. 9.2±5.9 and metaphase II oocytes (7.7±5.1 vs. 7.5±5.4 were similar between the two groups. Of 436 and 313 retrieved oocytes, respectively 232 and 163 oocytes were ferti-lized in oligoasthenoteratozoospermic and azoospermic groups (53.2% vs. 52.1%, P=0.214. There were not statistical differences between groups in number of trans-ferred top quality embryos (1.5±1.2 vs. 1±1.2, P=0.09, implantation rate (22.7% vs. 16.9%, P=0.238 and clinical pregnancy rate (21 (47.7% vs. 11 (35.4%, P=0.199. Conclusion

  1. Lysosomal Enzyme Glucocerebrosidase Protects against Aβ1-42 Oligomer-Induced Neurotoxicity

    Science.gov (United States)

    Kam, Tae-In; Yun, Seungpil; Kim, Sangjune; Park, Hyejin; Hwang, Heehong; Pletnikova, Olga; Troncoso, Juan C.; Dawson, Valina L.; Dawson, Ted M.; Ko, Han Seok

    2015-01-01

    Glucocerebrosidase (GCase) functions as a lysosomal enzyme and its mutations are known to be related to many neurodegenerative diseases, including Gaucher’s disease (GD), Parkinson’s disease (PD), and Dementia with Lewy Bodies (DLB). However, there is little information about the role of GCase in the pathogenesis of Alzheimer’s disease (AD). Here we demonstrate that GCase protein levels and enzyme activity are significantly decreased in sporadic AD. Moreover, Aβ1–42 oligomer treatment results in neuronal cell death that is concomitant with decreased GCase protein levels and enzyme activity, as well as impairment in lysosomal biogenesis and acidification. Importantly, overexpression of GCase promotes the lysosomal degradation of Aβ1–42 oligomers, restores the lysosomal impairment, and protects against the toxicity in neurons treated with Aβ1–42 oligomers. Our findings indicate that a deficiency of GCase could be involved in progression of AD pathology and suggest that augmentation of GCase activity may be a potential therapeutic option for the treatment of AD. PMID:26629917

  2. Lysosomal Enzyme Glucocerebrosidase Protects against Aβ1-42 Oligomer-Induced Neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Seulah Choi

    Full Text Available Glucocerebrosidase (GCase functions as a lysosomal enzyme and its mutations are known to be related to many neurodegenerative diseases, including Gaucher's disease (GD, Parkinson's disease (PD, and Dementia with Lewy Bodies (DLB. However, there is little information about the role of GCase in the pathogenesis of Alzheimer's disease (AD. Here we demonstrate that GCase protein levels and enzyme activity are significantly decreased in sporadic AD. Moreover, Aβ1-42 oligomer treatment results in neuronal cell death that is concomitant with decreased GCase protein levels and enzyme activity, as well as impairment in lysosomal biogenesis and acidification. Importantly, overexpression of GCase promotes the lysosomal degradation of Aβ1-42 oligomers, restores the lysosomal impairment, and protects against the toxicity in neurons treated with Aβ1-42 oligomers. Our findings indicate that a deficiency of GCase could be involved in progression of AD pathology and suggest that augmentation of GCase activity may be a potential therapeutic option for the treatment of AD.

  3. Possible existence of lysosome-like organella within mitochondria and its role in mitochondrial quality control.

    Directory of Open Access Journals (Sweden)

    Yuji Miyamoto

    Full Text Available The accumulation of unhealthy mitochondria results in mitochondrial dysfunction, which has been implicated in aging, cancer, and a variety of degenerative diseases. However, the mechanism by which mitochondrial quality is regulated remains unclear. Here, we show that Mieap, a novel p53-inducible protein, induces intramitochondrial lysosome-like organella that plays a critical role in mitochondrial quality control. Mieap expression is directly regulated by p53 and is frequently lost in human cancer as result of DNA methylation. Mieap dramatically induces the accumulation of lysosomal proteins within mitochondria and mitochondrial acidic condition without destroying the mitochondrial structure (designated MALM, for Mieap-induced accumulation of lysosome-like organelles within mitochondria in response to mitochondrial damage. MALM was not related to canonical autophagy. MALM is involved in the degradation of oxidized mitochondrial proteins, leading to increased ATP synthesis and decreased reactive oxygen species generation. These results suggest that Mieap induces intramitochondrial lysosome-like organella that plays a critical role in mitochondrial quality control by eliminating oxidized mitochondrial proteins. Cancer cells might accumulate unhealthy mitochondria due to p53 mutations and/or Mieap methylation, representing a potential cause of the Warburg effect.

  4. Autophagy-Independent Lysosomal Targeting Regulated by ULK1/2-FIP200 and ATG9

    Directory of Open Access Journals (Sweden)

    Jonathan M. Goodwin

    2017-09-01

    Full Text Available Iron is vital for many homeostatic processes, and its liberation from ferritin nanocages occurs in the lysosome. Studies indicate that ferritin and its binding partner nuclear receptor coactivator-4 (NCOA4 are targeted to lysosomes by a form of selective autophagy. By using genome-scale functional screening, we identify an alternative lysosomal transport pathway for ferritin that requires FIP200, ATG9A, VPS34, and TAX1BP1 but lacks involvement of the ATG8 lipidation machinery that constitutes classical macroautophagy. TAX1BP1 binds directly to NCOA4 and is required for lysosomal trafficking of ferritin under basal and iron-depleted conditions. Under basal conditions ULK1/2-FIP200 controls ferritin turnover, but its deletion leads to TAX1BP1-dependent activation of TBK1 that regulates redistribution of ATG9A to the Golgi enabling continued trafficking of ferritin. Cells expressing an amyotrophic lateral sclerosis (ALS-associated TBK1 allele are incapable of degrading ferritin suggesting a molecular mechanism that explains the presence of iron deposits in patient brain biopsies.

  5. Transcriptional control of the autophagy-lysosome system in pancreatic cancer

    Science.gov (United States)

    Perera, Rushika M.; Stoykova, Svetlana; Nicolay, Brandon N.; Ross, Kenneth N.; Fitamant, Julien; Boukhali, Myriam; Lengrand, Justine; Deshpande, Vikram; Selig, Martin K.; Ferrone, Cristina R.; Settleman, Jeff; Stephanopoulos, Gregory; Dyson, Nicholas J.; Zoncu, Roberto; Ramaswamy, Sridhar; Haas, Wilhelm; Bardeesy, Nabeel

    2016-01-01

    Activation of cellular stress response pathways to maintain metabolic homeostasis is emerging as a critical growth and survival mechanism in many cancers1. The pathogenesis of pancreatic ductal adenocarcinoma (PDA) requires high levels of autophagy2–4, a conserved self-degradative process5. However, the regulatory circuits that activate autophagy and reprogram PDA cell metabolism are unknown. We now show that autophagy induction in PDA occurs as part of a broader transcriptional program that coordinates activation of lysosome biogenesis and function, and nutrient scavenging, mediated by the MiT/TFE family transcription factors. In PDA cells, the MiT/TFE proteins6 – MITF, TFE3 and TFEB – are decoupled from regulatory mechanisms that control their cytoplasmic retention. Increased nuclear import in turn drives the expression of a coherent network of genes that induce high levels of lysosomal catabolic function essential for PDA growth. Unbiased global metabolite profiling reveals that MiT/TFE-dependent autophagy-lysosomal activation is specifically required to maintain intracellular amino acid (AA) pools. These results identify the MiT/TFE transcription factors as master regulators of metabolic reprogramming in pancreatic cancer and demonstrate activation of clearance pathways converging on the lysosome as a novel hallmark of aggressive malignancy. PMID:26168401

  6. Two cases of Robertsonian translocations in oligozoospermic males and their consequences for pregnancies induced by intracytoplasmic sperm injection

    NARCIS (Netherlands)

    R.F.A. Weber (Robert); F.J. Los; N.S. den Hollander (Nicolette); M. Dhont; M.H. Pieters; J.O. van Hemel; P.A. in 't Veld

    1997-01-01

    textabstractTwo case histories are presented documenting structural chromosome abnormalities in infertile males. The abnormalities were detected only after application of intracytoplasmic sperm injection (ICSI) was repeatedly unsuccessful or resulted in an abnormal preg

  7. Two cases of Robertsonian translocations in oligozoospermic males and their consequences for pregnancies induced by intracytoplasmic sperm injection

    NARCIS (Netherlands)

    P.A. In't Veld (Peter); R.F.A. Weber (Rob); F.J. Los; N.S. den Hollander (Nicolette); M. Dhont; M.H.E.C. Pieters (Math H. E.); J.O.V. Hemel (Jan O. Van)

    1997-01-01

    textabstractTwo case histories are presented documenting structural chromosome abnormalities in infertile males. The abnormalities were detected only after application of intracytoplasmic sperm injection (ICSI) was repeatedly unsuccessful or resulted in an abnormal pregnancy. A mosaic Robertsonian t

  8. Could using the zona pellucida bound sperm for intracytoplasmic sperm injection(ICSI)enhance the outcome of ICSI?

    Institute of Scientific and Technical Information of China (English)

    De-Yi Liu

    2011-01-01

    @@ In the recent literature, several interesting articles have been published using the zona pellucdia(ZP)-bound sperm for intra-cytoplasmic sperm injection(ICSI)to enhance embryo quality, implantation and clinical pregnancy rates.1-3

  9. Two cases of Robertsonian translocations in oligozoospermic males and their consequences for pregnancies induced by intracytoplasmic sperm injection

    NARCIS (Netherlands)

    R.F.A. Weber (Robert); F.J. Los; N.S. den Hollander (Nicolette); M. Dhont; M.H. Pieters; J.O. van Hemel; P.A. in 't Veld

    1997-01-01

    textabstractTwo case histories are presented documenting structural chromosome abnormalities in infertile males. The abnormalities were detected only after application of intracytoplasmic sperm injection (ICSI) was repeatedly unsuccessful or resulted in an abnormal preg

  10. Relationship between autophagy and the intracellular degradation of asialoglycoproteins in cultured rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kindberg, G.M.; Refsnes, M.; Christoffersen, T.; Norum, K.R.; Berg, T.

    1987-05-25

    The relationship between autophagy and the intracellular distribution of endocytosed asialoorosomucoid was studied in cultured rat hepatocytes. Overt autophagy was induced by shifting the cells to a minimal salt medium. Incubation in minimal salt medium led to the formation of buoyant lysosomes at the expense of denser lysosomes manifested as a dual distribution of these organelles in Nycodenz gradients. Asialoorosomucoid was labeled with /sup 125/I-tyramine cellobiose. The labeled degradation products formed from this ligand are trapped at the site of degradation and may therefore serve as markers for the subgroup of lysosomes involved in the degradation. In control cells the degradation of the ligand was initiated in a light prelysosomal compartment and continued in denser lysosomes. In cells with high autophagic activity, the degradation of labeled asialoorosomucoid took place exclusively in a buoyant group of lysosomes. These results suggest that degradation of endocytosed ligand takes place in the same secondary lysosomes as substrate sequestered by autophagic mechanisms. These light lysosomes represent a subgroup of active lysosomes which are gradually recruited from dense bodies. Data are also presented that indicate that insulin may prevent the change in buoyant density brought about by incubation in deficient medium.

  11. Degradation of the organic phase of bone by osteoclasts

    DEFF Research Database (Denmark)

    Henriksen, Kim; Sørensen, Mette G; Nielsen, Rasmus H

    2006-01-01

    Osteoclasts degrade bone matrix by secretion of hydrochloric acid and proteases. We studied the processes involved in the degradation of the organic matrix of bone in detail and found that lysosomal acidification is involved in this process and that MMPs are capable of degrading the organic matri...

  12. Differences and similarities between extremely severe oligozoospermia and cryptozoospermia in intracytoplasmic sperm injection

    OpenAIRE

    Yong-Tong Zhu; Chen Luo; Yun Li; Hong Li; Song Quan; Yong-Jian Deng; Yu Yang; Yong-Hua Hu; Wan-Long Tan; Qing-Jun Chu

    2016-01-01

    Patients with extremely severe oligozoospermia (ESO) and cryptozoospermia (CO) are suitable using intracytoplasmic sperm injection (ICSI) as an infertility treatment. However, some andrologists are confused to distinguish ESO and CO in clinic diagnose. This study was designed for the first time to evaluate and compare patients with ESO and CO to determine whether these are useful clinical distinctions. A total of 270 infertile men in our center were classified into four groups as Group nonobs...

  13. Activity of lysosomal exoglycosidases in human gliomas.

    Science.gov (United States)

    Wielgat, P; Walczuk, U; Szajda, S; Bień, M; Zimnoch, L; Mariak, Z; Zwierz, K

    2006-12-01

    There is a lot of data suggesting that modifications of cell glycoconjugates may be important in progression of cancer. In the present work we studied activities of lysosomal exoglycosidases: beta-hexosaminidase and its isoenzymes A and B, beta-galactosidase and alpha-mannosidase, in human gliomas. Enzyme activity was determined spectrophotometrically based on the release of p-nitrophenol from p-nitrophenyl-derivative of appropriate sugars. The activities of the exoglycosidases tested were significantly higher in malignant glial tumors than in control tissue (normal brain tissue) and non-glial tumors. The highest activities of exoglycosidases were observed in high-grade gliomas, and a positive correlation of enzyme activities and degree of malignancy was noted. Our results suggest that lysosomal exoglycosidases may participate in the progression and dynamical development of glial tumors.

  14. SIRT1 regulates accumulation of oxidized LDL in HUVEC via the autophagy-lysosomal pathway.

    Science.gov (United States)

    Zhang, Yanlin; Sun, Juanjuan; Yu, Xiaoyan; Shi, Luyao; Du, Wenxiu; Hu, Lifang; Liu, Chunfeng; Cao, Yongjun

    2016-01-01

    Autophagy is involved in the degradation of oxidized low-density lipoprotein (ox-LDL) in human umbilical vein endothelial cells (HUVECs). Sirtuin1 (SIRT1), a new anti-atherosclerotic factor, can induce autophagy in cardiac myocytes. In the present study, we observed the effect of SIRT1 on the accumulation of ox-LDL in HUVECs, and elucidated whether its effect is relative with the autophagy-lysosomal pathway. The results showed that treatment with either SIRT1 siRNA or SIRT1 inhibitor nicotinamide (NAM) increased Dil-labelled-ox-LDL (Dil-ox-LDL) accumulation in HUVECs, and the SIRT1 inducer resveratrol (RSV) decreased it. Knockdown of autophagy-related protein 5 or inhibit the lysosomal degradation by chloroquine (CQ) decreased the effect of RSV. In HUVECs with ox-LDL, expression of LC3II and LC3 puncta was decreased by treatment with SIRT1 siRNA or NAM, but increased by RSV treatment; sequestosome 1 p62 expression showed the opposite effects. Moreover, Dil-ox-LDL combined with SIRT1 siRNA or NAM showed a much smaller degree of overlap of Lamp1 or Cathepsin D with Dil-ox-LDL than in cells with Dil-ox-LDL alone, and RSV treatment resulted in a greater degree of overlap. These results suggest that SIRT1 can decrease the accumulation of ox-LDL in HUVECs, and this effect is related to the autophagy-lysosomal pathway.

  15. Biphasic regulation of lysosomal exocytosis by oxidative stress.

    Science.gov (United States)

    Ravi, Sreeram; Peña, Karina A; Chu, Charleen T; Kiselyov, Kirill

    2016-11-01

    Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca(2+). We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.

  16. A potentially dynamic lysosomal role for the endogenous TRPML proteins.

    Science.gov (United States)

    Zeevi, David A; Frumkin, Ayala; Offen-Glasner, Vered; Kogot-Levin, Aviram; Bach, Gideon

    2009-10-01

    Lysosomal storage disorders (LSDs) constitute a diverse group of inherited diseases that result from lysosomal storage of compounds occurring in direct consequence to deficiencies of proteins implicated in proper lysosomal function. Pathology in the LSD mucolipidosis type IV (MLIV), is characterized by lysosomal storage of lipids together with water-soluble materials in cells from every tissue and organ of affected patients. Mutations in the mucolipin 1 (TRPML1) protein cause MLIV and TRPML1 has also been shown to interact with two of its paralogous proteins, mucolipin 2 (TRPML2) and mucolipin 3 (TRPML3), in heterologous expression systems. Heterogeneous lysosomal storage is readily identified in electron micrographs of MLIV patient cells, suggesting that proper TRPML1 function is essential for the maintenance of lysosomal integrity. In order to investigate whether TRPML2 and TRPML3 also play a role in the maintenance of lysosomal integrity, we conducted gene-specific knockdown assays against these protein targets. Ultrastructural analysis revealed lysosomal inclusions in both TRPML2 and TRPML3 knockdown cells, suggestive of a common mechanism for these proteins, in parallel with TRPML1, in the regulation of lysosomal integrity. However, co-immunoprecipitation assays revealed that physical interactions between each of the endogenous TRPML proteins are quite limited. In addition, we found that all three endogenous proteins only partially co-localize with each other in lysosomal as well as extra-lysosomal compartments. This suggests that native TRPML2 and TRPML3 might participate with native TRPML1 in a dynamic form of lysosomal regulation. Given that depletion of TRPML2/3 led to lysosomal storage typical to an LSD, we propose that depletion of these proteins might also underlie novel LSD pathologies not described hitherto.

  17. BAX channel activity mediates lysosomal disruption linked to Parkinson disease.

    Science.gov (United States)

    Bové, Jordi; Martínez-Vicente, Marta; Dehay, Benjamin; Perier, Celine; Recasens, Ariadna; Bombrun, Agnes; Antonsson, Bruno; Vila, Miquel

    2014-05-01

    Lysosomal disruption is increasingly regarded as a major pathogenic event in Parkinson disease (PD). A reduced number of intraneuronal lysosomes, decreased levels of lysosomal-associated proteins and accumulation of undegraded autophagosomes (AP) are observed in PD-derived samples, including fibroblasts, induced pluripotent stem cell-derived dopaminergic neurons, and post-mortem brain tissue. Mechanistic studies in toxic and genetic rodent PD models attribute PD-related lysosomal breakdown to abnormal lysosomal membrane permeabilization (LMP). However, the molecular mechanisms underlying PD-linked LMP and subsequent lysosomal defects remain virtually unknown, thereby precluding their potential therapeutic targeting. Here we show that the pro-apoptotic protein BAX (BCL2-associated X protein), which permeabilizes mitochondrial membranes in PD models and is activated in PD patients, translocates and internalizes into lysosomal membranes early following treatment with the parkinsonian neurotoxin MPTP, both in vitro and in vivo, within a time-frame correlating with LMP, lysosomal disruption, and autophagosome accumulation and preceding mitochondrial permeabilization and dopaminergic neurodegeneration. Supporting a direct permeabilizing effect of BAX on lysosomal membranes, recombinant BAX is able to induce LMP in purified mouse brain lysosomes and the latter can be prevented by pharmacological blockade of BAX channel activity. Furthermore, pharmacological BAX channel inhibition is able to prevent LMP, restore lysosomal levels, reverse AP accumulation, and attenuate mitochondrial permeabilization and overall nigrostriatal degeneration caused by MPTP, both in vitro and in vivo. Overall, our results reveal that PD-linked lysosomal impairment relies on BAX-induced LMP, and point to small molecules able to block BAX channel activity as potentially beneficial to attenuate both lysosomal defects and neurodegeneration occurring in PD.

  18. Neuronal transport of acid hydrolases and peroxidase within the lysosomal system or organelles: involvement of agranular reticulum-like cisterns.

    Science.gov (United States)

    Broadwell, R D; Oliver, C; Brightman, M W

    1980-04-01

    degradation in the cell body. These observations extend our previously reported findings in the axon to the cell body and suggest that agranular reticulum-like cisterns in the perikaryon, like those in the axon, may be part of the lysosomal system rather than associated with the agranular reticulum. A diagram summarizing the lysosomal system of organelles and proposed transport of acid hydrolases and peroxidase in neurosecretory neurons specifically and in neurons in general is provided.

  19. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury.

    Science.gov (United States)

    Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury.

  20. Quantitative modeling of selective lysosomal targeting for drug design

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rosania, G.; Horobin, R.W.;

    2008-01-01

    Lysosomes are acidic organelles and are involved in various diseases, the most prominent is malaria. Accumulation of molecules in the cell by diffusion from the external solution into cytosol, lysosome and mitochondrium was calculated with the Fick–Nernst–Planck equation. The cell model considers....... This demonstrates that the cell model can be a useful tool for the design of effective lysosome-targeting drugs with minimal off-target interactions....

  1. Release and uptake of lysosomal enzymes : studied in cultured cells

    OpenAIRE

    1980-01-01

    textabstractThe purpose of the experimental work described in this thesiswas to investigate some aspects of the release and uptake of lysosomal enzymes. The experiments involved the use of normal human and animal fibroblasts and some other cell types such as hepatocytes and hepatoma cells as sources of hydrolytic enzymes, and fibroblasts from patients with lysosomal storage diseases associated with a single lysosomal enzyme deficiency and with "1-cell" disease as recipient cells. In a number ...

  2. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors

    Science.gov (United States)

    Sukhai, Mahadeo A.; Prabha, Swayam; Hurren, Rose; Rutledge, Angela C.; Lee, Anna Y.; Sriskanthadevan, Shrivani; Sun, Hong; Wang, Xiaoming; Skrtic, Marko; Seneviratne, Ayesh; Cusimano, Maria; Jhas, Bozhena; Gronda, Marcela; MacLean, Neil; Cho, Eunice E.; Spagnuolo, Paul A.; Sharmeen, Sumaiya; Gebbia, Marinella; Urbanus, Malene; Eppert, Kolja; Dissanayake, Dilan; Jonet, Alexia; Dassonville-Klimpt, Alexandra; Li, Xiaoming; Datti, Alessandro; Ohashi, Pamela S.; Wrana, Jeff; Rogers, Ian; Sonnet, Pascal; Ellis, William Y.; Corey, Seth J.; Eaves, Connie; Minden, Mark D.; Wang, Jean C.Y.; Dick, John E.; Nislow, Corey; Giaever, Guri; Schimmer, Aaron D.

    2012-01-01

    Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML. PMID:23202731

  3. Cell biology in China: Focusing on the lysosome.

    Science.gov (United States)

    Yang, Chonglin; Wang, Xiaochen

    2017-06-01

    The view that lysosomes are merely the recycling bins of the cell has changed greatly during recent years. Lysosomes are now known to play a central role in signal transduction, cellular adaptation, plasma membrane repair, immune responses and many other fundamental cellular processes. In conjunction with the seminal discoveries made by international colleagues, many important questions regarding lysosomes are being addressed by Chinese scientists. In this review, we briefly summarize recent exciting findings in China on lysosomal signaling, biogenesis, integrity and physiological functions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Ting-Wei Mu

    2008-02-01

    Full Text Available A lysosomal storage disease (LSD results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum-associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil-both US Food and Drug Administration-approved hypertension drugs-partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient-derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely alpha-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety.

  5. Actin-binding protein coronin 1A controls osteoclastic bone resorption by regulating lysosomal secretion of cathepsin K

    Science.gov (United States)

    Ohmae, Saori; Noma, Naruto; Toyomoto, Masayasu; Shinohara, Masahiro; Takeiri, Masatoshi; Fuji, Hiroaki; Takemoto, Kenji; Iwaisako, Keiko; Fujita, Tomoko; Takeda, Norihiko; Kawatani, Makoto; Aoyama, Mineyoshi; Hagiwara, Masatoshi; Ishihama, Yasushi; Asagiri, Masataka

    2017-01-01

    Osteoclasts degrade bone matrix proteins via the secretion of lysosomal enzymes. However, the precise mechanisms by which lysosomal components are transported and fused to the bone-apposed plasma membrane, termed ruffled border membrane, remain elusive. Here, we identified coronin 1A as a negative regulator of exocytotic release of cathepsin K, one of the most important bone-degrading enzymes in osteoclasts. The modulation of coronin 1A expression did not alter osteoclast differentiation and extracellular acidification, but strongly affected the secretion of cathepsin K and osteoclast bone-resorption activity, suggesting the coronin 1A-mediated regulation of lysosomal trafficking and protease exocytosis. Further analyses suggested that coronin 1A prevented the lipidation-mediated sorting of the autophagy-related protein LC3 to the ruffled border and attenuated lysosome–plasma membrane fusion. In this process, the interactions between coronin 1A and actin were crucial. Collectively, our findings indicate that coronin 1A is a pivotal component that regulates lysosomal fusion and the secretion pathway in osteoclast-lineage cells and may provide a novel therapeutic target for bone diseases. PMID:28300073

  6. Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Lee

    2015-09-01

    Full Text Available Presenilin 1 (PS1 deletion or Alzheimer’s disease (AD-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  7. Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification.

    Science.gov (United States)

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M; Haslett, Luke J; Kumar, Asok; Sato, Yutaka; Lie, Pearl P Y; Mohan, Panaiyur; Coffey, Erin E; Kompella, Uday; Mitchell, Claire H; Lloyd-Evans, Emyr; Nixon, Ralph A

    2015-09-01

    Presenilin 1 (PS1) deletion or Alzheimer's disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO) cells induces abnormal Ca(2+) efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca(2+). In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca(2+) homeostasis, but correcting lysosomal Ca(2+) deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca(2+) homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  8. Pregnancy outcome after intracytoplasmic sperm injection with strontium oocyte activation in a globozoospermic patient

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yu Yang; Jing Wang; Jia-Yin Liu; Yan Gao; Zuo-Min Zhou; Jia-Hao Sha; Wei Zhang; Yu-Gui Cui; Xiao-Qiao Qian

    2012-01-01

    Dear Editor,I am Dr Xiao-Yu Yang,from the Center of Clinical Reproductive Medicine in the First Affiliated Hospital at the NanJing Medical University,Nanjing,China.We present here a case report of a globozoospermic patient whose partner became pregnant after intracytoplasmic sperm injection (ICSI) with assisted oocyte activation (AOA).Globozoospermia is characterized by the presence of 100% round- headed spermatozoa lacking an acrosome.The lack of the acrosome,which renders spermatozoa unable to bind to the zona pellucida or fuse with the oocyte oolemma,is considered to be the cause of infertility in these patients.

  9. Factors affecting the efficiency of foal production by intracytoplasmic sperm injection (ICSI

    Directory of Open Access Journals (Sweden)

    Grady ST

    2016-08-01

    Full Text Available Equine embryo production by intracytoplasmic sperm injection (ICSI is currently effective enough to be used clinically. However, there are several factors that affect the efficiency of this procedure because, in addition to specialized equipment, skill in oocyte and embryo handling, and sperm preparation as well as knowledge of oocyte and embryo culture are required. To the best of our knowledge, there are currently only a couple of reports available on the expected efficiency of foal production by ICSI. Here we discuss the parameters that pertain to the Texas A&M Equine Embryo Laboratory only, as other laboratories may have different results.

  10. Enhanced lysosomal activity by overexpressed aminopeptidase Y in Saccharomyces cerevisiae.

    Science.gov (United States)

    Yoon, Jihee; Sekhon, Simranjeet Singh; Kim, Yang-Hoon; Min, Jiho

    2016-06-01

    Saccharomyces cerevisiae contains vacuoles corresponding to lysosomes in higher eukaryotes. Lysosomes are dynamic (not silent) organelles in which enzymes can be easily integrated or released when exposed to stressful conditions. Changes in lysosomal enzymes have been observed due to oxidative stress, resulting in an increased function of lysosomes. The protein profiles from H2O2- and NH4Cl-treated lysosomes showed different expression patterns, observed with two-dimensional gel electrophoresis. The aminopeptidase Y protein (APE3) that conspicuously enhanced antimicrobial activity than other proteins was selected for further studies. The S. cerevisiae APE3 gene was isolated and inserted into pYES2.0 expression vector. The GFP gene was inserted downstream to the APE3 gene for confirmation of APE3 targeting to lysosomes, and S. cerevisiae was transformed to pYES2::APE3::GFP. The APE3 did not enter in lysosomes and formed an inclusion body at 30 °C, but it inserted to lysosomes as shown by the merger of GFP with lysosomes at 28 °C. Antimicrobial activity of the cloned S. cerevisiae increased about 5 to 10 % against eight strains, compared to normal cells, and galactose induction is increased more two folds than that of normal cells. Therefore, S. cerevisiae was transformed to pYES2::APE3::GFP, accumulating a large amount of APE3, resulting in increased lysosomal activity. Increase in endogenous levels of lysosomes and their activity following genetic modification can lead to its use in applications such as antimicrobial agents and apoptosis-inducing materials for cancer cells, and consequently, it may also be possible to use the organelles for improving in vitro functions.

  11. [The blood-brain barrier and neurodegenerative lysosomal storage diseases].

    Science.gov (United States)

    Urayama, Akihiko

    2013-02-01

    Enzyme replacement therapy has been a very effective treatment for several lysosomal storage diseases. However, correcting central nervous system (CNS) storage has been challenging due to the presence of the blood-brain barrier (BBB), which hampers the entry of circulating lysosomal enzymes into the brain. In our previous studies, we discovered that luminally expressed cation-independent mannose 6-phosphate (M6P) receptor is a universal transporter for lysosomal enzymes that contain M6P moieties on the enzyme molecule. This receptor-mediated transport of lysosomal enzymes showed developmental down-regulation that resulted in a failure of delivery of lysosomal enzymes across the BBB in the adult brain. Conceptually, if one can re-induce M6P receptor-mediated transport of lysosomal enzymes in adult BBB, this could provide a novel brain targeting approach for treating abnormal storage in the CNS, regardless of the age of subjects. We found that systemic adrenergic stimuli restored functional transport of β-glucuronidase across the adult BBB. The concept of manipulating BBB transport activity by endogenous characteristics has also been demonstrated by another group who showed effective treatment in a Pompe disease model animal in vivo. It is intriguing that lysosomal enzymes utilize multiple mechanisms for their transport across the BBB. This review explores pharmacological manipulations for the delivery of lysosomal enzymes into the CNS, and the mechanisms of their transport across the BBB, based on existing evidence from studies of β-glucuronidase, sulfamidase, acid α-glucosidase, and arylsulfatase A.

  12. Photoaffinity labeling of the lysosomal neuraminidase from bovine testis

    NARCIS (Netherlands)

    G.T.J. van der Horst (Gijsbertus); U. Rose (Ursula); R. Brossmer (Reinhard); F.W. Verheijen (Frans)

    1990-01-01

    markdownabstractAbstract ASA-NeuAc2en, a photoreactive arylazide derivative of sialic acid, is shown to be a powerful competitive inhibitor of lysosomal neuraminidase from bovine testis (Ki ≈ 21 μM). Photoaffinity labeling and partial purification of preparations containing this lysosomal neuramin

  13. Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function.

    Science.gov (United States)

    Kim, Dong-Kyu; Lim, Hee-Sun; Kawasaki, Ichiro; Shim, Yhong-Hee; Vaikath, Nishant N; El-Agnaf, Omar M A; Lee, He-Jin; Lee, Seung-Jae

    2016-10-02

    Aging is the major risk factor for neurodegenerative diseases that are also associated with impaired proteostasis, resulting in abnormal accumulation of protein aggregates. However, the role of aging in development and progression of disease remains elusive. Here, we used Caenorhabditis elegans models to show that aging-promoting genetic variations accelerated the rate of cell-to-cell transmission of SNCA/α-synuclein aggregates, hallmarks of Parkinson disease, and the progression of disease phenotypes, such as nerve degeneration, behavioral deficits, and reduced life span. Genetic and pharmacological anti-aging manipulations slowed the spread of aggregates and the associated phenotypes. Lysosomal degradation was significantly impaired in aging models, while anti-aging treatments reduced the impairment. Transgenic expression of hlh-30p::hlh-30, the master controller of lysosomal biogenesis, alleviated intercellular transmission of aggregates in the aging model. Our results demonstrate that the rate of aging closely correlates with the rate of aggregate propagation and that general anti-aging treatments can slow aggregate propagation and associated disease progression by restoring lysosomal function.

  14. Characterization of lysosome-destabilizing DOPE/PLGA nanoparticles designed for cytoplasmic drug release.

    Science.gov (United States)

    Chhabra, Resham; Grabrucker, Andreas M; Veratti, Patrizia; Belletti, Daniela; Boeckers, Tobias M; Vandelli, Maria Angela; Forni, Flavio; Tosi, Giovanni; Ruozi, Barbara

    2014-08-25

    Polymeric nanoparticles (NPs) offer a promising approach for therapeutic intracellular delivery of proteins, conventionally hampered by short half-lives, instability and immunogenicity. Remarkably, NPs uptake occurs via endocytic internalization leading to NPs content's release within lysosomes. To overcome lysosomal degradation and achieve NPs and/or loaded proteins release into cytosol, we propose the formulation of hybrid NPs by adding 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as pH sensitive component in the formulation of poly-lactide-co-glycolide (PLGA) NPs. Hybrid NPs, featured by different DOPE/PLGA ratios, were characterized in terms of structure, stability and lipid organization within the polymeric matrix. Experiments on NIH cells and rat primary neuronal cultures highlighted the safety profile of hybrid NPs. Moreover, after internalization, NPs are able to transiently destabilize the integrity of lysosomes in which they are taken up, speeding their escape and favoring cytoplasmatic localization. Thus, these DOPE/PLGA-NPs configure themselves as promising carriers for intracellular protein delivery.

  15. Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila.

    Directory of Open Access Journals (Sweden)

    Daijun Ling

    Full Text Available The mechanism of widespread neuronal death occurring in Alzheimer's disease (AD remains enigmatic even after extensive investigation during the last two decades. Amyloid beta 42 peptide (Abeta(1-42 is believed to play a causative role in the development of AD. Here we expressed human Abeta(1-42 and amyloid beta 40 (Abeta(1-40 in Drosophila neurons. Abeta(1-42 but not Abeta(1-40 causes an extensive accumulation of autophagic vesicles that become increasingly dysfunctional with age. Abeta(1-42-induced impairment of the degradative function, as well as the structural integrity, of post-lysosomal autophagic vesicles triggers a neurodegenerative cascade that can be enhanced by autophagy activation or partially rescued by autophagy inhibition. Compromise and leakage from post-lysosomal vesicles result in cytosolic acidification, additional damage to membranes and organelles, and erosive destruction of cytoplasm leading to eventual neuron death. Neuronal autophagy initially appears to play a pro-survival role that changes in an age-dependent way to a pro-death role in the context of Abeta(1-42 expression. Our in vivo observations provide a mechanistic understanding for the differential neurotoxicity of Abeta(1-42 and Abeta(1-40, and reveal an Abeta(1-42-induced death execution pathway mediated by an age-dependent autophagic-lysosomal injury.

  16. A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia.

    Science.gov (United States)

    Abodeely, Marla; DuBois, Kelly N; Hehl, Adrian; Stefanic, Sasa; Sajid, Mohammed; DeSouza, Wanderley; Attias, Marcia; Engel, Juan C; Hsieh, Ivy; Fetter, Richard D; McKerrow, James H

    2009-11-01

    The dynamic evolution of organelle compartmentalization in eukaryotes and how strictly compartmentalization is maintained are matters of ongoing debate. While the endoplasmic reticulum (ER) is classically envisioned as the site of protein cotranslational translocation, it has recently been proposed to have pluripotent functions. Using transfected reporter constructs, organelle-specific markers, and functional enzyme assays, we now show that in an early-diverging protozoan, Giardia lamblia, endocytosis and subsequent degradation of exogenous proteins occur in the ER or in an adjacent and communicating compartment. The Giardia endomembrane system is simple compared to those of typical eukaryotes. It lacks peroxisomes, a classical Golgi apparatus, and canonical lysosomes. Giardia orthologues of mammalian lysosomal proteases function within an ER-like tubulovesicular compartment, which itself can dynamically communicate with clathrin-containing vacuoles at the periphery of the cell to receive endocytosed proteins. These primitive characteristics support Giardia's proposed early branching and could serve as a model to study the compartmentalization of endocytic and lysosomal functions into organelles distinct from the ER. This system also may have functional similarity to the retrograde transport of toxins and major histocompatibility complex class I function in the ER of mammals.

  17. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    Science.gov (United States)

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  18. Influence of antisperm antibodies in the semen on intracytoplasmic sperm injection outcome

    Directory of Open Access Journals (Sweden)

    Sandro C. Esteves

    2007-12-01

    Full Text Available OBJECTIVE: The aim of this study was to analyze the influence of autoantibodies against spermatozoa present in the semen on the outcome of in vitro fertilization with intracytoplasmic sperm injection (ICSI. MATERIALS AND METHODS: We performed a retrospective analysis of clinical and laboratorial data from a six year-period ICSI cycles. Screening for the presence of ASA in the semen, by using the direct immunobeads test (IBT, was available for 351 cycles. According to the percentage of antibody-bound spermatozoa in the semen, we divided the cycles in four groups: I (n = 194: 0%-10% ASA; II (n = 107: 11%-20%; III (n = 33: 21%-50% and IV (n = 17: 51%-100% ASA. Additionally, a group of 349 ICSI cycles performed with ejaculated spermatozoa from oligo/asthenozoospermic men who had insufficient number of motile sperm available for ASA screening was included for comparison. ICSI outcomes were compared among groups and included fertilization rate (2 PN, cleavage rate, cleavage velocity, embryo quality, clinical pregnancy and miscarriage rates. Data were examined statistically, with an alpha level of 5% considered significant. RESULTS: Fertilization, cleavage rate and velocity, percentage of good quality embryos, as well as clinical pregnancy and miscarriage rates did not differ among different ASA levels groups. ICSI outcomes in men exhibiting different levels of autoimmunity against spermatozoa did not differ from those with severely abnormal seminal parameters. CONCLUSIONS: Our data indicate that intracytoplasmic sperm injection (ICSI outcomes are not influenced by ASA levels on sperm.

  19. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders.

    Science.gov (United States)

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J; Sims, Katherine B; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-04-17

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role.

  20. MDMA induces cardiac contractile dysfunction through autophagy upregulation and lysosome destabilization in rats.

    Science.gov (United States)

    Shintani-ishida, Kaori; Saka, Kanju; Yamaguchi, Koji; Hayashida, Makiko; Nagai, Hisashi; Takemura, Genzou; Yoshida, Ken-ichi

    2014-05-01

    The underlying mechanisms of cardiotoxicity of 3,4-methylenedioxymethylamphetamine (MDMA, "ecstasy") abuse are unclear. Autophagy exerts either adaptive or maladaptive effects on cardiac function in various pathological settings, but nothing is known on the role of autophagy in the MDMA cardiotoxicity. Here, we investigated the mechanism through which autophagy may be involved in MDMA-induced cardiac contractile dysfunction. Rats were injected intraperitoneally with MDMA (20mg/kg) or saline. Left ventricular (LV) echocardiography and LV pressure measurement demonstrated reduction of LV systolic contractility 24h after MDMA administration. Western blot analysis showed a time-dependent increase in the levels of microtubule-associated protein light chain 3-II (LC3-II) and cathepsin-D after MDMA administration. Electron microscopy showed the presence of autophagic vacuoles in cardiomyocytes. MDMA upregulated phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) at Thr172, mammalian target of rapamycin (mTOR) at Thr2446, Raptor at Ser792, and Unc51-like kinase (ULK1) at Ser555, suggesting activation of autophagy through the AMPK-mTOR pathway. The effects of autophagic inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) on LC3-II levels indicated that MDMA enhanced autophagosome formation, but attenuated autophagosome clearance. MDMA also induced release of cathepsins into cytosol, and western blotting and electron microscopy showed cardiac troponin I (cTnI) degradation and myofibril damage, respectively. 3-MA, CQ, and a lysosomal inhibitor, E64c, inhibited cTnI proteolysis and improved contractile dysfunction after MDMA administration. In conclusion, MDMA causes lysosome destabilization following activation of the autophagy-lysosomal pathway, through which released lysosomal proteases damage myofibrils and induce LV systolic dysfunction in rat heart.

  1. Mucolipidosis type IV: the effect of increased lysosomal pH on the abnormal lysosomal storage.

    Science.gov (United States)

    Kogot-Levin, Aviram; Zeigler, Marsha; Ornoy, Asher; Bach, Gideon

    2009-06-01

    Mucolipidosis type IV (MLIV) is a neurodegenerative channelopathy that is caused by the deficiency of TRPML1 activity, a nonselective cation channel. TRPML1 is a lysosomal membrane protein, and thus, MLIV is a lysosomal storage disorder. The basic, specific function of TRPML1 has not been yet clarified. A recent report (Soyombo AA, Tjon-Kon-Sang S, Rbaibi Y, Bashllari E, Bisceglia J, Muallem S, Kiselyov K: J Biol Chem 281:7294-7301, 2006) indicated that TRPML1 functions as an outwardly proton channel whose function is the prevention of overacidification of these organelles. Thus, in MLIV the lysosomal pH is lower than normal. Furthermore, attempts by these investigators to increase slightly the lysososmal pH with either Nigericin or Chloroquine suggested corrective effect of the abnormal storage in MLIV cells. We investigated this approach using these agents with cultured fibroblasts from severely affected and milder patients. Our data indicated that there was no reduction in the total number of storage vesicles by either agent, although Nigericin resulted in a change in the nature of the storage materials, reducing the presence of lamellated substances (lipids) so that the storage vesicles contained predominantly granulated substances. On the other hand, transfection with the normal MCOLN1 cDNA (the gene coding for TRPML1) resulted in the removal of almost all the storage materials.

  2. Early involvement of lysosome dysfunction in the degeneration of cerebral cortical neurons caused by the lipid peroxidation product 4-hydroxynonenal.

    Science.gov (United States)

    Zhang, Shi; Eitan, Erez; Mattson, Mark P

    2017-03-01

    Free radical-mediated oxidative damage to proteins, lipids, and DNA occurs in neurons during acute brain injuries and in neurodegenerative disorders. Membrane lipid peroxidation contributes to neuronal dysfunction and death, in part by disrupting neuronal ion homeostasis and cellular bioenergetics. Emerging findings suggest that 4-hydroxynonenal (HNE), an aldehyde produced during lipid peroxidation, impairs the function of various proteins involved in neuronal homeostasis. Here we tested the hypothesis that HNE impairs the cellular system that removes damaged proteins and organelles, the autophagy-lysosome pathway in rat primary cortical neurons. We found that HNE, at a concentration that causes apoptosis over a 48-72 h period, increases protein levels of LC3 II and p62 and within 1 and 4 h of exposure, respectively; LC3 II and p62 immunoreactive puncta were observed in the cytoplasm of HNE-treated neurons at 6 h. The extent of up-regulation of p62 and LC3 II in response to HNE was not affected by co-treatment with the lysosome inhibitor bafilomycin A1, suggesting that the effects of HNE on autophagy were secondary to lysosome inhibition. Indeed, we found that neurons exposed to HNE exhibit elevated pH levels, and decreased protein substrate hydrolysis and cathepsin B activity. Neurons exposed to HNE also exhibited the accumulation of K63-linked polyubiquitinated proteins, which are substrates targeted for lysosomal degradation. Moreover, we found that the levels of LAMP2a and constitutively active heat-shock protein 70, and numbers of LAMP2a-positive lysosomes, are decreased in neurons exposed to HNE. Our findings demonstrate that the lipid peroxidation product HNE causes early impairment of lysosomes which may contribute to the accumulation of damaged and dysfunctional proteins and organelles and consequent neuronal death. Because impaired lysosome function is increasingly recognized as an early event in the neuronal death that occurs in neurodegenerative

  3. Lysosomal-associated protein multispanning transmembrane 5 gene (LAPTM5 is associated with spontaneous regression of neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Jun Inoue

    Full Text Available BACKGROUND: Neuroblastoma (NB is the most frequently occurring solid tumor in children, and shows heterogeneous clinical behavior. Favorable tumors, which are usually detected by mass screening based on increased levels of catecholamines in urine, regress spontaneously via programmed cell death (PCD or mature through differentiation into benign ganglioneuroma (GN. In contrast, advanced-type NB tumors often grow aggressively, despite intensive chemotherapy. Understanding the molecular mechanisms of PCD during spontaneous regression in favorable NB tumors, as well as identifying genes with a pro-death role, is a matter of urgency for developing novel approaches to the treatment of advanced-type NB tumors. PRINCIPAL FINDINGS: We found that the expression of lysosomal associated protein multispanning transmembrane 5 (LAPTM5 was usually down-regulated due to DNA methylation in an NB cell-specific manner, but up-regulated in degenerating NB cells within locally regressing areas of favorable tumors detected by mass-screening. Experiments in vitro showed that not only a restoration of its expression but also the accumulation of LAPTM5 protein, was required to induce non-apoptotic cell death with autophagic vacuoles and lysosomal destabilization with lysosomal-membrane permeabilization (LMP in a caspase-independent manner. While autophagy is a membrane-trafficking pathway to degrade the proteins in lysosomes, the LAPTM5-mediated lysosomal destabilization with LMP leads to an interruption of autophagic flux, resulting in the accumulation of immature autophagic vacuoles, p62/SQSTM1, and ubiqitinated proteins as substrates of autophagic degradation. In addition, ubiquitin-positive inclusion bodies appeared in degenerating NB cells. CONCLUSIONS: We propose a novel molecular mechanism for PCD with the accumulation of autophagic vacuoles due to LAPTM5-mediated lysosomal destabilization. LAPTM5-induced cell death is lysosomal cell death with impaired autophagy

  4. Intracytoplasmic inclusion bodies associated with vesicular ulcerative and necrotizing lesions of the digestive mucosa in fallow deer (Dama dama L.

    Directory of Open Access Journals (Sweden)

    Regina Diaz

    1990-09-01

    Full Text Available Intracytoplasmic epithelial inclusion bodies in the digestive mucosa of fallow deer (Dama dama L. were found to most probably be the result of an unspecific degenerative or post mortal change. There are reasons to believe that this is true also for the inclusion bodies found in reindeer, roe deer and moose.

  5. Intracytoplasmic Sperm Injection Outcomes with Freshly Ejaculated Sperms and Testicular or Epididymal Sperm Extraction in Patients with Idiopathic Cryptozoospermia

    OpenAIRE

    Ketabchi

    2016-01-01

    Background Cryptozoospermia (CO) is a situation in which spermatozoa cannot be observed in a fresh semen sample unless an extended centrifugation and microscopic search are performed. CO patients are suggested to use only intracytoplasmic sperm injection (ICSI) as infertility treatment. But still there is debate about the choice of sperm source in cryptozoospermic men candidate for ICSI. Objectives This study was conducted to eval...

  6. Relationship between the length of the uterine cavity and clinical pregnancy rates after in vitro fertilization or intracytoplasmic sperm injection.

    Science.gov (United States)

    Chun, Sang Sik; Chung, Min Ji; Chong, Gun Oh; Park, Kee Sang; Lee, Taek Hoo

    2010-02-01

    In this prospective clinical study involving 354 IVF-intracytoplasmic sperm injection cycles, we determined the influence of the length of the uterine cavity on clinical pregnancy rates. Our data showed that clinical pregnancy and implantation rates are associated positively with an increased length of the uterine cavity.

  7. Mutation frequency of cystic fibrosis transmembrane regulator is not increased in oligozoospermic male candidates for intracytoplasmic sperm injection

    NARCIS (Netherlands)

    Tuerlings, J H; Mol, B; Kremer, J A; Looman, M; Meuleman, E J; te Meerman, G J; Buys, C H; Merkus, H M; Scheffer, H

    1998-01-01

    OBJECTIVE: To examine the frequency of anomalies of the vas deferens and the frequency of mutations of the cystic fibrosis transmembrane regulator (CFTR) gene in male candidates for intracytoplasmic sperm injection (ICSI) who had severe oligoasthenoteratozoospermia. DESIGN: The clinical data for mal

  8. Eucommia ulmoides Oliver extract, aucubin, and geniposide enhance lysosomal activity to regulate ER stress and hepatic lipid accumulation.

    Directory of Open Access Journals (Sweden)

    Hwa-Young Lee

    Full Text Available Eucommia ulmoides Oliver is a natural product widely used as a dietary supplement and medicinal plant. Here, we examined the potential regulatory effects of Eucommia ulmoides Oliver extracts (EUE on hepatic dyslipidemia and its related mechanisms by in vitro and in vivo studies. EUE and its two active constituents, aucubin and geniposide, inhibited palmitate-induced endoplasmic reticulum (ER stress, reducing hepatic lipid accumulation through secretion of apolipoprotein B and associated triglycerides and cholesterol in human HepG2 hepatocytes. To determine how EUE diminishes the ER stress response, lysosomal and proteasomal protein degradation activities were analyzed. Although proteasomal activity was not affected, lysosomal enzyme activities including V-ATPase were significantly increased by EUE as well as aucubin and geniposide in HepG2 cells. Treatment with the V-ATPase inhibitor, bafilomycin, reversed the inhibition of ER stress, secretion of apolipoprotein B, and hepatic lipid accumulation induced by EUE or its component, aucubin or geniposide. In addition, EUE was determined to regulate hepatic dyslipidemia by enhancing lysosomal activity and to regulate ER stress in rats fed a high-fat diet. Together, these results suggest that EUE and its active components enhance lysosomal activity, resulting in decreased ER stress and hepatic dyslipidemia.

  9. Structural determinants allowing endolysosomal sorting and degradation of endosomal GTPases.

    Science.gov (United States)

    Valero, Ruth A; Oeste, Clara L; Stamatakis, Konstantinos; Ramos, Irene; Herrera, Mónica; Boya, Patricia; Pérez-Sala, Dolores

    2010-09-01

    Rapid control of protein degradation is usually achieved through the ubiquitin-proteasome pathway. We recently found that the short-lived GTPase RhoB is degraded in lysosomes. Moreover, the fusion of the RhoB C-terminal sequence CINCCKVL, containing the isoprenylation and palmitoylation sites, to other proteins directs their sorting into multivesicular bodies (MVBs) and rapid lysosomal degradation. Here, we show that this process is highly specific for RhoB. Alteration of late endosome lipid dynamics produced the accumulation of RhoB, but not of other endosomal GTPases, including Rab5, Rab7, Rab9 or Rab11, into enlarged MVB. Other isoprenylated and bipalmitoylated GTPases, such as H-Ras, Rap2A, Rap2B and TC10, were not accumulated into MVB and were stable. Remarkably, although TC10, which is highly homologous to RhoB, was stable, a sequence derived from its C-terminus (CINCCLIT) elicited MVB sorting and degradation of a green fluorescent protein (GFP)-chimeric protein. This led us to identify a cluster of basic amino acids (KKH) in the TC10 hypervariable region, constituting a secondary signal potentially involved in electrostatic interactions with membrane lipids. Mutation of this cluster allowed TC10 MVB sorting and degradation, whereas inserting it into RhoB hypervariable region rescued this protein from its lysosomal degradation pathway. These findings define a highly specific structural module for entering the MVB pathway and rapid lysosomal degradation.

  10. Medical Cosmopolitanism in Global Dubai: A Twenty-first-century Transnational Intracytoplasmic Sperm Injection (ICSI) Depot.

    Science.gov (United States)

    Inhorn, Marcia C

    2017-03-01

    Dubai-one of the seven United Arab Emirates and the Middle East's only "global city"-is gaining a reputation as a transnational medical tourism hub. Characterized by its "medical cosmopolitanism," Dubai is now attracting medical travelers from around the world, some of whom are seeking assisted conception. Dubai is fast becoming known as a new transnational "reprohub" for intracytoplasmic sperm injection (ICSI), the variant of in vitro fertilization designed to overcome male infertility. Based on ethnographic research conducted in one of the country's most cosmopolitan clinics, this article explores the ICSI treatment quests of infertile men coming to Dubai from scores of other nations. The case of an infertile British-Moroccan man is highlighted to demonstrate why ICSI is a particularly compelling "masculine hope technology" for infertile Muslim men. Thus, Muslim men who face barriers to ICSI access in their home countries may become "reprotravelers" to Dubai, an emergent ICSI depot.

  11. Increased frequency of severe major anomalies in children conceived by intracytoplasmic sperm injection

    DEFF Research Database (Denmark)

    Sanchez-Albisua, I; Borell-Kost, S; Mau-Holzmann, U A

    2007-01-01

    control studies (21 males, 18 females; mean ages of 18 mo and 40 mo [SD 4 mo]; range 3 y-4 y 1 mo). Each child was assessed physically and tested in three development domains (fine motor, gross motor, and language). Five children born after ICSI versus two control children (p=0.2) had major congenital...... hypoglycaemia of infancy (n=1). Karyotyping in 23 children born after ICSI revealed no abnormalities. An imprinting defect was found in the child with Angelman syndrome. Results of developmental assessment were in all cases normal at the age of 18 months except for the three children with Angelman and Hanhart......The neurodevelopmental outcome of children born after intracytoplasmic sperm injection (ICSI) is controversial. We compared the medical and developmental outcome of 34 singletons born after ICSI (20 males, 14 females; mean ages of 18 mo and 40 mo [SD 9 mo]; range 2 y 10 mo-4 y 8 mo) with 39 case...

  12. Changes in DNA fragmentation during sperm preparation for intracytoplasmic sperm injection over time.

    Science.gov (United States)

    Rougier, Natalia; Uriondo, Heydy; Papier, Sergio; Checa, Miguel Angel; Sueldo, Carlos; Alvarez Sedó, Cristian

    2013-07-01

    To compare the DNA fragmentation of semen samples established by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling (TUNEL) after incubation in polyvinylpyrrolidone (PVP) and hyaluronic acid (HA) for different time periods. Comparative prospective study. Center for reproductive medicine. Twenty-seven semen samples from infertile patients. None. Semen analysis and DNA fragmentation assays (TUNEL) were performed. Two groups were established: A) normal TUNEL (DNA fragmentation significantly decreased after centrifugation gradient, regardless of the initial levels of the sample. Samples with TUNEL ≥ 20% were more susceptible to a significant increase in DNA fragmentation over time, with similar increases being observed over time for samples that were incubated in HA or PVP. These data may be relevant for sperm preparation for intracytoplasmic sperm injection. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes.

    Science.gov (United States)

    Grandal, Michael V; Zandi, Roza; Pedersen, Mikkel W; Willumsen, Berthe M; van Deurs, Bo; Poulsen, Hans S

    2007-07-01

    EGFRvIII is a mutant variant of the epidermal growth factor receptor (EGFR) found exclusively in various cancer types. EGFRvIII lacks a large part of the extracellular domain and is unable to bind ligands; however, the receptor is constitutively phosphorylated and able to activate downstream signaling pathways. Failure to attenuate signaling by receptor down-regulation could be one of the major mechanisms by which EGFRvIII becomes oncogenic. Using a cell system expressing either EGFR or EGFRvIII with no expression of other EGFR family members and with endogenous levels of key degradation proteins, we have investigated the down-regulation of EGFRvIII and compared it to that of EGFR. We show that, in contrast to EGFR, EGFRvIII is inefficiently degraded. EGFRvIII is internalized, but the internalization rate of the mutated receptor is significantly less than that of unstimulated EGFR. Moreover, internalized EGFRvIII is recycled rather than delivered to lysosomes. EGFRvIII binds the ubiquitin ligase c-Cbl via Grb2, whereas binding via phosphorylated tyrosine residue 1045 seems to be limited. Despite c-Cbl binding, the receptor fails to become effectively ubiquitinylated. Thus, our results suggest that the long lifetime of EGFRvIII is caused by inefficient internalization and impaired sorting to lysosomes due to lack of effective ubiquitinylation.

  14. Renal cell carcinoma with rhabdoid-like features lack intracytoplasmic inclusion bodies and show aggressive behavior.

    Science.gov (United States)

    Sugimoto, Masaaki; Kohashi, Kenichi; Kuroiwa, Kentaro; Abe, Tatsuro; Yamada, Yuichi; Shiota, Masaki; Imada, Kenjiro; Naito, Seiji; Oda, Yoshinao

    2016-03-01

    In renal cell carcinoma (RCC), tumor cells with rhabdoid features are characterized by eccentric nuclei, prominent nucleoli, and eosinophilic cytoplasm with intracytoplasmic inclusion bodies. In RCC, tumor cells have also been observed resembling rhabdomyoblasts or rhabdoid but without intracytoplasmic inclusion bodies, and here, we defined these rhabdoid-like features of these cells. To this end, we studied a series of clear cell RCC (ccRCC) with rhabdoid features and compared them with a series of ccRCC with rhabdoid-like features to clarify the differences in the immunohistochemical profile and biological behavior. From 695 cases of ccRCC (80.8 % of all RCCs), 18 cases with rhabdoid features (2.1 % of all RCCs) and 25 cases with rhabdoid-like features (2.9 % of all RCCs) were investigated. The 5-year survival rate for ccRCC with rhabdoid features was 44.7 % and for ccRCC with rhabdoid-like features 30.3 %. Although ccRCC with rhabdoid features showed immunohistochemical co-expression of epithelial markers and vimentin as seen in malignant rhabdoid tumors, ccRCC with rhabdoid-like features showed no such co-expression. Multivariate analyses of cancer-specific survival revealed that perinephric tissues invasion was an independent prognostic factor in ccRCC with rhabdoid features (p = 0.0253) but not in ccRCC with rhabdoid-like features. In summary, although their prognosis is similar, the marker profile and pattern of extension of ccRCC with rhabdoid-like is different from that of ccRCC with rhabdoid features. Therefore, ccRCC with rhabdoid-like features should be distinguished from ccRCC with rhabdoid features.

  15. Cationic lipids delay the transfer of plasmid DNA to lysosomes.

    Science.gov (United States)

    Wattiaux, R; Jadot, M; Laurent, N; Dubois, F; Wattiaux-De Coninck, S

    1996-10-14

    Plasmid 35S DNA, naked or associated with different cationic lipid preparations was injected to rats. Subcellular distribution of radioactivity in the liver one hour after injection, was established by centrifugation methods. Results show that at that time, 35S DNA has reached lysosomes. On the contrary, when 35S DNA was complexed with lipids, radioactivity remains located in organelles whose distribution after differential and isopycnic centrifugation, is clearly distinct from that of arylsulfatase, lysosome marker enzyme. Injection of Triton WR 1339, a specific density perturbant of lysosomes, four days before 35S DNA injection causes a density decrease of radioactivity bearing structures, apparent one hour after naked 35S DNA injection but visible only after more than five hours, when 35S DNA associated with a cationic lipid is injected. These observations show that cationic lipids delay the transfer to lysosomes, of plasmid DNA taken up by the liver.

  16. Protective effects of positive lysosomal modulation in Alzheimer's disease transgenic mouse models.

    Directory of Open Access Journals (Sweden)

    David Butler

    Full Text Available Alzheimer's disease (AD is an age-related neurodegenerative pathology in which defects in proteolytic clearance of amyloid β peptide (Aβ likely contribute to the progressive nature of the disorder. Lysosomal proteases of the cathepsin family exhibit up-regulation in response to accumulating proteins including Aβ(1-42. Here, the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK was used to test whether proteolytic activity can be enhanced to reduce the accumulation events in AD mouse models expressing different levels of Aβ pathology. Systemic PADK injections in APP(SwInd and APPswe/PS1ΔE9 mice caused 3- to 8-fold increases in cathepsin B protein levels and 3- to 10-fold increases in the enzyme's activity in lysosomal fractions, while neprilysin and insulin-degrading enzyme remained unchanged. Biochemical analyses indicated the modulation predominantly targeted the active mature forms of cathepsin B and markedly changed Rab proteins but not LAMP1, suggesting the involvement of enhanced trafficking. The modulated lysosomal system led to reductions in both Aβ immunostaining as well as Aβ(x-42 sandwich ELISA measures in APP(SwInd mice of 10-11 months. More extensive Aβ deposition in 20-22-month APPswe/PS1ΔE9 mice was also reduced by PADK. Selective ELISAs found that a corresponding production of the less pathogenic Aβ(1-38 occurs as Aβ(1-42 levels decrease in the mouse models, indicating that PADK treatment leads to Aβ truncation. Associated with Aβ clearance was the elimination of behavioral and synaptic protein deficits evident in the two transgenic models. These findings indicate that pharmacologically-controlled lysosomal modulation reduces Aβ(1-42 accumulation, possibly through intracellular truncation that also influences extracellular deposition, and in turn offsets the defects in synaptic composition and cognitive functions. The selective modulation promotes clearance at different levels of Aβ pathology and provides proof

  17. Protective effects of positive lysosomal modulation in Alzheimer's disease transgenic mouse models.

    Science.gov (United States)

    Butler, David; Hwang, Jeannie; Estick, Candice; Nishiyama, Akiko; Kumar, Saranya Santhosh; Baveghems, Clive; Young-Oxendine, Hollie B; Wisniewski, Meagan L; Charalambides, Ana; Bahr, Ben A

    2011-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative pathology in which defects in proteolytic clearance of amyloid β peptide (Aβ) likely contribute to the progressive nature of the disorder. Lysosomal proteases of the cathepsin family exhibit up-regulation in response to accumulating proteins including Aβ(1-42). Here, the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK) was used to test whether proteolytic activity can be enhanced to reduce the accumulation events in AD mouse models expressing different levels of Aβ pathology. Systemic PADK injections in APP(SwInd) and APPswe/PS1ΔE9 mice caused 3- to 8-fold increases in cathepsin B protein levels and 3- to 10-fold increases in the enzyme's activity in lysosomal fractions, while neprilysin and insulin-degrading enzyme remained unchanged. Biochemical analyses indicated the modulation predominantly targeted the active mature forms of cathepsin B and markedly changed Rab proteins but not LAMP1, suggesting the involvement of enhanced trafficking. The modulated lysosomal system led to reductions in both Aβ immunostaining as well as Aβ(x-42) sandwich ELISA measures in APP(SwInd) mice of 10-11 months. More extensive Aβ deposition in 20-22-month APPswe/PS1ΔE9 mice was also reduced by PADK. Selective ELISAs found that a corresponding production of the less pathogenic Aβ(1-38) occurs as Aβ(1-42) levels decrease in the mouse models, indicating that PADK treatment leads to Aβ truncation. Associated with Aβ clearance was the elimination of behavioral and synaptic protein deficits evident in the two transgenic models. These findings indicate that pharmacologically-controlled lysosomal modulation reduces Aβ(1-42) accumulation, possibly through intracellular truncation that also influences extracellular deposition, and in turn offsets the defects in synaptic composition and cognitive functions. The selective modulation promotes clearance at different levels of Aβ pathology and provides proof

  18. Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion.

    Directory of Open Access Journals (Sweden)

    Yeon Ja Choi

    Full Text Available Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time-dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel

  19. Inhibitors and pathways of hepatocytic protein degradation.

    Science.gov (United States)

    Seglen, P O; Gordon, P B; Grinde, B; Solheim, A; Kovács, A L; Poli, A

    1981-01-01

    On the basis of experiments using amino acids and various inhibitors (lysosomotropic amines, leupeptin, chymostatin, vanadate, vinblastine, anoxia, methylaminopurines), five different modes of endogenous protein degradation in isolated rat hepatocytes can be distinguished. The two non-lysosomal (amine-resistant) mechanisms preferentially degrade relatively labile (short-lived) proteins: one of these mechanisms is energy-dependent and chymostatin-sensitive, the other is not. Of the three lysosomal (amine-sensitive) mechanisms, one--quantitatively minor--is amino acid-resistant and preferentially degrades labile proteins. The two amino acid-sensitive mechanisms each seen account for about one-half of the degradation of relatively stable (long-lived) proteins; one of them is suppressed by leucine and apparently corresponds to the formation of electron microscopically visible autophagosomes; the other may represent a different type of autophagy, inhibited by asparagine and glutamine. A new class of inhibitors, the purine derivatives (methylated 6-aminopurines, and 6-mercaptopurines) appear to specifically suppress autophagic/lysosomal protein degradation, and may help to further elucidate the mechanisms of autophagy.

  20. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  1. Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View

    Directory of Open Access Journals (Sweden)

    Catherine Staudt

    2016-12-01

    Full Text Available Lysosomes clear macromolecules, maintain nutrient and cholesterol homeostasis, participate in tissue repair, and in many other cellular functions. To assume these tasks, lysosomes rely on their large arsenal of acid hydrolases, transmembrane proteins and membrane-associated proteins. It is therefore imperative that, post-synthesis, these proteins are specifically recognized as lysosomal components and are correctly sorted to this organelle through the endosomes. Lysosomal transmembrane proteins contain consensus motifs in their cytosolic regions (tyrosine- or dileucine-based that serve as sorting signals to the endosomes, whereas most lysosomal acid hydrolases acquire mannose 6-phosphate (Man-6-P moieties that mediate binding to two membrane receptors with endosomal sorting motifs in their cytosolic tails. These tyrosine- and dileucine-based motifs are tickets for boarding in clathrin-coated carriers that transport their cargo from the trans-Golgi network and plasma membrane to the endosomes. However, increasing evidence points to additional mechanisms participating in the biogenesis of lysosomes. In some cell types, for example, there are alternatives to the Man-6-P receptors for the transport of some acid hydrolases. In addition, several “non-consensus” sorting motifs have been identified, and atypical transport routes to endolysosomes have been brought to light. These “unconventional” or “less known” transport mechanisms are the focus of this review.

  2. Lysosomal trafficking functions of mucolipin-1 in murine macrophages

    Directory of Open Access Journals (Sweden)

    Dang Hope

    2007-12-01

    Full Text Available Abstract Background Mucolipidosis Type IV is currently characterized as a lysosomal storage disorder with defects that include corneal clouding, achlorhydria and psychomotor retardation. MCOLN1, the gene responsible for this disease, encodes the protein mucolipin-1 that belongs to the "Transient Receptor Potential" family of proteins and has been shown to function as a non-selective cation channel whose activity is modulated by pH. Two cell biological defects that have been described in MLIV fibroblasts are a hyperacidification of lysosomes and a delay in the exit of lipids from lysosomes. Results We show that mucolipin-1 localizes to lysosomal compartments in RAW264.7 mouse macrophages that show subcompartmental accumulations of endocytosed molecules. Using stable RNAi clones, we show that mucolipin-1 is required for the exit of lipids from these compartments, for the transport of endocytosed molecules to terminal lysosomes, and for the transport of the Major Histocompatibility Complex II to the plasma membrane. Conclusion Mucolipin-1 functions in the efficient exit of molecules, destined for various cellular organelles, from lysosomal compartments.

  3. The tumor suppressor p53 regulates autophagosomal and lysosomal biogenesis in lung cancer cells by targeting transcription factor EB.

    Science.gov (United States)

    Zhang, Zengli; Wang, Hongfeng; Ding, Qifeng; Xing, Yufei; Xu, Delai; Xu, Zhonghua; Zhou, Tong; Qian, Bin; Ji, Chenghong; Pan, Xue; Zhong, Anyuan; Ying, Zheng; Zhou, Caicun; Shi, Minhua

    2017-03-10

    The cellular protein degradation system, such as proteasomal or autophagy-lysosomal system plays an important role in the pathogenesis of a variety of human diseases including cancer. Transcription factor EB (TFEB) is a master transcriptional factor in the regulation of autophagy-lysosome pathway (ALP), and it has multiple biological functions including protein degradation, cell homeostasis and cell survival. In the present study we show that the tumor suppressor p53 can regulate TFEB nuclear translocation and activity in lung cancer cells. We found p53 deletion or chemical inhibition of p53 using pifithrin-α could promote the translocation of TFEB from cytoplasm to the nucleus, thus increased the TFEB-mediated lysosomal and autophagosomal biogenesis in lung cancer cells. Moreover, re-expression of p53 could decrease the expression levels of TFEB-targeting genes involved in ALP, and knockdown of TFEB could abolish the effect of p53 on the regulation of ALP gene expression. Taken together, our data indicate that p53 affects ALP through regulating TFEB nuclear translocation in lung cancer cells. Importantly, our study reveals a critical link between two keys factors in tumourigenesis and autophagy, and suggests a potential important role of p53-TFEB signaling axis in lung cancer.

  4. Transcellular degradation of axonal mitochondria.

    Science.gov (United States)

    Davis, Chung-ha O; Kim, Keun-Young; Bushong, Eric A; Mills, Elizabeth A; Boassa, Daniela; Shih, Tiffany; Kinebuchi, Mira; Phan, Sebastien; Zhou, Yi; Bihlmeyer, Nathan A; Nguyen, Judy V; Jin, Yunju; Ellisman, Mark H; Marsh-Armstrong, Nicholas

    2014-07-01

    It is generally accepted that healthy cells degrade their own mitochondria. Here, we report that retinal ganglion cell axons of WT mice shed mitochondria at the optic nerve head (ONH), and that these mitochondria are internalized and degraded by adjacent astrocytes. EM demonstrates that mitochondria are shed through formation of large protrusions that originate from otherwise healthy axons. A virally introduced tandem fluorophore protein reporter of acidified mitochondria reveals that acidified axonal mitochondria originating from the retinal ganglion cell are associated with lysosomes within columns of astrocytes in the ONH. According to this reporter, a greater proportion of retinal ganglion cell mitochondria are degraded at the ONH than in the ganglion cell soma. Consistently, analyses of degrading DNA reveal extensive mtDNA degradation within the optic nerve astrocytes, some of which comes from retinal ganglion cell axons. Together, these results demonstrate that surprisingly large proportions of retinal ganglion cell axonal mitochondria are normally degraded by the astrocytes of the ONH. This transcellular degradation of mitochondria, or transmitophagy, likely occurs elsewhere in the CNS, because structurally similar accumulations of degrading mitochondria are also found along neurites in superficial layers of the cerebral cortex. Thus, the general assumption that neurons or other cells necessarily degrade their own mitochondria should be reconsidered.

  5. Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx

    Directory of Open Access Journals (Sweden)

    Wilke Sonja

    2012-07-01

    Full Text Available Abstract Background The family of lysosome-associated membrane proteins (LAMP comprises the multifunctional, ubiquitous LAMP-1 and LAMP-2, and the cell type-specific proteins DC-LAMP (LAMP-3, BAD-LAMP (UNC-46, C20orf103 and macrosialin (CD68. LAMPs have been implicated in a multitude of cellular processes, including phagocytosis, autophagy, lipid transport and aging. LAMP-2 isoform A acts as a receptor in chaperone-mediated autophagy. LAMP-2 deficiency causes the fatal Danon disease. The abundant proteins LAMP-1 and LAMP-2 are major constituents of the glycoconjugate coat present on the inside of the lysosomal membrane, the 'lysosomal glycocalyx'. The LAMP family is characterized by a conserved domain of 150 to 200 amino acids with two disulfide bonds. Results The crystal structure of the conserved domain of human DC-LAMP was solved. It is the first high-resolution structure of a heavily glycosylated lysosomal membrane protein. The structure represents a novel β-prism fold formed by two β-sheets bent by β-bulges and connected by a disulfide bond. Flexible loops and a hydrophobic pocket represent possible sites of molecular interaction. Computational models of the glycosylated luminal regions of LAMP-1 and LAMP-2 indicate that the proteins adopt a compact conformation in close proximity to the lysosomal membrane. The models correspond to the thickness of the lysosomal glycoprotein coat of only 5 to 12 nm, according to electron microscopy. Conclusion The conserved luminal domain of lysosome-associated membrane proteins forms a previously unknown β-prism fold. Insights into the structure of the lysosomal glycoprotein coat were obtained by computational models of the LAMP-1 and LAMP-2 luminal regions.

  6. X-linked Angelman-like syndrome caused by Slc9a6 knockout in mice exhibits evidence of endosomal–lysosomal dysfunction

    Science.gov (United States)

    Strømme, Petter; Dobrenis, Kostantin; Sillitoe, Roy V.; Gulinello, Maria; Ali, Nafeeza F.; Davidson, Cristin; Micsenyi, Matthew C.; Stephney, Gloria; Ellevog, Linda; Klungland, Arne

    2011-01-01

    Mutations in solute carrier family 9 isoform 6 on chromosome Xq26.3 encoding sodium–hydrogen exchanger 6, a protein mainly expressed in early and recycling endosomes are known to cause a complex and slowly progressive degenerative human neurological disease. Three resulting phenotypes have so far been reported: an X-linked Angelman syndrome-like condition, Christianson syndrome and corticobasal degeneration with tau deposition, with each characterized by severe intellectual disability, epilepsy, autistic behaviour and ataxia. Hypothesizing that a sodium–hydrogen exchanger 6 deficiency would most likely disrupt the endosomal–lysosomal system of neurons, we examined Slc9a6 knockout mice with tissue staining and related techniques commonly used to study lysosomal storage disorders. As a result, we found that sodium–hydrogen exchanger 6 depletion leads to abnormal accumulation of GM2 ganglioside and unesterified cholesterol within late endosomes and lysosomes of neurons in selective brain regions, most notably the basolateral nuclei of the amygdala, the CA3 and CA4 regions and dentate gyrus of the hippocampus and some areas of cerebral cortex. In these select neuronal populations, histochemical staining for β-hexosaminidase activity, a lysosomal enzyme involved in the degradation of GM2 ganglioside, was undetectable. Neuroaxonal dystrophy similar to that observed in lysosomal disease was observed in the cerebellum and was accompanied by a marked and progressive loss of Purkinje cells, particularly in those lacking the expression of Zebrin II. On behavioural testing, Slc9a6 knockout mice displayed a discrete clinical phenotype attributable to motor hyperactivity and cerebellar dysfunction. Importantly, these findings show that sodium–hydrogen exchanger 6 loss of function in the Slc9a6-targeted mouse model leads to compromise of endosomal–lysosomal function similar to lysosomal disease and to conspicuous neuronal abnormalities in specific brain regions

  7. X-linked Angelman-like syndrome caused by Slc9a6 knockout in mice exhibits evidence of endosomal-lysosomal dysfunction.

    Science.gov (United States)

    Strømme, Petter; Dobrenis, Kostantin; Sillitoe, Roy V; Gulinello, Maria; Ali, Nafeeza F; Davidson, Cristin; Micsenyi, Matthew C; Stephney, Gloria; Ellevog, Linda; Klungland, Arne; Walkley, Steven U

    2011-11-01

    Mutations in solute carrier family 9 isoform 6 on chromosome Xq26.3 encoding sodium-hydrogen exchanger 6, a protein mainly expressed in early and recycling endosomes are known to cause a complex and slowly progressive degenerative human neurological disease. Three resulting phenotypes have so far been reported: an X-linked Angelman syndrome-like condition, Christianson syndrome and corticobasal degeneration with tau deposition, with each characterized by severe intellectual disability, epilepsy, autistic behaviour and ataxia. Hypothesizing that a sodium-hydrogen exchanger 6 deficiency would most likely disrupt the endosomal-lysosomal system of neurons, we examined Slc9a6 knockout mice with tissue staining and related techniques commonly used to study lysosomal storage disorders. As a result, we found that sodium-hydrogen exchanger 6 depletion leads to abnormal accumulation of GM2 ganglioside and unesterified cholesterol within late endosomes and lysosomes of neurons in selective brain regions, most notably the basolateral nuclei of the amygdala, the CA3 and CA4 regions and dentate gyrus of the hippocampus and some areas of cerebral cortex. In these select neuronal populations, histochemical staining for β-hexosaminidase activity, a lysosomal enzyme involved in the degradation of GM2 ganglioside, was undetectable. Neuroaxonal dystrophy similar to that observed in lysosomal disease was observed in the cerebellum and was accompanied by a marked and progressive loss of Purkinje cells, particularly in those lacking the expression of Zebrin II. On behavioural testing, Slc9a6 knockout mice displayed a discrete clinical phenotype attributable to motor hyperactivity and cerebellar dysfunction. Importantly, these findings show that sodium-hydrogen exchanger 6 loss of function in the Slc9a6-targeted mouse model leads to compromise of endosomal-lysosomal function similar to lysosomal disease and to conspicuous neuronal abnormalities in specific brain regions, which in concert

  8. Inspired by nonenveloped viruses escaping from endo-lysosomes: a pH-sensitive polyurethane micelle for effective intracellular trafficking

    Science.gov (United States)

    Song, Nijia; Zhou, Lijuan; Li, Jiehua; Pan, Zhicheng; He, Xueling; Tan, Hong; Wan, Xinyuan; Li, Jianshu; Ran, Rong; Fu, Qiang

    2016-03-01

    A multifunctional drug delivery system (DDS) for cancer therapy still faces great challenges due to multiple physiological barriers encountered in vivo. To increase the efficacy of current cancer treatment a new anticancer DDS mimicking the response of nonenveloped viruses, triggered by acidic pH to escape endo-lysosomes, is developed. Such a smart DDS is self-assembled from biodegradable pH-sensitive polyurethane containing hydrazone bonds in the backbone, named pHPM. The pHPM exhibits excellent micellization characteristics and high loading capacity for hydrophobic chemotherapeutic drugs. The responses of the pHPM in acidic media, undergoing charge conversion and hydrophobic core exposure, resulting from the detachment of the hydrophilic polyethylene glycol (PEG) shell, are similar to the behavior of a nonenveloped virus when trapped in acidic endo-lysosomes. Moreover, the degradation mechanism was verified by gel permeation chromatography (GPC). The endo-lysosomal membrane rupture induced by these transformed micelles is clearly observed by transmission electron microscopy. Consequently, excellent antitumor activity is confirmed both in vitro and in vivo. The results verify that the pHPM could be a promising new drug delivery tool for the treatment of cancer and other diseases.A multifunctional drug delivery system (DDS) for cancer therapy still faces great challenges due to multiple physiological barriers encountered in vivo. To increase the efficacy of current cancer treatment a new anticancer DDS mimicking the response of nonenveloped viruses, triggered by acidic pH to escape endo-lysosomes, is developed. Such a smart DDS is self-assembled from biodegradable pH-sensitive polyurethane containing hydrazone bonds in the backbone, named pHPM. The pHPM exhibits excellent micellization characteristics and high loading capacity for hydrophobic chemotherapeutic drugs. The responses of the pHPM in acidic media, undergoing charge conversion and hydrophobic core

  9. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy.

    Science.gov (United States)

    Shi, Yin; Tan, Shi-Hao; Ng, Shukie; Zhou, Jing; Yang, Na-Di; Koo, Gi-Bang; McMahon, Kerrie-Ann; Parton, Robert G; Hill, Michelle M; Del Pozo, Miguel A; Kim, You-Sun; Shen, Han-Ming

    2015-01-01

    CAV1 (caveolin 1, caveolae protein, 22kDa) is well known as a principal scaffolding protein of caveolae, a specialized plasma membrane structure. Relatively, the caveolae-independent function of CAV1 is less studied. Autophagy is a process known to involve various membrane structures, including autophagosomes, lysosomes, and autolysosomes for degradation of intracellular proteins and organelles. Currently, the function of CAV1 in autophagy remains largely elusive. In this study, we demonstrate for the first time that CAV1 deficiency promotes both basal and inducible autophagy. Interestingly, the promoting effect was found mainly in the late stage of autophagy via enhancing lysosomal function and autophagosome-lysosome fusion. Notably, the regulatory function of CAV1 in lysosome and autophagy was found to be caveolae-independent, and acts through lipid rafts. Furthermore, the elevated autophagy level induced by CAV1 deficiency serves as a cell survival mechanism under starvation. Importantly, downregulation of CAV1 and enhanced autophagy level were observed in human breast cancer cells and tissues. Taken together, our data reveal a novel function of CAV1 and lipid rafts in breast cancer development via modulation of lysosomal function and autophagy.

  10. The preconception Mediterranean dietary pattern in couples undergoing in vitro fertilization/intracytoplasmic sperm injection treatment increases the chance of pregnancy

    NARCIS (Netherlands)

    Vujkovic, M.; Vries, de J.H.M.; Lindemans, J.; Macklon, N.S.; Spek, van der P.J.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M.

    2010-01-01

    Objective: To investigate associations between preconception dietary patterns and IVF/intracytoplasmic sperm injection (ICSI) outcomes validated by biomarkers of the homocysteine pathway. Design: Observational prospective study. Setting: A tertiary referral fertility clinic at the Erasmus University

  11. The preconception Mediterranean dietary pattern in couples undergoing in vitro fertilization/intracytoplasmic sperm injection treatment increases the chance of pregnancy

    NARCIS (Netherlands)

    Vujkovic, M.; Vries, de J.H.M.; Lindemans, J.; Macklon, N.S.; Spek, van der P.J.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M.

    2010-01-01

    Objective: To investigate associations between preconception dietary patterns and IVF/intracytoplasmic sperm injection (ICSI) outcomes validated by biomarkers of the homocysteine pathway. Design: Observational prospective study. Setting: A tertiary referral fertility clinic at the Erasmus University

  12. Lysosomal storage disorders: Molecular basis and laboratory testing

    Directory of Open Access Journals (Sweden)

    Filocamo Mirella

    2011-03-01

    Full Text Available Abstract Lysosomal storage disorders (LSDs are a large group of more than 50 different inherited metabolic diseases which, in the great majority of cases, result from the defective function of specific lysosomal enzymes and, in cases, of non-enzymatic lysosomal proteins or non-lysosomal proteins involved in lysosomal biogenesis. The progressive lysosomal accumulation of undegraded metabolites results in generalised cell and tissue dysfunction, and, therefore, multi-systemic pathology. Storage may begin during early embryonic development, and the clinical presentation for LSDs can vary from an early and severe phenotype to late-onset mild disease. The diagnosis of most LSDs--after accurate clinical/paraclinical evaluation, including the analysis of some urinary metabolites--is based mainly on the detection of a specific enzymatic deficiency. In these cases, molecular genetic testing (MGT can refine the enzymatic diagnosis. Once the genotype of an individual LSD patient has been ascertained, genetic counselling should include prediction of the possible phenotype and the identification of carriers in the family at risk. MGT is essential for the identification of genetic disorders resulting from non-enzymatic lysosomal protein defects and is complementary to biochemical genetic testing (BGT in complex situations, such as in cases of enzymatic pseudodeficiencies. Prenatal diagnosis is performed on the most appropriate samples, which include fresh or cultured chorionic villus sampling or cultured amniotic fluid. The choice of the test--enzymatic and/or molecular--is based on the characteristics of the defect to be investigated. For prenatal MGT, the genotype of the family index case must be known. The availability of both tests, enzymatic and molecular, enormously increases the reliability of the entire prenatal diagnostic procedure. To conclude, BGT and MGT are mostly complementary for post- and prenatal diagnosis of LSDs. Whenever genotype

  13. Effect of Helicobacter pylori infection on pregnancy rates and early pregnancy loss after intracytoplasmic sperm injection

    Directory of Open Access Journals (Sweden)

    Hajishafiha M

    2011-10-01

    Full Text Available Masomeh Hajishafiha1, Mohammad Ghasemi-rad1, Aishe Memari1, Siamak Naji1, Nikol Mladkova2, Vida Saeedi1 1Urmia University of Medical Sciences, Urmia, Iran; 2Institute of Cell and Molecular Science, London, UK Background: There is a need to elucidate what affects the implantation and early pregnancy course in pregnancies conceived with assisted reproductive technology (ART so that pregnancy rates and outcomes can be improved. Our aim was to determine the role of maternal Helicobacter pylori infection. Material and methods: We did a prospective study of 187 infertile couples undergoing intracytoplasmic sperm injection (ICSI and segregated those according to underlying infertility etiology. We assessed the status of H. pylori IgG antibodies and anti-CagA IgG antibodies by ELISA assay. All pregnancies were followed for early pregnancy loss (EPL, first 12 weeks. Results: The likelihood of H. pylori infection increased with age (1.01, 95% confidence interval [CI]: 1.0–1.13; P = 0.040 but there was no association with EPL. Women infected with CagA-positive strains were more likely to have EPL (19.39, 95% CI: 1.8–208.4; P = 0.014. Women with tubal factor or ovulatory disorder infertility were more likely to abort early (12.95, 95% CI: 1.28–131.11; P = 0.030, 10.84, 95% CI: 1.47–80.03; P = 0.020, respectively. There was no association between EPL and age, number of embryos formed or transferred, or number of oocytes retrieved. Conclusion: Our findings suggest that infection with CagA-positive H. pylori strains is linked to an increase in women's potential to abort early (possibly through increased release of inflammatory cytokines. In addition, tubal factor and ovulatory disorder infertility are linked to EPL after ICSI due to unknown mechanisms. Proposals to eradicate H. pylori infection prior to ICSI could lead to a decrease in EPL after ART.Keywords: Helicobacter pylori, early pregnancy loss, early abortion, infertility, intracytoplasmic sperm

  14. Re: Use of Testicular Versus Ejaculated Sperm for Intracytoplasmic Sperm Injection Among Men with Cryptozoospermia: A Meta-analysis

    OpenAIRE

    Emre Bakırcıoğlu

    2016-01-01

    EDITORIAL COMMENT In this meta-analysis, the authors compared outcomes of intracytoplasmic sperm injection (ICSI) using ejaculated versus testicular sperm in men with cryptozoospermia. They also assessed the number of oocytes and maternal and paternal ages. The analysis of a total of 272 ICSI cycles and 4,596 injected oocytes in 5 cohort studies included. Pregnancy and fertilization rates were not statistically different between testicular and ejaculated sperm groups. Although maternal ag...

  15. The Link Between Lysosomal Storage Disorders and More Common Diseases

    Directory of Open Access Journals (Sweden)

    Michael Beck MD

    2016-12-01

    Full Text Available In the last decades, it has become more and more evident that lysosomal storage disorders and common neurodegenerative diseases such as Alzheimer and Parkinson diseases have clinical, neuropathological, and genetic features in common, including lysosomal dysfunction and impaired autophagy. Patients with Gaucher and even carriers of Gaucher disease have an increased risk to develop Parkinson disease. Likewise, individuals who are heterozygous for a mutation of a gene that causes an adult form of neuronal ceroid lipofuscinosis are more likely to be affected by a form of frontotemporal dementia in their later life. A further example is the gene NAGLU encoding the enzyme α- N -acetylglucosaminidase, which is deficient in patients with mucopolysaccharidosis type IIIB. Mutations of the NAGLU gene have been observed in patients affected by an axonal neuropathy. An interesting unexpected finding was the link between stuttering and genes that are essential for the function of all lysosomal enzymes. This review will present some example of the association of lysosomal storage disorders and neurodegenerative disease and discuss possible pathogenic mechanisms that are common to both conditions. The understanding of the pathophysiology of the endosomal–lysosomal–autophagic system may help to develop drugs, which might provide benefit not only for patients with rare lysosomal storage disorders but also for individuals affected by more common diseases.

  16. TRPML1: an ion channel in the lysosome.

    Science.gov (United States)

    Wang, Wuyang; Zhang, Xiaoli; Gao, Qiong; Xu, Haoxing

    2014-01-01

    The first member of the mammalian mucolipin TRP channel subfamily (TRPML1) is a cation-permeable channel that is predominantly localized on the membranes of late endosomes and lysosomes (LELs) in all mammalian cell types. In response to the regulatory changes of LEL-specific phosphoinositides or other cellular cues, TRPML1 may mediate the release of Ca(2+) and heavy metal Fe(2+)/Zn(2+)ions into the cytosol from the LEL lumen, which in turn may regulate membrane trafficking events (fission and fusion), signal transduction, and ionic homeostasis in LELs. Human mutations in TRPML1 result in type IV mucolipidosis (ML-IV), a childhood neurodegenerative lysosome storage disease. At the cellular level, loss-of-function mutations of mammalian TRPML1 or its C. elegans or Drosophila homolog gene results in lysosomal trafficking defects and lysosome storage. In this chapter, we summarize recent advances in our understandings of the cell biological and channel functions of TRPML1. Studies on TRPML1's channel properties and its regulation by cellular activities may provide clues for developing new therapeutic strategies to delay neurodegeneration in ML-IV and other lysosome-related pediatric diseases.

  17. The Link Between Lysosomal Storage Disorders and More Common Diseases

    Directory of Open Access Journals (Sweden)

    Michael Beck MD

    2016-12-01

    Full Text Available In the last decades, it has become more and more evident that lysosomal storage disorders and common neurodegenerative diseases such as Alzheimer and Parkinson diseases have clinical, neuropathological, and genetic features in common, including lysosomal dysfunction and impaired autophagy. Patients with Gaucher and even carriers of Gaucher disease have an increased risk to develop Parkinson disease. Likewise, individuals who are heterozygous for a mutation of a gene that causes an adult form of neuronal ceroid lipofuscinosis are more likely to be affected by a form of frontotemporal dementia in their later life. A further example is the gene NAGLU encoding the enzyme α-N-acetylglucosaminidase, which is deficient in patients with mucopolysaccharidosis type IIIB. Mutations of the NAGLU gene have been observed in patients affected by an axonal neuropathy. An interesting unexpected finding was the link between stuttering and genes that are essential for the function of all lysosomal enzymes. This review will present some example of the association of lysosomal storage disorders and neurodegenerative disease and discuss possible pathogenic mechanisms that are common to both conditions. The understanding of the pathophysiology of the endosomal–lysosomal–autophagic system may help to develop drugs, which might provide benefit not only for patients with rare lysosomal storage disorders but also for individuals affected by more common diseases.

  18. Follow-up of children born after intracytoplasmic sperm injection with epididymal and testicular spermatozoa

    Institute of Scientific and Technical Information of China (English)

    GUO Yi-hong; DONG Rui-na; SU Ying-chun; LI Jing; ZHANG Ya-jie; SUN Ying-pu

    2013-01-01

    Background To evaluate the safety of intracytoplasmic sperm injection (ICSI) with epididymal or testicular sperm,this study compared children born after ICSI treatment with epididymal or testicular sperm with children conceived after ICSI with ejaculated sperm.Methods This retrospective study included 317 children born after ICSI with percutaneous epididymal sperm aspiration (PESA),103 children born after ICSI with testicular sperm aspiration (TESA),and a control group of 1008 children born after ICSI with ejaculated sperm.All of the patients received their assisted reproductive treatment in the Reproductive Medicine Center of the First Affiliated Hospital of Zhengzhou University from January 2004 to December 2011.Data,such as the rate of stillbirths,perinatal mortality,gestational age,birth weight,and the rate of congenital malformations of the three groups,were compared.Results PESA and TESA children were not different from ICSI children in the rate of stillbirths,perinatal mortality,infant mortality rate,gestational age,the rate of prematurity,and the rate of malformations (P>0.05).A slight increase in birth defects was reported in the TESA group compared with those in the control group,but there was no significant difference between the groups (P>0.05).Conclusion ICSI with epididymal or testicular sperm does not lead to more stillbirths or congenital malformations compared with ICSI using ejaculated sperm.

  19. Could sperm aneuploidy rate determination be used as a predictive test before intracytoplasmic sperm injection?

    Science.gov (United States)

    Petit, François M; Frydman, Nelly; Benkhalifa, Moncef; Le Du, Anne; Aboura, Azzedine; Fanchin, Renato; Frydman, Rene; Tachdjian, Gerard

    2005-01-01

    Chromosome abnormalities in embryos are a major cause of implantation and development failures. Some couples with normal karyotypes have repeated implantation failures after intracytoplasmic sperm injection (ICSI). In order to value patients at risk for genetic ICSI failures and the validity of sperm aneuploidy analysis, we have studied cytogenetic abnormalities in sperm from ICSI patients. Twenty-nine patients with normal karyotypes were included. Ten patients had at least 4 ICSI treatments without pregnancy (group A). Nine patients had a pregnancy after 1 to 3 ICSI treatments (group B). Ten fertile men with normal semen parameters were studied as controls (group C). Fluorescent in situ hybridization (FISH) was used for sperm nucleus cytogenetic analysis using chromosomes 8, 9, 13, 18, 21, X, and Y specific probes. Aneuploidy for each chromosome and diploidy rates were significantly higher in group A than in group B and in group B than in group C (P < .05). Considering each patient in groups A and B, aneuploidy rate for each chromosome was too variable to be considered as a significant test. We proposed analysis of the total sperm aneuploidy. Chromosomal sperm nuclei profile could be used as a predictive biological test before ICSI in order to improve genetic counseling for oligoasthenoteratozoospermia patients.

  20. Effect of Intracytoplasmic Sperm Injection (ICSI on Mouse Embryos Preimplantational Development

    Directory of Open Access Journals (Sweden)

    Claudia Cârstea

    2012-05-01

    Full Text Available It is known that the in vitro culture (IVC of preimplantation embryos is associated with changes in gene expression. It is however, not known if the method of fertilization affects the global pattern of gene expression. We compared the development of mouse blastocysts produced by intracytoplasmic sperm injection (ICSI versus blastocysts fertilized in vivo and cultured in vitro from the zygote stage (IVC. At the end of cultivation (96 hrs for blastocyst stage embryos, expanded blastocysts of each group were randomly selected, and ICM and total cells number were differentially stained. The total cell number of blastocysts was estimated by counting the total number of nuclei using DAPI staining. Cell number for inner cell mass (ICM was estimated by counting the OCT4 (POU5FL positive cells. Digitally recombined, composite images were analyzed using the Zeiss Axion Vision software and Zeiss Apotome. All 5–10 optical sections were divided using a standard grid over each layer to count all. Comparing the total cells and the ICM cells number, it appears that each method of fertilization has a unique pattern development. The developmental rate and the total cell number of the blastocyst were significantly lower in ICSI versus in vivo fertilized embryos which affect the embryonic developmental rate and the total cell number of blastocysts.

  1. Differences and similarities between extremely severe oligozoospermia and cryptozoospermia in intracytoplasmic sperm injection

    Directory of Open Access Journals (Sweden)

    Yong-Tong Zhu

    2016-01-01

    Full Text Available Patients with extremely severe oligozoospermia (ESO and cryptozoospermia (CO are suitable using intracytoplasmic sperm injection (ICSI as an infertility treatment. However, some andrologists are confused to distinguish ESO and CO in clinic diagnose. This study was designed for the first time to evaluate and compare patients with ESO and CO to determine whether these are useful clinical distinctions. A total of 270 infertile men in our center were classified into four groups as Group nonobstruction azoospermia (NOA, n = 44, Group ESO (n = 78, Group CO (n = 40, and Group obstruction azoospermia (OA, n = 108. Comparisons of the volume of bilateral testes, the level of follicle stimulating hormone (FSH and inhibin B were obtained in four groups. Then comparisons of fertilization rates, cleavage rate, and excellent embryos rate were obtained when couples performed ICSI. All indexes (volume of bilateral testis, level of FSH and inhibin B in Groups ESO and CO were no difference, while Groups OA versus NOA, OA versus ESO, and OA versus CO were significant differences (P < 0.05. The rates of fertilization were no differences in Groups ESO and CO while Groups OA versus ESO, OA versus CO were significant differences (P < 0.05. Therefore, the spermatogenic functions in patients with CO and ESO were similar, better than NOA but worse than OA. However, it would be helpful to evaluate their spermatogenesis using testicular biopsies, especially accompanied azoospermia in clinical practice.

  2. Differences and similarities between extremely severe oligozoospermia and cryptozoospermia in intracytoplasmic sperm injection.

    Science.gov (United States)

    Zhu, Yong-Tong; Luo, Chen; Li, Yun; Li, Hong; Quan, Song; Deng, Yong-Jian; Yang, Yu; Hu, Yong-Hua; Tan, Wan-Long; Chu, Qing-Jun

    2016-01-01

    Patients with extremely severe oligozoospermia (ESO) and cryptozoospermia (CO) are suitable using intracytoplasmic sperm injection (ICSI) as an infertility treatment. However, some andrologists are confused to distinguish ESO and CO in clinic diagnose. This study was designed for the first time to evaluate and compare patients with ESO and CO to determine whether these are useful clinical distinctions. A total of 270 infertile men in our center were classified into four groups as Group nonobstruction azoospermia (NOA, n = 44), Group ESO (n = 78), Group CO (n = 40), and Group obstruction azoospermia (OA, n = 108). Comparisons of the volume of bilateral testes, the level of follicle stimulating hormone (FSH) and inhibin B were obtained in four groups. Then comparisons of fertilization rates, cleavage rate, and excellent embryos rate were obtained when couples performed ICSI. All indexes (volume of bilateral testis, level of FSH and inhibin B) in Groups ESO and CO were no difference, while Groups OA versus NOA, OA versus ESO, and OA versus CO were significant differences (P < 0.05). The rates of fertilization were no differences in Groups ESO and CO while Groups OA versus ESO, OA versus CO were significant differences (P < 0.05). Therefore, the spermatogenic functions in patients with CO and ESO were similar, better than NOA but worse than OA. However, it would be helpful to evaluate their spermatogenesis using testicular biopsies, especially accompanied azoospermia in clinical practice.

  3. Robust computer-controlled system for intracytoplasmic sperm injection and subsequent cell electro-activation.

    Science.gov (United States)

    Tan, K K; Huang, S; Tang, K Z

    2009-03-01

    Intracytoplasmic sperm injection (ICSI) and the subsequent cell electro-activation process is a relatively new enhanced procedure to address male factor infertility. The current method involves the engagement of experienced embryologists for such a purpose. More advanced methodologies, which use high precision instrumentation tools, will speed up the whole procedure. In this paper, the development of a computer-controlled system for ICSI and the subsequent cell electro-activation process is presented. The system is integrated to a microinjection workstation and piezo-actuator to perform the ICSI procedure, with vision capability to automatically position the components precisely. A micro-pump assembly is utilized for automatic medium refreshment and a heater plate assembly provides temperature control during the cell electro-activation process. The overall system is comprehensive, comprising modular functional components integrated within a hardware architecture. Experimental results on mice oocytes verified the effectiveness of the developed system over the current method. Further improvements on the instrumentation tools will improve the robustness and overall performance of the developed system.

  4. Efficient production of intersubspecific hybrid mice and embryonic stem cells by intracytoplasmic sperm injection.

    Science.gov (United States)

    Shinmen, Akie; Honda, Arata; Ohkawa, Mika; Hirose, Michiko; Ogonuki, Narumi; Yuzuriha, Misako; Miki, Hiromi; Mochida, Keiji; Inoue, Kimiko; Abe, Kuniya; Ito, Masao; Ogura, Atsuo

    2007-09-01

    Recently, mice and embryonic stem (ES) cells with allelic polymorphisms have been used extensively in the field of genetics and developmental biology. In this study, we examined whether intersubspecific hybrid mice and ES cells with these genotypes can be efficiently produced by intracytoplasmic sperm injection (ICSI). Frozen-thawed spermatozoa from wild-derived strains, JF1 (Mus musculus molossinus), MSM (M. m. molossinus), HMI (M. m. castaneus), and SWN (M. m. spp.), were directly injected into mature oocytes from laboratory mice ([C57BL/6 x DBA2]F1; M. m. domesticus). The in vitro and in vivo developmental capacity of F1 embryos was not significantly different among the groups (P > 0.05), and term offspring were efficiently obtained in all groups (27%-34% of transferred embryos). However, the mean body and placental weights of the offspring differed significantly with genotype (P cell lines. The ES cell lines were established at a high efficiency (9 lines from 20 blastocysts) and their allelic polymorphisms were confirmed. Thus, ICSI using cryopreserved spermatozoa allows the efficient and immediate production of a number of F1 hybrid mice and ES cell lines, which can be used for polymorphic analysis of mouse genetics.

  5. Birth after intracytoplasmic sperm injection of ejaculated spermatozoa from a man with mosaic Klinefelter's syndrome

    Institute of Scientific and Technical Information of China (English)

    Takuya Akashi; Hideki Fuse; Yasuo Kojima; Mikiko Hayashi; Sachiko Honda

    2005-01-01

    Aim: To report a birth after intracytoplasmic sperm injection (ICSI) of ejaculated spermatozoa from a man with mosaic Klinefelter's syndrome detected by fluorescence in situ hybridization (FISH) analysis. Methods: A 35-yearold man with a normal appearance consulted our hospital because of sterility over a 5-year period. Chromosome analysis showed low-incidence mosaic Klinefelter's syndrome. Using FISH, 96% hyperploidy of the lymphocytes was found. We examined the sex chromosome of the ejaculated spermatozoa. Using FISH, we examined 200 ejaculated spermatozoa and no hyperploidy was found. Results: The 33-year-old female partner of the male patient underwent an uncomplicated controlled ovarian hyperstimulation sequence using a combined recombinant-follicle stimulating hormone (rec-FSH) + human menopausal gonadotrophin (hMG) protocol, following late luteal phase pituitary down regulation. This culminated in the retrieval of seven oocytes, six of which were fertilized with ICSI.One ICSI attempt led to clinical pregnancy with a healthy baby girl. Conclusion: We report a male patient with lowincidence mosaic Klinefelter's syndrome whose ejaculated spermatozoa were identified as being haploid by FISH before ICSI, leading to the successful pregnancy of his wife and the birth of a healthy baby girl.

  6. Transmission of the Y chromosome microdeletion to a baby boy conceived after intracytoplasmic sperm injection

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Subfertility can be caused by acquired or genetic factors. Y chromosome microdeletion is one of the genetic factors associating with male infertility.1 Azoospermia factors (AZFa, AZFb and AZFc) have been mapped to different subregions in Yq11.2 So far, two gene families, RNA-binding motif (RBM) and deleted in azoospermia (DAZ) from interval 6, were proposed as candidate spermatogenesis genes for AZF.3,4 Recent studies demonstrated that microdeletions were detected at a frequency of 5% to 18% in the AZF region of oligospermic and azoospermic men.5-7 With the development of assisted reproductive technologies, particularly intracytoplasmic sperm injection (ICSI), these men can now father a child and the genetic abnormalities in defective spermatozoa could be transmitted to future offspring. To examine the possible transmission of the Y-chromosome microdeletion to the offspring via ICSI treatment, we performed both cytogenetic and molecular analyses of the Y chromosome on both an infertile patient with Y chromosome microdeletion and his offspring.

  7. WO3/Pt nanoparticles promote light-induced lipid peroxidation and lysosomal instability within tumor cells

    Science.gov (United States)

    Clark, Andrea J.; Petty, Howard R.

    2016-02-01

    Although metal-metal oxide nanoparticles have attracted considerable interest as catalysts, they have attracted little interest in nanomedicine. This is likely due to the fact that metal oxide semiconductors generally require biologically harmful ultraviolet excitation. In contrast, this study focuses upon WO3/Pt nanoparticles, which can be excited by visible light. To optimize the nanoparticles’ catalytic performance, platinization was performed at alkaline pH. These nanoparticles destroyed organic dyes, consumed dissolved oxygen and produced hydroxyl radicals. 4T1 breast cancer cells internalized WO3/Pt nanoparticles within the membrane-bound endo-lysosomal compartment as shown by electron and fluorescence microscopy. During visible light exposure, but not in darkness, WO3/Pt nanoparticles manufacture reactive oxygen species, promote lipid peroxidation, and trigger lysosomal membrane disruption. As cells of the immune system degrade organic molecules, produce reactive oxygen species, and activate the lipid peroxidation pathway within target cells, these nanoparticles mimic the chemical attributes of immune effector cells. These biomimetic nanoparticles should become useful in managing certain cancers, especially ocular cancer.

  8. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease.

    Science.gov (United States)

    Kizuka, Yasuhiko; Kitazume, Shinobu; Fujinawa, Reiko; Saito, Takashi; Iwata, Nobuhisa; Saido, Takaomi C; Nakano, Miyako; Yamaguchi, Yoshiki; Hashimoto, Yasuhiro; Staufenbiel, Matthias; Hatsuta, Hiroyuki; Murayama, Shigeo; Manya, Hiroshi; Endo, Tamao; Taniguchi, Naoyuki

    2015-02-01

    The β-site amyloid precursor protein cleaving enzyme-1 (BACE1), an essential protease for the generation of amyloid-β (Aβ) peptide, is a major drug target for Alzheimer's disease (AD). However, there is a concern that inhibiting BACE1 could also affect several physiological functions. Here, we show that BACE1 is modified with bisecting N-acetylglucosamine (GlcNAc), a sugar modification highly expressed in brain, and demonstrate that AD patients have higher levels of bisecting GlcNAc on BACE1. Analysis of knockout mice lacking the biosynthetic enzyme for bisecting GlcNAc, GnT-III (Mgat3), revealed that cleavage of Aβ-precursor protein (APP) by BACE1 is reduced in these mice, resulting in a decrease in Aβ plaques and improved cognitive function. The lack of this modification directs BACE1 to late endosomes/lysosomes where it is less colocalized with APP, leading to accelerated lysosomal degradation. Notably, other BACE1 substrates, CHL1 and contactin-2, are normally cleaved in GnT-III-deficient mice, suggesting that the effect of bisecting GlcNAc on BACE1 is selective to APP. Considering that GnT-III-deficient mice remain healthy, GnT-III may be a novel and promising drug target for AD therapeutics.

  9. Parkinson's Disease Shares the Lysosome with Gaucher's Disease

    Science.gov (United States)

    Dawson, Ted M.; Dawson, Valina L.

    2015-01-01

    Summary The second most common neurodegenerative disorder, Parkinson's disease (PD) is an age dependent progressive neurodegenerative disorder that affects movement. While many of the causes of PD remain unclear, a consistent finding in PD is the abnormal accumulation of α-synuclein that has lead to the widely held notion that PD is a synucleinopathy. In a recent Cell manuscript Mazzuli et al., provide a potential mechanistic link between Gaucher's disease, a glycolipid lysosomal storage disorder due to Glucocerebrocidase (GBA) deficiency and PD. The authors reveal a reciprocal connection between the loss of GBA activity and accumulation of α-synuclein in the lysosome establishing a bidirectional positive feed back loop with pathologic consequences. These findings should stimulate further work on role of the lysosome in PD pathogenesis and the identification of new treatment strategies for PD. PMID:21753118

  10. PDT: loss of autophagic cytoprotection after lysosomal photodamage

    Science.gov (United States)

    Kessel, David; Price, Michael

    2012-02-01

    Photodynamic therapy is known to evoke both autophagy and apoptosis. Apoptosis is an irreversible death pathway while autophagy can serve a cytoprotective function. In this study, we examined two photosensitizing agents that target lysosomes, although they differ in the reactive oxygen species (ROS) formed during irradiation. With both agents, the 'shoulder' on the PDT dose-response curve was substantially attenuated, consistent with loss of a cytoprotective pathway. In contrast, this 'shoulder' is commonly observed when PDT targets mitochondria or the ER. We propose that lysosomal targets may offer the possibility of promoting PDT efficacy by eliminating a potentially protective pathway.

  11. Lysosome stability during lytic infection by simian virus 40.

    Science.gov (United States)

    Einck, K H; Norkin, L C

    1979-01-01

    By 48 h postinfection, 40--80% of SV40-infected CV-1 cells have undergone irreversible injury as indicated by trypan blue staining. Nevertheless, at this time the lysosomes of these cells appear as discrete structures after vital staining with either acridine orange or neutral red. Lysosomes, vitally stained with neutral red at 24 h postinfection, were still intact in cells stained with trypan blue at 48 h. Acid phosphatase activity is localized in discrete cytoplasmic particles at 48 h, as indicated by histochemical staining of both fixed and unfixed cells.

  12. Analyzing Lysosome-Related Organelles by Electron Microscopy

    KAUST Repository

    Hurbain, Ilse

    2017-04-29

    Intracellular organelles have a particular morphological signature that can only be appreciated by ultrastructural analysis at the electron microscopy level. Optical imaging and associated methodologies allow to explore organelle localization and their dynamics at the cellular level. Deciphering the biogenesis and functions of lysosomes and lysosome-related organelles (LROs) and their dysfunctions requires their visualization and detailed characterization at high resolution by electron microscopy. Here, we provide detailed protocols for studying LROs by transmission electron microscopy. While conventional electron microscopy and its recent improvements is the method of choice to investigate organelle morphology, immunoelectron microscopy allows to localize organelle components and description of their molecular make up qualitatively and quantitatively.

  13. The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes.

    Science.gov (United States)

    Garrity, Abigail G; Wang, Wuyang; Collier, Crystal Md; Levey, Sara A; Gao, Qiong; Xu, Haoxing

    2016-05-23

    Impaired homeostasis of lysosomal Ca(2+) causes lysosome dysfunction and lysosomal storage diseases (LSDs), but the mechanisms by which lysosomes acquire and refill Ca(2+) are not known. We developed a physiological assay to monitor lysosomal Ca(2+) store refilling using specific activators of lysosomal Ca(2+) channels to repeatedly induce lysosomal Ca(2+) release. In contrast to the prevailing view that lysosomal acidification drives Ca(2+) into the lysosome, inhibiting the V-ATPase H(+) pump did not prevent Ca(2+) refilling. Instead, pharmacological depletion or chelation of Endoplasmic Reticulum (ER) Ca(2+) prevented lysosomal Ca(2+) stores from refilling. More specifically, antagonists of ER IP3 receptors (IP3Rs) rapidly and completely blocked Ca(2+) refilling of lysosomes, but not in cells lacking IP3Rs. Furthermore, reducing ER Ca(2+) or blocking IP3Rs caused a dramatic LSD-like lysosome storage phenotype. By closely apposing each other, the ER may serve as a direct and primary source of Ca(2+)for the lysosome.

  14. Methods for monitoring Ca(2+) and ion channels in the lysosome.

    Science.gov (United States)

    Zhong, Xi Zoë; Yang, Yiming; Sun, Xue; Dong, Xian-Ping

    2016-12-09

    Lysosomes and lysosome-related organelles are emerging as intracellular Ca(2+) stores and play important roles in a variety of membrane trafficking processes, including endocytosis, exocytosis, phagocytosis and autophagy. Impairment of lysosomal Ca(2+) homeostasis and membrane trafficking has been implicated in many human diseases such as lysosomal storage diseases (LSDs), neurodegeneration, myopathy and cancer. Lysosomal membrane proteins, in particular ion channels, are crucial for lysosomal Ca(2+) signaling. Compared with ion channels in the plasma membrane, lysosomal ion channels and their roles in lysosomal Ca(2+) signaling are less understood, largely due to their intracellular localization and the lack of feasible functional assays directly applied to the native environment. Recent advances in biomedical methodology have made it possible to directly investigate ion channels in the lysosomal membrane. In this review, we provide a summary of the newly developed methods for monitoring lysosomal Ca(2+) and ion channels, as well as the recent discovery of lysosomal ion channels and their significances in intracellular Ca(2+) signaling. These new techniques will expand our research scope and our understanding of the nature of lysosomes and lysosome-related diseases.

  15. Andrographolide sensitizes cisplatin-induced apoptosis via suppression of autophagosome-lysosome fusion in human cancer cells.

    Science.gov (United States)

    Zhou, Jing; Hu, Shuai-Er; Tan, Shi-Hao; Cao, Ruoxi; Chen, Yiyang; Xia, Dajing; Zhu, Xinqiang; Yang, Xing-Fen; Ong, Choon-Nam; Shen, Han-Ming

    2012-03-01

    Suppression of autophagy has been increasingly recognized as a novel cancer therapeutic approach. Andrographolide (Andro), a diterpenoid lactone isolated from an herbal plant Andrographis paniculata, is known to possess anti-inflammatory and anticancer activity. In this study, we sought to examine the effect of Andro on autophagy, and to evaluate whether such effect is relevant to the sensitization effect of Andro on apoptosis induced by DNA damage agents in cancer cells. First, we found that Andro is able to significantly enhance autophagic markers in various cancer cell lines, including GFP-LC3 puncta and LC3-II level. Interestingly, Andro treatment also led to marked increase of p62 protein level and addition of chloroquine (CQ) failed to further enhance either LC3-II or p62 level, indicating that Andro is likely to suppress autophagic flux at the maturation and degradation stage. Next, we provided evidence that Andro inhibits autophagosome maturation not by affecting the lysosomal function, but by impairing autophagosome-lysosome fusion. Lastly, we demonstrated that treatment with cisplatin, a DNA damage agent, induces autophagy in cancer cells. Importantly, Andro is capable of sensitizing cisplatin-induced cell killing determined with both short-term apoptosis assays and long-term clonogenic test, via suppression of autophagy, a process independent of p53. In summary, these observations collectively suggest that Andro could be a promising anti-cancer agent in combination therapy via its potent inhibitory effect on autophagy by disrupting autophagosome-lysosome fusion.

  16. Dynein Clusters into Lipid Microdomains on Phagosomes to Drive Rapid Transport toward Lysosomes

    Science.gov (United States)

    Rai, Ashim; Pathak, Divya; Thakur, Shreyasi; Singh, Shampa; Dubey, Alok Kumar; Mallik, Roop

    2016-01-01

    Summary Diverse cellular processes are driven by motor proteins that are recruited to and generate force on lipid membranes. Surprisingly little is known about how membranes control the force from motors and how this may impact specific cellular functions. Here, we show that dynein motors physically cluster into microdomains on the membrane of a phagosome as it matures inside cells. Such geometrical reorganization allows many dyneins within a cluster to generate cooperative force on a single microtubule. This results in rapid directed transport of the phagosome toward microtubule minus ends, likely promoting phagolysosome fusion and pathogen degradation. We show that lipophosphoglycan, the major molecule implicated in immune evasion of Leishmania donovani, inhibits phagosome motion by disrupting the clustering and therefore the cooperative force generation of dynein. These findings appear relevant to several pathogens that prevent phagosome-lysosome fusion by targeting lipid microdomains on phagosomes. PMID:26853472

  17. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes

    DEFF Research Database (Denmark)

    Gannagé, Monique; Dormann, Dorothee; Albrecht, Randy

    2009-01-01

    Influenza A virus is an important human pathogen causing significant morbidity and mortality every year and threatening the human population with epidemics and pandemics. Therefore, it is important to understand the biology of this virus to develop strategies to control its pathogenicity. Here, we...... demonstrate that influenza A virus inhibits macroautophagy, a cellular process known to be manipulated by diverse pathogens. Influenza A virus infection causes accumulation of autophagosomes by blocking their fusion with lysosomes, and one viral protein, matrix protein 2, is necessary and sufficient...... for this inhibition of autophagosome degradation. Macroautophagy inhibition by matrix protein 2 compromises survival of influenza virus-infected cells but does not influence viral replication. We propose that influenza A virus, which also encodes proapoptotic proteins, is able to determine the death of its host cell...

  18. Genomic expression analyses reveal lysosomal, innate immunity proteins, as disease correlates in murine models of a lysosomal storage disorder.

    Directory of Open Access Journals (Sweden)

    Md Suhail Alam

    Full Text Available Niemann-Pick Type C (NPC disease is a rare, genetic, lysosomal disorder with progressive neurodegeneration. Poor understanding of the pathophysiology and a lack of blood-based diagnostic markers are major hurdles in the treatment and management of NPC and several additional, neurological lysosomal disorders. To identify disease severity correlates, we undertook whole genome expression profiling of sentinel organs, brain, liver, and spleen of Balb/c Npc1(-/- mice relative to Npc1(+/- at an asymptomatic stage, as well as early- and late-symptomatic stages. Unexpectedly, we found prominent up regulation of innate immunity genes with age-dependent change in their expression, in all three organs. We shortlisted a set of 12 secretory genes whose expression steadily increased with age in both brain and liver, as potential plasma correlates of neurological and/or liver disease. Ten were innate immune genes with eight ascribed to lysosomes. Several are known to be elevated in diseased organs of murine models of other lysosomal diseases including Gaucher's disease, Sandhoff disease and MPSIIIB. We validated the top candidate lysozyme, in the plasma of Npc1(-/- as well as Balb/c Npc1(nmf164 mice (bearing a point mutation closer to human disease mutants and show its reduction in response to an emerging therapeutic. We further established elevation of innate immunity in Npc1(-/- mice through multiple functional assays including inhibition of bacterial infection as well as cellular analysis and immunohistochemistry. These data revealed neutrophil elevation in the Npc1(-/- spleen and liver (where large foci were detected proximal to damaged tissue. Together our results yield a set of lysosomal, secretory innate immunity genes that have potential to be developed as pan or specific plasma markers for neurological diseases associated with lysosomal storage and where diagnosis is a major problem. Further, the accumulation of neutrophils in diseased organs

  19. Syntaxin 7 and VAMP-7 are soluble N-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages.

    Science.gov (United States)

    Ward, D M; Pevsner, J; Scullion, M A; Vaughn, M; Kaplan, J

    2000-07-01

    Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome-lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome-lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome-lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome-lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages.

  20. Alterations in ROS activity and lysosomal pH account for distinct patterns of macroautophagy in LINCL and JNCL fibroblasts.

    Directory of Open Access Journals (Sweden)

    José Manuel Vidal-Donet

    Full Text Available Neuronal ceroid lipofuscinoses (NCL are lysosomal storage disorders characterized by the accumulation of lipofuscin within lysosomes. Late infantile (LINCL and juvenile (JNCL are their most common forms and are caused by loss-of-function mutations in tripeptidyl peptidase 1 (TPP1, a lysosomal endopeptidase, and CLN3 protein (CLN3p, whose location and function is still controversial. LINCL patients suffer more severely from NCL consequences than JNCL patients, in spite of having in common an abnormal accumulation of material with a similar composition in the lysosomes. To identify distinctive characteristics that could explain the differences in the severity of LINCL and JNCL pathologies, we compared the protein degradation mechanisms in patientś fibroblasts. Pulse-chase experiments show a significant decrease in protein degradation by macroautophagy in fibroblasts bearing TPP1 (CLN2 and CLN3p (CLN3 mutations. In CLN2 fibroblasts, LC3-II levels and other procedures indicate an impaired formation of autophagosomes, which confirms the pulse-chase experiments. This defect is linked to an accumulation of reactive oxygen species (ROS, an upregulation of the Akt-mTOR signalling pathway and increased activities of the p38α and ERK1/2 MAPKs. In CLN3 fibroblasts, LC3-II analysis indicates impairment in autophagosome maturation and there is also a defect in fluid phase endocytosis, two alterations that can be related to an observed increase of 0.5 units in lysosomal pH. CLN3 fibroblasts also accumulate ROS but to a lower extent than CLN2. TPP1 activity is completely abrogated in CLN2 and partially diminished in CLN3 fibroblasts. TPP1 cleaves small hydrophobic proteins like subunit c of mitochondrial ATP synthase and the lack or a lower activity of this enzyme can contribute to lipofuscin accumulation. These alterations in TPP1 activity lead to an increased ROS production, especially in CLN2 in which it is aggravated by a decrease in catalase activity

  1. Low temperature storage of rhesus monkey spermatozoa and fertility evaluation by intracytoplasmic injection.

    Science.gov (United States)

    Yeoman, Richard R; Mitalipov, Shoukhrat; Gerami-Naini, Behzad; Nusser, Kevin D; Wolf, Don P

    2005-06-01

    The objective was to develop a sperm freezing procedure suitable for use in the propagation of valuable founder animals by assisted reproductive technologies. Here, we report a comparison of processing methods by measuring the motility of fresh and frozen-thawed rhesus monkey spermatozoa and fertility via intracytoplasmic spermatozoa injection (ICSI) of sibling oocytes. Washed spermatozoa were frozen in straws or in pellets using different cryoprotective media and processed post-thaw with or without a density gradient centrifugation step. Among the four study series, motility post-thaw was improved with density gradient centrifugation (17-24% versus 75%, P<0.01) achieving levels similar to fresh spermatozoa. Spermatozoa injected oocytes (total n=377) were co-cultured on BRL cells and observed for fertilization and development. With spermatozoa frozen in straws in liquid nitrogen vapors, the fertilization rate after ICSI was lower than with fresh spermatozoa (40-44% versus 77-86%, P<0.05), even with the Percoll-enriched fraction that exhibited robust motility. In contrast, somewhat slower freezing of spermatozoa in pellets on dry ice supported fertilization rates (73%) that were similar to the fresh counterpart. Developmental rates of fertilized eggs were similar in all experiments. A total of 106 embryo transfers has resulted in the first primate born after ICSI with F/T ejaculated spermatozoa plus 22 other infants to date. Additionally, a 3-4 h incubation after thawing improved the fertilization rate with spermatozoa from a male with poor post-thaw recovery of sperm motility. In conclusion, an acceptable fertilization rate after ICSI with motile, frozen-thawed primate spermatozoa was observed comparable to that obtained with fresh spermatozoa allowing small quantities of competent spermatozoa to be used with ICSI to facilitate propagation of desirable primate genotypes.

  2. The Effect of Coasting on Intracytoplasmic Sperm Injection Outcome in Antagonist and Agonist Cycle

    Directory of Open Access Journals (Sweden)

    İltemir Duvan Z.Candan,

    2017-01-01

    Full Text Available Background Coasting can reduce the ovarian hyperstimulation syndrome (OHSS risk in ovulation induction cycles before intracytoplasmic sperm injection (ICSI. This study aimed to investigate the effect of gonadotropin-releasing hormone (GnRH agonist and GnRH antagonist protocols to controlled ovarian hyperstimulation (COH cycles with coasting on the parameters of ICSI cycles and the outcome. Materials and Methods In a retrospective cohort study, 117 ICSI cycles were per- formed and coasting was applied due to hyperresponse, between 2006 and 2011. The ICSI outcomes after coasting were then compared between the GnRH agonist group (n=91 and the GnRH antagonist group (n=26. Results The duration of induction and the total consumption of gonadotropins were found to be similar. Estradiol (E2 levels on human chorionic gonadotropin (hCG day were found higher in the agonist group. Coasting days were similar when the two groups were compared. The number of mature oocytes and the fertilization rates were similar in both groups; however, the number of grade 1 (G1 embryos and the number of transferred embryos were higher in the agonist group. Implantation rates were significantly higher in the antagonist group compared to the agonist group. Pregnancy rates/embryo transfer rates were higher in the antagonist group; however, this difference was not statistically significant (32.8% for agonist group vs. 39.1% for antagonist group, P>0.05. Conclusion The present study showed that applying GnRH-agonist and GnRH-antago- nist protocols to coasted cycles did not result in any differences in cycle parameters and clinical pregnancy rates.

  3. Use of Follicular Output Rate to Predict Intracytoplasmic Sperm Injection Outcome

    Science.gov (United States)

    Rehman, Rehana; Mustafa, Rozina; Baig, Mukhtiar; Arif, Sara; Hashmi, Muhammad Faisal

    2016-01-01

    Background The measurement of follicular output rate (FORT) has been proposed as a good indicator for evaluating follicular response to the exogenous recombinant folliclestimulating hormone (rFSH). This places FORT as a promising qualitative marker for ovarian function. The objective of the study was to determine FORT as a predictor of oocyte competence, embryo quality and clinical pregnancy after intracytoplasmic sperm injection (ICSI). Materials and Methods This prospective study was carried out on a group of infer- tile females (n=282) at Islamabad Clinic Serving Infertile Couples, Islamabad, Pakistan, from June 2010 till August 2013. Downregulated females were stimulated in injection gonadotropins and on ovulation induction day, pre-ovulatory follicle count (PFC) was determined using transvaginal ultrasound scan (TVUS), and FORT was determined as a ratio of PFC to antral follicle count (AFC)×100. Group I consisted of females with a negative pregnancy test, while group II had a positive pregnancy test that was confirmed with the appearance of fetal cardiac activity. Linear regression analyses of categorical variables of clinical pregnancy along with other independent variables, including FORT, were performed using SPSS version 15.0. Results Pregnancy occurred in 101/282 women who were tested, recording a clinical pregnancy rate of about 35.8%. FORT values were higher in group II as compared to group I females (P=0.0001). In multiple regression analysis, 97.7, 87.1, 78.2, and 83.4% variations were explained based on the number of retrieved oocytes per patients, number of metaphase II oocytes retrieved, number of fertilized oocytes, and number of cleaved embryos, respectively, indicating FORT as an independent predictor. Conclusion FORT is a predictor of oocyte competence in terms of a number of retrieved, mature and fertilized oocytes. It also gives information about the number of cleaved embryos and clinical pregnancy rate. PMID:27441049

  4. Different sperm sources and parameters can influence intracytoplasmic sperm injection outcomes before embryo implantation

    Institute of Scientific and Technical Information of China (English)

    Yue-hong LU; Hui-juan GAO; Bai-jia LI; Ying-ming ZHENG; Ying-hui YE; Yu-li QIAN; Chen-ming XU; He-feng HUANG; Fan JIN

    2012-01-01

    To evaluate the effects of sperm with different parameters and sources on the outcomes of intracytoplasmic sperm injection (ICSI),1972 ICSI cycles were analyzed retrospectively.Groups 1 to 5 were composed of cycles using ejaculated sperm and were grouped according to sperm quantity,quality,and morphology into normal (288 cycles),or mild (329 cycles),moderate (522 cycles),severe (332 cycles),and extremely severe (171 cycles)oligozoospermia and/or asthenozoospermia and/or teratozoospermia (OAT) groups.Group 6 was composed of 250 cycles using testicular or epididymal sperm,and Group 7 consisted of 80 cycles using frozen-thawed sperm.We found that fertilization rates were gradually reduced from Groups 1 to 6,and reached statistical difference in Groups 5 and 6 (P<0.05).The high-quality embryo rate was higher in Group 1 than in Groups 2,3,5,6,and 7 (P<0.05).No statistical differences were observed in the rates of embryo cleavage,clinical pregnancy,miscarriage,live-birth,premature birth,low birth weight,weeks of premature birth,average birth weight,or sex ratio for all seven groups (P>0.05).A total of nine cases of malformation were observed,with a malformation rate of 1.25% (9/719).In conclusion,different sperm sources and parameters can affect ICSI outcomes before embryo implantation.A full assessment of offspring malformation will require further study using a larger sample size.

  5. Men becoming fathers by intracytoplasmic sperm injection were more often born small for gestational age

    Directory of Open Access Journals (Sweden)

    Susanne Liffner

    2017-01-01

    Full Text Available Being born with nonoptimal birth characteristics decreases the chance of becoming a father. Urogenital malformations as well as metabolic syndrome are more common in men born small for gestational age (SGA and could be contributing factors to the reduced fertility rate seen in these men. It could imply that men becoming fathers by assisted reproductive technology (ART more often are born with low birth weight (LBW, preterm, and/or SGA than men conceiving without treatment and also that men where intracytoplasmic sperm injection (ICSI had to be performed more often are born with nonoptimal birth characteristics than men where conventional in vitro fertilization (IVF successfully could be used. In this retrospective, case-control study using Swedish national registers, we compared the birth characteristics of 1206 men who have become fathers by ART with a control group consisting of age-matched men who became fathers without treatment. The differences in birth characteristics between men becoming fathers by IVF and ICSI were also assessed. For men becoming fathers by ART, OR of being born with LBW was 1.66 (95% CI = 1.17-2.36 compared with fathers who conceived without treatment. OR of being born prematurely was 1.32 (95% CI = 1.00-1.77. Men becoming fathers via ICSI had a doubled increased likelihood of being born SGA compared with men who became fathers via IVF (OR = 2.12; 95% CI = 1.17-3.83. In conclusion, we have found that men becoming fathers by ICSI treatments had more often been born SGA than men becoming fathers by conventional IVF.

  6. Development of rat oocytes following intracytoplasmic injection of sperm heads isolated from testicular and epididymal spermatozoa.

    Science.gov (United States)

    Said, S; Han, M-S; Niwa, K

    2003-07-01

    The possibility of obtaining normal development of rat oocytes following intracytoplasmic injection of rat sperm heads, obtained by sonicating spermatozoa from testes and epididymides, was evaluated. Irrespective of the source of spermatozoa, sperm heads were successfully injected into approximately 45% of oocytes used; after 9-12h of culture, approximately 55% of injected oocytes still had normal morphology. Of the oocytes injected with testicular sperm heads 45% were activated, with a female pronucleus and a second polar body, but significantly more oocytes (approximately 68%) injected with caput and cauda epididymal sperm heads were activated. Male pronuclear formation was observed in 67-84% of the activated oocytes, with no difference in the proportions among the different sources of sperm heads. When zygotes showing two pronuclei and a second polar body at 10h after injection were cultured in conditions that support development of 1-cell embryos produced in vivo, no embryos derived from testicular sperm heads developed to blastocysts after 120 h of culture. Development of embryos derived from cauda sperm heads was significantly higher at all points of assessment, while embryos from caput sperm showed an intermediate degree of development, compared with embryos from testicular spermatozoa. However, similar proportions (2-4%) of 1-cell embryos derived from all three groups of sperm heads developed into normal offspring after transfer to foster mothers; of the limited number of offspring tested, all were fertile. These results demonstrate that sperm heads from all sources tested are similar in their ability to contribute to full development of normal, fertile offspring.

  7. Effect of Helicobacter pylori infection on pregnancy rates and early pregnancy loss after intracytoplasmic sperm injection.

    Science.gov (United States)

    Hajishafiha, Masomeh; Ghasemi-Rad, Mohammad; Memari, Aishe; Naji, Siamak; Mladkova, Nikol; Saeedi, Vida

    2011-01-01

    There is a need to elucidate what affects the implantation and early pregnancy course in pregnancies conceived with assisted reproductive technology (ART) so that pregnancy rates and outcomes can be improved. Our aim was to determine the role of maternal Helicobacter pylori infection. We did a prospective study of 187 infertile couples undergoing intracytoplasmic sperm injection (ICSI) and segregated those according to underlying infertility etiology. We assessed the status of H. pylori IgG antibodies and anti-CagA IgG antibodies by ELISA assay. All pregnancies were followed for early pregnancy loss (EPL, first 12 weeks). The likelihood of H. pylori infection increased with age (1.01, 95% confidence interval [CI]: 1.0-1.13; P = 0.040) but there was no association with EPL. Women infected with CagA-positive strains were more likely to have EPL (19.39, 95% CI: 1.8-208.4; P = 0.014). Women with tubal factor or ovulatory disorder infertility were more likely to abort early (12.95, 95% CI: 1.28-131.11; P = 0.030, 10.84, 95% CI: 1.47-80.03; P = 0.020, respectively). There was no association between EPL and age, number of embryos formed or transferred, or number of oocytes retrieved. Our findings suggest that infection with CagA-positive H. pylori strains is linked to an increase in women's potential to abort early (possibly through increased release of inflammatory cytokines). In addition, tubal factor and ovulatory disorder infertility are linked to EPL after ICSI due to unknown mechanisms. Proposals to eradicate H. pylori infection prior to ICSI could lead to a decrease in EPL after ART.

  8. Effect of ethnicity on live birth rates after in vitro fertilisation or intracytoplasmic sperm injection treatment.

    Science.gov (United States)

    Jayaprakasan, K; Pandian, D; Hopkisson, J; Campbell, B K; Maalouf, W E

    2014-02-01

    To assess the relationship between the ethnicity of women and the clinical success of in vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI) treatment. Observational cohort study. Nottingham University Research and Treatment Unit in Reproduction (NURTURE), UK. A total of 1517 women, of which 1291 were white Europeans and 226 belonged to an ethnic minority group. All the women were undergoing their first cycle of assisted reproductive technology (ART) between 2006 and 2011. All of the women underwent their first cycle of ART between 2006 and 2011. Live birth rates following IVF or ICSI treatment. Although pre-treatment ovarian reserve variables [mean age, basal follicle stimulating hormone (FSH), and total antral follicle count] were significantly favourable in the ethnic group, the live birth rates were significantly lower in this group (35%) compared with the white European group (43.8%) (relative risk 0.8; 95% CI 0.66-0.97). On logistic regression analysis, ethnicity was an independent predictor of live birth rate (OR 0.688; 95% CI 0.513-0.924). After controlling for the other independent variables (age and FSH), the significant association between ethnicity and live birth rate remained strong (OR 0.591; 95% CI 0.425-0.822) on multivariate logistic regression analysis. Live birth rates following IVF or ICSI treatment were significantly lower in the ethnic minority group compared with white European women, which suggests that ethnicity is a major determinant of live birth following IVF treatment. © 2013 Royal College of Obstetricians and Gynaecologists.

  9. Endometriosis, Ovarian Reserve and Live Birth Rate Following In Vitro Fertilization/Intracytoplasmic Sperm Injection.

    Science.gov (United States)

    Coelho Neto, Marcela Alencar; Martins, Wellington de Paula; Luz, Caroline Mantovani da; Jianini, Bruna Talita Gazeto Melo; Ferriani, Rui Alberto; Navarro, Paula Andrea

    2016-05-01

    Purpose To evaluate whether women with endometriosis have different ovarian reserves and reproductive outcomes when compared with women without this diagnosis undergoing in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI), and to compare the reproductive outcomes between women with and without the diagnosis considering the ovarian reserve assessed by antral follicle count (AFC). Methods This retrospective cohort study evaluated all women who underwent IVF/ICSI in a university hospital in Brazil between January 2011 and December 2012. All patients were followed up until a negative pregnancy test or until the end of the pregnancy. The primary outcomes assessed were number of retrieved oocytes and live birth. Women were divided into two groups according to the diagnosis of endometriosis, and each group was divided again into a group that had AFC ≤ 6 (poor ovarian reserve) and another that had AFC ≥ 7 (normal ovarian reserve). Continuous variables with normal distribution were compared using unpaired t-test, and those without normal distribution, using Mann-Whitney test. Binary data were compared using either Fisher's exact test or Chi-square (χ(2)) test. The significance level was set as p live birth was similar between women with the diagnosis of endometriosis and those without it (19.1 versus 22.5%), and also when considering only women with a poor ovarian reserve (9.4 versus 8.9%) and only those with a normal ovarian reserve (25.5 versus 26.5%). Conclusions Women diagnosed with endometriosis are more likely to have a poor ovarian reserve; however, their chance of conceiving by IVF/ICSI is similar to the one observed in patients without endometriosis and with a comparable ovarian reserve. Thieme Publicações Ltda Rio de Janeiro, Brazil.

  10. Intracytoplasmic morphologically selected sperm injection and congenital birth defects: a retrospective cohort study.

    Science.gov (United States)

    Hershko-Klement, A; Sukenik-Halevy, R; Biron Shental, T; Miller, N; Berkovitz, A

    2016-09-01

    Our objective was to study the birth defect rates in intracytoplasmic morphologically selected sperm injection (IMSI) pregnancies. A cohort of couples presenting male factor infertility between January 2006 and January 2014 was retrospectively analyzed. Discharge letters and a telephone interview were performed for assessing pregnancy outcome. All clinical data were reviewed by a board certified medical geneticist. Main outcomes were fetal/birth defect and chromosomal abnormality rates. Two thousand two hundred and fifty-eight pregnancies were available for analysis, of them, 1669 (73.9%) resulting from ICSI and 2258 (26.1%) achieved by IMSI. Pregnancy outcome distribution did not show a significant difference. For the fresh embryo transfer cohort, fetal/birth defect rate was 4.5%, chromosomal aberration rate was 1.0%, and structural malformation rate was 3.5%. IMSI vs. ICSI pregnancies were less likely to involve a fetal/birth defect: 3.5% vs. 4.8%, respectively, but did not reach a statistical significance OR 0.71 (95% CI 0.39-1.22). Split by multiplicity, this trend existed only for singleton pregnancies; 1.4% structural malformations rate vs. 3.8%, respectively, OR 0.35 (95% CI 0.11-0.9). The frozen cohort demonstrated a significantly lower birth defect rate (OR 0.25, 95% CI 0.09-0.58). We conclude that IMSI procedure does not involve an increased malformation rate and may offer a reduced anomaly incidence. Further studies are required. © 2016 American Society of Andrology and European Academy of Andrology.

  11. Pregnancy and fertilization potential of immature oocytes retrieved in intracytoplasmic sperm injection cycles.

    Science.gov (United States)

    Ko, Duck Sung; Lee, Sun-Hee; Park, Dong-Wook; Yang, Kwang Moon; Lim, Chun Kyu

    2015-09-01

    The goal of this study was to evaluate the pregnancy potential of immature (metaphase I or germinal vesicle stage) oocytes retrieved in intracytoplasmic sperm injection (ICSI) cycles. A total of 1,871 couples with infertility underwent 2,984 ICSI cycles. Cycles in which three or fewer oocytes were retrieved were included in this study in order to evaluate the pregnancy potential of immature oocytes. Cycles were divided into five groups (group I-V), according to the maturation status of the oocytes at the time of cumulus cell removal and ICSI. The fertilization and pregnancy rates after ICSI were analyzed and compared among the study groups based on the maturation status of the retrieved oocytes. The retrieval of only immature oocytes was associated with a significant decrease in the fertilization rate (76.1%±37.3% vs. 49.0%±49.1%, 66.7%±48.7%; group I vs. group II, group III, respectively) and the average number of transferred embryos (1.5±0.7 vs. 1.1±0.4, 1.1±0.6). The cycle cancellation rate was significantly higher when only immature oocytes were retrieved. The clinical pregnancy rate decreased significantly when the transferred embryos had originated from immature oocytes (16.9% vs. 10.3%, 1.2%). In ICSI cycles, the fertilization potential and pregnancy potential of the immature oocytes retrieved in ICSI cycles were inferior to those of mature oocytes. Therefore, increasing the number of injectable oocytes and transferrable embryos by using immature oocytes after their spontaneous in vitro maturation does not necessarily improve pregnancy outcomes.

  12. Artificial oocyte activation in intracytoplasmic sperm injection cycles using testicular sperm in human in vitro fertilization.

    Science.gov (United States)

    Kang, Hee Jung; Lee, Sun-Hee; Park, Yong-Seog; Lim, Chun Kyu; Ko, Duck Sung; Yang, Kwang Moon; Park, Dong-Wook

    2015-06-01

    Artificial oocyte activation (AOA) is an effective method to avoid total fertilization failure in human in vitro fertilization-embryo transfer (IVF-ET) cycles. AOA performed using a calcium ionophore can induce calcium oscillation in oocytes and initiate the fertilization process. We evaluated the usefulness of AOA with a calcium ionophore in cases of total fertilization failure in previous cycles and in cases of severe male factor infertility patients with non-motile spermatozoa after pentoxifylline (PF) treatment. The present study describes 29 intracytoplasmic sperm injection (ICSI)-AOA cycles involving male factor infertility at Cheil General Hospital from January 2006 to June 2013. Patients were divided into two groups (control, n=480; AOA, n=29) depending on whether or not AOA using a calcium ionophore (A23187) was performed after testicular sperm extraction-ICSI (TESE-ICSI). The AOA group was further split into subgroups according to sperm motility after PF treatment: i.e., motile sperm-injected (n=12) and non-motile sperm-injected (n=17) groups (total n=29 cycles). The good embryo rate (52.3% vs. 66.9%), pregnancy rate (20.7% vs. 52.1%), and delivery rate (10.3% vs. 40.8%) were lower in the PF/AOA group than in the control group. When evaluating the effects of restoration of sperm motility after PF treatment on clinical outcomes there was no difference in fertilization rate (66.6% vs. 64.7% in non-motile and motile sperm, respectively), pregnancy rate (17.6% vs. 33.3%), or delivery rate (5.9% vs. 16.7%) between the two groups. We suggest that oocyte activation is a useful method to ensure fertilization in TESE-ICSI cycles regardless of restoration of sperm motility after PF treatment. AOA may be useful in selected patients who have a low fertilization rate or total fertilization failure.

  13. Application study of intracytoplasmic sperm injection for golden hamster and cattle production.

    Science.gov (United States)

    Horiuchi, Toshitaka

    2006-02-01

    This paper describes several technical improvements and our results in hamster intracytoplasmic sperm injection (ICSI), hamster round spermatid injection (ROSI) and bovine ICSI. The hamster is the mammalian species in which ICSI was first tried to produce fertilized oocytes. However, until recently, no live offspring following ICSI have ever been obtained. We reported the birth of live offspring following hamster ICSI. Improved points to success were 1) performing hamster ICSI in a dark room with a small incandescent lamp and manipulating both oocytes and fertilized eggs under microscope with a red light source and 2) injecting sperm heads without acrosomes. Under controlled illumination, the majority of the oocytes injected with acrosomeless sperm heads were fertilized normally, cleaved, and developed into morulae. Nine live offspring (19%) were born by transfer of hamster ICSI-derived embryos. Furthermore, we reported the birth of live offspring following hamster ROSI. About 70% of oocytes injected with round spermatids broken before injection were fertilized normally and about half of them developed to morulae and blastocysts. Three (5%) live young were born by transfer of hamster ROSI-derived embryos. On the other hand, in cattle, the main improvements were 1) injection of spermatozoa immobilized by scoring their tail just before injection into oocytes, and 2) additional ethanol activation 4 h after ICSI. About 70% of oocytes injected were activated 4 h after ICSI, and about 30% of them developed to blastocysts. Twenty-four live calves (39%) were born by non-surgical transfer of ICSI-derived embryos. Those results shows that, at present, live offspring are able to be obtained following hamster ICSI, ROSI and bovine ICSI, but further improvement is required due to higher production efficiency of offspring.

  14. The relationship between Cd-induced autophagy and lysosomal activation in WRL-68 cells.

    Science.gov (United States)

    Meng, Su-Fang; Mao, Wei-Ping; Wang, Fang; Liu, Xiao-Qian; Shao, Luan-Luan

    2015-11-01

    This study shows that Cd induces autophagy in the human's embryonic normal liver cell line (WRL-68). The expression of LC3B-II and the mature cathepsin L were analyzed by Western blotting. The autophagosomes and lysosomes were directly visualized by electron microscopy and confocal microscopy analysis in Cd-exposed WRL-68 cells. In this study, we first found that autophagy induced the activation of lysosomal function in WRL-68 cells. The lysosomal activation was markedly decreased when the cells were co-treated with 3-MA (an inhibitor of autophagy). Secondly, we provided the evidence that the activation of lysosomal function depended on autophagosome-lysosome fusion. The colocalization of lysosome-associated membrane protein-2 (LAMP2) and GFP-LC3 was significantly reduced, when they were treated with thapsigargin (an inhibitor of autophagosome-lysosome fusion). We demonstrated that deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, which suggests that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Thirdly, we provided evidence that the activation of lysosomal function was associated with lysosomal acid. We investigated the relationship between autophagosome-lysosome fusion and pH in acidic compartments by visualizing fusion process in WRL-68 cells. This suggests that increasing pH in acidic compartments in WRL-68 cells inhibits the autophagosome-lysosome fusion. Finally, we found that the activation of lysosomal function was associated with Ca(2+) stores and the intracellular Ca(2+) channels or pumps were possibly pH-dependent.

  15. Lysosomal acid phosphatase is internalized via clathrin-coated pits

    NARCIS (Netherlands)

    Klumperman, J.; Hille, A.; Geuze, H.J.; Peters, C.; Brodsky, F.M.; Figura, K. von

    1992-01-01

    The presence of lysosomal acid phosphatase (LAP) in coated pits at the plasma membrane was investigated by immunocytochemistry in thymidine kinase negative mouse L-cells (Ltk-) and baby hamster kidney (BHK) cells overexpressing human LAP (Ltk-LAP and BHK-LAP cells). Double immunogold labeling showed

  16. Recent advances in gene therapy for lysosomal storage disorders

    Directory of Open Access Journals (Sweden)

    Rastall DP

    2015-06-01

    Full Text Available David PW Rastall,1 Andrea Amalfitano1,2 1Department of Microbiology and Molecular Genetics, 2Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA Abstract: Lysosomal storage disorders (LSDs are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme's substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood–brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field. Keywords: human trials, clinical trials, gene therapy, lysosomal storage disease, blood-brain barrier, adeno-associated virus, lentivirus, adenovirus 

  17. PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization.

    Science.gov (United States)

    Liu, Jiazhuo; Peng, Leiwen; Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting

    2016-01-26

    PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the "verge of apoptosis". When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways.

  18. The frequency of lysosomal storage diseases in The Netherlands

    NARCIS (Netherlands)

    Poorthuis, BJHM; Wevers, RA; Kleijer, WJ; Groener, JEM; de Jong, JGN; van Weely, S; Niezen-Koning, KE; van Diggelen, OP

    1999-01-01

    We have calculated the relative frequency and the birth prevalence of lysosomal storage diseases (LSDs) in The Netherlands based on all 963 enzymatically confirmed cases diagnosed during the period 1970-1996. The combined birth prevalence for all LSDs is 14 per 100,000 live births. Glycogenosis type

  19. Clinical, biochemical and genetic heterogeneity in lysosomal storage diseases

    NARCIS (Netherlands)

    A.J.J. Reuser (Arnold)

    1977-01-01

    textabstractThe history of lysosomal storage diseases dates back to the end of the last century when the first clinical reports appeared of patients suffering from these genetic, metabolic disorders (Tay, 1881; Gaucher, 1882; Sachs, 1887; Fabry, 1898). About seventy years wouid pass before the term

  20. The frequency of lysosomal storage diseases in The Netherlands

    NARCIS (Netherlands)

    Poorthuis, BJHM; Wevers, RA; Kleijer, WJ; Groener, JEM; de Jong, JGN; van Weely, S; Niezen-Koning, KE; van Diggelen, OP

    1999-01-01

    We have calculated the relative frequency and the birth prevalence of lysosomal storage diseases (LSDs) in The Netherlands based on all 963 enzymatically confirmed cases diagnosed during the period 1970-1996. The combined birth prevalence for all LSDs is 14 per 100,000 live births. Glycogenosis type

  1. Release and uptake of lysosomal enzymes : studied in cultured cells

    NARCIS (Netherlands)

    D.J.J. Halley (Dicky)

    1980-01-01

    textabstractThe purpose of the experimental work described in this thesiswas to investigate some aspects of the release and uptake of lysosomal enzymes. The experiments involved the use of normal human and animal fibroblasts and some other cell types such as hepatocytes and hepatoma cells as sources

  2. Neuronopathic Lysosomal Storage Diseases: Clinical and Pathologic Findings

    Science.gov (United States)

    Prada, Carlos E.; Grabowski, Gregory A.

    2013-01-01

    Background: The lysosomal--autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. Methods: Literature review provided insight into the current clinical neurological findings,…

  3. Fiber type conversion by PGC-1α activates lysosomal and autophagosomal biogenesis in both unaffected and Pompe skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Shoichi Takikita

    Full Text Available PGC-1α is a transcriptional co-activator that plays a central role in the regulation of energy metabolism. Our interest in this protein was driven by its ability to promote muscle remodeling. Conversion from fast glycolytic to slow oxidative fibers seemed a promising therapeutic approach in Pompe disease, a severe myopathy caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA which is responsible for the degradation of glycogen. The recently approved enzyme replacement therapy (ERT has only a partial effect in skeletal muscle. In our Pompe mouse model (KO, the poor muscle response is seen in fast but not in slow muscle and is associated with massive accumulation of autophagic debris and ineffective autophagy. In an attempt to turn the therapy-resistant fibers into fibers amenable to therapy, we made transgenic KO mice expressing PGC-1α in muscle (tgKO. The successful switch from fast to slow fibers prevented the formation of autophagic buildup in the converted fibers, but PGC-1α failed to improve the clearance of glycogen by ERT. This outcome is likely explained by an unexpected dramatic increase in muscle glycogen load to levels much closer to those observed in patients, in particular infants, with the disease. We have also found a remarkable rise in the number of lysosomes and autophagosomes in the tgKO compared to the KO. These data point to the role of PGC-1α in muscle glucose metabolism and its possible role as a master regulator for organelle biogenesis - not only for mitochondria but also for lysosomes and autophagosomes. These findings may have implications for therapy of lysosomal diseases and other disorders with altered autophagy.

  4. UBPY-mediated epidermal growth factor receptor (EGFR) de-ubiquitination promotes EGFR degradation

    NARCIS (Netherlands)

    Alwan, H.A.J.; Leeuwen, J.E.M. van

    2007-01-01

    Whereas poly-ubiquitination targets protein substrates for proteasomal degradation, mono-ubiquitination is known to regulate protein trafficking in the endosomal system and to target cargo proteins for lysosomal degradation. The role of the de-ubiquitinating enzymes AMSH and UBPY in endosomal traffi

  5. Wnt Signaling Translocates Lys48-Linked Polyubiquitinated Proteins to the Lysosomal Pathway

    Directory of Open Access Journals (Sweden)

    Hyunjoon Kim

    2015-05-01

    Full Text Available Cellular proteins are degraded in either proteasomes or lysosomes depending on the types of ubiquitin chains that covalently modify them. It is not known whether the choice between these two pathways is physiologically regulated. The Lys48-polyubiquitin chain is the major signal directing proteins for degradation in proteasomes. Here, we report the unexpected finding that canonical Wnt signaling translocates some K48-linked polyubiquitinated proteins to the endolysosomal pathway. Proteasomal target proteins, such as β-catenin, Smad1, and Smad4, were targeted into endolysosomes in a process dependent on GSK3 activity. Relocalization was also dependent on Axin1 and the multivesicular body (MVB proteins HRS/Vps27 and Vps4. The Wnt-induced accumulation of K48-linked polyubiquitinated proteins in endolysosomal organelles was accompanied by a transient decrease in cellular levels of free mono-ubiquitin, which may contribute to Wnt-regulated stabilization of proteins (Wnt/STOP. We conclude that Wnt redirects Lys48-polyubiquitinated proteins that are normally degraded in proteasomes to endolysosomes.

  6. Glycolipid-dependent sorting of melanosomal from lysosomal membrane proteins by lumenal determinants

    NARCIS (Netherlands)

    Groux-Degroote, S.; Dijk, S.M. van; Wolthoorn, J.; Neumann, S.; Theos, A.C.; Mazière, A.M. de; Klumperman, J.; Meer, G. van; Sprong, H.

    2008-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes in mammalian pigment cells. Melanosomal and lysosomal membrane proteins share similar sorting signals in their cytoplasmic tail, raising the question how they are segregated. We show that in control melanocytes, the melanosomal

  7. Glycolipid-dependent sorting of melanosomal from lysosomal membrane proteins by lumenal determinants

    NARCIS (Netherlands)

    Groux-Degroote, S.; Dijk, S.M. van; Wolthoorn, J.; Neumann, S.; Theos, A.C.; Mazière, A.M. de; Klumperman, J.; Meer, G. van; Sprong, H.

    2008-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes in mammalian pigment cells. Melanosomal and lysosomal membrane proteins share similar sorting signals in their cytoplasmic tail, raising the question how they are segregated. We show that in control melanocytes, the melanosomal

  8. Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type IV.

    Science.gov (United States)

    Park, Soonhong; Ahuja, Malini; Kim, Min Seuk; Brailoiu, G Cristina; Jha, Archana; Zeng, Mei; Baydyuk, Maryna; Wu, Ling-Gang; Wassif, Christopher A; Porter, Forbes D; Zerfas, Patricia M; Eckhaus, Michael A; Brailoiu, Eugen; Shin, Dong Min; Muallem, Shmuel

    2016-02-01

    Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.

  9. Acute effects of the sigma-2 receptor agonist siramesine on lysosomal and extra-lysosomal proteolytic systems in lens epithelial cells

    OpenAIRE

    Jonhede, S.; Petersen, A; Zetterberg, M.; Karlsson, J-O

    2010-01-01

    Purpose The aim of the present study was to examine the effects of the sigma-2 receptor agonist, siramesine, on morphology, growth, cell death, lysosomal function, and effects on extra-lysosomal proteolytic systems in human lens epithelial cells. Methods Human lens epithelial cells in culture were exposed to siramesine and examined for morphological changes using Nomarski optics or calcein. Lysosomes were evaluated using acridine orange and Magic Red (RR-cresyl violet). Nuclear morphology was...

  10. Novel patient cell-based HTS assay for identification of small molecules for a lysosomal storage disease.

    Directory of Open Access Journals (Sweden)

    Haifeng Geng

    Full Text Available Small molecules have been identified as potential therapeutic agents for lysosomal storage diseases (LSDs, inherited metabolic disorders caused by defects in proteins that result in lysosome dysfunctional. Some small molecules function assisting the folding of mutant misfolded lysosomal enzymes that are otherwise degraded in ER-associated degradation. The ultimate result is the enhancement of the residual enzymatic activity of the deficient enzyme. Most of the high throughput screening (HTS assays developed to identify these molecules are single-target biochemical assays. Here we describe a cell-based assay using patient cell lines to identify small molecules that enhance the residual arylsulfatase A (ASA activity found in patients with metachromatic leukodystrophy (MLD, a progressive neurodegenerative LSD. In order to generate sufficient cell lines for a large scale HTS, primary cultured fibroblasts from MLD patients were transformed using SV40 large T antigen. These SV40 transformed (SV40t cells showed to conserve biochemical characteristics of the primary cells. Using a specific colorimetric substrate para-nitrocatechol sulfate (pNCS, detectable ASA residual activity were observed in primary and SV40t fibroblasts from a MLD patient (ASA-I179S cultured in multi-well plates. A robust fluorescence ASA assay was developed in high-density 1,536-well plates using the traditional colorimetric pNCS substrate, whose product (pNC acts as "plate fluorescence quencher" in white solid-bottom plates. The quantitative cell-based HTS assay for ASA generated strong statistical parameters when tested against a diverse small molecule collection. This cell-based assay approach can be used for several other LSDs and genetic disorders, especially those that rely on colorimetric substrates which traditionally present low sensitivity for assay-miniaturization. In addition, the quantitative cell-based HTS assay here developed using patient cells creates an

  11. Association between Number of Formed Embryos, Embryo Morphology and Clinical Pregnancy Rate after Intracytoplasmic Sperm Injection.

    Science.gov (United States)

    Luz, Caroline Mantovani da; Giorgi, Vanessa Silvestre Innocenti; Coelho Neto, Marcela Alencar; Martins, Wellington de Paula; Ferriani, Rui Alberto; Navarro, Paula Andrea

    2016-09-01

    Introduction Infertility has a high prevalence in the general population, affecting ∼ 5 to 15% of couples in reproductive age. The assisted reproduction techniques (ART) include in vitro manipulation of gametes and embryos and are an important treatment indicated to these couples. It is well accepted that the implantation rate is positively influenced by the morphology of transferred embryos. However, we question if, apart from the assessment of embryo morphology, the number of produced embryos per cycle is also related to pregnancy rates in the first fresh transfer cycle. Purpose To evaluate the clinical pregnancy rate according to the number of formed embryos and the transfer of top quality embryos (TQEs). Methods In a retrospective cohort study, between January 2011 and December 2012, we evaluated women who underwent intracytoplasmic sperm injection (ICSI), aged < 40 years, and with at least 1 formed embryo fresh transferred in cleavage stage. These women were stratified into 3 groups according to the number of formed embryos (1 embryo, 2-3 and ≥ 4 embryos). Each group was divided into 2 subgroups according to the presence or not of at least 1 transferred TQE (1 with TQE; 1 without TQE; 2-3 with TQE, 2-3 without TQE; ≥ 4 with TQE; ≥ 4 without TQE). The clinical pregnancy rates were compared in each subgroup based on the presence or absence of at least one transferred TQE. Results During the study period, 636 women had at least one embryo to be transferred in the first fresh cycle (17.8% had 1 formed embryo [32.7% with TQE versus 67.3% without TQE], 42.1% of women had 2-3 formed embryos [55.6% with TQE versus 44.4% without TQE], and 40.1% of patients had ≥ 4 formed embryos [73.7% with TQE versus 26.3% without TQE]). The clinical pregnancy rate was significantly higher in the subgroup with ≥ 4 formed embryos with at least 1 transfered TQE (45.2%) compared with the subgroup without TQE (28.4%). Conclusions Having at

  12. The Role of Oxidized Cholesterol in Diabetes-Induced Lysosomal Dysfunction in the Brain.

    Science.gov (United States)

    Sims-Robinson, Catrina; Bakeman, Anna; Rosko, Andrew; Glasser, Rebecca; Feldman, Eva L

    2016-05-01

    Abnormalities in lysosomal function have been reported in diabetes, aging, and age-related degenerative diseases. These lysosomal abnormalities are an early manifestation of neurodegenerative diseases and often precede the onset of clinical symptoms such as learning and memory deficits; however, the mechanism underlying lysosomal dysfunction is not known. In the current study, we investigated the mechanism underlying lysosomal dysfunction in the cortex and hippocampi, key structures involved in learning and memory, of a type 2 diabetes (T2D) mouse model, the leptin receptor deficient db/db mouse. We demonstrate for the first time that diabetes leads to destabilization of lysosomes as well as alterations in the protein expression, activity, and/or trafficking of two lysosomal enzymes, hexosaminidase A and cathepsin D, in the hippocampus of db/db mice. Pioglitazone, a thiazolidinedione (TZD) commonly used in the treatment of diabetes due to its ability to improve insulin sensitivity and reverse hyperglycemia, was ineffective in reversing the diabetes-induced changes on lysosomal enzymes. Our previous work revealed that pioglitazone does not reverse hypercholesterolemia; thus, we investigated whether cholesterol plays a role in diabetes-induced lysosomal changes. In vitro, cholesterol promoted the destabilization of lysosomes, suggesting that lysosomal-related changes associated with diabetes are due to elevated levels of cholesterol. Since lysosome dysfunction precedes neurodegeneration, cognitive deficits, and Alzheimer's disease neuropathology, our results may provide a potential mechanism that links diabetes with complications of the central nervous system.

  13. The role of chaperone-mediated autophagy in huntingtin degradation.

    Directory of Open Access Journals (Sweden)

    Lin Qi

    Full Text Available Huntington Disease (HD is caused by an abnormal expansion of polyQ tract in the protein named huntingtin (Htt. HD pathology is featured by accumulation and aggregation of mutant Htt in striatal and cortical neurons. Aberrant Htt degradation is implicated in HD pathogenesis. The aim of this study was to investigate the regulatory role of chaperone-mediated autophagy (CMA components, heat shock protein cognate 70 (Hsc70 and lysosome-associated protein 2A (LAMP-2A in degradation of Htt fragment 1-552aa (Htt-552. A cell model of HD was produced by overexpression of Htt-552 with adenovirus. The involvement of CMA components in degradation of Htt-552 was determined with over-expression or silencing of Hsc70 and LAMP-2A. The results confirmed previous reports that both macroautophagy and CMA were involved in degradation of Htt-552. Changing the levels of CMA-related proteins affected the accumulation of Htt-552. The lysosomal binding and luminal transport of Htt-552 was demonstrated by incubation of Htt-552 with isolated lysosomes. Expansion of the polyQ tract in Htt-552 impaired its uptake and degradation by lysosomes. Mutation of putative KFERQ motif in wild-type Htt-552 interfered with interactions between Htt-552 and Hsc70. Endogenous Hsc70 and LAMP-2A interacted with exogenously expressed Htt-552. Modulating the levels of CMA related proteins degraded endogenous full-length Htt. These studies suggest that Hsc70 and LAMP-2A through CMA play a role in the clearance of Htt and suggest a novel strategy to target the degradation of mutant Htt.

  14. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models.

    Science.gov (United States)

    Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-02-16

    Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi-tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders.

  15. Myelin lesions associated with lysosomal and peroxisomal disorders.

    Science.gov (United States)

    Faust, Phyllis L; Kaye, Edward M; Powers, James M

    2010-09-01

    Abnormalities of myelin are common in lysosomal and peroxisomal disorders. Most display a primary loss of myelin in which the myelin sheath and/or oligodendrocytes are selectively targeted by diverse pathogenetic processes. The most severe and, hence, clinically relevant are heritable diseases predominantly of infants and children, the leukodystrophies: metachromatic, globoid cell (Krabbe disease) and adreno-leukodystrophy. Our still limited understanding of these diseases has derived from multiple sources: originally, neurological-neuropathologic-neurochemical correlative studies of the natural disease in humans or other mammals, which has been enhanced by more sophisticated and contemporary techniques of cell and molecular biology. Transgenic mouse models seem to be the most promising methodology, allowing the examination of the cellular role of lysosomes and peroxisomes for formation and maintenance of both myelin and axons, and providing initial platforms to evaluate therapies. Treatment options are woefully inadequate and in their nascent stages, but still inspire some hope for the future.

  16. Induced pluripotent stem cell models of lysosomal storage disorders

    Directory of Open Access Journals (Sweden)

    Daniel K. Borger

    2017-06-01

    Full Text Available Induced pluripotent stem cells (iPSCs have provided new opportunities to explore the cell biology and pathophysiology of human diseases, and the lysosomal storage disorder research community has been quick to adopt this technology. Patient-derived iPSC models have been generated for a number of lysosomal storage disorders, including Gaucher disease, Pompe disease, Fabry disease, metachromatic leukodystrophy, the neuronal ceroid lipofuscinoses, Niemann-Pick types A and C1, and several of the mucopolysaccharidoses. Here, we review the strategies employed for reprogramming and differentiation, as well as insights into disease etiology gleaned from the currently available models. Examples are provided to illustrate how iPSC-derived models can be employed to develop new therapeutic strategies for these disorders. We also discuss how models of these rare diseases could contribute to an enhanced understanding of more common neurodegenerative disorders such as Parkinson’s disease, and discuss key challenges and opportunities in this area of research.

  17. Immune response hinders therapy for lysosomal storage diseases.

    Science.gov (United States)

    Ponder, Katherine P

    2008-08-01

    Enzyme replacement therapy (ERT) for the lysosomal storage disease mucopolysaccharidosis I (MPS I) involves i.v. injection of alpha-l-iduronidase, which can be taken up by cells throughout the body. While a significant immune response to ERT has been shown in patients with MPS I, little is known about what effect anti-enzyme antibodies have on treatment efficacy. In this issue of the JCI, Dickson et al. demonstrate that anti-enzyme antibodies inhibit enzyme uptake and substantially limit the therapeutic efficacy of ERT in canines with MPS I (see the related article beginning on page 2868). Furthermore, the induction of immune tolerance--via oral delivery of cyclosporine A and azathioprine for two months at the time of initiation of ERT with recombinant human alpha-L-iduronidase--improved enzyme uptake in organs. Therefore, transient immunosuppression may enhance ERT for lysosomal storage diseases.

  18. Vamp-7 Mediates Vesicular Transport from Endosomes to Lysosomes

    Science.gov (United States)

    Advani, Raj J.; Yang, Bin; Prekeris, Rytis; Lee, Kelly C.; Klumperman, Judith; Scheller, Richard H.

    1999-01-01

    A more complete picture of the molecules that are critical for the organization of membrane compartments is beginning to emerge through the characterization of proteins in the vesicle-associated membrane protein (also called synaptobrevin) family of membrane trafficking proteins. To better understand the mechanisms of membrane trafficking within the endocytic pathway, we generated a series of monoclonal and polyclonal antibodies against the cytoplasmic domain of vesicle-associated membrane protein 7 (VAMP-7). The antibodies recognize a 25-kD membrane-associated protein in multiple tissues and cell lines. Immunohistochemical analysis reveals colocalization with a marker of late endosomes and lysosomes, lysosome-associated membrane protein 1 (LAMP-1), but not with other membrane markers, including p115 and transferrin receptor. Treatment with nocodozole or brefeldin A does not disrupt the colocalization of VAMP-7 and LAMP-1. Immunoelectron microscopy analysis shows that VAMP-7 is most concentrated in the trans-Golgi network region of the cell as well as late endosomes and transport vesicles that do not contain the mannose-6 phosphate receptor. In streptolysin- O–permeabilized cells, antibodies against VAMP-7 inhibit the breakdown of epidermal growth factor but not the recycling of transferrin. These data are consistent with a role for VAMP-7 in the vesicular transport of proteins from the early endosome to the lysosome. PMID:10459012

  19. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification.

    Science.gov (United States)

    Li, Dan L; Wang, Zhao V; Ding, Guanqiao; Tan, Wei; Luo, Xiang; Criollo, Alfredo; Xie, Min; Jiang, Nan; May, Herman; Kyrychenko, Viktoriia; Schneider, Jay W; Gillette, Thomas G; Hill, Joseph A

    2016-04-26

    The clinical use of doxorubicin is limited by cardiotoxicity. Histopathological changes include interstitial myocardial fibrosis and the appearance of vacuolated cardiomyocytes. Whereas dysregulation of autophagy in the myocardium has been implicated in a variety of cardiovascular diseases, the role of autophagy in doxorubicin cardiomyopathy remains poorly defined. Most models of doxorubicin cardiotoxicity involve intraperitoneal injection of high-dose drug, which elicits lethargy, anorexia, weight loss, and peritoneal fibrosis, all of which confound the interpretation of autophagy. Given this, we first established a model that provokes modest and progressive cardiotoxicity without constitutional symptoms, reminiscent of the effects seen in patients. We report that doxorubicin blocks cardiomyocyte autophagic flux in vivo and in cardiomyocytes in culture. This block was accompanied by robust accumulation of undegraded autolysosomes. We go on to localize the site of block as a defect in lysosome acidification. To test the functional relevance of doxorubicin-triggered autolysosome accumulation, we studied animals with diminished autophagic activity resulting from haploinsufficiency for Beclin 1. Beclin 1(+/-) mice exposed to doxorubicin were protected in terms of structural and functional changes within the myocardium. Conversely, animals overexpressing Beclin 1 manifested an amplified cardiotoxic response. Doxorubicin blocks autophagic flux in cardiomyocytes by impairing lysosome acidification and lysosomal function. Reducing autophagy initiation protects against doxorubicin cardiotoxicity. © 2016 American Heart Association, Inc.

  20. Discriminating lysosomal membrane protein types using dynamic neural network.

    Science.gov (United States)

    Tripathi, Vijay; Gupta, Dwijendra Kumar

    2014-01-01

    This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.

  1. Recent advances in gene therapy for lysosomal storage disorders.

    Science.gov (United States)

    Rastall, David Pw; Amalfitano, Andrea

    2015-01-01

    Lysosomal storage disorders (LSDs) are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme's substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood-brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field.

  2. Presenilin 1 regulates epidermal growth factor receptor turnover and signaling in the endosomal-lysosomal pathway.

    Science.gov (United States)

    Repetto, Emanuela; Yoon, Il-Sang; Zheng, Hui; Kang, David E

    2007-10-26

    Mutations in the gene encoding presenilin 1 (PS1) cause the most aggressive form of early-onset familial Alzheimer disease. In addition to its well established role in Abeta production and Notch proteolysis, PS1 has been shown to mediate other physiological activities, such as regulation of the Wnt/beta-catenin signaling pathway, modulation of phosphatidylinositol 3-kinase/Akt and MEK/ERK signaling, and trafficking of select membrane proteins and/or intracellular vesicles. In this study, we present evidence that PS1 is a critical regulator of a key signaling receptor tyrosine kinase, epidermal growth factor receptor (EGFR). Specifically, EGFR levels were robustly increased in fibroblasts deficient in both PS1 and PS2 (PS(-/-)) due to delayed turnover of EGFR protein. Stable transfection of wild-type PS1 but not PS2 corrected EGFR to levels comparable to PS(+/+) cells, while FAD PS1 mutations showed partial loss of activity. The C-terminal fragment of PS1 was sufficient to fully reduce EGFR levels. In addition, the rapid ligand-induced degradation of EGFR was markedly delayed in PS(-/-) cells, resulting in prolonged signal activation. Despite the defective turnover of EGFR, ligand-induced autophosphorylation, ubiquitination, and endocytosis of EGFR were not affected by the lack of PS1. Instead, the trafficking of EGFR from early endosomes to lysosomes was severely delayed by PS1 deficiency. Elevation of EGFR was also seen in brains of adult mice conditionally ablated in PS1 and in skin tumors associated with the loss of PS1. These findings demonstrate a critical role of PS1 in the trafficking and turnover of EGFR and suggest potential pathogenic effects of elevated EGFR as well as perturbed endosomal-lysosomal trafficking in cell cycle control and Alzheimer disease.

  3. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    Science.gov (United States)

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis.

  4. Changes in the morphology and lability of lysosomal subpopulations in caerulein-induced acute pancreatitis.

    Science.gov (United States)

    Sarmiento, Nancy; Sánchez-Yagüe, Jesús; Juanes, Pedro P; Pérez, Nieves; Ferreira, Laura; García-Hernández, Violeta; Mangas, Arturo; Calvo, José J; Sánchez-Bernal, Carmen

    2011-02-01

    Lysosomes play an important role in acute pancreatitis (AP). Here we developed a method for the isolation of lysosome subpopulations from rat pancreas and assessed the stability of lysosomal membranes. AP was induced by four subcutaneous injections of 20 μg caerulein/kg body weight at hourly intervals. The animals were killed 9h after the first injection. Marker enzymes [N-acetyl-β-D-glucosaminidase (NAG), cathepsin B and succinate dehydrogenase (SDH)] were assayed in subcellular fractions from control pancreas and in pancreatitis. Lysosomal subpopulations were separated by Percoll density gradient centrifugation and observed by electron microscopy. NAG molecular forms were determined by DEAE-cellulose chromatography. AP was associated with: (i) increases in the specific activity of lysosomal enzymes in the soluble fraction, (ii) changes in the size and alterations in the morphology of the organelles from the lysosomal subpopulations, (iii) the appearance of large vacuoles in the primary and secondary lysosome subpopulations, (iv) the increase in the amount of the NAG form associated with the pancreatic lysosomal membrane as well as its release towards the soluble fraction. Lysosome subpopulations are separated by a combination of differential and Percoll density gradient centrifugations. Primary lysosome membrane stability decreases in AP. Copyright © 2010 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  5. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy.

    Science.gov (United States)

    Zhang, Xiaoli; Cheng, Xiping; Yu, Lu; Yang, Junsheng; Calvo, Raul; Patnaik, Samarjit; Hu, Xin; Gao, Qiong; Yang, Meimei; Lawas, Maria; Delling, Markus; Marugan, Juan; Ferrer, Marc; Xu, Haoxing

    2016-06-30

    Cellular stresses trigger autophagy to remove damaged macromolecules and organelles. Lysosomes 'host' multiple stress-sensing mechanisms that trigger the coordinated biogenesis of autophagosomes and lysosomes. For example, transcription factor (TF)EB, which regulates autophagy and lysosome biogenesis, is activated following the inhibition of mTOR, a lysosome-localized nutrient sensor. Here we show that reactive oxygen species (ROS) activate TFEB via a lysosomal Ca(2+)-dependent mechanism independent of mTOR. Exogenous oxidants or increasing mitochondrial ROS levels directly and specifically activate lysosomal TRPML1 channels, inducing lysosomal Ca(2+) release. This activation triggers calcineurin-dependent TFEB-nuclear translocation, autophagy induction and lysosome biogenesis. When TRPML1 is genetically inactivated or pharmacologically inhibited, clearance of damaged mitochondria and removal of excess ROS are blocked. Furthermore, TRPML1's ROS sensitivity is specifically required for lysosome adaptation to mitochondrial damage. Hence, TRPML1 is a ROS sensor localized on the lysosomal membrane that orchestrates an autophagy-dependent negative-feedback programme to mitigate oxidative stress in the cell.

  6. The Ankrd13 Family of Ubiquitin-interacting Motif-bearing Proteins Regulates Valosin-containing Protein/p97 Protein-mediated Lysosomal Trafficking of Caveolin 1.

    Science.gov (United States)

    Burana, Daocharad; Yoshihara, Hidehito; Tanno, Hidetaka; Yamamoto, Akitsugu; Saeki, Yasushi; Tanaka, Keiji; Komada, Masayuki

    2016-03-18

    Caveolin 1 (Cav-1) is an oligomeric protein that forms flask-shaped, lipid-rich pits, termed caveolae, on the plasma membrane. Cav-1 is targeted for lysosomal degradation in ubiquitination- and valosin-containing protein (VCP)-dependent manners. VCP, an ATPase associated with diverse cellular activities that remodels or segregates ubiquitinated protein complexes, has been proposed to disassemble Cav-1 oligomers on the endosomal membrane, facilitating the trafficking of Cav-1 to the lysosome. Genetic mutations in VCP compromise the lysosomal trafficking of Cav-1, leading to a disease called inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia (IBMPFD). Here we identified the Ankrd13 family of ubiquitin-interacting motif (UIM)-containing proteins as novel VCP-interacting molecules on the endosome. Ankrd13 proteins formed a ternary complex with VCP and Cav-1 and exhibited high binding affinity for ubiquitinated Cav-1 oligomers in an UIM-dependent manner. Mass spectrometric analyses revealed that Cav-1 undergoes Lys-63-linked polyubiquitination, which serves as a lysosomal trafficking signal, and that the UIMs of Ankrd13 proteins bind preferentially to this ubiquitin chain type. The overexpression of Ankrd13 caused enlarged hollow late endosomes, which was reminiscent of the phenotype of the VCP mutations in IBMPFD. Overexpression of Ankrd13 proteins also stabilized ubiquitinated Cav-1 oligomers on the limiting membrane of enlarged endosomes. The interaction with Ankrd13 was abrogated in IMBPFD-associated VCP mutants. Collectively, our results suggest that Ankrd13 proteins cooperate with VCP to regulate the lysosomal trafficking of ubiquitinated Cav-1.

  7. Syntaxin 7 and VAMP-7 are Soluble N-Ethylmaleimide–sensitive Factor Attachment Protein Receptors Required for Late Endosome–Lysosome and Homotypic Lysosome Fusion in Alveolar Macrophages

    Science.gov (United States)

    Ward, Diane McVey; Pevsner, Jonathan; Scullion, Matthew A.; Vaughn, Michael; Kaplan, Jerry

    2000-01-01

    Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome–lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome–lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome–lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome–lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages. PMID:10888671

  8. A comparison of perinatal outcomes in singletons and multiples born after in vitro fertilization or intracytoplasmic sperm injection stratified for neonatal risk criteria

    NARCIS (Netherlands)

    Heesch, M.M. van; Evers, J.L.H.; Dumoulin, J.C.; Hoeven, M.A. van der; Beijsterveldt, C.E. van; Bonsel, G.J.; Dykgraaf, R.H.; Goudoever, J.B. van; Koopman-Esseboom, C.; Nelen, W.L.D.M.; Steiner, K.; Tamminga, P.; Tonch, N.; Zonneveld, P. van; Dirksen, C.D.

    2014-01-01

    OBJECTIVE: To compare perinatal singleton and multiple outcomes in a large Dutch in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) population and within risk subgroups. Newborns were assigned to a risk category based on gestational age, birthweight, Apgar score and congenital malf

  9. Karyotyping, congenital anomalies and follow-up of children after intracytoplasmic sperm injection with non-ejaculated sperm: a systematic review.

    NARCIS (Netherlands)

    Woldringh, G.H.; Besselink, D.E.; Tillema, A.H.; Hendriks, J.C.M.; Kremer, J.A.M.

    2010-01-01

    BACKGROUND: For men with azoospermia, it is possible to father their own progeny by intracytoplasmic sperm injection (ICSI) with epididymal or testicular sperm. Some studies show that children born after assisted reproductive technology (ART) are at increased risk of birth defects, other studies

  10. Karyotyping, congenital anomalies and follow-up of children after intracytoplasmic sperm injection with non-ejaculated sperm: a systematic review.

    NARCIS (Netherlands)

    Woldringh, G.H.; Besselink, D.E.; Tillema, A.H.; Hendriks, J.C.M.; Kremer, J.A.M.

    2010-01-01

    BACKGROUND: For men with azoospermia, it is possible to father their own progeny by intracytoplasmic sperm injection (ICSI) with epididymal or testicular sperm. Some studies show that children born after assisted reproductive technology (ART) are at increased risk of birth defects, other studies sug

  11. Preimplantation genetic screening as an alternative to prenatal testing for Down syndrome : preferences of women undergoing in vitro fertilization/intracytoplasmic sperm injection treatment

    NARCIS (Netherlands)

    Twisk, Moniek; Haadsma, Maaike L.; van der Veen, Fulco; Repping, Sjoerd; Mastenbroek, Sebastiaan; Heineman, Maas-Jan; Bossuyt, Patrick M. M.; Korevaar, Johanna C.

    2007-01-01

    Objective: Although the primary goal of preimplantation genetic screening (PGS) is to increase pregnancy rates in women undergoing IVF/intracytoplasmic sperm injection treatment, it has been suggested that it may also be used as an alternative to prenatal testing for Down syndrome. Design: Trade-off

  12. Parabolic trend in endometrial thickness at embryo transfer in in vitro fertilization/intracytoplasmic sperm injection cases with clinical pregnancy evidence.

    Science.gov (United States)

    Lamanna, Giuseppina; Scioscia, Marco; Lorusso, Filomenamila; Serrati, Giuseppe; Selvaggi, Luigi E; Depalo, Raffaella

    2008-10-01

    Sonographic measurement of endometrial thickness at embryo transfer is thought to be a good predictor of the success of in vitro fertilization/intracytoplasmic sperm injection cycles because the clinical pregnancy rate increases as the endometrium thickens. Nevertheless, a retrospective analysis of a study population of 606 patients showed a decrease of clinical pregnancy rates in the setting of extreme endometrial thicknesses.

  13. Dizygotic monochorionic twin pregnancy conceived following intracytoplasmic sperm injection treatment and complicated by twin-twin transfusion syndrome and blood chimerism

    DEFF Research Database (Denmark)

    Ekelund, C K; Skibsted, L; Søgaard, K

    2008-01-01

    We report a case of a dizygotic monochorionic twin pregnancy preceded by intracytoplasmic sperm injection treatment including assisted hatching. On ultrasound examination at 25 weeks' gestation the twins, which had been assumed to be monochorionic, were found to be of different sexes. Karyotyping...

  14. Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection.

    Science.gov (United States)

    Qi, Xiaopeng; Man, Si Ming; Malireddi, R K Subbarao; Karki, Rajendra; Lupfer, Christopher; Gurung, Prajwal; Neale, Geoffrey; Guy, Clifford S; Lamkanfi, Mohamed; Kanneganti, Thirumala-Devi

    2016-09-19

    Lysosomal cathepsins regulate an exquisite range of biological functions, and their deregulation is associated with inflammatory, metabolic, and degenerative diseases in humans. In this study, we identified a key cell-intrinsic role for cathepsin B as a negative feedback regulator of lysosomal biogenesis and autophagy. Mice and macrophages lacking cathepsin B activity had increased resistance to the cytosolic bacterial pathogen Francisella novicida Genetic deletion or pharmacological inhibition of cathepsin B down-regulated mechanistic target of rapamycin activity and prevented cleavage of the lysosomal calcium channel TRPML1. These events drove transcription of lysosomal and autophagy genes via transcription factor EB, which increased lysosomal biogenesis and activation of autophagy initiation kinase ULK1 for clearance of the bacteria. Our results identified a fundamental biological function of cathepsin B in providing a checkpoint for homeostatic maintenance of lysosome populations and basic recycling functions in the cell.

  15. Prion infection impairs lysosomal degradation capacity by interfering with rab7 membrane attachment in neuronal cells

    OpenAIRE

    Su Yeon Shim; Srinivasarao Karri; Sampson Law; Schatzl, Hermann M.; Sabine Gilch

    2016-01-01

    Prions are proteinaceous infectious particles which cause fatal neurodegenerative disorders in humans and animals. They consist of a mostly β-sheeted aggregated isoform (PrPSc) of the cellular prion protein (PrPc). Prions replicate autocatalytically in neurons and other cell types by inducing conformational conversion of PrPc into PrPSc. Within neurons, PrPSc accumulates at the plasma membrane and in vesicles of the endocytic pathway. To better understand the mechanisms underlying neuronal dy...

  16. Gangliosides in the Nervous System: Biosynthesis and Degradation

    Science.gov (United States)

    Yu, Robert K.; Ariga, Toshio; Yanagisawa, Makoto; Zeng, Guichao

    Gangliosides, abundant in the nervous system, are known to play crucial modulatory roles in cellular recognition, interaction, adhesion, and signal transduction, particularly during early developmental stages. The expression of gangliosides in the nervous system is developmentally regulated and is closely related to the differentiation state of the cell. Ganglioside biosynthesis occurs in intracellular organelles, from which gangliosides are transported to the plasma membrane. During brain development, the ganglioside composition of the nervous system undergoes remarkable changes and is strictly regulated by the activities of glycosyltransferases, which can occur at different levels of control, including glycosyltransferase gene transcription and posttranslational modification. Genes for glycosyltransferase involved in ganglioside biosynthesis have been cloned and classified into families of glycosyltransferases based on their amino acid sequence similarities. The donor and acceptor substrate specificities are determined by enzymatic analysis of the glycosyltransferase gene products. Cell-type specific regulation of these genes has also been studied. Gangliosides are degraded by lysosomal exoglycosidases. The action of these enzymes occurs frequently in cooperation with activator proteins. Several human diseases are caused by defects of degradative enzymes, resulting in massive accumulation of certain glycolipids, including gangliosides in the lysosomal compartment and other organelles in the brain and visceral organs. Some of the representative lysosomal storage diseases (LSDs) caused by the accumulation of lipids in late endosomes and lysosomes will be discussed.

  17. A TRP Channel in the Lysosome Regulates Large Particle Phagocytosis via Focal Exocytosis

    OpenAIRE

    2013-01-01

    Phagocytosis of large extracellular particles such as apoptotic bodies requires delivery of the intracellular endosomal and lysosomal membranes to form plasmalemmal pseudopods. Here we identified Mucolipin TRP channel 1 (TRPML1) as the key lysosomal Ca2+ channel regulating focal exocytosis and phagosome biogenesis. Both particle ingestion and lysosomal exocytosis are inhibited by synthetic TRPML1 blockers, and are defective in macrophages isolated from TRPML1 knockout mice. Furthermore, TRPML...

  18. Re: Use of Testicular Versus Ejaculated Sperm for Intracytoplasmic Sperm Injection Among Men with Cryptozoospermia: A Meta-analysis

    Directory of Open Access Journals (Sweden)

    Emre Bakırcıoğlu

    2016-12-01

    Full Text Available EDITORIAL COMMENT In this meta-analysis, the authors compared outcomes of intracytoplasmic sperm injection (ICSI using ejaculated versus testicular sperm in men with cryptozoospermia. They also assessed the number of oocytes and maternal and paternal ages. The analysis of a total of 272 ICSI cycles and 4,596 injected oocytes in 5 cohort studies included. Pregnancy and fertilization rates were not statistically different between testicular and ejaculated sperm groups. Although maternal age and paternal age were higher in testicular sperm group, there was no significant difference in the number of oocytes retrieved between the groups. In conclusion, the meta-analysis of 5 studies showed no better pregnancy outcome using testicular sperm for ICSI compared to ejaculated sperm in men with cryptozoospermia.

  19. Successful pregnancy and childbirth after intracytoplasmic sperm injection with calcium ionophore oocyte activation in a globozoospermic patient.

    Science.gov (United States)

    Tejera, Alberto; Mollá, Marta; Muriel, Lourdes; Remohí, Jose; Pellicer, Antonio; De Pablo, Jose Luis

    2008-10-01

    To check the effectiveness of intracytoplasmic sperm injection (ICSI) combined with assisted oocyte activation (AOA) in a globozoospermic patient. Case report. Instituto Valenciano de Infertilidad, Valencia, Spain. A patient with globozoospermia. ICSI was administered in 14 oocytes. ICSI combined with AOA, in which a small amount of calcium was injected followed by calcium ionophore exposure, was done in 9 oocytes. Fertilization rate and embryo quality was assessed in both groups. Chemical activation increased fertilization rate (55.6% vs. 35.7%) and the number of embryos with less multinucleation on day 2 (0 vs. 60%). Two embryos generated from AOA were transferred into the uterus (on day 3), resulting in a pregnancy and a healthy newborn. The AOA with calcium ionophore treatment improved fertilization rate and quality of the embryos, and was found to be an effective method for AOA in this patient with a low fertilization rate after previous ICSI treatment.

  20. Autophagy-mediated Regulation of BACE1 Protein Trafficking and Degradation.

    Science.gov (United States)

    Feng, Tuancheng; Tammineni, Prasad; Agrawal, Chanchal; Jeong, Yu Young; Cai, Qian

    2017-02-03

    β-Site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the major neuronal β-secretase for amyloid-β generation and is degraded in lysosomes. The autophagy-lysosomal system plays a key role in the maintenance of cellular homeostasis in neurons. Recent studies established that nascent autophagosomes in distal axons move predominantly in the retrograde direction toward the soma, where mature lysosomes are mainly located. However, it remains unknown whether autophagy plays a critical role in regulation of BACE1 trafficking and degradation. Here, we report that induction of neuronal autophagy enhances BACE1 turnover, which is suppressed by lysosomal inhibition. A significant portion of BACE1 is recruited to the autophagy pathway and co-migrates robustly with autophagic vacuoles along axons. Moreover, we reveal that autophagic vacuole-associated BACE1 is accumulated in the distal axon of Alzheimer's disease-related mutant human APP transgenic neurons and mouse brains. Inducing autophagy in mutant human APP neurons augments autophagic retention of BACE1 in distal axons, leading to enhanced β-cleavage of APP. This phenotype can be reversed by Snapin-enhanced retrograde transport, which facilitates BACE1 trafficking to lysosomes for degradation. Therefore, our study provides new insights into autophagy-mediated regulation of BACE1 turnover and APP processing, thus building a foundation for future development of potential Alzheimer's disease therapeutic strategies.

  1. A new lysosomal storage disorder resembling Morquio syndrome in sibs.

    Science.gov (United States)

    Perrin, Laurence; Fenneteau, Odile; Ilharreborde, Brice; Capri, Yline; Gérard, Marion; Quoc, Emmanuel Bui; Passemard, Sandrine; Ghoumid, Jamal; Caillaud, Catherine; Froissart, Roseline; Tabet, Anne-Claude; Lebon, Sophie; El Ghouzzi, Vincent; Mazda, Keyvan; Verloes, Alain

    2012-03-01

    We report two male sibs, born from unrelated French Caribbean parents, presenting with an unclassifiable storage disorder. Pregnancy and delivery were uneventful. Stunted growth was noted during the first year of life. Both children have short stature (below - 4SD) with short trunk, barrel chest, micromelia with rhizomelic shortening, severe kyphoscoliosis, pectus carinatum, short hands and feet with metatarsus adductus, and excessive joint laxity of the small joints. Learning difficulties with borderline intelligence quotient (IQ) were noted in one of them. They had no hepatomegaly, no splenomegaly, and no dysmorphism. Skeletal X-rays survey demonstrated generalized platyspondyly with tongue-like deformity of the anterior part of the vertebral bodies, hypoplasia of the odontoid process, generalized epiphyseal dysplasia and abnormally shaped metaphyses. The acetabular roofs had a trident aspect. Ophthalmologic and cardiac examinations were normal. Spine deformity required surgical correction in one of the patient at age 4 years. Lysosomal enzymes assays including N-acetylgalactosamine-6-sulfate sulfatase and β-galactosidase were normal, excluding mucopolysaccharidoses type IV A and IV B (Morquio syndrome), respectively. Qualitative analysis found traces of dermatan and chondroitin-sulfates in urine, but quantitative glycosaminoglycan excretion fell within normal limits. They were no vacuolated lymphocytes. Abnormal coarse inclusions were present in eosinophils. Mild Alder anomaly was observed in polymorphonuclears. Granulations were discretely metachromatic with toluidine blue. Those morphological anomalies are in favor of a lysosomal storage disease. No inclusions were found in skin fibroblasts. We hypothesize that these two boys have a distinct autosomal recessive or X-linked lysosomal storage disorder of unknown origin that shares clinical and radiological features with Morquio disease.

  2. Sub-lethal oxidative stress induces lysosome biogenesis via a lysosomal membrane permeabilization-cathepsin-caspase 3-transcription factor EB-dependent pathway.

    Science.gov (United States)

    Leow, San Min; Chua, Shu Xian Serene; Venkatachalam, Gireedhar; Shen, Liang; Luo, Le; Clement, Marie-Veronique

    2016-12-18

    Here we provide evidence to link sub-lethal oxidative stress to lysosomal biogenesis. Exposure of cells to sub-lethal concentrations of exogenously added hydrogen peroxide resulted in cytosol to nuclear translocation of the Transcription Factor EB (TFEB), the master controller of lysosome biogenesis and function. Nuclear translocation of TFEB was dependent upon the activation of a cathepsin-caspase 3 signaling pathway, downstream of a lysosomal membrane permeabilization and accompanied by a significant increase in lysosome numbers as well as induction of TFEB dependent lysosome-associated genes expression such as Ctsl, Lamp2 and its spliced variant Lamp2a, Neu1and Ctsb and Sqstm1 and Atg9b. The effects of sub-lethal oxidative stress on lysosomal gene expression and biogenesis were rescued upon gene silencing of caspase 3 and TFEB. Notably, caspase 3 activation was not associated with phenotypic hallmarks of apoptosis, evidenced by the absence of caspase 3 substrate cleavage, such as PARP, Lamin A/C or gelsolin. Taken together, these data demonstrate for the first time an unexpected and non-canonical role of a cathepsin-caspase 3 axis in the nuclear translocation of TFEB leading to lysosomes biogenesis under conditions of sub-lethal oxidative stress.

  3. Reporter Assay for Endo/Lysosomal Escape of Toxin-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Roger Gilabert-Oriol

    2014-05-01

    Full Text Available Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters—horseradish peroxidase (HRP, Alexa Fluor 488 (Alexa and ricin A-chain (RTA—were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates—saporin-HRP, Alexasaporin and saporin-KQ-RTA—were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of Alexasaporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10–1000 nM.

  4. Lysosomes serve as a platform for hepatitis A virus particle maturation and nonlytic release.

    Science.gov (United States)

    Seggewiß, Nicole; Paulmann, Dajana; Dotzauer, Andreas

    2016-01-01

    Early studies on hepatitis A virus (HAV) in cell culture demonstrated the inclusion of several viral particles in an intracellular lipid-bilayer membrane. However, the origin of these virus-associated membranes and the mechanism for the non-lytic release of HAV into bile are still unknown. Analyzing the association of this virus with cell organelles, we found that newly synthesized HAV particles accumulate in lysosomal organelles and that lysosomal enzymes are involved in the maturation cleavage of the virion. Furthermore, by inhibiting the processes of fusion of lysosomes with the plasma membrane, we found that the nonlytic release of HAV from infected cells occurs via lysosome-related organelles.

  5. Lipid Storage Disorders Block Lysosomal Trafficking By Inhibiting TRP Channel and Calcium Release

    OpenAIRE

    2012-01-01

    Lysosomal lipid accumulation, defects in membrane trafficking, and altered Ca2+ homeostasis are common features in many lysosomal storage diseases. Mucolipin TRP channel 1 (TRPML1) is the principle Ca2+ channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca2+ release, measured using a genetically-encoded Ca2+ indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells....

  6. Reporter assay for endo/lysosomal escape of toxin-based therapeutics.

    Science.gov (United States)

    Gilabert-Oriol, Roger; Thakur, Mayank; von Mallinckrodt, Benedicta; Bhargava, Cheenu; Wiesner, Burkhard; Eichhorst, Jenny; Melzig, Matthias F; Fuchs, Hendrik; Weng, Alexander

    2014-05-22

    Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters-horseradish peroxidase (HRP), Alexa Fluor 488 (Alexa) and ricin A-chain (RTA)-were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates-saporin-HRP, (Alexa)saporin and saporin-KQ-RTA-were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release) or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape) was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of (Alexa)saporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10-1000 nM.

  7. hLGDB: a database of human lysosomal genes and their regulation.

    Science.gov (United States)

    Brozzi, Alessandro; Urbanelli, Lorena; Germain, Pierre Luc; Magini, Alessandro; Emiliani, Carla

    2013-01-01

    Lysosomes are cytoplasmic organelles present in almost all eukaryotic cells, which play a fundamental role in key aspects of cellular homeostasis such as membrane repair, autophagy, endocitosis and protein metabolism. The characterization of the genes and enzymes constituting the lysosome represents a central issue to be addressed toward a better understanding of the biology of this organelle. In humans, mutations that cause lysosomal enzyme deficiencies result in >50 different disorders and severe pathologies. So far, many experimental efforts using different methodologies have been carried out to identity lysosomal genes. The Human Lysosome Gene Database (hLGDB) is the first resource that provides a comprehensive and accessible census of the human genes belonging to the lysosomal system. This database was developed by collecting and annotating gene lists from many different sources. References to the studies that have identified each gene are provided together with cross databases gene related information. Special attention has been given to the regulation of the genes through microRNAs and the transcription factor EB. The hLGDB can be easily queried to retrieve, combine and analyze information on different lists of lysosomal genes and their regulation by microRNA (binding sites predicted by five different algorithms). The hLGDB is an open access dynamic project that will permit in the future to collapse in a unique publicly accessible resource all the available biological information about lysosome genes and their regulation. Database URL: http://lysosome.unipg.it/.

  8. α-Defensin HD5 Inhibits Human Papillomavirus 16 Infection via Capsid Stabilization and Redirection to the Lysosome

    Directory of Open Access Journals (Sweden)

    Mayim E. Wiens

    2017-01-01

    Full Text Available α-Defensins are an important class of abundant innate immune effectors that are potently antiviral against a number of nonenveloped viral pathogens; however, a common mechanism to explain their ability to block infection by these unrelated viruses is lacking. We previously found that human defensin 5 (HD5 blocks a critical host-mediated proteolytic processing step required for human papillomavirus (HPV infection. Here, we show that bypassing the requirement for this cleavage failed to abrogate HD5 inhibition. Instead, HD5 altered HPV trafficking in the cell. In the presence of an inhibitory concentration of HD5, HPV was internalized and reached the early endosome. The internalized capsid became permeable to antibodies and proteases; however, HD5 prevented dissociation of the viral capsid from the genome, reduced viral trafficking to the trans-Golgi network, redirected the incoming viral particle to the lysosome, and accelerated the degradation of internalized capsid proteins. This mechanism is equivalent to the mechanism by which HD5 inhibits human adenovirus. Thus, our data support capsid stabilization and redirection to the lysosome during infection as a general antiviral mechanism of α-defensins against nonenveloped viruses.

  9. The profile of lysosomal exoglycosidases in replicative and stress-induced senescence in early passage human fibroblasts

    Directory of Open Access Journals (Sweden)

    Małgorzata Knaś

    2012-07-01

    Full Text Available The aim of the present study was to assess the profiles of the exoglycosidases: N-acetyl-β-hexosoaminidase, β glucuronidase and β galactosidase, α mannosidase and α fucosidase in fibroblast culture undergoing replicative and stress-induced senescence. Half of the cell culture was grown in normal conditions, without the stressor, and the other half of the cell was treated with 0.15 mM tert-butylhydroperoxide. The activities of total N-acetyl-β-hexosoaminidase as well as β glucuronidase in the cell lysate were determined in duplicates using the method of Marciniak et al. The activities of β galactosidase, α mannosidase and α fucosidase in the cell lysate were determined in duplicates using the method of Chatteriee et al. with the modification by Zwierz et al. The activities of the exoglycosidases examined, with the exception of β glucuronidase, showed a significant increase between individual days of the experiment in both non-stressed and stressed fibroblast cell culture. On each day of the experiment, in the cell lysate of stressed fibroblasts, the activities of exoglycosidases were significantly higher compared to the non-stressed cells. There were very strong correlations between SA-β-GAL staining and b galactosidase activity on individual days of the experiment in both non-stressed and stressed fibroblast cell culture. Replicative and stress-induced senescence results in significant changes to the level of lysosomal exoglycosidases, and results in enhanced lysosomal degradative capacity.

  10. α-Defensin HD5 Inhibits Human Papillomavirus 16 Infection via Capsid Stabilization and Redirection to the Lysosome

    Science.gov (United States)

    Wiens, Mayim E.

    2017-01-01

    ABSTRACT α-Defensins are an important class of abundant innate immune effectors that are potently antiviral against a number of nonenveloped viral pathogens; however, a common mechanism to explain their ability to block infection by these unrelated viruses is lacking. We previously found that human defensin 5 (HD5) blocks a critical host-mediated proteolytic processing step required for human papillomavirus (HPV) infection. Here, we show that bypassing the requirement for this cleavage failed to abrogate HD5 inhibition. Instead, HD5 altered HPV trafficking in the cell. In the presence of an inhibitory concentration of HD5, HPV was internalized and reached the early endosome. The internalized capsid became permeable to antibodies and proteases; however, HD5 prevented dissociation of the viral capsid from the genome, reduced viral trafficking to the trans-Golgi network, redirected the incoming viral particle to the lysosome, and accelerated the degradation of internalized capsid proteins. This mechanism is equivalent to the mechanism by which HD5 inhibits human adenovirus. Thus, our data support capsid stabilization and redirection to the lysosome during infection as a general antiviral mechanism of α-defensins against nonenveloped viruses. PMID:28119475

  11. Investigation of newborns with abnormal results in a newborn screening program for four lysosomal storage diseases in Brazil

    Directory of Open Access Journals (Sweden)

    Heydy Bravo

    2017-09-01

    Full Text Available Lysosomal storage diseases (LSDs are genetic disorders, clinically heterogeneous, mainly caused by defects in genes encoding lysosomal enzymes that degrade macromolecules. Several LSDs already have specific therapies that may improve clinical outcomes, especially if introduced early in life. With this aim, screening methods have been established and newborn screening (NBS for some LSDs has been developed. Such programs should include additional procedures for the confirmation (or not of the cases that had an abnormal result in the initial screening. We present here the methods and results of the additional investigation performed in four babies with positive initial screening results in a program of NBS for LSDs performed by a private laboratory in over 10,000 newborns in Brazil. The suspicion in these cases was of Mucopolysaccharidosis I - MPS I (in two babies, Pompe disease and Gaucher disease (one baby each. One case of pseudodeficiency for MPS I, 1 carrier for MPS I, 1 case of pseudodeficiency for Pompe disease and 1 carrier for Gaucher disease were identified. This report illustrates the challenges that may be encountered by NBS programs for LSDs, and the need of a comprehensive protocol for the rapid and precise investigation of the babies who have an abnormal screening result.

  12. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; Olsen, Ole D; Groth-Pedersen, Line

    2013-01-01

    Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome......-destabilizing experimental anticancer agent siramesine inhibits ASM by interfering with the binding of ASM to its essential lysosomal cofactor, bis(monoacylglycero)phosphate. Like siramesine, several clinically relevant ASM inhibitors trigger cancer-specific lysosomal cell death, reduce tumor growth in vivo, and revert...

  13. Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx

    OpenAIRE

    Wilke Sonja; Krausze Joern; Büssow Konrad

    2012-01-01

    Abstract Background The family of lysosome-associated membrane proteins (LAMP) comprises the multifunctional, ubiquitous LAMP-1 and LAMP-2, and the cell type-specific proteins DC-LAMP (LAMP-3), BAD-LAMP (UNC-46, C20orf103) and macrosialin (CD68). LAMPs have been implicated in a multitude of cellular processes, including phagocytosis, autophagy, lipid transport and aging. LAMP-2 isoform A acts as a receptor in chaperone-mediated autophagy. LAMP-2 deficiency causes the fatal Danon disease. The ...

  14. Klebsiella pneumoniae survives within macrophages by avoiding delivery to lysosomes.

    Science.gov (United States)

    Cano, Victoria; March, Catalina; Insua, Jose Luis; Aguiló, Nacho; Llobet, Enrique; Moranta, David; Regueiro, Verónica; Brennan, Gerard P; Millán-Lou, Maria Isabel; Martín, Carlos; Garmendia, Junkal; Bengoechea, José A

    2015-11-01

    Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that Klebsiella might be able to persist intracellularly within a vacuolar compartment. This study was designed to investigate the interaction between Klebsiella and macrophages. Engulfment of K. pneumoniae was dependent on host cytoskeleton, cell plasma membrane lipid rafts and the activation of phosphoinositide 3-kinase (PI3K). Microscopy studies revealed that K. pneumoniae resides within a vacuolar compartment, the Klebsiella-containing vacuole (KCV), which traffics within vacuoles associated with the endocytic pathway. In contrast to UV-killed bacteria, the majority of live bacteria did not co-localize with markers of the lysosomal compartment. Our data suggest that K. pneumoniae triggers a programmed cell death in macrophages displaying features of apoptosis. Our efforts to identify the mechanism(s) whereby K. pneumoniae prevents the fusion of the lysosomes to the KCV uncovered the central role of the PI3K-Akt-Rab14 axis to control the phagosome maturation. Our data revealed that the capsule is dispensable for Klebsiella intracellular survival if bacteria were not opsonized. Furthermore, the environment found by Klebsiella within the KCV triggered the down-regulation of the expression of cps. Altogether, this study proves evidence that K. pneumoniae survives killing by macrophages by manipulating phagosome maturation that may contribute to Klebsiella pathogenesis.

  15. From Lysosomal Storage Diseases to NKT Cell Activation and Back

    Science.gov (United States)

    Pereira, Cátia S.; Ribeiro, Helena; Macedo, M. Fatima

    2017-01-01

    Lysosomal storage diseases (LSDs) are inherited metabolic disorders characterized by the accumulation of different types of substrates in the lysosome. With a multisystemic involvement, LSDs often present a very broad clinical spectrum. In many LSDs, alterations of the immune system were described. Special emphasis was given to Natural Killer T (NKT) cells, a population of lipid-specific T cells that is activated by lipid antigens bound to CD1d (cluster of differentiation 1 d) molecules at the surface of antigen-presenting cells. These cells have important functions in cancer, infection, and autoimmunity and were altered in a variety of LSDs’ mouse models. In some cases, the observed decrease was attributed to defects in either lipid antigen availability, trafficking, processing, or loading in CD1d. Here, we review the current knowledge about NKT cells in the context of LSDs, including the alterations detected, the proposed mechanisms to explain these defects, and the relevance of these findings for disease pathology. Furthermore, the effect of enzyme replacement therapy on NKT cells is also discussed. PMID:28245613

  16. Noxa couples lysosomal membrane permeabilization and apoptosis during oxidative stress.

    Science.gov (United States)

    Eno, Colins O; Zhao, Guoping; Venkatanarayan, Avinashnarayan; Wang, Bing; Flores, Elsa R; Li, Chi

    2013-12-01

    The exact roles of lysosomal membrane permeabilization (LMP) in oxidative stress-triggered apoptosis are not completely understood. Here, we first studied the temporal relation between LMP and mitochondrial outer membrane permeabilization (MOMP) during the initial stage of apoptosis caused by the oxidative stress inducer H2O2. Despite its essential role in mediating apoptosis, the expression of the BH3-only Bcl-2 protein Noxa was dispensable for LMP. In contrast, MOMP was dependent on Noxa expression and occurred downstream of LMP. When lysosomal membranes were stabilized by the iron-chelating agent desferrioxamine, H2O2-induced increase in DNA damage, Noxa expression, and subsequent apoptosis were abolished by the inhibition of LMP. Importantly, LMP-induced Noxa expression increase was mediated by p53 and seems to be a unique feature of apoptosis caused by oxidative stress. Finally, exogenous iron loading recapitulated the effects of H2O2 on the expression of BH3-only Bcl-2 proteins. Overall, these data reveal a Noxa-mediated signaling pathway that couples LMP with MOMP and ultimate apoptosis during oxidative stress.

  17. From Lysosomal Storage Diseases to NKT Cell Activation and Back

    Directory of Open Access Journals (Sweden)

    Cátia S. Pereira

    2017-02-01

    Full Text Available Lysosomal storage diseases (LSDs are inherited metabolic disorders characterized by the accumulation of different types of substrates in the lysosome. With a multisystemic involvement, LSDs often present a very broad clinical spectrum. In many LSDs, alterations of the immune system were described. Special emphasis was given to Natural Killer T (NKT cells, a population of lipid-specific T cells that is activated by lipid antigens bound to CD1d (cluster of differentiation 1 d molecules at the surface of antigen-presenting cells. These cells have important functions in cancer, infection, and autoimmunity and were altered in a variety of LSDs’ mouse models. In some cases, the observed decrease was attributed to defects in either lipid antigen availability, trafficking, processing, or loading in CD1d. Here, we review the current knowledge about NKT cells in the context of LSDs, including the alterations detected, the proposed mechanisms to explain these defects, and the relevance of these findings for disease pathology. Furthermore, the effect of enzyme replacement therapy on NKT cells is also discussed.

  18. Frustrated phagocytosis on micro-patterned immune complexes to characterize lysosome movements in live macrophages.

    Directory of Open Access Journals (Sweden)

    Arnaud M. Labrousse

    2011-10-01

    Full Text Available Lysosome mobilization is a key cellular process in phagocytes for bactericidal activities and trans-matrix migration. The molecular mechanisms that regulate lysosome mobilization are still poorly known. Lysosomes are hard to track as they move towards phagosomes throughout the cell volume. In order to anticipate cell regions where lysosomes are recruited to, human and RAW264.7 macrophages were seeded on surfaces that were micro-patterned with immune complexes (ICs as 4 µm-side squares. Distances between IC patterns were adapted to optimize cell spreading in order to constrain lysosome movements mostly in 2 dimensions. Fc receptors triggered local frustrated phagocytosis, frustrated phagosomes appeared as rings of F-actin dots around the IC patterns as early as 5 minutes after cells made contact with the substratum. Frustrated phagosomes recruited actin-associated proteins (vinculin, paxillin and gelsolin. The fusion of lysosomes with frustrated phagosomes was shown by the release of beta-hexosaminidase and the recruitment of Lamp-1 to frustrated phagosomes. Lysosomes of RAW264.7 macrophages were labeled with cathepsinD-mCherry to visualize their movements towards frustrated phagosomes. Lysosomes saltatory movements were markedly slowed down compared to cells layered on non-opsonized patterns. In addition, the linearity of the trajectories and the frequency and duration of contacts of lysosomes with frustrated phagosomes were measured.¬¬¬¬¬¬¬¬ Using PP2 we showed that instant velocity, pauses and frequency of lysosome/phagosome contacts were at least in part dependent on Src tyrosine kinases. This experimental set-up is the first step towards deciphering molecular mechanisms which are involved in lysosome movements in the cytoplasm (directionality, docking and fusion using RNA interference, pharmacological inhibition or mutant expression.

  19. EGF Uptake and Degradation Assay to Determine the Effect of HTLV Regulatory Proteins on the ESCRT-Dependent MVB Pathway.

    Science.gov (United States)

    Murphy, Colin; Sheehy, Noreen

    2017-01-01

    The endosomal sorting complex required for transport (ESCRT) pathway plays key roles in multivesicular bodies (MVBs) formation and lysosomal degradation of membrane receptors, viral budding, and midbody abscission during cytokinesis. The epidermal growth factor receptor (EGFR) is regarded as a prototypical cargo of the MVB/ESCRT pathway and following stimulation by epidermal growth factor (EGF) EGFR/EGF complexes are internalized, sorted into MVBs, and degraded by lysosomes or recycled back to the cell membrane. Here, we describe an assay to analyze the effect of human T-cell leukemia (HTLV) regulatory proteins on the functionality of ESCRT-dependent MVB/lysosomal trafficking of EGFR/EGF complexes. This is performed by direct visualization and quantification of the rate of EGF-Alexa595/EGFR internalization and degradation in HeLa cells expressing HTLV regulatory proteins by immunofluorescence and western blot.

  20. Activation of Notch in lgd mutant cells requires the fusion of late endosomes with the lysosome.

    Science.gov (United States)

    Schneider, Markus; Troost, Tobias; Grawe, Ferdi; Martinez-Arias, Alfonso; Klein, Thomas

    2013-01-15

    The tumour suppressor Lethal (2) giant discs (Lgd) is a regulator of endosomal trafficking of the Notch signalling receptor as well as other transmembrane proteins in Drosophila. The loss of its function results in an uncontrolled ligand-independent activation of the Notch signalling receptor. Here, we investigated the consequences of loss of lgd function and the requirements for the activation of Notch. We show that the activation of Notch in lgd cells is independent of Kuz and dependent on γ-secretase. We found that the lgd cells have a defect that delays degradation of transmembrane proteins, which are residents of the plasma membrane. Furthermore, our results show that the activation of Notch in lgd cells occurs in the lysosome. By contrast, the pathway is activated at an earlier phase in mutants of the gene that encodes the ESCRT-III component Shrub, which is an interaction partner of Lgd. We further show that activation of Notch appears to be a general consequence of loss of lgd function. In addition, electron microscopy of lgd cells revealed that they contain enlarged multi-vesicular bodies. The presented results further elucidate the mechanism of uncontrolled Notch activation upon derailed endocytosis.

  1. Lyn Delivers Bacteria to Lysosomes for Eradication through TLR2-Initiated Autophagy Related Phagocytosis.

    Directory of Open Access Journals (Sweden)

    Xuefeng Li

    2016-01-01

    Full Text Available Extracellular bacteria, such as Pseudomonas aeruginosa and Klebsiella pneumoniae, have been reported to induce autophagy; however, the role and machinery of infection-induced autophagy remain elusive. We show that the pleiotropic Src kinase Lyn mediates phagocytosis and autophagosome maturation in alveolar macrophages (AM, which facilitates eventual bacterial eradication. We report that Lyn is required for bacterial infection-induced recruitment of autophagic components to pathogen-containing phagosomes. When we blocked autophagy with 3-methyladenine (3-MA or by depleting Lyn, we observed less phagocytosis and subsequent bacterial clearance by AM. Both morphological and biological evidence demonstrated that Lyn delivered bacteria to lysosomes through xenophagy. TLR2 initiated the phagocytic process and activated Lyn following infection. Cytoskeletal trafficking proteins, such as Rab5 and Rab7, critically facilitated early phagosome formation, autophagosome maturation, and eventual autophagy-mediated bacterial degradation. These findings reveal that Lyn, TLR2 and Rab modulate autophagy related phagocytosis and augment bactericidal activity, which may offer insight into novel therapeutic strategies to control lung infection.

  2. Characterization of storage material in cultured fibroblasts by specific lectin binding in lysosomal storage diseases.

    Science.gov (United States)

    Virtanen, I; Ekblom, P; Laurila, P; Nordling, S; Raivio, K O; Aula, P

    1980-11-01

    The lysosomal storage material in cultured fibroblasts from patients with various lysosomal storage diseases was characterized by fluorescence microscopy using lectins specific for different saccharide moieties. In normal fibroblasts and cultured amniotic fluid cells lectins specific for mannosyl and glucosyl moieties, Con A and LcA gave a bright perinuclear cytoplasmic staining corresponding to the localization of endoplasmic reticulum in the cells. All other lectins stained the Golgi apparatus as a juxtanuclear reticular structure. In fucosidosis fibroblasts, only lectins specific for fucosyl groups LTA and UEA, distinctly stained the lysosomal inclusions. The lysosomes in mannosidosis fibroblasts did not react with Con A and LcA, both specific for mannosyl moieties of glycoconjugates, but were brightly labeled with WGA, a lectin specific for N-acetyl glucosaminyl moieties. In I-cell fibroblasts, the numerous perinuclear phase-dense granules, representing abnormal lysosomes, were labeled with every lectin used. In fibroblasts from patients with Salla disease, a newly discovered lysosomal storage disorder, the lysosomes were brightly stained only with LPA, indicating the presence of increased amounts of sialic acid residues in the lysosomal inclusions.

  3. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis.

    Science.gov (United States)

    Samie, Mohammad; Wang, Xiang; Zhang, Xiaoli; Goschka, Andrew; Li, Xinran; Cheng, Xiping; Gregg, Evan; Azar, Marlene; Zhuo, Yue; Garrity, Abigail G; Gao, Qiong; Slaugenhaupt, Susan; Pickel, Jim; Zolov, Sergey N; Weisman, Lois S; Lenk, Guy M; Titus, Steve; Bryant-Genevier, Marthe; Southall, Noel; Juan, Marugan; Ferrer, Marc; Xu, Haoxing

    2013-09-16

    Phagocytosis of large extracellular particles such as apoptotic bodies requires delivery of the intracellular endosomal and lysosomal membranes to form plasmalemmal pseudopods. Here, we identified mucolipin TRP channel 1 (TRPML1) as the key lysosomal Ca2+ channel regulating focal exocytosis and phagosome biogenesis. Both particle ingestion and lysosomal exocytosis are inhibited by synthetic TRPML1 blockers and are defective in macrophages isolated from TRPML1 knockout mice. Furthermore, TRPML1 overexpression and TRPML1 agonists facilitate both lysosomal exocytosis and particle uptake. Using time-lapse confocal imaging and direct patch clamping of phagosomal membranes, we found that particle binding induces lysosomal PI(3,5)P2 elevation to trigger TRPML1-mediated lysosomal Ca2+ release specifically at the site of uptake, rapidly delivering TRPML1-resident lysosomal membranes to nascent phagosomes via lysosomal exocytosis. Thus phagocytic ingestion of large particles activates a phosphoinositide- and Ca2+-dependent exocytosis pathway to provide membranes necessary for pseudopod extension, leading to clearance of senescent and apoptotic cells in vivo.

  4. Protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

    Science.gov (United States)

    Roy, Subhro Jyoti; Stanely Mainzen Prince, Ponnian

    2012-11-01

    In the pathology of myocardial infarction, lysosomal lipid peroxidation and resulting enzyme release play an important role. We evaluated the protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats. Male Wistar rats were treated with sinapic acid (12 mg/kg body weight) orally daily for 10 days and isoproterenol (100 mg/kg body weight) was injected twice at an interval of 24 h (9th and 10th day). Then, lysosomal lipid peroxidation, lysosomal enzymes in serum, heart homogenate, lysosomal fraction and myocardial infarct size were measured. Isoproterenol induced myocardial infarcted rats showed a significant increase in serum creatine kinase-MB and lysosomal lipid peroxidation. The activities of β-glucuronidase, β-galactosidase, cathepsin-B and D were significantly increased in serum, heart and the activities of β-glucuronidase and cathepsin-D were significantly decreased in lysosomal fraction of myocardial infarcted rats. Pre-and-co-treatment with sinapic acid normalized all the biochemical parameters and reduced myocardial infarct size in myocardial infarcted rats. In vitro studies confirmed the free radical scavenging effects of sinapic acid. The possible mechanisms for the observed effects are attributed to sinapic acid's free radical scavenging and membrane stabilizing properties. Thus, sinapic acid has protective effects on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

  5. The Octyl Ester of Ginsenoside Rh2 Induces Lysosomal Membrane Permeabilization via Bax Translocation.

    Science.gov (United States)

    Chen, Fang; Zhang, Bing; Sun, Yong; Xiong, Zeng-Xing; Peng, Han; Deng, Ze-Yuan; Hu, Jiang-Ning

    2016-04-25

    Ginsenoside Rh2 is a potential pharmacologically active metabolite of ginseng. Previously, we have reported that an octyl ester derivative of ginsenoside Rh2 (Rh2-O), has been confirmed to possess higher bioavailability and anticancer effect than Rh2 in vitro. In order to better assess the possibility that Rh2-O could be used as an anticancer compound, the underlying mechanism was investigated in this study. The present results revealed that lysosomal destabilization was involved in the early stage of cell apoptosis in HepG2 cells induced by Rh2-O. Rh2-O could induce an early lysosomal membrane permeabilization with the release of lysosomal protease cathepsins to the cytosol in HepG2 cells. The Cat B inhibitor (leu) and Cat D inhibitor (pepA) inhibited Rh2-O-induced HepG2 apoptosis as well as tBid production and Δφm depolarization, indicating that lysosomal permeabilization occurred upstream of mitochondrial dysfunction. In addition, Rh2-O induced a significant increase in the protein levels of DRAM1 and Bax (p lysosomes of HepG2 cells. Knockdown of Bax partially inhibited Rh2-O-induced Cat D release from lysosomes. Thus it was concluded that Rh2-O induced apoptosis of HepG2 cells through activation of the lysosomal-mitochondrial apoptotic pathway involving the translocation of Bax to the lysosome.

  6. Expression Pattern of Lysosomal Protective Protein/Cathepsin A: Implications for the analysis of hnman galactosialidosis

    NARCIS (Netherlands)

    R.J. Rottier (Robbert)

    1998-01-01

    textabstractThe lysosome represents a well characterized, membrane-contained intracellular digestive system. Iu this important organelle a battery of lysosomal hydro lases and accessory proteins work in concert on the step-wise conversion of macromolecular substrates into small biological building b

  7. Vps33B is required for delivery of endocytosed cargo to lysosomes

    NARCIS (Netherlands)

    Galmes, Romain; ten Brink, Corlinda; Oorschot, Viola; Veenendaal, Tineke; Jonker, Caspar; van der Sluijs, Peter; Klumperman, Judith

    2015-01-01

    In mammalian cells Vps33B forms a complex with VIPAS-39 that is recruited to recycling endosomes. Here we show that when Vps33B is expressed together with Rab7-interacting lysosomal protein (RILP) it is recruited to late endosomes-lysosomes and that depletion of Vps33B impairs late

  8. Lysosomal cholesterol accumulation : driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis

    NARCIS (Netherlands)

    Hendrikx, T.; Walenbergh, S. M. A.; Hofker, M. H.; Shiri-Sverdlov, R.

    2014-01-01

    Many studies show an association between the accumulation of cholesterol inside lysosomes and the progression towards inflammatory disease states that are closely related to obesity. While in the past, the knowledge regarding lysosomal cholesterol accumulation was limited to its association with pla

  9. Calpains mediate epithelial-cell death during mammary gland involution: mitochondria and lysosomal destabilization.

    Science.gov (United States)

    Arnandis, T; Ferrer-Vicens, I; García-Trevijano, E R; Miralles, V J; García, C; Torres, L; Viña, J R; Zaragozá, R

    2012-09-01

    Our aim was to elucidate the physiological role of calpains (CAPN) in mammary gland involution. Both CAPN-1 and -2 were induced after weaning and its activity increased in isolated mitochondria and lysosomes. CAPN activation within the mitochondria could trigger the release of cytochrome c and other pro-apoptotic factors, whereas in lysosomes it might be essential for tissue remodeling by releasing cathepsins into the cytosol. Immunohistochemical analysis localized CAPNs mainly at the luminal side of alveoli. During weaning, CAPNs translocate to the lysosomes processing membrane proteins. To identify these substrates, lysosomal fractions were treated with recombinant CAPN and cleaved products were identified by 2D-DIGE. The subunit b(2) of the v-type H(+) ATPase is proteolyzed and so is the lysosomal-associated membrane protein 2a (LAMP2a). Both proteins are also cleaved in vivo. Furthermore, LAMP2a cleavage was confirmed in vitro by addition of CAPNs to isolated lysosomes and several CAPN inhibitors prevented it. Finally, in vivo inhibition of CAPN1 in 72-h-weaned mice decreased LAMP2a cleavage. Indeed, calpeptin-treated mice showed a substantial delay in tissue remodeling and involution of the mammary gland. These results suggest that CAPNs are responsible for mitochondrial and lysosomal membrane permeabilization, supporting the idea that lysosomal-mediated cell death is a new hallmark of mammary gland involution.

  10. High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A

    Science.gov (United States)

    Gabandé-Rodríguez, E; Boya, P; Labrador, V; Dotti, C G; Ledesma, M D

    2014-01-01

    Niemann Pick disease type A (NPA), which is caused by loss of function mutations in the acid sphingomyelinase (ASM) gene, is a lysosomal storage disorder leading to neurodegeneration. Yet, lysosomal dysfunction and its consequences in the disease are poorly characterized. Here we show that undegraded molecules build up in neurons of acid sphingomyelinase knockout mice and in fibroblasts from NPA patients in which autophagolysosomes accumulate. The latter is not due to alterations in autophagy initiation or autophagosome–lysosome fusion but because of inefficient autophago–lysosomal clearance. This, in turn, can be explained by lysosomal membrane permeabilization leading to cytosolic release of Cathepsin B. High sphingomyelin (SM) levels account for these effects as they can be induced in control cells on addition of the lipid and reverted on SM-lowering strategies in ASM-deficient cells. These results unveil a relevant role for SM in autophagy modulation and characterize autophagy anomalies in NPA, opening new perspectives for therapeutic interventions. PMID:24488099

  11. The effects of hydrocortisone and glycyrrhizine on the enzyme releases of arylsulfatase and hyaluronidase from lysosomes of liver.

    Science.gov (United States)

    Ozeki, T; Tokawa, Y; Ogasawara, T; Sato, K; Kan, M

    1978-03-15

    Hydrocortisone and glycyrrhizine act as both stabilizers and labilizers of the lysosomes of liver. The effect of both agents on the lysosomes is changeable according to the duration of their administration.

  12. Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions.

    Science.gov (United States)

    Lee, Sook-Jeong; Park, Mi-Ha; Kim, Hyun-Jae; Koh, Jae-Young

    2010-08-01

    Cellular zinc plays a key role in lysosomal change and cell death in neurons and astrocytes under oxidative stress. Here, using astrocytes lacking metallothionein-3 (MT3), a potential source of labile zinc in the brain, we studied the role of MT3 in oxidative stress responses. H(2)O(2) induced a large increase in labile zinc in wild-type (WT) astrocytes, but stimulated only a modest rise in MT3-null astrocytes. In addition, H(2)O(2)-induced lysosomal membrane permeabilization (LMP) and cell death were comparably attenuated in MT3-null astrocytes. Expression and glycosylation of Lamp1 (lysosome-associated membrane protein 1) and Lamp2 were increased in MT3-null astrocytes, and the activities of several lysosomal enzymes were significantly reduced, indicating an effect of MT3 on lysosomal components. Consistent with lysosomal dysfunction in MT3-null cells, the level of LC3-II (microtubule-associated protein 1 light chain 3), a marker of early autophagy, was increased by oxidative stress in WT astrocytes, but not in MT3-null cells. Similar changes in Lamp1, LC3, and cathepsin-D were induced by the lysosomal inhibitors bafilomycin A1, chloroquine, and monensin, indicating that lysosomal dysfunction may lie upstream of changes observed in MT3-null astrocytes. Consistent with this idea, lysosomal accumulation of cholesterol and lipofuscin were augmented in MT3-null astrocytes. Similar to the results seen in MT3-null cells, MT3 knockdown by siRNA inhibited oxidative stress-induced increases in zinc and LMP. These results indicate that MT3 may play a key role in normal lysosomal function in cultured astrocytes.

  13. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells.

    Science.gov (United States)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth; Petersen, Nikolaj H T; Nylandsted, Jesper; Jäättelä, Marja

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets.

  14. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway.

    Science.gov (United States)

    Keith, Scott A; Maddux, Sarah K; Zhong, Yayu; Chinchankar, Meghna N; Ferguson, Annabel A; Ghazi, Arjumand; Fisher, Alfred L

    2016-02-01

    The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique

  15. Structure of transmembrane domain of lysosome-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone-mediated autophagy.

    Science.gov (United States)

    Rout, Ashok K; Strub, Marie-Paule; Piszczek, Grzegorz; Tjandra, Nico

    2014-12-19

    Chaperone-mediated autophagy (CMA) is a highly regulated cellular process that mediates the degradation of a selective subset of cytosolic proteins in lysosomes. Increasing CMA activity is one way for a cell to respond to stress, and it leads to enhanced turnover of non-critical cytosolic proteins into sources of energy or clearance of unwanted or damaged proteins from the cytosol. The lysosome-associated membrane protein type 2a (LAMP-2A) together with a complex of chaperones and co-chaperones are key regulators of CMA. LAMP-2A is a transmembrane protein component for protein translocation to the lysosome. Here we present a study of the structure and dynamics of the transmembrane domain of human LAMP-2A in n-dodecylphosphocholine micelles by nuclear magnetic resonance (NMR). We showed that LAMP-2A exists as a homotrimer in which the membrane-spanning helices wrap around each other to form a parallel coiled coil conformation, whereas its cytosolic tail is flexible and exposed to the cytosol. This cytosolic tail of LAMP-2A interacts with chaperone Hsc70 and a CMA substrate RNase A with comparable affinity but not with Hsp40 and RNase S peptide. Because the substrates and the chaperone complex can bind at the same time, thus creating a bimodal interaction, we propose that substrate recognition by chaperones and targeting to the lysosomal membrane by LAMP-2A are coupled. This can increase substrate affinity and specificity as well as prevent substrate aggregation, assist in the unfolding of the substrate, and promote the formation of the higher order complex of LAMP-2A required for translocation.

  16. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway.

    Directory of Open Access Journals (Sweden)

    Scott A Keith

    2016-02-01

    Full Text Available The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant

  17. Cloning and expression of mouse legumain, a lysosomal endopeptidase.

    Science.gov (United States)

    Chen, J M; Dando, P M; Stevens, R A; Fortunato, M; Barrett, A J

    1998-01-01

    Legumain, a recently discovered mammalian cysteine endopeptidase, was found in all mouse tissues examined, but was particularly abundant in kidney and placenta. The distribution in subcellular fractions of mouse and rat kidney showed a lysosomal localization, and activity was detectable only after the organelles were disrupted. Nevertheless, ratios of legumain activity to that of cathepsin B differed considerably between mouse tissues. cDNA encoding mouse legumain was cloned and sequenced, the deduced amino acid sequence proving to be 83% identical to that of the human protein [Chen, Dando, Rawlings, Brown, Young, Stevens, Hewitt, Watts and Barrett (1997) J. Biol. Chem. 272, 8090-8098]. Recombinant mouse legumain was expressed in human embryonic kidney 293 cells by use of a vector containing a cytomegalovirus promoter. The recombinant enzyme was partially purified and found to be an asparagine-specific endopeptidase closely similar to naturally occurring pig kidney legumain. PMID:9742219

  18. Septins as modulators of endo-lysosomal membrane traffic

    Directory of Open Access Journals (Sweden)

    Kyungyeun Song

    2016-11-01

    Full Text Available Septins constitute a family of GTP-binding proteins, which assemble into non-polar filaments in a nucleotide-dependent manner. These filaments can be recruited to negatively charged membrane surfaces. When associated with membranes septin filaments can act as diffusion barriers, which confine subdomains of distinct biological functions. In addition, they serve scaffolding roles by recruiting cytosolic proteins and other cytoskeletal elements. Septins have been implicated in a large variety of membrane-dependent processes, including cytokinesis, signaling, cell migration, and membrane traffic, and several family members have been implicated in disease. However, surprisingly little is known about the molecular mechanisms underlying their biological functions. This review summarizes evidence in support of regulatory roles of septins during endo-lysosomal sorting, with a particular focus on phosphoinositides, which serve as spatial landmarks guiding septin recruitment to distinct subcellular localizations.

  19. Successful intracytoplasmic sperm injection with testicular spermatozoa from a man with multiple morphological abnormalities of the sperm flagella: a case report.

    Science.gov (United States)

    Yang, Shenmin; Gao, Liang; Wang, Wei; Ding, Jie; Xu, Yongle; Li, Hong

    2017-10-02

    The purpose of this study is to analyze the sperm morphology of a Chinese man affected with multiple morphological abnormalities of the sperm flagella (MMAF) and observe the intracytoplasmic sperm injection (ICSI) outcome. A Chinese man was diagnosed with multiple morphological abnormalities of the sperm flagella by semen analysis and electron microscopy. Testicular spermatozoa were injected intracytoplasmically, and the following ICSI results were observed. All the spermatozoa from his ejaculate were immotile and morphologically abnormal in the flagellum. In transmission electron microscopy assays, most spermatozoa showed disorganized fibrous sheath, accompanied by distortion of various cytoskeletal components, and missing of the central pair microtubules. Testicular sperm was injected to the oocytes in two ICSI cycles, with fertilization rates of 45.5 and 40.0%. Finally, a healthy female infant was delivered at the second ICSI cycle. Fertilization and pregnancy could be achieved by intracytoplasmic sperm injection, regardless of severe flagellar defects. ICSI is effective for MMAF-affected man, and testicular sperm is an alternative when no motile sperm is available.

  20. COOH-terminal isoleucine of lysosome-associated membrane protein-1 is optimal for its efficient targeting to dense secondary lysosomes.

    Science.gov (United States)

    Akasaki, Kenji; Suenobu, Michihisa; Mukaida, Maki; Michihara, Akihiro; Wada, Ikuo

    2010-12-01

    Lysosome-associated membrane protein-1 (LAMP-1) consists of a highly glycosylated luminal domain, a single-transmembrane domain and a short cytoplasmic tail that possesses a lysosome-targeting signal (GYQTI(382)) at the COOH terminus. It is hypothesized that the COOH-terminal isoleucine, I(382), could be substituted with any other bulky hydrophobic amino acid residue for LAMP-1 to exclusively localize in lysosomes. In order to test this hypothesis, we compared subcellular distribution of four substitution mutants with phenylalanine, leucine, methionine and valine at the COOH-terminus (termed I382F, I382L, I382M and I382V, respectively) with that of wild-type (WT)-LAMP-1. Double-labelled immunofluorescence analyses showed that these substitution mutants were localized as significantly to late endocytic organelles as WT-LAMP-1. However, the quantitative subcellular fractionation study revealed different distribution of WT-LAMP-1 and these four COOH-terminal mutants in late endosomes and dense secondary lysosomes. WT-LAMP-1 was accumulated three to six times more in the dense lysosomal fraction than the four mutants. The level of WT-LAMP-1 in late endosomal fraction was comparable to those of I382F, I382M and I382V. Conversely, I382L in the late endosomal fraction was approximately three times more abundant than WT-LAMP-1. These findings define the presence of isoleucine residue at the COOH-terminus of LAMP-1 as critical in governing its efficient delivery to secondary lysosomes and its ratio of lysosomes to late endosomes.

  1. Combined effects of thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis.

    Science.gov (United States)

    Izagirre, Urtzi; Errasti, Aitzpea; Bilbao, Eider; Múgica, María; Marigómez, Ionan

    2014-04-01

    In estuaries and coastal areas, intertidal organisms may be subject to thermal stress resulting from global warming, together with pollution. In the present study, the combined effects of thermal stress and exposure to Cd were investigated in the endo-lysosomal system of digestive cells in mussels, Mytilus galloprovincialis. Mussels were maintained for 24h at 18°C and 26°C seawater temperature in absence and presence of 50 μg Cd/L seawater. Cadmium accumulation in digestive gland tissue, lysosomal structural changes and membrane stability were determined. Semi-quantitative PCR was applied to reveal the changes elicited by the different experimental conditions in hexosaminidase (hex), β-glucuronidase (gusb), cathepsin L (ctsl) and heat shock protein 70 (hsp70) gene transcription levels. Thermal stress provoked lysosomal enlargement whilst Cd-exposure led to fusion of lysosomes. Both thermal stress and Cd-exposure caused lysosomal membrane destabilisation. hex, gusb and ctsl genes but not hsp70 gene were transcriptionally up-regulated as a result of thermal stress. In contrast, all the studied genes were transcriptionally down-regulated in response to Cd-exposure. Cd bioaccumulation was comparable at 18°C and 26°C seawater temperatures but interactions between thermal stress and Cd-exposure were remarkable both in lysosomal biomarkers and in gene transcription. hex, gusb and ctsl genes, reacted to elevated temperature in absence of Cd but not in Cd-exposed mussels. Therefore, thermal stress resulting from global warming might influence the use and interpretation of lysosomal biomarkers in marine pollution monitoring programmes and, vice versa, the presence of pollutants may condition the capacity of mussels to respond against thermal stress in a climate change scenario.

  2. Impact of Body Mass Index on Outcomes of In Vitro Fertilization/Intracytoplasmic Sperm Injection Among Polycystic Ovarian Syndrome Patients

    Directory of Open Access Journals (Sweden)

    Na Cui

    2016-10-01

    Full Text Available Background: The aim of this study is to assess the effect of body mass index (BMI on outcomes of in vitro fertilization (IVF / intracytoplasmic sperm injection (ICSI among polycystic ovarian syndrome (PCOS and non-PCOS patients. Methods: This was a retrospective cohort study that was performed in the Second Hospital of Hebei Medical University. Patients who were under 35 years old were included in the study and were divided into four groups based on their BMI. The number of retrieved oocytes, implantation rate, clinical pregnancy rate, miscarriage rate and live births among PCOS and non-PCOS patients were compared between different BMIs. Results: IVF/ICSI pregnancies in obese PCOS women had a considerably higher risk of miscarriage and low rate of clinical pregnancy than in non-obese PCOS pregnancies. However, in non-PCOS patient, obesity significantly elevated miscarriage rate but did not affect clinical pregnancy rate. Conclusion: Obesity in PCOS patients led to poor outcomes of IVF/ICSI.

  3. Comparison of intracytoplasmic sperm injection outcomes between spermatozoa retrieved from testicular biopsy and from ejaculation in cryptozoospermic men.

    Science.gov (United States)

    Amirjannati, N; Heidari-Vala, H; Akhondi, M A; Hosseini Jadda, S H; Kamali, K; Sadeghi, M R

    2012-05-01

    The infrequent presence of spermatozoa in cryptozoospermic men ejaculate is a limiting factor in the treatment of them. Sometimes, this consideration impels us to apply meticulous microscopic search in ejaculate or testicular sperm extraction (TESE) method. The aim of this study was to assess putative effectiveness of sperm origin, ejaculated or testicular, in cryptozoospermia treatment. In this context, were evaluated intracytoplasmic sperm injection (ICSI) outcomes in two parameters including fertilisation rate (2PN) and embryo quality, independently. We compared the outcome in two groups: patients who underwent ejaculate/ICSI and ones who underwent TESE/ICSI process. Nineteen ICSI cycles performed with testicular spermatozoa and the rest of cycles (n = 208) carried out with ejaculated spermatozoa. Result analysis showed similar fertilisation rate between testicular and ejaculated spermatozoa (respectively, 60% versus 68%, P ≥ 0.05). Also, on the other hand, embryo quality did not show significant differences between two groups, except grade A with low significance. With regard to almost equal performance of both methods in results and being invasive of TESE as surgical sperm retrieval method, the use of ejaculated sperm more than testicular sperm should be recommended in patients with cryptozoospermia whenever possible.

  4. The result of intracytoplasmic sperm injection is not related to any of the three basic sperm parameters.

    Science.gov (United States)

    Nagy, Z P; Liu, J; Joris, H; Verheyen, G; Tournaye, H; Camus, M; Derde, M C; Devroey, P; Van Steirteghem, A C

    1995-05-01

    High success rates have been reported for the use of intracytoplasmic sperm injection (ICSI) in alleviating essentially andrological infertility. However, neither the relationship between any of the sperm parameters and the result of ICSI nor the minimal sperm requirements for ICSI have been investigated so far. In this paper, our objective was therefore to study the relationship between three basic sperm parameters (total sperm count, sperm motility and morphology) and the outcome of ICSI by retrospective analyses of fertilization, embryo development and pregnancy rates in 966 micro-injection cycles, performed with ejaculated semen. The results showed that there was no important influence from either the type or the extent of sperm impairment on the outcome of ICSI. Even in the most extreme cases of male-factor infertility, where cryptozoospermia or total astheno- or total teratozoospermia was diagnosed in the initial semen sample, high fertilization and pregnancy rates were obtained by ICSI. Only one condition had a strongly negative influence on the result of ICSI: where an immotile (presumably dead) spermatozoon was injected into the oocyte. Thus the only ultimate criterion for successful ICSI is the presence of at least one living spermatozoon per oocyte in the pellet of the treated semen sample used for micro-injection.

  5. Microinjection manipulation resulted in the increased apoptosis of spermatocytes in testes from intracytoplasmic sperm injection (ICSI derived mice.

    Directory of Open Access Journals (Sweden)

    Yang Yu

    Full Text Available The invention of intracytoplasmic sperm injection (ICSI has possibly been the most important development in reproductive medicine, one that has given hope to thousands of infertile couples worldwide. However, concerns remain regarding the safety of this method since it is a more invasive procedure than in vitro fertilization (IVF, since a spermatozoon is injected into the oocyte cytoplasm. Using mice derived from IVF technology as a control, we assessed the influence of invasive microinjection in the process of transferring sperm into oocyte cytoplasm in ICSI procedure on the development and physiologic function of resultant offspring. Our results demonstrated that mice produced from ICSI and IVF had no significant difference in phenotypic indices including body weight, forelimb physiology, and learning and memory ability. However, increased spermatocyte apoptosis was observed in the testis of adult ICSI mice, when compared with IVF mice. And, decreased testis weight and marked damage of spermatogenic epithelia were found in aged ICSI mice. Furthermore, proteomic analysis verified that most of the differentiated proteins in testes between adult ICSI and IVF mice were those involved in regulation of apoptosis pathways. Our results demonstrated that the microinjection manipulation used in the ICSI procedure might pose potential risks to the fertility of male offspring. The changed expression of a series of proteins relating to apoptosis or proliferation might contribute to it. Further studies are necessary to better understand all the risks of ICSI.

  6. How to select immotile but viable spermatozoa on the day of intracytoplasmic sperm injection? An embryologist's view.

    Science.gov (United States)

    Nordhoff, V

    2015-03-01

    A viable spermatozoon is the prerequisite for initiating fertilization in intracytoplasmic sperm injection. Usually motility is the primary sign used to determine a sperm's viability. However, in every in vitro fertilization (IVF) laboratory cases are observed in which none or only few spermatozoa are motile. This can occur in treatment cycles involving ejaculated samples but is most common in cases where surgically extracted testicular spermatozoa are used. To aid in selection, several techniques have been developed to identify viable spermatozoa from the immotile fraction. Amongst the more commonly used approaches are (i) the hypo-osmotic swelling test (ii) chemical substances for induction of tail movements (iii) the sperm tail flexibility test and (iv) laser-assisted immotile sperm selection. All can be used routinely in an IVF laboratory with each having both strengths and weaknesses. It is the purpose of this short review to focus on the technical issues involved in the performance of each of these techniques and to highlight the advantages and disadvantages of each approach.

  7. Pronuclear morphology evaluation in in vitro fertilization (IVF / intracytoplasmic sperm injection (ICSI cycles: a retrospective clinical review

    Directory of Open Access Journals (Sweden)

    Nicoli Alessia

    2013-01-01

    Full Text Available Abstract Background The assessment of the embryo quality is crucial to maintain an high pregnancy rate and to reduce the risk of multiple pregnancy. The evaluation of the pronuclear and nucleolar characteristics of human zygote have been proposed as an indicator of embryo development and chromosomal complement. The aim of the current study was to assess the role of pronuclear morphology evaluation in vitro fertilization (IVF / intracytoplasmic sperm injection (ICSI cycles. Methods Retrospective clinical analysis on 755 non-elective transfers of only one embryo (ET. Embryo assessment was performed in days 1 and 2. Clinical and biological data were recorded and analyzed according to embryo and/or pronuclear morphology. Results Both pronuclear and embryo morphology were significantly related to clinical pregnancy and live-birth rates. No significant difference in clinical pregnancy and live-birth rates was detected when the pronuclear and embryo morphology assessments were combined. Embryo morphology and maternal age were the only independent predictors of favorable outcome by logistic regression analysis. Conclusions Pronuclear evaluation is effective to select the best zygotes if ET is performed at day 1, whereas it did not improve the clinical outcomes when combined with embryo morphology evaluation in day 2.

  8. Intracytoplasmic sperm injection in the treatment of male infertility due to obstructive or non-obstructive azoospermia

    Institute of Scientific and Technical Information of China (English)

    刘伟信; 黄萍; 王丽; 罗孟军; 岳利民; 郑煜

    2003-01-01

    Objective: To evaluate the effects of intracytoplasmic sperm injection (ICSI) ontreatment of infertility due to obstructive and non-obstructive azoospermia..Methods: A retrospective analysis of fertilization, cleavage, embryo implantationand pregnancy rates was done in 158 ICSI cycles including 112 obstructive azoospermiaand 46 non-obstructive azoospermia. Ovarian hyperstimulation and ICSI procedureswere performed by conventional protocol. The sperm was collected by percutaneous epi-didymal sperm aspiration (PESA) or testicular sperm extraction (TESE).Results:The fertilization rate (73.1% vs. 67.0%), cleavage rate (88.6% vs. 86.3%), embryo implantation rate (20.7% vs. 11.4%), clinical pregnancy rate per trans-fer cycle (35.7% vs. 19.6%) were obtained for obstructive and non-obstructiveazoospermia, respectively.Conclusion: The results revealed that in the cases of obstructive azoospermia, ferti-lization rate, embryo implantation rate and clinical pregnancy rate were significantlyhigher than those of non-obstructive azoospermia. But there was no significant differ-ence of the cleavage rate between two groups.

  9. The role of in vitro fertilization and intracytoplasmic sperm injection in couples with unexplained infertility after failed intrauterine insemination.

    Science.gov (United States)

    Ruiz, A; Remohí, J; Minguez, Y; Guanes, P P; Simón, C; Pellicer, A

    1997-07-01

    To determine an optimal insemination technique in patients undergoing IVF after failed IUI and the role of intracytoplasmic sperm injection (ICSI) in such cases. Prospective, randomized study in couples with unexplained infertility (n = 63) and mild endometriosis (n = 7) undergoing IVF after four IUI cycles. Sibling oocytes were randomized into standard IVF or ICSI insemination according to the order of retrieval. In vitro fertilization program at the Instituto Valenciano de Infertilidad, Valencia, Italy. Seventy couples with unexplained infertility undergoing IVF after failing to conceive with controlled ovarian stimulation and IUI. In vitro fertilization and ICSI. Fertilization, cleavage, and embryo quality were compared in IVF- and ICSI-inseminated oocytes. There was no significant difference in fertilization rates between ICSI (60.4%) and conventional IVF (54.0%). Similarly, there was no difference in embryo quality between both groups. There was no total fertilization failure in ICSI-inseminated oocytes, whereas 8 (11.4%) of 70 cases showed absence of fertilization when conventional IVF was used. Couples with unexplained infertility and mild endometriosis failing to conceive with IUI and undergoing IVF have an 11.4% chance of fertilization failure that can be overcome easily by using ICSI in at least some oocytes. ICSI, however, is not superior to IVF as an insemination technique in most cases. These data should be used in counseling patients.

  10. Congenital bilateral absence of the vas deferens: the impact of spermatogenesis quality on intracytoplasmic sperm injection outcomes in 108 men.

    Science.gov (United States)

    Llabador, M A; Pagin, A; Lefebvre-Maunoury, C; Marcelli, F; Leroy-Martin, B; Rigot, J M; Mitchell, V

    2015-05-01

    In azoospermic men with congenital bilateral absence of the vas deferens (CBAVD), it is not known whether the outcomes of intracytoplasmic sperm injection (ICSI) depend on the quality of testicular spermatogenesis (as determined histopathologically). We retrospectively studied the impact of spermatogenesis quality on ICSI outcomes in 108 azoospermic men with CBAVD consulting in a university hospital's department of andrology and reproductive biology. As part of an ICSI program, sperm samples were obtained from the epididymis [by microsurgical epididymal sperm aspiration (MESA); n = 47] or the testis [by testicular sperm extraction (TESE); n = 14] or both (MESA + TESE, n = 47). In the TESE group (i.e., TESE-only and MESA + TESE), spermatogenesis was normal in 21 of the 108 men (19.4%) and hypospermatogenesis occurred in 33 (30.5%). The fertilization rate was significantly lower in the hypospermatogenic group than in the normospermatogenesis group (65.6 and 72.9%, respectively; p = 0.02); this was also true for the embryo cleavage rate (88.6 and 92.1%, respectively; p = 0.007), and the proportion of embryos with fewer than 30% of enucleate fragments (79.5 and 86.9%, respectively; p = 0.02). Our study results showed that impaired spermatogenesis had a negative impact on certain early-stage biological outcomes of ICSI. In CBAVD, male factors are likely to exert a harmful effect on the early stages of embryo development.

  11. Investigation of confined placental mosaicism (CPM) at multiple sites in post-delivery placentas derived through intracytoplasmic sperm injection (ICSI).

    Science.gov (United States)

    Minor, Agata; Harmer, Karynn; Peters, Nicole; Yuen, Basil Ho; Ma, Sai

    2006-01-01

    Although earlier studies on pregnancies derived through intracytoplasmic sperm injection (ICSI) reported increased non-mosaic aneuploidy among ICSI children, undetected mosaicism, such as confined placental mosaicism (CPM) has not been evaluated. We investigated the incidence of CPM in post-delivery placentas derived from ICSI, evaluated whether CPM was increased and whether it was a contributing factor to negative pregnancy outcome. [Fifty-one post-delivery placentas were collected from patients who underwent ICSI with a normal or negative pregnancy outcome]. Trophoblast and chorionic stroma from three sites were analyzed by comparative genomic hybridization (CGH) and flow cytometry. Detected abnormalities were confirmed by fluorescence in situ hybridization (FISH). The incidence of CPM in the ICSI population was compared to the general population from published data. We detected three cases of CPM in our study. One abnormality was found by CGH analysis; partial trisomy 7q and a partial monosomy Xp limited to the trophoblast at two sites. The abnormality was associated with a child affected by spina bifida. Two cases of mosaic tetraploidy were observed by flow cytometry in pregnancies with a normal outcome. All three abnormalities were confirmed by FISH analysis. The incidence of CPM in the ICSI study population was 5.88% (3/51), which was not statistically different from published reports in the general population (5.88% (42/714), Chi square, P > 0.05). The post-ICSI population was not at risk for CPM in this study.

  12. Can intracytoplasmic sperm injection prevent total fertilization failure and enhance embryo quality in patients with non-male factor infertility?

    Science.gov (United States)

    Kim, Ju Yeong; Kim, Jee Hyun; Jee, Byung Chul; Lee, Jung Ryeol; Suh, Chang Suk; Kim, Seok Hyun

    2014-07-01

    To determine whether intracytoplasmic sperm injection (ICSI) could prevent total fertilization failure (TFF) and enhance the embryo quality in patients with non-male factor infertility. A total of 296 in vitro fertilization (IVF) cycles performed in patients with non-male factor infertility between April 2009 and March 2013 were included in this retrospective study. During the period, ICSI and conventional IVF were performed in 142 and 154 cycles, respectively. The usual indications for ICSI were in the cycles of patients with (1) known low fertilization rate, (2) repetitive implantation failure, (3) advanced maternal age, (4) presence of endometrioma, (5) low oocyte yield (number of oocytes ≤3), or (6) poor quality oocytes. The rate of TFF, normal fertilization, abnormal pronuclei (PN) formation, embryo quality, and pregnancy outcomes between the patients treated with ICSI and conventional IVF cycles were compared. The patients treated with ICSI (ICSI group, n=142) presented fewer number of oocytes than patients treated with conventional IVF cycles (n=154). The TFF rate was not different (4.2% vs. 0.6%, P=0.059), but the ICSI group presented a significantly higher rate of normal fertilization (83.4% vs. 79.1%, P=0.04) and lower rate of abnormal PN formation (3.9% vs. 13.3%, Pfertilization rate and the embryo quality. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Antimicrobial Properties of Lysosomal Enzymes Immobilized on NH₂Functionalized Silica-Encapsulated Magnetite Nanoparticles.

    Science.gov (United States)

    Bang, Seung Hyuck; Sekhon, Simranjeet Singh; Cho, Sung-Jin; Kim, So Jeong; Le, Thai-Hoang; Kim, Pil; Ahn, Ji-Young; Kim, Yang-Hoon; Min, Jiho

    2016-01-01

    The immobilization efficiency, antimicrobial activity and recovery of lysosomal enzymes on NH2 functionalized magnetite nanoparticles have been studied under various conditions. The immobi- lization efficiency depends upon the ratio of the amount of enzyme and magnetite and it shows an increase with magnetite concentration which is due to the presence of amine group at the magnetite surface that leads to a strong attraction. The optimized reaction time to immobilize the lysosomal enzymes on magnetite was determined by using a rolling method. The immobilization efficiency increases with reaction time and reached a plateau after 5 minutes and then remained constant for 10 minutes. However, after 30 minutes the immobilization efficiency decreased to 85%, which is due to the weaker electrostatic interactions between magnetite and detached lysosomal enzymes. The recovery and stability of immobilized lysosomal enzymes has also been studied. The antimicrobial activity was almost 100% but it decreased upon reuse and no activity was observed after its reuse for seven times. The storage stability of lysosomal enzymes as an antimicrobial agent was about 88%, which decreased to 53% after one day and all activity of immobilized lysosomal enzymes was maintained after five days. Thus, the lysosomal enzymes immobilized on magnetite nanoparticles could potentially be used as antimicrobial agents to remove bacteria.

  14. Involvement of lysosomes in the uptake of macromolecular material by bloodstream forms of Trypanosoma brucei.

    Science.gov (United States)

    Opperdoes, F R; Van Roy, J

    1982-09-01

    To investigate whether the lysosomes of Trypanosoma brucei are capable of uptake of macromolecules after internalization by the cell, we used Triton WR-1339, a non-digestible macromolecular compound, which is known to cause a marked decrease in the density of hepatic lysosomes due to massive intralysosomal storage. Intraperitoneal administration of 0.4 g/kg Triton WR-1339 to rats infected with T. brucei led to the development of a large vacuole in the trypanosomes between nucleus and kinetoplast within 22 h. Higher doses (2 g/kg) led to the disappearance of the trypanosomes from the blood and resulted in permanent cures (greater than 100 days). Lysosomes isolated from the trypanosomes of animals treated with a sub-curative dose showed a decrease in equilibrium density of 0.03 g/cm3 in sucrose gradients. These lysosomes were partly damaged as evidenced by a reduction in latency and an increase in the non-sedimentable part of lysosomal enzymes. We conclude that acid proteinase and alpha-mannosidase-containing organelles of T. brucei take up exogenous macromolecules and must therefore be considered as true lysosomes and that Triton WR-1339 acts in T. brucei as a true lysosomotropic drug. Its trypanocidal action probably results from an interference with lysosomal function.

  15. TRPML cation channels regulate the specialized lysosomal compartment of vertebrate B-lymphocytes.

    Science.gov (United States)

    Song, Yumei; Dayalu, Rashmi; Matthews, Sharon A; Scharenberg, Andrew M

    2006-12-01

    B-lymphocytes possess a specialized lysosomal compartment, the regulated transformation of which has been implicated in B-cell antigen presentation. Members of the mucolipin (TRPML) family of cation channels have been implicated in regulated vesicular transport in several tissues, but a role for TRPML function in lymphocyte vesicular transport physiology has not been previously described. To address the role of TRPML proteins in lymphocyte vesicular transport, we analyzed the lysosomal compartment in cultured B-lymphocytes engineered to lack TRPML1 or after expression of N- or C-terminal GFP fusion proteins of TRPML1 or TRPML2. Consistent with previous analyses of lymphocytes derived from human patients with mutations in TRPML1, we were not able to detect abnormalities in the lysosomes of TRPML1-deficient DT40 B-lymphocytes. However, while N-terminal GFP fusions of TRPML2 localized to normal appearing lysosomes, C-terminal GFP fusions of either TRPML1 or TRPML2 acted to antagonize endogenous TRPML function, localizing to large vesicular structures, the histological properties of which were indistinguishable from the enlarged lysosomes observed in affected tissues of TRPML1-deficient humans. Endocytosed B-cell receptors were delivered to these enlarged lysosomes, demonstrating that a TRPML-dependent process is required for normal regulation of the specialized lysosome compartment of vertebrate B-lymphocytes.

  16. Eucommia ulmoides cortex, geniposide and aucubin regulate lipotoxicity through the inhibition of lysosomal BAX.

    Science.gov (United States)

    Lee, Geum-Hwa; Lee, Mi-Rin; Lee, Hwa-Young; Kim, Seung Hyun; Kim, Hye-Kyung; Kim, Hyung-Ryong; Chae, Han-Jung

    2014-01-01

    In this study we examined the inhibition of hepatic dyslipidemia by Eucommia ulmoides extract (EUE). Using a screening assay for BAX inhibition we determined that EUE regulates BAX-induced cell death. Among various cell death stimuli tested EUE regulated palmitate-induced cell death, which involves lysosomal BAX translocation. EUE rescued palmitate-induced inhibition of lysosomal V-ATPase, α-galactosidase, α-mannosidase, and acid phosphatase, and this effect was reversed by bafilomycin, a lysosomal V-ATPase inhibitor. The active components of EUE, aucubin and geniposide, showed similar inhibition of palmitate-induced cell death to that of EUE through enhancement of lysosome activity. Consistent with these in vitro findings, EUE inhibited the dyslipidemic condition in a high-fat diet animal model by regulating the lysosomal localization of BAX. This study demonstrates that EUE regulates lipotoxicity through a novel mechanism of enhanced lysosomal activity leading to the regulation of lysosomal BAX activation and cell death. Our findings further indicate that geniposide and aucubin, active components of EUE, may be therapeutic candidates for non-alcoholic fatty liver disease.

  17. Structure Dependence of Lysosomal Transit of Chitosan-Based Polyplexes for Gene Delivery.

    Science.gov (United States)

    Thibault, Marc; Lavertu, Marc; Astolfi, Mélina; Buschmann, Michael D

    2016-10-01

    Chitosan-based polyplexes are known to traffic through lysosomes for a relatively long time, independent of the degree of deacetylation (DDA) and the number average molecular weight (Mn) of the polymer, even though both of these parameters have profound effects on polyplex stability and transfection efficiency. A better understanding of the lysosomal barrier is paramount to the rational design of vectors capable of overcoming obstacles to transgene expression. The aim of the present study was to investigate if lysosomal transit affects chitosan-based polyplex transfection efficiency in a structure-dependent (DDA, Mn) manner. Toward this end, we analyzed the effects of intracellular trafficking modifying agents on transfection efficiency and intracellular vesicular trafficking of polyplexes with different structural properties and stabilities or nucleic acid binding affinity. The use of agents that modify endosome/lysosome acidification and transit processes by distinct mechanisms and their effect on cell viability, polyplex uptake, vesicular trafficking, and transfection efficiency revealed novel and strong chitosan structure-dependent consequences of lysosomal transit. Inhibiting lysosomal transit using chloroquine significantly increased the efficiency of unstable polyplexes, while having minimal effects for polyplexes with intermediate or high stability. In parallel, specifically inhibiting the acidification of vesicles abrogated transfection for all formulations, suggesting that vesicular acidification is essential to promote transfection, most probably by facilitating lysosomal escape. These results provide novel insights into the structure-performance relationship of chitosan-based gene delivery systems.

  18. Action of low-energy monochromatic coherent light on the stability of retinal lysosomes

    Science.gov (United States)

    Metelitsina, Irina P.; Leus, N. F.

    1995-05-01

    The data had been obtained during the experiment in vitro by irradiation of solubilized lysosomal enzymes, retinal homogenates and native lysosomes enabled us to conclude that the laser beam ((lambda) equals 632.8 nm, power density from 0.1 to 15.0 mWt/cm2) acts on the level of membranous structures of lysosomes. During irradiation of rabbits eyes in vitro with an unfocused laser beam (power density on the cornea aur face from 0.01 to 15.0 mWt/cm2 was shown, that low-energy, ranged from 0.01 to 1.0 mWt/cm2 promotes stabilization of lysosomal membranes. Irradiation with laser beam of 8.0 mWt/cm2 and more power induces destabilization of lysosomal membranes. We have also shown that vitamins A and E effecting membranotropic on lysosomes may be corrected by low-energy radiation of helium-neon laser. It is substantiated experimentally that the stabilizing effect of vitamin E may be intensified in case of the combined action of laser radiation on lysosomes. The labilizing effect of vitamin A on membranes of organelles, as was studied, may be weakened by application of laser radiation of low intensities.

  19. Lysosomal cholesterol accumulation: driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis.

    Science.gov (United States)

    Hendrikx, T; Walenbergh, S M A; Hofker, M H; Shiri-Sverdlov, R

    2014-05-01

    Many studies show an association between the accumulation of cholesterol inside lysosomes and the progression towards inflammatory disease states that are closely related to obesity. While in the past, the knowledge regarding lysosomal cholesterol accumulation was limited to its association with plaque severity during atherosclerosis, recently, a growing body of evidence indicates a causal link between lysosomal cholesterol accumulation and inflammation. These findings make lysosomal cholesterol accumulation an important target for intervention in metabolic diseases that are characterized by the presence of an inflammatory response. In this review, we aim to show the importance of cholesterol trapping inside lysosomes to the development of inflammation by focusing upon cardiovascular disease and non-alcoholic steatohepatitis (NASH) in particular. We summarize current data supporting the hypothesis that lysosomal cholesterol accumulation plays a key role in the development of inflammation during atherosclerosis and NASH. In addition, potential mechanisms by which disturbed lysosomal function can trigger the inflammatory response, the challenges in improving cholesterol trafficking in macrophages and recent successful research directions will be discussed.

  20. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease.

    Science.gov (United States)

    Magalhaes, Joana; Gegg, Matthew E; Migdalska-Richards, Anna; Doherty, Mary K; Whitfield, Phillip D; Schapira, Anthony H V

    2016-08-15

    Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD. © The Author 2016. Published by Oxford University Press.

  1. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner.

    Directory of Open Access Journals (Sweden)

    Christine Burkard

    2014-11-01

    Full Text Available Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs. Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV. Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion.

  2. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner.

    Science.gov (United States)

    Burkard, Christine; Verheije, Monique H; Wicht, Oliver; van Kasteren, Sander I; van Kuppeveld, Frank J; Haagmans, Bart L; Pelkmans, Lucas; Rottier, Peter J M; Bosch, Berend Jan; de Haan, Cornelis A M

    2014-11-01

    Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion.

  3. Combined effects of thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Izagirre, Urtzi; Errasti, Aitzpea; Bilbao, Eider; Múgica, María; Marigómez, Ionan, E-mail: ionan.marigomez@ehu.es

    2014-04-01

    Highlights: • Thermal stress and Cd caused lysosomal enlargement and membrane destabilisation. • hex, gusb and ctsl but not hsp70 were up-regulated at elevated temperature but down-regulated by Cd. • Thermal stress influenced lysosomal responses to Cd exposure. • The presence of Cd jeopardised responsiveness against thermal stress. - Abstract: In estuaries and coastal areas, intertidal organisms may be subject to thermal stress resulting from global warming, together with pollution. In the present study, the combined effects of thermal stress and exposure to Cd were investigated in the endo-lysosomal system of digestive cells in mussels, Mytilus galloprovincialis. Mussels were maintained for 24 h at 18 °C and 26 °C seawater temperature in absence and presence of 50 μg Cd/L seawater. Cadmium accumulation in digestive gland tissue, lysosomal structural changes and membrane stability were determined. Semi-quantitative PCR was applied to reveal the changes elicited by the different experimental conditions in hexosaminidase (hex), β-glucuronidase (gusb), cathepsin L (ctsl) and heat shock protein 70 (hsp70) gene transcription levels. Thermal stress provoked lysosomal enlargement whilst Cd-exposure led to fusion of lysosomes. Both thermal stress and Cd-exposure caused lysosomal membrane destabilisation. hex, gusb and ctsl genes but not hsp70 gene were transcriptionally up-regulated as a result of thermal stress. In contrast, all the studied genes were transcriptionally down-regulated in response to Cd-exposure. Cd bioaccumulation was comparable at 18 °C and 26 °C seawater temperatures but interactions between thermal stress and Cd-exposure were remarkable both in lysosomal biomarkers and in gene transcription. hex, gusb and ctsl genes, reacted to elevated temperature in absence of Cd but not in Cd-exposed mussels. Therefore, thermal stress resulting from global warming might influence the use and interpretation of lysosomal biomarkers in marine pollution

  4. Lysosomal glycosphingolipid catabolism by acid ceramidase: formation of glycosphingoid bases during deficiency of glycosidases.

    Science.gov (United States)

    Ferraz, Maria J; Marques, André R A; Appelman, Monique D; Verhoek, Marri; Strijland, Anneke; Mirzaian, Mina; Scheij, Saskia; Ouairy, Cécile M; Lahav, Daniel; Wisse, Patrick; Overkleeft, Herman S; Boot, Rolf G; Aerts, Johannes M

    2016-03-01

    Glycosphingoid bases are elevated in inherited lysosomal storage disorders with deficient activity of glycosphingolipid catabolizing glycosidases. We investigated the molecular basis of the formation of glucosylsphingosine and globotriaosylsphingosine during deficiency of glucocerebrosidase (Gaucher disease) and α-galactosidase A (Fabry disease). Independent genetic and pharmacological evidence is presented pointing to an active role of acid ceramidase in both processes through deacylation of lysosomal glycosphingolipids. The potential pathophysiological relevance of elevated glycosphingoid bases generated through this alternative metabolism in patients suffering from lysosomal glycosidase defects is discussed.

  5. Degradation of AF1Q by chaperone-mediated autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Ji, Min; Lu, Fei; Zhang, Jingru [Department of Hematology, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China); Li, Huanjie; Cui, Taixing; Li Wang, Xing [Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: tangdq@sdu.edu.cn [Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China); Center for Stem Cell and Regenerative Medicine, The Second Hospital of Shandong University, Jinan 250033 (China); Ji, Chunyan, E-mail: jichunyan@sdu.edu.cn [Department of Hematology, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China)

    2014-09-10

    AF1Q, a mixed lineage leukemia gene fusion partner, is identified as a poor prognostic biomarker for pediatric acute myeloid leukemia (AML), adult AML with normal cytogenetic and adult myelodysplastic syndrome. AF1Q is highly regulated during hematopoietic progenitor differentiation and development but its regulatory mechanism has not been defined clearly. In the present study, we used pharmacological and genetic approaches to influence chaperone-mediated autophagy (CMA) and explored the degradation mechanism of AF1Q. Pharmacological inhibitors of lysosomal degradation, such as chloroquine, increased AF1Q levels, whereas activators of CMA, including 6-aminonicotinamide and nutrient starvation, decreased AF1Q levels. AF1Q interacts with HSPA8 and LAMP-2A, which are core components of the CMA machinery. Knockdown of HSPA8 or LAMP-2A increased AF1Q protein levels, whereas overexpression showed the opposite effect. Using an amino acid deletion AF1Q mutation plasmid, we identified that AF1Q had a KFERQ-like motif which was recognized by HSPA8 for CMA-dependent proteolysis. In conclusion, we demonstrate for the first time that AF1Q can be degraded in lysosomes by CMA. - Highlights: • Chaperone-mediated autophagy (CMA) is involved in the degradation of AF1Q. • Macroautophagy does not contribute to the AF1Q degradation. • AF1Q has a KFERQ-like motif that is recognized by CMA core components.

  6. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis : LAMP-2 deficient mice develop pancreatitis

    NARCIS (Netherlands)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-01-01

    BACKGROUND & AIMS: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated memb

  7. Lysosome dysfunction enhances oxidative stress-induced apoptosis through ubiquitinated protein accumulation in Hela cells.

    Science.gov (United States)

    Yu, Chunyan; Huang, Xiaowei; Xu, Ye; Li, Hongyan; Su, Jing; Zhong, Jiateng; Kang, Jinsong; Liu, Yuhe; Sun, Liankun

    2013-01-01

    The role of lysosomal system in oxidative stress-induced apoptosis in cancer cells is not fully understood. Menadione is frequently used as oxidative stress model. It is indicated that menadione could induce autophagy in Hela cells. In the present study, we examined whether the lysosomal inhibitor, ammonium chloride (NH(4)Cl) could prevent the autophagy flux by inhibiting the fusion of autophagosomes with lysosomes and enhance apoptosis induced by menadione via mitochondrial pathway. The results demonstrated generation and accumulation of reactive oxygen species and increased levels of ubiquitinated proteins and GRP78 in cells treated with both menadione and NH(4)Cl. Our data indicates that lysosomal system through autophagy plays an important role in preventing menadione-induced apoptosis in Hela cells by clearing misfolded proteins, which alleviates endoplasmic reticulum stress.

  8. Lysosomal acid lipase: At the crossroads of normal and atherogenic cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Joshua A Dubland

    2015-02-01

    Full Text Available Unregulated cellular uptake of apolipoprotein B-containing lipoproteins in the arterial intima leads to the formation of foam cells in atherosclerosis. Lysosomal acid lipase (LAL plays a crucial role in both lipoprotein lipid catabolism and excess lipid accumulation as it is the primary enzyme that hydrolyzes cholesteryl esters derived from both low density lipoprotein (LDL and modified forms of LDL. Evidence suggests that as atherosclerosis progresses, accumulation of excess free cholesterol in lysosomes leads to impairment of LAL activity, resulting in accumulation of cholesteryl esters in the lysosome as well as the cytosol in foam cells. Impaired metabolism and release of cholesterol from lysosomes can lead to downstream defects in ATP-binding cassette transporter A1 regulation, needed to offload excess cholesterol from plaque foam cells. This review focuses on the role LAL plays in normal cholesterol metabolism and how the associated changes in its enzymatic activity may ultimately contribute to atherosclerosis progression.

  9. Enantioselective effects of methamidophos on the coelomocytes lysosomal membrane stability of Eisenia fetida.

    Science.gov (United States)

    Chen, Linhua; Lu, Xianting; Ma, Yun

    2012-12-01

    Many of organophosphorous insecticides are chiral compounds. In this study, the enantioselective effects of organophosphate insecticide methamidophos on the coelomocytes lysosomal membrane stability of earthworm Eisenia fetida were studied: (1) The enantiomers of methamidophos were absolutely separated by high-performance liquid chromatography with a commercial chiral column; (2) The neutral red retention assay was used to judge the lysosomal membrane stability. The results showed that with the concentration increasing, lysosomal membranes have been significantly destroyed by individual stereoisomers and racemate of methamidophos. The neutral red retention times were significantly descended from 76.88 to 29.78 min. Both (+)- and (-)-methamidophos showed more prone to destroy the integrity of the lysosomal membrane than the racemate. However, the different effect between stereoisomers is slight.

  10. High resolution crystal structure of human β-glucuronidase reveals structural basis of lysosome targeting

    National Research Council Canada - National Science Library

    Hassan, Md Imtaiyaz; Waheed, Abdul; Grubb, Jeffery H; Klei, Herbert E; Korolev, Sergey; Sly, William S

    2013-01-01

    ...). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases...

  11. High Resolution Crystal Structure of Human [beta]-Glucuronidase Reveals Structural Basis of Lysosome Targeting

    National Research Council Canada - National Science Library

    Hassan, Md; Waheed, Abdul; Grubb, Jeffery; Klei, Herbert; Korolev, Sergey; Sly, William

    2013-01-01

    ...). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases...

  12. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Christensen, Karina; Aaberg-Jessen, Charlotte

    Targeting lysosomes is a novel approach in cancer therapy providing a possible way of killing the otherwise apoptosis-resistant cancer cells. Recent research has thus shown that lysosome targeting compounds induce cell death in a cervix cancer cell line. Tumor stem cells in glioblastomas have...... recently been suggested to possess innate resistance mechanisms against radiation and chemotherapy possibly explaining the high level of therapeutic resistance of these tumors. Since the presence and distribution of lysosomes in tumor cells and especially in tumor stem cells in astrocytomas is unknown......, the aim of this study was to investigate the immunohistochemical expression of LAMP-1, a membrane bound protein in lysosomes, in formalin fixed paraffin embedded tumor tissue from 23 diffuse astrocytomas, 17 anaplastic astrocytomas and 72 glioblastomas. The LAMP-1 expression was scored and compared...

  13. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis : LAMP-2 deficient mice develop pancreatitis

    NARCIS (Netherlands)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-01-01

    BACKGROUND & AIMS: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated

  14. Emerging therapies for neurodegenerative lysosomal storage disorders - from concept to reality.

    Science.gov (United States)

    Hemsley, Kim M; Hopwood, John J

    2011-10-01

    Lysosomal storage disorders are inherited metabolic diseases in which a mutation in a gene encoding a lysosomal enzyme or lysosome-related protein results in the intra-cellular accumulation of substrate and reduced cell/tissue function. Few patients with neurodegenerative lysosomal storage disorders have access to safe and effective treatments although many therapeutic strategies have been or are presently being studied in vivo thanks to the availability of a large number of animal models. This review will describe the comparative advancement of a variety of therapeutic strategies through the 'research pipeline'. Our goal is to provide information for clinicians, researchers and patients/families alike on the leading therapeutic candidates at this point in time, and also to provide information on emerging approaches that may provide a safe and effective treatment in the future. The length of the pipeline represents the significant and sustained effort required to move a novel concept from the laboratory into the clinic.

  15. Magnesium Modulates Doxorubicin Activity through Drug Lysosomal Sequestration and Trafficking.

    Science.gov (United States)

    Trapani, Valentina; Luongo, Francesca; Arduini, Daniela; Wolf, Federica I

    2016-03-21

    Magnesium is directly involved in the control of cell growth and survival, but its role in cancer biology and therapy is multifaceted; in particular, it is highly controversial whether magnesium levels can affect therapy outcomes. Here we investigated whether magnesium availability can modulate cellular responses to the widely used chemotherapeutic doxorubicin. We used an in vitro model consisting of mammary epithelial HC11 cells and found that high magnesium availability was correlated with diminished sensitivity both in cells chronically adapted to high magnesium concentrations and in acutely magnesium-supplemented cells. This decrease in sensitivity resulted from reduced intracellular doxorubicin accumulation in the face of a similar drug uptake rate. We observed that high-magnesium conditions caused a decrease in intracellular drug retention by altering drug lysosomal sequestration and trafficking. In our model, magnesium supplementation correspondingly modulated expression of the TRPM7 channel, which is known to control cytoskeletal organization and dynamics and may be involved in the proposed mechanism. Our findings suggest that magnesium supplementation in hypomagnesemic cancer patients may hinder response to therapy.

  16. Less Is More: Substrate Reduction Therapy for Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Maria Francisca Coutinho

    2016-07-01

    Full Text Available Lysosomal storage diseases (LSDs are a group of rare, life-threatening genetic disorders, usually caused by a dysfunction in one of the many enzymes responsible for intralysosomal digestion. Even though no cure is available for any LSD, a few treatment strategies do exist. Traditionally, efforts have been mainly targeting the functional loss of the enzyme, by injection of a recombinant formulation, in a process called enzyme replacement therapy (ERT, with no impact on neuropathology. This ineffectiveness, together with its high cost and lifelong dependence is amongst the main reasons why additional therapeutic approaches are being (and have to be investigated: chaperone therapy; gene enhancement; gene therapy; and, alternatively, substrate reduction therapy (SRT, whose aim is to prevent storage not by correcting the original enzymatic defect but, instead, by decreasing the levels of biosynthesis of the accumulating substrate(s. Here we review the concept of substrate reduction, highlighting the major breakthroughs in the field and discussing the future of SRT, not only as a monotherapy but also, especially, as complementary approach for LSDs.

  17. In vitro fertilization and intracytoplasmic sperm injection for couples with unexplained infertility after failed direct intraperitoneal insemination.

    Science.gov (United States)

    Takeuchi, S; Minoura, H; Shibahara, T; Shen, X; Futamura, N; Toyoda, N

    2000-10-01

    The objective was to determine the optimal insemination technique in patients undergoing in vitro fertilization (IVF) after failed direct intraperitoneal insemination (DIPI) and the outcome of intracytoplasmic sperm injection (ICSI) in such cases. In case-control studies, 53 couples with unexplained infertility who underwent IVF after four failed DIPI cycles were compared with 75 couples with tubal or endometriosis infertility as controls. Thirty couples with unexplained infertility after failing to conceive with DIPI and conventional IVF who underwent ICSI and 58 couples with male-factor infertility as controls also were compared. Fertilization cleavage, embryo quality, implantation, and pregnancy were compared after IVF and after ICSI. There was a significant difference in fertilization rates after IVF between cases of unexplained infertility after failing to conceive with DIPI (40.4%) and patients with tubal or endometriosis infertility (67.9%). There also was a significant difference in total fertilization failure rates between the two groups (30.4% and 3.9%, respectively). There was a slight but significant difference in numbers of fertilized oocytes after ICSI between patients with low fertilization rate undergoing IVF after failing to conceive DIPI (85.8%) and patients with male factor (90.4%). Total fertilization failure was not observed in these cases. Couples with unexplained infertility after failing to conceive with DIPI show a failed fertilization or a low fertilization rate after IVF. However, they demonstrated a good chance of becoming pregnant after subsequent ICSI, even with statistically significant difference in fertilization rate as compared with male-factor cases.

  18. Effects of maternal age on embryo quality and pregnancy outcomes using testicular sperm with intracytoplasmic sperm injection.

    Science.gov (United States)

    Choi, Hye Won; Park, Yong-Seog; Lee, Sun-Hee; Lim, Chun Kyu; Seo, Ju Tae; Yang, Kwang Moon

    2016-12-01

    The aim of this study was to evaluate the influence of maternal age on fertilization, embryo quality, and clinical pregnancy in patients undergoing intracytoplasmic sperm injection (ICSI) using testicular sperm from partners with azoospermia. A total of 416 ICSI cycles using testicular spermatozoa from partners with obstructive azoospermia (OA, n=301) and non-obstructive azoospermia (NOA, n=115) were analyzed. Female patients were divided into the following age groups: 27 to 31 years, 32 to 36 years, and 37 to 41 years. The rates of fertilization, high-quality embryos, clinical pregnancy, and delivery were compared across maternal age groups between the OA and NOA groups. The rates of fertilization and high-quality embryos were not significantly different among the maternal age groups. Similarly, the clinical pregnancy and delivery rates were not significantly different. The fertilization rate was significantly higher in the OA group than in the NOA group (p<0.05). Age-group analysis revealed that the fertilization and high-quality embryo rates were significantly different between the OA and NOA groups in patients aged 27 to 31 years old, but not for the other age groups. Although the clinical pregnancy and delivery rates differed between the OA and NOA groups across all age groups, significant differences were not observed. In couples using testicular sperm from male partners with azoospermia, pregnancy and delivery outcomes were not affected by maternal age. However, women older than 37 years using testicular sperm from partners with azoospermia should be advised of the increased incidence of pregnancy failure.

  19. Does intrauterine injection of low-molecular-weight heparin improve the clinical pregnancy rate in intracytoplasmic sperm injection?

    Science.gov (United States)

    Kamel, Ahmed Mohamed; El-Faissal, Yahia; Aboulghar, Mona; Mansour, Ragaa; Serour, Gamal I; Aboulghar, Mohamed

    2016-12-01

    Heparin can modulate proteins, and influence processes involved in implantation and trophoblastic development. This study aimed to assess the improvement of clinical pregnancy and implantation rates after local intrauterine injection of low-molecular-weight heparin (LMWH) in patients undergoing intracytoplasmic sperm injection (ICSI). A randomised case/control design was followed in women scheduled for ICSI. The study arm was injected with intrauterine LMWH during mock embryo transfer immediately following the ovum pickup procedure, while the control arm was given an intrauterine injection with a similar volume of tissue culture media. Side effects, the clinical pregnancy rate, and the implantation rate were recorded. The pregnancy rate was acceptable (33.9%) in the LMWH arm with no significant reported side effects, confirming the safety of the intervention. No statistically significant differences were found in the clinical pregnancy and implantation rates between both groups (p=0.182 and p=0.096, respectively). The odds ratio of being pregnant after intrauterine injection with LMWH compared to the control group was 0.572 (95% confidence interval [CI], 0.27-1.22), while the risk ratio was 0.717 (95% CI, 0.46-1.13; p=0.146). No statistical significance was found between the two groups in other factors affecting implantation, such as day of transfer (p=0.726), number of embryos transferred (p=0.362), or embryo quality. Intrauterine injection of LMWH is a safe intervention, but the dose used in this study failed to improve the outcome of ICSI. Based on its safety, further research involving modification of the dosage and/or the timing of administration could result in improved ICSI success rates.

  20. Percentage of motile spermatozoa at 22 hours after swim-up procedure: An indicator for intracytoplasmic sperm injection?

    Science.gov (United States)

    Inoue, Taketo; Yonezawa, Yukiko; Sugimoto, Hironobu; Uemura, Mikiko; Ono, Yuri; Kishi, Junji; Emi, Nobuyuki; Ono, Yoshiyuki

    2016-09-01

    The decision to use in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), or split insemination (IVF-ICSI) in the first cycle is based on the number of motile sperm. Hence, total fertilization failure (TFF) often occurs during IVF cycles, despite normozoospermia. To investigate whether the cumulative motile swim-up spermatozoa percentage at 22 hours post-insemination (MSPPI) is an indicator for ICSI, we analyzed TFF, fertilization, blastocyst development, chemical pregnancy, clinical pregnancy, and live birth rates. This prospective study was performed using data obtained from 260 IVF cycles. At 22 hours after insemination, the remaining swim-up spermatozoa were observed and divided into six groups according to MSPPI (<10%, 10% to <30%, 30% to <50%, 50% to <70%, 70% to <90%, and 90% to 100%). Regardless of the ejaculated motile sperm concentration (0.6-280×10(6)/mL motile spermatozoa), the incidence of TFF significantly increased when MSPPI was <10%, and the fertilization rate significantly decreased when MSPPI was <30%. We found that cumulative MSPPI correlated with the cumulative fertilization rate (Spearman correlation, 0.508, p<0.001). Regarding embryo development, we observed no significant differences in the rates of blastocyst development, chemical pregnancy, clinical pregnancy, or live birth among all groups. Our findings suggest that MSPPI is a viable indicator for split IVF-ICSI and ICSI. Taken together, by employing the MSPPI test in advance before IVF, ICSI, or split IVF-ICSI cycles, unnecessary split IVF-ICSI and ICSI may be avoided.

  1. Use of testicular sperm for intracytoplasmic sperm injection in men with high sperm DNA fragmentation: a SWOT analysis.

    Science.gov (United States)

    Esteves, Sandro C; Roque, Matheus; Garrido, Nicolás

    2017-04-18

    Spermatozoa retrieved from the testis of men with high levels of sperm DNA fragmentation (SDF) in the neat semen tend to have better DNA quality. Given the negative impact of SDF on the outcomes of Assisted Reproductive Technology (ART), an increased interest has emerged about the use of testicular sperm for intracytoplasmic sperm injection (Testi-ICSI). In this article, we used a SWOT (strengths, weaknesses, opportunities, and threats) analysis to summarize the advantages and drawbacks of this intervention. The rationale of Testi-ICSI is bypass posttesticular DNA fragmentation caused by oxidative stress during sperm transit through the epididymis. Hence, oocyte fertilization by genomically intact testicular spermatozoa may be optimized, thus increasing the chances of creating a normal embryonic genome and the likelihood of achieving a live birth, as recently demonstrated in men with high SDF. However, there is still limited evidence as regards the clinical efficacy of Testi-ICSI, thus creating opportunities for further confirmatory clinical research as well as investigation of Testi-ICSI in clinical scenarios other than high SDF. Furthermore, Testi-ICSI can be compared to other laboratory preparation methods for deselecting sperm with damaged DNA. At present, the available literature supports the use of testicular sperm when performing ICSI in infertile couples whose male partners have posttesticular SDF. Due to inherent risks of sperm retrieval, Testi-ICSI should be offered when less invasive treatments for alleviating DNA damage have failed. A call for continuous monitoring is nonetheless required concerning the health of generated offspring and the potential complications of sperm retrieval.

  2. Applying data mining techniques for increasing implantation rate by selecting best sperms for intra-cytoplasmic sperm injection treatment.

    Science.gov (United States)

    Mirroshandel, Seyed Abolghasem; Ghasemian, Fatemeh; Monji-Azad, Sara

    2016-12-01

    Aspiration of a good-quality sperm during intracytoplasmic sperm injection (ICSI) is one of the main concerns. Understanding the influence of individual sperm morphology on fertilization, embryo quality, and pregnancy probability is one of the most important subjects in male factor infertility. Embryologists need to decide the best sperm for injection in real time during ICSI cycle. Our objective is to predict the quality of zygote, embryo, and implantation outcome before injection of each sperm in an ICSI cycle for male factor infertility with the aim of providing a decision support system on the sperm selection. The information was collected from 219 patients with male factor infertility at the infertility therapy center of Alzahra hospital in Rasht from 2012 through 2014. The prepared dataset included the quality of zygote, embryo, and implantation outcome of 1544 injected sperms into the related oocytes. In our study, embryo transfer was performed at day 3. Each sperm was represented with thirteen clinical features. Data preprocessing was the first step in the proposed data mining algorithm. After applying more than 30 classifiers, 9 successful classifiers were selected and evaluated by 10-fold cross validation technique using precision, recall, F1, and AUC measures. Another important experiment was measuring the effect of each feature in prediction process. In zygote and embryo quality prediction, IBK and RandomCommittee models provided 79.2% and 83.8% F1, respectively. In implantation outcome prediction, KStar model achieved 95.9% F1, which is even better than prediction of human experts. All these predictions can be done in real time. A machine learning-based decision support system would be helpful in sperm selection phase of ICSI cycle to improve the success rate of ICSI treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Lysosomal Changes in Renal Proximal Tubular Epithelial Cells of Male Sprague Dawley Rats Following Decalin Exposure

    Science.gov (United States)

    1990-01-01

    decalin-treated animal. Note large, pale, rcd-staining lysosome (-). An exfoliated epithelial cell can iu- seen in the tubular lumen containing large...photomicrograph contains an exfoliated epithelial cell (-) with enlarged, intact lysosomes. The tubule on the left half of the photomicrograph contains an...metabolism of proteins. In: Cytology , GH Bourne and JF Danielli (eds). Academ- The Kidney: Physiology and Pathophysiology, DW ic Press, NY, pp. 251-300. - ~- i :- d .L n .- 2

  4. The BH3 Mimetic Obatoclax Accumulates in Lysosomes and Causes Their Alkalinization.

    Directory of Open Access Journals (Sweden)

    Vasileios A Stamelos

    Full Text Available Obatoclax belongs to a class of compounds known as BH3 mimetics which function as antagonists of Bcl-2 family apoptosis regulators. It has undergone extensive preclinical and clinical evaluation as a cancer therapeutic. Despite this, it is clear that obatoclax has additional pharmacological effects that contribute to its cytotoxic activity. It has been claimed that obatoclax, either alone or in combination with other molecularly targeted therapeutics, induces an autophagic form of cell death. In addition, obatoclax has been shown to inhibit lysosomal function, but the mechanism of this has not been elucidated. We have evaluated the mechanism of action of obatoclax in eight ovarian cancer cell lines. Consistent with its function as a BH3 mimetic, obatoclax induced apoptosis in three cell lines. However, in the remaining cell lines another form of cell death was evident because caspase activation and PARP cleavage were not observed. Obatoclax also failed to show synergy with carboplatin and paclitaxel, chemotherapeutic agents which we have previously shown to be synergistic with authentic Bcl-2 family antagonists. Obatoclax induced a profound accumulation of LC-3 but knockdown of Atg-5 or beclin had only minor effects on the activity of obatoclax in cell growth assays suggesting that the inhibition of lysosomal function rather than stimulation of autophagy may play a more prominent role in these cells. To evaluate how obatoclax inhibits lysosomal function, confocal microscopy studies were conducted which demonstrated that obatoclax, which contains two basic pyrrole groups, accumulates in lysosomes. Studies using pH sensitive dyes demonstrated that obatoclax induced lysosomal alkalinization. Furthermore, obatoclax was synergistic in cell growth/survival assays with bafilomycin and chloroquine, two other drugs which cause lysosomal alkalinization. These studies explain, for the first time, how obatoclax inhibits lysosomal function and suggest that

  5. Streptococcus oralis Induces Lysosomal Impairment of Macrophages via Bacterial Hydrogen Peroxide.

    Science.gov (United States)

    Okahashi, Nobuo; Nakata, Masanobu; Kuwata, Hirotaka; Kawabata, Shigetada

    2016-07-01

    Streptococcus oralis, an oral commensal, belongs to the mitis group of streptococci and occasionally causes opportunistic infections, such as bacterial endocarditis and bacteremia. Recently, we found that the hydrogen peroxide (H2O2) produced by S. oralis is sufficient to kill human monocytes and epithelial cells, implying that streptococcal H2O2 is a cytotoxin. In the present study, we investigated whether streptococcal H2O2 impacts lysosomes, organelles of the intracellular digestive system, in relation to cell death. S. oralis infection induced the death of RAW 264 macrophages in an H2O2-dependent manner, which was exemplified by the fact that exogenous H2O2 also induced cell death. Infection with either a mutant lacking spxB, which encodes pyruvate oxidase responsible for H2O2 production, or Streptococcus mutans, which does not produce H2O2, showed less cytotoxicity. Visualization of lysosomes with LysoTracker revealed lysosome deacidification after infection with S. oralis or exposure to H2O2, which was corroborated by acridine orange staining. Similarly, fluorescent labeling of lysosome-associated membrane protein-1 gradually disappeared during infection with S. oralis or exposure to H2O2 The deacidification and the following induction of cell death were inhibited by chelating iron in lysosomes. Moreover, fluorescent staining of cathepsin B indicated lysosomal destruction. However, treatment of infected cells with a specific inhibitor of cathepsin B had negligible effects on cell death; instead, it suppressed the detachment of dead cells from the culture plates. These results suggest that streptococcal H2O2 induces cell death with lysosomal destruction and then the released lysosomal cathepsins contribute to the detachment of the dead cells.

  6. Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity

    OpenAIRE

    Fröhlich Eleonore; Meindl Claudia; Roblegg Eva; Ebner Birgit; Absenger Markus; Pieber Thomas R

    2012-01-01

    Abstract Background Data from environmental exposure to nanoparticles (NPs) suggest that chronic exposure may increase the incidence of lung, cardiovascular and neurodegenerative diseases. Impairment of cell function by intracellular accumulation of NPs is also suspected. Many types of NPs have been detected in the endosomal-lysosomal system and, upon repeated exposure, alterations of the endosomal-lysosomal system may occur. To identify such effects we compared the effect of carboxyl polysty...

  7. Lysosomal responses to heat-shock of seasonal temperature extremes in Cd-exposed mussels.

    Science.gov (United States)

    Múgica, M; Izagirre, U; Marigómez, I

    2015-07-01

    The present study was aimed at determining the effect of temperature extremes on lysosomal biomarkers in mussels exposed to a model toxic pollutant (Cd) at different seasons. For this purpose, temperature was elevated 10°C (from 12°C to 22°C in winter and from 18°C to 28°C in summer) for a period of 6h (heat-shock) in control and Cd-exposed mussels, and then returned back to initial one. Lysosomal membrane stability and lysosomal structural changes in digestive gland were investigated. In winter, heat-shock reduced the labilisation period (LP) of the lysosomal membrane, especially in Cd-exposed mussels, and provoked transient lysosomal enlargement. LP values recovered after the heat-shock cessation but lysosomal enlargement prevailed in both experimental groups. In summer, heat-shock induced remarkable reduction in LP and lysosomal enlargement (more markedly in Cd-exposed mussels), which recovered within 3 days. Besides, whilst heat-shock effects on LP were practically identical for Cd-exposed mussels in winter and summer, the effects were longer-lasting in summer than in winter for control mussels. Thus, lysosomal responsiveness after heat-shock was higher in summer than in winter but recovery was faster as well, and therefore the consequences of the heat shock seem to be more decisive in winter. In contrast, inter-season differences were attenuated in the presence of Cd. Consequently, mussels seem to be better prepared in summer than in winter to stand short periods of abrupt temperature change; this is, however, compromised when mussels are exposed to pollutants such as Cd.

  8. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes

    DEFF Research Database (Denmark)

    Grandal, Michael V; Zandi, Roza; Pedersen, Mikkel W

    2007-01-01

    . Moreover, internalized EGFRvIII is recycled rather than delivered to lysosomes. EGFRvIII binds the ubiquitin ligase c-Cbl via Grb2, whereas binding via phosphorylated tyrosine residue 1045 seems to be limited. Despite c-Cbl binding, the receptor fails to become effectively ubiquitinylated. Thus, our...... results suggest that the long lifetime of EGFRvIII is caused by inefficient internalization and impaired sorting to lysosomes due to lack of effective ubiquitinylation....

  9. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos.

    Science.gov (United States)

    Sato, Miyuki; Sato, Ken

    2011-11-25

    The mitochondrial genome is believed to be maternally inherited in many eukaryotes. Sperm-derived paternal mitochondria enter the oocyte cytoplasm upon fertilization and then normally disappear during early embryogenesis. However, the mechanism responsible for this clearance has been unknown. Here, we show that autophagy, which delivers cytosolic components to lysosomes for degradation, is required for the elimination of paternal mitochondria in Caenorhabditis elegans. Immediately after fertilization, sperm-derived components trigger the localized induction of autophagy around sperm mitochondria. Autophagosomes engulf paternal mitochondria, resulting in their lysosomal degradation during early embryogenesis. In autophagy-defective zygotes, paternal mitochondria and their genome remain even in the first larval stage. Thus, fertilization-triggered autophagy is required for selective degradation of paternal mitochondria and thereby maternal inheritance of mitochondrial DNA.

  10. Interaction of arylsulfatase A with UDP-N-acetylglucosamine:Lysosomal enzyme-N-acetylglucosamine-1-phosphotransferase.

    Science.gov (United States)

    Schierau, A; Dietz, F; Lange, H; Schestag, F; Parastar, A; Gieselmann, V

    1999-02-05

    The critical step in lysosomal targeting of soluble lysosomal enzymes is the recognition by an UDP-N-acetylglucosamine:lysosomal enzyme-N-acetylglucosamine-1-phosphotransferase. The structure of the determinant common to all lysosomal enzymes for proper recognition by the phosphotransferase is not completely understood. Our current knowledge is largely based on the introduction of targeted amino acid substitutions into lysosomal enzymes and analysis of their effects on phosphotransferase recognition. We have investigated the effect of eight anti-arylsulfatase A monoclonal antibodies on the interaction of arylsulfatase A with the lysosomal enzyme phosphotransferase in vitro. We also show that a lysine-rich surface area of arylsulfatases A and B is essential for proper recognition by the phosphotransferase. Monoclonal antibodies bind to at least six different epitopes at different locations on the surface of arylsulfatase A. All antibodies bind outside the lysine-rich recognition area, but nevertheless Fab fragments of these antibodies prevent interaction of arylsulfatase A with the phosphotransferase. Our data support a model in which binding of arylsulfatase A to the phosphotransferase is not restricted to a limited surface area but involves the simultaneous recognition of large parts of arylsulfatase A.

  11. TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation

    Science.gov (United States)

    Jinn, Sarah; Drolet, Robert E.; Cramer, Paige E.; Wong, Andus Hon-Kit; Toolan, Dawn M.; Gretzula, Cheryl A.; Voleti, Bhavya; Vassileva, Galya; Disa, Jyoti; Tadin-Strapps, Marija; Stone, David J.

    2017-01-01

    Parkinson disease (PD) is a neurodegenerative disorder pathologically characterized by nigrostriatal dopamine neuron loss and the postmortem presence of Lewy bodies, depositions of insoluble α-synuclein, and other proteins that likely contribute to cellular toxicity and death during the disease. Genetic and biochemical studies have implicated impaired lysosomal and mitochondrial function in the pathogenesis of PD. Transmembrane protein 175 (TMEM175), the lysosomal K+ channel, is centered under a major genome-wide association studies peak for PD, making it a potential candidate risk factor for the disease. To address the possibility that variation in TMEM175 could play a role in PD pathogenesis, TMEM175 function was investigated in a neuronal model system. Studies confirmed that TMEM175 deficiency results in unstable lysosomal pH, which led to decreased lysosomal catalytic activity, decreased glucocerebrosidase activity, impaired autophagosome clearance by the lysosome, and decreased mitochondrial respiration. Moreover, TMEM175 deficiency in rat primary neurons resulted in increased susceptibility to exogenous α-synuclein fibrils. Following α-synuclein fibril treatment, neurons deficient in TMEM175 were found to have increased phosphorylated and detergent-insoluble α-synuclein deposits. Taken together, data from these studies suggest that TMEM175 plays a direct and critical role in lysosomal and mitochondrial function and PD pathogenesis and highlight this ion channel as a potential therapeutic target for treating PD. PMID:28193887

  12. Para-toluenesulfonamide induces tongue squamous cell carcinoma cell death through disturbing lysosomal stability.

    Science.gov (United States)

    Liu, Zhe; Liang, Chenyuan; Zhang, Zhuoyuan; Pan, Jian; Xia, Hui; Zhong, Nanshan; Li, Longjiang

    2015-11-01

    Para-toluenesulfonamide (PTS) has been implicated with anticancer effects against a variety of tumors. In the present study, we investigated the inhibitory effects of PTS on tongue squamous cell carcinoma (Tca-8113) and explored the lysosomal and mitochondrial changes after PTS treatment in vitro. High-performance liquid chromatography showed that PTS selectively accumulated in Tca-8113 cells with a relatively low concentration in normal fibroblasts. Next, the effects of PTS on cell viability, invasion, and cell death were determined. PTS significantly inhibited Tca-8113 cells' viability and invasive ability with increased cancer cell death. Flow cytometric analysis and the lactate dehydrogenase release assay showed that PTS induced cancer cell death by activating apoptosis and necrosis simultaneously. Morphological changes, such as cellular shrinkage, nuclear condensation as well as formation of apoptotic body and secondary lysosomes, were observed, indicating that PTS might induce cell death through disturbing lysosomal stability. Lysosomal integrity assay and western blot showed that PTS increased lysosomal membrane permeabilization associated with activation of lysosomal cathepsin B. Finally, PTS was shown to inhibit ATP biosynthesis and induce the release of mitochondrial cytochrome c. Therefore, our findings provide a novel insight into the use of PTS in cancer therapy.

  13. Lysosomal interaction of Akt with Phafin2: a critical step in the induction of autophagy.

    Directory of Open Access Journals (Sweden)

    Mami Matsuda-Lennikov

    Full Text Available Autophagy is an evolutionarily conserved mechanism for the gross disposal of intracellular proteins in mammalian cells and dysfunction in this pathway has been associated with human disease. Although the serine threonine kinase Akt is suggested to play a role in this process, little is known about the molecular mechanisms by which Akt induces autophagy. Using a yeast two-hybrid screen, Phafin2 (EAPF or PLEKHF2, a lysosomal protein with a unique structure of N-terminal PH (pleckstrin homology domain and C-terminal FYVE (Fab 1, YOTB, Vac 1, and EEA1 domain was found to interact with Akt. A sucrose gradient fractionation experiment revealed that both Akt and Phafin2 co-existed in the same lysosome enriched fraction after autophagy induction. Confocal microscopic analysis and BiFC analysis demonstrated that both Akt and Phafin2 accumulate in the lysosome after induction of autophagy. BiFC analysis using PtdIns (3P interaction defective mutant of Phafin2 demonstrated that lysosomal accumulation of the Akt-Phafin2 complex and subsequent induction of autophagy were lysosomal PtdIns (3P dependent events. Furthermore, in murine macrophages, both Akt and Phafin2 were required for digestion of fluorescent bacteria and/or LPS-induced autophagy. Taken together, these findings establish that lysosomal accumulation of Akt and Phafin2 is a critical step in the induction of autophagy via an interaction with PtdIns (3P.

  14. Activation of the transcription factor EB rescues lysosomal abnormalities in cystinotic kidney cells.

    Science.gov (United States)

    Rega, Laura R; Polishchuk, Elena; Montefusco, Sandro; Napolitano, Gennaro; Tozzi, Giulia; Zhang, Jinzhong; Bellomo, Francesco; Taranta, Anna; Pastore, Anna; Polishchuk, Roman; Piemonte, Fiorella; Medina, Diego L; Catz, Sergio D; Ballabio, Andrea; Emma, Francesco

    2016-04-01

    Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disease characterized by accumulation of cystine into lysosomes secondary to mutations in the cystine lysosomal transporter, cystinosin. The defect initially causes proximal tubular dysfunction (Fanconi syndrome) which in time progresses to end-stage renal disease. Cystinotic patients treated with the cystine-depleting agent, cysteamine, have improved life expectancy, delayed progression to chronic renal failure, but persistence of Fanconi syndrome. Here, we have investigated the role of the transcription factor EB (TFEB), a master regulator of the autophagy-lysosomal pathway, in conditionally immortalized proximal tubular epithelial cells derived from the urine of a healthy volunteer or a cystinotic patient. Lack of cystinosin reduced TFEB expression and induced TFEB nuclear translocation. Stimulation of endogenous TFEB activity by genistein, or overexpression of exogenous TFEB lowered cystine levels within 24 hours in cystinotic cells. Overexpression of TFEB also stimulated delayed endocytic cargo processing within 24 hours. Rescue of other abnormalities of the lysosomal compartment was observed but required prolonged expression of TFEB. These abnormalities could not be corrected with cysteamine. Thus, these data show that the consequences of cystinosin deficiency are not restricted to cystine accumulation and support the role of TFEB as a therapeutic target for the treatment of lysosomal storage diseases, in particular of cystinosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  15. Presence of a lysosomal enzyme, arylsulfatase-A, in the prelysosome-endosome compartments of human cultured fibroblasts.

    Science.gov (United States)

    Kelly, B M; Yu, C Z; Chang, P L

    1989-02-01

    Although endosomes and lysosomes are associated with different subcellular functions, we present evidence that a lysosomal enzyme, arylsulfatase-A, is present in prelysosomal vesicles which constitute part of the endosomal compartment. When human cultured fibroblasts were subfractionated with Percoll gradients, arylsulfatase-A activity was enriched in three subcellular fractions: dense lysosomes, light lysosomes, and light membranous vesicles. Pulsing the cells for 1 to 10 min with the fluid-phase endocytic marker, horseradish peroxidase, showed that endosomes enriched with the marker were distributed partly in the light lysosome fraction but mainly in the light membranous fraction. By pulsing the fibroblasts for 10 min with horseradish peroxidase conjugated to colloidal gold and then staining the light membranous and light lysosomal fractions for arylsulfatase-A activity with a specific cytochemical technique, the endocytic marker was detected under the electron microscope in the same vesicles as the lysosomal enzyme. The origin of the lysosomal enzyme in this endosomal compartment was shown not to be acquired through mannose 6-phosphate receptor-mediated endocytosis of enzymes previously secreted from the cell. Together with our recent finding that the light membranous fraction contains prelysosomes distinct from bona fide lysosomes and was highly enriched with newly synthesized arylsulfatase-A molecules, these results demonstrate that prelysosomes also constitute part of the endosomal compartment to which intracellular lysosomal enzymes are targeted.

  16. Enhancing lysosomal biogenesis and autophagic flux by activating the transcription factor EB protects against cadmium-induced neurotoxicity

    Science.gov (United States)

    Pi, Huifeng; Li, Min; Tian, Li; Yang, Zhiqi; Yu, Zhengping; Zhou, Zhou

    2017-01-01

    Cadmium (Cd), a highly ubiquitous heavy metal, is a well-known inducer of neurotoxicity. However, the mechanism underlying cadmium-induced neurotoxicity remains unclear. In this study, we found that Cd inhibits autophagosome-lysosome fusion and impairs lysosomal function by reducing the levels of lysosomal-associated membrane proteins, inhibiting lysosomal proteolysis and altering lysosomal pH, contributing to defects in autophagic clearance and subsequently leading to nerve cell death. In addition, Cd decreases transcription factor EB (TFEB) expression at both the mRNA and protein levels. Furthermore, Cd induces the nuclear translocation of TFEB and TFEB target-gene expression, associated with compromised lysosomal function or a compensatory effect after the impairment of the autophagic flux. Notably, restoration of the levels of lysosomal-associated membrane protein, lysosomal proteolysis, lysosomal pH and autophagic flux through Tfeb overexpression protects against Cd-induced neurotoxicity, and this protective effect is incompletely dependent on TFEB nuclear translocation. Moreover, gene transfer of the master autophagy regulator TFEB results in the clearance of toxic proteins and the correction of Cd-induced neurotoxicity in vivo. Our study is the first to demonstrate that Cd disrupts lysosomal function and autophagic flux and manipulation of TFEB signalling may be a therapeutic approach for antagonizing Cd-induced neurotoxicity. PMID:28240313

  17. TFEB activation promotes the recruitment of lysosomal glycohydrolases β-hexosaminidase and β-galactosidase to the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Magini, Alessandro [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Department of Medical and Biological Sciences (DSMB), University of Udine, Udine (Italy); Polchi, Alice; Urbanelli, Lorena [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Cesselli, Daniela; Beltrami, Antonio [Department of Medical and Biological Sciences (DSMB), University of Udine, Udine (Italy); Tancini, Brunella [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Emiliani, Carla, E-mail: carla.emiliani@unipg.it [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy)

    2013-10-18

    Highlights: •TFEB activation promotes the increase of Hex and Gal activities. •The increase of Hex and Gal activities is related to transcriptional regulation. •TFEB promotes the recruitment of mature Hex and Gal on cell surface. -- Abstract: Lysosomes are membrane-enclosed organelles containing acid hydrolases. They mediate a variety of physiological processes, such as cellular clearance, lipid homeostasis, energy metabolism and pathogen defence. Lysosomes can secrete their content through a process called lysosome exocytosis in which lysosomes fuse with the plasma membrane realising their content into the extracellular milieu. Lysosomal exocytosis is not only responsible for the secretion of lysosomal enzymes, but it also has a crucial role in the plasma membrane repair. Recently, it has been demonstrated that lysosome response to the physiologic signals is regulated by the transcription factor EB (TFEB). In particular, lysosomal secretion is transcriptionally regulated by TFEB which induces both the docking and fusion of lysosomes with the plasma membrane. In this work we demonstrated that TFEB nuclear translocation is accompanied by an increase of mature glycohydrolases β-hexosaminidase and β-galactosidase on cell surface. This evidence contributes to elucidate an unknown TFEB biological function leading the lysosomal glycohydrolases on plasma membrane.

  18. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells.

    Directory of Open Access Journals (Sweden)

    Bárbara Hissa

    Full Text Available BACKGROUND: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages and non-professional (epithelial phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING: In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of

  19. Lysosomal {beta}-mannosidase: cDNA cloning and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Leipprandt, J.R.; Traviss, C.E. [Michigan State Univ., East Lansing, MI (United States)] [and others

    1994-09-01

    Lysosomal {beta}-mannosidase is an exoglycosidase that cleaves the single {beta}-linked mannose residue from the non-reducing end of all N-linked glycoprotein oligosaccharides. Deficiency of this enzyme results in {beta}-mannosidosis, a severe neurodegenerative disease in goats and cattle. The human cases described have a milder, highly variable presentation. Study of the molecular pathology of this disease in ruminants and humans and development of the animal model for gene therapy studies required cloning of the gene for {beta}-mannosidase has been cloned. {beta}-Mannosidase cDNA were obtained from a bovine thyroid cDNA library by screening with mixed oligonucleotides derived from peptide sequences resulting from microsequencing of bovine {beta}-mannosidase peptides. A total of six independent positive clones were identified from 5 x 10{sup 5} plaques, covering about 80% of the C-terminal region. The missing 5{prime} region was obtained using 5{prime} RACE. The full-length construct contains 3852-bp nucleotides, encoding 879 amino acids. The initiation codon is followed by 17 amino acids containing the characteristics of a typical signal peptide sequence. The deduced amino acid sequence is colinear with all peptide sequences determined by protein microsequencing. Northern blot analysis demonstrated a 4.2 kb single transcript in various tissues from both normal and affected goats and calves. The mRNA level was decreased in affected {beta}-mannosidosis animals. The gene encoding {beta}-mannosidase was localized on human chromosome 4 by Southern analysis of rodent/human somatic cell hybrids. The mutation in bovine {beta}-mannosidosis has been identified. This is the first report of cloning of the {beta}-mannosidase gene.

  20. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas.

    Science.gov (United States)

    Jensen, Stine S; Aaberg-Jessen, Charlotte; Christensen, Karina G; Kristensen, Bjarne

    2013-01-01

    Targeting of lysosomes is a novel therapeutic anti-cancer strategy for killing the otherwise apoptosis-resistant cancer cells. Such strategies are urgently needed for treatment of brain tumors, especially the glioblastoma, which is the most frequent and most malignant type. The aim of the present study was to investigate the presence of lysosomes in astrocytic brain tumors focussing also on the therapy resistant tumor stem cells. Expression of the lysosomal marker LAMP-1 (lysosomal-associated membrane protein-1) was investigated by immunohistochemistry in 112 formalin fixed paraffin embedded astrocytomas and compared with tumor grade and overall patient survival. Moreover, double immunofluorescence stainings were performed with LAMP-1 and the astrocytic marker GFAP and the putative stem cell marker CD133 on ten glioblastomas. Most tumors expressed the LAMP-1 protein in the cytoplasm of the tumor cells, while the blood vessels were positive in all tumors. The percentage of LAMP-1 positive tumor cells and staining intensities increased with tumor grade but variations in tumors of the same grade were also found. No association was found between LAMP-1 expression and patient overall survival in the individual tumor grades. LAMP-1/GFAP showed pronounced co-expression and LAMP-1/CD133 was co-expressed as well suggesting that tumor cells including the proposed tumor stem cells contain lysosomes. The results suggest that high amounts of lysosomes are present in glioblastomas and in the proposed tumor stem cells. Targeting of lysosomes may be a promising novel therapeutic strategy against this highly malignant neoplasm.

  1. Production of lion (Panthera leo) blastocysts after in vitro maturation of oocytes and intracytoplasmic sperm injection.

    Science.gov (United States)

    Fernandez-Gonzalez, Lorena; Hribal, Romy; Stagegaard, Julia; Zahmel, Jennifer; Jewgenow, Katarina

    2015-04-01

    Assisted reproductive techniques are becoming widely applied to the breeding of endangered species, but establishing reliable protocols for the production of embryos in vitro is challenging because of the scarcity of sample material. In our study, we applied an assisted reproductive technique protocol for IVM and intracytoplasmic sperm injection (ICSI), developed in the domestic cat, to oocytes retrieved from ovaries of four 2-year-old lionesses (Panthera leo) eight hours postmortem. In total, 68 cumulus-oocyte complexes of good quality were randomly distributed and cultured for 32 to 34 hours in two different maturation culture media, consisting of Medium 199 with Earle's salts, 3 mg/mL BSA, 0.1 mg/mL cysteine, 1.4 mg/mL sodium pyruvate, 0.6 mg/mL sodium lactate, 0.15 mg/mL l-glutamine, and 0.055 mg/mL gentamicin. Hormonal supplementation of IVM_1 was 0.02 IU/mL FSH and 0.05 IU/mL LH; IVM_2 consisted of 1.64 IU/mL FSH, 1.06 IU/mL LH, and 1 μg/mL 17ß-estradiol. Differences in hormonal supplementation did not produce significant differences in oocyte maturation rates, which were 39.4% in IVM_1 and 34.3% in IVM_2. Matured oocytes were microinjected with homologous frozen-thawed spermatozoa, and subsequent cleavage rates were 30.8% and 58.3%, respectively. Half of the embryos derived from oocytes matured in IVM_1 developed into blastocysts, whereas only 28.6% of embryos from oocytes matured in IVM_2 reached the blastocyst stage. Morula stages were present from Day 6 onward, and blastocyst stages from Day 9 on, indicating a slower developmental speed in comparison with domestic cats. This is the first report of in vitro-produced blastocysts using ICSI in the lion, and the results report that IVM and ICSI can be successfully performed with cumulus-oocyte complexes retrieved from ovaries after eight hours of shipping, obtaining competent embryos in culture. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Non-degradable contrast agent with selective phagocytosis for cellular and hepatic magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei-Yan [Nanchang University, College of Chemistry (China); Gu, Zhe-Jia [Nanchang University, Institute for Advanced Study (China); Zhao, Dawen [UT Southwestern Medical Center, Department of Radiology (United States); Tang, Qun, E-mail: tangqun@ncu.edu.cn [Nanchang University, Institute for Advanced Study (China)

    2015-09-15

    Degradation is the long-existing toxic issue of metal-containing inorganic medicine. In this paper, we fully investigated the degradation of dextran-coated KMnF{sub 3} nanocube in the in vitro and in vivo surroundings. Different from the general decomposing and ion releasing events, this special agent is resistant to acidic environment, as well as ion exchange. Non-degradability was proved by simulated and real cellular experiments. Moreover, it can be engulfed in the macrophage cells and kept stable in the lysosome. Due to its stability and highly selective phagocytosis, implanted liver cancer can be clearly visualized after administration.

  3. Artesunate Activates Mitochondrial Apoptosis in Breast Cancer Cells via Iron-catalyzed Lysosomal Reactive Oxygen Species Production*

    Science.gov (United States)

    Hamacher-Brady, Anne; Stein, Henning A.; Turschner, Simon; Toegel, Ina; Mora, Rodrigo; Jennewein, Nina; Efferth, Thomas; Eils, Roland; Brady, Nathan R.

    2011-01-01

    The antimalarial agent artesunate (ART) activates programmed cell death (PCD) in cancer cells in a manner dependent on the presence of iron and the generation of reactive oxygen species. In malaria parasites, ART cytotoxicity originates from interactions with heme-derived iron within the food vacuole. The analogous digestive compartment of mammalian cells, the lysosome, similarly contains high levels of redox-active iron and in response to specific stimuli can initiate mitochondrial apoptosis. We thus investigated the role of lysosomes in ART-induced PCD and determined that in MCF-7 breast cancer cells ART activates lysosome-dependent mitochondrial outer membrane permeabilization. ART impacted endolysosomal and autophagosomal compartments, inhibiting autophagosome turnover and causing perinuclear clustering of autophagosomes, early and late endosomes, and lysosomes. Lysosomal iron chelation blocked all measured parameters of ART-induced PCD, whereas lysosomal iron loading enhanced death, thus identifying lysosomal iron as the lethal source of reactive oxygen species upstream of mitochondrial outer membrane permeabilization. Moreover, lysosomal inhibitors chloroquine and bafilomycin A1 reduced ART-activated PCD, evidencing a requirement for lysosomal function during PCD signaling. ART killing did not involve activation of the BH3-only protein, Bid, yet ART enhanced TNF-mediated Bid cleavage. We additionally demonstrated the lysosomal PCD pathway in T47D and MDA-MB-231 breast cancer cells. Importantly, non-tumorigenic MCF-10A cells resisted ART-induced PCD. Together, our data suggest that ART triggers PCD via engagement of distinct, interconnected PCD pathways, with hierarchical signaling from lysosomes to mitochondria, suggesting a potential clinical use of ART for targeting lysosomes in cancer treatment. PMID:21149439

  4. Protective effect of squalene on certain lysosomal hydrolases and free amino acids in isoprenaline-induced myocardial infarction in rats

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Surendraraj, A.; Anandan, R.

    2010-01-01

    This study was aimed to evaluate the preventive role of squalene on free amino acids and lysosomal alterations in experimentally induced myocardial infarction in rats. The levels of lysosomal enzymes (beta-glucuronidase, beta-galactosidase, beta-glucosidase, acid phosphatase and cathepsin D......) in plasma and lysosomal fractions, hydroxyproline content and free amino acids in heart tissue were determined. Isoprenaline administration to rats resulted in decreased stability of the membranes which was reflected by significantly (p...

  5. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice.

    Science.gov (United States)

    Kook, Seunghyi; Wang, Ping; Young, Lisa R; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S; Gonzales, Linda; Beers, Michael F; Guttentag, Susan

    2016-04-15

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients.

  6. Polysaccharide Degradation

    Science.gov (United States)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  7. The expression changes of Nicastrin in neuronal cells after lysosomal inhibitors treatment%溶酶体酶抑制剂对神经细胞内Nicastrin表达水平的影响

    Institute of Scientific and Technical Information of China (English)

    彭雪华; 龙志敏; 骆世芳; 贺桂琼

    2012-01-01

    Objective To explore whether the lysosomal pathway was involved in the degradation of Alzheimer' s disease ( AD ) -related protein Nicastrin( NCT). Methods Following generation of NCT stable cell lines, various methods such as Western blotting, double immunofluorescent staining and cell fractionation, combined with lysosomal inhibition were used to check NCT expression level in NCT stable cell line. Results Cell fractionation experiment showed that NCT distributed primarily in ER and Golgi apparatus, few NCT located in lyso-some. Treatment of cells with lysosomal inhibitors significantly increased both endogenous and exogenous mature NCT ( mNCT) in NCT stable cells or non-transfected neuronal cells, and the effect of lysosomal inhibitor on mNCT was time- and dose-dependent; however, lysosomal inhibitor had no effect on immature NCT (imNCT). Immunofluorescent microscopic analysis showed that lysosomal inhibition leaded to the accumulation of NCT in lysosomal apparatus. Conclusions The lysosomal pathway is involved in the degradation of mNCT in neuronal cells%目的 探讨溶酶体酶抑制剂对阿尔茨海默病(AD)相关蛋白Nicastrin(NCT)表达的影响,以期明确NCT的蛋白降解是否与溶酶体途径有关.方法 在用人神经母细胞瘤细胞SH-SY5Y建立稳定表达NCT细胞株的基础上,应用溶酶体酶抑制剂处理NCT细胞株,并结合Western印迹、亚细胞器的分级分离、免疫荧光双标等技术,检测溶酶体酶抑制剂处理后神经细胞内NCT的表达变化.结果 亚细胞器分级分离实验显示,正常情况下神经细胞内的NCT主要分布于内质网和高尔基复合体,少量NCT分布于溶酶体.Western印迹结果显示,溶酶体酶抑制剂处理后,神经细胞内源性和外源性成熟NCT(mNCT)的表达显著增强,且溶酶体酶抑制剂氯喹对mNCT蛋白表达的增强效应呈剂量依赖性和时间依赖性,但溶酶体抑制剂对非成熟NCT(imNCT)的表达无影响;免疫荧光双标结果显

  8. Glucagon-like Peptide-1 Protects Pancreatic Beta-cells from Death by Increasing Autophagic Flux and Restoring Lysosomal Function.

    Science.gov (United States)

    Zummo, Francesco P; Cullen, Kirsty S; Honkanen-Scott, Minna; Shaw, James Am; Lovat, Penny E; Arden, Catherine

    2017-02-23

    Studies in animal models of type 2 diabetes have shown that glucagon-like peptide-1 (GLP-1) receptor agonists prevent β-cell loss. Whether GLP-1 mediates β-cell survival via the key lysosomal-mediated process of autophagy is unknown.Here we report that treatment of INS-1E β-cells and primary islets with glucolipotoxicity (0.5mmol/l palmitate, 25mmol/l glucose) increases LC3 II, a marker of autophagy. Further analysis indicates a blockage in autophagic flux associated with lysosomal dysfunction. Accumulation of defective lysosomes leads to lysosomal membrane permeabilisation (LMP) and release of Cathepsin D, which contributes to cell death. Our data further demonstrated defects in autophagic flux and lysosomal staining in human samples of type 2 diabetes. Co-treatment with the GLP-1 receptor agonist exendin-4 reversed the lysosomal dysfunction, relieving the impairment in autophagic flux and further stimulated autophagy. siRNA knockdown showed the restoration of autophagic flux is also essential for the protective effects of exendin-4.Collectively, our data highlights lysosomal dysfunction as a critical mediator of β-cell loss and shows that exendin-4 improves cell survival via restoration of lysosomal function and autophagic flux. Modulation of autophagy / lysosomal homeostasis may thus define a novel therapeutic strategy for type 2 diabetes, with the GLP-1 signalling pathway as a potential focus.

  9. Does the time interval between antimüllerian hormone serum sampling and initiation of ovarian stimulation affect its predictive ability in in vitro fertilization-intracytoplasmic sperm injection cycles with a gonadotropin-releasing hormone antagonist?

    DEFF Research Database (Denmark)

    Polyzos, Nikolaos P; Nelson, Scott M; Stoop, Dominic

    2013-01-01

    To investigate whether the time interval between serum antimüllerian hormone (AMH) sampling and initiation of ovarian stimulation for in vitro fertilization-intracytoplasmic sperm injection (IVF-ICSI) may affect the predictive ability of the marker for low and excessive ovarian response.......To investigate whether the time interval between serum antimüllerian hormone (AMH) sampling and initiation of ovarian stimulation for in vitro fertilization-intracytoplasmic sperm injection (IVF-ICSI) may affect the predictive ability of the marker for low and excessive ovarian response....

  10. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease.

  11. Induction, adaptation and recovery of lysosomal integrity in green-lipped mussel Perna viridis.

    Science.gov (United States)

    Fang, J K H; Wu, R S S; Zheng, G J; Lam, P K S; Shin, P K S

    2008-01-01

    Biomarkers are generally applied to detect pollution in environmental monitoring. Such biological responses should accurately reflect the stress over time in a quantitative manner. As such, the initial and maximum responses induced by stress, as well as adaptation and recovery of these biomarkers, need to be fully understood or else erroneous false-negative or false-positive may be arrived. However, most of the biomarker studies only provided information on initially induced responses under different concentrations of toxicants, while biological adaptation and recovery were poorly known. In this study, the time required for induction, adaptation and recovery of lysosomal integrity in green-lipped mussel Perna viridis upon exposure to benzo[a]pyrene was investigated over a period of 62 days. Maximum induction occurred on day 6 when lysosomal integrity was significantly reduced by 51%, and no further change or adaptation was detected thereafter. When mussels were depurated in clean seawater after 18 days of exposure to benzo[a]pyrene, a gradual recovery was observed, with lysosomal integrity returning to its background level and showing a complete recovery after 20 days of depuration. Lysosomal integrity was significantly correlated with the body burden concentrations of benzo[a]pyrene and condition index of the mussels. The relatively fast induction (6 days) and recovery (20 days) without apparent adaptation suggested that lysosomal integrity in P. viridis can serve as a good biomarker in biomonitoring, as its response is not likely to generate both false-negative and false-positive results.

  12. Not nanocarbon but dispersant induced abnormality in lysosome in macrophages in vivo

    Science.gov (United States)

    Yudasaka, Masako; Zhang, Minfang; Matsumura, Sachiko; Yuge, Ryota; Ichihashi, Toshinari; Irie, Hiroshi; Shiba, Kiyotaka; Iijima, Sumio

    2015-05-01

    The properties of nanocarbons change from hydrophobic to hydrophilic as a result of coating them with dispersants, typically phospholipid polyethylene glycols, for biological studies. It has been shown that the dispersants remain attached to the nanocarbons when they are injected in mice and influence the nanocarbons’ biodistribution in vivo. We show in this report that the effects of dispersants also appear at the subcellular level in vivo. Carbon nanohorns (CNHs), a type of nanocarbon, were dispersed with ceramide polyethylene glycol (CPEG) and intravenously injected in mice. Histological observations and electron microscopy with energy dispersive x-ray analysis revealed that, in liver and spleen, the lysosome membranes were damaged, and the nanohorns formed a complex with hemosiderin in the lysosomes of the macrophages. It is inferred that the lysosomal membrane was damaged by sphigosine generated as a result of CPEG decomposition, which changed the intra lysosomal conditions, inducing the formation of the CPEG-CNH and hemosiderin complex. For comparison, when glucose was used instead of CPEG, neither the nanohorn-hemosiderin complex nor lysosomal membrane damage was found. Our results suggest that surface functionalization can control the behavior of nancarbons in cells in vivo and thereby improve their suitability for medical applications.

  13. Intracytoplasmic Sperm Injection (ICSI)

    Science.gov (United States)

    ... sperm must attach to the outside of the egg. Once attached, the sperm pushes through the outer layer to the inside ... in vitro fertilization (IVF) to help fertilize the egg. During ICSI, a single sperm is injected directly into the cytoplasm the egg. ...

  14. The role of VAMP7/TI-VAMP in cell polarity and lysosomal exocytosis in vivo.

    Science.gov (United States)

    Sato, Mahito; Yoshimura, Shinichiro; Hirai, Rika; Goto, Ayako; Kunii, Masataka; Atik, Nur; Sato, Takashi; Sato, Ken; Harada, Reiko; Shimada, Junko; Hatabu, Toshimitsu; Yorifuji, Hiroshi; Harada, Akihiro

    2011-10-01

    VAMP7 or tetanus neurotoxin-insensitive vesicle- associated membrane protein (TI-VAMP) has been proposed to regulate apical transport in polarized epithelial cells, axonal transport in neurons and lysosomal exocytosis. To investigate the function of VAMP7 in vivo, we generated VAMP7 knockout mice. Here, we show that VAMP7 knockout mice are indistinguishable from control mice and display a similar localization of apical proteins in the kidney and small intestine and a similar localization of axonal proteins in the nervous system. Neurite outgrowth of cultured mutant hippocampal neurons was reduced in mutant neurons. However, lysosomal exocytosis was not affected in mutant fibroblasts. Our results show that VAMP7 is required in neurons to extend axons to the full extent. However, VAMP7 does not seem to be required for epithelial cell polarity and lysosomal exocytosis.

  15. Guanidinylated neomycin mediates heparan sulfate-dependent transport of active enzymes to lysosomes.

    Science.gov (United States)

    Sarrazin, Stéphane; Wilson, Beth; Sly, William S; Tor, Yitzhak; Esko, Jeffrey D

    2010-07-01

    Guanidinylated neomycin (GNeo) can transport bioactive, high molecular weight cargo into the interior of cells in a process that depends on cell surface heparan sulfate proteoglycans. In this report, we show that GNeo-modified quantum dots bind to cell surface heparan sulfate, undergo endocytosis and eventually reach the lysosomal compartment. An N-hydroxysuccinimide activated ester of GNeo (GNeo-NHS) was prepared and conjugated to two lysosomal enzymes, beta-D-glucuronidase (GUS) and alpha-L-iduronidase. Conjugation did not interfere with enzyme activity and enabled binding of the enzymes to heparin-Sepharose and heparan sulfate on primary human fibroblasts. Cells lacking the corresponding lysosomal enzyme took up sufficient amounts of the conjugated enzymes to restore normal turnover of glycosaminoglycans. The high capacity of proteoglycan-mediated uptake suggests that this method of delivery might be used for enzyme replacement or introduction of foreign enzymes into cells.

  16. Molecular characterization of aspartylglucosaminidase, a lysosomal hydrolase upregulated during strobilation in the moon jellyfish, Aurelia aurita.

    Science.gov (United States)

    Tsujita, Natsumi; Kuwahara, Hiroyuki; Koyama, Hiroki; Yanaka, Noriyuki; Arakawa, Kenji; Kuniyoshi, Hisato

    2017-05-01

    The life cycle of the moon jellyfish, Aurelia aurita, alternates between a benthic asexual polyp stage and a planktonic sexual medusa (jellyfish) stage. Transition from polyp to medusa is called strobilation. To investigate the molecular mechanisms of strobilation, we screened for genes that are upregulated during strobilation using the differential display method and we identified aspartylglucosaminidase (AGA), which encodes a lysosomal hydrolase. Similar to AGAs from other species, Aurelia AGA possessed an N-terminal signal peptide and potential N-glycosylation sites. The genomic region of Aurelia AGA was approximately 9.8 kb in length and contained 12 exons and 11 introns. Quantitative RT-PCR analysis revealed that AGA expression increased during strobilation, and was then decreased in medusae. To inhibit AGA function, we administered the lysosomal acidification inhibitors, chloroquine or bafilomycin A1, to animals during strobilation. Both inhibitors disturbed medusa morphogenesis at the oral end, suggesting involvement of lysosomal hydrolases in strobilation.

  17. Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease

    DEFF Research Database (Denmark)

    Kovács, Gábor G; Gelpi, Ellen; Ströbel, Thomas

    2007-01-01

    The endosomal-lysosomal system (ELS) has been suggested to play a role in the pathogenesis of prion diseases. The purpose of this study was to examine how experimental observations can be translated to human neuropathology and whether alterations of the ELS relate to neuropathologic changes....... Combined with stereologic techniques, we examined components of the ELS in human sporadic Creutzfeldt-Jakob disease brains. We immunostained for the early endosomal marker Rab5 and lysosomal enzymes cathepsin D and B. We determined neuron-specific changes in their expression and correlated......-immunoreactive lysosomes. The intraneuronal distribution of cathepsin D and B diverges between Purkinje cells and frontal cortical neurons in sporadic Creutzfeldt-Jakob disease brains. We demonstrated focal intra- and perineuronal colocalization of cathepsin D and PrP. Our results indicate that effects in the ELS...

  18. The inactivation of the sortilin gene leads to a partial disruption of prosaposin trafficking to the lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jibin; Racicott, Jesse [Department of Anatomy and Cell Biology, McGill University, Montreal (Canada); Morales, Carlos R., E-mail: carlos.morales@mcgill.ca [Department of Anatomy and Cell Biology, McGill University, Montreal (Canada)

    2009-11-01

    Lysosomes are intracellular organelles which contain enzymes and activator proteins involved in the digestion and recycling of a variety of cellular and extracellular substances. We have identified a novel sorting receptor, sortilin, which is involved in the lysosomal trafficking of the sphingolipid activator proteins, prosaposin and GM{sub 2}AP, and the soluble hydrolases cathepsin D, cathepsin H, and acid sphingomyelinase. Sortilin belongs to a growing family of receptors with homology to the yeast Vps10 protein, which acts as a lysosomal sorting receptor for carboxypeptidase Y. In this study we examined the effects of the sortilin gene inactivation in mice. The inactivation of this gene did not yield any noticeable lysosomal pathology. To determine the existence of an alternative receptor complementing the sorting function of sortilin, we quantified the concentration of prosaposin in the lysosomes of the nonciliated epithelial cells lining the efferent ducts. These cells were chosen because they express sortilin and have a large number of lysosomes containing prosaposin. In addition, the nonciliated cells are known to endocytose luminal prosaposin that is synthesized and secreted by Sertoli cells into the seminiferous luminal fluids. Consequently, the nonciliated cells are capable of targeting both exogenous and endogenous prosaposin to the lysosomes. Using electron microscope immunogold labeling and quantitative analysis, our results demonstrate that inactivation of the sortilin gene produces a significant decrease of prosaposin in the lysosomes. When luminal prosaposin was excluded from the efferent ducts, the level of prosaposin in lysosomes was even lower in the mutant mice. Nonetheless, a significant amount of prosaposin continues to reach the lysosomal compartment. These results strongly suggest the existence of an alternative receptor that complements the function of sortilin and explains the lack of lysosomal storage disorders in the sortilin

  19. Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A.

    Science.gov (United States)

    Böckenhoff, Annika; Cramer, Sandra; Wölte, Philipp; Knieling, Simeon; Wohlenberg, Claudia; Gieselmann, Volkmar; Galla, Hans-Joachim; Matzner, Ulrich

    2014-02-26

    Enzyme replacement therapy (ERT) is a treatment option for lysosomal storage disorders (LSDs) caused by deficiencies of soluble lysosomal enzymes. ERT depends on receptor-mediated transport of intravenously injected recombinant enzyme to lysosomes of patient cells. The blood-brain barrier (BBB) prevents efficient transfer of therapeutic polypeptides from the blood to the brain parenchyma and thus hinders effective treatment of LSDs with CNS involvement. We compared the potential of five brain-targeting peptides to promote brain delivery of the lysosomal enzyme arylsulfatase A (ASA). Fusion proteins between ASA and the protein transduction domain of the human immunodeficiency virus TAT protein (Tat), an Angiopep peptide (Ang-2), and the receptor-binding domains of human apolipoprotein B (ApoB) and ApoE (two versions, ApoE-I and ApoE-II) were generated. All ASA fusion proteins were enzymatically active and targeted to lysosomes when added to cultured cells. In contrast to wild-type ASA, which is taken up by mannose-6-phosphate receptors, all chimeric proteins were additionally endocytosed via mannose-6-phosphate-independent routes. For ASA-Ang-2, ASA-ApoE-I, and ASA-ApoE-II, uptake was partially due to the low-density lipoprotein receptor-related protein 1. Transendothelial transfer in a BBB cell culture model was elevated for ASA-ApoB, ASA-ApoE-I, and ASA-ApoE-II. Brain delivery was, however, increased only for ASA-ApoE-II. ApoE-II was also superior to wild-type ASA in reducing lysosomal storage in the CNS of ASA-knock-out mice treated by ERT. Therefore, the ApoE-derived peptide appears useful to treat metachromatic leukodystrophy and possibly other neurological disorders more efficiently.

  20. Cytosolic peroxidases protect the lysosome of bloodstream African trypanosomes from iron-mediated membrane damage.

    Directory of Open Access Journals (Sweden)

    Corinna Hiller

    2014-04-01

    Full Text Available African trypanosomes express three virtually identical non-selenium glutathione peroxidase (Px-type enzymes which preferably detoxify lipid-derived hydroperoxides. As shown previously, bloodstream Trypanosoma brucei lacking the mitochondrial Px III display only a weak and transient proliferation defect whereas parasites that lack the cytosolic Px I and Px II undergo extremely fast lipid peroxidation and cell lysis. The phenotype can completely be rescued by supplementing the medium with the α-tocopherol derivative Trolox. The mechanism underlying the rapid cell death remained however elusive. Here we show that the lysosome is the origin of the cellular injury. Feeding the px I-II knockout parasites with Alexa Fluor-conjugated dextran or LysoTracker in the presence of Trolox yielded a discrete lysosomal staining. Yet upon withdrawal of the antioxidant, the signal became progressively spread over the whole cell body and was completely lost, respectively. T. brucei acquire iron by endocytosis of host transferrin. Supplementing the medium with iron or transferrin induced, whereas the iron chelator deferoxamine and apo-transferrin attenuated lysis of the px I-II knockout cells. Immunofluorescence microscopy with MitoTracker and antibodies against the lysosomal marker protein p67 revealed that disintegration of the lysosome precedes mitochondrial damage. In vivo experiments confirmed the negligible role of the mitochondrial peroxidase: Mice infected with px III knockout cells displayed only a slightly delayed disease development compared to wild-type parasites. Our data demonstrate that in bloodstream African trypanosomes, the lysosome, not the mitochondrion, is the primary site of oxidative damage and cytosolic trypanothione/tryparedoxin-dependent peroxidases protect the lysosome from iron-induced membrane peroxidation. This process appears to be closely linked to the high endocytic rate and distinct iron acquisition mechanisms of the infective

  1. Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity.

    Science.gov (United States)

    Marino, Julieta; García Vior, María C; Furmento, Verónica A; Blank, Viviana C; Awruch, Josefina; Roguin, Leonor P

    2013-11-01

    In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells. ROS led to an early permeabilization of lysosomal membranes as demonstrated by the reduction of lysosome fluorescence with acridine orange and the release of lysosomal proteases to cytosol. Treatment with antioxidants inhibited ROS generation, preserved the integrity of lysosomal membrane and increased cell proliferation in a concentration-dependent manner. Lysosome disruption was followed by mitochondrial depolarization, cytosolic release of cytochrome C and caspases activation. Although no change in the total amount of Bax was observed, the translocation of Bax from cytosol to mitochondria, the cleavage of the pro-apoptotic protein Bid, together with the decrease of the anti-apoptotic proteins Bcl-XL and Bcl-2 indicated the involvement of Bcl-2 family proteins in the induction of the mitochondrial pathway. It was also demonstrated that cathepsin D, but not caspase-8, contributed to Bid cleavage. In conclusion, Pc13-induced cell photodamage is triggered by ROS generation and activation of the mitochondrial apoptotic pathway through the release of lysosomal proteases. In addition, our results also indicated that Pc13 induced

  2. Rapid recycling of Ca2+ between IP3-sensitive stores and lysosomes.

    Directory of Open Access Journals (Sweden)

    Cristina I López Sanjurjo

    Full Text Available Inositol 1,4,5-trisphosphate (IP3 evokes release of Ca2+ from the endoplasmic reticulum (ER, but the resulting Ca2+ signals are shaped by interactions with additional intracellular organelles. Bafilomycin A1, which prevents lysosomal Ca2+ uptake by inhibiting H+ pumping into lysosomes, increased the amplitude of the initial Ca2+ signals evoked by carbachol in human embryonic kidney (HEK cells. Carbachol alone and carbachol in combination with parathyroid hormone (PTH evoke Ca2+ release from distinct IP3-sensitive Ca2+ stores in HEK cells stably expressing human type 1 PTH receptors. Bafilomycin A1 similarly exaggerated the Ca2+ signals evoked by carbachol or carbachol with PTH, indicating that Ca2+ released from distinct IP3-sensitive Ca2+ stores is sequestered by lysosomes. The Ca2+ signals resulting from store-operated Ca2+ entry, whether evoked by thapsigargin or carbachol, were unaffected by bafilomycin A1. Using Gd3+ (1 mM to inhibit both Ca2+ entry and Ca2+ extrusion, HEK cells were repetitively stimulated with carbachol to assess the effectiveness of Ca2+ recycling to the ER after IP3-evoked Ca2+ release. Blocking lysosomal Ca2+ uptake with bafilomycin A1 increased the amplitude of each carbachol-evoked Ca2+ signal without affecting the rate of Ca2+ recycling to the ER. This suggests that Ca2+ accumulated by lysosomes is rapidly returned to the ER. We conclude that lysosomes rapidly, reversibly and selectively accumulate the Ca2+ released by IP3 receptors residing within distinct Ca2+ stores, but not the Ca2+ entering cells via receptor-regulated, store-operated Ca2+ entry pathways.

  3. Physical-chemical requirements for the catalysis of substrates by lysosomal phospholipase A1.

    Science.gov (United States)

    Robinson, M; Waite, M

    1983-12-10

    The catalytic properties of a 1440-fold purified preparation of lysosomal phospholipase A1 were examined. The preparation was at least 95% specific for the sn-1 position of neat phosphatidylethanolamine (PE). The apparent specificity of the enzyme toward substrates was affected by three factors: the physical arrangement of molecules in the substrate aggregate, the charge on the lipid-water interface and the chemical structure of the substrate as it relates to the active site of the enzyme. Of various phospholipids tested in the absence of detergent PE was the preferred substrate, phosphatidylcholine (PC) was hydrolyzed at one-fifth the rate of PE, while phosphatidylinositol (PI), phosphatidylserine (PS), and phosphatidylglycerol (PG) were degraded very slowly. Triton WR1339 stimulated the hydrolysis of PC, PI, PS, and PG but inhibited the hydrolysis of PE, with PG the preferred substrate at a 6:1 Triton/phospholipid ratio. The preference for PC over PE in detergent mixtures was attributed to the active site fit of the chemical structures of the substrate molecules. The enzyme preferentially hydrolyzed neat PE containing palmitic and oleic acids at position 1. A negative surface charge was required for the hydrolysis of PC and PE. Ca2+ stimulated the hydrolysis of PI, PS, and PG but inhibited the hydrolysis of PE. The inhibition of PE hydrolysis by Ca2+ was the result of an alteration in the surface charge of the PE vesicle. Chromatography of phospholipase A1 on concanavalin A-Sepharose resulted in a loss of activity toward acidic phospholipids which could be restored with Ca2+. Plasmalogen PE was found to inhibit the hydrolysis of diacyl-PE at the level of interfacial binding but not by competition for the active site of the enzyme. These results suggest that the hexagonal structure of PE represents a preferred physical form for catalysis by phospholipase A1, while the bilayer form is less readily attacked. Dispersion of the substrate in the inert detergent

  4. Characterization of Two-pore Channel 2 (TPCN2)-mediated Ca2+ Currents in Isolated Lysosomes*

    OpenAIRE

    Schieder, Michael; Rötzer, Katrin; Brüggemann, Andrea; Biel, Martin; Wahl-Schott, Christian A.

    2010-01-01

    Two-pore channels (TPCNs) have been proposed to form lysosomal Ca2+ release channels that are activated by nicotinic acid adenine dinucleotide phosphate. Here, we employ a glass chip-based method to record for the first time nicotinic acid adenine dinucleotide phosphate -dependent currents through a two-pore channel (TPCN2) from intact lysosomes. We show that TPCN2 is a highly selective Ca2+ channel that is regulated by intralysosomal pH. Using site-directed mutagenesis, we identify an amino ...

  5. Three-layer poly(methyl methacrylate) microsystem for analysis of lysosomal enzymes for diagnostic purposes

    DEFF Research Database (Denmark)

    Kwapiszewski, Radoslaw; Kwapiszewska, Karina; Kutter, Jörg P

    2015-01-01

    Lysosomal storage diseases are chronic, progressive and typically have a devastating impact on the patient and the family. The diagnosis of these diseases is still a challenge, however, even for trained specialists. Accurate diagnostic methods and high-throughput tools that could be readily...... incorporated into existing screening laboratories are urgently required. We propose a new method for measuring the activity of lysosomal enzymes using a microfluidic device. The principle of the method is the fluorometric determination of a protonated form of 4-methylumbelliferone directly in the enzymatic...

  6. Effects of the lysosomal destabilizing drug siramesine on glioblastoma in vitro and in vivo

    DEFF Research Database (Denmark)

    Jensen, Stine S.; Asferg Petterson, Stine; Halle, Bo

    2017-01-01

    confirmed by immunohistochemical staining of histological sections of spheroids, spheroids in brain slice cultures and tumors in mice brains. Results: The results showed that siramesine killed standard glioma cell lines in vitro, and loss of acridine orange staining suggested a compromised lysosomal...... cell death and inhibited tumor cell migration. This could not be reproduced in the organotypic three dimensional spheroid-brain slice culture model or in the mice xenograft model. Conclusions: In conclusion the in vitro results obtained with tumor cells and spheroids suggest a potential of lysosomal...

  7. Lysosomal membrane stability of the mussel, Mytilus galloprovincialis (L.), as a biomarker of tributyltin exposure.

    Science.gov (United States)

    Okoro, Hussein K; Snyman, Reinette G; Fatoki, Olalekan S; Adekola, Folahan A; Ximba, Bhekumusa J; Slabber, Michelle Y

    2015-05-01

    The effect of tributyltin (TBT) on the stability of hemocytic lysosome membranes of the mussel, Mytilus galloprovincialis, and the use thereof as a biomarker of TBT-induced stress, was investigated. Mussels were exposed to 0.1 and 1.0 µg/L tributyltin respectively for 4 weeks. Lysosomal membrane stability of hemocytes was tested weekly by means of the neutral red retention time (NRRT) assay, after which the mussel samples were analyzed for TBT content. The two exposed groups exhibited significantly increased (p galloprovincialis.

  8. Effect of various lysosomes and endotoxin on vascular permeability in frogs and mice.

    Science.gov (United States)

    Csákó, G; Reichel, A; Csernyánszky, H; Reichel, U

    1975-01-01

    Blood-lymph permeability increasing effects of frog liver lysosomes, Escherichia coli 0111 endotoxin, bradykinin and serotonin were demonstrated in frogs with a method developed by the authors. These actions were expressed in a faster dye saturation in the lymph as compared to that of the controls. 2. The method is based on the determinations of concentration of Evans blue transported as protein-bound dye into the lymph. 3. Frog liver and polymorphonuclear leukocyte lysosomes had a capillary permeability increasing action tested by local skin response when injecting Evans blue intravenously in mice. 4. All these phenomena are similar to events described earlier in mammalian systems.

  9. Ubiquilin/Dsk2 promotes inclusion body formation and vacuole (lysosome)-mediated disposal of mutated huntingtin.

    Science.gov (United States)

    Chuang, Kun-Han; Liang, Fengshan; Higgins, Ryan; Wang, Yanchang

    2016-07-01

    Ubiquilin proteins contain a ubiquitin-like domain (UBL) and ubiquitin-associated domain(s) that interact with the proteasome and ubiquitinated substrates, respectively. Previous work established the link between ubiquilin mutations and neurodegenerative diseases, but the function of ubiquilin proteins remains elusive. Here we used a misfolded huntingtin exon I containing a 103-polyglutamine expansion (Htt103QP) as a model substrate for the functional study of ubiquilin proteins. We found that yeast ubiquilin mutant (dsk2Δ) is sensitive to Htt103QP overexpression and has a defect in the formation of Htt103QP inclusion bodies. Our evidence further suggests that the UBL domain of Dsk2 is critical for inclusion body formation. Of interest, Dsk2 is dispensable for Htt103QP degradation when Htt103QP is induced for a short time before noticeable inclusion body formation. However, when the inclusion body forms after a long Htt103QP induction, Dsk2 is required for efficient Htt103QP clearance, as well as for autophagy-dependent delivery of Htt103QP into vacuoles (lysosomes). Therefore our data indicate that Dsk2 facilitates vacuole-mediated clearance of misfolded proteins by promoting inclusion body formation. Of importance, the defect of inclusion body formation in dsk2 mutants can be rescued by human ubiquilin 1 or 2, suggesting functional conservation of ubiquilin proteins.

  10. The Possible "Proton Sponge " Effect of Polyethylenimine (PEI) Does Not Include Change in Lysosomal pH

    DEFF Research Database (Denmark)

    Søndergaard, Rikke Vicki; Mattebjerg, Maria Ahlm; Henriksen, Jonas Rosager

    2013-01-01

    " hypothesis. Our measurements show that PEI does not induce change in lysosomal pH as previously suggested and quantification of PEI concentrations in lysosomes makes it uncertain that the "proton sponge " effect is the dominant mechanism of polyplex escape.Molecular Therapy (2012); doi:10.1038/mt.2012.185....

  11. Iron content and acid phosphatase activity in hepatic parenchymal lysosomes of patients with hemochromatosis before and after phlebotomy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cleton, M.I.; de Bruijn, W.C.; van Blokland, W.T.; Marx, J.J.; Roelofs, J.M.; Rademakers, L.H.

    1988-03-01

    Lysosomal structures in liver parenchymal cells of 3 patients with iron overload and of 3 subjects without iron-storage disorders were investigated. A combination of enzyme cytochemistry--with cerium as a captive ion to demonstrate lysosomal acid phosphatase activity--and electron probe X-ray microanalysis (EPMA) was used. We were able (1) to define and quantify lysosomal structures as lysosomes, siderosomes, or residual bodies, (2) to quantify the amount of iron and cerium simultaneously in these structures, and (3) to evaluate a possible relation between iron storage and enzyme activity. With histopathologically increased iron storage, the number of siderosomes had increased at the cost of lysosomes, with a corresponding increase in acid phosphatase activity in both organelles. In histopahtologically severe iron overload, however, acid phosphatase activity was low or not detectable and most of the iron was stored in residual bodies. After phlebotomy treatment, the number of siderosomes had decreased in favor of the lysosomes, approaching values obtained in control subjects, and acid phosphatase activity was present in all iron-containing structures. In this way a relationship between iron storage and enzyme activity was established. The iron content of the individual lysosomal structures per unit area had increased with histopathologically increased iron storage and had decreased after phlebotomy treatment. From this observation, it is concluded that the iron status of the patient is not only reflected by the amount of iron-containing hepatocytes but, as well, by the iron content lysosomal unit area.

  12. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro.

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A; Busto, Rebeca

    2016-03-18

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes' internal milieu induced by haloperidol affects lysosomal functionality.

  13. Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis.

    Science.gov (United States)

    Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel W; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A

    2011-07-01

    The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. We recently observed broad therapeutic effects of stimulating autophagic-lysosomal proteolysis in the TgCRND8 mouse model of AD that exhibits defective proteolytic clearance of autophagic substrates, robust intralysosomal amyloid-β peptide (Aβ) accumulation, extracellular β-amyloid deposition and cognitive deficits. By genetically deleting the lysosomal cysteine protease inhibitor, cystatin B (CstB), to selectively restore depressed cathepsin activities, we substantially cleared Aβ, ubiquitinated proteins and other autophagic substrates from autolysosomes/lysosomes and rescued autophagic-lysosomal pathology, as well as reduced total Aβ40/42 levels and extracellular amyloid deposition, highlighting the underappreciated importance of the lysosomal system for Aβ clearance. Most importantly, lysosomal remediation prevented the marked learning and memory deficits in TgCRND8 mice. Our findings underscore the pathogenic significance of autophagic-lysosomal dysfunction in AD and demonstrate the value of reversing this dysfunction as an innovative therapeautic strategy for AD.

  14. Impact of high cholesterol in a Parkinson's disease model: Prevention of lysosomal leakage versus stimulation of α-synuclein aggregation.

    Science.gov (United States)

    Eriksson, Ida; Nath, Sangeeta; Bornefall, Per; Giraldo, Ana Maria Villamil; Öllinger, Karin

    2017-03-01

    Parkinson's disease is characterized by accumulation of intraneuronal cytoplasmic inclusions, Lewy bodies, which mainly consist of aggregated α-synuclein. Controversies exist as to whether high blood cholesterol is a risk factor for the development of the disease and whether statin treatment could have a protective effect. Using a model system of BE(2)-M17 neuroblastoma cells treated with the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)), we found that MPP(+)-induced cell death was accompanied by cholesterol accumulation in a lysosomal-like pattern in pre-apoptotic cells. To study the effects of lysosomal cholesterol accumulation, we increased lysosomal cholesterol through pre-treatment with U18666A and found delayed leakage of lysosomal contents into the cytosol, which reduced cell death. This suggests that increased lysosomal cholesterol is a stress response mechanism to protect lysosomal membrane integrity in response to early apoptotic stress. However, high cholesterol also stimulated the accumulation of α-synuclein. Treatment with the cholesterol-lowering drug lovastatin reduced MPP(+)-induced cell death by inhibiting the production of reactive oxygen species, but did not prevent lysosomal cholesterol increase nor affect α-synuclein accumulation. Our study indicates a dual role of high cholesterol in Parkinson's disease, in which it acts both as a protector against lysosomal membrane permeabilization and as a stimulator of α-synuclein accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Role of lysosomal enzymes released by alveolar macrophages in the pathogenesis of the acute phase of hypersensitivity pneumonitis

    Directory of Open Access Journals (Sweden)

    J. L. Pérez-Arellano

    1995-01-01

    Full Text Available Hydrolytic enzymes are the major constituents of alveolar macrophages (AM and have been shown to be involved in many aspects of the inflammatory pulmonary response. The aim of this study was to evaluate the role of lysosomal enzymes in the acute phase of hypersensitivity pneumonitis (HPs. An experimental study on AM lysosomal enzymes of an HP-guinea-pig model was performed. The results obtained both in vivo and in vitro suggest that intracellular enzymatic activity decrease is, at least partly, due to release of lysosomal enzymes into the medium. A positive but slight correlation was found between extracellular lysosomal activity and four parameters of lung lesion (lung index, bronchoalveolar fluid total (BALF protein concentration, BALF LDH and BALF alkaline phosphatase activities. All the above findings suggest that the AM release of lysosomal enzymes during HP is a factor involved, although possibly not the only one, in the pulmonary lesions appearing in this disease.

  16. TPC1 Has Two Variant Isoforms, and Their Removal Has Different Effects on Endo-Lysosomal Functions Compared to Loss of TPC2

    OpenAIRE

    Ruas, Margarida; Chuang, Kai-Ting; Davis, Lianne C.; Al-Douri, Areej; Tynan, Patricia W.; Tunn, Ruth; Teboul, Lydia; Galione, Antony; Parrington, John

    2014-01-01

    Organelle ion homeostasis within the endo-lysosomal system is critical for physiological functions. Two-pore channels (TPCs) are cation channels that reside in endo-lysosomal organelles, and overexpression results in endo-lysosomal trafficking defects. However, the impact of a lack of TPC expression on endo-lysosomal trafficking is unknown. Here, we characterize Tpcn1 expression in two transgenic mouse lines (Tpcn1 XG716 and Tpcn1 T159) and show expression of a novel evolutionarily conserved ...

  17. Involvement of lysosomal dysfunction in autophagosome accumulation and early pathologies in adipose tissue of obese mice.

    Science.gov (United States)

    Mizunoe, Yuhei; Sudo, Yuka; Okita, Naoyuki; Hiraoka, Hidenori; Mikami, Kentaro; Narahara, Tomohiro; Negishi, Arisa; Yoshida, Miki; Higashibata, Rikako; Watanabe, Shukoh; Kaneko, Hiroki; Natori, Daiki; Furuichi, Takuma; Yasukawa, Hiromine; Kobayashi, Masaki; Higami, Yoshikazu

    2017-04-03

    Whether obesity accelerates or suppresses autophagy in adipose tissue is still debatable. To clarify dysregulation of autophagy and its role in pathologies of obese adipose tissue, we focused on lysosomal function, protease maturation and activity, both in vivo and in vitro. First, we showed that autophagosome formation was accelerated, but autophagic clearance was impaired in obese adipose tissue. We also found protein and activity levels of CTSL (cathepsin L) were suppressed in obese adipose tissue, while the activity of CTSB (cathepsin B) was significantly enhanced. Moreover, cellular senescence and inflammasomes were activated in obese adipose tissue. In 3T3L1 adipocytes, downregulation of CTSL deteriorated autophagic clearance, upregulated expression of CTSB, promoted cellular senescence and activated inflammasomes. Upregulation of CTSB promoted additional activation of inflammasomes. Therefore, we suggest lysosomal dysfunction observed in obese adipose tissue leads to lower autophagic clearance, resulting in autophagosome accumulation. Simultaneously, lysosomal abnormalities, including deteriorated CTSL function and compensatory activation of CTSB, caused cellular senescence and inflammasome activation. Our findings strongly suggest lysosomal dysfunction is involved in early pathologies of obese adipose tissue.

  18. Structural and functional analysis of lysosomal ss-galactosidase and its relation to the protective protein.

    NARCIS (Netherlands)

    H. Morreau (Hans)

    1992-01-01

    textabstractLysosomal B-galactosidase is the glycosidase, that cleaves B-linked galactosyl mmenes from a variety of natural and synthetic substrates. In normal tissues of various species this enzyme appears to associate with two other hydrolases, N-acetyl-o:-neuraminidase and the protective protein.

  19. AP-3 and Rabip4' coordinately regulate spatial distribution of lysosomes.

    Directory of Open Access Journals (Sweden)

    Viorica Ivan

    Full Text Available The RUN and FYVE domain proteins rabip4 and rabip4' are encoded by RUFY1 and differ in a 108 amino acid N-terminal extension in rabip4'. Their identical C terminus binds rab5 and rab4, but the function of rabip4s is incompletely understood. We here found that silencing RUFY1 gene products promoted outgrowth of plasma membrane protrusions, and polarized distribution and clustering of lysosomes at their tips. An interactor screen for proteins that function together with rabip4' yielded the adaptor protein complex AP-3, of which the hinge region in the β3 subunit bound directly to the FYVE domain of rabip4'. Rabip4' colocalized with AP-3 on a tubular subdomain of early endosomes and the extent of colocalization was increased by a dominant negative rab4 mutant. Knock-down of AP-3 had an ever more dramatic effect and caused accumulation of lysosomes in protrusions at the plasma membrane. The most peripheral lysosomes were localized beyond microtubules, within the cortical actin network. Our results uncover a novel function for AP-3 and rabip4' in regulating lysosome positioning through an interorganellar pathway.

  20. Brucella suis-Impaired Specific Recognition of Phagosomes by Lysosomes due to Phagosomal Membrane Modifications

    Science.gov (United States)

    Naroeni, Aroem; Jouy, Nicolas; Ouahrani-Bettache, Safia; Liautard, Jean-Pierre; Porte, Françoise

    2001-01-01

    Brucella species are gram-negative, facultatively intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment in phagocytic and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both types of cells. However, the biochemical mechanisms and microbial factors implicated in Brucella maturation are still completely unknown. We developed two different approaches in an attempt to gain further insight into these mechanisms: (i) a fluorescence microscopy analysis of general intracellular trafficking on whole cells in the presence of Brucella and (ii) a flow cytometry analysis of in vitro reconstitution assays showing the interaction between Brucella suis-containing phagosomes and lysosomes. The fluorescence microscopy results revealed that fusion properties of latex bead-containing phagosomes with lysosomes were not modified in the presence of live Brucella suis in the cells. We concluded that fusion inhibition was restricted to the pathogen phagosome and that the host cell fusion machinery was not altered by the presence of live Brucella in the cell. By in vitro reconstitution experiments, we observed a specific association between killed B. suis-containing phagosomes and lysosomes, which was dependent on exogenously supplied cytosol, energy, and temperature. This association was observed with killed bacteria but not with live bacteria. Hence, this specific recognition inhibition seemed to be restricted to the pathogen phagosomal membrane, as noted in the in vivo experiments. PMID:11119541

  1. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells

    DEFF Research Database (Denmark)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library...... in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 si......), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human