WorldWideScience

Sample records for lysosome volume expansion

  1. Lysosome

    Directory of Open Access Journals (Sweden)

    Ursula Matte BSc, PhD

    2016-12-01

    Full Text Available Since Christian de Duve first described the lysosome in the 1950s, it has been generally presented as a membrane-bound compartment containing acid hydrolases that enables the cell to degrade molecules without being digested by autolysis. For those working on the field of lysosomal storage disorders, the lack of one such hydrolase would lead to undegraded or partially degraded substrate storage inside engorged organelles disturbing cellular function by yet poorly explored mechanisms. However, in recent years, a much more complex scenario of lysosomal function has emerged, beyond and above the cellular “digestive” system. Knowledge on how the impairment of this organelle affects cell functioning may shed light on signs and symptoms of lysosomal disorders and open new roads for therapy.

  2. Lysosome

    National Research Council Canada - National Science Library

    Ursula Matte BSc, PhD; Gabriela Pasqualim BSc, MSc

    2016-01-01

    Since Christian de Duve first described the lysosome in the 1950s, it has been generally presented as a membrane-bound compartment containing acid hydrolases that enables the cell to degrade molecules...

  3. Cardiorenal-endocrine dynamics during and following volume expansion

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, R.S.; Edwards, B.S.; Schwab, T.R.; Heublein, D.M.; Burnett, J.C. Jr.

    1987-02-01

    The relationship between atrial pressure, atrial natriuretic peptide (ANP), the renin-angiotensin-aldosterone system, and renal hemodynamic and excretory function was examined during and following acute 10% body weight saline volume expansion and measurements were made at 3.3, 6.6, and 10% body weight volume expansion in pentobarbital anesthetized dogs. Right atrial pressure (RAP), pulmonary capillary wedge pressure (PCWP), fractional excretion of Na (FE/sub Na/), and ANP all increased in parallel during volume expansion. Plasma renin activity (PRA) and aldosterone decreased in parallel during 10% volume expansion. ANP, PRA and aldosterone were measured by radioimmunoassay. Following 10% volume expansion, saline was infused at the peak urine flow rate to maintain peak volume expansion. Despite continued saline infusion, RAP, PCWP, and ANP decreased in parallel. In contrast, FE/sub Na/ remained increased, and aldosterone and PRA remained depressed. These studies demonstrate that atrial pressures, ANP, and FE/sub Na/ increase in parallel during volume expansion; this suggests a role for ANP in modulating acute atrial volume overload. During stable volume expansion periods, however, despite a decrease in ANP levels, Na excretion remains elevated, suggesting that non-ANP mechanisms may be important in maintaining natriuresis during stable volume expansion.

  4. Review article: volume expansion in patients with cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Kiszka-Kanowitz, Marianne; Bendtsen, Flemming

    2002-01-01

    , and in advanced cirrhosis, especially the non-central parts of the circulation, including the splanchnic blood volume, are expanded by a volume load. Infusion of oncotic material (preferably albumin) is important in the prevention of post-paracentesis circulatory dysfunction. In conclusion, volume expansion...

  5. On the thermal expansion of nanohole free volume in perfluoropolyethers.

    Science.gov (United States)

    Consolati, G

    2005-05-26

    To determine the free volume in polymers, positron annihilation lifetime spectroscopy data are transformed into nanohole volumes by modeling the cavities as spheres or, more generally, using geometries assuming an isotropic thermal expansion. However, this guess could be unrealistic owing to the irregular shape of nanoholes and constrained movements of the macromolecules. In this work, it is shown that a comparison of hole-lattice theory with positron and dilatometric data for a homologous series of perfluoropolyethers supplies information on the anisotropic expansion of nanoholes; the relation between volume and typical unconstrained size of the cavities can be expressed by a power law with noninteger exponents.

  6. Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice.

    Science.gov (United States)

    Aqul, Amal; Lopez, Adam M; Posey, Kenneth S; Taylor, Anna M; Repa, Joyce J; Burns, Dennis K; Turley, Stephen D

    2014-10-15

    Cholesteryl ester storage disease (CESD) results from loss-of-function mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). Hepatomegaly and deposition of esterified cholesterol (EC) in multiple organs ensue. The present studies quantitated rates of synthesis, absorption, and disposition of cholesterol, and whole body cholesterol pool size in a mouse model of CESD. In 50-day-old lal(-/-) and matching lal(+/+) mice fed a low-cholesterol diet, whole animal cholesterol content equalled 210 and 50 mg, respectively, indicating that since birth the lal(-/-) mice sequestered cholesterol at an average rate of 3.2 mg·day(-1)·animal(-1). The proportion of the body sterol pool contained in the liver of the lal(-/-) mice was 64 vs. 6.3% in their lal(+/+) controls. EC concentrations in the liver, spleen, small intestine, and lungs of the lal(-/-) mice were elevated 100-, 35-, 15-, and 6-fold, respectively. In the lal(-/-) mice, whole liver cholesterol synthesis increased 10.2-fold, resulting in a 3.2-fold greater rate of whole animal sterol synthesis compared with their lal(+/+) controls. The rate of cholesterol synthesis in the lal(-/-) mice exceeded that in the lal(+/+) controls by 3.7 mg·day(-1)·animal(-1). Fractional cholesterol absorption and fecal bile acid excretion were unchanged in the lal(-/-) mice, but their rate of neutral sterol excretion was 59% higher than in their lal(+/+) controls. Thus, in this model, the continual expansion of the body sterol pool is driven by the synthesis of excess cholesterol, primarily in the liver. Despite the severity of their disease, the median life span of the lal(-/-) mice was 355 days.

  7. Prevention of contrast-induced nephropathy with volume expansion.

    Science.gov (United States)

    Weisbord, Steven D; Palevsky, Paul M

    2008-01-01

    Contrast-induced nephropathy is one of the few preventable forms of acute kidney injury. Several pharmacologic agents have been evaluated for the prevention of contrast-induced nephropathy, yet disappointingly, few have been shown conclusively to reduce the risk for this condition. A series of studies have demonstrated that volume expansion, particularly with intravenous fluids, is an effective intervention to reduce the risk for contrast-induced nephropathy. This article reviews the clinical trials that have assessed the role of volume expansion for the prevention of contrast-induced nephropathy. The administration of isotonic sodium chloride before and after radiocontrast injection seems to be more protective than equivalent volumes of hypotonic saline and, when feasible, should be administered over a sustained period of time. Recent clinical trials suggested that an abbreviated regimen of intravenous sodium bicarbonate may be superior to a comparable protocol of sodium chloride. Although a small number of studies have found that volume supplementation by mouth may be effective in preventing contrast-induced nephropathy, the routine use of enteral fluids or solute in lieu of intravenous fluids in high-risk patients cannot be recommended at this time. Rather, liberal oral fluid and solute intake should complement intravenous fluid administration to minimize risk. Future studies will be required to define clearly the optimal prophylactic intravenous fluid regimen for contrast-induced nephropathy and further delineate the independent role of oral volume expansion for the prevention of this condition.

  8. The Combination of Tissue Dissection and External Volume Expansion Generates Large Volumes of Adipose Tissue.

    Science.gov (United States)

    He, Yunfan; Dong, Ziqing; Xie, Gan; Zhou, Tao; Lu, Feng

    2017-04-01

    Noninvasive external volume expansion device has been applied to stimulate nonsurgical breast enlargement in clinical settings. Although previous results demonstrate the capacity of external volume expansion to increase the number of adipocytes, this strategy alone is insufficient to reconstruct soft-tissue defects or increase breast mass. The authors combined a minimally invasive tissue dissection method with external volume expansion to generate large volumes of adipose tissue. In vitro, various densities of adipose-derived stem cells were prepared to evaluate relations between cell contacts and cell proliferation. In vivo, dorsal adipose tissue of rabbits was thoroughly dissected and the external volume expansion device was applied to maintain the released state. External volume expansion without tissue dissection served as the control. In the dissection group, the generated adipose tissue volume was much larger than that in the control group at all time points. A larger number of proliferating cells appeared in the dissection samples than in the control samples at the early stage after tissue dissection. At low cell density, adipose-derived stem cells displayed an increasing proliferation rate compared to high cell density. Protein expression analysis revealed that cell proliferation was mediated by a similar mechanism both in vivo and in vitro, involving the release of cell contact inhibition and Hippo/Yes-associated protein pathway activation. Adipose tissue dissection releases cell-to-cell contacts and induces adipose-derived stem cell proliferation. Preexpanded adipose-derived stem cells undergo adipogenesis under the adipogenic environment created by external volume expansion, leading to better adipose regeneration compared with the control.

  9. Lens array fabrication method with volume expansion property of PDMS

    Science.gov (United States)

    Jang, WonJae; Kim, Junoh; Lee, Muyoung; Lee, Jooho; Bang, Yousung; Won, Yong Hyub

    2016-03-01

    Conventionally, poly (dimethylsiloxane) lens array is fabricated by replica molding. In this paper, we describe simple method for fabricating lens array with expanding property of PDMS. The PDMS substrate is prepared by spin coating on cleaned glass. After spin coating PDMS, substrate is treated with O2 plasma to promote adhesion between PDMS substrate and photoresist pattern on it. Positive photoresist az-4330 and AZ 430K developer is used for patterning on PDMS. General photolithography process is used to patterning. Then patterned PDMS substrate is dipped to 1- Bromododecane bath. During this process, patterned photoresist work as a barrier and prevent blocked PDMS substrate from reaction with 1-Bromododecane. Unblocked part of PDMS directly react with 1-Bromododecane and results in expanded PDMS volume. The expansion of PDMS is depends on absorbed 1-Bromododecane volume, dipping time and ratio of block to open area. The focal length of lens array is controlled by those PDMS expansion factors. Scale of patterned photoresist determine a diameter of each lens. The expansion occurs symmetrically at center of unblocked PDMS and 1-Bromododecane interface. As a result, the PDMS lens array is achieved by this process.

  10. Effect of volume expansion on systemic hemodynamics and central and arterial blood volume in cirrhosis

    DEFF Research Database (Denmark)

    Møller, Søren; Bendtsen, Flemming; Henriksen, Jens Henrik

    1995-01-01

    and in controls. METHODS: Thirty-nine patients with cirrhosis (12 patients with Child-Turcotte class A, 14 with class B, and 13 with class C) and 6 controls were studied. During hepatic vein catheterization, cardiac output, systemic vascular resistance, central and arterial blood volume, noncentral blood volume...... in patients with either class B or class C. Conversely, the noncentral blood volume increased in patients with class B and C. In both patients and controls, the cardiac output increased and the systemic vascular resistance decreased, whereas the mean arterial blood pressure did not change significantly......BACKGROUND & AIMS: Systemic vasodilatation in cirrhosis may lead to hemodynamic alterations with reduced effective blood volume and decreased arterial blood pressure. This study investigates the response of acute volume expansion on hemodynamics and regional blood volumes in patients with cirrhosis...

  11. Altitude acclimatization and blood volume: effects of exogenous erythrocyte volume expansion

    DEFF Research Database (Denmark)

    Sawka, M N; Young, Jette Feveile; Rock, P B;

    1996-01-01

    We studied sea-level residents during 13 days of altitude acclimatization to determine 1) altitude acclimatization effects on erythrocyte volume and plasma volume, 2) if exogenous erythrocyte volume expansion alters subsequent erythrocyte volume and plasma volume adaptations, 3) if an increased...... blood oxygen content alters erythropoietin responses during altitude acclimatization, and 4) mechanisms responsible for plasma loss at altitude. Sixteen healthy men had a series of hematologic measurements made at sea level, on the first and ninth days of altitude (4,300 m) residence, and after...... had no effect; in addition, initially at altitude, blood oxygen content was 8% higher in erythrocyte-infused than in saline-infused subjects. The new findings regarding altitude acclimatization are summarized as follows: 1) erythrocyte volume does not change during the first 13 days...

  12. PLASMA VOLUME EXPANSION 24-HOURS POST-EXERCISE: EFFECT OF DOUBLING THE VOLUME OF REPLACEMENT FLUID

    Directory of Open Access Journals (Sweden)

    Bartholomew Kay

    2005-06-01

    Full Text Available The effects of two volumes (1.5 L or 3.0 L of commercially available electrolyte beverage (1.44 mM·L-1 Na+ taken during a 24-hour recovery period post-exercise, on plasma volume (PV expansion 24-hours post-exercise were assessed. A simple random-order crossover research design was used. Subjects (n = 9 males: age 21 ± 4 years, body mass 80.0 ± 9.0 kg, peak incremental 60-second cycling power output 297 ± 45 W [means ± SD] completed an identical exercise protocol conducted in hot ambient conditions (35oC, 50% relative humidity on two occasions; separated by 7-days. On each occasion, subjects received a different volume of 24-hour fluid intake (commercial beverage in random order. In each case, the fluid was taken in five equal aliquots over 24-hours. PV expansions 24-hours post-exercise were estimated from changes in haemoglobin and haematocrit. Dependent t-testing revealed no significant differences in PV expansions between trials, however a significant expansion with respect to zero was identified in the 3.0 L trial only. Specifically, PV expansions (% were; 1.5 L trial: (mean ± SE 2.3 ± 2.0 (not significant with respect to zero, 3.0 L trial: 5.0 ± 2.0 (p < 0.05, with respect to zero. Under the conditions imposed in the current study, ingesting the greater volume of the beverage lead to larger mean PV expansion

  13. Expansion of extracellular volume in early polycystic kidney disease.

    Science.gov (United States)

    Danielsen, H; Pedersen, E B; Nielsen, A H; Herlevsen, P; Kornerup, H J; Posborg, V

    1986-01-01

    Blood volume (BV), extracellular volume (ECV), blood pressure (BP), creatinine clearance (CCr), plasma levels of angiotensin II (AII), aldosterone (Aldo) and arginine vasopressin (AVP), and serum osmolality (Sosm) were determined in 18 patients with adult polycystic kidney disease, 8 normotensive (group I), 10 hypertensive (group II), and in 11 control subjects (group III). ECV but not BV was increased in group I compared with group III, whereas BV and ECV did not differ significantly between groups II and III. In group II, Aldo and AVP were increased and AII tended to be increased, while in group I the hormone levels did not differ significantly from those in group III. Sosm did not differ significantly between the groups. In the combined patient group, CCr correlated positively with BV and ECV and negatively with BP. In the patients, AII and AVP were positively correlated with BP but not with CCr. The results suggest that both the renin-angiotensin system and AVP might be involved in the BP elevation, whereas expansion of ECV can be found without an increase in BP.

  14. Use of steel slag as a granular material: volume expansion prediction and usability criteria.

    Science.gov (United States)

    Wang, George; Wang, Yuhong; Gao, Zhili

    2010-12-15

    The theoretical equation for predicting volume expansion of steel slag is deduced based on both chemical reaction and physical changes of free lime in steel slag during the hydration process. Laboratory volume expansion testing is conducted to compare the results with the theoretical volume expansion. It is proved that they correlated well. It is furthermore experimentally proved that certain volume expansion of steel slag can be absorbed internally by the void volume in bulk steel slag under external surcharge weight making the apparent volume expansion equal zero. The minimum (lowest) absorbable void volume is approximately 7.5%, which is unrelated to the free lime content. A usability criterion is then developed based on the volume expansion of steel slag (%) and the minimum percentage of the volume that can take the volume expansion of steel slag (%). Eventually the criterion (relationship) is established based on the free lime content, the specific gravity and bulk relative gravity of a specific steel slag sample. The criteria can be used as guidance and specification for the use of steel slag and other expansion-prone nonferrous slags, copper, nickel for instance as a granular material in highway construction.

  15. Acute volume expansion attenuates hyperthermia-induced reductions in cerebral perfusion during simulated hemorrhage

    DEFF Research Database (Denmark)

    Schlader, Zachary J; Seifert, Thomas; Wilson, Thad E

    2013-01-01

    Hyperthermia reduces the capacity to withstand a simulated hemorrhagic challenge, but volume loading preserves this capacity. This study tested the hypotheses that acute volume expansion during hyperthermia increases cerebral perfusion and attenuates reductions in cerebral perfusion during a simu...

  16. Finite-volume cumulant expansion in QCD-colorless plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ladrem, M. [Taibah University, Physics Department, Faculty of Science, Al-Madinah, Al-Munawwarah (Saudi Arabia); Physics Department, Algiers (Algeria); ENS-Vieux Kouba (Bachir El-Ibrahimi), Laboratoire de Physique et de Mathematiques Appliquees (LPMA), Algiers (Algeria); Ahmed, M.A.A. [Taibah University, Physics Department, Faculty of Science, Al-Madinah, Al-Munawwarah (Saudi Arabia); ENS-Vieux Kouba (Bachir El-Ibrahimi), Laboratoire de Physique et de Mathematiques Appliquees (LPMA), Algiers (Algeria); Taiz University in Turba, Physics Department, Taiz (Yemen); Alfull, Z.Z. [Taibah University, Physics Department, Faculty of Science, Al-Madinah, Al-Munawwarah (Saudi Arabia); Cherif, S. [ENS-Vieux Kouba (Bachir El-Ibrahimi), Laboratoire de Physique et de Mathematiques Appliquees (LPMA), Algiers (Algeria); Ghardaia University, Sciences and Technologies Department, Ghardaia (Algeria)

    2015-09-15

    Due to the finite-size effects, the localization of the phase transition in finite systems and the determination of its order, become an extremely difficult task, even in the simplest known cases. In order to identify and locate the finite-volume transition point T{sub 0}(V) of the QCD deconfinement phase transition to a colorless QGP, we have developed a new approach using the finite-size cumulant expansion of the order parameter and the L{sub mn}-method. The first six cumulants C{sub 1,2,3,4,5,6} with the corresponding under-normalized ratios (skewness Σ, kurtosis κ, pentosis Π{sub ±}, and hexosis H{sub 1,2,3}) and three unnormalized combinations of them, (O = σ{sup 2}κΣ{sup -1},U = σ{sup -2}Σ{sup -1},N = σ{sup 2}κ) are calculated and studied as functions of (T, V). A new approach, unifying in a clear and consistent way the definitions of cumulant ratios, is proposed.Anumerical FSS analysis of the obtained results has allowed us to locate accurately the finite-volume transition point. The extracted transition temperature value T{sub 0}(V) agrees with that expected T{sub 0}{sup N}(V) from the order parameter and the thermal susceptibility χ{sub T} (T, V), according to the standard procedure of localization to within about 2%. In addition to this, a very good correlation factor is obtained proving the validity of our cumulants method. The agreement of our results with those obtained by means of other models is remarkable. (orig.)

  17. Finite Volume Cumulant Expansion in QCD-Colorless Plasma

    CERN Document Server

    Ladrem, M; Al-Full, Z; Cherif, S

    2015-01-01

    Due to the finite size effects, the localisation of the phase transition in finite systems and the determination of its order, become an extremely difficult task, even in the simplest known cases. In order to identify and locate the finite volume transition point $T_{0}(V)$ of the QCD deconfinement phase transition to a Colorless QGP, we have developed a new approach using the finite size cumulant expansion of the order parameter and the $L_{mn}$-method. The first six cumulants $C_{1,2,3,4,5,6}$ with the corresponding under-normalized ratios(skewness $\\Sigma$, kurtosis $\\kappa$ ,pentosis $\\Pi_{\\pm}$ and hexosis $\\mathcal{H}_{1,2,3}$) and three unnormalized combinations of them ($\\mathcal{O}={\\mathcal{\\sigma }^{2} \\mathcal{\\kappa } }{\\mathbf{\\Sigma }^{-1} }$, $\\mathcal{U} ={\\mathcal{\\sigma }^{-2} \\mathbf{\\Sigma }^{-1} }$, $\\mathcal{N} = \\mathcal{\\sigma }^{2} \\mathcal{\\kappa }$) are calculated and studied as functions of $(T,V)$. A new approach, unifying in a clear and consistent way the definitions of cumulant...

  18. Cancer-associated lysosomal changes

    DEFF Research Database (Denmark)

    Kallunki, T; Olsen, O D; Jaattela, Marja

    2013-01-01

    Rapidly dividing and invasive cancer cells are strongly dependent on effective lysosomal function. Accordingly, transformation and cancer progression are characterized by dramatic changes in lysosomal volume, composition and cellular distribution. Depending on one's point of view, the cancer-asso......:10.1038/onc.2012.292....

  19. Hormonal and electrolyte responses to acute isohemic volume expansion in unanesthetized rats

    Science.gov (United States)

    Chenault, V. M.; Morris, M.; Lynch, C. D.; Maultsby, S. J.; Hutchins, P. M.

    1993-01-01

    This study was undertaken to explore the time course of the metabolic response to isohemic blood volume expansion (30%) in normotensive, unanesthetized Sprague-Dawley rats. Whole blood, drawn from a femoral artery catheter of conscious donor rats, was infused into the jugular vein of recipient rats. Blood samples were drawn from a carotid artery of recipient rats at time points beginning immediately post-volume expansion (IPVE) up through 5 days post-volume expansion (PVE). To characterize the attendant compensatory mechanisms, the plasma concentrations of electrolytes and fluid regulatory hormones were determined. Hematocrit began to raise IPVE and was significantly elevated above control IPVE 20, 30, 40, 60, and 90 min, and 2, 4, 6, 8, 12, and 24 hr PVE. Consistent with our current understanding of the hormonal response to excess volume, atrial natriuretic factor was significantly increased above the prevolume expansion (control) values 0-30 min PVE. Surprisingly, plasma aldosterone levels were significantly increased above control at 20 and 30 min and 6 hr PVE, whereas plasma renin activity was significantly decreased 30-40 min PVE. Plasma sodium was not changed from control values except for a significant increase at 6 hr post-volume expansion. Plasma potassium, osmolality, and arginine vasopressin levels were not altered by the volume expansion. These studies delineate the physiologic time scheme operative in the regulation of fluid volume during acute ischemic volume expansion.

  20. The importance of plasma volume expansion and nutrition in twin pregnancy.

    Science.gov (United States)

    Campbell, D M; MacGillivray, I

    1984-01-01

    Physiological adaptation including expansion in plasma volume is exaggerated in women with twin pregnancies. In singleton pregnancy and multiparous twin pregnancies there is an association between plasma volume expansion and birth weight, but this is not so in primigravid twin pregnancies. Women with twin pregnancies have a similar dietary intake to singleton pregnancies, but it is not known whether there are differences with parity or zygosity. Absorption and utilisation of nutrients may be increased to meet demands for extra fetal growth. Nutrient supply and plasma volume expansion will be further discussed and their association with birth weight presented.

  1. Paradoxical relationship between atriopeptin plasma levels and diuresis-natriuresis induced by acute volume expansion.

    OpenAIRE

    Sakata, M.; Greenwald, J E; Needleman, P

    1988-01-01

    Surgical removal of one or both atrial appendages was employed in rats to reduce the intrinsic stores of atriopeptin (AP). In conscious rats (with intact baroreceptor reflexes), bilateral or unilateral atrial appendectomy suppressed the diuresis and natriuresis produced by acute volume expansion. Surprisingly, volume expansion (with 4% bovine serum albumin in saline at 1.5 ml/kg per min for 15 min) did not result in an increase in plasma AP immunoreactivity (APir) in control or atrial-appende...

  2. F-Area Northeast Expansion Report, Volumes 1

    Energy Technology Data Exchange (ETDEWEB)

    Syms, F.H.

    1999-08-23

    A geotechnical program has been complexed in F-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as the ''northeast expansion'' located in the F-Area.

  3. Review article: volume expansion in patients with cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Kiszka-Kanowitz, Marianne; Bendtsen, Flemming

    2002-01-01

    Adequate size and distribution of the circulating medium are important for cardiovascular function, tissue oxygenation, and fluid homoeostasis. Patients with cirrhosis have cardiovascular dysfunction with a hyperkinetic systemic circulation, abnormal distribution of the blood volume, vasodilation...

  4. Review article: volume expansion in patients with cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Kiszka-Kanowitz, Marianne; Bendtsen, Flemming

    2002-01-01

    Adequate size and distribution of the circulating medium are important for cardiovascular function, tissue oxygenation, and fluid homoeostasis. Patients with cirrhosis have cardiovascular dysfunction with a hyperkinetic systemic circulation, abnormal distribution of the blood volume, vasodilation...

  5. Cancer-associated lysosomal changes

    DEFF Research Database (Denmark)

    Kallunki, T; Olsen, O D; Jaattela, Marja

    2013-01-01

    Rapidly dividing and invasive cancer cells are strongly dependent on effective lysosomal function. Accordingly, transformation and cancer progression are characterized by dramatic changes in lysosomal volume, composition and cellular distribution. Depending on one's point of view, the cancer-associated......-targeting anti-cancer drugs. In this review we compile our current knowledge on cancer-associated changes in lysosomal composition and discuss the consequences of these alterations to cancer progression and the possibilities they can bring to cancer therapy.Oncogene advance online publication, 9 July 2012; doi...

  6. Review article: volume expansion in patients with cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Kiszka-Kanowitz, Marianne; Bendtsen, Flemming

    2002-01-01

    in advanced cirrhosis is qualitatively and quantitatively different from that of healthy subjects, and in those with early cirrhosis. Timely handling is essential, but difficult as it is a balance between the risks of excess extravascular volume loading and further circulatory dysfunction in these patients...

  7. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    Volume 1 is comprised of chapters on: background and description; environmental impacts of add-on gaseous diffusion plant; unavoidable adverse environmental effects; alternatives; relationship between short-term uses and long-term productivity; relationship of program to land-use plans, policies, and controls; irreversible and irretrievable commitments of resources; cost-benefit analysis; and response to comment letters. (LK)

  8. Acute blood volume expansion delays the gastrointestinal transit of a charcoal meal in awake rats

    Directory of Open Access Journals (Sweden)

    de-Oliveira G.R.

    1998-01-01

    Full Text Available The present study evaluates the effect of blood volume expansion on the gastrointestinal transit of a charchoal meal (2.5 ml of an aqueous suspension consisting of 5% charcoal and 5% gum arabic in awake male Wistar rats (200-270 g. On the day before the experiments, the rats were anesthetized with ether, submitted to left jugular vein cannulation and fasted with water ad libitum until 2 h before the gastrointestinal transit measurement. Blood volume expansion by iv infusion of 1 ml/min Ringer bicarbonate in volumes of 3, 4 or 5% body weight delayed gastrointestinal transit at 10 min after test meal administration by 21.3-26.7% (P<0.05, but no effect was observed after 1 or 2% body weight expansion. The effect of blood volume expansion (up to 5% body weight on gastrointestinal transit lasted for at least 60 min (P<0.05. Mean arterial pressure increased transiently and central venous pressure increased and hematocrit decreased (P<0.05. Subdiaphragmatic vagotomy and yohimbine (3 mg/kg prevented the delay caused by expansion on gastrointestinal transit, while atropine (0.5 mg/kg, L-NAME (2 mg/kg, hexamethonium (10 mg/kg, prazosin (1 mg/kg or propranolol (2 mg/kg were ineffective. These data show that blood volume expansion delays the gastrointestinal transit of a charcoal meal and that vagal and yohimbine-sensitive pathways appear to be involved in this phenomenon. The delay in gastrointestinal transit observed here, taken together with the modifications of gastrointestinal permeability to salt and water reported by others, may be part of the mechanisms involved in liquid excess management.

  9. Does hyrax expansion therapy affect maxillary sinus volume? A cone-beam computed tomography report

    Energy Technology Data Exchange (ETDEWEB)

    Darsey, Drew M.; English, Jeryl D.; Ellis, Randy K.; Akyalcin, Sercan [School of Dentistry, University of Texas Health Science Center at Houston, Houston (United States); Kau, Chung H [School of Dentistry, University of Alabama at Birmingham, Birmingham (United States)

    2012-06-15

    The aim of this study was to investigate the initial effects of maxillary expansion therapy with Hyrax appliance and to evaluate the related changes in maxillary sinus volume. Thirty patients (20 females, 10 males; 13.8 years) requiring maxillary expansion therapy, as part of their comprehensive orthodontic treatment, were examined. Each patient had cone-beam computed tomography (CBCT) images taken before (T1) and after (T2) maxillary expansion therapy with a banded Hyrax appliance. Multiplanar slices were used to measure linear dimensions and palatal vault angle. Volumetric analysis was used to measure maxillary sinus volumes. Student t tests were used to compare the pre- and post-treatment measurements. Additionally, differences between two age groups were compared with Mann-Whitney U test. The level of significance was set at p=0.05. Comparison of pre-treatment to post-treatment variables revealed significant changes in the transverse dimension related to both maxillary skeletal and dental structures and palatal vault angle, resulting in a widened palatal vault (p<0.05). Hard palate showed no significant movement in the vertical and anteroposterior planes. Nasal cavity width increased on a mean value of 0.93 mm(SD=0.23, p<0.05). Maxillary sinus volume remained virtually stable. No significant age differences were observed in the sample. Hyrax expansion therapy did not have a significant impact on maxillary sinus volume.

  10. Blunted autonomic response to volume expansion in formerly preeclamptic women with low plasma volume.

    NARCIS (Netherlands)

    Krabbendam, I.; Courtar, D.A.; Janssen, B.J.; Aardenburg, R.; Peeters, L.L.; Spaanderman, M.E.A.

    2009-01-01

    OBJECTIVE: We hypothesize that low plasma volume in normotensive formerly preeclamptic women reflects reduced venous storage capacity. To test this hypothesis, we compared circulatory and autonomic responses to acute volume loading between women with low and those with normal plasma volume. METHODS:

  11. Effect of volume expansion on systemic hemodynamics and central and arterial blood volume in cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Bendtsen, F; Henriksen, Jens Henrik Sahl

    1995-01-01

    and in controls. METHODS: Thirty-nine patients with cirrhosis (12 patients with Child-Turcotte class A, 14 with class B, and 13 with class C) and 6 controls were studied. During hepatic vein catheterization, cardiac output, systemic vascular resistance, central and arterial blood volume, noncentral blood volume...

  12. Lack of anion effect on volume expansion natriuresis in the developing canine kidney.

    Science.gov (United States)

    Lorenz, J M; Kleinman, L I; Disney, T A

    1986-10-01

    The renal response to volume expansion with sodium chloride or sodium bicarbonate was studied in 15 newborn and 13 adult dogs. Proximal and distal nephron function were estimated using the technique of distal nephron blockade. Fractional sodium reabsorption was 99.0 +/- 0.3% in newborn and 96.6 +/- 0.06% in adult during the NaCl expansion (P less than 0.01) and 98.1 +/- 0.7% in the newborn and 93.2 +/- 0.7% in the adult during NaHCO3 expansion (P less than 0.001). With either anion the higher fractional sodium reabsorption in the newborn was due to reabsorption of a greater fraction of the load presented to the distal nephron segment. The percent of the distal sodium load that was reabsorbed was 98.0 +/- 0.6% in the newborn and 92.2 +/- 1.0% in the adult during NaCl expansion, and 96.1 +/- 1.3% in the newborn and 81.5 +/- 2.4% in the adult during NaHCO3 expansion. Differences in distal nephron chloride, potassium and bicarbonate reabsorption among the groups support the hypothesis that the enhanced distal sodium reabsorption in the newborn occurred largely in the ascending loop of Henle with NaCl expansion, while it occurred in the late distal and cortical collecting tubules with NaHCO3 expansion. There was no difference between the natriuretic responses to NaCl or NaHCO3 in the newborn (P greater than 0.20); however, the natriuretic response to NaCl was less than that to NaHCO3 in the adult (P less than 0.001). This suggests that the bulk of the sodium that escaped reabsorption in Henle's loop during NaHCO3 expansion was reabsorbed in the late distal tubule in the newborn, but not in the adult.

  13. Saline volume expansion and cardiovascular physiology: novel observations, old explanations, and new questions.

    Science.gov (United States)

    Robotham, James L

    2004-10-01

    In a clinical investigation, Kumar and coworkers reported the hemodynamic events that accompany plasma volume expansion over 3 hours in healthy adult volunteers, and found that increases in stroke volume (SV) may be related to increases in left ventricular (LV)/right ventricular (RV) end-diastolic volume, as they expected, but also to decreases in LV/RV end-systolic volume. The latter finding suggests increased contractility and/or decreased afterload, which do not fit with their perception that clinicians ascribe increases in SV to increases in end-diastolic volume based on Starling's work. Increased ejection fraction and decreased vascular resistances were also observed. The same authors recently reported novel data suggesting that reduced blood viscosity may account for the observed reduction in vascular resistances with saline volume expansion. However, the variances in preload and afterload, along with uncertainty in estimates of contractility, substantially limit their ability to define a primary mechanism to explain decreases in LV end-systolic volume. A focus on using ejection fraction to evaluate the integrated performance of the cardiovascular system is provided to broaden this analytic perspective. Sagawa and colleagues described an approach to estimate the relationship, under clinical conditions, between ventricular and arterial bed elastances (i.e. maximal ventricular systolic elastance [Emax] and maximal arterial systolic elastance [Ea]), reflecting ventricular-arterial coupling. I used the mean data provided in one of the reports from Kumar and coworkers to calculate that LV Emax decreased from 1.09 to 0.96 mmHg/ml with saline volume expansion, while Ea decreased from 1.1 to 0.97 mmHg/ml and the SV increased (i.e. the increase in mean SV was associated with a decrease in mean afterload while the mean contractility decreased). The results reported by Kumar and coworkers invite further studies in normal and critically ill patients during acute saline

  14. [Role of paraventricular nucleus in natriuresis and diuresis induced by volume expansion in rabbits].

    Science.gov (United States)

    Zhang, B; Lin, M Z; Han, G C

    2000-02-01

    In sham-lesioned and paraventricular nucleus (PVN) lesioned rabbits, the peak increases of urine volume (UV) induced by volume expansion (VE) were 0.59+/-0.09 and 0.31+/-0.03 ml/min (P0.05). In rabbits with renal denervation there was no significant change in natriuretic response after PVN lesion (P>0.05), but lesion of PVN significantly attenuated diuretic response (P0.05). These results suggest that PVN is involved in the regulation of natriuresis and diuresis induced by VE, which are mediated by vagal afferent nerve, whereas the renal sympathetic efferent nerve may be involved in natriuretic response.

  15. Evolution of colour desination semantics according to the law of expansion of semtic volume of word

    Directory of Open Access Journals (Sweden)

    С В Кезина

    2008-03-01

    Full Text Available The article is devoted to judgement of historical development of colour's names according to the law of expansion of semantic volume of a word. A basis of the concept of historical development of colour designation is made up of regulations about subject significance which forms the standard of colours designation, about ability of an eye to distinguish concrete colour and about a degree of complexity of nomination processes. The research is done on a material of Indo-European languages.

  16. Daily Suction Provided by External Volume Expansion Inducing Regeneration of Grafted Fat in a Murine Model.

    Science.gov (United States)

    Ye, Yuan; Liao, Yunjun; Lu, Feng; Gao, Jianhua

    2017-02-01

    Fat grafting has variable and sometimes poor outcomes, and therefore new methods are needed. Multiple studies have demonstrated the excellent performance of external volume expansion and focused only on preexpansion with emphasis on the recipient. Two mouse models (a suction model and a fat-exchange transplantation model) were established to investigate changes in the origins and biological behaviors of regeneration-related cells in grafted fat under daily suction provided by external volume expansion. Blood supply increased from new host-derived capillaries or macrophage infiltration under suction. CD34-positive cells showed increased migration from the host into the grafts under suction. At week 12, nearly half of the mature adipocytes regenerated in the grafts in the suction group were derived from the host. Peroxisome proliferator-activated receptor γ expression of the suction group was significantly higher than that of controls at weeks 2 and 4 during adipogenesis. The normalized sample weight of the grafted fat was significantly greater than that of controls at 1 (0.081 ± 0.001 versus 0.072 ± 0.005; p suction provided by external volume expansion favors the regeneration of grafted fat and improves retention by promoting the migration of regeneration-related cells and the differentiation of adipocytes. Thus, more mature fat tissue with a well-organized structure was formed under suction.

  17. Neuroendocrine and renal effects of intravascular volume expansion in compensated heart failure

    DEFF Research Database (Denmark)

    Gabrielsen, A; Bie, P; Holstein-Rathlou, N H

    2001-01-01

    To examine if the neuroendocrine link between volume sensing and renal function is preserved in compensated chronic heart failure [HF, ejection fraction 0.29 +/- 0.03 (mean +/- SE)] we tested the hypothesis that intravascular and central blood volume expansion by 3 h of water immersion (WI) elicits...... sustained angiotensin-converting enzyme inhibitor therapy, n = 9) absolute and fractional sodium excretion increased (P Renal free water clearance increased during WI in control subjects but not in HF......, albeit plasma vasopressin concentrations were similar in the two groups. In conclusion, the neuroendocrine link between volume sensing and renal sodium excretion is preserved in compensated HF. The natriuresis of WI is, however, modulated by the prevailing ANG II and Aldo concentrations. In contrast...

  18. Lysosomal enlargement and lysosomal membrane destabilisation in mussel digestive cells measured by an integrative index

    Energy Technology Data Exchange (ETDEWEB)

    Izagirre, Urtzi [Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Cell Biology, School of Sciences and Technology, University of the Basque Country, P.O. box 644, E-48080 Bilbo (Spain); Marigomez, Ionan, E-mail: ionan.marigomez@ehu.e [Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Cell Biology, School of Sciences and Technology, University of the Basque Country, P.O. box 644, E-48080 Bilbo (Spain)

    2009-05-15

    Lysosomal responses (enlargement and membrane destabilisation) in mussel digestive cells are well-known environmental stress biomarkers in pollution effects monitoring in marine ecosystems. Presently, in laboratory and field studies, both responses were measured separately (in terms of lysosomal volume density - Vv - and labilisation period -LP) and combined (lysosomal response index - LRI) in order to contribute to their understanding and to develop an index useful for decisions makers. LRI integrates Vv and LP, which are not necessarily dependent lysosomal responses. It is unbiased and more sensitive than Vv and LP alone and diminishes background due to confounding factors. LRI provides a simple numerical index (consensus reference = 0; critical threshold = 1) directly related to the pollution impact degree. Moreover, LRI can be represented in a way that allows the interpretation of lysosomal responses, which is useful for environmental scientists. - Lysosomal responses to pollutants measured by an integrative index.

  19. Volume weighting the measure of the universe from classical slow-roll expansion

    Science.gov (United States)

    Sloan, David; Silk, Joseph

    2016-05-01

    One of the most frustrating issues in early universe cosmology centers on how to reconcile the vast choice of universes in string theory and in its most plausible high energy sibling, eternal inflation, which jointly generate the string landscape with the fine-tuned and hence relatively small number of universes that have undergone a large expansion and can accommodate observers and, in particular, galaxies. We show that such observations are highly favored for any system whereby physical parameters are distributed at a high energy scale, due to the conservation of the Liouville measure and the gauge nature of volume, asymptotically approaching a period of large isotropic expansion characterized by w =-1 . Our interpretation predicts that all observational probes for deviations from w =-1 in the foreseeable future are doomed to failure. The purpose of this paper is not to introduce a new measure for the multiverse, but rather to show how what is perhaps the most natural and well-known measure, volume weighting, arises as a consequence of the conservation of the Liouville measure on phase space during the classical slow-roll expansion.

  20. Current Injection Provokes Rapid Expansion of the Guard Cell Cytosolic Volume and Triggers Ca(2+) Signals.

    Science.gov (United States)

    Voss, Lena J; Hedrich, Rainer; Roelfsema, M Rob G

    2016-03-07

    High-resolution microscopy opens the door for detailed single-cell studies with fluorescent reporter dyes and proteins. We used a confocal spinning disc microscope to monitor fluorescent dyes and the fluorescent protein Venus in tobacco and Arabidopsis guard cells. Multi-barreled microelectrodes were used to inject dyes and apply voltage pulses, which provoke transient rises in the cytosolic Ca(2+) level. Voltage pulses also caused changes in the distribution of Lucifer Yellow and Venus, which pointed to a reversible increase of guard cell cytosolic volume. The dynamic cytosolic volume changes turned out to be provoked by current injection of ions. A reduction of the clamp current, by blocking K(+) uptake channels with Cs(+), strongly suppressed the cytosolic volume changes. Cs(+) not only inhibited the expansion of the cytosol, but also inhibited hyperpolarization-induced elevations of the cytosolic Ca(2+) concentration. A complete loss of voltage-induced Ca(2+) signals occurred when Ca(2+)-permeable plasma membrane channels were simultaneously blocked with La(3+). This shows that two mechanisms cause hyperpolarization-induced elevation of the cytosolic Ca(2+)-concentration: (i) activation of voltage-dependent Ca(2+)-permeable channels, (ii) osmotically induced expansion of the cytosol, which leads to a release of Ca(2+) from intracellular stores.

  1. Hearing Outcomes After Stereotactic Radiosurgery for Unilateral Intracanalicular Vestibular Schwannomas: Implication of Transient Volume Expansion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Hoon [Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Dong Gyu, E-mail: gknife@plaza.snu.ac.kr [Department of Neurosurgery, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Han, Jung Ho [Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Chung, Hyun-Tai; Kim, In Kyung; Song, Sang Woo [Department of Neurosurgery, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Park, Jeong-Hoon [Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Jin Wook; Kim, Yong Hwy; Park, Chul-Kee [Department of Neurosurgery, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Chae-Yong [Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Paek, Sun Ha; Jung, Hee-Won [Department of Neurosurgery, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2013-01-01

    Purpose: We evaluated the prognostic factors for hearing outcomes after stereotactic radiosurgery (SRS) for unilateral sporadic intracanalicular vestibular schwannomas (IC-VSs) as a clinical homogeneous group of VSs. Methods and Materials: Sixty consecutive patients with unilateral sporadic IC-VSs, defined as tumors in the internal acoustic canal, and serviceable hearing (Gardner-Roberson grade 1 or 2) were treated with SRS as an initial treatment. The mean tumor volume was 0.34 {+-} 0.03 cm{sup 3} (range, 0.03-1.00 cm{sup 3}), and the mean marginal dose was 12.2 {+-} 0.1 Gy (range, 11.5-13.0 Gy). The median follow-up duration was 62 months (range, 36-141 months). Results: The actuarial rates of serviceable hearing preservation were 70%, 63%, and 55% at 1, 2, and 5 years after SRS, respectively. In multivariate analysis, transient volume expansion of {>=}20% from initial tumor size was a statistically significant risk factor for loss of serviceable hearing and hearing deterioration (increase of pure tone average {>=}20 dB) (odds ratio = 7.638; 95% confidence interval, 2.317-25.181; P=.001 and odds ratio = 3.507; 95% confidence interval, 1.228-10.018; P=.019, respectively). The cochlear radiation dose did not reach statistical significance. Conclusions: Transient volume expansion after SRS for VSs seems to be correlated with hearing deterioration when defined properly in a clinically homogeneous group of patients.

  2. Impact of volume expansion on the efficacy and pharmacokinetics of liposome bupivacaine

    Directory of Open Access Journals (Sweden)

    Hadzic A

    2015-12-01

    Full Text Available Admir Hadzic,1,2 John A Abikhaled,3 William J Harmon4 1Department of Anesthesiology, The New York School of Regional Anesthesia (NYSORA, New York, NY, USA; 2Department of Anesthesiology, Ziekenhouse Oost Limburgh, Genk, Belgium; 3Austin Surgeons, Austin, TX, 4Urology San Antonio, San Antonio, TX, USA Abstract: Liposome bupivacaine is a prolonged-release liposomal formulation of bupivacaine indicated for single-dose infiltration into the surgical site to produce postsurgical analgesia of longer duration than traditional local anesthetics. This review summarizes the available data on how volume expansion may impact the analgesic efficacy of liposome bupivacaine. The Phase II and III clinical studies that involved surgical site administration of liposome bupivacaine at various concentrations in different surgical settings revealed no apparent concentration–efficacy relationship. A single-center, prospective study comparing the efficacy of transversus abdominis plane infiltration with liposome bupivacaine administered in a lower (266 mg/40 mL vs a higher (266 mg/20 mL dose concentration in subjects undergoing robotic-assisted laparoscopic prostatectomy also reported similar postsurgical pain intensity scores and opioid usage in both treatment groups. The pharmacokinetic profile of liposome bupivacaine following subcutaneous injections in rats was unaltered by differences in drug concentration, dose, or injection volume within the ranges tested. Volume expansion of liposome bupivacaine to a total volume of 300 mL or less does not appear to impact its clinical efficacy or pharmacokinetic profile, thus allowing flexibility to administer the formulation across a wide range of diluent volumes. Keywords: pain, analgesia, liposome bupivacaine, dose, concentration, dilution 

  3. Irreversible volume expansion of a TATB-based composite and compressive strength

    Science.gov (United States)

    Thompson, Darla Graff; Schwarz, Ricardo B.; DeLuca, Racci

    2017-01-01

    It has long been known that compacted composites containing TATB (triaminotrinitrobenzene) crystals undergo "ratchet growth," an irreversible volume expansion upon thermal cycling. A clear mechanism has not been established for this phenomenon, but is believed to arise from the highly-anisotropic CTE of TATB crystals and interactions caused by compaction. Explosive performance depends fundamentally on bulk density, so the effect may be important. PBX 9502 is a plastic bonded explosive containing 95 wt% TATB crystals. We have monitored uniaxial length changes of PBX 9502 specimens for various thermal cycles providing mechanistic insight. Post-cycled specimens were compression tested to determine if mechanical properties correlated with the detailed thermal history.

  4. Glue embolization of the giant aneurysm by reducing thrombosis-induced volume expansion effect

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Yoo Kyung; Suh, Dae Chul [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2015-04-15

    A giant aneurysm due to a large intra-aneurysmal volume can be complicated by a delayed massive volume expansion caused by thrombus formation. To prevent such a severe mass effect, we obliterated the aneurysmal lumen by gluing and prevented further development of thrombosis. A 52-year-old female with a giant aneurysm at the cavernous segment of the internal carotid artery presented with tinnitus and intermittent diplopia. After confirming with a negative occlusion test, the right internal carotid artery was trapped by coiling and with further obliteration of the aneurysmal lumen by gluing. She developed a mild diplopia after the procedure and recovered without any deficit. The magnetic resonance angiography showed a stable occlusion of the aneurysm and good collateral filling of the cerebral vessel 15 months later.

  5. FINITE VOLUME METHOD FOR SIMULATION OF VISCOELASTIC FLOW THROUGH A EXPANSION CHANNEL

    Institute of Scientific and Technical Information of China (English)

    FU Chun-quan; JIANG Hai-mei; YIN Hong-jun; SU Yu-chi; ZENG Ye-ming

    2009-01-01

    A finite volume method for the numerical solution of viscoelastic flows is given. The flow of a differential Upper-Convected Maxwell (UCM) fluid through an abrupt expansion has been chosen as a prototype example. The conservation and constitutive equations are solved using the Finite Volume Method (FVM) in a staggered grid with an upwind scheme for the viscoelastic stresses and a hybrid scheme for the velocities. An enhanced-in-speed pressure-correction algorithm is used and a method for handling the source term in the momentum equations is employed. Improved accuracy is achieved by a special discretization of the boundary conditions. Stable solutions are obtained for higher Weissenberg number (We), further extending the range of simulations with the FVM. Numerical results show the viscoelasticity of polymer solutions is the main factor influencing the sweep efficiency.

  6. Analysis of volume expansion data for periclase, lime, corundum and spinel at high temperatures

    Indian Academy of Sciences (India)

    B P Singh; H Chandra; R Shyam; A Singh

    2012-08-01

    We have presented an analysis of the volume expansion data for periclase (MgO), lime (CaO), corundum (Al2O3) and spinel (MgAl2O4) determined experimentally by Fiquet et al (1999) from 300K up to 3000K. The thermal equation of state due to Suzuki et al (1979) and Shanker et al (1997) are used to study the relationships between thermal pressure and volume expansion for the entire range of temperatures starting from room temperature up to the melting temperatures of the solids under study. Comparison of the results obtained in the present study with the corresponding experimental data reveal that the thermal pressure changes with temperature almost linearly up to quite high temperatures. At extremely high temperatures close to the melting temperatures thermal pressure deviates significantly from linearity. This prediction is consistent with other recent investigations. A quantitative analysis based on the theory of anharmonic effects has been presented to account for the nonlinear variation of the thermal pressure at high temperatures.

  7. Pressure-induced volume expansion of zeolites in the natrolite family.

    Science.gov (United States)

    Lee, Yongjae; Vogt, Thomas; Hriljac, Joseph A; Parise, John B; Artioli, Gilberto

    2002-05-15

    Powder diffraction patterns of the zeolites natrolite (Na(16)Al(16)Si(24)O(80).16H(2)O), mesolite (Na(5.33)Ca(5.33)Al(16)Si(24)O(80).21.33H(2)O), scolecite (Ca(8)Al(16)Si(24)O(80).24H(2)O), and a gallosilicate analogue of natrolite (K(16)Ga(16)Si(24)O(80).12H(2)O), all crystallizing with a natrolite framework topology, were measured as a function of pressure up to 5.0 GPa with use of a diamond-anvil cell and a 200 microm focused monochromatic synchrotron X-ray beam. Under the hydrostatic conditions mediated by an alcohol and water mixture, all these materials showed an abrupt volume expansion (ca. 2.5% in natrolite) between 0.8 and 1.5 GPa without altering the framework topology. Rietveld refinements using the data collected on natrolite show that the anomalous swelling is due to the selective sorption of water from the pressure-transmission fluid expanding the channels along the a- and b-unit cell axes. This gives rise to a "superhydrated" phase of natrolite with an approximate formula of Na(16)Al(16)Si(24)O(80).32H(2)O, which contains hydrogen-bonded helical water nanotubes along the channels. In mesolite, which at ambient pressure is composed of ordered layers of sodium- and calcium-containing channels in a 1:2 ratio along the b-axis, this anomalous swelling is accompanied by a loss of the superlattice reflections (b(mesolite) = 3b(natrolite)). This suggests a pressure-induced order-disorder transition involving the motions of sodium and calcium cations either through cross-channel diffusion or within the respective channels. The powder diffraction data of scolecite, a monoclinic analogue of natrolite where all sodium cations are substituted by calcium and water molecules, reveal a reversible pressure-induced partial amorphization under hydrostatic conditions. Unlike the 2-dimensional swelling observed in natrolite and mesolite, the volume expansion of the potassium gallosilicate natrolite is 3-dimensional and includes the lengthening of the channel axis. In

  8. Volume and expansivity changes of micelle formation measured by pressure perturbation calorimetry.

    Science.gov (United States)

    Fan, Helen Y; Nazari, Mozhgan; Chowdhury, Saria; Heerklotz, Heiko

    2011-03-01

    We present the application of pressure perturbation calorimetry (PPC) as a new method for the volumetric characterization of the micelle formation of surfactants. The evaluation is realized by a global fit of PPC curves at different surfactant concentration ranging, if possible, from below to far above the CMC. It is based on the knowledge of the temperature dependence of the CMC, which can for example be characterized by isothermal titration calorimetry. We demonstrate the new approach for decyl-β-maltopyranoside (DM). It shows a strong volume increase upon micelle formation of 16 ± 2.5 mL/mol (+4%) at 25 °C, and changes with temperature by -0.1 mL/(mol K). The apparent molar expansivity (E(S)) decreases upon micelle formation from 0.44 to 0.31 mL/(mol K) at 25 °C. Surprisingly, the temperature dependence of the expansivity of DM in solution (as compared with that of maltose) does not agree with the principal behavior described for polar (E(S)(T) decreasing) and hydrophobic (E(S)(T) increasing) solutes or moieties before. The results are discussed in terms of changes in hydration of the molecules and internal packing of the micelles and compared with the volumetric effects of transitions of proteins, DNA, lipids, and polymers.

  9. TRPML and lysosomal function.

    Science.gov (United States)

    Zeevi, David A; Frumkin, Ayala; Bach, Gideon

    2007-08-01

    Mucolipin 1 (MLN1), also known as TRPML1, is a member of the mucolipin family. The mucolipins are the only lysosomal proteins within the TRP superfamily. Mutations in the gene coding for TRPML1 result in a lysosomal storage disorder (LSD). This review summarizes the current knowledge related to this protein and the rest of the mucolipin family.

  10. The proteome of lysosomes.

    Science.gov (United States)

    Schröder, Bernd A; Wrocklage, Christian; Hasilik, Andrej; Saftig, Paul

    2010-11-01

    Lysosomes are organelles of eukaryotic cells that are critically involved in the degradation of macromolecules mainly delivered by endocytosis and autophagocytosis. Degradation is achieved by more than 60 hydrolases sequestered by a single phospholipid bilayer. The lysosomal membrane facilitates interaction and fusion with other compartments and harbours transport proteins catalysing the export of catabolites, thereby allowing their recycling. Lysosomal proteins have been addressed in various proteomic studies that are compared in this review regarding the source of material, the organelle/protein purification scheme, the proteomic methodology applied and the proteins identified. Distinguishing true constituents of an organelle from co-purifying contaminants is a central issue in subcellular proteomics, with additional implications for lysosomes as being the site of degradation of many cellular and extracellular proteins. Although many of the lysosomal hydrolases were identified by classical biochemical approaches, the knowledge about the protein composition of the lysosomal membrane has remained fragmentary for a long time. Using proteomics many novel lysosomal candidate proteins have been discovered and it can be expected that their functional characterisation will help to understand functions of lysosomes at a molecular level that have been characterised only phenomenologically so far and to generally deepen our understanding of this indispensable organelle.

  11. Molar volume, thermal expansivity and isothermal compressibility of trans-decahydronaphthalene up to 200MPa and 446K

    Institute of Scientific and Technical Information of China (English)

    Zhu Hu-Gang; Liu Zhi-Hua; Tian Yi-Ling; Xue Yuan; Yin Liang

    2005-01-01

    The molar volume isotherms of trans-decahydronaphthalene (C10H18) between 293 and 446 K and at pressures from 10 to 200 MPa have been determined. A modified Tait equation of state is used to fit each experimental molar volume isotherm with a maximum average deviation of 0.029%. The thermal expansivity (cubic expansion coefficient) α and isothermal compressibility κ were determined by fitting the slopes of the isobaric curves and isotherms, respectively.The coefficients in the equation Vm = C1 + C2T + C3T2 - C4p - C5pT have been fitted with an average deviation of 1.03%.

  12. Lysosome Biogenesis and Autophagy

    NARCIS (Netherlands)

    Reggiori, Fulvio; Klumperman, Judith|info:eu-repo/dai/nl/075097273

    2016-01-01

    Lysosomes degrade biological components acquired by endocytosis, the major cellular pathway for internalization of extracellular material, and macroautophagy. This chapter presents an overview of these two major degradative intracellular pathways, and highlights the emerging cross talks between

  13. Patterns of renal dopamine release to regulate diuresis and natriuresis during volume expansion. Role of renal monoamine-oxidase.

    Science.gov (United States)

    de Luca Sarobe, Verónica; Di Ciano, Luis; Carranza, Andrea M; Levin, Gloria; Arrizurieta, Elvira E; Ibarra, Fernando R

    2010-01-01

    Diuretic and natriuretic effects of renal dopamine (DA) are well established. However, in volume expansion the pattern of renal DA release into urine (UDAV) and the role of enzymes involved in DA synthesis/degradation have not yet been defined. The objective was to determine the pattern of UDAV during volume expansion and to characterize the involvement of monoamine-oxidase (MAO) and aromatic amino-acid decarboxylase (AADC) in this response. In this study male Wistar rats were expanded with NaCl 0.9% at a rate of 5% BWt per hour. At the beginning of expansion three groups received a single drug injection as follows: C (vehicle, Control), IMAO (MAO inhibitor Pargyline, 20 mg/kg BWt, i.v.) and BNZ (AADC inhibitor Benserazide, 25 mg/kg BWt, i.v.). Results revealed that in C rats UDAV (ng/30 min/100g BWt) increased in the first 30 min expansion from 11.5 +/- 1.20 to 21.8 +/- 3.10 (p diuresis and natriuresis over controls. BNZ abolished the early UDAV peak to 3.2+/-0.72 (p diuresis were diminished by BNZ treatment. Results indicate that an increment in renal DA release into urine occurs early in expansion and in a peak-shaped way. In this response MAO plays a predominant role.

  14. Plasma volume expansion does not increase maximal cardiac output or VO2 max in lowlanders acclimatized to altitude.

    Science.gov (United States)

    Calbet, José A L; Rådegran, Göran; Boushel, Robert; Søndergaard, Hans; Saltin, Bengt; Wagner, Peter D

    2004-09-01

    With altitude acclimatization, blood hemoglobin concentration increases while plasma volume (PV) and maximal cardiac output (Qmax) decrease. This investigation aimed to determine whether reduction of Qmax at altitude is due to low circulating blood volume (BV). Eight Danish lowlanders (3 females, 5 males: age 24.0 +/- 0.6 yr; mean +/- SE) performed submaximal and maximal exercise on a cycle ergometer after 9 wk at 5,260 m altitude (Mt. Chacaltaya, Bolivia). This was done first with BV resulting from acclimatization (BV = 5.40 +/- 0.39 liters) and again 2-4 days later, 1 h after PV expansion with 1 liter of 6% dextran 70 (BV = 6.32 +/- 0.34 liters). PV expansion had no effect on Qmax, maximal O2 consumption (VO2), and exercise capacity. Despite maximal systemic O2 transport being reduced 19% due to hemodilution after PV expansion, whole body VO2 was maintained by greater systemic O2 extraction (P VO2 during exercise regardless of PV. Pulmonary ventilation, gas exchange, and acid-base balance were essentially unaffected by PV expansion. Sea level Qmax and exercise capacity were restored with hyperoxia at altitude independently of BV. Low BV is not a primary cause for reduction of Qmax at altitude when acclimatized. Furthermore, hemodilution caused by PV expansion at altitude is compensated for by increased systemic O2 extraction with similar peak muscular O2 delivery, such that maximal exercise capacity is unaffected.

  15. A MODEL TO ESTIMATE VOLUME CHANGE DUE TO RADIOLYTIC GAS BUBBLES AND THERMAL EXPANSION IN SOLUTION REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    F. SOUTO; A HEGER

    2001-02-01

    Aqueous homogeneous solution reactors have been proposed for the production of medical isotopes. However, the reactivity effects of fuel solution volume change, due to formation of radiolytic gas bubbles and thermal expansion, have to be mitigated to allow steady-state operation of solution reactors. The results of the free run experiments analyzed indicate that the proposed model to estimate the void volume due to radiolytic gas bubbles and thermal expansion in solution reactors can accurately describe the observed behavior during the experiments. This void volume due to radiolytic gas bubbles and fuel solution thermal expansion can then be used in the investigation of reactivity effects in fissile solutions. In addition, these experiments confirm that the radiolytic gas bubbles are formed at a higher temperature than the fuel solution temperature. These experiments also indicate that the mole-weighted average for the radiolytic gas bubbles in uranyl fluoride solutions is about 1 {micro}m. Finally, it should be noted that another model, currently under development, would simulate the power behavior during the transient given the initial fuel solution level and density. The model is based on Monte Carlo simulation with the MCNP computer code [Briesmeister, 1997] to obtain the reactor reactivity as a function of the fuel solution density, which, in turn, changes due to thermal expansion and radiolytic gas bubble formation.

  16. A model to estimate volume change due to radiolytic gas bubbles and thermal expansion in solution reactors

    Energy Technology Data Exchange (ETDEWEB)

    Souto, F.J. [NIS-6: Advanced Nuclear Technology, Los Alamos National Lab., Los Alamos, NM (United States); Heger, A.S. [ESA-EA: Engineering Sciences and Application, Los Alamos National Lab., Los Alamos, NM (United States)

    2001-07-01

    To investigate the effects of radiolytic gas bubbles and thermal expansion on the steady-state operation of solution reactors at the power level required for the production of medical isotopes, a calculational model has been developed. To validate this model, including its principal hypotheses, specific experiments at the Los Alamos National Laboratory SHEBA uranyl fluoride solution reactor were conducted. The following sections describe radiolytic gas generation in solution reactors, the equations to estimate the fuel solution volume change due to radiolytic gas bubbles and thermal expansion, the experiments conducted at SHEBA, and the comparison of experimental results and model calculations. (author)

  17. Serotoninergic Modulation of Basal Cardiovascular Responses and Responses Induced by Isotonic Extracellular Volume Expansion in Rats

    Science.gov (United States)

    Semionatto, Isadora Ferraz; Raminelli, Adrieli Oliveira; Alves, Angelica Cristina; Capitelli, Caroline Santos; Chriguer, Rosangela Soares

    2017-01-01

    Background Isotonic blood volume expansion (BVE) induced alterations of sympathetic and parasympathetic activity in the heart and blood vessels, which can be modulated by serotonergic pathways. Objective To evaluate the effect of saline or serotonergic agonist (DOI) administration in the hypothalamic paraventricular nucleus (PVN) on cardiovascular responses after BVE. Methods We recorded pulsatile blood pressure through the femoral artery to obtain the mean arterial pressure (MAP), systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR) and the sympathetic-vagal ratio (LF/HF) of Wistar rats before and after they received bilateral microinjections of saline or DOI into the PVN, followed by BVE. Results No significant differences were observed in the values of the studied variables in the different treatments from the control group. However, when animals are treated with DOI followed by BVE there is a significant increase in relation to the BE control group in all the studied variables: MBP (114.42±7.85 vs 101.34±9.17); SBP (147.23±14.31 vs 129.39±10.70); DBP (98.01 ±4.91 vs 87.31±8.61); HR (421.02±43.32 vs 356.35±41.99); and LF/HF ratio (2.32±0.80 vs 0.27±0.32). Discussion The present study showed that the induction of isotonic BVE did not promote alterations in MAP, HR and LF/HF ratio. On the other hand, the injection of DOI into PVN of the hypothalamus followed by isotonic BVE resulted in a significant increase of all variables. Conclusion These results suggest that serotonin induced a neuromodulation in the PVN level, which promotes an inhibition of the baroreflex response to BVE. Therefore, the present study suggests the involvement of the serotonergic system in the modulation of vagal reflex response at PVN in the normotensive rats. PMID:28099586

  18. Plasma volume expansion does not increase maximal cardiac output or VO2 max in lowlanders acclimatized to altitude

    DEFF Research Database (Denmark)

    Calbet, José A L; Rådegran, Göran; Boushel, Robert Christopher

    2004-01-01

    With altitude acclimatization, blood hemoglobin concentration increases while plasma volume (PV) and maximal cardiac output (Qmax) decrease. This investigation aimed to determine whether reduction of Qmax at altitude is due to low circulating blood volume (BV). Eight Danish lowlanders (3 females, 5...... males: age 24.0 +/- 0.6 yr; mean +/- SE) performed submaximal and maximal exercise on a cycle ergometer after 9 wk at 5,260 m altitude (Mt. Chacaltaya, Bolivia). This was done first with BV resulting from acclimatization (BV = 5.40 +/- 0.39 liters) and again 2-4 days later, 1 h after PV expansion with 1...... level Qmax and exercise capacity were restored with hyperoxia at altitude independently of BV. Low BV is not a primary cause for reduction of Qmax at altitude when acclimatized. Furthermore, hemodilution caused by PV expansion at altitude is compensated for by increased systemic O2 extraction...

  19. Central administration of kisspeptin-10 inhibits natriuresis and diuresis induced by blood volume expansion in anesthetized male rats

    OpenAIRE

    Han, Xu; Yan, Ming; An, Xiao-fei; HE Ming; Yu, Jiang-Yi

    2009-01-01

    Aim: To investigate the possible role of hypothalamic kisspeptin in the regulation of body fluid metabolism and maintenance of internal homeostasis. Methods: Natriuresis and diuresis were induced by blood volume expansion (VE) in anesthetized male rats and kisspeptin-10 was intracerebroventricularly (icv) administered. Radioimmunoassay (RIA) was used to measure the plasma arginine vasopressin (AVP) and atrial natriuretic peptide (ANP) concentrations during the VE. The mediation of the renal s...

  20. Thermophysical Properties of Matter - the TPRC Data Series. Volume 13. Thermal Expansion - Nonmetallic Solids

    Science.gov (United States)

    1977-01-01

    Amer. Dental Assoc., 20, 108-19, 1933. 267 52429 Nielsen, T. H. and Leipold, M. H., "Thermal Expansion of Yttria-Stpbilized Zirconia , "J. Amer. Ceram...isotropic the coefficient of thermal Symmetres expansion is equal to three times the coefficient of linear thermal expansion; i.e., Cubic at a, a1 0 0 0...can Where sj (j = 4, 5, 6) = 0, as in cubic , hexagonal, happen in open-structure crystals, such as silicon orthorhombic, and some tetragonal crystals, a

  1. Serotoninergic Modulation of Basal Cardiovascular Responses and Responses Induced by Isotonic Extracellular Volume Expansion in Rats

    Directory of Open Access Journals (Sweden)

    Isadora Ferraz Semionatto

    Full Text Available Abstract Background: Isotonic blood volume expansion (BVE induced alterations of sympathetic and parasympathetic activity in the heart and blood vessels, which can be modulated by serotonergic pathways. Objective: To evaluate the effect of saline or serotonergic agonist (DOI administration in the hypothalamic paraventricular nucleus (PVN on cardiovascular responses after BVE. Methods: We recorded pulsatile blood pressure through the femoral artery to obtain the mean arterial pressure (MAP, systolic (SBP and diastolic blood pressure (DBP, heart rate (HR and the sympathetic-vagal ratio (LF/HF of Wistar rats before and after they received bilateral microinjections of saline or DOI into the PVN, followed by BVE. Results: No significant differences were observed in the values of the studied variables in the different treatments from the control group. However, when animals are treated with DOI followed by BVE there is a significant increase in relation to the BE control group in all the studied variables: MBP (114.42±7.85 vs 101.34±9.17; SBP (147.23±14.31 vs 129.39±10.70; DBP (98.01 ±4.91 vs 87.31±8.61; HR (421.02±43.32 vs 356.35±41.99; and LF/HF ratio (2.32±0.80 vs 0.27±0.32. Discussion: The present study showed that the induction of isotonic BVE did not promote alterations in MAP, HR and LF/HF ratio. On the other hand, the injection of DOI into PVN of the hypothalamus followed by isotonic BVE resulted in a significant increase of all variables. Conclusion: These results suggest that serotonin induced a neuromodulation in the PVN level, which promotes an inhibition of the baroreflex response to BVE. Therefore, the present study suggests the involvement of the serotonergic system in the modulation of vagal reflex response at PVN in the normotensive rats.

  2. Review of methods for predicting in situ volume change movement of expansive soil over time

    OpenAIRE

    Hana H. Adem; Sai K. Vanapalli

    2015-01-01

    The soil movement information over time is required for the design of foundations placed in expansive soils. This information is also helpful for the assessment of pre-wetting and controlled wetting mitigation alternatives for expansive soils. Several researchers during the past fifteen years have proposed different methods for the prediction of the soil movements over time. The available methods can be categorized into (i) consolidation theory-based methods, (ii) water content-based methods,...

  3. Plasma volume expansion by albumin in cirrhosis. Relation to blood volume distribution, arterial compliance and severity of disease

    DEFF Research Database (Denmark)

    Brinch, Kim; Bendtsen, Flemming; Becker, Povl Ulrik;

    2003-01-01

    BACKGROUND/AIMS: The aim of the study was to investigate the effect of a standard albumin load on blood volume distribution, arterial compliance, and the renin-angiotensin-aldosterone system in patients with different degrees of cirrhosis. METHODS: 31 patients with cirrhosis (Child classes A/B/C=...... effective arterial blood volume of such patients, which may be important in the prevention of circulatory dysfunction....

  4. Comparison of volume and diameter measurement in assessing small abdominal aortic aneurysm expansion examined using computed tomographic angiography

    Energy Technology Data Exchange (ETDEWEB)

    Parr, Adam; Jayaratne, Chanaka; Buttner, Petra [Vascular Biology Unit, James Cook University, Townsville, Queensland 4811 (Australia); Golledge, Jonathan, E-mail: Jonathan.Golledge@jcu.edu.au [Vascular Biology Unit, James Cook University, Townsville, Queensland 4811 (Australia)

    2011-07-15

    Aim: First we aimed to assess the reproducibility of a computer tomography angiography (CTA) based technique for measuring infra-renal aortic volume and diameter. Second we sought to investigate whether changes in aortic volume and diameter were similar during follow-up. Materials and methods: A prospective series of 57 patients, with aortic diameter initially measuring between 25 and 55 mm, were assessed with 2 CTAs a median of 14 months apart. Aortic volume and maximum diameter (both axial and orthogonal) were measured by a semi-automated workstation protocol based on previously defined techniques. Intra- and inter-observer reproducibility were assessed by repeat assessment of the initial CTA images of the first 33 patients included in the study, in order to estimate the 95% limits of agreements. Changes in aortic dimensions between the first and follow-up CTA, were defined for volume and diameter separately as changes greater than their respective 95% limits of agreement. Results: Reproducibility of aortic volume and diameter was excellent with an average coefficient of variation <4%. The median (inter-quartile range) increases in total volume, orthogonal and axial diameters were 4.9 cm{sup 3} (0.01-14.18), 1.2 mm (0.40-3.50) and 1.4 mm (-0.15 to 3.55) respectively. Forty-two percent of patients who had increased aortic volume above the 95% limit of agreement did not display corresponding axial or orthogonal diameter changes. Conclusions: Infra-renal total aortic volume, axial and orthogonal diameter can all be measured reproducibly from CTA. Aortic volume changes are not always reflected by similar changes in diameter and therefore provide complementary information when assessing AAA expansion over time.

  5. Review of methods for predicting in situ volume change movement of expansive soil over time

    Directory of Open Access Journals (Sweden)

    Hana H. Adem

    2015-02-01

    Full Text Available The soil movement information over time is required for the design of foundations placed in expansive soils. This information is also helpful for the assessment of pre-wetting and controlled wetting mitigation alternatives for expansive soils. Several researchers during the past fifteen years have proposed different methods for the prediction of the soil movements over time. The available methods can be categorized into (i consolidation theory-based methods, (ii water content-based methods, and (iii suction-based methods. In this paper, a state-of-the-art of the prediction methods is succinctly summarized. The methods are critically reviewed in terms of their predictive capacity along with their strengths and limitations. The review highlights the need for prediction methods that are conceptually simple yet efficient for use in conventional engineering practice for different types of expansive soils.

  6. Review of methods for predicting in situ volume change movement of expansive soil over time

    Institute of Scientific and Technical Information of China (English)

    Hana H. Adem; Sai K. Vanapalli

    2015-01-01

    The soil movement information over time is required for the design of foundations placed in expansive soils. This information is also helpful for the assessment of pre-wetting and controlled wetting mitigation alternatives for expansive soils. Several researchers during the past fifteen years have proposed different methods for the prediction of the soil movements over time. The available methods can be categorized into (i) consolidation theory-based methods, (ii) water content-based methods, and (iii) suction-based methods. In this paper, a state-of-the-art of the prediction methods is succinctly summarized. The methods are critically reviewed in terms of their predictive capacity along with their strengths and limitations. The review highlights the need for prediction methods that are conceptually simple yet efficient for use in conventional engineering practice for different types of expansive soils.

  7. Modelling the thermo-mechanical volume change behaviour of compacted expansive clays

    CERN Document Server

    Tang, Anh-Minh; 10.1680/geot.2009.59.3.185

    2009-01-01

    Compacted expansive clays are often considered as a possible buffer material in high-level deep radioactive waste disposals. After the installation of waste canisters, the engineered clay barriers are subjected to thermo-hydro-mechanical actions in the form of water infiltration from the geological barrier, heat dissipation from the radioactive waste canisters, and stresses generated by clay swelling under almost confined conditions. The aim of the present work is to develop a constitutive model that is able to describe the behaviour of compacted expansive clays under these coupled thermo-hydro-mechanical actions. The proposed model is based on two existing models: one for the hydro-mechanical behaviour of compacted expansive clays and another for the thermo-mechanical behaviour of saturated clays. The elaborated model has been validated using the thermo-hydro-mechanical test results on the compacted MX80 bentonite. Comparison between the model prediction and the experimental data show that this model is able...

  8. Vasopressor Agents without Volume Expansion as a Safe Alternative to Venovenous bypass during Cavaplasty Liver Transplantation

    Institute of Scientific and Technical Information of China (English)

    WU You-min; Tanyal Oyos; Rou-Yee Chenhsu; Daniel A Katz; Johnny E Brian; Stephen C Rayhill

    2004-01-01

    @@ Background Cavaplasty orthotopic liver transplan-tation (OLT)offers advantages for hepatectomy and implantation and eliminates the risk of outflow ob-struction. However, it does require clamping of the cava. This study describes the use of a vasopressor without fluid expansion or venovenous bypass ( VB ) for hemodynamic control during the andhepatic phase.

  9. Serotoninergic Modulation of Basal Cardiovascular Responses and Responses Induced by Isotonic Extracellular Volume Expansion in Rats.

    Science.gov (United States)

    Semionatto, Isadora Ferraz; Raminelli, Adrieli Oliveira; Alves, Angelica Cristina; Capitelli, Caroline Santos; Chriguer, Rosangela Soares

    2017-02-01

    Isotonic blood volume expansion (BVE) induced alterations of sympathetic and parasympathetic activity in the heart and blood vessels, which can be modulated by serotonergic pathways. To evaluate the effect of saline or serotonergic agonist (DOI) administration in the hypothalamic paraventricular nucleus (PVN) on cardiovascular responses after BVE. We recorded pulsatile blood pressure through the femoral artery to obtain the mean arterial pressure (MAP), systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR) and the sympathetic-vagal ratio (LF/HF) of Wistar rats before and after they received bilateral microinjections of saline or DOI into the PVN, followed by BVE. No significant differences were observed in the values of the studied variables in the different treatments from the control group. However, when animals are treated with DOI followed by BVE there is a significant increase in relation to the BE control group in all the studied variables: MBP (114.42±7.85 vs 101.34±9.17); SBP (147.23±14.31 vs 129.39±10.70); DBP (98.01 ±4.91 vs 87.31±8.61); HR (421.02±43.32 vs 356.35±41.99); and LF/HF ratio (2.32±0.80 vs 0.27±0.32). The present study showed that the induction of isotonic BVE did not promote alterations in MAP, HR and LF/HF ratio. On the other hand, the injection of DOI into PVN of the hypothalamus followed by isotonic BVE resulted in a significant increase of all variables. These results suggest that serotonin induced a neuromodulation in the PVN level, which promotes an inhibition of the baroreflex response to BVE. Therefore, the present study suggests the involvement of the serotonergic system in the modulation of vagal reflex response at PVN in the normotensive rats. Expansão de volume extracelular (EVEC) promove alterações da atividade simpática e parassimpática no coração e vasos sanguíneos, os quais podem ser moduladas por vias serotoninérgicas. Avaliar o efeito da administração de salina ou agonista serotonin

  10. Local control of emission energy of semiconductor quantum dots using volume expansion of a phase-change material

    Science.gov (United States)

    Takahashi, Motoki; Syafawati Humam, Nurrul; Tsumori, Nobuhiro; Saiki, Toshiharu; Regreny, Philippe; Gendry, Michel

    2013-03-01

    A method is proposed to precisely control the emission energy of semiconductor quantum dots (QDs) by the application of local strain due to volume expansion of a phase-change material (GeSbTe) upon amorphization. The feasibility of the method is experimentally demonstrated using photoluminescence (PL) spectroscopy of single InAs/InP QDs on which a GeSbTe thin film is deposited. A significant red-shift of the PL peak energy upon amorphization and subsequent recovery by recrystallization with laser annealing were observed.

  11. Molar volume, thermal expansion, and bulk modulus in liquid Fe-Ni alloys at 1 bar: Evidence for magnetic anomalies?

    Science.gov (United States)

    Nasch, P. M.; Manghnani, M. H.

    New experimental data on the molar volume Ω, thermal expansion coefficient α, and ultrasonic sound velocity vp in liquid Fe-Ni systems at temperatures between melting and 1975 K are reported. The molar volume and thermal expansion data were acquired using a penetrating γ radiation method; the sound velocity data were obtained by ultrasonic interferometry. In the temperature range of this study, the molar volume Ω increases and the sound velocity vp decreases, both linearly with temperature. The adiabatic bulk modulus KS ∝ v2p/Ωp of liquid Fe-Ni alloys is nearly independent of composition at Fe content greater than 65 wt%. The temperature derivative ∂K/∂T of both adiabatic and isothermal bulk modulus of pure liquid Fe decreases by approximately 50% upon being alloyed with 15 wt% Ni. The mixing behavior of thermodynamic and cohesive properties of liquid Fe-Ni is interpreted as resulting from the existence of disordered and localized magnetic states and correlations in the liquid state, i.e., well above the Curie temperature and extending from pure Fe into the Fe-Ni stability field. These magnetic contributions have strong mechanical effects on the structure in modifying the volume and elastic modulus by as much as 13% and 31%, respectively, in the case of pure liquid Fe. It is believed that the magnetic contribution, which is likely to be absent at core temperatures, should be removed from the measured 1-bar values of density and elastic moduli if these latter were to be used as precise anchoring points in high pressure-temperature EOS.

  12. The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation

    KAUST Repository

    McDowell, Matthew T.

    2012-05-01

    Applying surface coatings to alloying anodes for Li-ion batteries can improve rate capability and cycle life, but it is unclear how this second phase affects mechanical deformation during electrochemical reaction. Here, in-situ transmission electron microscopy is employed to investigate the electrochemical lithiation and delithiation of silicon nanowires (NWs) with copper coatings. When copper is coated on only one sidewall, the NW bilayer structure bends during delithiation due to length changes in the silicon. Tensile hoop stress causes conformal copper coatings to fracture during lithiation without undergoing bending deformation. In addition, in-situ and ex-situ observations indicate that a copper coating plays a role in suppressing volume expansion during lithiation. Finally, the deformation characteristics and dimensional changes of amorphous, polycrystalline, and single-crystalline silicon are compared and related to observed electrochemical behavior. This study reveals important aspects of the deformation process of silicon anodes, and the results suggest that metallic coatings can be used to improve rate behavior and to manage or direct volume expansion in optimized silicon anode frameworks. © 2012 Elsevier Ltd.

  13. The lysosome and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Lisha Zhang; Rui Sheng; Zhenghong Qin

    2009-01-01

    It has long been believed that the lysosome is an important digestive organelle. There is increasing evidence that the lysosome is also involved in pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Abnormal protein degradation and deposition induced by lysosoreal dysfunction may be the primary contributor to age-related neurodegeneration. In this review, the possible relationship between lysosome and various neurodegenerative diseases is described.

  14. Effect of suction change on water content and total volume of an expansive clay

    Institute of Scientific and Technical Information of China (English)

    ZHAN Liang-tong; CHEN Ping; NG C.W.W.

    2007-01-01

    A laboratory study was carried out on both natural and compacted specimens to investigate the complex soil-water interaction in an unsaturated expansive clay. The laboratory study includes the measurement of soil-water characteristic curves, 1D free swelling tests, measurement of swelling pressure and shrinkage tests. The test results revealed that the air-entry value of the natural specimen was quite low due to cracks and fissures present. The hydraulic hysteresis of the natural specimen was relatively insignificant as compared with the compacted specimen. Within a suction range 0 to 500 kPa, a bilinear relationship between free swelling strain (or swelling pressure) and initial soil suction was observed for both the natural and compacted specimens. As a result of over-consolidation and secondary structures such as cementation and cracks, the natural specimens exhibited significant lower swelling (or swelling pressure) than the compacted specimen. The change of matric suction exerts a more significant effect on the water phase than on the soil skeleton for this expansive clay.

  15. Applying dynamic parameters to predict hemodynamic response to volume expansion in spontaneously breathing patients with septic shock.

    Science.gov (United States)

    Lanspa, Michael J; Grissom, Colin K; Hirshberg, Eliotte L; Jones, Jason P; Brown, Samuel M

    2013-02-01

    Volume expansion is a mainstay of therapy in septic shock, although its effect is difficult to predict using conventional measurements. Dynamic parameters, which vary with respiratory changes, appear to predict hemodynamic response to fluid challenge in mechanically ventilated, paralyzed patients. Whether they predict response in patients who are free from mechanical ventilation is unknown. We hypothesized that dynamic parameters would be predictive in patients not receiving mechanical ventilation. This is a prospective, observational, pilot study. Patients with early septic shock and who were not receiving mechanical ventilation received 10-mL/kg volume expansion (VE) at their treating physician's discretion after initial resuscitation in the emergency department. We used transthoracic echocardiography to measure vena cava collapsibility index and aortic velocity variation before VE. We used a pulse contour analysis device to measure stroke volume variation (SVV). Cardiac index was measured immediately before and after VE using transthoracic echocardiography. Hemodynamic response was defined as an increase in cardiac index 15% or greater. Fourteen patients received VE, five of whom demonstrated a hemodynamic response. Vena cava collapsibility index and SVV were predictive (area under the curve = 0.83, 0.92, respectively). Optimal thresholds were calculated: vena cava collapsibility index, 15% or greater (positive predictive value, 62%; negative predictive value, 100%; P = 0.03); SVV, 17% or greater (positive predictive value 100%, negative predictive value 82%, P = 0.03). Aortic velocity variation was not predictive. Vena cava collapsibility index and SVV predict hemodynamic response to fluid challenge patients with septic shock who are not mechanically ventilated. Optimal thresholds differ from those described in mechanically ventilated patients.

  16. Applying dynamic parameters to predict hemodynamic response to volume expansion in spontaneously breathing patients with septic shock

    Science.gov (United States)

    Lanspa, Michael J.; Grissom, Colin K.; Hirshberg, Eliotte L.; Jones, Jason P.; Brown, Samuel M.

    2013-01-01

    Background Volume expansion is a mainstay of therapy in septic shock, although its effect is difficult to predict using conventional measurements. Dynamic parameters, which vary with respiratory changes, appear to predict hemodynamic response to fluid challenge in mechanically ventilated, paralyzed patients. Whether they predict response in patients who are free from mechanical ventilation is unknown. We hypothesized that dynamic parameters would be predictive in patients not receiving mechanical ventilation. Methods This is a prospective, observational, pilot study. Patients with early septic shock and who were not receiving mechanical ventilation received 10 ml/kg volume expansion (VE) at their treating physician's discretion after initial resuscitation in the emergency department. We used transthoracic echocardiography to measure vena cava collapsibility index (VCCI) and aortic velocity variation (AoVV) prior to VE. We used a pulse contour analysis device to measure stroke volume variation (SVV). Cardiac index was measured immediately before and after VE using transthoracic echocardiography. Hemodynamic response was defined as an increase in cardiac index ≥ 15%. Results 14 patients received VE, 5 of which demonstrated a hemodynamic response. VCCI and SVV were predictive (Area under curve = 0.83, 0.92, respectively). Optimal thresholds were calculated: VCCI ≥ 15% (Positive predictive value, PPV 62%, negative predictive value, NPV 100%, p = 0.03); SVV ≥ 17% (PPV 100%, NPV 82%, p = 0.03). AoVV was not predictive. Conclusions VCCI and SVV predict hemodynamic response to fluid challenge patients with septic shock who are not mechanically ventilated. Optimal thresholds differ from those described in mechanically ventilated patients. PMID:23324885

  17. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 2. Appendices. [Appendices only

    Energy Technology Data Exchange (ETDEWEB)

    Liverman, James L.

    1977-09-01

    Volume 2 is comprised of appendices: Portsmouth Gaseous Diffusion Plant Existing Facilities; Ecology; Civic Involvement; Social Analysis; Population Projections; Toxicity of Air Pollutants to Biota at Portsmouth Gaseous Diffusion Plant; and Assessment of Noise Effects of an Add-On to the Portsmouth Gaseous Diffusion Plant. (LK)

  18. Peripheral Lymphoid Volume Expansion and Maintenance Are Controlled by Gut Microbiota via RALDH+ Dendritic Cells.

    Science.gov (United States)

    Zhang, Zongde; Li, Jianjian; Zheng, Wencheng; Zhao, Guang; Zhang, Hong; Wang, Xiaofei; Guo, Yaqian; Qin, Chuan; Shi, Yan

    2016-02-16

    Lymphocyte homing to draining lymph nodes is critical for the initiation of immune responses. Secondary lymphoid organs of germ-free mice are underdeveloped. How gut commensal microbes remotely regulate cellularity and volume of secondary lymphoid organs remains unknown. We report here that, driven by commensal fungi, a wave of CD45(+)CD103(+)RALDH(+) cells migrates to the peripheral lymph nodes after birth. The arrival of these cells introduces high amounts of retinoic acid, mediates the neonatal to adult addressin switch on endothelial cells, and directs the homing of lymphocytes to both gut-associated lymphoid tissues and peripheral lymph nodes. In adult mice, a small number of these RALDH(+) cells might serve to maintain the volume of secondary lymphoid organs. Homing deficiency of these cells was associated with lymph node attrition in vitamin-A-deficient mice, suggesting a perpetual dependence on retinoic acid signaling for structural and functional maintenance of peripheral immune organs.

  19. LYSOSOMAL DISRUPTION BY BACTERIAL TOXINS

    Science.gov (United States)

    Bernheimer, Alan W.; Schwartz, Lois L.

    1964-01-01

    Bernheimer, Alan W. (New York University School of Medicine, New York), and Lois L. Schwartz. Lysosomal disruption by bacterial toxins. J. Bacteriol. 87:1100–1104. 1964.—Seventeen bacterial toxins were examined for capacity (i) to disrupt rabbit leukocyte lysosomes as indicated by decrease in turbidity of lysosomal suspensions, and (ii) to alter rabbit liver lysosomes as measured by release of β-glucuronidase and acid phosphatase. Staphylococcal α-toxin, Clostridium perfringens α-toxin, and streptolysins O and S affected lysosomes in both systems. Staphylococcal β-toxin, leucocidin and enterotoxin, Shiga neurotoxin, Serratia endotoxin, diphtheria toxin, tetanus neurotoxin, C. botulinum type A toxin, and C. perfringens ε-toxin were not active in either system. Staphylococcal δ-toxin, C. histolyticum collagenase, crude C. perfringens β-toxin, and crude anthrax toxin caused lysosomal damage in only one of the test systems. There is a substantial correlation between the hemolytic property of a toxin and its capacity to disrupt lysosomes, lending support to the concept that erythrocytes and lysosomes are bounded by similar membranes. PMID:5874534

  20. Placental Underperfusion in a Rat Model of Intrauterine Growth Restriction Induced by a Reduced Plasma Volume Expansion.

    Directory of Open Access Journals (Sweden)

    Karine Bibeau

    Full Text Available Lower maternal plasma volume expansion was found in idiopathic intrauterine growth restriction (IUGR but the link remains to be elucidated. An animal model of IUGR was developed by giving a low-sodium diet to rats over the last week of gestation. This treatment prevents full expansion of maternal circulating volume and the increase in uterine artery diameter, leading to reduced placental weight compared to normal gestation. We aimed to verify whether this is associated with reduced remodeling of uteroplacental circulation and placental hypoxia. Dams were divided into two groups: IUGR group and normal-fed controls. Blood velocity waveforms in the main uterine artery were obtained by Doppler sonography on days 14, 18 and 21 of pregnancy. On day 22 (term = 23 days, rats were sacrificed and placentas and uterine radial arteries were collected. Diameter and myogenic response of uterine arteries supplying placentas were determined while expression of hypoxia-modulated genes (HIF-1α, VEGFA and VEGFR2, apoptotic enzyme (Caspase -3 and -9 and glycogen cells clusters were measured in control and IUGR term-placentas. In the IUGR group, impaired blood velocity in the main uterine artery along with increased resistance index was observed without alteration in umbilical artery blood velocity. Radial uterine artery diameter was reduced while myogenic response was increased. IUGR placentas displayed increased expression of hypoxia markers without change in the caspases and increased glycogen cells in the junctional zone. The present data suggest that reduced placental and fetal growth in our IUGR model may be mediated, in part, through reduced maternal uteroplacental blood flow and increased placental hypoxia.

  1. Disruption of the endothelin A receptor in the nephron causes mild fluid volume expansion

    Directory of Open Access Journals (Sweden)

    Stuart Deborah

    2012-12-01

    Full Text Available Abstract Background Endothelin, via endothelin A receptors (ETA, exerts multiple pathologic effects that contribute to disease pathogenesis throughout the body. ETA antagonists ameliorate many experimental diseases and have been extensively utilized in clinical trials. The utility of ETA blockers has been greatly limited, however, by fluid retention, sometimes leading to heart failure or death. To begin to examine this issue, the effect of genetic disruption of ETA in the nephron on blood pressure and salt handling was determined. Methods Mice were generated with doxycycline-inducible nephron-specific ETA deletion using Pax8-rtTA and LC-1 transgenes on the background of homozygous loxP-flanked ETA alleles. Arterial pressure, Na metabolism and measures of body fluid volume status (hematocrit and impedance plethysmography were assessed. Results Absence of nephron ETA did not alter arterial pressure whether mice were ingesting a normal or high Na diet. Nephron ETA disruption did not detectably affect 24 hr Na excretion or urine volume regardless of Na intake. However, mice with nephron ETA knockout that were fed a high Na diet had mild fluid retention as evidenced by an increase in body weight and a fall in hematocrit. Conclusions Genetic deletion of nephron ETA causes very modest fluid retention that does not alter arterial pressure. Nephron ETA, under normal conditions, likely do not play a major role in regulation of Na excretion or systemic hemodynamics.

  2. Lysosomal cell death at a glance

    DEFF Research Database (Denmark)

    Aits, Sonja; Jaattela, Marja

    2013-01-01

    Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form...... of cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream...... mechanisms that lead to lysosomal membrane permeabilization....

  3. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids

    Science.gov (United States)

    Kao, Tzung-Ta; Chang, Yao-Chung

    2014-01-01

    The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.

  4. The impact of maternal plasma volume expansion and antihypertensive treatment with intravenous dihydralazine on fetal and maternal hemodynamics during pre-eclampsia: a clinical, echo-Doppler and viscometric study.

    NARCIS (Netherlands)

    Boito, S.M.; Struijk, P.C.; Pop, G.A.M.; Visser, W. de; Steegers, E.A.P.; Wladimiroff, J.W.

    2004-01-01

    OBJECTIVES: To establish the effects of plasma volume expansion (PVE) followed by intravenous dihydralazine (DH) administration on maternal whole blood viscosity (WBV) and hematocrit, uteroplacental and fetoplacental downstream impedance and umbilical venous (UV) volume flow in pre-eclampsia. METHOD

  5. Influence of volume expansion on NaC1 reabsorption in the diluting segments of the nephron: a study using clearance methods.

    Science.gov (United States)

    Danovitch, G M; Bricker, N S

    1976-09-01

    Whether volume expansion influences NaC1 reabsorption by the diluting segment of the nephron remains a matter of controversy. In the present studies this question has been examined in normal unanesthetized dogs, undergoing maximal water diuresis. Free water clearance (CH2O/GFR) has been used as the index of NaC1 reabsorption in the diluting segment. Three expressions have been employed for "distal delivery" of NaC1: a) V/GFR, designated as the "volume term"; b) (CNa/GFR + CH2O/GFR), the "sodium term;" and c) (CC1/GFR + CH2O/GFR), the "chloride term". The validity of these terms is discussed. Three techniques were used to increase distal delivery: 1) the administration of acetazolamide to dogs in which extracellular fluid (ECF) volume was not expanded (grop 1); 2) "moderate" volume expansion (group 2); and 3) "marked" volume expansion (group 3). CH2O/GFR increased progressively with rising values for "distal delivery" regardless of which term was used to calculate the latter. With all three delivery terms, differences in distal NaC1 reabsorption emerged between the two volume-expanded groups, though only with the "chloride" term did substantial differences also emerge between the nonexpanded group 1 dogs and both volume-expanded groups. In group 1, values for CH2O/GFR increased in close to a linear fashion up to distal delivery values equal to 24% of the volume of glomerular filtrate. However, at high rates of distal delivery the rate of rise of CH2O/GFR was less in group 2 than in group 1 and the depression of values was even greater in group 3. Within the limits of the techniques used, the data suggest that volume expansion inhibits fractional NaC1 reabsorption in the diluting segment of the nephron in a dose-related fashion. The "chloride" term was found to be superior to the "volume" and "sodium" terms in revealing these changes.

  6. Effect of volume expansion with 6% hydroxyethyl starch on perioperative hemodynamics and inflammatory factors in patients with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Guo-Wen Zhao; Xing-Chang Zhao; Yong-Guo Cui; De-Chao Lu; Jian-Feng Wang

    2016-01-01

    Objective:To study the effect of volume expansion with 6% hydroxyethyl starch on perioperative hemodynamics and inflammatory factors in patients with traumatic brain injury. Methods:A total of 82 cases of traumatic brain injury from January 2011 to June 2016 in our hospital were randomly divided into the observation group with injection of 6% hydroxyethyl starch and the control group with injection of compound sodium lactate, 41 cases in each group. Hemodynamics, TNF-α and IL-6 were detected in before induction of anesthesia (T0), before skull plate (T1), after skull plate 5 min (T2), 15 min (T3), 30 min (T4).Results:There were no significant differences in CVP, MAP and HR between the two groups at T0 time (P>0.05); HR of the two groups of patients were significantly increased (P0.05); The MAP of the two groups began to decrease significantly at T1, but the observation group was significantly lower than the control group (P0.05). There was no significant difference in the levels of IL-6 and TNF-α between the two groups before surgery (P>0.05); After operation, the control group of TNF- and IL-6 were significantly higher, and higher than the same period of observation group, the difference was statistically significant (P<0.05).Conclusions:Using 6% hydroxyethyl starch preloading craniocerebral trauma patients is helpful to maintain the perioperative hemodynamic stability, reduce the level of inflammatory factors, which is worthy of reference.

  7. Lysosomal cell death mechanisms in aging.

    Science.gov (United States)

    Gómez-Sintes, Raquel; Ledesma, María Dolores; Boya, Patricia

    2016-12-01

    Lysosomes are degradative organelles essential for cell homeostasis that regulate a variety of processes, from calcium signaling and nutrient responses to autophagic degradation of intracellular components. Lysosomal cell death is mediated by the lethal effects of cathepsins, which are released into the cytoplasm following lysosomal damage. This process of lysosomal membrane permeabilization and cathepsin release is observed in several physiopathological conditions and plays a role in tissue remodeling, the immune response to intracellular pathogens and neurodegenerative diseases. Many evidences indicate that aging strongly influences lysosomal activity by altering the physical and chemical properties of these organelles, rendering them more sensitive to stress. In this review we focus on how aging alters lysosomal function and increases cell sensitivity to lysosomal membrane permeabilization and lysosomal cell death, both in physiological conditions and age-related pathologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Biomarkers in Lysosomal Storage Diseases

    Directory of Open Access Journals (Sweden)

    Joaquin Bobillo Lobato

    2016-12-01

    Full Text Available A biomarker is generally an analyte that indicates the presence and/or extent of a biological process, which is in itself usually directly linked to the clinical manifestations and outcome of a particular disease. The biomarkers in the field of lysosomal storage diseases (LSDs have particular relevance where spectacular therapeutic initiatives have been achieved, most notably with the introduction of enzyme replacement therapy (ERT. There are two main types of biomarkers. The first group is comprised of those molecules whose accumulation is directly enhanced as a result of defective lysosomal function. These molecules represent the storage of the principal macro-molecular substrate(s of a specific enzyme or protein, whose function is deficient in the given disease. In the second group of biomarkers, the relationship between the lysosomal defect and the biomarker is indirect. In this group, the biomarker reflects the effects of the primary lysosomal defect on cell, tissue, or organ functions. There is no “gold standard” among biomarkers used to diagnosis and/or monitor LSDs, but there are a number that exist that can be used to reasonably assess and monitor the state of certain organs or functions. A number of biomarkers have been proposed for the analysis of the most important LSDs. In this review, we will summarize the most promising biomarkers in major LSDs and discuss why these are the most promising candidates for screening systems.

  9. Frustrated phagocytosis on micro-patterned immune complexes to characterize lysosome movements in live macrophages.

    Directory of Open Access Journals (Sweden)

    Arnaud M. Labrousse

    2011-10-01

    Full Text Available Lysosome mobilization is a key cellular process in phagocytes for bactericidal activities and trans-matrix migration. The molecular mechanisms that regulate lysosome mobilization are still poorly known. Lysosomes are hard to track as they move towards phagosomes throughout the cell volume. In order to anticipate cell regions where lysosomes are recruited to, human and RAW264.7 macrophages were seeded on surfaces that were micro-patterned with immune complexes (ICs as 4 µm-side squares. Distances between IC patterns were adapted to optimize cell spreading in order to constrain lysosome movements mostly in 2 dimensions. Fc receptors triggered local frustrated phagocytosis, frustrated phagosomes appeared as rings of F-actin dots around the IC patterns as early as 5 minutes after cells made contact with the substratum. Frustrated phagosomes recruited actin-associated proteins (vinculin, paxillin and gelsolin. The fusion of lysosomes with frustrated phagosomes was shown by the release of beta-hexosaminidase and the recruitment of Lamp-1 to frustrated phagosomes. Lysosomes of RAW264.7 macrophages were labeled with cathepsinD-mCherry to visualize their movements towards frustrated phagosomes. Lysosomes saltatory movements were markedly slowed down compared to cells layered on non-opsonized patterns. In addition, the linearity of the trajectories and the frequency and duration of contacts of lysosomes with frustrated phagosomes were measured.¬¬¬¬¬¬¬¬ Using PP2 we showed that instant velocity, pauses and frequency of lysosome/phagosome contacts were at least in part dependent on Src tyrosine kinases. This experimental set-up is the first step towards deciphering molecular mechanisms which are involved in lysosome movements in the cytoplasm (directionality, docking and fusion using RNA interference, pharmacological inhibition or mutant expression.

  10. Brief exposure to copper activates lysosomal exocytosis.

    Science.gov (United States)

    Peña, Karina; Coblenz, Jessica; Kiselyov, Kirill

    2015-04-01

    Copper (Cu) is essential mineral, but its toxicity necessitates existence of powerful machinery responsible for the extraction of excess Cu from the cell. Cu exposure was recently shown to induce the translocation of Cu pump ATP7B to the lysosomes followed by lysosomal exocytosis. Here we sought to investigate the mechanisms underlying the effect of Cu on lysosomal exocytosis. We found that brief exposure to Cu activates lysosomal exocytosis, which was measured as a release of the lysosomal digestive enzyme β-hexosaminidase (β-hex) into the extracellular medium and by the presence lysosomal protein LAMP1 at the plasma membrane. Such release depends on calcium (Ca) and on the lysosomal SNARE VAMP7. ATP7B knockdown using RNAi suppressed the basal lysosomal exocytosis, but did not affect the ability of Cu to activate it. ATP7B knockdown was associated with sustained oxidative stress. The removal of Ca from the extracellular medium suppressed the Cu-dependent component of the lysosomal exocytosis. We propose that Cu promotes lysosomal exocytosis by facilitating a Ca-dependent step of the lysosomal exocytosis.

  11. Inhibitors of lysosomal cysteine proteases

    Directory of Open Access Journals (Sweden)

    Lyanna O. L.

    2011-04-01

    Full Text Available The review is devoted to the inhibitors of cysteine proteinases which are believed to be very important in many biochemical processes of living organisms. They participate in the development and progression of numerous diseases that involve abnormal protein turnover. One of the main regulators of these proteinases is their specific inhibitors: cystatins. The aim of this review was to present current knowledge about endogenous inhibitors of lysosomal cysteine proteases and their synthetic analogs.

  12. Airway surface liquid volume expansion induces rapid changes in amiloride-sensitive Na+ transport across upper airway epithelium-Implications concerning the resolution of pulmonary edema

    Science.gov (United States)

    Azizi, Fouad; Arredouani, Abdelilah; Mohammad, Ramzi M

    2015-01-01

    During airway inflammation, airway surface liquid volume (ASLV) expansion may result from the movement of plasma proteins and excess liquid into the airway lumen due to extravasation and elevation of subepithelial hydrostatic pressure. We previously demonstrated that elevation of submucosal hydrostatic pressure increases airway epithelium permeability resulting in ASLV expansion by 500 μL cm−2 h−1. Liquid reabsorption by healthy airway epithelium is regulated by active Na+ transport at a rate of 5 μL cm−2 h−1. Thus, during inflammation the airway epithelium may be submerged by a large volume of luminal liquid. Here, we have investigated the mechanism by which ASLV expansion alters active epithelial Na+ transport, and we have characterized the time course of the change. We used primary cultures of tracheal airway epithelium maintained under air interface (basal ASLV, depth is 7 ± 0.5 μm). To mimic airway flooding, ASLV was expanded to a depth of 5 mm. On switching from basal to expanded ASLV conditions, short-circuit current (Isc, a measure of total transepithelial active ion transport) declined by 90% with a half-time (t1/2) of 1 h. 24 h after the switch, there was no significant change in ATP concentration nor in the number of functional sodium pumps as revealed by [3H]-ouabain binding. However, amiloride-sensitive uptake of 22Na+ was reduced by 70% upon ASLV expansion. This process is reversible since after returning cells back to air interface, Isc recovered with a t1/2 of 5–10 h. These results may have important clinical implications concerning the development of Na+ channels activators and resolution of pulmonary edema. PMID:26333829

  13. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells.

    Science.gov (United States)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth; Petersen, Nikolaj H T; Nylandsted, Jesper; Jäättelä, Marja

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets.

  14. Negative thermal expansion and spontaneous volume magnetostriction of Tb{sub 2}Fe{sub 16}Cr compound

    Energy Technology Data Exchange (ETDEWEB)

    Hao Yanming [Department of Physics, Tianjin Normal University, Tianjin 300074 (China)]. E-mail: zhao.miao@126.com; Zhao Miao [Department of Physics, Tianjin Normal University, Tianjin 300074 (China); Zhou Yan [Department of Physics, Tianjin Normal University, Tianjin 300074 (China); Hu Jifan [Department of Physics, Shandong University, Jinan, 250100 (China)

    2005-08-15

    The compound Tb{sub 2}Fe{sub 16}Cr has a hexagonal Th{sub 2}Ni{sub 17}-type structure. Negative thermal expansion was found at 292-556 K. Magnetization measurements show that a Cr atom substituting for a Fe atom increases the Curie temperature of the Tb{sub 2}Fe{sub 17} compound.

  15. GNeosomes: Highly Lysosomotropic Nanoassemblies for Lysosomal Delivery.

    Science.gov (United States)

    Wexselblatt, Ezequiel; Esko, Jeffrey D; Tor, Yitzhak

    2015-01-01

    GNeosomes, lysosomotropic lipid vesicles decorated with guanidinoneomycin, can encapsulate and facilitate the cellular internalization and lysosomal delivery of cargo ranging from small molecules to high molecular weight proteins, in a process that is exclusively dependent on cell surface glycosaminoglycans. Their cellular uptake mechanism and co-localization with lysosomes, as well as the delivery, release, and activity of internalized cargo, are quantified. GNeosomes are proposed as a universal platform for lysosomal delivery with potential as a basic research tool and a therapeutic vehicle.

  16. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation.

    Science.gov (United States)

    Li, Xinran; Rydzewski, Nicholas; Hider, Ahmad; Zhang, Xiaoli; Yang, Junsheng; Wang, Wuyang; Gao, Qiong; Cheng, Xiping; Xu, Haoxing

    2016-04-01

    To mediate the degradation of biomacromolecules, lysosomes must traffic towards cargo-carrying vesicles for subsequent membrane fusion or fission. Mutations of the lysosomal Ca(2+) channel TRPML1 cause lysosomal storage disease (LSD) characterized by disordered lysosomal membrane trafficking in cells. Here we show that TRPML1 activity is required to promote Ca(2+)-dependent centripetal movement of lysosomes towards the perinuclear region (where autophagosomes accumulate) following autophagy induction. ALG-2, an EF-hand-containing protein, serves as a lysosomal Ca(2+) sensor that associates physically with the minus-end-directed dynactin-dynein motor, while PtdIns(3,5)P(2), a lysosome-localized phosphoinositide, acts upstream of TRPML1. Furthermore, the PtdIns(3,5)P(2)-TRPML1-ALG-2-dynein signalling is necessary for lysosome tubulation and reformation. In contrast, the TRPML1 pathway is not required for the perinuclear accumulation of lysosomes observed in many LSDs, which is instead likely to be caused by secondary cholesterol accumulation that constitutively activates Rab7-RILP-dependent retrograde transport. Ca(2+) release from lysosomes thus provides an on-demand mechanism regulating lysosome motility, positioning and tubulation.

  17. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation.

    Science.gov (United States)

    Wang, Wuyang; Gao, Qiong; Yang, Meimei; Zhang, Xiaoli; Yu, Lu; Lawas, Maria; Li, Xinran; Bryant-Genevier, Marthe; Southall, Noel T; Marugan, Juan; Ferrer, Marc; Xu, Haoxing

    2015-03-17

    Upon nutrient starvation, autophagy digests unwanted cellular components to generate catabolites that are required for housekeeping biosynthesis processes. A complete execution of autophagy demands an enhancement in lysosome function and biogenesis to match the increase in autophagosome formation. Here, we report that mucolipin-1 (also known as TRPML1 or ML1), a Ca(2+) channel in the lysosome that regulates many aspects of lysosomal trafficking, plays a central role in this quality-control process. By using Ca(2+) imaging and whole-lysosome patch clamping, lysosomal Ca(2+) release and ML1 currents were detected within hours of nutrient starvation and were potently up-regulated. In contrast, lysosomal Na(+)-selective currents were not up-regulated. Inhibition of mammalian target of rapamycin (mTOR) or activation of transcription factor EB (TFEB) mimicked a starvation effect in fed cells. The starvation effect also included an increase in lysosomal proteostasis and enhanced clearance of lysosomal storage, including cholesterol accumulation in Niemann-Pick disease type C (NPC) cells. However, this effect was not observed when ML1 was pharmacologically inhibited or genetically deleted. Furthermore, overexpression of ML1 mimicked the starvation effect. Hence, lysosomal adaptation to environmental cues such as nutrient levels requires mTOR/TFEB-dependent, lysosome-to-nucleus regulation of lysosomal ML1 channels and Ca(2+) signaling.

  18. BK Channels Alleviate Lysosomal Storage Diseases by Providing Positive Feedback Regulation of Lysosomal Ca2+ Release.

    Science.gov (United States)

    Cao, Qi; Zhong, Xi Zoë; Zou, Yuanjie; Zhang, Zhu; Toro, Ligia; Dong, Xian-Ping

    2015-05-26

    Promoting lysosomal trafficking represents a promising therapeutic approach for lysosome storage diseases. Efficient Ca(2+) mobilization from lysosomes is important for lysosomal trafficking. Ca(2+) release from lysosomes could generate a negative potential in the lumen to disturb subsequent Ca(2+) release in the absence of counter ion flux. Here we report that lysosomes express big-conductance Ca(2+)-activated potassium (BK) channels that form physical and functional coupling with the lysosomal Ca(2+) release channel, TRPML1. Ca(2+) release via TRPML1 causes BK activation, which in turn facilitates further lysosomal Ca(2+) release and membrane trafficking. Importantly, BK overexpression rescues the impaired TRPML1-mediated Ca(2+) release and abnormal lysosomal storage in cells from Niemann-Pick C1 patients. Therefore, we have identified a lysosomal K(+) channel that provides a positive feedback mechanism to facilitate TRPML1-mediated Ca(2+) release and membrane trafficking. Our findings suggest that upregulating BK may be a potential therapeutic strategy for certain lysosomal storage diseases and common neurodegenerative disorders.

  19. Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content.

    Directory of Open Access Journals (Sweden)

    Hanna Appelqvist

    Full Text Available Alterations in lipid homeostasis are implicated in several neurodegenerative diseases, although the mechanisms responsible are poorly understood. We evaluated the impact of cholesterol accumulation, induced by U18666A, quinacrine or mutations in the cholesterol transporting Niemann-Pick disease type C1 (NPC1 protein, on lysosomal stability and sensitivity to lysosome-mediated cell death. We found that neurons with lysosomal cholesterol accumulation were protected from oxidative stress-induced apoptosis. In addition, human fibroblasts with cholesterol-loaded lysosomes showed higher lysosomal membrane stability than controls. Previous studies have shown that cholesterol accumulation is accompanied by the storage of lipids such as sphingomyelin, glycosphingolipids and sphingosine and an up regulation of lysosomal associated membrane protein-2 (LAMP-2, which may also influence lysosomal stability. However, in this study the use of myriocin and LAMP deficient fibroblasts excluded these factors as responsible for the rescuing effect and instead suggested that primarily lysosomal cholesterol content determineD the cellular sensitivity to toxic insults. Further strengthening this concept, depletion of cholesterol using methyl-β-cyclodextrin or 25-hydroxycholesterol decreased the stability of lysosomes and cells became more prone to undergo apoptosis. In conclusion, cholesterol content regulated lysosomal membrane permeabilization and thereby influenced cell death sensitivity. Our data suggests that lysosomal cholesterol modulation might be used as a therapeutic strategy for conditions associated with accelerated or repressed apoptosis.

  20. Thermal expansion of glassy polymers.

    Science.gov (United States)

    Davy, K W; Braden, M

    1992-01-01

    The thermal expansion of a number of glassy polymers of interest in dentistry has been studied using a quartz dilatometer. In some cases, the expansion was linear and therefore the coefficient of thermal expansion readily determined. Other polymers exhibited non-linear behaviour and values appropriate to different temperature ranges are quoted. The linear coefficient of thermal expansion was, to a first approximation, a function of both the molar volume and van der Waal's volume of the repeating unit.

  1. Endosome-lysosomes and neurodegeneration.

    Science.gov (United States)

    Mayer, R J; Tipler, C; Laszlo, L; Arnold, J; Lowe, J; Landon, M

    1994-01-01

    A number of the major human and animal neurodegenerative diseases, such as Alzheimer's disease and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins. Although our knowledge concerning these diseases is increasing, they remain largely untreatable. Recently, attention has focussed on the mechanisms of production of different types of amyloid and the likely involvement within cells of acid compartments called endosome-lysosomes. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials. These subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Common features of the disease processes give new direction to therapeutic intervention.

  2. Expansion of radiofrequency ablation volume by saturated NaCl saline injection in the area of vaporization.

    Science.gov (United States)

    Shimizu, A; Ishizaka, H; Awata, S; Shiraishi, A; Hirasawa, S; Tatezawa, T; Kano, M; Shimodaira, K; Taketomi-Takahashi, A; Tsushima, Y; Endo, K

    2009-01-01

    Vaporization around the radiofrequency (RF) electrode after RF application (RFA) limits the RF ablation area. To determine whether saturated saline injected into the area of vaporization after initial RFA extends ablation area after further RFA. RFA was performed in 18 ex vivo porcine livers and four in vivo rabbit erector spinae muscles. An RF electrode was used to ablate an area with 40W of parallel current for 15 min. The ablation margin was determined using a thermocouple, and the radius of the ablated area was measured. After RF electrode removal, saturated saline was infused through a percutaneous ethanol injection needle into the site of the original RFA in 11 liver samples and two erector spinae muscles. Three minutes later, RFA was resumed for 15 min. The remaining seven control liver samples and two spinae muscles received RFA without saline injection. The radius of the final ablated area was then measured. In the ex vivo study, injection of saturated saline significantly decreased tissue impedance (87.7+/-9.4 to 51.1+/-9.7 Omega, P+/-3.0 to 25.0+/-3.6 mm, Pvaporization around the RF electrode, followed by additional RFA, caused concentric expansion of the final ablation area, facilitating more efficient tumor ablation.

  3. Human albumin solution for patients with cirrhosis and acute on chronic liver failure: Beyond simple volume expansion

    Institute of Scientific and Technical Information of China (English)

    Christopher; Valerio; Eleni; Theocharidou; Andrew; Davenport; Banwari; Agarwal

    2016-01-01

    To provide an overview of the properties of human serum albumin(HSA), and to review the evidence for the use of human albumin solution(HAS) in critical illness, sepsis and cirrhosis. A MEDLINE search was performed using the terms "human albumin", "critical illness", "sepsis" and "cirrhosis". The references of retrieved articles were reviewed manually. Studies published between 1980 and 2014 were selected based on quality criteria. Data extraction was performed by all authors. HSA is the main plasma protein contributing greatly to its oncotic pressure. HSA demonstrates important binding properties for endogenous and exogenous toxins, drugs and drug metabolites that account for its anti-oxidant and anti-inflammatory properties. In disease states, hypoalbuminaemia is secondary to decreased HSA production, increased loss or transcapillary leakage into the interstitial space. HSA function can be also altered in disease with reduced albumin binding capacity and increased production of modified isoforms. HAS has been used as volume expander in critical illness, but received criticism due to cost and concerns regarding safety. More recent studies confirmed the safety of HAS, but failed to show any survival benefit compared to the cheaper crystalloid fluids, therefore limiting its use. On the contrary, in cirrhosis there is robust data to support the efficacy of HAS for the prevention of circulatory dysfunction post-large volume paracentesis and in the context of spontaneous bacterial peritonitis, and for the treatment of hepato-renal syndrome and hypervolaemic hyponatraemia. It is likely that not only the oncotic properties of HAS are beneficial in cirrhosis, but also its functional properties, as HAS replaces the dysfunctional HSA. The role of HAS as the resuscitation fluid of choice in critically ill patients with cirrhosis, beyond the established indications for HAS use, should be addressed in future studies.

  4. Subtleties in the calculation of the pressure and pressure tensor of anisotropic particles from volume-perturbation methods and the apparent asymmetry of the compressive and expansive contributions

    Science.gov (United States)

    Brumby, Paul E.; Haslam, Andrew J.; de Miguel, Enrique; Jackson, George

    2011-01-01

    An efficient and versatile method to calculate the components of the pressure tensor for hard-body fluids of generic shape from the perspective of molecular simulation is presented. After due consideration of all the possible repulsive contributions exerted by molecules upon their surroundings during an anisotropic system expansion, it is observed that such a volume change can, for non-spherical molecules, give rise to configurations where overlaps occur. This feature of anisotropic molecules has to be taken into account rigorously as it can lead to discrepancies in the calculation of tensorial contributions to the pressure. Using the condition of detailed balance as a basis, a perturbation method developed for spherical molecules has been extended so that it is applicable to non-spherical and non-convex molecules. From a series of 'ghost' anisotropic volume perturbations the residual contribution to the components of the pressure tensor may be accurately calculated. Comparisons are made with prior methods and, where relevant, results are evaluated against existing data. For inhomogeneous systems this method provides a particularly convenient route to the calculation of the interfacial tension (surface free energy) from molecular simulations.

  5. Lysosomal exoglycosidases in nasal polyps.

    Science.gov (United States)

    Chojnowska, Sylwia; Minarowska, Alina; Knaś, Małgorzata; Niemcunowicz-Janica, Anna; Kołodziejczyk, Paweł; Zalewska-Szajda, Beata; Kępka, Alina; Minarowski, Łukasz; Waszkiewicz, Napoleon; Zwierz, Krzysztof; Szajda, Sławomir Dariusz

    2013-01-01

    Nasal polyps are smooth outgrowths assuming a shape of grapes, formed from the nasal mucosa, limiting air flow by projecting into a lumen of a nasal cavity. Up to now the surgical resection is the best method of their treatment, but etiology and pathogenesis of the nasal polyps is not yet fully established. The aim of the study was the assessment of the selected lysosomal exoglycosidases activity in the nasal polyps. In this study the activity of β-galactosidase, α-mannosidase and α-fucosidase was determined in the tissue of the nasal polyps obtained from 40 patients (10F, 30M) and control tissues derived from mucosa of lower nasal conchas obtained during mucotomy from 20 patients (10F, 10M). We observed significant lower values of GAL, FUC and tendency to decrease of MAN and GLU concentration in nasal polyps (P) in comparison to control healthy nasal mucosa (C). In nasal polyp tissue (P) no differences of GAL, MAN and FUC specific activity in comparison to control mucosa (C) were found. Our research supports bioelectrical theory of the nasal polyps pathogenesis and directs attention at research on glycoconjugates and glycosidases of the nasal mucosa extracellular matrix. Copyright © 2013 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  6. Presenilin 1 maintains lysosomal Ca2+ homeostasis by regulating vATPase-mediated lysosome acidification

    Science.gov (United States)

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M.; Haslett, Luke J.; Kumar, Asok; Sato, Yutaka; Lie, Pearl P. Y.; Mohan, Panaiyur; Coffey, Erin E.; Kompella, Uday; Mitchell, Claire H.; Lloyd-Evans, Emyr; Nixon, Ralph A.

    2015-01-01

    Summary Presenilin-1 (PS1) deletion or Alzheimer’s Disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss of function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism. PMID:26299959

  7. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release.

    Science.gov (United States)

    Shen, Dongbiao; Wang, Xiang; Li, Xinran; Zhang, Xiaoli; Yao, Zepeng; Dibble, Shannon; Dong, Xian-ping; Yu, Ting; Lieberman, Andrew P; Showalter, Hollis D; Xu, Haoxing

    2012-03-13

    Lysosomal lipid accumulation, defects in membrane trafficking and altered Ca(2+) homoeostasis are common features in many lysosomal storage diseases. Mucolipin transient receptor potential channel 1 (TRPML1) is the principle Ca(2+) channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca(2+) release, measured using a genetically encoded Ca(2+) indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells. Sphingomyelins (SMs) are plasma membrane lipids that undergo sphingomyelinase (SMase)-mediated hydrolysis in the lysosomes of normal cells, but accumulate distinctively in lysosomes of NP cells. Patch-clamp analyses revealed that TRPML1 channel activity is inhibited by SMs, but potentiated by SMases. In NP-type C cells, increasing TRPML1's expression or activity was sufficient to correct the trafficking defects and reduce lysosome storage and cholesterol accumulation. We propose that abnormal accumulation of luminal lipids causes secondary lysosome storage by blocking TRPML1- and Ca(2+)-dependent lysosomal trafficking.

  8. [Maternal hypotension with low doses of spinal bupivacaine or levobupivacaine and epidural volume expansion with saline for cesarean section].

    Science.gov (United States)

    Guasch, E; Gilsanz, F; Díez, J; Alsina, E

    2010-05-01

    Epidural volume extension (EVE) with saline solution can contribute to greater cephalad spread of drugs injected into the subarachnoid space during cesarean section. We studied the incidence of material hypotension with spinal bupivacaine or levobupivacaine (L-bupivacaine) and the spread after epidural saline injection. After ethics committee approval, we randomized women scheduled for cesarean section to 4 groups to receive 5 mg of 0.25% bupivacaine with (n=51) or without (n=6) saline EVE; 5 mg of 025% L-bupivacaine (n=50); or 6 mg of 03% L-bupivacaine (n=50). All patients also received 25 microg of fentanyl per 2 mL of local hyperbaric spinal anesthetic. In all except the non-EVE group, 10 mL of saline was infused through an epidural catheter 5 minutes after anesthetic infusion. We recorded patient demographic data, procedural and anesthetic times, incision-clamping times, occurrence of hypotension, ephedrine dose required, motor and sensory blockade, requirement for rescue analgesics, and neonatal outcome. After 6 patients had been randomized to the non-EVE group, no further patients were assigned because all the women required rescue analgesics. Demographic data, duration of procedure, time between. incision and delivery, and Apgar scores were similar in all the groups. The incidence of hypotension was lower in the group receiving 5 mg of L-bupivacaine (26% vs. 52.9% in the bupivacaine 5-mg group, and 56% in the 6-mg L-bupivacaine group, P = .04). More women given 5 mg of L-bupivacaine required rescue analgesia (46%) than did those receiving 5 mg of bupivacaine (235%) or 6 mg of L-bupivacaine (28%) (P = .039). Hypotension was associated with a lower umbilical cord pH (P = .001). Ephedrine doses over 20 mg were also associated with a lower umbilical cord pH (P = .031). The incidence of hypotension was lowest in the group anesthetized with 5 mg of L-bupivacaine, but the need for rescue analgesia was greater in this group. Doses of 5 mg and 6 mg may be sufficient

  9. Arterial pressure allows monitoring the changes in cardiac output induced by volume expansion but not by norepinephrine.

    Science.gov (United States)

    Monnet, Xavier; Letierce, Alexia; Hamzaoui, Olfa; Chemla, Denis; Anguel, Nadia; Osman, David; Richard, Christian; Teboul, Jean-Louis

    2011-06-01

    To evaluate to which extent the systemic arterial pulse pressure could be used as a surrogate of cardiac output for assessing the effects of a fluid challenge and of norepinephrine. Observational study. Medical intensive care unit. Patients with an acute circulatory failure who received a fluid challenge (228 patients, group 1) or in whom norepinephrine was introduced or increased (145 patients, group 2). We measured the systolic, diastolic, and mean arterial pressure, pulse pressure, and the transpulmonary thermodilution cardiac output before and after the therapeutic interventions. In group 1, the fluid challenge significantly increased cardiac output by 24% ± 25%. It significantly increased cardiac output by ≥15% (+35% ± 27%) in 142 patients ("responders"). The fluid-induced changes in cardiac output were correlated with the changes in pulse pressure (r = .56, p arterial pressure (r = .55, p arterial pressure (r = .37, p arterial pressure (r = .52, p pressure were significantly related to changes in stroke volume (multiple r = .52) and to age (r = .12). A fluid-induced increase in pulse pressure of ≥17% allowed detecting a fluid-induced increase in cardiac output of ≥15% with a sensitivity of 65[56-72]% and a specificity of 85[76-92]%. The area under the receiver operating characteristic curves for the fluid-induced changes in mean arterial pressure and in diastolic arterial pressure was significantly lower than for pulse pressure. In group 2, the introduction/increase of norepinephrine significantly increased cardiac output by 14% ± 18%. The changes in cardiac output induced by the introduction/increase in the dose of norepinephrine were correlated with the changes in pulse pressure and systolic arterial pressure (r = .21 and .29, respectively, p = .001) but to a significantly lesser extent than in group 1. Pulse pressure and systolic arterial pressure could be used for detecting the fluid-induced changes in cardiac output, in spite of a significant

  10. [Application of lysosomal detection in marine pollution monitoring: research progress].

    Science.gov (United States)

    Weng, You-Zhu; Fang, Yong-Qiang; Zhang, Yu-Sheng

    2013-11-01

    Lysosome is an important organelle existing in eukaryotic cells. With the development of the study on the structure and function of lysosome in recent years, lysosome is considered as a target of toxic substances on subcellular level, and has been widely applied abroad in marine pollution monitoring. This paper summarized the biological characteristics of lysosomal marker enzyme, lysosome-autophagy system, and lysosomal membrane, and introduced the principles and methods of applying lysosomal detection in marine pollution monitoring. Bivalve shellfish digestive gland and fish liver are the most sensitive organs for lysosomal detection. By adopting the lysosomal detection techniques such as lysosomal membrane stability (LMS) test, neutral red retention time (NRRT) assay, morphological measurement (MM) of lysosome, immunohistochemical (Ih) assay of lysosomal marker enzyme, and electron microscopy (EM), the status of marine pollution can be evaluated. It was suggested that the lysosome could be used as a biomarker for monitoring marine environmental pollution. The advantages and disadvantages of lysosomal detection and some problems worthy of attention were analyzed, and the application prospects of lysosomal detection were discussed.

  11. Lysosomal Storage Disorders and Malignancy

    Directory of Open Access Journals (Sweden)

    Gregory M. Pastores

    2017-02-01

    Full Text Available Lysosomal storage disorders (LSDs are infrequent to rare conditions caused by mutations that lead to a disruption in the usual sequential degradation of macromolecules or their transit within the cell. Gaucher disease (GD, a lipidosis, is among the most common LSD, with an estimated incidence of 1 in 40,000 among the Caucasian, non-Jewish population. Studies have indicated an increased frequency of polyclonal and monoclonal gammopathy among patients with GD. It has been shown that two major sphingolipids that accumulate in GD, namely, β-glucosylceramide 22:0 (βGL1-22 and glucosylsphingosine (LGL1, can be recognized by a distinct subset of CD1d-restricted human and murine type II natural killer T (NKT cells. Investigations undertaken in an affected mouse model revealed βGL1-22- and LGL1-specific NKT cells were present and constitutively promoted the expression of a T-follicular helper (TFH phenotype; injection of these lipids led to downstream induction of germinal center B cells, hypergammaglobulinemia, and the production of antilipid antibodies. Subsequent studies have found clonal immunoglobulin in 33% of sporadic human monoclonal gammopathies is also specific for the lysolipids LGL1 and lysophosphatidylcholine (LPC. Furthermore, substrate reduction ameliorated GD-associated gammopathy in mice. It had been hypothesized that chronic antigenic stimulation by the abnormal lipid storage and associated immune dysregulation may be the underlying mechanism for the increased incidence of monoclonal and polyclonal gammopathies, as well as an increased incidence of multiple myeloma in patients with GD. Current observations support this proposition and illustrate the value of investigations into rare diseases, which as ‘experiments of nature’ may provide insights into conditions found in the general population that continue to remain incompletely understood.

  12. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology

    DEFF Research Database (Denmark)

    Kirkegaard, Thomas; Roth, Anke G; Petersen, Nikolaj H T

    2010-01-01

    inhibition of ASM, effectively revert the Hsp70-mediated stabilization of lysosomes. Notably, the reduced ASM activity in cells from patients with Niemann-Pick disease (NPD) A and B-severe lysosomal storage disorders caused by mutations in the sphingomyelin phosphodiesterase 1 gene (SMPD1) encoding for ASM...

  13. ErbB2-associated changes in the lysosomal proteome

    DEFF Research Database (Denmark)

    Nylandsted, Jesper; Becker, Andrea C; Bunkenborg, Jakob

    2011-01-01

    Late endosomes and lysosomes (hereafter referred to as lysosomes) play an essential role in the turnover of cellular macromolecules and organelles. Their biochemical characterization has so far depended on purification methods based on either density gradient centrifugations or magnetic...... purification of iron-loaded organelles. Owing to dramatic changes in lysosomal density and stability associated with lysosomal diseases and cancer, these methods are not optimal for the comparison of normal and pathological lysosomes. Here, we introduce an efficient method for the purification of intact...... lysosomes by magnetic immunoprecipitation with antibodies against the vacuolar-type H(+) -ATPase. Quantitative MS-based proteomics analysis of the obtained lysosomal membranes identified 60 proteins, most of which have previously been associated with the lysosomal compartment. Interestingly, the lysosomal...

  14. Synthesis of flexible Fe3O4/C nanofibers with buffering volume expansion performance and their application in lithium-ion batteries

    Science.gov (United States)

    Wu, Qianhui; Zhao, Rongfang; Zhang, Xiue; Li, Wenlong; Xu, Renhua; Diao, Guowang; Chen, Ming

    2017-08-01

    Freestanding binder-free electrodes, as a new generation of electrode material, can effectively improve the energy density of lithium-ion batteries (LIBs). In this paper, novel structured Fe3O4/C composite nanofibers are successful synthesized by a simple electrospinning method followed by a thermal treatment process. The composite nanofibers have the unique internal voids between Fe3O4 nanoparticles and carbon matrix. The Fe3O4/C nanofibers film with good flexibility and excellent electrical conductivity can be directly used to fabricate half-cell without any current collector, binder and additional conductive agent. As anode material for LIBs, the Fe3O4/C composite nanofibers deliver high reversible capacity (762 mA h g-1 at 0.5 A g-1 after 300 cycles). The results show that the internal voids in flexible Fe3O4/C composite nanofibers effectively buffer volume expansion of Fe3O4 in lithium ion intercalation/deintercalation process and avoid the fracture of the nanofibers, which retain the structural integrity and improve the cycling stability of electrode. Therefore, the design and synthesis strategy of flexible nanofibers film are prospective for applications in next-generation flexible LIBs.

  15. Mitochondrial Dysfunction in Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Mario de la Mata

    2016-10-01

    Full Text Available Lysosomal storage diseases (LSDs describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS, where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm, diminished ATP production and increased generation of reactive oxygen species (ROS. Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD, the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase. Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer and glucosylsphingosine (GlcSph in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs.

  16. Extracellular volume expansion and the preservation of residual renal function in Korean peritoneal dialysis patients: a long-term follow up study.

    Science.gov (United States)

    Rhee, Harin; Baek, Min Ja; Chung, Hyun Chul; Park, Jong Man; Jung, Woo Jin; Park, Soo Min; Lee, Jang Won; Shin, Min Ji; Kim, Il Young; Song, Sang Heon; Lee, Dong Won; Lee, Soo Bong; Kwak, Ihm Soo; Seong, Eun Young

    2016-10-01

    In chronic peritoneal dialysis patients, preservation of residual renal function (RRF) is a major determinant of patient survival, and maintaining sufficient intravascular volume has been hypothesized to be beneficial for the preservation of RRF. The present study aimed to test this hypothesis using multifrequency bioimpedence analyzer (MFBIA), in Korean peritoneal dialysis patients. A total of 129 patients were enrolled in this study. The baseline MFBIA was checked, and the patients were divided into the following two groups: group 1, extracellular water per total body water (ECW/TBW)  median. We followed up the patients, and then we analyzed the changes in the urine output (UO) and the solute clearance (weekly uKt/V) in each group. Data associated with patient and technical survivor were collected by medical chart review. The volume measurement was made using Inbody S20 equipment (Biospace, Seoul, Korea). We excluded the anuric patients at baseline. The median value of ECW/TBW was 0.396. The mean patient age was 49.74 ± 10.01 years, and 62.1 % of the patients were male; most of the patients were on continuous ambulatory peritoneal dialysis (89.1 %). The mean dialysis vintage was 26.20 ± 28.71 months. All of the patients were prescribed hypertensive medication, and 48.5 % of the patients had diabetes. After 25.47 ± 6.86 months of follow up, ΔUO and Δweekly Kt/V were not significantly different in the two groups as follows: ΔUO (-236.07 ± 185.15 in group 1 vs -212.21 ± 381.14 in group 2, p = 0.756); Δ weekly Kt/v (-0.23 ± 0.43 in group 1 vs -0.29 ± 0.49 in group 2, p = 0.461). The patient and technical survivor rate was inferior in the group 2, and in the multivariable analysis, initial hypervolemia was an independent factor that predicts both of the patient mortality [HR 1.001 (1.001-1.086), p = 0.047] and the technical failure [HR 1.024 (1.001-1.048), p = 0.042]. Extracellular volume expansion, measured by MFBIA, does not

  17. Plasma volume expansion for treatment of preeclampsia: a Meta analysis%先兆子痫扩容治疗的Meta分析

    Institute of Scientific and Technical Information of China (English)

    李琳; 田庚; 崔满华

    2012-01-01

    Objective To evaluate effect of plasma volume expansion treatment for preeclampsia by Meta analysis. Methods A comprehensive literature search was performed at PubMed, Medline, Ovid, Embase, CNKI in English language for randomized controlled trials, hand search was also made to retrieve the current reference and research reports. Strict inclusion and exclusion criteria were applied to choose original research, and for quality assessment and data extraction, the software Revman 5. 0 was used for the Meta analysis. Results A total of 5 reports met the inclusion criteria of, including a total of 297 patients. Meta analysis results suggest that the volume - expansion group, compared with non - expansion groups: ① had no statistically significant difference in cesarean section rate, RR = 1.08, 95% CI; 0. 96 ~ 1.22, P = 0.19, ②the difference in the rate of premature delivery was not statistically significant between two groups, RR = 0.91, 95%C7;0.26 ~3.22, P = 0.89. ③perinatal mortality rate had no significant difference between the two groups, RR = 1. 65 , 95% C/;0. 77 ~ 3. 54, P = 0. 20.④the proportion of Apgar score < 7 had no significant difference between the two groups, RR = 1. 11, 95% C/:0. 54 ~ 2. 28 , P = 0. 77. ⑤the ratio of an additional drugs had no significant difference, RR = 1. 91, 95% C/:0. 90 ~ 4. 05, P = 0. 09. Conclusion The volume expansion does not improve the treatment of preeclampsia maternal cesarean section rate, perinatal mortality, Apgar score < 7 and the application of an additional drug ( magnesium sulfate and antihypertensive drugs ) ratio.%目的 通过Meta分析的方法评价先兆子痫扩容治疗的临床疗效.方法 检索1979 ~2010年中外文数据库收录的公开发表与研究目的相关的随机对照试验的文献,手工检索当前能够检索到的参考资料及研究报告.制定严格的纳入与排除标准,选择原始研究并对其进行质量评价和数据提取,利用Revman5.0版软件对所纳

  18. Lysosomal Ca(2+) homeostasis: role in pathogenesis of lysosomal storage diseases.

    Science.gov (United States)

    Lloyd-Evans, Emyr; Platt, Frances M

    2011-08-01

    Disrupted cellular Ca(2+) signaling is believed to play a role in a number of human diseases including lysosomal storage diseases (LSD). LSDs are a group of ∼50 diseases caused predominantly by mutations in lysosomal proteins that result in accumulation of macromolecules within the lysosome. We recently reported that Niemann-Pick type C (NPC) is the first human disease to be associated with defective lysosomal Ca(2+) uptake and defective NAADP-mediated lysosomal Ca(2+) release. These defects in NPC cells leads to the disruption in endocytosis and subsequent lipid storage that is a feature of this disease. In contrast, Chediak-Higashi Syndrome cells have been reported to have enhanced lysosomal Ca(2+) uptake whilst the TRPML1 protein defective in mucolipidosis type IV is believed to function as a Ca(2+) channel. In this review we provide a summary of the current knowledge on the role of lysosomal Ca(2+) signaling in the pathogenesis of this group of diseases.

  19. Endo-lysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin.

    Directory of Open Access Journals (Sweden)

    Ekaterina A Ivanova

    Full Text Available Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles.

  20. Lysosomal stress: a new player in perturbed lipid metabolism

    NARCIS (Netherlands)

    Gabriel, T.L.

    2017-01-01

    Lysosomes are involved in many different essential cellular processes, among others organelle and molecule degradation, exocytosis, cell energy metabolism, cholesterol and sphingolipid level regulation. Lysosomal stress has a strong impact on the immune system, affecting specially macrophages as the

  1. Lysosomal stress: a new player in perturbed lipid metabolism

    NARCIS (Netherlands)

    Gabriel, T.L.

    2017-01-01

    Lysosomes are involved in many different essential cellular processes, among others organelle and molecule degradation, exocytosis, cell energy metabolism, cholesterol and sphingolipid level regulation. Lysosomal stress has a strong impact on the immune system, affecting specially macrophages as the

  2. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion

    Institute of Scientific and Technical Information of China (English)

    Jing Zhou; Shi-Hao Tan; Valérie Nicolas; Chantal Bauvy; Nai-Di Yang; Jianbin Zhang; Yuan Xue

    2013-01-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy.In this study,we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torinl),but not by an allosteric inhibitor (rapamycin),leads to activation of lysosomal function.Second,we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1),but not mTORC2,and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function.Third,we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation.Finally,Atg5 or Atg7deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation,suggesting that lysosomal activation occurring in the course of autophagy is dependent on antophagosome-lysosome fusion.Taken together,this study demonstrates that in the course of autophagy,lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  3. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion.

    Science.gov (United States)

    Zhou, Jing; Tan, Shi-Hao; Nicolas, Valérie; Bauvy, Chantal; Yang, Nai-Di; Zhang, Jianbin; Xue, Yuan; Codogno, Patrice; Shen, Han-Ming

    2013-04-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  4. Mucolipidosis type IV protein TRPML1-dependent lysosome formation.

    Science.gov (United States)

    Miller, Austin; Schafer, Jessica; Upchurch, Cameron; Spooner, Ellen; Huynh, Julie; Hernandez, Sebastian; McLaughlin, Brooke; Oden, Liam; Fares, Hanna

    2015-03-01

    Lysosomes are dynamic organelles that undergo cycles of fusion and fission with themselves and with other organelles. Following fusion with late endosomes to form hybrid organelles, lysosomes are reformed as discrete organelles. This lysosome reformation or formation is a poorly understood process that has not been systematically analyzed and that lacks known regulators. In this study, we quantitatively define the multiple steps of lysosome formation and identify the first regulator of this process.

  5. Effects of ethanol, acetaldehyde and cholesteryl esters on pancreatic lysosomes.

    OpenAIRE

    Wilson, J S; Apte, M V; Thomas, M. C.; Haber, P S; Pirola, R C

    1992-01-01

    Recent studies indicate that altered lysosomal function may be involved in the early stages of pancreatic injury. Chronic consumption of ethanol increases rat pancreatic lysosomal fragility. The aim of this study is to determine whether the lysosomal fragility observed after chronic ethanol consumption is mediated by ethanol per se, its oxidative metabolite acetaldehyde or cholesteryl esters (substances which accumulate in the pancreas after ethanol consumption). Pancreatic lysosomes from cho...

  6. Lysosomal storage disease 2 - Pompe's disease

    NARCIS (Netherlands)

    van der Ploeg, Ans T.; Reuser, Arnold J. J.

    2008-01-01

    Pompe's disease, glycogen-storage disease type II, and acid maltase deficiency are alternative names for the same metabolic disorder. It is a pan-ethnic autosomal recessive trait characterised by acid alpha-glucosidase deficiency leading to lysosomal glycogen storage. Pompe's disease is also

  7. Transport of Lysosome-Related Organelles

    NARCIS (Netherlands)

    Jordens, Ingrid

    2005-01-01

    Many intracellular compartments, including (MHC class II-containing) lysosomes, melanosomes and phagosomes, move along microtubules in a bi-directional manner due to the alternating activities of the plus-end directed kinesin motor and the minus-end directed dynein-dynactin motor. However, it is lar

  8. Transport of Lysosome-Related Organelles

    NARCIS (Netherlands)

    Jordens, Ingrid

    2005-01-01

    Many intracellular compartments, including (MHC class II-containing) lysosomes, melanosomes and phagosomes, move along microtubules in a bi-directional manner due to the alternating activities of the plus-end directed kinesin motor and the minus-end directed dynein-dynactin motor. However, it is

  9. Lysosomal proteolysis: effects of aging and insulin.

    Science.gov (United States)

    Gromakova, I A; Konovalenko, O A

    2003-07-01

    Age-related characteristics of the effect of insulin on the activity of lysosomal proteolytic enzymes were studied. The relationship between the insulin effect on protein degradation and insulin degradation was analyzed. The effect of insulin on the activities of lysosomal enzymes was opposite in young and old rats (inhibitory in 3-month-old and stimulatory in 24-month-old animals). The activities of proteolytic enzymes were regulated by insulin in a glucose-independent manner: similar hypoglycemic effects of insulin in animals of different ages were accompanied by opposite changes in the activities of lysosomal enzymes. The inhibition of lysosomal enzymes by insulin in 3-month-old rats is consistent with a notion on the inhibitory effect of insulin on protein degradation. An opposite insulin effect in 24-month-old rats (i.e., stimulation of proteolytic activity by insulin) may be partly associated with attenuation of the degradation of insulin, resulting in disturbances in signaling that mediates the regulatory effects of insulin on protein degradation.

  10. TRPML: transporters of metals in lysosomes essential for cell survival?

    Science.gov (United States)

    Kiselyov, Kirill; Colletti, Grace A; Terwilliger, Austen; Ketchum, Kathleen; Lyons, Christopher W P; Quinn, James; Muallem, Shmuel

    2011-09-01

    Key aspects of lysosomal function are affected by the ionic content of the lysosomal lumen and, therefore, by the ion permeability in the lysosomal membrane. Such functions include regulation of lysosomal acidification, a critical process in delivery and activation of the lysosomal enzymes, release of metals from lysosomes into the cytoplasm and the Ca(2+)-dependent component of membrane fusion events in the endocytic pathway. While the basic mechanisms of lysosomal acidification have been largely defined, the lysosomal metal transport system is not well understood. TRPML1 is a lysosomal ion channel whose malfunction is implicated in the lysosomal storage disease Mucolipidosis Type IV. Recent evidence suggests that TRPML1 is involved in Fe(2+), Ca(2+) and Zn(2+) transport across the lysosomal membrane, ascribing novel physiological roles to this ion channel, and perhaps to its relatives TRPML2 and TRPML3 and illuminating poorly understood aspects of lysosomal function. Further, alterations in metal transport by the TRPMLs due to mutations or environmental factors may contribute to their role in the disease phenotype and cell death.

  11. A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Di Malta, Chiara; Wen, Jiayu

    2014-01-01

    Sulfatases are key enzymatic regulators of sulfate homeostasis with several biological functions including degradation of glycosaminoglycans (GAGs) and other macromolecules in lysosomes. In a severe lysosomal storage disorder, multiple sulfatase deficiency (MSD), global sulfatase activity...

  12. Reactivation of Lysosomal Ca2+ Efflux Rescues Abnormal Lysosomal Storage in FIG4-Deficient Cells.

    Science.gov (United States)

    Zou, Jianlong; Hu, Bo; Arpag, Sezgi; Yan, Qing; Hamilton, Audra; Zeng, Yuan-Shan; Vanoye, Carlos G; Li, Jun

    2015-04-29

    Loss of function of FIG4 leads to Charcot-Marie-Tooth disease Type 4J, Yunis-Varon syndrome, or an epilepsy syndrome. FIG4 is a phosphatase with its catalytic specificity toward 5'-phosphate of phosphatidylinositol-3,5-diphosphate (PI3,5P2). However, the loss of FIG4 decreases PI3,5P2 levels likely due to FIG4's dominant effect in scaffolding a PI3,5P2 synthetic protein complex. At the cellular level, all these diseases share similar pathology with abnormal lysosomal storage and neuronal degeneration. Mice with no FIG4 expression (Fig4(-/-)) recapitulate the pathology in humans with FIG4 deficiency. Using a flow cytometry technique that rapidly quantifies lysosome sizes, we detected an impaired lysosomal fission, but normal fusion, in Fig4(-/-) cells. The fission defect was associated with a robust increase of intralysosomal Ca(2+) in Fig4(-/-) cells, including FIG4-deficient neurons. This finding was consistent with a suppressed Ca(2+) efflux of lysosomes because the endogenous ligand of lysosomal Ca(2+) channel TRPML1 is PI3,5P2 that is deficient in Fig4(-/-) cells. We reactivated the TRPML1 channels by application of TRPML1 synthetic ligand, ML-SA1. This treatment reduced the intralysosomal Ca(2+) level and rescued abnormal lysosomal storage in Fig4(-/-) culture cells and ex vivo DRGs. Furthermore, we found that the suppressed Ca(2+) efflux in Fig4(-/-) culture cells and Fig4(-/-) mouse brains profoundly downregulated the expression/activity of dynamin-1, a GTPase known to scissor organelle membranes during fission. This downregulation made dynamin-1 unavailable for lysosomal fission. Together, our study revealed a novel mechanism explaining abnormal lysosomal storage in FIG4 deficiency. Synthetic ligands of the TRPML1 may become a potential therapy against diseases with FIG4 deficiency.

  13. Neuroinflammatory paradigms in lysosomal storage diseases

    Directory of Open Access Journals (Sweden)

    Megan Elizabeth Bosch

    2015-10-01

    Full Text Available Lysosomal storage diseases (LSDs include approximately 70 distinct disorders that collectively account for 14% of all inherited metabolic diseases. LSDs are caused by mutations in various enzymes/proteins that disrupt lysosomal function, which impairs macromolecule degradation following endosome-lysosome and phagosome-lysosome fusion and autophagy, ultimately disrupting cellular homeostasis. LSDs are pathologically typified by lysosomal inclusions composed of a heterogeneous mixture of various proteins and lipids that can be found throughout the body. However, in many cases the CNS is dramatically affected, which may result from heightened neuronal vulnerability based on their post-mitotic state. Besides intrinsic neuronal defects, another emerging factor common to many LSDs is neuroinflammation, which may negatively impact neuronal survival and contribute to neurodegeneration. Microglial and astrocyte activation is a hallmark of many LSDs that affect the CNS, which often precedes and predicts regions where eventual neuron loss will occur. However, the timing, intensity, and duration of neuroinflammation may ultimately dictate the impact on CNS homeostasis. For example, a transient inflammatory response following CNS insult/injury can be neuroprotective, as glial cells attempt to remove the insult and provide trophic support to neurons. However, chronic inflammation, as seen in several LSDs, can promote neurodegeneration by creating a neurotoxic environment due to elevated levels of cytokines, chemokines, and pro-apoptotic molecules. Although neuroinflammation has been reported in several LSDs, the cellular basis and mechanisms responsible for eliciting neuroinflammatory pathways are just beginning to be defined. This review highlights the role of neuroinflammation in select LSDs and its potential contribution to neuron loss.

  14. Curvas pressão-volume e expansão foliar em cultivares de algodoeiro submetidos à défcit hídrico Pressure-volume curves and leaf expansion in cotton cultivars under water deficit

    Directory of Open Access Journals (Sweden)

    Celso Jamil Marur

    1999-07-01

    Full Text Available Foi avaliado o comportamento de dois cultivares de algodoeiro em resposta ao déficit hídrico, utilizando-se a expansão foliar como parâmetro discriminatório, bem como a metodologia das curvas pressão-volume para comparar suas habilidades com relação ao ajustamento osmótico. Nos tratamentos estressados, os valores dos Ys em plena turgescência e em turgescência zero obtidos para 'IAC 13-1' foram 0,1 MPa menores do que os obtidos para 'IAC 20'. O ajustamento osmótico em plena turgescência foi de 0.15 e 0.03 MPa, e em turgescência zero foi de 0.18 e 0.07 MPa, respectivamente para os dois cultivares. Os menores valores obtidos para o cultivar 'IAC 13-1' parecem indicar que seus tecidos suportam o estresse por um tempo maior antes das células atingirem o estado de plasmólise. Os valores do módulo volumétrico de elasticidade aumentaram quando os dois cultivares foram submetidos ao estresse hídrico, sendo que o cultivar 'IAC 13-1' parece apresentar paredes celulares com maior elasticidade. Os valores de Ya, antes do amanhecer, em que ocorreu a paralização do crescimento da folha foram -1,04 MPa e -0,98 MPa para os cultivares 'IAC 13-1' e 'IAC 20', respectivamente, mas não detectou-se diferenças significativas entre os dois cultivares.The response of two cotton cultivars to water deficit was studied using leaf expansion and pressure-volume curves method to compare their ability in relation to osmotic adjustment. The osmotic potential at full saturation and at the turgor loss point, for 'IAC 13-1', were 0.1 MPa lower than for `IAC 20' under later stress. Osmotic adjustment at full saturation was 0.15 and 0.03 MPa, and at turgor loss point was 0.18 and 0.07 MPa for 'IAC 13-1'and 'IAC 20', respectively. The low osmotic potential values observed for 'IAC 13-1' suggests that the tissues support water deficit longer, before cells reach plasmolysis. The values for bulk modulus of elasticity were higher when both cultivars were under water

  15. Activity of lysosomal exoglycosidases in human gliomas.

    Science.gov (United States)

    Wielgat, P; Walczuk, U; Szajda, S; Bień, M; Zimnoch, L; Mariak, Z; Zwierz, K

    2006-12-01

    There is a lot of data suggesting that modifications of cell glycoconjugates may be important in progression of cancer. In the present work we studied activities of lysosomal exoglycosidases: beta-hexosaminidase and its isoenzymes A and B, beta-galactosidase and alpha-mannosidase, in human gliomas. Enzyme activity was determined spectrophotometrically based on the release of p-nitrophenol from p-nitrophenyl-derivative of appropriate sugars. The activities of the exoglycosidases tested were significantly higher in malignant glial tumors than in control tissue (normal brain tissue) and non-glial tumors. The highest activities of exoglycosidases were observed in high-grade gliomas, and a positive correlation of enzyme activities and degree of malignancy was noted. Our results suggest that lysosomal exoglycosidases may participate in the progression and dynamical development of glial tumors.

  16. Application of a battery of biomarkers in mussel digestive gland to assess long-term effects of the Prestige oil spill in Galicia and the Bay of Biscay: lysosomal responses.

    Science.gov (United States)

    Garmendia, Larraitz; Izagirre, Urtzi; Cajaraville, Miren P; Marigómez, Ionan

    2011-04-01

    In order to assess the long-term lysosomal responses to the Prestige oil spill (POS), mussels, Mytilus galloprovincialis, were collected in 22 localities from Galicia and the Bay of Biscay (North Iberian peninsula) in July, and September 2003, April, July, and October 2004-2005 and April 2006. Lysosomal membrane stability (labilisation period, LP) and lysosomal structural changes (lysosomal volume density, Vv(L) and lysosomal surface-to-volume ratio, S/V(L)) were measured as general stress biomarkers. The most remarkable long-term effects after the POS were drastic changes in lysosomal size (lysosomal enlargement) and membrane stability (extremely low LP values) up to April-04. Later on, a recovery trend was envisaged all along the studied area after July-04, albeit membrane stability continued to be below 20 min throughout the studied period up to April-06, which indicates a "distress-to-moderate-stress" condition. Lysosomal Response Index (LRI) revealed that environmental stress was more marked in Galicia than in the Bay of Biscay, mainly in the first sampling year, although a "moderate-to-high-stress" condition persisted until July-05. Overall, although lysosomal size returned to reference values, membrane stability was not fully recovered indicating a stress situation throughout the studied period.

  17. Regulation of lysosomal ion homeostasis by channels and transporters.

    Science.gov (United States)

    Xiong, Jian; Zhu, Michael X

    2016-08-01

    Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H(+), Ca(2+), Na(+), K(+), and Cl(-) across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease.

  18. Biphasic regulation of lysosomal exocytosis by oxidative stress.

    Science.gov (United States)

    Ravi, Sreeram; Peña, Karina A; Chu, Charleen T; Kiselyov, Kirill

    2016-11-01

    Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca(2+). We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.

  19. A potentially dynamic lysosomal role for the endogenous TRPML proteins.

    Science.gov (United States)

    Zeevi, David A; Frumkin, Ayala; Offen-Glasner, Vered; Kogot-Levin, Aviram; Bach, Gideon

    2009-10-01

    Lysosomal storage disorders (LSDs) constitute a diverse group of inherited diseases that result from lysosomal storage of compounds occurring in direct consequence to deficiencies of proteins implicated in proper lysosomal function. Pathology in the LSD mucolipidosis type IV (MLIV), is characterized by lysosomal storage of lipids together with water-soluble materials in cells from every tissue and organ of affected patients. Mutations in the mucolipin 1 (TRPML1) protein cause MLIV and TRPML1 has also been shown to interact with two of its paralogous proteins, mucolipin 2 (TRPML2) and mucolipin 3 (TRPML3), in heterologous expression systems. Heterogeneous lysosomal storage is readily identified in electron micrographs of MLIV patient cells, suggesting that proper TRPML1 function is essential for the maintenance of lysosomal integrity. In order to investigate whether TRPML2 and TRPML3 also play a role in the maintenance of lysosomal integrity, we conducted gene-specific knockdown assays against these protein targets. Ultrastructural analysis revealed lysosomal inclusions in both TRPML2 and TRPML3 knockdown cells, suggestive of a common mechanism for these proteins, in parallel with TRPML1, in the regulation of lysosomal integrity. However, co-immunoprecipitation assays revealed that physical interactions between each of the endogenous TRPML proteins are quite limited. In addition, we found that all three endogenous proteins only partially co-localize with each other in lysosomal as well as extra-lysosomal compartments. This suggests that native TRPML2 and TRPML3 might participate with native TRPML1 in a dynamic form of lysosomal regulation. Given that depletion of TRPML2/3 led to lysosomal storage typical to an LSD, we propose that depletion of these proteins might also underlie novel LSD pathologies not described hitherto.

  20. BAX channel activity mediates lysosomal disruption linked to Parkinson disease.

    Science.gov (United States)

    Bové, Jordi; Martínez-Vicente, Marta; Dehay, Benjamin; Perier, Celine; Recasens, Ariadna; Bombrun, Agnes; Antonsson, Bruno; Vila, Miquel

    2014-05-01

    Lysosomal disruption is increasingly regarded as a major pathogenic event in Parkinson disease (PD). A reduced number of intraneuronal lysosomes, decreased levels of lysosomal-associated proteins and accumulation of undegraded autophagosomes (AP) are observed in PD-derived samples, including fibroblasts, induced pluripotent stem cell-derived dopaminergic neurons, and post-mortem brain tissue. Mechanistic studies in toxic and genetic rodent PD models attribute PD-related lysosomal breakdown to abnormal lysosomal membrane permeabilization (LMP). However, the molecular mechanisms underlying PD-linked LMP and subsequent lysosomal defects remain virtually unknown, thereby precluding their potential therapeutic targeting. Here we show that the pro-apoptotic protein BAX (BCL2-associated X protein), which permeabilizes mitochondrial membranes in PD models and is activated in PD patients, translocates and internalizes into lysosomal membranes early following treatment with the parkinsonian neurotoxin MPTP, both in vitro and in vivo, within a time-frame correlating with LMP, lysosomal disruption, and autophagosome accumulation and preceding mitochondrial permeabilization and dopaminergic neurodegeneration. Supporting a direct permeabilizing effect of BAX on lysosomal membranes, recombinant BAX is able to induce LMP in purified mouse brain lysosomes and the latter can be prevented by pharmacological blockade of BAX channel activity. Furthermore, pharmacological BAX channel inhibition is able to prevent LMP, restore lysosomal levels, reverse AP accumulation, and attenuate mitochondrial permeabilization and overall nigrostriatal degeneration caused by MPTP, both in vitro and in vivo. Overall, our results reveal that PD-linked lysosomal impairment relies on BAX-induced LMP, and point to small molecules able to block BAX channel activity as potentially beneficial to attenuate both lysosomal defects and neurodegeneration occurring in PD.

  1. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yusuke; Nada, Shigeyuki; Mori, Shunsuke; Soma-Nagae, Taeko; Oneyama, Chitose [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Masato, E-mail: okadam@biken.osaka-u.ac.jp [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. Black-Right-Pointing-Pointer We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. Black-Right-Pointing-Pointer The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. Black-Right-Pointing-Pointer Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. Black-Right-Pointing-Pointer The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome-lysosome fusion, which is required for processing of various macromolecules.

  2. The treatment of spine and chest wall deformities with fused ribs by expansion thoracostomy and insertion of vertical expandable prosthetic titanium rib: growth of thoracic spine and improvement of lung volumes.

    Science.gov (United States)

    Emans, John B; Caubet, Jean François; Ordonez, Claudia L; Lee, Edward Y; Ciarlo, Michelle

    2005-09-01

    Prospective clinical trial of vertical expandable prosthetic titanium rib (VEPTR) in patients with combined spine and chest wall deformity with scoliosis and fused ribs. Report the efficacy and safety of expansion thoracostomy and VEPTR surgery in the treatment of thoracic insufficiency syndrome (TIS) associated with fused ribs. Traditional attitudes toward early-onset combined chest and spine deformity assume that thoracic deformity is best controlled by treatment directed at spine deformity, often involving early spinal arthrodesis. Campbell and others have heightened awareness of the interrelationship between lung, chest, and spine development during growth and characterized TIS as the inability of the thorax to support normal respiration or lung growth. Expansion thoracostomy and VEPTR insertion was developed to directly control both spine and chest wall deformity during growth, while permitting continued vertebral column and chest growth at an early stage. Multidisciplinary evaluation of children with combined spine and chest wall deformity included pediatric pulmonologist, thoracic, and orthopedic surgeon evaluations. One or more opening wedge expansion thoracostomies and placement of VEPTR devices were performed as described by Campbell, with repeated device lengthenings during growth. Parameters measured included Cobb angle, length of thoracic spine, CT-derived lung volumes, and in older children pulmonary function tests. Thirty-one patients with fused ribs and TIS were treated, 4 of whom had undergone prior spinal arthrodesis at other institutions with continued progression of deformity. In 30 patients, the spinal deformity was controlled and growth continued in the thoracic spine during treatment at rates similar to normals. Increased volume of the constricted hemithorax and total lung volumes obtained during expansion thoracostomy were maintained at follow-up. Complications included device migration, infection, and brachial plexus palsy. Expansion

  3. Quantitative modeling of selective lysosomal targeting for drug design

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rosania, G.; Horobin, R.W.;

    2008-01-01

    Lysosomes are acidic organelles and are involved in various diseases, the most prominent is malaria. Accumulation of molecules in the cell by diffusion from the external solution into cytosol, lysosome and mitochondrium was calculated with the Fick–Nernst–Planck equation. The cell model considers....... This demonstrates that the cell model can be a useful tool for the design of effective lysosome-targeting drugs with minimal off-target interactions....

  4. Release and uptake of lysosomal enzymes : studied in cultured cells

    OpenAIRE

    1980-01-01

    textabstractThe purpose of the experimental work described in this thesiswas to investigate some aspects of the release and uptake of lysosomal enzymes. The experiments involved the use of normal human and animal fibroblasts and some other cell types such as hepatocytes and hepatoma cells as sources of hydrolytic enzymes, and fibroblasts from patients with lysosomal storage diseases associated with a single lysosomal enzyme deficiency and with "1-cell" disease as recipient cells. In a number ...

  5. Factors and processes modulating phenotypes in neuronopathic lysosomal storage diseases

    OpenAIRE

    Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Banecka-Majkutewicz, Zyta; Banecki, Bogdan; Węgrzyn, Alicja; Węgrzyn, Grzegorz

    2013-01-01

    Lysosomal storage diseases are inherited metabolic disorders caused by genetic defects causing deficiency of various lysosomal proteins, and resultant accumulation of non-degraded compounds. They are multisystemic diseases, and in most of them (>70 %) severe brain dysfunctions are evident. However, expression of various phenotypes in particular diseases is extremely variable, from non-neuronopathic to severely neurodegenerative in the deficiency of the same enzyme. Although all lysosomal stor...

  6. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors

    Science.gov (United States)

    Sukhai, Mahadeo A.; Prabha, Swayam; Hurren, Rose; Rutledge, Angela C.; Lee, Anna Y.; Sriskanthadevan, Shrivani; Sun, Hong; Wang, Xiaoming; Skrtic, Marko; Seneviratne, Ayesh; Cusimano, Maria; Jhas, Bozhena; Gronda, Marcela; MacLean, Neil; Cho, Eunice E.; Spagnuolo, Paul A.; Sharmeen, Sumaiya; Gebbia, Marinella; Urbanus, Malene; Eppert, Kolja; Dissanayake, Dilan; Jonet, Alexia; Dassonville-Klimpt, Alexandra; Li, Xiaoming; Datti, Alessandro; Ohashi, Pamela S.; Wrana, Jeff; Rogers, Ian; Sonnet, Pascal; Ellis, William Y.; Corey, Seth J.; Eaves, Connie; Minden, Mark D.; Wang, Jean C.Y.; Dick, John E.; Nislow, Corey; Giaever, Guri; Schimmer, Aaron D.

    2012-01-01

    Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML. PMID:23202731

  7. A lysosome-centered view of nutrient homeostasis.

    Science.gov (United States)

    Mony, Vinod K; Benjamin, Shawna; O'Rourke, Eyleen J

    2016-01-01

    Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks, cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their substrates by fusing with endosomes or autophagosomes, or through specialized translocation mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their substrates using up to 60 different soluble hydrolases and release their products either to the cytosol through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a signaling hub that can integrate and relay external and internal nutritional information to promote cellular and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to the past and future discoveries of how the lysosome simultaneously executes and controls cellular homeostasis.

  8. Cell biology in China: Focusing on the lysosome.

    Science.gov (United States)

    Yang, Chonglin; Wang, Xiaochen

    2017-06-01

    The view that lysosomes are merely the recycling bins of the cell has changed greatly during recent years. Lysosomes are now known to play a central role in signal transduction, cellular adaptation, plasma membrane repair, immune responses and many other fundamental cellular processes. In conjunction with the seminal discoveries made by international colleagues, many important questions regarding lysosomes are being addressed by Chinese scientists. In this review, we briefly summarize recent exciting findings in China on lysosomal signaling, biogenesis, integrity and physiological functions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Lee

    2015-09-01

    Full Text Available Presenilin 1 (PS1 deletion or Alzheimer’s disease (AD-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  10. Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification.

    Science.gov (United States)

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M; Haslett, Luke J; Kumar, Asok; Sato, Yutaka; Lie, Pearl P Y; Mohan, Panaiyur; Coffey, Erin E; Kompella, Uday; Mitchell, Claire H; Lloyd-Evans, Emyr; Nixon, Ralph A

    2015-09-01

    Presenilin 1 (PS1) deletion or Alzheimer's disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO) cells induces abnormal Ca(2+) efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca(2+). In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca(2+) homeostasis, but correcting lysosomal Ca(2+) deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca(2+) homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  11. Gaucher disease: a lysosomal neurodegenerative disorder.

    Science.gov (United States)

    Huang, W J; Zhang, X; Chen, W W

    2015-04-01

    Gaucher disease is a multisystemic disorder that affects men and woman in equal numbers and occurs in all ethnic groups at any age with racial variations and an estimated worldwide incidence of 1/75,000. It is caused by a genetic deficient activity of the lysosomal enzyme glucocerebrosidase due to mutations in the β-glucocerebrosidase gene, and resulting in lack of glucocerebroside degradation. The subsequent accumulation of glucocerebroside in lysosomes of tissue macrophages primarily in the liver, bone marrow and spleen, causes damage in haematological, skeletal and nervous systems. The clinical manifestations show a high degree of variability with symptoms that varies according to organs involved. In many cases, these disorders do not correlate with mutations in the β-glucocerebrosidase gene. Although several mutations have been identified as responsible for the deficient activity of glucocerebrosidase, mechanisms by which this enzymatic defect leads to Gaucher disease remain poorly understood. Recent reports indicate the implication of complex mechanisms, including enzyme deficiency, substrate accumulation, unfolded protein response, and macrophage activation. Further elucidating these mechanisms will advance understanding of Gaucher disease and related disorders.

  12. Enhanced lysosomal activity by overexpressed aminopeptidase Y in Saccharomyces cerevisiae.

    Science.gov (United States)

    Yoon, Jihee; Sekhon, Simranjeet Singh; Kim, Yang-Hoon; Min, Jiho

    2016-06-01

    Saccharomyces cerevisiae contains vacuoles corresponding to lysosomes in higher eukaryotes. Lysosomes are dynamic (not silent) organelles in which enzymes can be easily integrated or released when exposed to stressful conditions. Changes in lysosomal enzymes have been observed due to oxidative stress, resulting in an increased function of lysosomes. The protein profiles from H2O2- and NH4Cl-treated lysosomes showed different expression patterns, observed with two-dimensional gel electrophoresis. The aminopeptidase Y protein (APE3) that conspicuously enhanced antimicrobial activity than other proteins was selected for further studies. The S. cerevisiae APE3 gene was isolated and inserted into pYES2.0 expression vector. The GFP gene was inserted downstream to the APE3 gene for confirmation of APE3 targeting to lysosomes, and S. cerevisiae was transformed to pYES2::APE3::GFP. The APE3 did not enter in lysosomes and formed an inclusion body at 30 °C, but it inserted to lysosomes as shown by the merger of GFP with lysosomes at 28 °C. Antimicrobial activity of the cloned S. cerevisiae increased about 5 to 10 % against eight strains, compared to normal cells, and galactose induction is increased more two folds than that of normal cells. Therefore, S. cerevisiae was transformed to pYES2::APE3::GFP, accumulating a large amount of APE3, resulting in increased lysosomal activity. Increase in endogenous levels of lysosomes and their activity following genetic modification can lead to its use in applications such as antimicrobial agents and apoptosis-inducing materials for cancer cells, and consequently, it may also be possible to use the organelles for improving in vitro functions.

  13. Expansive Cements

    Science.gov (United States)

    1970-10-01

    sale: is disributici is unlimited = F’)RIWRD Seior Ignacio Soto, Rrecutive President, Instituto Mexicano del Cementc y Concreto , invited Mr. Bryant... Concreto , a.c., Kwidco, D. F., Mexico. Based on info.mation largely obtained from ACT Committee 223, Expansive ’ement. Concretes, ACI Journal, August 1Q70

  14. Lysosome/lipid droplet interplay in metabolic diseases.

    Science.gov (United States)

    Dugail, Isabelle

    2014-01-01

    Lysosomes and lipid droplets are generally considered as intracellular compartments with divergent roles in cell metabolism, lipid droplets serving as lipid reservoirs in anabolic pathways, whereas lysosomes are specialized in the catabolism of intracellular components. During the last few years, new insights in the biology of lysosomes has challenged this view by providing evidence for the importance of lysosome recycling as a sparing mechanism to maintain cellular fitness. On the other hand the understanding of lipid droplets has evolved from an inert intracellular deposit toward the status of an intracellular organelle with dynamic roles in cellular homeostasis beyond storage. These unrelated aspects have also recently converged in the finding of unexpected lipid droplet/lysosome communication through autophagy, and the discovery of lysosome-mediated lipid droplet degradation called lipopagy. Furthermore, adipocytes which are professional cells for lipid droplet formation were also shown to be active in peptide antigen presentation a pathway requiring lysosomal activity. The potential importance of lipid droplet/lysosome interplay is discussed in the context of metabolic diseases and the setting of chronic inflammation.

  15. [The blood-brain barrier and neurodegenerative lysosomal storage diseases].

    Science.gov (United States)

    Urayama, Akihiko

    2013-02-01

    Enzyme replacement therapy has been a very effective treatment for several lysosomal storage diseases. However, correcting central nervous system (CNS) storage has been challenging due to the presence of the blood-brain barrier (BBB), which hampers the entry of circulating lysosomal enzymes into the brain. In our previous studies, we discovered that luminally expressed cation-independent mannose 6-phosphate (M6P) receptor is a universal transporter for lysosomal enzymes that contain M6P moieties on the enzyme molecule. This receptor-mediated transport of lysosomal enzymes showed developmental down-regulation that resulted in a failure of delivery of lysosomal enzymes across the BBB in the adult brain. Conceptually, if one can re-induce M6P receptor-mediated transport of lysosomal enzymes in adult BBB, this could provide a novel brain targeting approach for treating abnormal storage in the CNS, regardless of the age of subjects. We found that systemic adrenergic stimuli restored functional transport of β-glucuronidase across the adult BBB. The concept of manipulating BBB transport activity by endogenous characteristics has also been demonstrated by another group who showed effective treatment in a Pompe disease model animal in vivo. It is intriguing that lysosomal enzymes utilize multiple mechanisms for their transport across the BBB. This review explores pharmacological manipulations for the delivery of lysosomal enzymes into the CNS, and the mechanisms of their transport across the BBB, based on existing evidence from studies of β-glucuronidase, sulfamidase, acid α-glucosidase, and arylsulfatase A.

  16. Photoaffinity labeling of the lysosomal neuraminidase from bovine testis

    NARCIS (Netherlands)

    G.T.J. van der Horst (Gijsbertus); U. Rose (Ursula); R. Brossmer (Reinhard); F.W. Verheijen (Frans)

    1990-01-01

    markdownabstractAbstract ASA-NeuAc2en, a photoreactive arylazide derivative of sialic acid, is shown to be a powerful competitive inhibitor of lysosomal neuraminidase from bovine testis (Ki ≈ 21 μM). Photoaffinity labeling and partial purification of preparations containing this lysosomal neuramin

  17. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin.

    Science.gov (United States)

    Yang, Nai-Di; Tan, Shi-Hao; Ng, Shukie; Shi, Yin; Zhou, Jing; Tan, Kevin Shyong Wei; Wong, Wai-Shiu Fred; Shen, Han-Ming

    2014-11-28

    Artesunate (ART) is an anti-malaria drug that has been shown to exhibit anti-tumor activity, and functional lysosomes are reported to be required for ART-induced cancer cell death, whereas the underlying molecular mechanisms remain largely elusive. In this study, we aimed to elucidate the molecular mechanisms underlying ART-induced cell death. We first confirmed that ART induces apoptotic cell death in cancer cells. Interestingly, we found that ART preferably accumulates in the lysosomes and is able to activate lysosomal function via promotion of lysosomal V-ATPase assembly. Furthermore, we found that lysosomes function upstream of mitochondria in reactive oxygen species production. Importantly, we provided evidence showing that lysosomal iron is required for the lysosomal activation and mitochondrial reactive oxygen species production induced by ART. Finally, we showed that ART-induced cell death is mediated by the release of iron in the lysosomes, which results from the lysosomal degradation of ferritin, an iron storage protein. Meanwhile, overexpression of ferritin heavy chain significantly protected cells from ART-induced cell death. In addition, knockdown of nuclear receptor coactivator 4, the adaptor protein for ferritin degradation, was able to block ART-mediated ferritin degradation and rescue the ART-induced cell death. In summary, our study demonstrates that ART treatment activates lysosomal function and then promotes ferritin degradation, subsequently leading to the increase of lysosomal iron that is utilized by ART for its cytotoxic effect on cancer cells. Thus, our data reveal a new mechanistic action underlying ART-induced cell death in cancer cells.

  18. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    Science.gov (United States)

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  19. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders.

    Science.gov (United States)

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J; Sims, Katherine B; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-04-17

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role.

  20. Mucolipidosis type IV: the effect of increased lysosomal pH on the abnormal lysosomal storage.

    Science.gov (United States)

    Kogot-Levin, Aviram; Zeigler, Marsha; Ornoy, Asher; Bach, Gideon

    2009-06-01

    Mucolipidosis type IV (MLIV) is a neurodegenerative channelopathy that is caused by the deficiency of TRPML1 activity, a nonselective cation channel. TRPML1 is a lysosomal membrane protein, and thus, MLIV is a lysosomal storage disorder. The basic, specific function of TRPML1 has not been yet clarified. A recent report (Soyombo AA, Tjon-Kon-Sang S, Rbaibi Y, Bashllari E, Bisceglia J, Muallem S, Kiselyov K: J Biol Chem 281:7294-7301, 2006) indicated that TRPML1 functions as an outwardly proton channel whose function is the prevention of overacidification of these organelles. Thus, in MLIV the lysosomal pH is lower than normal. Furthermore, attempts by these investigators to increase slightly the lysososmal pH with either Nigericin or Chloroquine suggested corrective effect of the abnormal storage in MLIV cells. We investigated this approach using these agents with cultured fibroblasts from severely affected and milder patients. Our data indicated that there was no reduction in the total number of storage vesicles by either agent, although Nigericin resulted in a change in the nature of the storage materials, reducing the presence of lamellated substances (lipids) so that the storage vesicles contained predominantly granulated substances. On the other hand, transfection with the normal MCOLN1 cDNA (the gene coding for TRPML1) resulted in the removal of almost all the storage materials.

  1. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity

    Directory of Open Access Journals (Sweden)

    Stern Stephan T

    2012-06-01

    Full Text Available Abstract The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  2. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity.

    Science.gov (United States)

    Stern, Stephan T; Adiseshaiah, Pavan P; Crist, Rachael M

    2012-06-14

    The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy) pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  3. Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH.

    Science.gov (United States)

    Lu, Yingying; Hao, Bai-Xia; Graeff, Richard; Wong, Connie W M; Wu, Wu-Tian; Yue, Jianbo

    2013-08-16

    Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca(2+) mobilizing messengers, elicits Ca(2+) release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca(2+) signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression.

  4. Hemodynamic response of modified fluid gelatin compared with lactated ringer's solution for volume expansion in emergency resuscitation of hypovolemic shock patients: preliminary report of a prospective, randomized trial.

    Science.gov (United States)

    Wu, J J; Huang, M S; Tang, G J; Kao, W F; Shih, H C; Su, C H; Lee, C H

    2001-05-01

    The objective of this study was to compare the cardiac and hemodynamic responses to a rapid infusion of 1000 ml of modified fluid gelatin (group A) or 1000 ml of lactated Ringer's solution (group B) in emergency room patients suffering from shock. This prospective, randomized, open, noncrossover study was performed at a medical center university hospital in a surgical resuscitation room in the emergency department. The subjects were 34 patients with either hypovolemic or neurogenic shock who were admitted to the emergency room. A resuscitation protocol according to Advanced Trauma Life Support (ATLS) with an additional central venous line or Swan-Ganz catheters for hemodynamic monitoring was used. Physical parameters and hemodynamic variables were measured at baseline and 15 minutes, 30 minutes, and 1 hour after the infusion of each fluid. In both groups the mean arterial blood pressure (MAP), systolic and diastolic pressure, central venous pressure (CVP), and pulmonary artery occlusion pressure (PAOP) increased significantly. The CVP and PAOP increased significantly more in the modified fluid gelatin resuscitation group. In patients with traumatic or neurogenic shock due to acute volume deficiency, there was significantly better hemodynamic improvement, judged by CVP and PAOP measurements using the modified fluid gelatin for volume replacement than with lactated Ringer's solution during the first hour of resuscitation.

  5. Cationic lipids delay the transfer of plasmid DNA to lysosomes.

    Science.gov (United States)

    Wattiaux, R; Jadot, M; Laurent, N; Dubois, F; Wattiaux-De Coninck, S

    1996-10-14

    Plasmid 35S DNA, naked or associated with different cationic lipid preparations was injected to rats. Subcellular distribution of radioactivity in the liver one hour after injection, was established by centrifugation methods. Results show that at that time, 35S DNA has reached lysosomes. On the contrary, when 35S DNA was complexed with lipids, radioactivity remains located in organelles whose distribution after differential and isopycnic centrifugation, is clearly distinct from that of arylsulfatase, lysosome marker enzyme. Injection of Triton WR 1339, a specific density perturbant of lysosomes, four days before 35S DNA injection causes a density decrease of radioactivity bearing structures, apparent one hour after naked 35S DNA injection but visible only after more than five hours, when 35S DNA associated with a cationic lipid is injected. These observations show that cationic lipids delay the transfer to lysosomes, of plasmid DNA taken up by the liver.

  6. Secondary Lysosomal Changes in Liver in Preclinical Drug Development

    Institute of Scientific and Technical Information of China (English)

    Vincent P. Meador; D. V. M.; Ph. D.; Diplomate ACVP

    2005-01-01

    @@ Lysosomes are intracytoplasmic membrane-bound organelles that function to degrade intracellular substances by enzymatic digestion. They occur normally in all cells, being especially prominent in phagocytic cells of the reticuloendothelial system.

  7. Endosome-lysosomes, ubiquitin and neurodegeneration.

    Science.gov (United States)

    Mayer, R J; Tipler, C; Arnold, J; Laszlo, L; Al-Khedhairy, A; Lowe, J; Landon, M

    1996-01-01

    Before the advent of ubiquitin immunochemistry and immunogold electron microscopy, there was no known intracellular molecular commonality between neurodegenerative diseases. The application of antibodies which primarily detect ubiquitin protein conjugates has shown that all of the human and animal idiopathic and transmissible chronic neurodegenerative diseases, (including Alzheimer's disease (AD), Lewy body disease (LBD), amyotrophic lateral sclerosis (ALS), Creutzfeldt-Jakob disease (CJD) and scrapie) are related by some form of intraneuronal inclusion which contains ubiquitin protein conjugates. In addition, disorders such as Alzheimer's disease, CJD and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins which may be associated with cytoskeletal reorganisation. Although our knowledge about these diseases is increasing, they remain largely untreatable. Recently, attention has focused on the mechanisms of production of different types of amyloid and the likely involvement within cells of the endosome-lysosome system, organelles which are immuno-positive for ubiquitin protein conjugates. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials or their precursors which subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Such common features of the disease processes give new direction to therapeutic intervention.

  8. Proposed Expansion of German Air Force Operations at Holloman AFB, New Mexico, Environmental Impact Statement. Volume 2: Public Hearing Transcripts and Responses to Comments

    Science.gov (United States)

    1998-04-01

    1 V : 0 V2 0 b) 02 02 viH 0 S0 2 0- 0 H 0 Id r . 01 3 H 0 02 0 a) 02 4. 0 U(a0 02 4 J 0 Hd 0 1 M .) 10 0d $4 H 4) Fi $4 >. 0 c) $4 0 Un M H H) 01 U 0...RESPONSES TO COMMENTS U U I I I I U I I I I I I Response to Oral and Written Comments Presented at the Public HearingsI The following provides responses...which were submitted in writing. Comments provided at the public hearing, either orally or in writing, are included in Volume II of the FEIS. Written

  9. Effect of volume changes on soil-water characteristics of unsaturated expansive soil%考虑体积变化的非饱和膨胀土土水特征

    Institute of Scientific and Technical Information of China (English)

    周葆春; 孔令伟

    2011-01-01

    为探讨吸力作用下膨胀土体变特征对土水特征的影响规律,开展了一系列完整的脱湿阶段试验,获得了5种不同初始孔隙比的荆门压实膨胀土各级吸力下的重力含水率与体积变化。试验结果表明:不同初始孔隙比下的重力含水率一吸力曲线有交叉与聚拢现象;体积含水率一吸力曲线的交叉现象更为显著;而饱和度一吸力曲线未出现交叉,相同吸力下初始孔隙比大的土样具有更低的饱和度,体现出土水特征与体变特征的耦合效应。基于试验成果,从土的基本体积一质量关系出发,以初始孔隙比与吸力为变量,在一个统一的框架内,构建了吸力作用下的体变方程、分别用重力含水率与饱和度表征的土水特征曲线方程,该方程能够描述任意初始孔隙比条件下膨胀土干缩过程中重力含水率、孔隙比与饱和度随吸力的变化规律。%The effects of deformation on soil-water characteristics of expansive soils were investigated. A series of Soil-Water-Characteristic Curve tests were carried out for the Jingmen compacted expansive soil along the main drying paths. Values of gravimetric water content and volume changes of soil samples at dif- ferent levels of suction were measured for five different initial void ratio samples. The test results show that the gravimetric water content-suction curves intersect and merge, while the volumetric water content-suction curves display intersections more remarkably. However, the degree of saturation-suction curves do not inter- sect, indicating that the soil sample of the larger initial void ratio remains the lower degree of saturation under the same suction. These phenomena reflect coupling effects between the soil-water characteristics and the volume change behavior for expansive soils. Based on the test results, three formulas are presented for predicting the gravimetric water content, void ratio and degree of

  10. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  11. Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View

    Directory of Open Access Journals (Sweden)

    Catherine Staudt

    2016-12-01

    Full Text Available Lysosomes clear macromolecules, maintain nutrient and cholesterol homeostasis, participate in tissue repair, and in many other cellular functions. To assume these tasks, lysosomes rely on their large arsenal of acid hydrolases, transmembrane proteins and membrane-associated proteins. It is therefore imperative that, post-synthesis, these proteins are specifically recognized as lysosomal components and are correctly sorted to this organelle through the endosomes. Lysosomal transmembrane proteins contain consensus motifs in their cytosolic regions (tyrosine- or dileucine-based that serve as sorting signals to the endosomes, whereas most lysosomal acid hydrolases acquire mannose 6-phosphate (Man-6-P moieties that mediate binding to two membrane receptors with endosomal sorting motifs in their cytosolic tails. These tyrosine- and dileucine-based motifs are tickets for boarding in clathrin-coated carriers that transport their cargo from the trans-Golgi network and plasma membrane to the endosomes. However, increasing evidence points to additional mechanisms participating in the biogenesis of lysosomes. In some cell types, for example, there are alternatives to the Man-6-P receptors for the transport of some acid hydrolases. In addition, several “non-consensus” sorting motifs have been identified, and atypical transport routes to endolysosomes have been brought to light. These “unconventional” or “less known” transport mechanisms are the focus of this review.

  12. Lysosomal trafficking functions of mucolipin-1 in murine macrophages

    Directory of Open Access Journals (Sweden)

    Dang Hope

    2007-12-01

    Full Text Available Abstract Background Mucolipidosis Type IV is currently characterized as a lysosomal storage disorder with defects that include corneal clouding, achlorhydria and psychomotor retardation. MCOLN1, the gene responsible for this disease, encodes the protein mucolipin-1 that belongs to the "Transient Receptor Potential" family of proteins and has been shown to function as a non-selective cation channel whose activity is modulated by pH. Two cell biological defects that have been described in MLIV fibroblasts are a hyperacidification of lysosomes and a delay in the exit of lipids from lysosomes. Results We show that mucolipin-1 localizes to lysosomal compartments in RAW264.7 mouse macrophages that show subcompartmental accumulations of endocytosed molecules. Using stable RNAi clones, we show that mucolipin-1 is required for the exit of lipids from these compartments, for the transport of endocytosed molecules to terminal lysosomes, and for the transport of the Major Histocompatibility Complex II to the plasma membrane. Conclusion Mucolipin-1 functions in the efficient exit of molecules, destined for various cellular organelles, from lysosomal compartments.

  13. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  14. Analysis of Effect Increase Volume Expansion Water Dispenser in Hetian Kalage’er Hydropower Station%和田喀拉格尔水电站增效扩容水机分析

    Institute of Scientific and Technical Information of China (English)

    虢强

    2015-01-01

    Effect increase volume expansion rebuilding in Hetian Kalage’er Hydropower Station is the first case of vertical turbine generating unit overall replacement and underwater stage II concrete complete removal in Xinjiang.Original turbine generating unit is demolished and the layout among newly-established unit,unit without rebuilding and plant integrity become a key in the project.In the paper,current status is deeply analyzed,and feasible and practical turbine generating unit volume increase capacity,water turbine and power generator structure mode are finally selected.%和田喀拉格尔水电站增效扩容改造是新疆立式水轮发电机组整体更换、水下二期混凝土全部拆除的第一例。原水轮发电机组拆除、新建机组与未改造机组及厂房整体之间的布置成为工程的关键。本文通过对现状的深入分析,最终选取切实可行的水轮发电机组增容容量及水轮机、发电机结构形式。

  15. Thermal expansion in lead zirconate titanate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The volume anomalies with temperature variations in tin-modified lead zirconate titanate ceramics are investigated. Experimental results show that the volume changes are related to the phase transitions induced with temperature. The magnitude and orientation of crystal volume changes are dependent on the particular phase transition. When antiferroelectrics is transformed to ferroelectrics or paraelectrics the volume expands. Oppositely when ferroelectrics is transformed to antiferroelectrics or paraelectrics the volume contracts. In the transition of antiferroelectric orthorhombic structure to tetragonal structure or ferroelectric low-temperature rhombohedral structure to high-tem- perature rhombohedral structure, there are also revealed apparent anomalies in the curves of thermal expansion. Among them, the volume strain caused by the transition between antiferroelectrics and ferroelectrics is the biggest in magnitude, and the linear expansion dL/L0 and the expansion coefficient (dL/L0)/dT can reach 2.810?3 and 7.5 × 10?4 K?1 respectively.

  16. Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx

    Directory of Open Access Journals (Sweden)

    Wilke Sonja

    2012-07-01

    Full Text Available Abstract Background The family of lysosome-associated membrane proteins (LAMP comprises the multifunctional, ubiquitous LAMP-1 and LAMP-2, and the cell type-specific proteins DC-LAMP (LAMP-3, BAD-LAMP (UNC-46, C20orf103 and macrosialin (CD68. LAMPs have been implicated in a multitude of cellular processes, including phagocytosis, autophagy, lipid transport and aging. LAMP-2 isoform A acts as a receptor in chaperone-mediated autophagy. LAMP-2 deficiency causes the fatal Danon disease. The abundant proteins LAMP-1 and LAMP-2 are major constituents of the glycoconjugate coat present on the inside of the lysosomal membrane, the 'lysosomal glycocalyx'. The LAMP family is characterized by a conserved domain of 150 to 200 amino acids with two disulfide bonds. Results The crystal structure of the conserved domain of human DC-LAMP was solved. It is the first high-resolution structure of a heavily glycosylated lysosomal membrane protein. The structure represents a novel β-prism fold formed by two β-sheets bent by β-bulges and connected by a disulfide bond. Flexible loops and a hydrophobic pocket represent possible sites of molecular interaction. Computational models of the glycosylated luminal regions of LAMP-1 and LAMP-2 indicate that the proteins adopt a compact conformation in close proximity to the lysosomal membrane. The models correspond to the thickness of the lysosomal glycoprotein coat of only 5 to 12 nm, according to electron microscopy. Conclusion The conserved luminal domain of lysosome-associated membrane proteins forms a previously unknown β-prism fold. Insights into the structure of the lysosomal glycoprotein coat were obtained by computational models of the LAMP-1 and LAMP-2 luminal regions.

  17. Flexible Workflow Software enables the Management of an Increased Volume and Heterogeneity of Sensors, and evolves with the Expansion of Complex Ocean Observatory Infrastructures.

    Science.gov (United States)

    Tomlin, M. C.; Jenkyns, R.

    2015-12-01

    Ocean Networks Canada (ONC) collects data from observatories in the northeast Pacific, Salish Sea, Arctic Ocean, Atlantic Ocean, and land-based sites in British Columbia. Data are streamed, collected autonomously, or transmitted via satellite from a variety of instruments. The Software Engineering group at ONC develops and maintains Oceans 2.0, an in-house software system that acquires and archives data from sensors, and makes data available to scientists, the public, government and non-government agencies. The Oceans 2.0 workflow tool was developed by ONC to manage a large volume of tasks and processes required for instrument installation, recovery and maintenance activities. Since 2013, the workflow tool has supported 70 expeditions and grown to include 30 different workflow processes for the increasing complexity of infrastructures at ONC. The workflow tool strives to keep pace with an increasing heterogeneity of sensors, connections and environments by supporting versioning of existing workflows, and allowing the creation of new processes and tasks. Despite challenges in training and gaining mutual support from multidisciplinary teams, the workflow tool has become invaluable in project management in an innovative setting. It provides a collective place to contribute to ONC's diverse projects and expeditions and encourages more repeatable processes, while promoting interactions between the multidisciplinary teams who manage various aspects of instrument development and the data they produce. The workflow tool inspires documentation of terminologies and procedures, and effectively links to other tools at ONC such as JIRA, Alfresco and Wiki. Motivated by growing sensor schemes, modes of collecting data, archiving, and data distribution at ONC, the workflow tool ensures that infrastructure is managed completely from instrument purchase to data distribution. It integrates all areas of expertise and helps fulfill ONC's mandate to offer quality data to users.

  18. Lysosomal storage disorders: Molecular basis and laboratory testing

    Directory of Open Access Journals (Sweden)

    Filocamo Mirella

    2011-03-01

    Full Text Available Abstract Lysosomal storage disorders (LSDs are a large group of more than 50 different inherited metabolic diseases which, in the great majority of cases, result from the defective function of specific lysosomal enzymes and, in cases, of non-enzymatic lysosomal proteins or non-lysosomal proteins involved in lysosomal biogenesis. The progressive lysosomal accumulation of undegraded metabolites results in generalised cell and tissue dysfunction, and, therefore, multi-systemic pathology. Storage may begin during early embryonic development, and the clinical presentation for LSDs can vary from an early and severe phenotype to late-onset mild disease. The diagnosis of most LSDs--after accurate clinical/paraclinical evaluation, including the analysis of some urinary metabolites--is based mainly on the detection of a specific enzymatic deficiency. In these cases, molecular genetic testing (MGT can refine the enzymatic diagnosis. Once the genotype of an individual LSD patient has been ascertained, genetic counselling should include prediction of the possible phenotype and the identification of carriers in the family at risk. MGT is essential for the identification of genetic disorders resulting from non-enzymatic lysosomal protein defects and is complementary to biochemical genetic testing (BGT in complex situations, such as in cases of enzymatic pseudodeficiencies. Prenatal diagnosis is performed on the most appropriate samples, which include fresh or cultured chorionic villus sampling or cultured amniotic fluid. The choice of the test--enzymatic and/or molecular--is based on the characteristics of the defect to be investigated. For prenatal MGT, the genotype of the family index case must be known. The availability of both tests, enzymatic and molecular, enormously increases the reliability of the entire prenatal diagnostic procedure. To conclude, BGT and MGT are mostly complementary for post- and prenatal diagnosis of LSDs. Whenever genotype

  19. Curvas pressão-volume e expansão foliar em cultivares de algodoeiro submetidos à défcit hídrico Pressure-volume curves and leaf expansion in cotton cultivars under water deficit

    OpenAIRE

    Celso Jamil Marur

    1999-01-01

    Foi avaliado o comportamento de dois cultivares de algodoeiro em resposta ao déficit hídrico, utilizando-se a expansão foliar como parâmetro discriminatório, bem como a metodologia das curvas pressão-volume para comparar suas habilidades com relação ao ajustamento osmótico. Nos tratamentos estressados, os valores dos Ys em plena turgescência e em turgescência zero obtidos para 'IAC 13-1' foram 0,1 MPa menores do que os obtidos para 'IAC 20'. O ajustamento osmótico em plena turgescência foi de...

  20. The Link Between Lysosomal Storage Disorders and More Common Diseases

    Directory of Open Access Journals (Sweden)

    Michael Beck MD

    2016-12-01

    Full Text Available In the last decades, it has become more and more evident that lysosomal storage disorders and common neurodegenerative diseases such as Alzheimer and Parkinson diseases have clinical, neuropathological, and genetic features in common, including lysosomal dysfunction and impaired autophagy. Patients with Gaucher and even carriers of Gaucher disease have an increased risk to develop Parkinson disease. Likewise, individuals who are heterozygous for a mutation of a gene that causes an adult form of neuronal ceroid lipofuscinosis are more likely to be affected by a form of frontotemporal dementia in their later life. A further example is the gene NAGLU encoding the enzyme α- N -acetylglucosaminidase, which is deficient in patients with mucopolysaccharidosis type IIIB. Mutations of the NAGLU gene have been observed in patients affected by an axonal neuropathy. An interesting unexpected finding was the link between stuttering and genes that are essential for the function of all lysosomal enzymes. This review will present some example of the association of lysosomal storage disorders and neurodegenerative disease and discuss possible pathogenic mechanisms that are common to both conditions. The understanding of the pathophysiology of the endosomal–lysosomal–autophagic system may help to develop drugs, which might provide benefit not only for patients with rare lysosomal storage disorders but also for individuals affected by more common diseases.

  1. TRPML1: an ion channel in the lysosome.

    Science.gov (United States)

    Wang, Wuyang; Zhang, Xiaoli; Gao, Qiong; Xu, Haoxing

    2014-01-01

    The first member of the mammalian mucolipin TRP channel subfamily (TRPML1) is a cation-permeable channel that is predominantly localized on the membranes of late endosomes and lysosomes (LELs) in all mammalian cell types. In response to the regulatory changes of LEL-specific phosphoinositides or other cellular cues, TRPML1 may mediate the release of Ca(2+) and heavy metal Fe(2+)/Zn(2+)ions into the cytosol from the LEL lumen, which in turn may regulate membrane trafficking events (fission and fusion), signal transduction, and ionic homeostasis in LELs. Human mutations in TRPML1 result in type IV mucolipidosis (ML-IV), a childhood neurodegenerative lysosome storage disease. At the cellular level, loss-of-function mutations of mammalian TRPML1 or its C. elegans or Drosophila homolog gene results in lysosomal trafficking defects and lysosome storage. In this chapter, we summarize recent advances in our understandings of the cell biological and channel functions of TRPML1. Studies on TRPML1's channel properties and its regulation by cellular activities may provide clues for developing new therapeutic strategies to delay neurodegeneration in ML-IV and other lysosome-related pediatric diseases.

  2. The Link Between Lysosomal Storage Disorders and More Common Diseases

    Directory of Open Access Journals (Sweden)

    Michael Beck MD

    2016-12-01

    Full Text Available In the last decades, it has become more and more evident that lysosomal storage disorders and common neurodegenerative diseases such as Alzheimer and Parkinson diseases have clinical, neuropathological, and genetic features in common, including lysosomal dysfunction and impaired autophagy. Patients with Gaucher and even carriers of Gaucher disease have an increased risk to develop Parkinson disease. Likewise, individuals who are heterozygous for a mutation of a gene that causes an adult form of neuronal ceroid lipofuscinosis are more likely to be affected by a form of frontotemporal dementia in their later life. A further example is the gene NAGLU encoding the enzyme α-N-acetylglucosaminidase, which is deficient in patients with mucopolysaccharidosis type IIIB. Mutations of the NAGLU gene have been observed in patients affected by an axonal neuropathy. An interesting unexpected finding was the link between stuttering and genes that are essential for the function of all lysosomal enzymes. This review will present some example of the association of lysosomal storage disorders and neurodegenerative disease and discuss possible pathogenic mechanisms that are common to both conditions. The understanding of the pathophysiology of the endosomal–lysosomal–autophagic system may help to develop drugs, which might provide benefit not only for patients with rare lysosomal storage disorders but also for individuals affected by more common diseases.

  3. Thermal Expansion of Polyurethane Foam

    Science.gov (United States)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal

  4. Salinomycin kills cancer stem cells by sequestering iron in lysosomes

    Science.gov (United States)

    Mai, Trang Thi; Hamaï, Ahmed; Hienzsch, Antje; Cañeque, Tatiana; Müller, Sebastian; Wicinski, Julien; Cabaud, Olivier; Leroy, Christine; David, Amandine; Acevedo, Verónica; Ryo, Akihide; Ginestier, Christophe; Birnbaum, Daniel; Charafe-Jauffret, Emmanuelle; Codogno, Patrice; Mehrpour, Maryam; Rodriguez, Raphaël

    2017-10-01

    Cancer stem cells (CSCs) represent a subset of cells within tumours that exhibit self-renewal properties and the capacity to seed tumours. CSCs are typically refractory to conventional treatments and have been associated to metastasis and relapse. Salinomycin operates as a selective agent against CSCs through mechanisms that remain elusive. Here, we provide evidence that a synthetic derivative of salinomycin, which we named ironomycin (AM5), exhibits a more potent and selective activity against breast CSCs in vitro and in vivo, by accumulating and sequestering iron in lysosomes. In response to the ensuing cytoplasmic depletion of iron, cells triggered the degradation of ferritin in lysosomes, leading to further iron loading in this organelle. Iron-mediated production of reactive oxygen species promoted lysosomal membrane permeabilization, activating a cell death pathway consistent with ferroptosis. These findings reveal the prevalence of iron homeostasis in breast CSCs, pointing towards iron and iron-mediated processes as potential targets against these cells.

  5. Rab2 promotes autophagic and endocytic lysosomal degradation.

    Science.gov (United States)

    Lőrincz, Péter; Tóth, Sarolta; Benkő, Péter; Lakatos, Zsolt; Boda, Attila; Glatz, Gábor; Zobel, Martina; Bisi, Sara; Hegedűs, Krisztina; Takáts, Szabolcs; Scita, Giorgio; Juhász, Gábor

    2017-07-03

    Rab7 promotes fusion of autophagosomes and late endosomes with lysosomes in yeast and metazoan cells, acting together with its effector, the tethering complex HOPS. Here we show that another small GTPase, Rab2, is also required for autophagosome and endosome maturation and proper lysosome function in Drosophila melanogaster We demonstrate that Rab2 binds to HOPS, and that its active, GTP-locked form associates with autolysosomes. Importantly, expression of active Rab2 promotes autolysosomal fusions unlike that of GTP-locked Rab7, suggesting that its amount is normally rate limiting. We also demonstrate that RAB2A is required for autophagosome clearance in human breast cancer cells. In conclusion, we identify Rab2 as a key factor for autophagic and endocytic cargo delivery to and degradation in lysosomes. © 2017 Lőrincz et al.

  6. Parkinson's Disease Shares the Lysosome with Gaucher's Disease

    Science.gov (United States)

    Dawson, Ted M.; Dawson, Valina L.

    2015-01-01

    Summary The second most common neurodegenerative disorder, Parkinson's disease (PD) is an age dependent progressive neurodegenerative disorder that affects movement. While many of the causes of PD remain unclear, a consistent finding in PD is the abnormal accumulation of α-synuclein that has lead to the widely held notion that PD is a synucleinopathy. In a recent Cell manuscript Mazzuli et al., provide a potential mechanistic link between Gaucher's disease, a glycolipid lysosomal storage disorder due to Glucocerebrocidase (GBA) deficiency and PD. The authors reveal a reciprocal connection between the loss of GBA activity and accumulation of α-synuclein in the lysosome establishing a bidirectional positive feed back loop with pathologic consequences. These findings should stimulate further work on role of the lysosome in PD pathogenesis and the identification of new treatment strategies for PD. PMID:21753118

  7. Exaggerated natriuretic response to isotonic volume expansion in hypertensive renal transplant recipients: evaluation of proximal and distal tubular reabsorption by simultaneous determination of renal plasma clearance of lithium and 51Cr-EDTA.

    Science.gov (United States)

    Nielsen, A H; Knudsen, F; Danielsen, H; Pedersen, E B; Fjeldborg, P; Madsen, M; Brøchner-Mortensen, J; Kornerup, H J

    1987-02-01

    In fourteen hypertensive and fourteen normotensive renal transplant recipients, and in a group of thirteen healthy controls, changes in natriuresis, glomerular filtration rate (GFR), and tubular reabsorption of sodium were determined in relation to intravenous infusion of 2 mmol isotonic sodium chloride per kg body weight. An exaggerated natriuresis was demonstrated in the hypertensive renal transplant recipients. This new finding indicates that the augmented natriuresis following plasma volume expansion, which is a characteristic finding in subjects with arterial hypertension, is not mediated by the renal nerves. Investigation of the tubular reabsorption rates of sodium by simultaneous determination of the renal clearance of 51Cr-EDTA and lithium showed that in the hypertensives the changes in tubular handling of sodium were different from those registered in the normotensive subjects. The increased sodium excretion in the hypertensive renal transplant recipients was caused by an increased output of sodium from the proximal tubules which was not fully compensated for by an increased distal reabsorption. Whether this increased delivery of sodium to the distal segments was caused by changes in GFR or in the proximal tubular reabsorption of sodium could not be clarified in the present study and warrants further investigations.

  8. 关于CO2有机溶剂体系液相体积膨胀的研究%Study of the Liquid Phase Volume Expansion for CO2/Organic Solvent Systems

    Institute of Scientific and Technical Information of China (English)

    李志义; 夏远景; 刘学武; 邓小亮; 胡大鹏

    2005-01-01

    The supercritical antisolvent (SAS) process has been developed in recent years for the formation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relationships between the operating conditions and the LPVE in order to develop a practical method for determining the operation conditions and selecting an organic solvent for SAS process. The PR equation of state with vdW-1 mixing rule is used to calculate the LPVE for CO2/toluene, CO2/acetone and CO2/ethyl acetate systems, and the results show that the LPVE for each CO2/organic solvent system decreases as the temperature increases. The relationship between the LPVE and the solubility of CO2 in the liquid phase for CO2/organic solvent systems is investigated,and the results show that the LPVE is determined directly by the solubility of CO2 in the liquid phase, xCO2, and can be related to xCO2 independently. No matter what system of CO2/organic solvent is and how different the temperature is, the LPVEs have little difference as long as the solubility of CO2 in the liquid phase, xCO2, keeps constant. The lower temperature is always favorable to the SAS process. The higher the solubility of CO2 in an organic solvent under certain operation condition, the more suitable it is to the SAS process.

  9. Importance of lysosomal cysteine proteases in lung disease

    Directory of Open Access Journals (Sweden)

    Chapman Harold A

    2000-11-01

    Full Text Available Abstract The human lysosomal cysteine proteases are a family of 11 proteases whose members include cathepsins B, C, H, L, and S. The biology of these proteases was largely ignored for decades because of their lysosomal location and the belief that their function was limited to the terminal degradation of proteins. In the past 10 years, this view has changed as these proteases have been found to have specific functions within cells. This review highlights some of these functions, specifically their roles in matrix remodeling and in regulating the immune response, and their relationship to lung diseases.

  10. PDT: loss of autophagic cytoprotection after lysosomal photodamage

    Science.gov (United States)

    Kessel, David; Price, Michael

    2012-02-01

    Photodynamic therapy is known to evoke both autophagy and apoptosis. Apoptosis is an irreversible death pathway while autophagy can serve a cytoprotective function. In this study, we examined two photosensitizing agents that target lysosomes, although they differ in the reactive oxygen species (ROS) formed during irradiation. With both agents, the 'shoulder' on the PDT dose-response curve was substantially attenuated, consistent with loss of a cytoprotective pathway. In contrast, this 'shoulder' is commonly observed when PDT targets mitochondria or the ER. We propose that lysosomal targets may offer the possibility of promoting PDT efficacy by eliminating a potentially protective pathway.

  11. Lysosome stability during lytic infection by simian virus 40.

    Science.gov (United States)

    Einck, K H; Norkin, L C

    1979-01-01

    By 48 h postinfection, 40--80% of SV40-infected CV-1 cells have undergone irreversible injury as indicated by trypan blue staining. Nevertheless, at this time the lysosomes of these cells appear as discrete structures after vital staining with either acridine orange or neutral red. Lysosomes, vitally stained with neutral red at 24 h postinfection, were still intact in cells stained with trypan blue at 48 h. Acid phosphatase activity is localized in discrete cytoplasmic particles at 48 h, as indicated by histochemical staining of both fixed and unfixed cells.

  12. Analyzing Lysosome-Related Organelles by Electron Microscopy

    KAUST Repository

    Hurbain, Ilse

    2017-04-29

    Intracellular organelles have a particular morphological signature that can only be appreciated by ultrastructural analysis at the electron microscopy level. Optical imaging and associated methodologies allow to explore organelle localization and their dynamics at the cellular level. Deciphering the biogenesis and functions of lysosomes and lysosome-related organelles (LROs) and their dysfunctions requires their visualization and detailed characterization at high resolution by electron microscopy. Here, we provide detailed protocols for studying LROs by transmission electron microscopy. While conventional electron microscopy and its recent improvements is the method of choice to investigate organelle morphology, immunoelectron microscopy allows to localize organelle components and description of their molecular make up qualitatively and quantitatively.

  13. The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes.

    Science.gov (United States)

    Garrity, Abigail G; Wang, Wuyang; Collier, Crystal Md; Levey, Sara A; Gao, Qiong; Xu, Haoxing

    2016-05-23

    Impaired homeostasis of lysosomal Ca(2+) causes lysosome dysfunction and lysosomal storage diseases (LSDs), but the mechanisms by which lysosomes acquire and refill Ca(2+) are not known. We developed a physiological assay to monitor lysosomal Ca(2+) store refilling using specific activators of lysosomal Ca(2+) channels to repeatedly induce lysosomal Ca(2+) release. In contrast to the prevailing view that lysosomal acidification drives Ca(2+) into the lysosome, inhibiting the V-ATPase H(+) pump did not prevent Ca(2+) refilling. Instead, pharmacological depletion or chelation of Endoplasmic Reticulum (ER) Ca(2+) prevented lysosomal Ca(2+) stores from refilling. More specifically, antagonists of ER IP3 receptors (IP3Rs) rapidly and completely blocked Ca(2+) refilling of lysosomes, but not in cells lacking IP3Rs. Furthermore, reducing ER Ca(2+) or blocking IP3Rs caused a dramatic LSD-like lysosome storage phenotype. By closely apposing each other, the ER may serve as a direct and primary source of Ca(2+)for the lysosome.

  14. Methods for monitoring Ca(2+) and ion channels in the lysosome.

    Science.gov (United States)

    Zhong, Xi Zoë; Yang, Yiming; Sun, Xue; Dong, Xian-Ping

    2016-12-09

    Lysosomes and lysosome-related organelles are emerging as intracellular Ca(2+) stores and play important roles in a variety of membrane trafficking processes, including endocytosis, exocytosis, phagocytosis and autophagy. Impairment of lysosomal Ca(2+) homeostasis and membrane trafficking has been implicated in many human diseases such as lysosomal storage diseases (LSDs), neurodegeneration, myopathy and cancer. Lysosomal membrane proteins, in particular ion channels, are crucial for lysosomal Ca(2+) signaling. Compared with ion channels in the plasma membrane, lysosomal ion channels and their roles in lysosomal Ca(2+) signaling are less understood, largely due to their intracellular localization and the lack of feasible functional assays directly applied to the native environment. Recent advances in biomedical methodology have made it possible to directly investigate ion channels in the lysosomal membrane. In this review, we provide a summary of the newly developed methods for monitoring lysosomal Ca(2+) and ion channels, as well as the recent discovery of lysosomal ion channels and their significances in intracellular Ca(2+) signaling. These new techniques will expand our research scope and our understanding of the nature of lysosomes and lysosome-related diseases.

  15. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  16. Genomic expression analyses reveal lysosomal, innate immunity proteins, as disease correlates in murine models of a lysosomal storage disorder.

    Directory of Open Access Journals (Sweden)

    Md Suhail Alam

    Full Text Available Niemann-Pick Type C (NPC disease is a rare, genetic, lysosomal disorder with progressive neurodegeneration. Poor understanding of the pathophysiology and a lack of blood-based diagnostic markers are major hurdles in the treatment and management of NPC and several additional, neurological lysosomal disorders. To identify disease severity correlates, we undertook whole genome expression profiling of sentinel organs, brain, liver, and spleen of Balb/c Npc1(-/- mice relative to Npc1(+/- at an asymptomatic stage, as well as early- and late-symptomatic stages. Unexpectedly, we found prominent up regulation of innate immunity genes with age-dependent change in their expression, in all three organs. We shortlisted a set of 12 secretory genes whose expression steadily increased with age in both brain and liver, as potential plasma correlates of neurological and/or liver disease. Ten were innate immune genes with eight ascribed to lysosomes. Several are known to be elevated in diseased organs of murine models of other lysosomal diseases including Gaucher's disease, Sandhoff disease and MPSIIIB. We validated the top candidate lysozyme, in the plasma of Npc1(-/- as well as Balb/c Npc1(nmf164 mice (bearing a point mutation closer to human disease mutants and show its reduction in response to an emerging therapeutic. We further established elevation of innate immunity in Npc1(-/- mice through multiple functional assays including inhibition of bacterial infection as well as cellular analysis and immunohistochemistry. These data revealed neutrophil elevation in the Npc1(-/- spleen and liver (where large foci were detected proximal to damaged tissue. Together our results yield a set of lysosomal, secretory innate immunity genes that have potential to be developed as pan or specific plasma markers for neurological diseases associated with lysosomal storage and where diagnosis is a major problem. Further, the accumulation of neutrophils in diseased organs

  17. Factors influencing electric utility expansion. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Masud, E. [ed.

    1977-01-01

    This report, Vol. 2, submitted by the General Electric Co., identifies factors that should be considered in planning interconnected systems and discusses how these factors relate to one another. The objective is to identify all the factors and classify them by their use and importance in arriving at a decision. Chapter 2 discusses the utility system and its system behavior characteristics, emphasizing behavior that affects the planning of the bulk-power generation and transmission system. Chapter 3 introduces interconnection planning by discussing the new system characteristics brought to operation and planning. Forty-two factors associated with cost, reliability, constraints, and coordination are related to each other by factor trees. Factor trees display the relationship of one factor such as reliability to more-detailed factors which in turn are further related to individual characteristics of facilities. These factor trees provide a structure to the presentation. A questionnaire including the 42 factors was completed by 52 system planners from utility companies and government authorities. The results of these questionnaires are tabulated and presented with pertinent discussion of each factor. Chapter 4 deals with generation planning, recognizing the existence of interconnections. Chapter 5 addresses transmission planning, questions related to reliability and cost measures and constraints, and factors related to both analytical techniques and planning procedures. The chapter ends with a discussion of combined generation-transmission planning. (MCW)

  18. Syntaxin 7 and VAMP-7 are soluble N-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages.

    Science.gov (United States)

    Ward, D M; Pevsner, J; Scullion, M A; Vaughn, M; Kaplan, J

    2000-07-01

    Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome-lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome-lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome-lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome-lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages.

  19. The relationship between Cd-induced autophagy and lysosomal activation in WRL-68 cells.

    Science.gov (United States)

    Meng, Su-Fang; Mao, Wei-Ping; Wang, Fang; Liu, Xiao-Qian; Shao, Luan-Luan

    2015-11-01

    This study shows that Cd induces autophagy in the human's embryonic normal liver cell line (WRL-68). The expression of LC3B-II and the mature cathepsin L were analyzed by Western blotting. The autophagosomes and lysosomes were directly visualized by electron microscopy and confocal microscopy analysis in Cd-exposed WRL-68 cells. In this study, we first found that autophagy induced the activation of lysosomal function in WRL-68 cells. The lysosomal activation was markedly decreased when the cells were co-treated with 3-MA (an inhibitor of autophagy). Secondly, we provided the evidence that the activation of lysosomal function depended on autophagosome-lysosome fusion. The colocalization of lysosome-associated membrane protein-2 (LAMP2) and GFP-LC3 was significantly reduced, when they were treated with thapsigargin (an inhibitor of autophagosome-lysosome fusion). We demonstrated that deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, which suggests that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Thirdly, we provided evidence that the activation of lysosomal function was associated with lysosomal acid. We investigated the relationship between autophagosome-lysosome fusion and pH in acidic compartments by visualizing fusion process in WRL-68 cells. This suggests that increasing pH in acidic compartments in WRL-68 cells inhibits the autophagosome-lysosome fusion. Finally, we found that the activation of lysosomal function was associated with Ca(2+) stores and the intracellular Ca(2+) channels or pumps were possibly pH-dependent.

  20. Lysosomal acid phosphatase is internalized via clathrin-coated pits

    NARCIS (Netherlands)

    Klumperman, J.; Hille, A.; Geuze, H.J.; Peters, C.; Brodsky, F.M.; Figura, K. von

    1992-01-01

    The presence of lysosomal acid phosphatase (LAP) in coated pits at the plasma membrane was investigated by immunocytochemistry in thymidine kinase negative mouse L-cells (Ltk-) and baby hamster kidney (BHK) cells overexpressing human LAP (Ltk-LAP and BHK-LAP cells). Double immunogold labeling showed

  1. Recent advances in gene therapy for lysosomal storage disorders

    Directory of Open Access Journals (Sweden)

    Rastall DP

    2015-06-01

    Full Text Available David PW Rastall,1 Andrea Amalfitano1,2 1Department of Microbiology and Molecular Genetics, 2Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA Abstract: Lysosomal storage disorders (LSDs are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme's substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood–brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field. Keywords: human trials, clinical trials, gene therapy, lysosomal storage disease, blood-brain barrier, adeno-associated virus, lentivirus, adenovirus 

  2. PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization.

    Science.gov (United States)

    Liu, Jiazhuo; Peng, Leiwen; Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting

    2016-01-26

    PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the "verge of apoptosis". When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways.

  3. The frequency of lysosomal storage diseases in The Netherlands

    NARCIS (Netherlands)

    Poorthuis, BJHM; Wevers, RA; Kleijer, WJ; Groener, JEM; de Jong, JGN; van Weely, S; Niezen-Koning, KE; van Diggelen, OP

    1999-01-01

    We have calculated the relative frequency and the birth prevalence of lysosomal storage diseases (LSDs) in The Netherlands based on all 963 enzymatically confirmed cases diagnosed during the period 1970-1996. The combined birth prevalence for all LSDs is 14 per 100,000 live births. Glycogenosis type

  4. Clinical, biochemical and genetic heterogeneity in lysosomal storage diseases

    NARCIS (Netherlands)

    A.J.J. Reuser (Arnold)

    1977-01-01

    textabstractThe history of lysosomal storage diseases dates back to the end of the last century when the first clinical reports appeared of patients suffering from these genetic, metabolic disorders (Tay, 1881; Gaucher, 1882; Sachs, 1887; Fabry, 1898). About seventy years wouid pass before the term

  5. The frequency of lysosomal storage diseases in The Netherlands

    NARCIS (Netherlands)

    Poorthuis, BJHM; Wevers, RA; Kleijer, WJ; Groener, JEM; de Jong, JGN; van Weely, S; Niezen-Koning, KE; van Diggelen, OP

    1999-01-01

    We have calculated the relative frequency and the birth prevalence of lysosomal storage diseases (LSDs) in The Netherlands based on all 963 enzymatically confirmed cases diagnosed during the period 1970-1996. The combined birth prevalence for all LSDs is 14 per 100,000 live births. Glycogenosis type

  6. Release and uptake of lysosomal enzymes : studied in cultured cells

    NARCIS (Netherlands)

    D.J.J. Halley (Dicky)

    1980-01-01

    textabstractThe purpose of the experimental work described in this thesiswas to investigate some aspects of the release and uptake of lysosomal enzymes. The experiments involved the use of normal human and animal fibroblasts and some other cell types such as hepatocytes and hepatoma cells as sources

  7. Neuronopathic Lysosomal Storage Diseases: Clinical and Pathologic Findings

    Science.gov (United States)

    Prada, Carlos E.; Grabowski, Gregory A.

    2013-01-01

    Background: The lysosomal--autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. Methods: Literature review provided insight into the current clinical neurological findings,…

  8. Shrinkage and Expansive Strain of Concrete with Fly Ash and Expansive Agent

    Institute of Scientific and Technical Information of China (English)

    GAO Peiwei; LU Xiaolin; TANG Mingshu

    2009-01-01

    The effects of fly ash and MgO-type expansive agent on the shrinkage and expan-sive strain of concrete with high magnesia cement were investigated. The results show that high volumes of fly ash may reduce the shrinkage strain of concrete and inhibit the expansive strain of concrete with MgO-type expansive agent, but can not eliminate the shrinkage of concrete. MgO-type expansive agent may produce expansive strain and compensate the shrinkage strain of concrete, re-lieve the cracking risk, but the hydration product of magnesia tends to get together in paste and pro-duce expansive cracking of concrete with high magnesia content according to SEM observation.

  9. Glycolipid-dependent sorting of melanosomal from lysosomal membrane proteins by lumenal determinants

    NARCIS (Netherlands)

    Groux-Degroote, S.; Dijk, S.M. van; Wolthoorn, J.; Neumann, S.; Theos, A.C.; Mazière, A.M. de; Klumperman, J.; Meer, G. van; Sprong, H.

    2008-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes in mammalian pigment cells. Melanosomal and lysosomal membrane proteins share similar sorting signals in their cytoplasmic tail, raising the question how they are segregated. We show that in control melanocytes, the melanosomal

  10. Glycolipid-dependent sorting of melanosomal from lysosomal membrane proteins by lumenal determinants

    NARCIS (Netherlands)

    Groux-Degroote, S.; Dijk, S.M. van; Wolthoorn, J.; Neumann, S.; Theos, A.C.; Mazière, A.M. de; Klumperman, J.; Meer, G. van; Sprong, H.

    2008-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes in mammalian pigment cells. Melanosomal and lysosomal membrane proteins share similar sorting signals in their cytoplasmic tail, raising the question how they are segregated. We show that in control melanocytes, the melanosomal

  11. Effects of pre-anesthetic volume expansion on hemodynamics in painless artificial abortion during intravenous anesthesia%预扩容对无痛人流术中血流动力学的影响

    Institute of Scientific and Technical Information of China (English)

    祝义军; 刘晨霞; 冉国; 冯丽娟

    2012-01-01

    目的 观察乳酸钠林格液预扩容对丙泊酚静脉麻醉下行无痛人流术中血流动力学的影响.方法 选择择期行无痛人流术者80例,随机分为乳酸钠林格液组(R组)和对照组(C组),每组各40例.麻醉前R组以20mL/(kg·h)的速度输入乳酸钠林格液500mL,A组建立静脉通路但不输液.2组麻醉均用丙泊酚、芬太尼静脉麻醉,且麻醉管理相似.观察2组麻醉后1,3,5,10min各时点患者的收缩压、舒张压、平均动脉压、心率、脉搏氧饱和度的变化,记录发生低血压、恶心呕吐及应用麻黄碱的例数.结果 麻醉后1,3,5min各时点C组的平均动脉压与R组比较明显降低(P均<0.05),麻醉后10min 2组的血流动力学趋于稳定,C组低血压、恶心呕吐发生例数及应用麻黄碱的例数多于R组(P均<0.05).结论 丙泊酚、芬太尼静脉麻醉下行无痛人流术,用乳酸钠林格液预扩容能保持患者术中血流动力学稳定,降低低血压、恶心呕吐等不良反应的发生率.%Objective It is to observe the effects of pre - anesthetic volume expansion in painless artificial abortion during intravenous anesthesia with fentanil combined with propofol. Methods 80 patients of early pregnancy with voluntarily induced abortion were randomly divided into group R and group A( n =40 each ). Before anesthesia, the patients of group R were infused with 500 Ml Lactated Ringer, s solution at a rate of 20 Ml/( kg ? H ), the patients of group C weren' t infused any water although vein channel was established. Each group was anesthetized with fentanil combined with propofol. Anesthesia management was similar in both groups. The changes of SBP, DBP, MAP, HR, Sp( O2 ) in 1, 3, 5, 10 min after the anesthesia were observed in each group, the incidence of hypotension and the side effects such as nausea and vomiting were recorded, and the cases used ephedrine were recorded either. Results The MAP of group C were significantly lower than those in group R

  12. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions.

    Science.gov (United States)

    Reif, Maria M; Hünenberger, Philippe H

    2011-04-14

    The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions (finite or periodic system, system or box size) and treatment of electrostatic interactions (Coulombic, lattice-sum, or cutoff-based) used during these simulations. However, as shown by Kastenholz and Hünenberger [J. Chem. Phys. 124, 224501 (2006)], correction terms can be derived for the effects of: (A) an incorrect solvent polarization around the ion and an incomplete or/and inexact interaction of the ion with the polarized solvent due to the use of an approximate (not strictly Coulombic) electrostatic scheme; (B) the finite-size or artificial periodicity of the simulated system; (C) an improper summation scheme to evaluate the potential at the ion site, and the possible presence of a polarized air-liquid interface or of a constraint of vanishing average electrostatic potential in the simulated system; and (D) an inaccurate dielectric permittivity of the employed solvent model. Comparison with standard experimental data also requires the inclusion of appropriate cavity-formation and standard-state correction terms. In the present study, this correction scheme is extended by: (i) providing simple approximate analytical expressions (empirically-fitted) for the correction terms that were evaluated numerically in the above scheme (continuum-electrostatics calculations); (ii) providing correction terms for derivative thermodynamic single-ion solvation properties (and corresponding partial molar variables in solution), namely, the enthalpy, entropy, isobaric heat capacity, volume, isothermal compressibility, and isobaric expansivity (including appropriate standard-state correction terms). The ability of the correction scheme to produce methodology-independent single-ion solvation free energies based on atomistic simulations is tested in the case of Na(+) hydration, and the nature and magnitude of the correction terms for

  13. Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type IV.

    Science.gov (United States)

    Park, Soonhong; Ahuja, Malini; Kim, Min Seuk; Brailoiu, G Cristina; Jha, Archana; Zeng, Mei; Baydyuk, Maryna; Wu, Ling-Gang; Wassif, Christopher A; Porter, Forbes D; Zerfas, Patricia M; Eckhaus, Michael A; Brailoiu, Eugen; Shin, Dong Min; Muallem, Shmuel

    2016-02-01

    Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.

  14. Acute effects of the sigma-2 receptor agonist siramesine on lysosomal and extra-lysosomal proteolytic systems in lens epithelial cells

    OpenAIRE

    Jonhede, S.; Petersen, A; Zetterberg, M.; Karlsson, J-O

    2010-01-01

    Purpose The aim of the present study was to examine the effects of the sigma-2 receptor agonist, siramesine, on morphology, growth, cell death, lysosomal function, and effects on extra-lysosomal proteolytic systems in human lens epithelial cells. Methods Human lens epithelial cells in culture were exposed to siramesine and examined for morphological changes using Nomarski optics or calcein. Lysosomes were evaluated using acridine orange and Magic Red (RR-cresyl violet). Nuclear morphology was...

  15. The Thermal Expansion Of Feldspars

    Science.gov (United States)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  16. Autophagic flux promotes cisplatin resistance in human ovarian carcinoma cells through ATP-mediated lysosomal function.

    Science.gov (United States)

    Ma, Liwei; Xu, Ye; Su, Jing; Yu, Huimei; Kang, Jinsong; Li, Hongyan; Li, Xiaoning; Xie, Qi; Yu, Chunyan; Sun, Liankun; Li, Yang

    2015-11-01

    Lysosomes are involved in promoting resistance of cancer cells to chemotherapeutic agents. However, the mechanisms underlying lysosomal influence of cisplatin resistance in ovarian cancer remain incompletely understood. We report that, compared with cisplatin-sensitive SKOV3 cells, autophagy increases in cisplatin-resistant SKOV3/DDP cells treated with cisplatin. Inhibition of early-stage autophagy enhanced cisplatin-mediated cytotoxicity in SKOV3/DDP cells, but autophagy inhibition at a later stage by disturbing autophagosome-lysosome fusion is more effective. Notably, SKOV3/DDP cells contained more lysosomes than cisplatin-sensitive SKOV3 cells. Abundant lysosomes and lysosomal cathepsin D activity were required for continued autolysosomal degradation and maintenance of autophagic flux in SKOV3/DDP cells. Furthermore, SKOV3/DDP cells contain abundant lysosomal ATP required for lysosomal function, and inhibition of lysosomal ATP accumulation impaired lysosomal function and blocked autophagic flux. Therefore, our findings suggest that lysosomes at least partially contribute to cisplatin resistance in ovarian cancer cells through their role in cisplatin-induced autophagic processes, and provide insight into the mechanism of cisplatin resistance in tumors.

  17. The Role of Oxidized Cholesterol in Diabetes-Induced Lysosomal Dysfunction in the Brain.

    Science.gov (United States)

    Sims-Robinson, Catrina; Bakeman, Anna; Rosko, Andrew; Glasser, Rebecca; Feldman, Eva L

    2016-05-01

    Abnormalities in lysosomal function have been reported in diabetes, aging, and age-related degenerative diseases. These lysosomal abnormalities are an early manifestation of neurodegenerative diseases and often precede the onset of clinical symptoms such as learning and memory deficits; however, the mechanism underlying lysosomal dysfunction is not known. In the current study, we investigated the mechanism underlying lysosomal dysfunction in the cortex and hippocampi, key structures involved in learning and memory, of a type 2 diabetes (T2D) mouse model, the leptin receptor deficient db/db mouse. We demonstrate for the first time that diabetes leads to destabilization of lysosomes as well as alterations in the protein expression, activity, and/or trafficking of two lysosomal enzymes, hexosaminidase A and cathepsin D, in the hippocampus of db/db mice. Pioglitazone, a thiazolidinedione (TZD) commonly used in the treatment of diabetes due to its ability to improve insulin sensitivity and reverse hyperglycemia, was ineffective in reversing the diabetes-induced changes on lysosomal enzymes. Our previous work revealed that pioglitazone does not reverse hypercholesterolemia; thus, we investigated whether cholesterol plays a role in diabetes-induced lysosomal changes. In vitro, cholesterol promoted the destabilization of lysosomes, suggesting that lysosomal-related changes associated with diabetes are due to elevated levels of cholesterol. Since lysosome dysfunction precedes neurodegeneration, cognitive deficits, and Alzheimer's disease neuropathology, our results may provide a potential mechanism that links diabetes with complications of the central nervous system.

  18. Cluster expansion in the canonical ensemble

    CERN Document Server

    Pulvirenti, Elena

    2011-01-01

    We consider a system of particles confined in a box $\\La\\subset\\R^d$ interacting via a tempered and stable pair potential. We prove the validity of the cluster expansion for the canonical partition function in the high temperature - low density regime. The convergence is uniform in the volume and in the thermodynamic limit it reproduces Mayer's virial expansion providing an alternative and more direct derivation which avoids the deep combinatorial issues present in the original proof.

  19. Myelin lesions associated with lysosomal and peroxisomal disorders.

    Science.gov (United States)

    Faust, Phyllis L; Kaye, Edward M; Powers, James M

    2010-09-01

    Abnormalities of myelin are common in lysosomal and peroxisomal disorders. Most display a primary loss of myelin in which the myelin sheath and/or oligodendrocytes are selectively targeted by diverse pathogenetic processes. The most severe and, hence, clinically relevant are heritable diseases predominantly of infants and children, the leukodystrophies: metachromatic, globoid cell (Krabbe disease) and adreno-leukodystrophy. Our still limited understanding of these diseases has derived from multiple sources: originally, neurological-neuropathologic-neurochemical correlative studies of the natural disease in humans or other mammals, which has been enhanced by more sophisticated and contemporary techniques of cell and molecular biology. Transgenic mouse models seem to be the most promising methodology, allowing the examination of the cellular role of lysosomes and peroxisomes for formation and maintenance of both myelin and axons, and providing initial platforms to evaluate therapies. Treatment options are woefully inadequate and in their nascent stages, but still inspire some hope for the future.

  20. Induced pluripotent stem cell models of lysosomal storage disorders

    Directory of Open Access Journals (Sweden)

    Daniel K. Borger

    2017-06-01

    Full Text Available Induced pluripotent stem cells (iPSCs have provided new opportunities to explore the cell biology and pathophysiology of human diseases, and the lysosomal storage disorder research community has been quick to adopt this technology. Patient-derived iPSC models have been generated for a number of lysosomal storage disorders, including Gaucher disease, Pompe disease, Fabry disease, metachromatic leukodystrophy, the neuronal ceroid lipofuscinoses, Niemann-Pick types A and C1, and several of the mucopolysaccharidoses. Here, we review the strategies employed for reprogramming and differentiation, as well as insights into disease etiology gleaned from the currently available models. Examples are provided to illustrate how iPSC-derived models can be employed to develop new therapeutic strategies for these disorders. We also discuss how models of these rare diseases could contribute to an enhanced understanding of more common neurodegenerative disorders such as Parkinson’s disease, and discuss key challenges and opportunities in this area of research.

  1. Immune response hinders therapy for lysosomal storage diseases.

    Science.gov (United States)

    Ponder, Katherine P

    2008-08-01

    Enzyme replacement therapy (ERT) for the lysosomal storage disease mucopolysaccharidosis I (MPS I) involves i.v. injection of alpha-l-iduronidase, which can be taken up by cells throughout the body. While a significant immune response to ERT has been shown in patients with MPS I, little is known about what effect anti-enzyme antibodies have on treatment efficacy. In this issue of the JCI, Dickson et al. demonstrate that anti-enzyme antibodies inhibit enzyme uptake and substantially limit the therapeutic efficacy of ERT in canines with MPS I (see the related article beginning on page 2868). Furthermore, the induction of immune tolerance--via oral delivery of cyclosporine A and azathioprine for two months at the time of initiation of ERT with recombinant human alpha-L-iduronidase--improved enzyme uptake in organs. Therefore, transient immunosuppression may enhance ERT for lysosomal storage diseases.

  2. Targeting Androgen Receptor by Lysosomal Degradation in Prostate Cancer

    Science.gov (United States)

    2014-09-01

    were done as described.13 Protein Sample Preparation and Mass Spectrometry Tandem Affinity Purification of FLAG-His-EWS-Fli-1- Interacting Proteins . Forty...incubated with Ni-NTA agarose (Qiagen), FLAG-His-EWS-Fli-1 and its interacting proteins were collected by centrifugation, washed three times with TN buffer...the lysosome fraction was loaded at 100x compared to the input. ■ RESULTS AND DISCUSSION Proteomic Analysis of the EWS-Fli-1- Interacting Proteins To

  3. Vamp-7 Mediates Vesicular Transport from Endosomes to Lysosomes

    Science.gov (United States)

    Advani, Raj J.; Yang, Bin; Prekeris, Rytis; Lee, Kelly C.; Klumperman, Judith; Scheller, Richard H.

    1999-01-01

    A more complete picture of the molecules that are critical for the organization of membrane compartments is beginning to emerge through the characterization of proteins in the vesicle-associated membrane protein (also called synaptobrevin) family of membrane trafficking proteins. To better understand the mechanisms of membrane trafficking within the endocytic pathway, we generated a series of monoclonal and polyclonal antibodies against the cytoplasmic domain of vesicle-associated membrane protein 7 (VAMP-7). The antibodies recognize a 25-kD membrane-associated protein in multiple tissues and cell lines. Immunohistochemical analysis reveals colocalization with a marker of late endosomes and lysosomes, lysosome-associated membrane protein 1 (LAMP-1), but not with other membrane markers, including p115 and transferrin receptor. Treatment with nocodozole or brefeldin A does not disrupt the colocalization of VAMP-7 and LAMP-1. Immunoelectron microscopy analysis shows that VAMP-7 is most concentrated in the trans-Golgi network region of the cell as well as late endosomes and transport vesicles that do not contain the mannose-6 phosphate receptor. In streptolysin- O–permeabilized cells, antibodies against VAMP-7 inhibit the breakdown of epidermal growth factor but not the recycling of transferrin. These data are consistent with a role for VAMP-7 in the vesicular transport of proteins from the early endosome to the lysosome. PMID:10459012

  4. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification.

    Science.gov (United States)

    Li, Dan L; Wang, Zhao V; Ding, Guanqiao; Tan, Wei; Luo, Xiang; Criollo, Alfredo; Xie, Min; Jiang, Nan; May, Herman; Kyrychenko, Viktoriia; Schneider, Jay W; Gillette, Thomas G; Hill, Joseph A

    2016-04-26

    The clinical use of doxorubicin is limited by cardiotoxicity. Histopathological changes include interstitial myocardial fibrosis and the appearance of vacuolated cardiomyocytes. Whereas dysregulation of autophagy in the myocardium has been implicated in a variety of cardiovascular diseases, the role of autophagy in doxorubicin cardiomyopathy remains poorly defined. Most models of doxorubicin cardiotoxicity involve intraperitoneal injection of high-dose drug, which elicits lethargy, anorexia, weight loss, and peritoneal fibrosis, all of which confound the interpretation of autophagy. Given this, we first established a model that provokes modest and progressive cardiotoxicity without constitutional symptoms, reminiscent of the effects seen in patients. We report that doxorubicin blocks cardiomyocyte autophagic flux in vivo and in cardiomyocytes in culture. This block was accompanied by robust accumulation of undegraded autolysosomes. We go on to localize the site of block as a defect in lysosome acidification. To test the functional relevance of doxorubicin-triggered autolysosome accumulation, we studied animals with diminished autophagic activity resulting from haploinsufficiency for Beclin 1. Beclin 1(+/-) mice exposed to doxorubicin were protected in terms of structural and functional changes within the myocardium. Conversely, animals overexpressing Beclin 1 manifested an amplified cardiotoxic response. Doxorubicin blocks autophagic flux in cardiomyocytes by impairing lysosome acidification and lysosomal function. Reducing autophagy initiation protects against doxorubicin cardiotoxicity. © 2016 American Heart Association, Inc.

  5. Discriminating lysosomal membrane protein types using dynamic neural network.

    Science.gov (United States)

    Tripathi, Vijay; Gupta, Dwijendra Kumar

    2014-01-01

    This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.

  6. Recent advances in gene therapy for lysosomal storage disorders.

    Science.gov (United States)

    Rastall, David Pw; Amalfitano, Andrea

    2015-01-01

    Lysosomal storage disorders (LSDs) are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme's substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood-brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field.

  7. Changes in the morphology and lability of lysosomal subpopulations in caerulein-induced acute pancreatitis.

    Science.gov (United States)

    Sarmiento, Nancy; Sánchez-Yagüe, Jesús; Juanes, Pedro P; Pérez, Nieves; Ferreira, Laura; García-Hernández, Violeta; Mangas, Arturo; Calvo, José J; Sánchez-Bernal, Carmen

    2011-02-01

    Lysosomes play an important role in acute pancreatitis (AP). Here we developed a method for the isolation of lysosome subpopulations from rat pancreas and assessed the stability of lysosomal membranes. AP was induced by four subcutaneous injections of 20 μg caerulein/kg body weight at hourly intervals. The animals were killed 9h after the first injection. Marker enzymes [N-acetyl-β-D-glucosaminidase (NAG), cathepsin B and succinate dehydrogenase (SDH)] were assayed in subcellular fractions from control pancreas and in pancreatitis. Lysosomal subpopulations were separated by Percoll density gradient centrifugation and observed by electron microscopy. NAG molecular forms were determined by DEAE-cellulose chromatography. AP was associated with: (i) increases in the specific activity of lysosomal enzymes in the soluble fraction, (ii) changes in the size and alterations in the morphology of the organelles from the lysosomal subpopulations, (iii) the appearance of large vacuoles in the primary and secondary lysosome subpopulations, (iv) the increase in the amount of the NAG form associated with the pancreatic lysosomal membrane as well as its release towards the soluble fraction. Lysosome subpopulations are separated by a combination of differential and Percoll density gradient centrifugations. Primary lysosome membrane stability decreases in AP. Copyright © 2010 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  8. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy.

    Science.gov (United States)

    Zhang, Xiaoli; Cheng, Xiping; Yu, Lu; Yang, Junsheng; Calvo, Raul; Patnaik, Samarjit; Hu, Xin; Gao, Qiong; Yang, Meimei; Lawas, Maria; Delling, Markus; Marugan, Juan; Ferrer, Marc; Xu, Haoxing

    2016-06-30

    Cellular stresses trigger autophagy to remove damaged macromolecules and organelles. Lysosomes 'host' multiple stress-sensing mechanisms that trigger the coordinated biogenesis of autophagosomes and lysosomes. For example, transcription factor (TF)EB, which regulates autophagy and lysosome biogenesis, is activated following the inhibition of mTOR, a lysosome-localized nutrient sensor. Here we show that reactive oxygen species (ROS) activate TFEB via a lysosomal Ca(2+)-dependent mechanism independent of mTOR. Exogenous oxidants or increasing mitochondrial ROS levels directly and specifically activate lysosomal TRPML1 channels, inducing lysosomal Ca(2+) release. This activation triggers calcineurin-dependent TFEB-nuclear translocation, autophagy induction and lysosome biogenesis. When TRPML1 is genetically inactivated or pharmacologically inhibited, clearance of damaged mitochondria and removal of excess ROS are blocked. Furthermore, TRPML1's ROS sensitivity is specifically required for lysosome adaptation to mitochondrial damage. Hence, TRPML1 is a ROS sensor localized on the lysosomal membrane that orchestrates an autophagy-dependent negative-feedback programme to mitigate oxidative stress in the cell.

  9. On skin expansion.

    Science.gov (United States)

    Pamplona, Djenane C; Velloso, Raquel Q; Radwanski, Henrique N

    2014-01-01

    This article discusses skin expansion without considering cellular growth of the skin. An in vivo analysis was carried out that involved expansion at three different sites on one patient, allowing for the observation of the relaxation process. Those measurements were used to characterize the human skin of the thorax during the surgical process of skin expansion. A comparison between the in vivo results and the numerical finite elements model of the expansion was used to identify the material elastic parameters of the skin of the thorax of that patient. Delfino's constitutive equation was chosen to model the in vivo results. The skin is considered to be an isotropic, homogeneous, hyperelastic, and incompressible membrane. When the skin is extended, such as with expanders, the collagen fibers are also extended and cause stiffening in the skin, which results in increasing resistance to expansion or further stretching. We observed this phenomenon as an increase in the parameters as subsequent expansions continued. The number and shape of the skin expanders used in expansions were also studied, both mathematically and experimentally. The choice of the site where the expansion should be performed is discussed to enlighten problems that can lead to frustrated skin expansions. These results are very encouraging and provide insight into our understanding of the behavior of stretched skin by expansion. To our knowledge, this study has provided results that considerably improve our understanding of the behavior of human skin under expansion.

  10. Syntaxin 7 and VAMP-7 are Soluble N-Ethylmaleimide–sensitive Factor Attachment Protein Receptors Required for Late Endosome–Lysosome and Homotypic Lysosome Fusion in Alveolar Macrophages

    Science.gov (United States)

    Ward, Diane McVey; Pevsner, Jonathan; Scullion, Matthew A.; Vaughn, Michael; Kaplan, Jerry

    2000-01-01

    Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome–lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome–lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome–lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome–lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages. PMID:10888671

  11. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions.

    Science.gov (United States)

    Gorojod, R M; Alaimo, A; Porte Alcon, S; Pomilio, C; Saravia, F; Kotler, M L

    2015-10-01

    Manganese (Mn) overexposure is frequently associated with the development of a neurodegenerative disorder known as Manganism. The Mn-mediated generation of reactive oxygen species (ROS) promotes cellular damage, finally leading to apoptotic cell death in rat astrocytoma C6 cells. In this scenario, the autophagic pathway could play an important role in preventing cytotoxicity. In the present study, we found that Mn induced an increase in the amount and total volume of acidic vesicular organelles (AVOs), a process usually related to the activation of the autophagic pathway. Particularly, the generation of enlarged AVOs was a ROS- dependent event. In this report we demonstrated for the first time that Mn induces autophagy in glial cells. This conclusion emerged from the results obtained employing a battery of autophagy markers: a) the increase in LC3-II expression levels, b) the formation of autophagic vesicles labeled with monodansylcadaverine (MDC) or LC3 and, c) the increase in Beclin 1/ Bcl-2 and Beclin 1/ Bcl-X(L) ratio. Autophagy inhibition employing 3-MA and mAtg5(K130R) resulted in decreased cell viability indicating that this event plays a protective role in Mn- induced cell death. In addition, mitophagy was demonstrated by an increase in LC3 and TOM-20 colocalization. On the other hand, we proposed the occurrence of lysosomal membrane permeabilization (LMP) based in the fact that cathepsins B and D activities are essential for cell death. Both cathepsin B inhibitor (Ca-074 Me) or cathepsin D inhibitor (Pepstatin A) completely prevented Mn- induced cytotoxicity. In addition, low dose of Bafilomycin A1 showed a similar effect, a finding that adds evidence about the lysosomal role in Mn cytotoxicity. Finally, in vivo experiments demonstrated that Mn induces injury and alters LC3 expression levels in rat striatal astrocytes. In summary, our results demonstrated that autophagy is activated to counteract the harmful effect caused by Mn. These data is valuable to

  12. Probing the physical determinants of thermal expansion of folded proteins.

    Science.gov (United States)

    Dellarole, Mariano; Kobayashi, Kei; Rouget, Jean-Baptiste; Caro, José Alfredo; Roche, Julien; Islam, Mohammad M; Garcia-Moreno E, Bertrand; Kuroda, Yutaka; Royer, Catherine A

    2013-10-24

    The magnitude and sign of the volume change upon protein unfolding are strongly dependent on temperature. This temperature dependence reflects differences in the thermal expansivity of the folded and unfolded states. The factors that determine protein molar expansivities and the large differences in thermal expansivity for proteins of similar molar volume are not well understood. Model compound studies have suggested that a major contribution is made by differences in the molar volume of water molecules as they transfer from the protein surface to the bulk upon heating. The expansion of internal solvent-excluded voids upon heating is another possible contributing factor. Here, the contribution from hydration density to the molar thermal expansivity of a protein was examined by comparing bovine pancreatic trypsin inhibitor and variants with alanine substitutions at or near the protein-water interface. Variants of two of these proteins with an additional mutation that unfolded them under native conditions were also examined. A modest decrease in thermal expansivity was observed in both the folded and unfolded states for the alanine variants compared with the parent protein, revealing that large changes can be made to the external polarity of a protein without causing large ensuing changes in thermal expansivity. This modest effect is not surprising, given the small molar volume of the alanine residue. Contributions of the expansion of the internal void volume were probed by measuring the thermal expansion for cavity-containing variants of a highly stable form of staphylococcal nuclease. Significantly larger (2-3-fold) molar expansivities were found for these cavity-containing proteins relative to the reference protein. Taken together, these results suggest that a key determinant of the thermal expansivities of folded proteins lies in the expansion of internal solvent-excluded voids.

  13. Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection.

    Science.gov (United States)

    Qi, Xiaopeng; Man, Si Ming; Malireddi, R K Subbarao; Karki, Rajendra; Lupfer, Christopher; Gurung, Prajwal; Neale, Geoffrey; Guy, Clifford S; Lamkanfi, Mohamed; Kanneganti, Thirumala-Devi

    2016-09-19

    Lysosomal cathepsins regulate an exquisite range of biological functions, and their deregulation is associated with inflammatory, metabolic, and degenerative diseases in humans. In this study, we identified a key cell-intrinsic role for cathepsin B as a negative feedback regulator of lysosomal biogenesis and autophagy. Mice and macrophages lacking cathepsin B activity had increased resistance to the cytosolic bacterial pathogen Francisella novicida Genetic deletion or pharmacological inhibition of cathepsin B down-regulated mechanistic target of rapamycin activity and prevented cleavage of the lysosomal calcium channel TRPML1. These events drove transcription of lysosomal and autophagy genes via transcription factor EB, which increased lysosomal biogenesis and activation of autophagy initiation kinase ULK1 for clearance of the bacteria. Our results identified a fundamental biological function of cathepsin B in providing a checkpoint for homeostatic maintenance of lysosome populations and basic recycling functions in the cell.

  14. TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress.

    Science.gov (United States)

    Raben, Nina; Puertollano, Rosa

    2016-10-06

    In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.

  15. Efficacy of boswellic acid on lysosomal acid hydrolases, lipid peroxidation and anti-oxidant status in gouty arthritic mice

    Institute of Scientific and Technical Information of China (English)

    Evan Prince Sabina; Haridas Indu; Mahaboobkhan Rasool

    2012-01-01

    Objective:To evaluate the efficacy of boswellic acid against monosodium urate crystal-induced inflammation in mice. Methods:The mice were divided into four experimental groups. Group I served as control;mice in group II were injected with monosodium urate crystal;group III consisted of monosodium urate crystal-induced mice who were treated with boswellic acid (30 mg/kg/b.w.);group IV comprised monosodium urate crystal-induced mice who were treated with indomethacin (3 mg/kg/b.w.). Paw volume and levels/activities of lysosomal enzymes, lipid peroxidation, anti-oxidant status and inflammatory mediator TNF-αwere determined in control and monosodium urate crystal-induced mice. In addition, the levels of β-glucuronidase and lactate dehydrogenase were also measured in monosodium urate crystal-incubated polymorphonuclear leucocytes (PMNL) in vitro. Results:The activities of lysosomal enzymes, lipid peroxidation, and tumour necrosis factor-αlevels and paw volume were increased significantly in monosodium urate crystal-induced mice, whereas the activities of antioxidant status were in turn decreased. However, these changes were modulated to near normal levels upon boswellic acid administration. In vitro, boswellic acid reduced the level of β-glucuronidase and lactate dehydrogenase in monosodium urate crystal-incubated PMNL in concentration dependent manner when compared with control cells. Conclusions: The results obtained in this study further strengthen the anti-inflammatory/antiarthritic effect of boswellic acid, which was already well established by several investigators.

  16. A TRP Channel in the Lysosome Regulates Large Particle Phagocytosis via Focal Exocytosis

    OpenAIRE

    2013-01-01

    Phagocytosis of large extracellular particles such as apoptotic bodies requires delivery of the intracellular endosomal and lysosomal membranes to form plasmalemmal pseudopods. Here we identified Mucolipin TRP channel 1 (TRPML1) as the key lysosomal Ca2+ channel regulating focal exocytosis and phagosome biogenesis. Both particle ingestion and lysosomal exocytosis are inhibited by synthetic TRPML1 blockers, and are defective in macrophages isolated from TRPML1 knockout mice. Furthermore, TRPML...

  17. Disruption of Lysosome Function Promotes Tumor Growth and Metastasis in Drosophila *

    OpenAIRE

    Chi, Congwu; Zhu, Huanhu; Han,Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-01-01

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the RasV12 cells....

  18. A new lysosomal storage disorder resembling Morquio syndrome in sibs.

    Science.gov (United States)

    Perrin, Laurence; Fenneteau, Odile; Ilharreborde, Brice; Capri, Yline; Gérard, Marion; Quoc, Emmanuel Bui; Passemard, Sandrine; Ghoumid, Jamal; Caillaud, Catherine; Froissart, Roseline; Tabet, Anne-Claude; Lebon, Sophie; El Ghouzzi, Vincent; Mazda, Keyvan; Verloes, Alain

    2012-03-01

    We report two male sibs, born from unrelated French Caribbean parents, presenting with an unclassifiable storage disorder. Pregnancy and delivery were uneventful. Stunted growth was noted during the first year of life. Both children have short stature (below - 4SD) with short trunk, barrel chest, micromelia with rhizomelic shortening, severe kyphoscoliosis, pectus carinatum, short hands and feet with metatarsus adductus, and excessive joint laxity of the small joints. Learning difficulties with borderline intelligence quotient (IQ) were noted in one of them. They had no hepatomegaly, no splenomegaly, and no dysmorphism. Skeletal X-rays survey demonstrated generalized platyspondyly with tongue-like deformity of the anterior part of the vertebral bodies, hypoplasia of the odontoid process, generalized epiphyseal dysplasia and abnormally shaped metaphyses. The acetabular roofs had a trident aspect. Ophthalmologic and cardiac examinations were normal. Spine deformity required surgical correction in one of the patient at age 4 years. Lysosomal enzymes assays including N-acetylgalactosamine-6-sulfate sulfatase and β-galactosidase were normal, excluding mucopolysaccharidoses type IV A and IV B (Morquio syndrome), respectively. Qualitative analysis found traces of dermatan and chondroitin-sulfates in urine, but quantitative glycosaminoglycan excretion fell within normal limits. They were no vacuolated lymphocytes. Abnormal coarse inclusions were present in eosinophils. Mild Alder anomaly was observed in polymorphonuclears. Granulations were discretely metachromatic with toluidine blue. Those morphological anomalies are in favor of a lysosomal storage disease. No inclusions were found in skin fibroblasts. We hypothesize that these two boys have a distinct autosomal recessive or X-linked lysosomal storage disorder of unknown origin that shares clinical and radiological features with Morquio disease.

  19. Sub-lethal oxidative stress induces lysosome biogenesis via a lysosomal membrane permeabilization-cathepsin-caspase 3-transcription factor EB-dependent pathway.

    Science.gov (United States)

    Leow, San Min; Chua, Shu Xian Serene; Venkatachalam, Gireedhar; Shen, Liang; Luo, Le; Clement, Marie-Veronique

    2016-12-18

    Here we provide evidence to link sub-lethal oxidative stress to lysosomal biogenesis. Exposure of cells to sub-lethal concentrations of exogenously added hydrogen peroxide resulted in cytosol to nuclear translocation of the Transcription Factor EB (TFEB), the master controller of lysosome biogenesis and function. Nuclear translocation of TFEB was dependent upon the activation of a cathepsin-caspase 3 signaling pathway, downstream of a lysosomal membrane permeabilization and accompanied by a significant increase in lysosome numbers as well as induction of TFEB dependent lysosome-associated genes expression such as Ctsl, Lamp2 and its spliced variant Lamp2a, Neu1and Ctsb and Sqstm1 and Atg9b. The effects of sub-lethal oxidative stress on lysosomal gene expression and biogenesis were rescued upon gene silencing of caspase 3 and TFEB. Notably, caspase 3 activation was not associated with phenotypic hallmarks of apoptosis, evidenced by the absence of caspase 3 substrate cleavage, such as PARP, Lamin A/C or gelsolin. Taken together, these data demonstrate for the first time an unexpected and non-canonical role of a cathepsin-caspase 3 axis in the nuclear translocation of TFEB leading to lysosomes biogenesis under conditions of sub-lethal oxidative stress.

  20. Reporter Assay for Endo/Lysosomal Escape of Toxin-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Roger Gilabert-Oriol

    2014-05-01

    Full Text Available Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters—horseradish peroxidase (HRP, Alexa Fluor 488 (Alexa and ricin A-chain (RTA—were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates—saporin-HRP, Alexasaporin and saporin-KQ-RTA—were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of Alexasaporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10–1000 nM.

  1. Lysosomes serve as a platform for hepatitis A virus particle maturation and nonlytic release.

    Science.gov (United States)

    Seggewiß, Nicole; Paulmann, Dajana; Dotzauer, Andreas

    2016-01-01

    Early studies on hepatitis A virus (HAV) in cell culture demonstrated the inclusion of several viral particles in an intracellular lipid-bilayer membrane. However, the origin of these virus-associated membranes and the mechanism for the non-lytic release of HAV into bile are still unknown. Analyzing the association of this virus with cell organelles, we found that newly synthesized HAV particles accumulate in lysosomal organelles and that lysosomal enzymes are involved in the maturation cleavage of the virion. Furthermore, by inhibiting the processes of fusion of lysosomes with the plasma membrane, we found that the nonlytic release of HAV from infected cells occurs via lysosome-related organelles.

  2. Lipid Storage Disorders Block Lysosomal Trafficking By Inhibiting TRP Channel and Calcium Release

    OpenAIRE

    2012-01-01

    Lysosomal lipid accumulation, defects in membrane trafficking, and altered Ca2+ homeostasis are common features in many lysosomal storage diseases. Mucolipin TRP channel 1 (TRPML1) is the principle Ca2+ channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca2+ release, measured using a genetically-encoded Ca2+ indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells....

  3. Reporter assay for endo/lysosomal escape of toxin-based therapeutics.

    Science.gov (United States)

    Gilabert-Oriol, Roger; Thakur, Mayank; von Mallinckrodt, Benedicta; Bhargava, Cheenu; Wiesner, Burkhard; Eichhorst, Jenny; Melzig, Matthias F; Fuchs, Hendrik; Weng, Alexander

    2014-05-22

    Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters-horseradish peroxidase (HRP), Alexa Fluor 488 (Alexa) and ricin A-chain (RTA)-were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates-saporin-HRP, (Alexa)saporin and saporin-KQ-RTA-were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release) or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape) was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of (Alexa)saporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10-1000 nM.

  4. Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose.

    Science.gov (United States)

    Jung, Minjeong; Lee, Jaemeun; Seo, Hye-Young; Lim, Ji Sun; Kim, Eun-Kyoung

    2015-01-01

    Autophagy is a lysosomal degradative pathway that plays an important role in maintaining cellular homeostasis. We previously showed that the inhibition of autophagy causes pancreatic β-cell apoptosis, suggesting that autophagy is a protective mechanism for the survival of pancreatic β-cells. The current study demonstrates that treatment with inhibitors and knockdown of the lysosomal cysteine proteases such as cathepsins B and L impair autophagy, enhancing the caspase-dependent apoptosis of INS-1 cells and islets upon exposure to high concentration of glucose. Interestingly, treatment with cathepsin B and L inhibitors prevented the proteolytic processing of cathepsins B, D and L, as evidenced by gradual accumulation of the respective pro-forms. Of note, inhibition of aspartic cathepsins had no effect on autophagy and cell viability, suggesting the selective role of cathepsins B and L in the regulation of β-cell autophagy and apoptosis. Lysosomal localization of accumulated pro-cathepsins in the presence of cathepsin B and L inhibitors was verified via immunocytochemistry and lysosomal fractionation. Lysotracker staining indicated that cathepsin B and L inhibitors led to the formation of severely enlarged lysosomes in a time-dependent manner. The abnormal accumulation of pro-cathepsins following treatment with inhibitors of cathepsins B and L suppressed normal lysosomal degradation and the processing of lysosomal enzymes, leading to lysosomal dysfunction. Collectively, our findings suggest that cathepsin defects following the inhibition of cathepsin B and L result in lysosomal dysfunction and consequent cell death in pancreatic β-cells.

  5. hLGDB: a database of human lysosomal genes and their regulation.

    Science.gov (United States)

    Brozzi, Alessandro; Urbanelli, Lorena; Germain, Pierre Luc; Magini, Alessandro; Emiliani, Carla

    2013-01-01

    Lysosomes are cytoplasmic organelles present in almost all eukaryotic cells, which play a fundamental role in key aspects of cellular homeostasis such as membrane repair, autophagy, endocitosis and protein metabolism. The characterization of the genes and enzymes constituting the lysosome represents a central issue to be addressed toward a better understanding of the biology of this organelle. In humans, mutations that cause lysosomal enzyme deficiencies result in >50 different disorders and severe pathologies. So far, many experimental efforts using different methodologies have been carried out to identity lysosomal genes. The Human Lysosome Gene Database (hLGDB) is the first resource that provides a comprehensive and accessible census of the human genes belonging to the lysosomal system. This database was developed by collecting and annotating gene lists from many different sources. References to the studies that have identified each gene are provided together with cross databases gene related information. Special attention has been given to the regulation of the genes through microRNAs and the transcription factor EB. The hLGDB can be easily queried to retrieve, combine and analyze information on different lists of lysosomal genes and their regulation by microRNA (binding sites predicted by five different algorithms). The hLGDB is an open access dynamic project that will permit in the future to collapse in a unique publicly accessible resource all the available biological information about lysosome genes and their regulation. Database URL: http://lysosome.unipg.it/.

  6. 'Doctor Google' ending the diagnostic odyssey in lysosomal storage disorders: parents using internet search engines as an efficient diagnostic strategy in rare diseases.

    Science.gov (United States)

    Bouwman, Machtelt G; Teunissen, Quirine G A; Wijburg, Frits A; Linthorst, Gabor E

    2010-08-01

    The expansion of the internet has resulted in widespread availability of medical information for both patients and physicians. People increasingly spend time on the internet searching for an explanation, diagnosis or treatment for their symptoms. Regarding rare diseases, the use of the internet may be an important tool in the diagnostic process. The authors present two cases in which concerned parents made a correct diagnosis of a lysosomal storage disorder in their child by searching the internet after a long doctor's delay. These cases illustrate the utility of publicly available internet search engines in diagnosing rare disorders and in addition illustrate the lengthy diagnostic odyssey which is common in these disorders.

  7. Origami Metamaterials for Tunable Thermal Expansion.

    Science.gov (United States)

    Boatti, Elisa; Vasios, Nikolaos; Bertoldi, Katia

    2017-07-01

    Materials with engineered thermal expansion, capable of achieving targeted area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with engineered coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here it is shown that origami metamaterials also provide a platform for the design of systems with a wide range of thermal expansion coefficients. Experiments and simulations are combined to demonstrate that by tuning the geometrical parameters of the origami structure and the arrangement of plates and creases, an extremely broad range of thermal expansion coefficients can be obtained. Differently from all previously reported systems, the proposed structure is tunable in situ and nonporous. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; Olsen, Ole D; Groth-Pedersen, Line

    2013-01-01

    Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome......-destabilizing experimental anticancer agent siramesine inhibits ASM by interfering with the binding of ASM to its essential lysosomal cofactor, bis(monoacylglycero)phosphate. Like siramesine, several clinically relevant ASM inhibitors trigger cancer-specific lysosomal cell death, reduce tumor growth in vivo, and revert...

  9. Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx

    OpenAIRE

    Wilke Sonja; Krausze Joern; Büssow Konrad

    2012-01-01

    Abstract Background The family of lysosome-associated membrane proteins (LAMP) comprises the multifunctional, ubiquitous LAMP-1 and LAMP-2, and the cell type-specific proteins DC-LAMP (LAMP-3), BAD-LAMP (UNC-46, C20orf103) and macrosialin (CD68). LAMPs have been implicated in a multitude of cellular processes, including phagocytosis, autophagy, lipid transport and aging. LAMP-2 isoform A acts as a receptor in chaperone-mediated autophagy. LAMP-2 deficiency causes the fatal Danon disease. The ...

  10. Klebsiella pneumoniae survives within macrophages by avoiding delivery to lysosomes.

    Science.gov (United States)

    Cano, Victoria; March, Catalina; Insua, Jose Luis; Aguiló, Nacho; Llobet, Enrique; Moranta, David; Regueiro, Verónica; Brennan, Gerard P; Millán-Lou, Maria Isabel; Martín, Carlos; Garmendia, Junkal; Bengoechea, José A

    2015-11-01

    Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that Klebsiella might be able to persist intracellularly within a vacuolar compartment. This study was designed to investigate the interaction between Klebsiella and macrophages. Engulfment of K. pneumoniae was dependent on host cytoskeleton, cell plasma membrane lipid rafts and the activation of phosphoinositide 3-kinase (PI3K). Microscopy studies revealed that K. pneumoniae resides within a vacuolar compartment, the Klebsiella-containing vacuole (KCV), which traffics within vacuoles associated with the endocytic pathway. In contrast to UV-killed bacteria, the majority of live bacteria did not co-localize with markers of the lysosomal compartment. Our data suggest that K. pneumoniae triggers a programmed cell death in macrophages displaying features of apoptosis. Our efforts to identify the mechanism(s) whereby K. pneumoniae prevents the fusion of the lysosomes to the KCV uncovered the central role of the PI3K-Akt-Rab14 axis to control the phagosome maturation. Our data revealed that the capsule is dispensable for Klebsiella intracellular survival if bacteria were not opsonized. Furthermore, the environment found by Klebsiella within the KCV triggered the down-regulation of the expression of cps. Altogether, this study proves evidence that K. pneumoniae survives killing by macrophages by manipulating phagosome maturation that may contribute to Klebsiella pathogenesis.

  11. From Lysosomal Storage Diseases to NKT Cell Activation and Back

    Science.gov (United States)

    Pereira, Cátia S.; Ribeiro, Helena; Macedo, M. Fatima

    2017-01-01

    Lysosomal storage diseases (LSDs) are inherited metabolic disorders characterized by the accumulation of different types of substrates in the lysosome. With a multisystemic involvement, LSDs often present a very broad clinical spectrum. In many LSDs, alterations of the immune system were described. Special emphasis was given to Natural Killer T (NKT) cells, a population of lipid-specific T cells that is activated by lipid antigens bound to CD1d (cluster of differentiation 1 d) molecules at the surface of antigen-presenting cells. These cells have important functions in cancer, infection, and autoimmunity and were altered in a variety of LSDs’ mouse models. In some cases, the observed decrease was attributed to defects in either lipid antigen availability, trafficking, processing, or loading in CD1d. Here, we review the current knowledge about NKT cells in the context of LSDs, including the alterations detected, the proposed mechanisms to explain these defects, and the relevance of these findings for disease pathology. Furthermore, the effect of enzyme replacement therapy on NKT cells is also discussed. PMID:28245613

  12. Noxa couples lysosomal membrane permeabilization and apoptosis during oxidative stress.

    Science.gov (United States)

    Eno, Colins O; Zhao, Guoping; Venkatanarayan, Avinashnarayan; Wang, Bing; Flores, Elsa R; Li, Chi

    2013-12-01

    The exact roles of lysosomal membrane permeabilization (LMP) in oxidative stress-triggered apoptosis are not completely understood. Here, we first studied the temporal relation between LMP and mitochondrial outer membrane permeabilization (MOMP) during the initial stage of apoptosis caused by the oxidative stress inducer H2O2. Despite its essential role in mediating apoptosis, the expression of the BH3-only Bcl-2 protein Noxa was dispensable for LMP. In contrast, MOMP was dependent on Noxa expression and occurred downstream of LMP. When lysosomal membranes were stabilized by the iron-chelating agent desferrioxamine, H2O2-induced increase in DNA damage, Noxa expression, and subsequent apoptosis were abolished by the inhibition of LMP. Importantly, LMP-induced Noxa expression increase was mediated by p53 and seems to be a unique feature of apoptosis caused by oxidative stress. Finally, exogenous iron loading recapitulated the effects of H2O2 on the expression of BH3-only Bcl-2 proteins. Overall, these data reveal a Noxa-mediated signaling pathway that couples LMP with MOMP and ultimate apoptosis during oxidative stress.

  13. From Lysosomal Storage Diseases to NKT Cell Activation and Back

    Directory of Open Access Journals (Sweden)

    Cátia S. Pereira

    2017-02-01

    Full Text Available Lysosomal storage diseases (LSDs are inherited metabolic disorders characterized by the accumulation of different types of substrates in the lysosome. With a multisystemic involvement, LSDs often present a very broad clinical spectrum. In many LSDs, alterations of the immune system were described. Special emphasis was given to Natural Killer T (NKT cells, a population of lipid-specific T cells that is activated by lipid antigens bound to CD1d (cluster of differentiation 1 d molecules at the surface of antigen-presenting cells. These cells have important functions in cancer, infection, and autoimmunity and were altered in a variety of LSDs’ mouse models. In some cases, the observed decrease was attributed to defects in either lipid antigen availability, trafficking, processing, or loading in CD1d. Here, we review the current knowledge about NKT cells in the context of LSDs, including the alterations detected, the proposed mechanisms to explain these defects, and the relevance of these findings for disease pathology. Furthermore, the effect of enzyme replacement therapy on NKT cells is also discussed.

  14. Chromatographic finger print analysis and lysosomal membrane stabilisation activity of active fraction of Alstonia scholaris leaf extract in arthritic rats

    Directory of Open Access Journals (Sweden)

    Swapnil Goyal

    2014-01-01

    Full Text Available Object: The present study was aimed to assess the anti-arthritic activity of chloroform fraction of Alstonia scholaris leaf extract against Freund′s complete adjuvant (FCA-induced arthritis in rats. Materials and Methods: The anti-inflammatory activity of various fractions of ethanolic extract of Alstonia scholaris at concentration of 100 mg/kg was studied using the carrageenan-induced inflammatory models. The chloroform fraction shows significant anti-inflammatory activity. The chloroform fraction was further studied for anti-arthritic activity and HPTLC fingerprint analysis. For anti-arthritic activity, the active chloroform fraction was administered at the concentrations of 50 and 100 mg/kg body weight. The effect of chloroform fraction on liver ALP, ACP and LDH levels of lysosomal enzymes of FCA arthritic animals were studied. Indomethacin and prednisolone (10 mg/kg was used as standard. HPTLC studies were carried out using CAMAG HPTLC system equipped with linomat IV applicator, TLC scanner; Reprostar 3 and WIN CATS-4 software were used. Results: The chloroform fraction at 100 mg/kg, showed maximum inhibition (34.16% of inflammation induced by carrageenan. In FCA-induced arthritis, the chloroform fraction showed a highly significant reduction in paw volume (50 mg/kg-72.71%; 100 mg/kg-74.35%. The levels of lysosomal enzymes were significantly decreased in the chloroform fraction-treated groups. Conclusion: The possible mechanism of action of the chloroform fraction of Alstonia scholaris leaf extract may be through its stabilising action on lysosomal membranes. Future studies will provide new insights into the anti-arthritic activity of Alstonia scholaris and isolation of compound from it may eventually lead to development of a new class of anti-arthritic agent.

  15. Characterization of storage material in cultured fibroblasts by specific lectin binding in lysosomal storage diseases.

    Science.gov (United States)

    Virtanen, I; Ekblom, P; Laurila, P; Nordling, S; Raivio, K O; Aula, P

    1980-11-01

    The lysosomal storage material in cultured fibroblasts from patients with various lysosomal storage diseases was characterized by fluorescence microscopy using lectins specific for different saccharide moieties. In normal fibroblasts and cultured amniotic fluid cells lectins specific for mannosyl and glucosyl moieties, Con A and LcA gave a bright perinuclear cytoplasmic staining corresponding to the localization of endoplasmic reticulum in the cells. All other lectins stained the Golgi apparatus as a juxtanuclear reticular structure. In fucosidosis fibroblasts, only lectins specific for fucosyl groups LTA and UEA, distinctly stained the lysosomal inclusions. The lysosomes in mannosidosis fibroblasts did not react with Con A and LcA, both specific for mannosyl moieties of glycoconjugates, but were brightly labeled with WGA, a lectin specific for N-acetyl glucosaminyl moieties. In I-cell fibroblasts, the numerous perinuclear phase-dense granules, representing abnormal lysosomes, were labeled with every lectin used. In fibroblasts from patients with Salla disease, a newly discovered lysosomal storage disorder, the lysosomes were brightly stained only with LPA, indicating the presence of increased amounts of sialic acid residues in the lysosomal inclusions.

  16. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis.

    Science.gov (United States)

    Samie, Mohammad; Wang, Xiang; Zhang, Xiaoli; Goschka, Andrew; Li, Xinran; Cheng, Xiping; Gregg, Evan; Azar, Marlene; Zhuo, Yue; Garrity, Abigail G; Gao, Qiong; Slaugenhaupt, Susan; Pickel, Jim; Zolov, Sergey N; Weisman, Lois S; Lenk, Guy M; Titus, Steve; Bryant-Genevier, Marthe; Southall, Noel; Juan, Marugan; Ferrer, Marc; Xu, Haoxing

    2013-09-16

    Phagocytosis of large extracellular particles such as apoptotic bodies requires delivery of the intracellular endosomal and lysosomal membranes to form plasmalemmal pseudopods. Here, we identified mucolipin TRP channel 1 (TRPML1) as the key lysosomal Ca2+ channel regulating focal exocytosis and phagosome biogenesis. Both particle ingestion and lysosomal exocytosis are inhibited by synthetic TRPML1 blockers and are defective in macrophages isolated from TRPML1 knockout mice. Furthermore, TRPML1 overexpression and TRPML1 agonists facilitate both lysosomal exocytosis and particle uptake. Using time-lapse confocal imaging and direct patch clamping of phagosomal membranes, we found that particle binding induces lysosomal PI(3,5)P2 elevation to trigger TRPML1-mediated lysosomal Ca2+ release specifically at the site of uptake, rapidly delivering TRPML1-resident lysosomal membranes to nascent phagosomes via lysosomal exocytosis. Thus phagocytic ingestion of large particles activates a phosphoinositide- and Ca2+-dependent exocytosis pathway to provide membranes necessary for pseudopod extension, leading to clearance of senescent and apoptotic cells in vivo.

  17. Autophagy-lysosomal pathway is involved in lipid degradation in rat liver.

    Science.gov (United States)

    Skop, V; Cahová, M; Papáčková, Z; Páleníčková, E; Daňková, H; Baranowski, M; Zabielski, P; Zdychová, J; Zídková, J; Kazdová, L

    2012-01-01

    We present data supporting the hypothesis that the lysosomal-autophagy pathway is involved in the degradation of intracellular triacylglycerols in the liver. In primary hepatocytes cultivated in the absence of exogenous fatty acids (FFA), both inhibition of autophagy flux (asparagine) or lysosomal activity (chloroquine) decreased secretion of VLDL (very low density lipoproteins) and formation of FFA oxidative products while the stimulation of autophagy by rapamycine increased some of these parameters. Effect of rapamycine was completely abolished by inactivation of lysosomes. Similarly, when autophagic activity was influenced by cultivating the hepatocytes in "starving" (amino-acid poor medium) or "fed" (serum-supplemented medium) conditions, VLDL secretion and FFA oxidation mirrored the changes in autophagy being higher in starvation and lower in fed state. Autophagy inhibition as well as lysosomal inactivation depressed FFA and DAG (diacylglycerol) formation in liver slices in vitro. In vivo, intensity of lysosomal lipid degradation depends on the formation of autophagolysosomes, i.e. structures bringing the substrate for degradation and lysosomal enzymes into contact. We demonstrated that lysosomal lipase (LAL) activity in liver autophagolysosomal fraction was up-regulated in fasting and down-regulated in fed state together with the increased translocation of LAL and LAMP2 proteins from lysosomal pool to this fraction. Changes in autophagy intensity (LC3-II/LC3-I ratio) followed a similar pattern.

  18. The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation.

    Science.gov (United States)

    Moskot, Marta; Montefusco, Sandro; Jakóbkiewicz-Banecka, Joanna; Mozolewski, Paweł; Węgrzyn, Alicja; Di Bernardo, Diego; Węgrzyn, Grzegorz; Medina, Diego L; Ballabio, Andrea; Gabig-Cimińska, Magdalena

    2014-06-13

    Genistein (5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) has been previously proposed as a potential drug for use in substrate reduction therapy for mucopolysaccharidoses, a group of inherited metabolic diseases caused by mutations leading to inefficient degradation of glycosaminoglycans (GAGs) in lysosomes. It was demonstrated that this isoflavone can cross the blood-brain barrier, making it an especially desirable potential drug for the treatment of neurological symptoms present in most lysosomal storage diseases. So far, no comprehensive genomic analyses have been performed to elucidate the molecular mechanisms underlying the effect elicited by genistein. Therefore, the aim of this work was to identify the genistein-modulated gene network regulating GAG biosynthesis and degradation, taking into consideration the entire lysosomal metabolism. Our analyses identified over 60 genes with known roles in lysosomal biogenesis and/or function whose expression was enhanced by genistein. Moreover, 19 genes whose products are involved in both GAG synthesis and degradation pathways were found to be remarkably differentially regulated by genistein treatment. We found a regulatory network linking genistein-mediated control of transcription factor EB (TFEB) gene expression, TFEB nuclear translocation, and activation of TFEB-dependent lysosome biogenesis to lysosomal metabolism. Our data indicate that the molecular mechanism of genistein action involves not only impairment of GAG synthesis but more importantly lysosomal enhancement via TFEB. These findings contribute to explaining the beneficial effects of genistein in lysosomal storage diseases as well as envisage new therapeutic approaches to treat these devastating diseases.

  19. Protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

    Science.gov (United States)

    Roy, Subhro Jyoti; Stanely Mainzen Prince, Ponnian

    2012-11-01

    In the pathology of myocardial infarction, lysosomal lipid peroxidation and resulting enzyme release play an important role. We evaluated the protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats. Male Wistar rats were treated with sinapic acid (12 mg/kg body weight) orally daily for 10 days and isoproterenol (100 mg/kg body weight) was injected twice at an interval of 24 h (9th and 10th day). Then, lysosomal lipid peroxidation, lysosomal enzymes in serum, heart homogenate, lysosomal fraction and myocardial infarct size were measured. Isoproterenol induced myocardial infarcted rats showed a significant increase in serum creatine kinase-MB and lysosomal lipid peroxidation. The activities of β-glucuronidase, β-galactosidase, cathepsin-B and D were significantly increased in serum, heart and the activities of β-glucuronidase and cathepsin-D were significantly decreased in lysosomal fraction of myocardial infarcted rats. Pre-and-co-treatment with sinapic acid normalized all the biochemical parameters and reduced myocardial infarct size in myocardial infarcted rats. In vitro studies confirmed the free radical scavenging effects of sinapic acid. The possible mechanisms for the observed effects are attributed to sinapic acid's free radical scavenging and membrane stabilizing properties. Thus, sinapic acid has protective effects on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

  20. The Octyl Ester of Ginsenoside Rh2 Induces Lysosomal Membrane Permeabilization via Bax Translocation.

    Science.gov (United States)

    Chen, Fang; Zhang, Bing; Sun, Yong; Xiong, Zeng-Xing; Peng, Han; Deng, Ze-Yuan; Hu, Jiang-Ning

    2016-04-25

    Ginsenoside Rh2 is a potential pharmacologically active metabolite of ginseng. Previously, we have reported that an octyl ester derivative of ginsenoside Rh2 (Rh2-O), has been confirmed to possess higher bioavailability and anticancer effect than Rh2 in vitro. In order to better assess the possibility that Rh2-O could be used as an anticancer compound, the underlying mechanism was investigated in this study. The present results revealed that lysosomal destabilization was involved in the early stage of cell apoptosis in HepG2 cells induced by Rh2-O. Rh2-O could induce an early lysosomal membrane permeabilization with the release of lysosomal protease cathepsins to the cytosol in HepG2 cells. The Cat B inhibitor (leu) and Cat D inhibitor (pepA) inhibited Rh2-O-induced HepG2 apoptosis as well as tBid production and Δφm depolarization, indicating that lysosomal permeabilization occurred upstream of mitochondrial dysfunction. In addition, Rh2-O induced a significant increase in the protein levels of DRAM1 and Bax (p lysosomes of HepG2 cells. Knockdown of Bax partially inhibited Rh2-O-induced Cat D release from lysosomes. Thus it was concluded that Rh2-O induced apoptosis of HepG2 cells through activation of the lysosomal-mitochondrial apoptotic pathway involving the translocation of Bax to the lysosome.

  1. Expression Pattern of Lysosomal Protective Protein/Cathepsin A: Implications for the analysis of hnman galactosialidosis

    NARCIS (Netherlands)

    R.J. Rottier (Robbert)

    1998-01-01

    textabstractThe lysosome represents a well characterized, membrane-contained intracellular digestive system. Iu this important organelle a battery of lysosomal hydro lases and accessory proteins work in concert on the step-wise conversion of macromolecular substrates into small biological building b

  2. Vps33B is required for delivery of endocytosed cargo to lysosomes

    NARCIS (Netherlands)

    Galmes, Romain; ten Brink, Corlinda; Oorschot, Viola; Veenendaal, Tineke; Jonker, Caspar; van der Sluijs, Peter; Klumperman, Judith

    2015-01-01

    In mammalian cells Vps33B forms a complex with VIPAS-39 that is recruited to recycling endosomes. Here we show that when Vps33B is expressed together with Rab7-interacting lysosomal protein (RILP) it is recruited to late endosomes-lysosomes and that depletion of Vps33B impairs late

  3. Glycogenosis type II : cloning and characterization of the human lysosomal α-glucosidase gene

    NARCIS (Netherlands)

    E.H. Hoefsloot (Lies)

    1991-01-01

    textabstractGlycogenosis type II is a lysosomal storage disorder. Characteristic features are heart failure and generalized muscle weakness. The disease is caused by the inherited deficiency of acid α-glucosidase, the enzyme responsible for the degradation of lysosomal glycogen. The aim of the work

  4. Lysosomal cholesterol accumulation : driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis

    NARCIS (Netherlands)

    Hendrikx, T.; Walenbergh, S. M. A.; Hofker, M. H.; Shiri-Sverdlov, R.

    2014-01-01

    Many studies show an association between the accumulation of cholesterol inside lysosomes and the progression towards inflammatory disease states that are closely related to obesity. While in the past, the knowledge regarding lysosomal cholesterol accumulation was limited to its association with pla

  5. Calpains mediate epithelial-cell death during mammary gland involution: mitochondria and lysosomal destabilization.

    Science.gov (United States)

    Arnandis, T; Ferrer-Vicens, I; García-Trevijano, E R; Miralles, V J; García, C; Torres, L; Viña, J R; Zaragozá, R

    2012-09-01

    Our aim was to elucidate the physiological role of calpains (CAPN) in mammary gland involution. Both CAPN-1 and -2 were induced after weaning and its activity increased in isolated mitochondria and lysosomes. CAPN activation within the mitochondria could trigger the release of cytochrome c and other pro-apoptotic factors, whereas in lysosomes it might be essential for tissue remodeling by releasing cathepsins into the cytosol. Immunohistochemical analysis localized CAPNs mainly at the luminal side of alveoli. During weaning, CAPNs translocate to the lysosomes processing membrane proteins. To identify these substrates, lysosomal fractions were treated with recombinant CAPN and cleaved products were identified by 2D-DIGE. The subunit b(2) of the v-type H(+) ATPase is proteolyzed and so is the lysosomal-associated membrane protein 2a (LAMP2a). Both proteins are also cleaved in vivo. Furthermore, LAMP2a cleavage was confirmed in vitro by addition of CAPNs to isolated lysosomes and several CAPN inhibitors prevented it. Finally, in vivo inhibition of CAPN1 in 72-h-weaned mice decreased LAMP2a cleavage. Indeed, calpeptin-treated mice showed a substantial delay in tissue remodeling and involution of the mammary gland. These results suggest that CAPNs are responsible for mitochondrial and lysosomal membrane permeabilization, supporting the idea that lysosomal-mediated cell death is a new hallmark of mammary gland involution.

  6. High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A

    Science.gov (United States)

    Gabandé-Rodríguez, E; Boya, P; Labrador, V; Dotti, C G; Ledesma, M D

    2014-01-01

    Niemann Pick disease type A (NPA), which is caused by loss of function mutations in the acid sphingomyelinase (ASM) gene, is a lysosomal storage disorder leading to neurodegeneration. Yet, lysosomal dysfunction and its consequences in the disease are poorly characterized. Here we show that undegraded molecules build up in neurons of acid sphingomyelinase knockout mice and in fibroblasts from NPA patients in which autophagolysosomes accumulate. The latter is not due to alterations in autophagy initiation or autophagosome–lysosome fusion but because of inefficient autophago–lysosomal clearance. This, in turn, can be explained by lysosomal membrane permeabilization leading to cytosolic release of Cathepsin B. High sphingomyelin (SM) levels account for these effects as they can be induced in control cells on addition of the lipid and reverted on SM-lowering strategies in ASM-deficient cells. These results unveil a relevant role for SM in autophagy modulation and characterize autophagy anomalies in NPA, opening new perspectives for therapeutic interventions. PMID:24488099

  7. Ubiquitin trafficking to the lysosome: keeping the house tidy and getting rid of unwanted guests.

    Science.gov (United States)

    Purdy, Georgiana E; Russell, David G

    2007-01-01

    Bacterial killing by autophagic delivery to the lysosomal compartment has been shown for Mycobacteria, Streptococcus, Shigella, Legionella and Salmonella, indicating an important role for this conserved trafficking pathway for the control of intracellular bacterial pathogens.(1-5) In a recent study we found that solubilized lysosomes isolated from bone marrow-derived macrophages had potent antibacterial properties against M. tuberculosis and M. smegmatis that were associated with ubiquitin and ubiquitin-derived peptides. We propose that ubiquitinated proteins are delivered to the lysosomal compartment, where degradation by lysosomal proteinases generates ubiquitin-derived peptides with antimycobacterial properties. This surprising finding provokes a number of questions regarding the nature and trafficking of ubiquitin and ubiquitin-modified proteins in mammalian cells. We discuss the possible role(s) that the multivesicular body (MVB), the late endosome and the autophagosome may play in trafficking of ubiquitinated proteins to the lysosome.

  8. Negative thermal expansion

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, G D [Departamento de QuImica, Universidad Nacional de la Patagonia SJB, Ciudad Universitaria, 9000 Comodoro Rivadavia (Argentina); Bruno, J A O [Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de QuImica Inorganica, AnalItica y QuImica FIsica, Pabellon 2, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Barron, T H K [School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom); Allan, N L [School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom)

    2005-02-02

    There has been substantial renewed interest in negative thermal expansion following the discovery that cubic ZrW{sub 2}O{sub 8} contracts over a temperature range in excess of 1000 K. Substances of many different kinds show negative thermal expansion, especially at low temperatures. In this article we review the underlying thermodynamics, emphasizing the roles of thermal stress and elasticity. We also discuss vibrational and non-vibrational mechanisms operating on the atomic scale that are responsible for negative expansion, both isotropic and anisotropic, in a wide range of materials. (topical review)

  9. The effects of hydrocortisone and glycyrrhizine on the enzyme releases of arylsulfatase and hyaluronidase from lysosomes of liver.

    Science.gov (United States)

    Ozeki, T; Tokawa, Y; Ogasawara, T; Sato, K; Kan, M

    1978-03-15

    Hydrocortisone and glycyrrhizine act as both stabilizers and labilizers of the lysosomes of liver. The effect of both agents on the lysosomes is changeable according to the duration of their administration.

  10. Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions.

    Science.gov (United States)

    Lee, Sook-Jeong; Park, Mi-Ha; Kim, Hyun-Jae; Koh, Jae-Young

    2010-08-01

    Cellular zinc plays a key role in lysosomal change and cell death in neurons and astrocytes under oxidative stress. Here, using astrocytes lacking metallothionein-3 (MT3), a potential source of labile zinc in the brain, we studied the role of MT3 in oxidative stress responses. H(2)O(2) induced a large increase in labile zinc in wild-type (WT) astrocytes, but stimulated only a modest rise in MT3-null astrocytes. In addition, H(2)O(2)-induced lysosomal membrane permeabilization (LMP) and cell death were comparably attenuated in MT3-null astrocytes. Expression and glycosylation of Lamp1 (lysosome-associated membrane protein 1) and Lamp2 were increased in MT3-null astrocytes, and the activities of several lysosomal enzymes were significantly reduced, indicating an effect of MT3 on lysosomal components. Consistent with lysosomal dysfunction in MT3-null cells, the level of LC3-II (microtubule-associated protein 1 light chain 3), a marker of early autophagy, was increased by oxidative stress in WT astrocytes, but not in MT3-null cells. Similar changes in Lamp1, LC3, and cathepsin-D were induced by the lysosomal inhibitors bafilomycin A1, chloroquine, and monensin, indicating that lysosomal dysfunction may lie upstream of changes observed in MT3-null astrocytes. Consistent with this idea, lysosomal accumulation of cholesterol and lipofuscin were augmented in MT3-null astrocytes. Similar to the results seen in MT3-null cells, MT3 knockdown by siRNA inhibited oxidative stress-induced increases in zinc and LMP. These results indicate that MT3 may play a key role in normal lysosomal function in cultured astrocytes.

  11. Mild MPP(+) exposure impairs autophagic degradation through a novel lysosomal acidity-independent mechanism.

    Science.gov (United States)

    Miyara, Masatsugu; Kotake, Yaichiro; Tokunaga, Wataru; Sanoh, Seigo; Ohta, Shigeru

    2016-10-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but its underlying cause remains unknown. Although recent studies using PD-related neurotoxin MPP(+) suggest autophagy involvement in the pathogenesis of PD, the effect of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of PD, remains largely unclear. We examined the effect of mild MPP(+) exposure (10 and 200 μM for 48 h), which induces a more slowly developing cell death, on autophagic processes and the mechanistic differences with acute MPP(+) toxicity (2.5 and 5 mM for 24 h). In SH-SY5Y cells, mild MPP(+) exposure predominantly inhibited autophagosome degradation, whereas acute MPP(+) exposure inhibited both autophagosome degradation and basal autophagy. Mild MPP(+) exposure reduced lysosomal hydrolase cathepsin D activity without changing lysosomal acidity, whereas acute exposure decreased lysosomal density. Lysosome biogenesis enhancers trehalose and rapamycin partially alleviated mild MPP(+) exposure induced impaired autophagosome degradation and cell death, but did not prevent the pathogenic response to acute MPP(+) exposure, suggesting irreversible lysosomal damage. We demonstrated impaired autophagic degradation by MPP(+) exposure and mechanistic differences between mild and acute MPP(+) toxicities. Mild MPP(+) toxicity impaired autophagosome degradation through novel lysosomal acidity-independent mechanisms. Sustained mild lysosomal damage may contribute to PD. We examined the effects of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of Parkinson's disease, in SH-SY5Y cells. This study demonstrated impaired autophagic degradation through a reduction in lysosomal cathepsin D activity without altering lysosomal acidity by mild MPP(+) exposure. Mechanistic differences between acute and mild MPP(+) toxicity were also observed. Sustained mild damage of lysosome may be an underlying cause

  12. Oxidant-induced autophagy and ferritin degradation contribute to epithelial–mesenchymal transition through lysosomal iron

    Science.gov (United States)

    Sioutas, Apostolos; Vainikka, Linda K; Kentson, Magnus; Dam-Larsen, Sören; Wennerström, Urban; Jacobson, Petra; Persson, Hans Lennart

    2017-01-01

    Purpose Transforming growth factor (TGF)-β1 triggers epithelial–mesenchymal transition (EMT) through autophagy, which is partly driven by reactive oxygen species (ROS). The aim of this study was to determine whether leaking lysosomes and enhanced degradation of H-ferritin could be involved in EMT and whether it could be possible to prevent EMT by iron chelation targeting of the lysosome. Materials and methods EMT, H-ferritin, and autophagy were evaluated in TGF-β1-stimulated A549 human lung epithelial cells cultured in vitro using Western blotting, with the additional morphological assessment of EMT. By using immunofluorescence and flow cytometry, lysosomes and ROS were assessed by acridine orange and 6-carboxy-2′,7′-dichlorodihydrofluorescein acetate assays, respectively. Results TGF-β1-stimulated cells demonstrated a loss of H-ferritin, which was prevented by the antioxidant N-acetyl-L-cysteine (NAC) and inhibitors of lysosomal degradation. TGF-β1 stimulation generated ROS and autophagosome formation and led to EMT, which was further promoted by the additional ROS-generating cytokine, tumor necrosis factor-α. Lysosomes of TGF-β1-stimulated cells were sensitized to oxidants but also completely protected by lysosomal loading with dextran-bound deferoxamine (DFO). Autophagy and EMT were prevented by NAC, DFO, and inhibitors of autophagy and lysosomal degradation. Conclusion The findings of this study support the role of enhanced autophagic degradation of H-ferritin as a mechanism for increasing the vulnerability of lysosomes to iron-driven oxidant injury that triggers further autophagy during EMT. This study proposes that lysosomal leakage is a novel pathway of TGF-β1-induced EMT that may be prevented by iron-chelating drugs that target the lysosome.

  13. Cloning and expression of mouse legumain, a lysosomal endopeptidase.

    Science.gov (United States)

    Chen, J M; Dando, P M; Stevens, R A; Fortunato, M; Barrett, A J

    1998-01-01

    Legumain, a recently discovered mammalian cysteine endopeptidase, was found in all mouse tissues examined, but was particularly abundant in kidney and placenta. The distribution in subcellular fractions of mouse and rat kidney showed a lysosomal localization, and activity was detectable only after the organelles were disrupted. Nevertheless, ratios of legumain activity to that of cathepsin B differed considerably between mouse tissues. cDNA encoding mouse legumain was cloned and sequenced, the deduced amino acid sequence proving to be 83% identical to that of the human protein [Chen, Dando, Rawlings, Brown, Young, Stevens, Hewitt, Watts and Barrett (1997) J. Biol. Chem. 272, 8090-8098]. Recombinant mouse legumain was expressed in human embryonic kidney 293 cells by use of a vector containing a cytomegalovirus promoter. The recombinant enzyme was partially purified and found to be an asparagine-specific endopeptidase closely similar to naturally occurring pig kidney legumain. PMID:9742219

  14. Septins as modulators of endo-lysosomal membrane traffic

    Directory of Open Access Journals (Sweden)

    Kyungyeun Song

    2016-11-01

    Full Text Available Septins constitute a family of GTP-binding proteins, which assemble into non-polar filaments in a nucleotide-dependent manner. These filaments can be recruited to negatively charged membrane surfaces. When associated with membranes septin filaments can act as diffusion barriers, which confine subdomains of distinct biological functions. In addition, they serve scaffolding roles by recruiting cytosolic proteins and other cytoskeletal elements. Septins have been implicated in a large variety of membrane-dependent processes, including cytokinesis, signaling, cell migration, and membrane traffic, and several family members have been implicated in disease. However, surprisingly little is known about the molecular mechanisms underlying their biological functions. This review summarizes evidence in support of regulatory roles of septins during endo-lysosomal sorting, with a particular focus on phosphoinositides, which serve as spatial landmarks guiding septin recruitment to distinct subcellular localizations.

  15. Thermal Expansion "Paradox."

    Science.gov (United States)

    Fakhruddin, Hasan

    1993-01-01

    Describes a paradox in the equation for thermal expansion. If the calculations for heating a rod and subsequently cooling a rod are determined, the new length of the cool rod is shorter than expected. (PR)

  16. Renormalized Volumes with Boundary

    CERN Document Server

    Gover, A Rod

    2016-01-01

    We develop a general regulated volume expansion for the volume of a manifold with boundary whose measure is suitably singular along a separating hypersurface. The expansion is shown to have a regulator independent anomaly term and a renormalized volume term given by the primitive of an associated anomaly operator. These results apply to a wide range of structures. We detail applications in the setting of measures derived from a conformally singular metric. In particular, we show that the anomaly generates invariant (Q-curvature, transgression)-type pairs for hypersurfaces with boundary. For the special case of anomalies coming from the volume enclosed by a minimal hypersurface ending on the boundary of a Poincare--Einstein structure, this result recovers Branson's Q-curvature and corresponding transgression. When the singular metric solves a boundary version of the constant scalar curvature Yamabe problem, the anomaly gives generalized Willmore energy functionals for hypersurfaces with boundary. Our approach ...

  17. Lysosomal exoglycosidases and cathepsin D in colon adenocarcinoma.

    Science.gov (United States)

    Waszkiewicz, Napoleon; Zalewska-Szajda, Beata; Szajda, Sławomir D; Kępka, Alina; Waszkiewicz, Magdalena; Roszkowska-Jakimiec, Wiesława; Wojewódzka-Żeleźniakowicz, Marzena; Milewska, Anna J; Dadan, Jacek; Szulc, Agata; Zwierz, Krzysztof; Ladny, Jerzy R

    2012-01-01

    Changes in the structure of membrane glycoconjugates and activity of glycosidases and proteases are important in tumor formation. The aim of the study was to compare the specific activity of lysosomal exoglycosidases: N-acetyl-β-D-hexosaminidase (HEX), its isoenzymes A (HEX A) and B (HEX B), β-D-galactosidase (GAL), α-fucosidase (FUC), and α-mannosidase (MAN) with the activity of cathepsin D (CD) in serum, urine, and carcinoma tissue of patients with colon adenocarcinoma. The specific activity of HEX, HEX A, HEX B, GAL, FUC, MAN, and CD was assayed in serum, urine, and carcinoma tissue of 12 patients with colon adenocarcinoma. Lysosomal exoglycosidases and CD have similar specific activity in colon adenocarcinoma tissue and urine, which is higher than their activity in serum (with the exception of the highest specific activity of CD in urine). A positive correlation was observed between the specific activity of CD and that of HEX, HEX A, FUC, and MAN in the carcinoma tissue and urine as well as between CD and GAL in the urine of patients with colon adenocarcinoma. Negative correlations were observed between protein levels and the specific activity of HEX, HEX A, FUC, MAN, and CD in the carcinoma tissue and urine, and between protein levels and GAL in urine. Increased degradation and remodeling of glycoconjugates in the colon adenocarcinoma tissue is reflected by increased specific activity of exoglycosidases and CD. The results suggest a strong effect of exoglycosidase action on tissue degradation and a potential role of exoglycosidases in the initiation of proteolysis.

  18. Analytical models of volcanic ellipsoidal expansion sources

    Directory of Open Access Journals (Sweden)

    Antonella Amoruso

    2013-11-01

    Full Text Available Modeling non-double-couple earthquakes and surficial deformation in volcanic and geothermal areas usually involves expansion sources. Given an ensemble of ellipsoidal or tensile expansion sources and double-couple ones, it is straightforward to obtain the equivalent single moment tensor under the far-field approximation. On the contrary, the moment tensor interpretation is by no means unique or unambiguous. If the far-field approximation is unsatisfied, the single moment tensor representation is inappropriate. Here we focus on the volume change estimate in the case of single sources, in particular finite pressurized ellipsoidal sources, presenting the expressions for the computation of the volume change and surficial displacement in a closed analytical form. We discuss the implications of different domains of the moment-tensor eigenvalue ratios in terms of volume change computation. We also discuss how the volume change of each source can be obtained from the isotropic component of the total moment tensor, in few cases of coupled sources where the total volume change is null. The new expressions for the computation of the volume change and surficial displacement in case of finite pressurized ellipsoidal sources should make their use easier with respect to the already published formulations.

  19. Colossal negative thermal expansion in reduced layered ruthenate

    Science.gov (United States)

    Takenaka, Koshi; Okamoto, Yoshihiko; Shinoda, Tsubasa; Katayama, Naoyuki; Sakai, Yuki

    2017-01-01

    Large negative thermal expansion (NTE) has been discovered during the last decade in materials of various kinds, particularly materials associated with a magnetic, ferroelectric or charge-transfer phase transition. Such NTE materials have attracted considerable attention for use as thermal-expansion compensators. Here, we report the discovery of giant NTE for reduced layered ruthenate. The total volume change related to NTE reaches 6.7% in dilatometry, a value twice as large as the largest volume change reported to date. We observed a giant negative coefficient of linear thermal expansion α=-115 × 10-6 K-1 over 200 K interval below 345 K. This dilatometric NTE is too large to be attributable to the crystallographic unit-cell volume variation with temperature. The highly anisotropic thermal expansion of the crystal grains might underlie giant bulk NTE via microstructural effects consuming open spaces in the sintered body on heating.

  20. COOH-terminal isoleucine of lysosome-associated membrane protein-1 is optimal for its efficient targeting to dense secondary lysosomes.

    Science.gov (United States)

    Akasaki, Kenji; Suenobu, Michihisa; Mukaida, Maki; Michihara, Akihiro; Wada, Ikuo

    2010-12-01

    Lysosome-associated membrane protein-1 (LAMP-1) consists of a highly glycosylated luminal domain, a single-transmembrane domain and a short cytoplasmic tail that possesses a lysosome-targeting signal (GYQTI(382)) at the COOH terminus. It is hypothesized that the COOH-terminal isoleucine, I(382), could be substituted with any other bulky hydrophobic amino acid residue for LAMP-1 to exclusively localize in lysosomes. In order to test this hypothesis, we compared subcellular distribution of four substitution mutants with phenylalanine, leucine, methionine and valine at the COOH-terminus (termed I382F, I382L, I382M and I382V, respectively) with that of wild-type (WT)-LAMP-1. Double-labelled immunofluorescence analyses showed that these substitution mutants were localized as significantly to late endocytic organelles as WT-LAMP-1. However, the quantitative subcellular fractionation study revealed different distribution of WT-LAMP-1 and these four COOH-terminal mutants in late endosomes and dense secondary lysosomes. WT-LAMP-1 was accumulated three to six times more in the dense lysosomal fraction than the four mutants. The level of WT-LAMP-1 in late endosomal fraction was comparable to those of I382F, I382M and I382V. Conversely, I382L in the late endosomal fraction was approximately three times more abundant than WT-LAMP-1. These findings define the presence of isoleucine residue at the COOH-terminus of LAMP-1 as critical in governing its efficient delivery to secondary lysosomes and its ratio of lysosomes to late endosomes.

  1. Combined effects of thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis.

    Science.gov (United States)

    Izagirre, Urtzi; Errasti, Aitzpea; Bilbao, Eider; Múgica, María; Marigómez, Ionan

    2014-04-01

    In estuaries and coastal areas, intertidal organisms may be subject to thermal stress resulting from global warming, together with pollution. In the present study, the combined effects of thermal stress and exposure to Cd were investigated in the endo-lysosomal system of digestive cells in mussels, Mytilus galloprovincialis. Mussels were maintained for 24h at 18°C and 26°C seawater temperature in absence and presence of 50 μg Cd/L seawater. Cadmium accumulation in digestive gland tissue, lysosomal structural changes and membrane stability were determined. Semi-quantitative PCR was applied to reveal the changes elicited by the different experimental conditions in hexosaminidase (hex), β-glucuronidase (gusb), cathepsin L (ctsl) and heat shock protein 70 (hsp70) gene transcription levels. Thermal stress provoked lysosomal enlargement whilst Cd-exposure led to fusion of lysosomes. Both thermal stress and Cd-exposure caused lysosomal membrane destabilisation. hex, gusb and ctsl genes but not hsp70 gene were transcriptionally up-regulated as a result of thermal stress. In contrast, all the studied genes were transcriptionally down-regulated in response to Cd-exposure. Cd bioaccumulation was comparable at 18°C and 26°C seawater temperatures but interactions between thermal stress and Cd-exposure were remarkable both in lysosomal biomarkers and in gene transcription. hex, gusb and ctsl genes, reacted to elevated temperature in absence of Cd but not in Cd-exposed mussels. Therefore, thermal stress resulting from global warming might influence the use and interpretation of lysosomal biomarkers in marine pollution monitoring programmes and, vice versa, the presence of pollutants may condition the capacity of mussels to respond against thermal stress in a climate change scenario.

  2. Gyrification from constrained cortical expansion

    CERN Document Server

    Tallinen, Tuomas; Biggins, John S; Mahadevan, L

    2015-01-01

    The exterior of the mammalian brain - the cerebral cortex - has a conserved layered structure whose thickness varies little across species. However, selection pressures over evolutionary time scales have led to cortices that have a large surface area to volume ratio in some organisms, with the result that the brain is strongly convoluted into sulci and gyri. Here we show that the gyrification can arise as a nonlinear consequence of a simple mechanical instability driven by tangential expansion of the gray matter constrained by the white matter. A physical mimic of the process using a layered swelling gel captures the essence of the mechanism, and numerical simulations of the brain treated as a soft solid lead to the formation of cusped sulci and smooth gyri similar to those in the brain. The resulting gyrification patterns are a function of relative cortical expansion and relative thickness (compared with brain size), and are consistent with observations of a wide range of brains, ranging from smooth to highl...

  3. Antimicrobial Properties of Lysosomal Enzymes Immobilized on NH₂Functionalized Silica-Encapsulated Magnetite Nanoparticles.

    Science.gov (United States)

    Bang, Seung Hyuck; Sekhon, Simranjeet Singh; Cho, Sung-Jin; Kim, So Jeong; Le, Thai-Hoang; Kim, Pil; Ahn, Ji-Young; Kim, Yang-Hoon; Min, Jiho

    2016-01-01

    The immobilization efficiency, antimicrobial activity and recovery of lysosomal enzymes on NH2 functionalized magnetite nanoparticles have been studied under various conditions. The immobi- lization efficiency depends upon the ratio of the amount of enzyme and magnetite and it shows an increase with magnetite concentration which is due to the presence of amine group at the magnetite surface that leads to a strong attraction. The optimized reaction time to immobilize the lysosomal enzymes on magnetite was determined by using a rolling method. The immobilization efficiency increases with reaction time and reached a plateau after 5 minutes and then remained constant for 10 minutes. However, after 30 minutes the immobilization efficiency decreased to 85%, which is due to the weaker electrostatic interactions between magnetite and detached lysosomal enzymes. The recovery and stability of immobilized lysosomal enzymes has also been studied. The antimicrobial activity was almost 100% but it decreased upon reuse and no activity was observed after its reuse for seven times. The storage stability of lysosomal enzymes as an antimicrobial agent was about 88%, which decreased to 53% after one day and all activity of immobilized lysosomal enzymes was maintained after five days. Thus, the lysosomal enzymes immobilized on magnetite nanoparticles could potentially be used as antimicrobial agents to remove bacteria.

  4. Involvement of lysosomes in the uptake of macromolecular material by bloodstream forms of Trypanosoma brucei.

    Science.gov (United States)

    Opperdoes, F R; Van Roy, J

    1982-09-01

    To investigate whether the lysosomes of Trypanosoma brucei are capable of uptake of macromolecules after internalization by the cell, we used Triton WR-1339, a non-digestible macromolecular compound, which is known to cause a marked decrease in the density of hepatic lysosomes due to massive intralysosomal storage. Intraperitoneal administration of 0.4 g/kg Triton WR-1339 to rats infected with T. brucei led to the development of a large vacuole in the trypanosomes between nucleus and kinetoplast within 22 h. Higher doses (2 g/kg) led to the disappearance of the trypanosomes from the blood and resulted in permanent cures (greater than 100 days). Lysosomes isolated from the trypanosomes of animals treated with a sub-curative dose showed a decrease in equilibrium density of 0.03 g/cm3 in sucrose gradients. These lysosomes were partly damaged as evidenced by a reduction in latency and an increase in the non-sedimentable part of lysosomal enzymes. We conclude that acid proteinase and alpha-mannosidase-containing organelles of T. brucei take up exogenous macromolecules and must therefore be considered as true lysosomes and that Triton WR-1339 acts in T. brucei as a true lysosomotropic drug. Its trypanocidal action probably results from an interference with lysosomal function.

  5. TRPML cation channels regulate the specialized lysosomal compartment of vertebrate B-lymphocytes.

    Science.gov (United States)

    Song, Yumei; Dayalu, Rashmi; Matthews, Sharon A; Scharenberg, Andrew M

    2006-12-01

    B-lymphocytes possess a specialized lysosomal compartment, the regulated transformation of which has been implicated in B-cell antigen presentation. Members of the mucolipin (TRPML) family of cation channels have been implicated in regulated vesicular transport in several tissues, but a role for TRPML function in lymphocyte vesicular transport physiology has not been previously described. To address the role of TRPML proteins in lymphocyte vesicular transport, we analyzed the lysosomal compartment in cultured B-lymphocytes engineered to lack TRPML1 or after expression of N- or C-terminal GFP fusion proteins of TRPML1 or TRPML2. Consistent with previous analyses of lymphocytes derived from human patients with mutations in TRPML1, we were not able to detect abnormalities in the lysosomes of TRPML1-deficient DT40 B-lymphocytes. However, while N-terminal GFP fusions of TRPML2 localized to normal appearing lysosomes, C-terminal GFP fusions of either TRPML1 or TRPML2 acted to antagonize endogenous TRPML function, localizing to large vesicular structures, the histological properties of which were indistinguishable from the enlarged lysosomes observed in affected tissues of TRPML1-deficient humans. Endocytosed B-cell receptors were delivered to these enlarged lysosomes, demonstrating that a TRPML-dependent process is required for normal regulation of the specialized lysosome compartment of vertebrate B-lymphocytes.

  6. Chlamydia species-dependent differences in the growth requirement for lysosomes.

    Directory of Open Access Journals (Sweden)

    Scot P Ouellette

    Full Text Available Genome reduction is a hallmark of obligate intracellular pathogens such as Chlamydia, where adaptation to intracellular growth has resulted in the elimination of genes encoding biosynthetic enzymes. Accordingly, chlamydiae rely heavily on the host cell for nutrients yet their specific source is unclear. Interestingly, chlamydiae grow within a pathogen-defined vacuole that is in close apposition to lysosomes. Metabolically-labeled uninfected host cell proteins were provided as an exogenous nutrient source to chlamydiae-infected cells, and uptake and subsequent labeling of chlamydiae suggested lysosomal degradation as a source of amino acids for the pathogen. Indeed, Bafilomycin A1 (BafA1, an inhibitor of the vacuolar H(+/ATPase that blocks lysosomal acidification and functions, impairs the growth of C. trachomatis and C. pneumoniae, and these effects are especially profound in C. pneumoniae. BafA1 induced the marked accumulation of material within the lysosomal lumen, which was due to the inhibition of proteolytic activities, and this response inhibits chlamydiae rather than changes in lysosomal acidification per se, as cathepsin inhibitors also inhibit the growth of chlamydiae. Finally, the addition of cycloheximide, an inhibitor of eukaryotic protein synthesis, compromises the ability of lysosomal inhibitors to block chlamydial growth, suggesting chlamydiae directly access free amino acids in the host cytosol as a preferred source of these nutrients. Thus, chlamydiae co-opt the functions of lysosomes to acquire essential amino acids.

  7. Eucommia ulmoides cortex, geniposide and aucubin regulate lipotoxicity through the inhibition of lysosomal BAX.

    Science.gov (United States)

    Lee, Geum-Hwa; Lee, Mi-Rin; Lee, Hwa-Young; Kim, Seung Hyun; Kim, Hye-Kyung; Kim, Hyung-Ryong; Chae, Han-Jung

    2014-01-01

    In this study we examined the inhibition of hepatic dyslipidemia by Eucommia ulmoides extract (EUE). Using a screening assay for BAX inhibition we determined that EUE regulates BAX-induced cell death. Among various cell death stimuli tested EUE regulated palmitate-induced cell death, which involves lysosomal BAX translocation. EUE rescued palmitate-induced inhibition of lysosomal V-ATPase, α-galactosidase, α-mannosidase, and acid phosphatase, and this effect was reversed by bafilomycin, a lysosomal V-ATPase inhibitor. The active components of EUE, aucubin and geniposide, showed similar inhibition of palmitate-induced cell death to that of EUE through enhancement of lysosome activity. Consistent with these in vitro findings, EUE inhibited the dyslipidemic condition in a high-fat diet animal model by regulating the lysosomal localization of BAX. This study demonstrates that EUE regulates lipotoxicity through a novel mechanism of enhanced lysosomal activity leading to the regulation of lysosomal BAX activation and cell death. Our findings further indicate that geniposide and aucubin, active components of EUE, may be therapeutic candidates for non-alcoholic fatty liver disease.

  8. Structure Dependence of Lysosomal Transit of Chitosan-Based Polyplexes for Gene Delivery.

    Science.gov (United States)

    Thibault, Marc; Lavertu, Marc; Astolfi, Mélina; Buschmann, Michael D

    2016-10-01

    Chitosan-based polyplexes are known to traffic through lysosomes for a relatively long time, independent of the degree of deacetylation (DDA) and the number average molecular weight (Mn) of the polymer, even though both of these parameters have profound effects on polyplex stability and transfection efficiency. A better understanding of the lysosomal barrier is paramount to the rational design of vectors capable of overcoming obstacles to transgene expression. The aim of the present study was to investigate if lysosomal transit affects chitosan-based polyplex transfection efficiency in a structure-dependent (DDA, Mn) manner. Toward this end, we analyzed the effects of intracellular trafficking modifying agents on transfection efficiency and intracellular vesicular trafficking of polyplexes with different structural properties and stabilities or nucleic acid binding affinity. The use of agents that modify endosome/lysosome acidification and transit processes by distinct mechanisms and their effect on cell viability, polyplex uptake, vesicular trafficking, and transfection efficiency revealed novel and strong chitosan structure-dependent consequences of lysosomal transit. Inhibiting lysosomal transit using chloroquine significantly increased the efficiency of unstable polyplexes, while having minimal effects for polyplexes with intermediate or high stability. In parallel, specifically inhibiting the acidification of vesicles abrogated transfection for all formulations, suggesting that vesicular acidification is essential to promote transfection, most probably by facilitating lysosomal escape. These results provide novel insights into the structure-performance relationship of chitosan-based gene delivery systems.

  9. Action of low-energy monochromatic coherent light on the stability of retinal lysosomes

    Science.gov (United States)

    Metelitsina, Irina P.; Leus, N. F.

    1995-05-01

    The data had been obtained during the experiment in vitro by irradiation of solubilized lysosomal enzymes, retinal homogenates and native lysosomes enabled us to conclude that the laser beam ((lambda) equals 632.8 nm, power density from 0.1 to 15.0 mWt/cm2) acts on the level of membranous structures of lysosomes. During irradiation of rabbits eyes in vitro with an unfocused laser beam (power density on the cornea aur face from 0.01 to 15.0 mWt/cm2 was shown, that low-energy, ranged from 0.01 to 1.0 mWt/cm2 promotes stabilization of lysosomal membranes. Irradiation with laser beam of 8.0 mWt/cm2 and more power induces destabilization of lysosomal membranes. We have also shown that vitamins A and E effecting membranotropic on lysosomes may be corrected by low-energy radiation of helium-neon laser. It is substantiated experimentally that the stabilizing effect of vitamin E may be intensified in case of the combined action of laser radiation on lysosomes. The labilizing effect of vitamin A on membranes of organelles, as was studied, may be weakened by application of laser radiation of low intensities.

  10. Lysosomal cholesterol accumulation: driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis.

    Science.gov (United States)

    Hendrikx, T; Walenbergh, S M A; Hofker, M H; Shiri-Sverdlov, R

    2014-05-01

    Many studies show an association between the accumulation of cholesterol inside lysosomes and the progression towards inflammatory disease states that are closely related to obesity. While in the past, the knowledge regarding lysosomal cholesterol accumulation was limited to its association with plaque severity during atherosclerosis, recently, a growing body of evidence indicates a causal link between lysosomal cholesterol accumulation and inflammation. These findings make lysosomal cholesterol accumulation an important target for intervention in metabolic diseases that are characterized by the presence of an inflammatory response. In this review, we aim to show the importance of cholesterol trapping inside lysosomes to the development of inflammation by focusing upon cardiovascular disease and non-alcoholic steatohepatitis (NASH) in particular. We summarize current data supporting the hypothesis that lysosomal cholesterol accumulation plays a key role in the development of inflammation during atherosclerosis and NASH. In addition, potential mechanisms by which disturbed lysosomal function can trigger the inflammatory response, the challenges in improving cholesterol trafficking in macrophages and recent successful research directions will be discussed.

  11. Ultrasound attenuation dependence on air compression or expansion processes

    NARCIS (Netherlands)

    Jakevicius, L.; Demcenko, A.; Mardosaite, R.

    2010-01-01

    In this work variation of ultrasonic attenuation coefficient is analyzed in terms of air compression or expansion processes. In closed spaces changing air volume, the ultrasound attenuation coefficient depends on thermodynamic processes which occur during the air volume change. Two limiting cases ar

  12. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease.

    Science.gov (United States)

    Magalhaes, Joana; Gegg, Matthew E; Migdalska-Richards, Anna; Doherty, Mary K; Whitfield, Phillip D; Schapira, Anthony H V

    2016-08-15

    Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD. © The Author 2016. Published by Oxford University Press.

  13. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner.

    Directory of Open Access Journals (Sweden)

    Christine Burkard

    2014-11-01

    Full Text Available Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs. Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV. Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion.

  14. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner.

    Science.gov (United States)

    Burkard, Christine; Verheije, Monique H; Wicht, Oliver; van Kasteren, Sander I; van Kuppeveld, Frank J; Haagmans, Bart L; Pelkmans, Lucas; Rottier, Peter J M; Bosch, Berend Jan; de Haan, Cornelis A M

    2014-11-01

    Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion.

  15. Combined effects of thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Izagirre, Urtzi; Errasti, Aitzpea; Bilbao, Eider; Múgica, María; Marigómez, Ionan, E-mail: ionan.marigomez@ehu.es

    2014-04-01

    Highlights: • Thermal stress and Cd caused lysosomal enlargement and membrane destabilisation. • hex, gusb and ctsl but not hsp70 were up-regulated at elevated temperature but down-regulated by Cd. • Thermal stress influenced lysosomal responses to Cd exposure. • The presence of Cd jeopardised responsiveness against thermal stress. - Abstract: In estuaries and coastal areas, intertidal organisms may be subject to thermal stress resulting from global warming, together with pollution. In the present study, the combined effects of thermal stress and exposure to Cd were investigated in the endo-lysosomal system of digestive cells in mussels, Mytilus galloprovincialis. Mussels were maintained for 24 h at 18 °C and 26 °C seawater temperature in absence and presence of 50 μg Cd/L seawater. Cadmium accumulation in digestive gland tissue, lysosomal structural changes and membrane stability were determined. Semi-quantitative PCR was applied to reveal the changes elicited by the different experimental conditions in hexosaminidase (hex), β-glucuronidase (gusb), cathepsin L (ctsl) and heat shock protein 70 (hsp70) gene transcription levels. Thermal stress provoked lysosomal enlargement whilst Cd-exposure led to fusion of lysosomes. Both thermal stress and Cd-exposure caused lysosomal membrane destabilisation. hex, gusb and ctsl genes but not hsp70 gene were transcriptionally up-regulated as a result of thermal stress. In contrast, all the studied genes were transcriptionally down-regulated in response to Cd-exposure. Cd bioaccumulation was comparable at 18 °C and 26 °C seawater temperatures but interactions between thermal stress and Cd-exposure were remarkable both in lysosomal biomarkers and in gene transcription. hex, gusb and ctsl genes, reacted to elevated temperature in absence of Cd but not in Cd-exposed mussels. Therefore, thermal stress resulting from global warming might influence the use and interpretation of lysosomal biomarkers in marine pollution

  16. Prolonged expression of a lysosomal enzyme in mouse liver after Sleeping Beauty transposon-mediated gene delivery: implications for non-viral gene therapy of mucopolysaccharidoses.

    Science.gov (United States)

    Aronovich, Elena L; Bell, Jason B; Belur, Lalitha R; Gunther, Roland; Koniar, Brenda; Erickson, David C C; Schachern, Patricia A; Matise, Ilze; McIvor, R Scott; Whitley, Chester B; Hackett, Perry B

    2007-05-01

    The Sleeping Beauty (SB) transposon system is a non-viral vector system that can integrate precise sequences into chromosomes. We evaluated the SB transposon system as a tool for gene therapy of mucopolysaccharidosis (MPS) types I and VII. We constructed SB transposon plasmids for high-level expression of human beta-glucuronidase (hGUSB) or alpha-L-iduronidase (hIDUA). Plasmids were delivered with and without SB transposase to mouse liver by rapid, high-volume tail-vein injection. We studied the duration of expressed therapeutic enzyme activity, transgene presence by PCR, lysosomal pathology by toluidine blue staining and cell-mediated immune response histologically and by immunohistochemical staining. Transgene frequency, distribution of transgene and enzyme expression in liver and the level of transgenic enzyme required for amelioration of lysosomal pathology were estimated in MPS I and VII mice. Without immunomodulation, initial GUSB and IDUA activities in plasma reached > 100-fold of wild-type (WT) levels but fell to background within 4 weeks post-injection. In immunomodulated transposon-treated MPS I mice plasma IDUA persisted for over 3 months at up to 100-fold WT activity in one-third of MPS I mice, which was sufficient to reverse lysosomal pathology in the liver and, partially, in distant organs. Histological and immunohistochemical examination of liver sections in IDUA transposon-treated WT mice revealed inflammation 10 days post-injection consisting predominantly of mononuclear cells, some of which were CD4- or CD8-positive. Our results demonstrate the feasibility of achieving prolonged expression of lysosomal enzymes in the liver and reversing MPS disease in adult mice with a single dose of therapeutic SB transposons. Copyright (c) 2007 John Wiley & Sons, Ltd.

  17. Composite asymptotic expansions

    CERN Document Server

    Fruchard, Augustin

    2013-01-01

    The purpose of these lecture notes is to develop a theory of asymptotic expansions for functions involving two variables, while at the same time using functions involving one variable and functions of the quotient of these two variables. Such composite asymptotic expansions (CAsEs) are particularly well-suited to describing solutions of singularly perturbed ordinary differential equations near turning points. CAsEs imply inner and outer expansions near turning points. Thus our approach is closely related to the method of matched asymptotic expansions. CAsEs offer two unique advantages, however. First, they provide uniform expansions near a turning point and away from it. Second, a Gevrey version of CAsEs is available and detailed in the lecture notes. Three problems are presented in which CAsEs are useful. The first application concerns canard solutions near a multiple turning point. The second application concerns so-called non-smooth or angular canard solutions. Finally an Ackerberg-O’Malley resonance pro...

  18. Lysosomal glycosphingolipid catabolism by acid ceramidase: formation of glycosphingoid bases during deficiency of glycosidases.

    Science.gov (United States)

    Ferraz, Maria J; Marques, André R A; Appelman, Monique D; Verhoek, Marri; Strijland, Anneke; Mirzaian, Mina; Scheij, Saskia; Ouairy, Cécile M; Lahav, Daniel; Wisse, Patrick; Overkleeft, Herman S; Boot, Rolf G; Aerts, Johannes M

    2016-03-01

    Glycosphingoid bases are elevated in inherited lysosomal storage disorders with deficient activity of glycosphingolipid catabolizing glycosidases. We investigated the molecular basis of the formation of glucosylsphingosine and globotriaosylsphingosine during deficiency of glucocerebrosidase (Gaucher disease) and α-galactosidase A (Fabry disease). Independent genetic and pharmacological evidence is presented pointing to an active role of acid ceramidase in both processes through deacylation of lysosomal glycosphingolipids. The potential pathophysiological relevance of elevated glycosphingoid bases generated through this alternative metabolism in patients suffering from lysosomal glycosidase defects is discussed.

  19. Novel Foraminal Expansion Technique

    Science.gov (United States)

    Senturk, Salim; Ciplak, Mert; Oktenoglu, Tunc; Sasani, Mehdi; Egemen, Emrah; Yaman, Onur; Suzer, Tuncer

    2016-01-01

    The technique we describe was developed for cervical foraminal stenosis for cases in which a keyhole foraminotomy would not be effective. Many cervical stenosis cases are so severe that keyhole foraminotomy is not successful. However, the technique outlined in this study provides adequate enlargement of an entire cervical foraminal diameter. This study reports on a novel foraminal expansion technique. Linear drilling was performed in the middle of the facet joint. A small bone graft was placed between the divided lateral masses after distraction. A lateral mass stabilization was performed with screws and rods following the expansion procedure. A cervical foramen was linearly drilled medially to laterally, then expanded with small bone grafts, and a lateral mass instrumentation was added with surgery. The patient was well after the surgery. The novel foraminal expansion is an effective surgical method for severe foraminal stenosis. PMID:27559460

  20. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation.

    Science.gov (United States)

    Fielding, Ceri A; Aicheler, Rebecca; Stanton, Richard J; Wang, Eddie C Y; Han, Song; Seirafian, Sepehr; Davies, James; McSharry, Brian P; Weekes, Michael P; Antrobus, P Robin; Prod'homme, Virginie; Blanchet, Fabien P; Sugrue, Daniel; Cuff, Simone; Roberts, Dawn; Davison, Andrew J; Lehner, Paul J; Wilkinson, Gavin W G; Tomasec, Peter

    2014-05-01

    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1-6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA

  1. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation.

    Directory of Open Access Journals (Sweden)

    Ceri A Fielding

    2014-05-01

    Full Text Available NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC A andB, and UL16-binding proteins (ULBP1-6 induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV have aided both the identification and characterization of NKG2D ligands (NKG2DLs. HCMV immediate early (IE gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US

  2. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation.

    Directory of Open Access Journals (Sweden)

    Ceri A Fielding

    2014-05-01

    Full Text Available NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC A andB, and UL16-binding proteins (ULBP1-6 induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV have aided both the identification and characterization of NKG2D ligands (NKG2DLs. HCMV immediate early (IE gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US

  3. Principles of Thermal Expansion in Feldspars

    Science.gov (United States)

    Hovis, Guy; Medford, Aaron; Conlon, Maricate; Tether, Allison; Romanoski, Anthony

    2010-05-01

    Following the recent thermal expansion work of Hovis et al. (1) on AlSi3 feldspars, we have investigated the thermal expansion of plagioclase, Ba-K, and Ca-K feldspar crystalline solutions. X-ray powder diffraction data were collected between room temperature and 925 °C on six natural plagioclase specimens ranging in composition from anorthite to oligoclase, the K-exchanged equivalents of these plagioclase specimens, and five synthetic Ba-K feldspars with compositions ranging from 25 to 99 mol % BaAl2Si2O8. The resulting thermal expansion coefficients (α) for volume have been combined with earlier results for end-member Na- and K-feldspars (2,3). Unlike AlSi3 feldspars, Al2Si2 feldspars, including anorthite and celsian from the present study plus Sr- and Pb-feldspar from other workers (4,5), show essentially constant and very limited thermal expansion, regardless of divalent cation size. In the context of structures where the Lowenstein rule (6) requires Al and Si to alternate among tetrahedra, the proximity of bridging Al-O-Si oxygen ions to divalent neighbors (ranging from 0 to 2) produces short Ca-O (or Ba-O) bonds (7,8) that apparently are the result of local charge-balance requirements (9). Gibbs et al. (10) suggest that short bonds such as these have a partially covalent character. This in turn stiffens the structure. Thus, for feldspar series with coupled substitution the change away from a purely divalent M-site occupant gives the substituting (less strongly bonded) monovalent cations increasingly greater influence on thermal expansion. Overall, then, thermal expansion in the feldspar system is well represented on a plot of α against room-temperature volume, where one sees a quadrilateral bounded by data for (A) AlSi3 feldspars whose expansion behavior is controlled largely by the size of the monovalent alkali-site occupant, (B) Al2Si2 feldspars whose expansion is uniformly limited by partially-covalent bonds between divalent M-site occupants and

  4. Steppe expansion in Patagonia?

    Science.gov (United States)

    Veblen, Thomas T.; Markgraf, Vera

    1988-11-01

    Westward expansion of the Patagonian steppe and retrocession of Andean forests due to increasing aridity over the past one or two millennia has been a persistent theme in the ecological and paleoecological literature for at least half a century. New evidence from pollen profiles, tree-ring analysis, vegetation structure, and photographic and documentary historical sources does not show the expansion of the steppe. Instead, over the past century trees have invaded the steppe as a consequence mainly of human-induced changes in the fire regime, and trees have regenerated in forest areas that were heavily burnt at the onset of European colonization.

  5. Uniform gradient expansions

    Directory of Open Access Journals (Sweden)

    Massimo Giovannini

    2015-06-01

    Full Text Available Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  6. Uniform gradient expansions

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, Massimo, E-mail: massimo.giovannini@cern.ch [Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland); INFN, Section of Milan-Bicocca, 20126 Milan (Italy)

    2015-06-30

    Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  7. Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis

    Directory of Open Access Journals (Sweden)

    Fares Hanna

    2010-06-01

    Full Text Available Abstract Background CUP-5 is a Transient Receptor Potential protein in C. elegans that is the orthologue of mammalian TRPML1. Loss of TRPML1 results in the lysosomal storage disorder Mucolipidosis type IV. Loss of CUP-5 results in embryonic lethality and the accumulation of enlarged yolk granules in developing intestinal cells. The embryonic lethality of cup-5 mutants is rescued by mutations in mrp-4, which is required for gut granule differentiation. Gut granules are intestine-specific lysosome-related organelles that accumulate birefringent material. This link between CUP-5 and gut granules led us to determine the roles of CUP-5 in lysosome and gut granule biogenesis in developing intestinal cells. Results We show that CUP-5 protein localizes to lysosomes, but not to gut granules, in developing intestinal cells. Loss of CUP-5 results in defects in endo-lysosomal transport in developing intestinal cells of C. elegans embryos. This ultimately leads to the appearance of enlarged terminal vacuoles that show defective lysosomal degradation and that have lysosomal and endosomal markers. In contrast, gut granule biogenesis is normal in the absence of CUP-5. Furthermore, loss of CUP-5 does not result in inappropriate fusion or mixing of content between lysosomes and gut granules. Conclusions Using an in vivo model of MLIV, we show that there is a defect in lysosomal transport/biogenesis that is earlier than the presumed function of TRPML1 in terminal lysosomes. Our results indicate that CUP-5 is required for the biogenesis of lysosomes but not of gut granules. Thus, cellular phenotypes in Mucolipidosis type IV are likely not due to defects in lysosome-related organelle biogenesis, but due to progressive defects in lysosomal transport that lead to severe lysosomal dysfunction.

  8. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis : LAMP-2 deficient mice develop pancreatitis

    NARCIS (Netherlands)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-01-01

    BACKGROUND & AIMS: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated memb

  9. Lysosome dysfunction enhances oxidative stress-induced apoptosis through ubiquitinated protein accumulation in Hela cells.

    Science.gov (United States)

    Yu, Chunyan; Huang, Xiaowei; Xu, Ye; Li, Hongyan; Su, Jing; Zhong, Jiateng; Kang, Jinsong; Liu, Yuhe; Sun, Liankun

    2013-01-01

    The role of lysosomal system in oxidative stress-induced apoptosis in cancer cells is not fully understood. Menadione is frequently used as oxidative stress model. It is indicated that menadione could induce autophagy in Hela cells. In the present study, we examined whether the lysosomal inhibitor, ammonium chloride (NH(4)Cl) could prevent the autophagy flux by inhibiting the fusion of autophagosomes with lysosomes and enhance apoptosis induced by menadione via mitochondrial pathway. The results demonstrated generation and accumulation of reactive oxygen species and increased levels of ubiquitinated proteins and GRP78 in cells treated with both menadione and NH(4)Cl. Our data indicates that lysosomal system through autophagy plays an important role in preventing menadione-induced apoptosis in Hela cells by clearing misfolded proteins, which alleviates endoplasmic reticulum stress.

  10. Lysosomal acid lipase: At the crossroads of normal and atherogenic cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Joshua A Dubland

    2015-02-01

    Full Text Available Unregulated cellular uptake of apolipoprotein B-containing lipoproteins in the arterial intima leads to the formation of foam cells in atherosclerosis. Lysosomal acid lipase (LAL plays a crucial role in both lipoprotein lipid catabolism and excess lipid accumulation as it is the primary enzyme that hydrolyzes cholesteryl esters derived from both low density lipoprotein (LDL and modified forms of LDL. Evidence suggests that as atherosclerosis progresses, accumulation of excess free cholesterol in lysosomes leads to impairment of LAL activity, resulting in accumulation of cholesteryl esters in the lysosome as well as the cytosol in foam cells. Impaired metabolism and release of cholesterol from lysosomes can lead to downstream defects in ATP-binding cassette transporter A1 regulation, needed to offload excess cholesterol from plaque foam cells. This review focuses on the role LAL plays in normal cholesterol metabolism and how the associated changes in its enzymatic activity may ultimately contribute to atherosclerosis progression.

  11. Enantioselective effects of methamidophos on the coelomocytes lysosomal membrane stability of Eisenia fetida.

    Science.gov (United States)

    Chen, Linhua; Lu, Xianting; Ma, Yun

    2012-12-01

    Many of organophosphorous insecticides are chiral compounds. In this study, the enantioselective effects of organophosphate insecticide methamidophos on the coelomocytes lysosomal membrane stability of earthworm Eisenia fetida were studied: (1) The enantiomers of methamidophos were absolutely separated by high-performance liquid chromatography with a commercial chiral column; (2) The neutral red retention assay was used to judge the lysosomal membrane stability. The results showed that with the concentration increasing, lysosomal membranes have been significantly destroyed by individual stereoisomers and racemate of methamidophos. The neutral red retention times were significantly descended from 76.88 to 29.78 min. Both (+)- and (-)-methamidophos showed more prone to destroy the integrity of the lysosomal membrane than the racemate. However, the different effect between stereoisomers is slight.

  12. uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV

    DEFF Research Database (Denmark)

    Kjøller, Lars; Engelholm, Lars H; Høyer-Hansen, Maria

    2004-01-01

    transmembrane glycoprotein urokinase plasminogen activator receptor-associated protein (uPARAP/endo180) directs collagen IV for lysosomal delivery and degradation. In wild-type fibroblasts, fluorescently labeled collagen IV was first internalized into vesicular structures with diffuse fluorescence eventually...... appearing uniformly within the wild-type cells after longer incubation times. In these cells, some collagen-containing vesicles were identified as lysosomes by staining for LAMP-1. In contrast, collagen IV remained extracellular and associated with fiber-like structures on uPARAP/endo180-deficient...... fibroblasts. Blocking lysosomal cysteine proteases with the inhibitor E64d resulted in strong accumulation of collagen IV in lysosomes in wild-type cells, but only very weak intracellular fluorescence accumulation in uPARAP/endo180-deficient fibroblasts. We conclude that uPARAP/endo180 is critical...

  13. High resolution crystal structure of human β-glucuronidase reveals structural basis of lysosome targeting

    National Research Council Canada - National Science Library

    Hassan, Md Imtaiyaz; Waheed, Abdul; Grubb, Jeffery H; Klei, Herbert E; Korolev, Sergey; Sly, William S

    2013-01-01

    ...). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases...

  14. High Resolution Crystal Structure of Human [beta]-Glucuronidase Reveals Structural Basis of Lysosome Targeting

    National Research Council Canada - National Science Library

    Hassan, Md; Waheed, Abdul; Grubb, Jeffery; Klei, Herbert; Korolev, Sergey; Sly, William

    2013-01-01

    ...). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases...

  15. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Christensen, Karina; Aaberg-Jessen, Charlotte

    Targeting lysosomes is a novel approach in cancer therapy providing a possible way of killing the otherwise apoptosis-resistant cancer cells. Recent research has thus shown that lysosome targeting compounds induce cell death in a cervix cancer cell line. Tumor stem cells in glioblastomas have...... recently been suggested to possess innate resistance mechanisms against radiation and chemotherapy possibly explaining the high level of therapeutic resistance of these tumors. Since the presence and distribution of lysosomes in tumor cells and especially in tumor stem cells in astrocytomas is unknown......, the aim of this study was to investigate the immunohistochemical expression of LAMP-1, a membrane bound protein in lysosomes, in formalin fixed paraffin embedded tumor tissue from 23 diffuse astrocytomas, 17 anaplastic astrocytomas and 72 glioblastomas. The LAMP-1 expression was scored and compared...

  16. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis : LAMP-2 deficient mice develop pancreatitis

    NARCIS (Netherlands)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-01-01

    BACKGROUND & AIMS: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated

  17. Emerging therapies for neurodegenerative lysosomal storage disorders - from concept to reality.

    Science.gov (United States)

    Hemsley, Kim M; Hopwood, John J

    2011-10-01

    Lysosomal storage disorders are inherited metabolic diseases in which a mutation in a gene encoding a lysosomal enzyme or lysosome-related protein results in the intra-cellular accumulation of substrate and reduced cell/tissue function. Few patients with neurodegenerative lysosomal storage disorders have access to safe and effective treatments although many therapeutic strategies have been or are presently being studied in vivo thanks to the availability of a large number of animal models. This review will describe the comparative advancement of a variety of therapeutic strategies through the 'research pipeline'. Our goal is to provide information for clinicians, researchers and patients/families alike on the leading therapeutic candidates at this point in time, and also to provide information on emerging approaches that may provide a safe and effective treatment in the future. The length of the pipeline represents the significant and sustained effort required to move a novel concept from the laboratory into the clinic.

  18. Magnesium Modulates Doxorubicin Activity through Drug Lysosomal Sequestration and Trafficking.

    Science.gov (United States)

    Trapani, Valentina; Luongo, Francesca; Arduini, Daniela; Wolf, Federica I

    2016-03-21

    Magnesium is directly involved in the control of cell growth and survival, but its role in cancer biology and therapy is multifaceted; in particular, it is highly controversial whether magnesium levels can affect therapy outcomes. Here we investigated whether magnesium availability can modulate cellular responses to the widely used chemotherapeutic doxorubicin. We used an in vitro model consisting of mammary epithelial HC11 cells and found that high magnesium availability was correlated with diminished sensitivity both in cells chronically adapted to high magnesium concentrations and in acutely magnesium-supplemented cells. This decrease in sensitivity resulted from reduced intracellular doxorubicin accumulation in the face of a similar drug uptake rate. We observed that high-magnesium conditions caused a decrease in intracellular drug retention by altering drug lysosomal sequestration and trafficking. In our model, magnesium supplementation correspondingly modulated expression of the TRPM7 channel, which is known to control cytoskeletal organization and dynamics and may be involved in the proposed mechanism. Our findings suggest that magnesium supplementation in hypomagnesemic cancer patients may hinder response to therapy.

  19. Less Is More: Substrate Reduction Therapy for Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Maria Francisca Coutinho

    2016-07-01

    Full Text Available Lysosomal storage diseases (LSDs are a group of rare, life-threatening genetic disorders, usually caused by a dysfunction in one of the many enzymes responsible for intralysosomal digestion. Even though no cure is available for any LSD, a few treatment strategies do exist. Traditionally, efforts have been mainly targeting the functional loss of the enzyme, by injection of a recombinant formulation, in a process called enzyme replacement therapy (ERT, with no impact on neuropathology. This ineffectiveness, together with its high cost and lifelong dependence is amongst the main reasons why additional therapeutic approaches are being (and have to be investigated: chaperone therapy; gene enhancement; gene therapy; and, alternatively, substrate reduction therapy (SRT, whose aim is to prevent storage not by correcting the original enzymatic defect but, instead, by decreasing the levels of biosynthesis of the accumulating substrate(s. Here we review the concept of substrate reduction, highlighting the major breakthroughs in the field and discussing the future of SRT, not only as a monotherapy but also, especially, as complementary approach for LSDs.

  20. Expansion of Pannes

    Science.gov (United States)

    For the Long Island, New Jersey, and southern New England region, one facet of marsh drowning as a result of accelerated sea level rise is the expansion of salt marsh ponds and pannes. Over the past century, marsh ponds and pannes have formed and expanded in areas of poor drainag...

  1. Sieve in expansion

    CERN Document Server

    Kowalski, Emmanuel

    2010-01-01

    This is a survey report for the Bourbaki Seminar (Exp. no. 1028, November 2010) concerning sieve and expanders, in particular the recent works of Bourgain, Gamburd and Sarnak introducing "sieve in orbits", and the related developments concerning expansion properties of Cayley graphs of finite linear groups.

  2. AUTO-EXPANSIVE FLOW

    Science.gov (United States)

    Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...

  3. Lysosomal Changes in Renal Proximal Tubular Epithelial Cells of Male Sprague Dawley Rats Following Decalin Exposure

    Science.gov (United States)

    1990-01-01

    decalin-treated animal. Note large, pale, rcd-staining lysosome (-). An exfoliated epithelial cell can iu- seen in the tubular lumen containing large...photomicrograph contains an exfoliated epithelial cell (-) with enlarged, intact lysosomes. The tubule on the left half of the photomicrograph contains an...metabolism of proteins. In: Cytology , GH Bourne and JF Danielli (eds). Academ- The Kidney: Physiology and Pathophysiology, DW ic Press, NY, pp. 251-300. - ~- i :- d .L n .- 2

  4. The BH3 Mimetic Obatoclax Accumulates in Lysosomes and Causes Their Alkalinization.

    Directory of Open Access Journals (Sweden)

    Vasileios A Stamelos

    Full Text Available Obatoclax belongs to a class of compounds known as BH3 mimetics which function as antagonists of Bcl-2 family apoptosis regulators. It has undergone extensive preclinical and clinical evaluation as a cancer therapeutic. Despite this, it is clear that obatoclax has additional pharmacological effects that contribute to its cytotoxic activity. It has been claimed that obatoclax, either alone or in combination with other molecularly targeted therapeutics, induces an autophagic form of cell death. In addition, obatoclax has been shown to inhibit lysosomal function, but the mechanism of this has not been elucidated. We have evaluated the mechanism of action of obatoclax in eight ovarian cancer cell lines. Consistent with its function as a BH3 mimetic, obatoclax induced apoptosis in three cell lines. However, in the remaining cell lines another form of cell death was evident because caspase activation and PARP cleavage were not observed. Obatoclax also failed to show synergy with carboplatin and paclitaxel, chemotherapeutic agents which we have previously shown to be synergistic with authentic Bcl-2 family antagonists. Obatoclax induced a profound accumulation of LC-3 but knockdown of Atg-5 or beclin had only minor effects on the activity of obatoclax in cell growth assays suggesting that the inhibition of lysosomal function rather than stimulation of autophagy may play a more prominent role in these cells. To evaluate how obatoclax inhibits lysosomal function, confocal microscopy studies were conducted which demonstrated that obatoclax, which contains two basic pyrrole groups, accumulates in lysosomes. Studies using pH sensitive dyes demonstrated that obatoclax induced lysosomal alkalinization. Furthermore, obatoclax was synergistic in cell growth/survival assays with bafilomycin and chloroquine, two other drugs which cause lysosomal alkalinization. These studies explain, for the first time, how obatoclax inhibits lysosomal function and suggest that

  5. Streptococcus oralis Induces Lysosomal Impairment of Macrophages via Bacterial Hydrogen Peroxide.

    Science.gov (United States)

    Okahashi, Nobuo; Nakata, Masanobu; Kuwata, Hirotaka; Kawabata, Shigetada

    2016-07-01

    Streptococcus oralis, an oral commensal, belongs to the mitis group of streptococci and occasionally causes opportunistic infections, such as bacterial endocarditis and bacteremia. Recently, we found that the hydrogen peroxide (H2O2) produced by S. oralis is sufficient to kill human monocytes and epithelial cells, implying that streptococcal H2O2 is a cytotoxin. In the present study, we investigated whether streptococcal H2O2 impacts lysosomes, organelles of the intracellular digestive system, in relation to cell death. S. oralis infection induced the death of RAW 264 macrophages in an H2O2-dependent manner, which was exemplified by the fact that exogenous H2O2 also induced cell death. Infection with either a mutant lacking spxB, which encodes pyruvate oxidase responsible for H2O2 production, or Streptococcus mutans, which does not produce H2O2, showed less cytotoxicity. Visualization of lysosomes with LysoTracker revealed lysosome deacidification after infection with S. oralis or exposure to H2O2, which was corroborated by acridine orange staining. Similarly, fluorescent labeling of lysosome-associated membrane protein-1 gradually disappeared during infection with S. oralis or exposure to H2O2 The deacidification and the following induction of cell death were inhibited by chelating iron in lysosomes. Moreover, fluorescent staining of cathepsin B indicated lysosomal destruction. However, treatment of infected cells with a specific inhibitor of cathepsin B had negligible effects on cell death; instead, it suppressed the detachment of dead cells from the culture plates. These results suggest that streptococcal H2O2 induces cell death with lysosomal destruction and then the released lysosomal cathepsins contribute to the detachment of the dead cells.

  6. Reduction of mutant huntingtin accumulation and toxicity by lysosomal cathepsins D and B in neurons

    OpenAIRE

    Ouyang Xiaosen; Liang Qiuli; Schneider Lonnie; Zhang Jianhua

    2011-01-01

    Abstract Background Huntington's disease is caused by aggregation of mutant huntingtin (mHtt) protein containing more than a 36 polyQ repeat. Upregulation of macroautophagy was suggested as a neuroprotective strategy to degrade mutant huntingtin. However, macroautophagy initiation has been shown to be highly efficient in neurons whereas lysosomal activities are rate limiting. The role of the lysosomal and other proteases in Huntington is not clear. Some studies suggest that certain protease a...

  7. Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity

    OpenAIRE

    Fröhlich Eleonore; Meindl Claudia; Roblegg Eva; Ebner Birgit; Absenger Markus; Pieber Thomas R

    2012-01-01

    Abstract Background Data from environmental exposure to nanoparticles (NPs) suggest that chronic exposure may increase the incidence of lung, cardiovascular and neurodegenerative diseases. Impairment of cell function by intracellular accumulation of NPs is also suspected. Many types of NPs have been detected in the endosomal-lysosomal system and, upon repeated exposure, alterations of the endosomal-lysosomal system may occur. To identify such effects we compared the effect of carboxyl polysty...

  8. Lysosomal responses to heat-shock of seasonal temperature extremes in Cd-exposed mussels.

    Science.gov (United States)

    Múgica, M; Izagirre, U; Marigómez, I

    2015-07-01

    The present study was aimed at determining the effect of temperature extremes on lysosomal biomarkers in mussels exposed to a model toxic pollutant (Cd) at different seasons. For this purpose, temperature was elevated 10°C (from 12°C to 22°C in winter and from 18°C to 28°C in summer) for a period of 6h (heat-shock) in control and Cd-exposed mussels, and then returned back to initial one. Lysosomal membrane stability and lysosomal structural changes in digestive gland were investigated. In winter, heat-shock reduced the labilisation period (LP) of the lysosomal membrane, especially in Cd-exposed mussels, and provoked transient lysosomal enlargement. LP values recovered after the heat-shock cessation but lysosomal enlargement prevailed in both experimental groups. In summer, heat-shock induced remarkable reduction in LP and lysosomal enlargement (more markedly in Cd-exposed mussels), which recovered within 3 days. Besides, whilst heat-shock effects on LP were practically identical for Cd-exposed mussels in winter and summer, the effects were longer-lasting in summer than in winter for control mussels. Thus, lysosomal responsiveness after heat-shock was higher in summer than in winter but recovery was faster as well, and therefore the consequences of the heat shock seem to be more decisive in winter. In contrast, inter-season differences were attenuated in the presence of Cd. Consequently, mussels seem to be better prepared in summer than in winter to stand short periods of abrupt temperature change; this is, however, compromised when mussels are exposed to pollutants such as Cd.

  9. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes

    DEFF Research Database (Denmark)

    Grandal, Michael V; Zandi, Roza; Pedersen, Mikkel W

    2007-01-01

    . Moreover, internalized EGFRvIII is recycled rather than delivered to lysosomes. EGFRvIII binds the ubiquitin ligase c-Cbl via Grb2, whereas binding via phosphorylated tyrosine residue 1045 seems to be limited. Despite c-Cbl binding, the receptor fails to become effectively ubiquitinylated. Thus, our...... results suggest that the long lifetime of EGFRvIII is caused by inefficient internalization and impaired sorting to lysosomes due to lack of effective ubiquitinylation....

  10. Observation of intracellular interactions between DNA origami and lysosomes by the fluorescence localization method.

    Science.gov (United States)

    Fu, Meifang; Dai, Luru; Jiang, Qiao; Tang, Yunqing; Zhang, Xiaoming; Ding, Baoquan; Li, Junbai

    2016-07-28

    We obtained the fluorescence localization images of tube DNA origami nanostructures in NIH 3T3 cells for the first time. The fluorescence localization images of tube DNA origami nanostructures and TIRF images of lysosomes were combined and they revealed the detailed interactions between the two structures. Quantitative analysis illustrated that the tube origami can be captured as well as degraded by lysosomes with time.

  11. Eps8 is recruited to lysosomes and subjected to chaperone-mediated autophagy in cancer cells.

    Science.gov (United States)

    Welsch, Thilo; Younsi, Alexander; Disanza, Andrea; Rodriguez, Jose Antonio; Cuervo, Ana Maria; Scita, Giorgio; Schmidt, Jan

    2010-07-15

    Eps8 controls actin dynamics directly through its barbed end capping and actin-bundling activity, and indirectly by regulating Rac-activation when engaged into a trimeric complex with Eps8-Abi1-Sos1. Recently, Eps8 has been associated with promotion of various solid malignancies, but neither its mechanisms of action nor its regulation in cancer cells have been elucidated. Here, we report a novel association of Eps8 with the late endosomal/lysosomal compartment, which is independent from actin polymerization and specifically occurs in cancer cells. Endogenous Eps8 localized to large vesicular lysosomal structures in metastatic pancreatic cancer cell lines, such as AsPC-1 and Capan-1 that display high Eps8 levels. Additionally, ectopic expression of Eps8 increased the size of lysosomes. Structure-function analysis revealed that the region encompassing the amino acids 184-535 of Eps8 was sufficient to mediate lysosomal recruitment. Notably, this fragment harbors two KFERQ-like motifs required for chaperone-mediated autophagy (CMA). Furthermore, Eps8 co-immunoprecipitated with Hsc70 and LAMP-2, which are key elements for the CMA degradative pathway. Consistently, in vitro, a significant fraction of Eps8 bound to (11.9+/-5.1%) and was incorporated into (5.3+/-6.5%) lysosomes. Additionally, Eps8 binding to lysosomes was competed by other known CMA-substrates. Fluorescence recovery after photobleaching revealed that Eps8 recruitment to the lysosomal membrane was highly dynamic. Collectively, these results indicate that Eps8 in certain human cancer cells specifically localizes to lysosomes, and is directed to CMA. These results open a new field for the investigation of how Eps8 is regulated and contributes to tumor promotion in human cancers.

  12. Interaction of arylsulfatase A with UDP-N-acetylglucosamine:Lysosomal enzyme-N-acetylglucosamine-1-phosphotransferase.

    Science.gov (United States)

    Schierau, A; Dietz, F; Lange, H; Schestag, F; Parastar, A; Gieselmann, V

    1999-02-05

    The critical step in lysosomal targeting of soluble lysosomal enzymes is the recognition by an UDP-N-acetylglucosamine:lysosomal enzyme-N-acetylglucosamine-1-phosphotransferase. The structure of the determinant common to all lysosomal enzymes for proper recognition by the phosphotransferase is not completely understood. Our current knowledge is largely based on the introduction of targeted amino acid substitutions into lysosomal enzymes and analysis of their effects on phosphotransferase recognition. We have investigated the effect of eight anti-arylsulfatase A monoclonal antibodies on the interaction of arylsulfatase A with the lysosomal enzyme phosphotransferase in vitro. We also show that a lysine-rich surface area of arylsulfatases A and B is essential for proper recognition by the phosphotransferase. Monoclonal antibodies bind to at least six different epitopes at different locations on the surface of arylsulfatase A. All antibodies bind outside the lysine-rich recognition area, but nevertheless Fab fragments of these antibodies prevent interaction of arylsulfatase A with the phosphotransferase. Our data support a model in which binding of arylsulfatase A to the phosphotransferase is not restricted to a limited surface area but involves the simultaneous recognition of large parts of arylsulfatase A.

  13. Cross-talk between TRPML1 channel, lipids and lysosomal storage diseases.

    Science.gov (United States)

    Weiss, Norbert

    2012-03-01

    Described by the Belgian cytologist Christian De Duve in 1949,(1) lysosomes (from the Greek "digestive bodies") are ubiquitous specialized intracellular organelles that ensure the degradation/recycling of macromolecules (proteins, lipids, membranes) through the activity of specific enzymes (i.e., acid hydrolases). They receive their substrates through different internalization pathways (i.e., endocytosis, phagocytosis and autophagy) and are involved in a wide range of physiological functions from cell death and signaling to cholesterol homeostasis and plasma membrane repair.(2) In Mammals, 50 soluble lysosomal hydrolases have been described, each targeting specific substrates. They are confined in the lumen of the lysosome and require an optimum pH (i.e., pH 4.5) to work. This acidic pH compared with the slightly alkaline pH of the cytosol (i.e., ~pH 7.2) is maintained by the activity of integral lysosomal membrane proteins (LMPs, that represent the second class of lysosomal proteins), including the V-type proton (H(+))-ATPase(3) and the chloride ion channel CLC7(4) that pumps protons from the cytosol across the lysosomal membrane.

  14. TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation

    Science.gov (United States)

    Jinn, Sarah; Drolet, Robert E.; Cramer, Paige E.; Wong, Andus Hon-Kit; Toolan, Dawn M.; Gretzula, Cheryl A.; Voleti, Bhavya; Vassileva, Galya; Disa, Jyoti; Tadin-Strapps, Marija; Stone, David J.

    2017-01-01

    Parkinson disease (PD) is a neurodegenerative disorder pathologically characterized by nigrostriatal dopamine neuron loss and the postmortem presence of Lewy bodies, depositions of insoluble α-synuclein, and other proteins that likely contribute to cellular toxicity and death during the disease. Genetic and biochemical studies have implicated impaired lysosomal and mitochondrial function in the pathogenesis of PD. Transmembrane protein 175 (TMEM175), the lysosomal K+ channel, is centered under a major genome-wide association studies peak for PD, making it a potential candidate risk factor for the disease. To address the possibility that variation in TMEM175 could play a role in PD pathogenesis, TMEM175 function was investigated in a neuronal model system. Studies confirmed that TMEM175 deficiency results in unstable lysosomal pH, which led to decreased lysosomal catalytic activity, decreased glucocerebrosidase activity, impaired autophagosome clearance by the lysosome, and decreased mitochondrial respiration. Moreover, TMEM175 deficiency in rat primary neurons resulted in increased susceptibility to exogenous α-synuclein fibrils. Following α-synuclein fibril treatment, neurons deficient in TMEM175 were found to have increased phosphorylated and detergent-insoluble α-synuclein deposits. Taken together, data from these studies suggest that TMEM175 plays a direct and critical role in lysosomal and mitochondrial function and PD pathogenesis and highlight this ion channel as a potential therapeutic target for treating PD. PMID:28193887

  15. Reduction of mutant huntingtin accumulation and toxicity by lysosomal cathepsins D and B in neurons

    Directory of Open Access Journals (Sweden)

    Ouyang Xiaosen

    2011-06-01

    Full Text Available Abstract Background Huntington's disease is caused by aggregation of mutant huntingtin (mHtt protein containing more than a 36 polyQ repeat. Upregulation of macroautophagy was suggested as a neuroprotective strategy to degrade mutant huntingtin. However, macroautophagy initiation has been shown to be highly efficient in neurons whereas lysosomal activities are rate limiting. The role of the lysosomal and other proteases in Huntington is not clear. Some studies suggest that certain protease activities may contribute to toxicity whereas others are consistent with protection. These discrepancies may be due to a number of mechanisms including distinct effects of the specific intermediate digestion products of mutant huntingtin generated by different proteases. These observations suggested a critical need to investigate the consequence of upregulation of individual lysosomal enzyme in mutant huntingtin accumulation and toxicity. Results In this study, we used molecular approaches to enhance lysosomal protease activities and examined their effects on mutant huntingtin level and toxicity. We found that enhanced expression of lysosomal cathepsins D and B resulted in their increased enzymatic activities and reduced both full-length and fragmented huntingtin in transfected HEK cells. Furthermore, enhanced expression of cathepsin D or B protected against mutant huntingtin toxicity in primary neurons, and their neuroprotection is dependent on macroautophagy. Conclusions These observations demonstrate a neuroprotective effect of enhancing lysosomal cathepsins in reducing mutant huntingtin level and toxicity in transfected cells. They highlight the potential importance of neuroprotection mediated by cathepsin D or B through macroautophagy.

  16. Para-toluenesulfonamide induces tongue squamous cell carcinoma cell death through disturbing lysosomal stability.

    Science.gov (United States)

    Liu, Zhe; Liang, Chenyuan; Zhang, Zhuoyuan; Pan, Jian; Xia, Hui; Zhong, Nanshan; Li, Longjiang

    2015-11-01

    Para-toluenesulfonamide (PTS) has been implicated with anticancer effects against a variety of tumors. In the present study, we investigated the inhibitory effects of PTS on tongue squamous cell carcinoma (Tca-8113) and explored the lysosomal and mitochondrial changes after PTS treatment in vitro. High-performance liquid chromatography showed that PTS selectively accumulated in Tca-8113 cells with a relatively low concentration in normal fibroblasts. Next, the effects of PTS on cell viability, invasion, and cell death were determined. PTS significantly inhibited Tca-8113 cells' viability and invasive ability with increased cancer cell death. Flow cytometric analysis and the lactate dehydrogenase release assay showed that PTS induced cancer cell death by activating apoptosis and necrosis simultaneously. Morphological changes, such as cellular shrinkage, nuclear condensation as well as formation of apoptotic body and secondary lysosomes, were observed, indicating that PTS might induce cell death through disturbing lysosomal stability. Lysosomal integrity assay and western blot showed that PTS increased lysosomal membrane permeabilization associated with activation of lysosomal cathepsin B. Finally, PTS was shown to inhibit ATP biosynthesis and induce the release of mitochondrial cytochrome c. Therefore, our findings provide a novel insight into the use of PTS in cancer therapy.

  17. Lysosomal interaction of Akt with Phafin2: a critical step in the induction of autophagy.

    Directory of Open Access Journals (Sweden)

    Mami Matsuda-Lennikov

    Full Text Available Autophagy is an evolutionarily conserved mechanism for the gross disposal of intracellular proteins in mammalian cells and dysfunction in this pathway has been associated with human disease. Although the serine threonine kinase Akt is suggested to play a role in this process, little is known about the molecular mechanisms by which Akt induces autophagy. Using a yeast two-hybrid screen, Phafin2 (EAPF or PLEKHF2, a lysosomal protein with a unique structure of N-terminal PH (pleckstrin homology domain and C-terminal FYVE (Fab 1, YOTB, Vac 1, and EEA1 domain was found to interact with Akt. A sucrose gradient fractionation experiment revealed that both Akt and Phafin2 co-existed in the same lysosome enriched fraction after autophagy induction. Confocal microscopic analysis and BiFC analysis demonstrated that both Akt and Phafin2 accumulate in the lysosome after induction of autophagy. BiFC analysis using PtdIns (3P interaction defective mutant of Phafin2 demonstrated that lysosomal accumulation of the Akt-Phafin2 complex and subsequent induction of autophagy were lysosomal PtdIns (3P dependent events. Furthermore, in murine macrophages, both Akt and Phafin2 were required for digestion of fluorescent bacteria and/or LPS-induced autophagy. Taken together, these findings establish that lysosomal accumulation of Akt and Phafin2 is a critical step in the induction of autophagy via an interaction with PtdIns (3P.

  18. Activation of the transcription factor EB rescues lysosomal abnormalities in cystinotic kidney cells.

    Science.gov (United States)

    Rega, Laura R; Polishchuk, Elena; Montefusco, Sandro; Napolitano, Gennaro; Tozzi, Giulia; Zhang, Jinzhong; Bellomo, Francesco; Taranta, Anna; Pastore, Anna; Polishchuk, Roman; Piemonte, Fiorella; Medina, Diego L; Catz, Sergio D; Ballabio, Andrea; Emma, Francesco

    2016-04-01

    Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disease characterized by accumulation of cystine into lysosomes secondary to mutations in the cystine lysosomal transporter, cystinosin. The defect initially causes proximal tubular dysfunction (Fanconi syndrome) which in time progresses to end-stage renal disease. Cystinotic patients treated with the cystine-depleting agent, cysteamine, have improved life expectancy, delayed progression to chronic renal failure, but persistence of Fanconi syndrome. Here, we have investigated the role of the transcription factor EB (TFEB), a master regulator of the autophagy-lysosomal pathway, in conditionally immortalized proximal tubular epithelial cells derived from the urine of a healthy volunteer or a cystinotic patient. Lack of cystinosin reduced TFEB expression and induced TFEB nuclear translocation. Stimulation of endogenous TFEB activity by genistein, or overexpression of exogenous TFEB lowered cystine levels within 24 hours in cystinotic cells. Overexpression of TFEB also stimulated delayed endocytic cargo processing within 24 hours. Rescue of other abnormalities of the lysosomal compartment was observed but required prolonged expression of TFEB. These abnormalities could not be corrected with cysteamine. Thus, these data show that the consequences of cystinosin deficiency are not restricted to cystine accumulation and support the role of TFEB as a therapeutic target for the treatment of lysosomal storage diseases, in particular of cystinosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. The Hydration Characteristics and Expansion Machanism of Expansive Cement at Low W/B Ratio

    Institute of Scientific and Technical Information of China (English)

    LU Lin-nu; HE Yong-jia; LI Yue; DING Qing-jun; HU Shu-guang

    2003-01-01

    The hydration characteristics and expansion impetus of three kinds of cement paste under freeand confined-curing conditions were investigated, which were respectively mixed with three different kinds of expansive agent at low W/ B ratio. The results show that the hydration products of pure cement paste and paste mixed with expansive agent are same, but the amount of hydration products , un-hydrated C3 S and C2 S are obviously different at the same hydration age. At 3 d age, the amount of CH in pure cement paste is less than that of paste mixed with expaasive agent, but it is reverse when at 28d age. The amount of AFt at 3d and 28d age in pure cement paste is less than those of paste mixed with expansive agent. Regardless of under free- or confined-curing condition, the amount of ettringite produced varies little since 3 d age. The joint effect of the tumefaction of gel-ettringite due to water absorption and the expansive pressure on the pore caased by the crystalloid ettringite is the cause of the volume expansion of cement paste, and the former effect is much greater than the latter .

  20. Presence of a lysosomal enzyme, arylsulfatase-A, in the prelysosome-endosome compartments of human cultured fibroblasts.

    Science.gov (United States)

    Kelly, B M; Yu, C Z; Chang, P L

    1989-02-01

    Although endosomes and lysosomes are associated with different subcellular functions, we present evidence that a lysosomal enzyme, arylsulfatase-A, is present in prelysosomal vesicles which constitute part of the endosomal compartment. When human cultured fibroblasts were subfractionated with Percoll gradients, arylsulfatase-A activity was enriched in three subcellular fractions: dense lysosomes, light lysosomes, and light membranous vesicles. Pulsing the cells for 1 to 10 min with the fluid-phase endocytic marker, horseradish peroxidase, showed that endosomes enriched with the marker were distributed partly in the light lysosome fraction but mainly in the light membranous fraction. By pulsing the fibroblasts for 10 min with horseradish peroxidase conjugated to colloidal gold and then staining the light membranous and light lysosomal fractions for arylsulfatase-A activity with a specific cytochemical technique, the endocytic marker was detected under the electron microscope in the same vesicles as the lysosomal enzyme. The origin of the lysosomal enzyme in this endosomal compartment was shown not to be acquired through mannose 6-phosphate receptor-mediated endocytosis of enzymes previously secreted from the cell. Together with our recent finding that the light membranous fraction contains prelysosomes distinct from bona fide lysosomes and was highly enriched with newly synthesized arylsulfatase-A molecules, these results demonstrate that prelysosomes also constitute part of the endosomal compartment to which intracellular lysosomal enzymes are targeted.

  1. Enhancing lysosomal biogenesis and autophagic flux by activating the transcription factor EB protects against cadmium-induced neurotoxicity

    Science.gov (United States)

    Pi, Huifeng; Li, Min; Tian, Li; Yang, Zhiqi; Yu, Zhengping; Zhou, Zhou

    2017-01-01

    Cadmium (Cd), a highly ubiquitous heavy metal, is a well-known inducer of neurotoxicity. However, the mechanism underlying cadmium-induced neurotoxicity remains unclear. In this study, we found that Cd inhibits autophagosome-lysosome fusion and impairs lysosomal function by reducing the levels of lysosomal-associated membrane proteins, inhibiting lysosomal proteolysis and altering lysosomal pH, contributing to defects in autophagic clearance and subsequently leading to nerve cell death. In addition, Cd decreases transcription factor EB (TFEB) expression at both the mRNA and protein levels. Furthermore, Cd induces the nuclear translocation of TFEB and TFEB target-gene expression, associated with compromised lysosomal function or a compensatory effect after the impairment of the autophagic flux. Notably, restoration of the levels of lysosomal-associated membrane protein, lysosomal proteolysis, lysosomal pH and autophagic flux through Tfeb overexpression protects against Cd-induced neurotoxicity, and this protective effect is incompletely dependent on TFEB nuclear translocation. Moreover, gene transfer of the master autophagy regulator TFEB results in the clearance of toxic proteins and the correction of Cd-induced neurotoxicity in vivo. Our study is the first to demonstrate that Cd disrupts lysosomal function and autophagic flux and manipulation of TFEB signalling may be a therapeutic approach for antagonizing Cd-induced neurotoxicity. PMID:28240313

  2. TFEB activation promotes the recruitment of lysosomal glycohydrolases β-hexosaminidase and β-galactosidase to the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Magini, Alessandro [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Department of Medical and Biological Sciences (DSMB), University of Udine, Udine (Italy); Polchi, Alice; Urbanelli, Lorena [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Cesselli, Daniela; Beltrami, Antonio [Department of Medical and Biological Sciences (DSMB), University of Udine, Udine (Italy); Tancini, Brunella [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Emiliani, Carla, E-mail: carla.emiliani@unipg.it [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy)

    2013-10-18

    Highlights: •TFEB activation promotes the increase of Hex and Gal activities. •The increase of Hex and Gal activities is related to transcriptional regulation. •TFEB promotes the recruitment of mature Hex and Gal on cell surface. -- Abstract: Lysosomes are membrane-enclosed organelles containing acid hydrolases. They mediate a variety of physiological processes, such as cellular clearance, lipid homeostasis, energy metabolism and pathogen defence. Lysosomes can secrete their content through a process called lysosome exocytosis in which lysosomes fuse with the plasma membrane realising their content into the extracellular milieu. Lysosomal exocytosis is not only responsible for the secretion of lysosomal enzymes, but it also has a crucial role in the plasma membrane repair. Recently, it has been demonstrated that lysosome response to the physiologic signals is regulated by the transcription factor EB (TFEB). In particular, lysosomal secretion is transcriptionally regulated by TFEB which induces both the docking and fusion of lysosomes with the plasma membrane. In this work we demonstrated that TFEB nuclear translocation is accompanied by an increase of mature glycohydrolases β-hexosaminidase and β-galactosidase on cell surface. This evidence contributes to elucidate an unknown TFEB biological function leading the lysosomal glycohydrolases on plasma membrane.

  3. Quantitation of the rates of hepatic and intestinal cholesterol synthesis in lysosomal acid lipase-deficient mice before and during treatment with ezetimibe.

    Science.gov (United States)

    Chuang, Jen-Chieh; Lopez, Adam M; Turley, Stephen D

    2017-07-01

    Esterified cholesterol (EC) and triglycerides, contained within lipoproteins taken up by cells, are hydrolysed by lysosomal acid lipase (LAL) in the late endosomal/lysosomal (E/L) compartment. The resulting unesterified cholesterol (UC) is transported via Niemann-Pick type C2 and C1 into the cytosolic compartment where it enters a putative pool of metabolically active cholesterol that is utilized in accordance with cellular needs. Loss-of-function mutations in LIPA, the gene encoding LAL, result in dramatic increases in tissue concentrations of EC, a hallmark feature of Wolman disease and cholesteryl ester storage disease (CESD). The lysosomal sequestration of EC causes cells to respond to a perceived deficit of sterol by increasing their rate of cholesterol synthesis, particularly in the liver. A similar compensatory response occurs with treatments that disrupt the enterohepatic movement of cholesterol or bile acids. Here we measured rates of cholesterol synthesis in vivo in the liver and small intestine of a mouse model for CESD given the cholesterol absorption inhibitor ezetimibe from weaning until early adulthood. Consistent with previous findings, this treatment significantly reduced the amount of EC sequestered in the liver (from 132.43±7.35 to 70.07±6.04mg/organ) and small intestine (from 2.78±0.21 to 1.34±0.09mg/organ) in the LAL-deficient mice even though their rates of hepatic and intestinal cholesterol synthesis were either comparable to, or exceeded those in matching untreated Lal(-/-) mice. These data reveal the role of intestinal cholesterol absorption in driving the expansion of tissue EC content and disease progression in LAL deficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells.

    Directory of Open Access Journals (Sweden)

    Bárbara Hissa

    Full Text Available BACKGROUND: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages and non-professional (epithelial phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING: In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of

  5. In Vitro and in Silico Tools To Assess Extent of Cellular Uptake and Lysosomal Sequestration of Respiratory Drugs in Human Alveolar Macrophages.

    Science.gov (United States)

    Ufuk, Ayşe; Assmus, Frauke; Francis, Laura; Plumb, Jonathan; Damian, Valeriu; Gertz, Michael; Houston, J Brian; Galetin, Aleksandra

    2017-04-03

    accumulation between individual human AM donors due to possible differences in lysosomal abundance, volume, and phospholipid content, which may have important clinical implications. Consideration of drug-acidic phospholipid interactions significantly improved the performance of the in silico models; use of in vitro Kp,cell obtained in the presence of NH4Cl as a surrogate for membrane partitioning (model (2)) captured the variability in clarithromycin and imipramine Kp,cell observed in vitro and showed the best ability to predict correctly positive and negative lysosomotropic properties. The developed mechanistic AM model represents a useful in silico tool to predict lysosomal and cellular drug concentrations based on drug physicochemical data and system specific properties, with potential application to other cell types.

  6. Lysosomal {beta}-mannosidase: cDNA cloning and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Leipprandt, J.R.; Traviss, C.E. [Michigan State Univ., East Lansing, MI (United States)] [and others

    1994-09-01

    Lysosomal {beta}-mannosidase is an exoglycosidase that cleaves the single {beta}-linked mannose residue from the non-reducing end of all N-linked glycoprotein oligosaccharides. Deficiency of this enzyme results in {beta}-mannosidosis, a severe neurodegenerative disease in goats and cattle. The human cases described have a milder, highly variable presentation. Study of the molecular pathology of this disease in ruminants and humans and development of the animal model for gene therapy studies required cloning of the gene for {beta}-mannosidase has been cloned. {beta}-Mannosidase cDNA were obtained from a bovine thyroid cDNA library by screening with mixed oligonucleotides derived from peptide sequences resulting from microsequencing of bovine {beta}-mannosidase peptides. A total of six independent positive clones were identified from 5 x 10{sup 5} plaques, covering about 80% of the C-terminal region. The missing 5{prime} region was obtained using 5{prime} RACE. The full-length construct contains 3852-bp nucleotides, encoding 879 amino acids. The initiation codon is followed by 17 amino acids containing the characteristics of a typical signal peptide sequence. The deduced amino acid sequence is colinear with all peptide sequences determined by protein microsequencing. Northern blot analysis demonstrated a 4.2 kb single transcript in various tissues from both normal and affected goats and calves. The mRNA level was decreased in affected {beta}-mannosidosis animals. The gene encoding {beta}-mannosidase was localized on human chromosome 4 by Southern analysis of rodent/human somatic cell hybrids. The mutation in bovine {beta}-mannosidosis has been identified. This is the first report of cloning of the {beta}-mannosidase gene.

  7. Bigravity from gradient expansion

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Yasuho [Yukawa Institute for Theoretical Physics, Kyoto University,606-8502, Kyoto (Japan); Tanaka, Takahiro [Yukawa Institute for Theoretical Physics, Kyoto University,606-8502, Kyoto (Japan); Department of Physics, Kyoto University,606-8502, Kyoto (Japan)

    2016-05-04

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.

  8. Operator product expansion algebra

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Jan [CPHT, Ecole Polytechnique, Paris-Palaiseau (France)

    2014-07-01

    The Operator Product Expansion (OPE) is a theoretical tool for studying the short distance behaviour of products of local quantum fields. Over the past 40 years, the OPE has not only found widespread computational application in high-energy physics, but, on a more conceptual level, it also encodes fundamental information on algebraic structures underlying quantum field theories. I review new insights into the status and properties of the OPE within Euclidean perturbation theory, addressing in particular the topics of convergence and ''factorisation'' of the expansion. Further, I present a formula for the ''deformation'' of the OPE algebra caused by a quartic interaction. This formula can be used to set up a novel iterative scheme for the perturbative computation of OPE coefficients, based solely on the zeroth order coefficients (and renormalisation conditions) as initial input.

  9. Local Hubble Expansion: Current State of the Problem

    CERN Document Server

    Dumin, Yurii V

    2016-01-01

    We present a brief qualitative overview of the current state of the problem of Hubble expansion at the sufficiently small scales (e.g., in planetary systems or local intergalactic volume). The crucial drawbacks of the available theoretical treatments are emphasized, and the possible ways to avoid them are outlined. Attention is drawn to a number of observable astronomical phenomena that could be naturally explained by the local Hubble expansion.

  10. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas.

    Science.gov (United States)

    Jensen, Stine S; Aaberg-Jessen, Charlotte; Christensen, Karina G; Kristensen, Bjarne

    2013-01-01

    Targeting of lysosomes is a novel therapeutic anti-cancer strategy for killing the otherwise apoptosis-resistant cancer cells. Such strategies are urgently needed for treatment of brain tumors, especially the glioblastoma, which is the most frequent and most malignant type. The aim of the present study was to investigate the presence of lysosomes in astrocytic brain tumors focussing also on the therapy resistant tumor stem cells. Expression of the lysosomal marker LAMP-1 (lysosomal-associated membrane protein-1) was investigated by immunohistochemistry in 112 formalin fixed paraffin embedded astrocytomas and compared with tumor grade and overall patient survival. Moreover, double immunofluorescence stainings were performed with LAMP-1 and the astrocytic marker GFAP and the putative stem cell marker CD133 on ten glioblastomas. Most tumors expressed the LAMP-1 protein in the cytoplasm of the tumor cells, while the blood vessels were positive in all tumors. The percentage of LAMP-1 positive tumor cells and staining intensities increased with tumor grade but variations in tumors of the same grade were also found. No association was found between LAMP-1 expression and patient overall survival in the individual tumor grades. LAMP-1/GFAP showed pronounced co-expression and LAMP-1/CD133 was co-expressed as well suggesting that tumor cells including the proposed tumor stem cells contain lysosomes. The results suggest that high amounts of lysosomes are present in glioblastomas and in the proposed tumor stem cells. Targeting of lysosomes may be a promising novel therapeutic strategy against this highly malignant neoplasm.

  11. DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX

    Science.gov (United States)

    Guan, J-J; Zhang, X-D; Sun, W; Qi, L; Wu, J-C; Qin, Z-H

    2015-01-01

    DRAM1 (DNA damage-regulated autophagy modulator 1) is a TP53 target gene that modulates autophagy and apoptosis. We previously found that DRAM1 increased autophagy flux by promoting lysosomal acidification and protease activation. However, the molecular mechanisms by which DRAM1 regulates apoptosis are not clearly defined. Here we report a novel pathway by which DRAM1 regulates apoptosis involving BAX and lysosomes. A549 or HeLa cells were treated with the mitochondrial complex II inhibitor, 3-nitropropionic acid (3NP), or an anticancer drug, doxorubicin. Changes in the protein and mRNA levels of BAX and DRAM1 and the role of DRAM1 in BAX induction were determined. The interaction between DRAM1 and BAX and its effect on BAX degradation, BAX lysosomal localization, the release of cathepsin B and cytochrome c by BAX and the role of BAX in 3NP- or doxorubicin-induced cell death were studied. The results showed that BAX, a proapoptotic protein, was induced by DRAM1 in a transcription-independent manner. BAX was degraded by autophagy under basal conditions; however, its degradation was inhibited when DRAM1 expression was induced. There was a protein interaction between DRAM1 and BAX and this interaction prolonged the half-life of BAX. Furthermore, upregulated DRAM1 recruited BAX to lysosomes, leading to the release of lysosomal cathepsin B and cleavage of BID (BH3-interacting domain death agonist). BAX mediated the release of mitochondrial cytochrome c, activation of caspase-3 and cell death partially through the lysosome-cathepsin B-tBid pathway. These results indicate that DRAM1 regulates apoptosis by inhibiting BAX degradation. In addition to mitochondria, lysosomes may also be involved in BAX-initiated apoptosis. PMID:25633293

  12. The Phosphoinositide-Gated Lysosomal Ca(2+) Channel, TRPML1, Is Required for Phagosome Maturation.

    Science.gov (United States)

    Dayam, Roya M; Saric, Amra; Shilliday, Ryan E; Botelho, Roberto J

    2015-09-01

    Macrophages internalize and sequester pathogens into a phagosome. Phagosomes then sequentially fuse with endosomes and lysosomes, converting into degradative phagolysosomes. Phagosome maturation is a complex process that requires regulators of the endosomal pathway including the phosphoinositide lipids. Phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2 ), which respectively control early endosomes and late endolysosomes, are both required for phagosome maturation. Inhibition of PIKfyve, which synthesizes PtdIns(3,5)P2 , blocked phagosome-lysosome fusion and abated the degradative capacity of phagosomes. However, it is not known how PIKfyve and PtdIns(3,5)P2 participate in phagosome maturation. TRPML1 is a PtdIns(3,5)P2 -gated lysosomal Ca(2+) channel. Because Ca(2+) triggers membrane fusion, we postulated that TRPML1 helps mediate phagosome-lysosome fusion. Using Fcγ receptor-mediated phagocytosis as a model, we describe our research showing that silencing of TRPML1 hindered phagosome acquisition of lysosomal markers and reduced the bactericidal properties of phagosomes. Specifically, phagosomes isolated from TRPML1-silenced cells were decorated with lysosomes that docked but did not fuse. We could rescue phagosome maturation in TRPML1-silenced and PIKfyve-inhibited cells by forcible Ca(2+) release with ionomycin. We also provide evidence that cytosolic Ca(2+) concentration increases upon phagocytosis in a manner dependent on TRPML1 and PIKfyve. Overall, we propose a model where PIKfyve and PtdIns(3,5)P2 activate TRPML1 to induce phagosome-lysosome fusion.

  13. Interactions between autophagic and endo-lysosomal markers in endothelial cells.

    Science.gov (United States)

    Oeste, Clara L; Seco, Esther; Patton, Wayne F; Boya, Patricia; Pérez-Sala, Dolores

    2013-05-01

    Autophagic and endo-lysosomal degradative pathways are essential for cell homeostasis. Availability of reliable tools to interrogate these pathways is critical to unveil their involvement in physiology and pathophysiology. Although several probes have been recently developed to monitor autophagic or lysosomal compartments, their specificity has not been validated through co-localization studies with well-known markers. Here, we evaluate the selectivity and interactions between one lysosomal (Lyso-ID) and one autophagosomal (Cyto-ID) probe under conditions modulating autophagy and/or endo-lysosomal function in live cells. The probe for acidic compartments Lyso-ID was fully localized inside vesicles positive for markers of late endosome-lysosomes, including Lamp1-GFP and GFP-CINCCKVL. Induction of autophagy by amino acid deprivation in bovine aortic endothelial cells caused an early and potent increase in the fluorescence of the proposed autophagy dye Cyto-ID. Cyto-ID-positive compartments extensively co-localized with the autophagosomal fluorescent reporter RFP-LC3, although the time and/or threshold for organelle detection was different for each probe. Interestingly, use of Cyto-ID in combination with Lysotracker Red or Lyso-ID allowed the observation of structures labeled with either one or both probes, the extent of co-localization increasing upon treatment with protease inhibitors. Inhibition of the endo-lysosomal pathway with chloroquine or U18666A resulted in the formation of large Cyto-ID and Lyso-ID-positive compartments. These results constitute the first assessment of the selectivity of Cyto-ID and Lyso-ID as probes for the autophagic and lysosomal pathways, respectively. Our observations show that these probes can be used in combination with protein-based markers for monitoring the interactions of both pathways in live cells.

  14. Thermal expansion anomaly regulated by entropy.

    Science.gov (United States)

    Liu, Zi-Kui; Wang, Yi; Shang, ShunLi

    2014-11-13

    Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions.

  15. Artesunate Activates Mitochondrial Apoptosis in Breast Cancer Cells via Iron-catalyzed Lysosomal Reactive Oxygen Species Production*

    Science.gov (United States)

    Hamacher-Brady, Anne; Stein, Henning A.; Turschner, Simon; Toegel, Ina; Mora, Rodrigo; Jennewein, Nina; Efferth, Thomas; Eils, Roland; Brady, Nathan R.

    2011-01-01

    The antimalarial agent artesunate (ART) activates programmed cell death (PCD) in cancer cells in a manner dependent on the presence of iron and the generation of reactive oxygen species. In malaria parasites, ART cytotoxicity originates from interactions with heme-derived iron within the food vacuole. The analogous digestive compartment of mammalian cells, the lysosome, similarly contains high levels of redox-active iron and in response to specific stimuli can initiate mitochondrial apoptosis. We thus investigated the role of lysosomes in ART-induced PCD and determined that in MCF-7 breast cancer cells ART activates lysosome-dependent mitochondrial outer membrane permeabilization. ART impacted endolysosomal and autophagosomal compartments, inhibiting autophagosome turnover and causing perinuclear clustering of autophagosomes, early and late endosomes, and lysosomes. Lysosomal iron chelation blocked all measured parameters of ART-induced PCD, whereas lysosomal iron loading enhanced death, thus identifying lysosomal iron as the lethal source of reactive oxygen species upstream of mitochondrial outer membrane permeabilization. Moreover, lysosomal inhibitors chloroquine and bafilomycin A1 reduced ART-activated PCD, evidencing a requirement for lysosomal function during PCD signaling. ART killing did not involve activation of the BH3-only protein, Bid, yet ART enhanced TNF-mediated Bid cleavage. We additionally demonstrated the lysosomal PCD pathway in T47D and MDA-MB-231 breast cancer cells. Importantly, non-tumorigenic MCF-10A cells resisted ART-induced PCD. Together, our data suggest that ART triggers PCD via engagement of distinct, interconnected PCD pathways, with hierarchical signaling from lysosomes to mitochondria, suggesting a potential clinical use of ART for targeting lysosomes in cancer treatment. PMID:21149439

  16. Protective effect of squalene on certain lysosomal hydrolases and free amino acids in isoprenaline-induced myocardial infarction in rats

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Surendraraj, A.; Anandan, R.

    2010-01-01

    This study was aimed to evaluate the preventive role of squalene on free amino acids and lysosomal alterations in experimentally induced myocardial infarction in rats. The levels of lysosomal enzymes (beta-glucuronidase, beta-galactosidase, beta-glucosidase, acid phosphatase and cathepsin D......) in plasma and lysosomal fractions, hydroxyproline content and free amino acids in heart tissue were determined. Isoprenaline administration to rats resulted in decreased stability of the membranes which was reflected by significantly (p...

  17. Evidence for lysosomal exocytosis and release of aggrecan-degrading hydrolases from hypertrophic chondrocytes, in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Edward R. Bastow

    2012-02-01

    The abundant proteoglycan, aggrecan, is resorbed from growth plate cartilage during endochondral bone ossification, yet mice with genetically-ablated aggrecan-degrading activity have no defects in bone formation. To account for this apparent anomaly, we propose that lysosomal hydrolases degrade extracellular, hyaluronan-bound aggrecan aggregates in growth plate cartilage, and that lysosomal hydrolases are released from hypertrophic chondrocytes into growth plate cartilage via Ca2+-dependent lysosomal exocytosis. In this study we confirm that hypertrophic chondrocytes release hydrolases via lysosomal exocytosis in vitro and we show in vivo evidence for lysosomal exocytosis in hypertrophic chondrocytes during skeletal development. We show that lysosome-associated membrane protein 1 (LAMP1 is detected at the cell surface following in vitro treatment of epiphyseal chondrocytes with the calcium ionophore, ionomycin. Furthermore, we show that in addition to the lysosomal exocytosis markers, cathepsin D and β-hexosaminidase, ionomycin induces release of aggrecan- and hyaluronan-degrading activity from cultured epiphyseal chondrocytes. We identify VAMP-8 and VAMP7 as v-SNARE proteins with potential roles in lysosomal exocytosis in hypertrophic chondrocytes, based on their colocalisation with LAMP1 at the cell surface in secondary ossification centers in mouse tibiae. We propose that resorbing growth plate cartilage involves release of destructive hydrolases from hypertrophic chondrocytes, via lysosomal exocytosis.

  18. Glucagon-like Peptide-1 Protects Pancreatic Beta-cells from Death by Increasing Autophagic Flux and Restoring Lysosomal Function.

    Science.gov (United States)

    Zummo, Francesco P; Cullen, Kirsty S; Honkanen-Scott, Minna; Shaw, James Am; Lovat, Penny E; Arden, Catherine

    2017-02-23

    Studies in animal models of type 2 diabetes have shown that glucagon-like peptide-1 (GLP-1) receptor agonists prevent β-cell loss. Whether GLP-1 mediates β-cell survival via the key lysosomal-mediated process of autophagy is unknown.Here we report that treatment of INS-1E β-cells and primary islets with glucolipotoxicity (0.5mmol/l palmitate, 25mmol/l glucose) increases LC3 II, a marker of autophagy. Further analysis indicates a blockage in autophagic flux associated with lysosomal dysfunction. Accumulation of defective lysosomes leads to lysosomal membrane permeabilisation (LMP) and release of Cathepsin D, which contributes to cell death. Our data further demonstrated defects in autophagic flux and lysosomal staining in human samples of type 2 diabetes. Co-treatment with the GLP-1 receptor agonist exendin-4 reversed the lysosomal dysfunction, relieving the impairment in autophagic flux and further stimulated autophagy. siRNA knockdown showed the restoration of autophagic flux is also essential for the protective effects of exendin-4.Collectively, our data highlights lysosomal dysfunction as a critical mediator of β-cell loss and shows that exendin-4 improves cell survival via restoration of lysosomal function and autophagic flux. Modulation of autophagy / lysosomal homeostasis may thus define a novel therapeutic strategy for type 2 diabetes, with the GLP-1 signalling pathway as a potential focus.

  19. Ubiquilin/Dsk2 promotes inclusion body formation and vacuole (lysosome)-mediated disposal of mutated huntingtin.

    Science.gov (United States)

    Chuang, Kun-Han; Liang, Fengshan; Higgins, Ryan; Wang, Yanchang

    2016-07-01

    Ubiquilin proteins contain a ubiquitin-like domain (UBL) and ubiquitin-associated domain(s) that interact with the proteasome and ubiquitinated substrates, respectively. Previous work established the link between ubiquilin mutations and neurodegenerative diseases, but the function of ubiquilin proteins remains elusive. Here we used a misfolded huntingtin exon I containing a 103-polyglutamine expansion (Htt103QP) as a model substrate for the functional study of ubiquilin proteins. We found that yeast ubiquilin mutant (dsk2Δ) is sensitive to Htt103QP overexpression and has a defect in the formation of Htt103QP inclusion bodies. Our evidence further suggests that the UBL domain of Dsk2 is critical for inclusion body formation. Of interest, Dsk2 is dispensable for Htt103QP degradation when Htt103QP is induced for a short time before noticeable inclusion body formation. However, when the inclusion body forms after a long Htt103QP induction, Dsk2 is required for efficient Htt103QP clearance, as well as for autophagy-dependent delivery of Htt103QP into vacuoles (lysosomes). Therefore our data indicate that Dsk2 facilitates vacuole-mediated clearance of misfolded proteins by promoting inclusion body formation. Of importance, the defect of inclusion body formation in dsk2 mutants can be rescued by human ubiquilin 1 or 2, suggesting functional conservation of ubiquilin proteins.

  20. Operator product expansion algebra

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Jan [School of Mathematics, Cardiff University, Senghennydd Rd, Cardiff CF24 4AG (United Kingdom); Hollands, Stefan [School of Mathematics, Cardiff University, Senghennydd Rd, Cardiff CF24 4AG (United Kingdom); Institut für Theoretische Physik, Universität Leipzig, Brüderstr. 16, Leipzig, D-04103 (Germany)

    2013-07-15

    We establish conceptually important properties of the operator product expansion (OPE) in the context of perturbative, Euclidean φ{sup 4}-quantum field theory. First, we demonstrate, generalizing earlier results and techniques of hep-th/1105.3375, that the 3-point OPE, =Σ{sub C}C{sub A{sub 1A{sub 2A{sub 3}{sup C}}}}, usually interpreted only as an asymptotic short distance expansion, actually converges at finite, and even large, distances. We further show that the factorization identity C{sub A{sub 1A{sub 2A{sub 3}{sup B}}}}=Σ{sub C}C{sub A{sub 1A{sub 2}{sup C}}}C{sub CA{sub 3}{sup B}} is satisfied for suitable configurations of the spacetime arguments. Again, the infinite sum is shown to be convergent. Our proofs rely on explicit bounds on the remainders of these expansions, obtained using refined versions, mostly due to Kopper et al., of the renormalization group flow equation method. These bounds also establish that each OPE coefficient is a real analytic function in the spacetime arguments for non-coinciding points. Our results hold for arbitrary but finite loop orders. They lend support to proposals for a general axiomatic framework of quantum field theory, based on such “consistency conditions” and akin to vertex operator algebras, wherein the OPE is promoted to the defining structure of the theory.

  1. LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes.

    Science.gov (United States)

    Hubert, Virginie; Peschel, Andrea; Langer, Brigitte; Gröger, Marion; Rees, Andrew; Kain, Renate

    2016-10-15

    Autophagy is an evolutionarily conserved process used for removing surplus and damaged proteins and organelles from the cytoplasm. The unwanted material is incorporated into autophagosomes that eventually fuse with lysosomes, leading to the degradation of their cargo. The fusion event is mediated by the interaction between the Qa-SNARE syntaxin-17 (STX17) on autophagosomes and the R-SNARE VAMP8 on lysosomes. Cells deficient in lysosome membrane-associated protein-2 (LAMP-2) have increased numbers of autophagosomes but the underlying mechanism is poorly understood. By transfecting LAMP-2-deficient and LAMP-1/2--double-deficient mouse embryonic fibroblasts (MEFs) with a tandem fluorescent-tagged LC3 we observed a failure of fusion between the autophagosomes and the lysosomes that could be rescued by complementation with LAMP-2A. Although we observed no change in expression and localization of VAMP8, its interacting partner STX17 was absent from autophagosomes of LAMP-2-deficient cells. Thus, LAMP-2 is essential for STX17 expression by the autophagosomes and this absence is sufficient to explain their failure to fuse with lysosomes. The results have clear implications for situations associated with a reduction of LAMP-2 expression.

  2. Induction, adaptation and recovery of lysosomal integrity in green-lipped mussel Perna viridis.

    Science.gov (United States)

    Fang, J K H; Wu, R S S; Zheng, G J; Lam, P K S; Shin, P K S

    2008-01-01

    Biomarkers are generally applied to detect pollution in environmental monitoring. Such biological responses should accurately reflect the stress over time in a quantitative manner. As such, the initial and maximum responses induced by stress, as well as adaptation and recovery of these biomarkers, need to be fully understood or else erroneous false-negative or false-positive may be arrived. However, most of the biomarker studies only provided information on initially induced responses under different concentrations of toxicants, while biological adaptation and recovery were poorly known. In this study, the time required for induction, adaptation and recovery of lysosomal integrity in green-lipped mussel Perna viridis upon exposure to benzo[a]pyrene was investigated over a period of 62 days. Maximum induction occurred on day 6 when lysosomal integrity was significantly reduced by 51%, and no further change or adaptation was detected thereafter. When mussels were depurated in clean seawater after 18 days of exposure to benzo[a]pyrene, a gradual recovery was observed, with lysosomal integrity returning to its background level and showing a complete recovery after 20 days of depuration. Lysosomal integrity was significantly correlated with the body burden concentrations of benzo[a]pyrene and condition index of the mussels. The relatively fast induction (6 days) and recovery (20 days) without apparent adaptation suggested that lysosomal integrity in P. viridis can serve as a good biomarker in biomonitoring, as its response is not likely to generate both false-negative and false-positive results.

  3. Not nanocarbon but dispersant induced abnormality in lysosome in macrophages in vivo

    Science.gov (United States)

    Yudasaka, Masako; Zhang, Minfang; Matsumura, Sachiko; Yuge, Ryota; Ichihashi, Toshinari; Irie, Hiroshi; Shiba, Kiyotaka; Iijima, Sumio

    2015-05-01

    The properties of nanocarbons change from hydrophobic to hydrophilic as a result of coating them with dispersants, typically phospholipid polyethylene glycols, for biological studies. It has been shown that the dispersants remain attached to the nanocarbons when they are injected in mice and influence the nanocarbons’ biodistribution in vivo. We show in this report that the effects of dispersants also appear at the subcellular level in vivo. Carbon nanohorns (CNHs), a type of nanocarbon, were dispersed with ceramide polyethylene glycol (CPEG) and intravenously injected in mice. Histological observations and electron microscopy with energy dispersive x-ray analysis revealed that, in liver and spleen, the lysosome membranes were damaged, and the nanohorns formed a complex with hemosiderin in the lysosomes of the macrophages. It is inferred that the lysosomal membrane was damaged by sphigosine generated as a result of CPEG decomposition, which changed the intra lysosomal conditions, inducing the formation of the CPEG-CNH and hemosiderin complex. For comparison, when glucose was used instead of CPEG, neither the nanohorn-hemosiderin complex nor lysosomal membrane damage was found. Our results suggest that surface functionalization can control the behavior of nancarbons in cells in vivo and thereby improve their suitability for medical applications.

  4. Color reduction of melanin by lysosomal and peroxisomal enzymes isolated from mammalian cells.

    Science.gov (United States)

    Park, Dong Jun; Sekhon, Simranjeet Singh; Yoon, Jihee; Kim, Yang-Hoon; Min, Jiho

    2016-02-01

    Lysosomes and peroxisomes are organelles with many functions in all eukaryotic cells. Lysosomes contain hydrolytic enzymes (lysozyme) that degrade molecules, whereas peroxisomes contain enzymes such as catalase that convert hydrogen peroxide (H2O2) to water and oxygen and neutralize toxicity. In contrast, melanin is known as a helpful element to protect the skin against harmful ultraviolet rays. However, a high quantity of melanin leads to hyperpigmentation or skin cancer in human. New materials have already been discovered to inhibit tyrosinase in melanogenesis; however, melanin reduction does not suggest their preparation. In this study, we report that the color intensity because of melanin decreased by the cellular activation of lysosomes and peroxisomes. An increase in the superficial intensity of lysosome and peroxisome activities of HeLa cells was observed. In addition, a decrease in the amount of melanin has also been observed in mammalian cells without using any other chemical, showing that the process can work in vivo for treating melanin. Therefore, the results of this study indicate that the amount of melanin decreases by the lysosome and peroxisome activity after entering the cells, and functional organelles are effective in color reduction. This mechanism can be used in vivo for treating melanin.

  5. Disruption of lysosome function promotes tumor growth and metastasis in Drosophila.

    Science.gov (United States)

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-07-09

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the Ras(V12) cells. Knocking down either of the two other components of the Class C VPS complex, carnation (car) and vps16A, also renders Ras(V12) cells capable for uncontrolled growth and metastatic behavior. Finally, chemical disruption of the lysosomal function by feeding animals with antimalarial drugs, chloroquine or monensin, leads to malignant tumor growth of the Ras(V12) cells. Taken together, our data provide evidence for a causative role of lysosome dysfunction in tumor growth and invasion and indicate that members of the Class C VPS complex behave as tumor suppressors.

  6. Testing Machine for Expansive Mortar

    CERN Document Server

    Silva, Romulo Augusto Ventura

    2011-01-01

    The correct evaluation of a material property is fundamental to, on their application; they met all expectations that were designed for. In development of an expansive cement for ornamental rocks purpose, was denoted the absence of methodologies and equipments to evaluate the expansive pressure and temperature of expansive cement during their expansive process, having that data collected in a static state of the specimen. In that paper, is described equipment designed for evaluation of pressure and temperature of expansive cements applied to ornamental rocks.

  7. Engineering Properties of Expansive Soil

    Institute of Scientific and Technical Information of China (English)

    DAI Shaobin; SONG Minghai; HUANG Jun

    2005-01-01

    The components of expansive soil were analyzed with EDAX, and it is shown that the main contents of expansive soil in the northern Hubei have some significant effects on engineering properties of expansive soil. Furthermore, the soil modified by lime has an obvious increase of Ca2+ and an improvement of connections between granules so as to reduce the expansibility and contractility of soil. And it also has a better effect on the modified expansive soil than the one modified by pulverized fuel ash.

  8. Patterns of renal dopamine release to regulate diuresis and natriuresis during volume expansion: Role of renal monoamine-oxidase Perfiles de secreción de dopamina renal en la expansión de volumen para regular diuresis y natriuresis: Rol de la monoaminoxidasa renal

    Directory of Open Access Journals (Sweden)

    Verónica de Luca Sarobe

    2010-02-01

    Full Text Available Diuretic and natriuretic effects of renal dopamine (DA are well established. However, in volume expansion the pattern of renal DA release into urine (U DA V and the role of enzymes involved in DA synthesis/degradation have not yet been defined. The objective was to determine the pattern of U DA V during volume expansion and to characterize the involvement of monoamine-oxidase (MAO and aromatic amino-acid decarboxylase (AADC in this response. In this study male Wistar rats were expanded with NaCl 0.9% at a rate of 5% BWt per hour. At the beginning of expansion three groups received a single drug injection as follows: C (vehicle, Control, IMAO (MAO inhibitor Pargyline, 20 mg/kg BWt, i.v. and BNZ (AADC inhibitor Benserazide, 25 mg/kg BWt, i.v.. Results revealed that in C rats U DA V (ng/30 min/100g BWt increased in the first 30 min expansion from 11.5 ± 1.20 to 21.8 ± 3.10 (p La dopamina (DA intrarrenal ejerce efectos diuréticos y natriuréticos. Sin embargo, en los estado de expansión de volumen aún no está bien definido el patrón de liberación de dopamina renal hacia la orina y si cumplen un rol las enzimas involucradas en la síntesis o degradación de la amina. El objetivo del presente trabajo fue determinar el patrón de excreción urinaria de DA (U DA V durante la expansión de volumen, caracterizando la participación de las enzimas monoaminooxidasa (MAO y decarboxilasa de aminoácidos aromáticos (AADC en esta respuesta. Para ello ratas Wistar macho fueron expandidas de volumen con NaCl 0.9% al 5% del peso corporal por hora durante dos horas y divididas en tres grupos, los que al comienzo de la expansión recibieron: C (vehículo, Control, IMAO (Pargilina, inhibidor de MAO, 20 mg/kg PC, i.v. y BNZ (Benserazida, inhibidor de AADC, 25 mg/kg PC, i.v.. Se observó que en C la U DA V (ng/30min/100gPC aumentó durante los primeros 30 minutos de expansión de 11.5 ± 1.20 a 21.8 ± 3.10 (p < 0.05, disminuyendo posteriormente. IMAO mostr

  9. Modelling autogenous expansion for magnesia concrete in arch dams

    Institute of Scientific and Technical Information of China (English)

    Feng JIN; Guoxin ZHANG; Xiaoqing LUO; Chuhan ZHANG

    2008-01-01

    Magnesia Concrete is a kind of expansive con-crete used in Chinese hydraulic engineering more and more widely. To evaluate the effects of autogenous expan-sion on the stresses of arch dams, a simple model of auto-genous expansion for Magnesia Concrete in dam engineering is presented. This model is based on three assumptions: 1) the total amount of autogenous expan-sion of Magnesia Concrete is related only to the properties of materials and mixing of concrete; 2) the autogenous expansion of Magnesia Concrete is irreversible due to the irreversibility of hydration reaction of Magnesia in the concrete; 3) the autogenous expansion strain rates of Magnesia Concrete bear a relation between temperature and residual Magnesia per unit volume of concrete. The model is verified by some experimental data of autogen-ous expansion of Magnesia Concrete and field-measured data of an arch dam in China. Embedded into finite ele-ment arch dam simulation software, this model is employed to simulate the effects of autogenous expansion of Magnesia Concrete in hydraulic engineering.

  10. The role of VAMP7/TI-VAMP in cell polarity and lysosomal exocytosis in vivo.

    Science.gov (United States)

    Sato, Mahito; Yoshimura, Shinichiro; Hirai, Rika; Goto, Ayako; Kunii, Masataka; Atik, Nur; Sato, Takashi; Sato, Ken; Harada, Reiko; Shimada, Junko; Hatabu, Toshimitsu; Yorifuji, Hiroshi; Harada, Akihiro

    2011-10-01

    VAMP7 or tetanus neurotoxin-insensitive vesicle- associated membrane protein (TI-VAMP) has been proposed to regulate apical transport in polarized epithelial cells, axonal transport in neurons and lysosomal exocytosis. To investigate the function of VAMP7 in vivo, we generated VAMP7 knockout mice. Here, we show that VAMP7 knockout mice are indistinguishable from control mice and display a similar localization of apical proteins in the kidney and small intestine and a similar localization of axonal proteins in the nervous system. Neurite outgrowth of cultured mutant hippocampal neurons was reduced in mutant neurons. However, lysosomal exocytosis was not affected in mutant fibroblasts. Our results show that VAMP7 is required in neurons to extend axons to the full extent. However, VAMP7 does not seem to be required for epithelial cell polarity and lysosomal exocytosis.

  11. Elimination of paternal mitochondria through the lysosomal degradation pathway in C.elegans

    Institute of Scientific and Technical Information of China (English)

    Qinghua Zhou; Haimin Li; Ding Xue

    2011-01-01

    In mammals,the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal,despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization.The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown.We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans,and that the lysosomal pathway actively participates in this process.Molecular and cell biological analyses indicate that in wild-type animals paternal mitoehondria and mtDNA are destroyed within two hours after fertilization.In animals with compromised lysosomes,paternal mitochondria persist until late embryonic stages.Therefore,the lysosomal pathway plays an important role in degrading paternal mitochondria introduced into the oocyte during fertilization.Our study indicates that C.elegans is an excellent animal model for understanding and dissecting this conserved biological process critical for animal development and reproduction.

  12. Guanidinylated neomycin mediates heparan sulfate-dependent transport of active enzymes to lysosomes.

    Science.gov (United States)

    Sarrazin, Stéphane; Wilson, Beth; Sly, William S; Tor, Yitzhak; Esko, Jeffrey D

    2010-07-01

    Guanidinylated neomycin (GNeo) can transport bioactive, high molecular weight cargo into the interior of cells in a process that depends on cell surface heparan sulfate proteoglycans. In this report, we show that GNeo-modified quantum dots bind to cell surface heparan sulfate, undergo endocytosis and eventually reach the lysosomal compartment. An N-hydroxysuccinimide activated ester of GNeo (GNeo-NHS) was prepared and conjugated to two lysosomal enzymes, beta-D-glucuronidase (GUS) and alpha-L-iduronidase. Conjugation did not interfere with enzyme activity and enabled binding of the enzymes to heparin-Sepharose and heparan sulfate on primary human fibroblasts. Cells lacking the corresponding lysosomal enzyme took up sufficient amounts of the conjugated enzymes to restore normal turnover of glycosaminoglycans. The high capacity of proteoglycan-mediated uptake suggests that this method of delivery might be used for enzyme replacement or introduction of foreign enzymes into cells.

  13. Molecular characterization of aspartylglucosaminidase, a lysosomal hydrolase upregulated during strobilation in the moon jellyfish, Aurelia aurita.

    Science.gov (United States)

    Tsujita, Natsumi; Kuwahara, Hiroyuki; Koyama, Hiroki; Yanaka, Noriyuki; Arakawa, Kenji; Kuniyoshi, Hisato

    2017-05-01

    The life cycle of the moon jellyfish, Aurelia aurita, alternates between a benthic asexual polyp stage and a planktonic sexual medusa (jellyfish) stage. Transition from polyp to medusa is called strobilation. To investigate the molecular mechanisms of strobilation, we screened for genes that are upregulated during strobilation using the differential display method and we identified aspartylglucosaminidase (AGA), which encodes a lysosomal hydrolase. Similar to AGAs from other species, Aurelia AGA possessed an N-terminal signal peptide and potential N-glycosylation sites. The genomic region of Aurelia AGA was approximately 9.8 kb in length and contained 12 exons and 11 introns. Quantitative RT-PCR analysis revealed that AGA expression increased during strobilation, and was then decreased in medusae. To inhibit AGA function, we administered the lysosomal acidification inhibitors, chloroquine or bafilomycin A1, to animals during strobilation. Both inhibitors disturbed medusa morphogenesis at the oral end, suggesting involvement of lysosomal hydrolases in strobilation.

  14. Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease

    DEFF Research Database (Denmark)

    Kovács, Gábor G; Gelpi, Ellen; Ströbel, Thomas

    2007-01-01

    The endosomal-lysosomal system (ELS) has been suggested to play a role in the pathogenesis of prion diseases. The purpose of this study was to examine how experimental observations can be translated to human neuropathology and whether alterations of the ELS relate to neuropathologic changes....... Combined with stereologic techniques, we examined components of the ELS in human sporadic Creutzfeldt-Jakob disease brains. We immunostained for the early endosomal marker Rab5 and lysosomal enzymes cathepsin D and B. We determined neuron-specific changes in their expression and correlated......-immunoreactive lysosomes. The intraneuronal distribution of cathepsin D and B diverges between Purkinje cells and frontal cortical neurons in sporadic Creutzfeldt-Jakob disease brains. We demonstrated focal intra- and perineuronal colocalization of cathepsin D and PrP. Our results indicate that effects in the ELS...

  15. Resonant-state expansion Born Approximation

    CERN Document Server

    Doost, M B

    2015-01-01

    The Born Approximation is a fundamental formula in Physics, it allows the calculation of weak scattering via the Fourier transform of the scattering potential. I extend the Born Approximation by including in the formula the Fourier transform of a truncated basis of the infinite number of appropriately normalised resonant states. This extension of the Born Approximation is named the Resonant-State Expansion Born Approximation or RSE Born Approximation. The resonant-states of the system can be calculated using the recently discovered RSE perturbation theory for electrodynamics and normalised correctly to appear in spectral Green's functions via the flux volume normalisation.

  16. The inactivation of the sortilin gene leads to a partial disruption of prosaposin trafficking to the lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jibin; Racicott, Jesse [Department of Anatomy and Cell Biology, McGill University, Montreal (Canada); Morales, Carlos R., E-mail: carlos.morales@mcgill.ca [Department of Anatomy and Cell Biology, McGill University, Montreal (Canada)

    2009-11-01

    Lysosomes are intracellular organelles which contain enzymes and activator proteins involved in the digestion and recycling of a variety of cellular and extracellular substances. We have identified a novel sorting receptor, sortilin, which is involved in the lysosomal trafficking of the sphingolipid activator proteins, prosaposin and GM{sub 2}AP, and the soluble hydrolases cathepsin D, cathepsin H, and acid sphingomyelinase. Sortilin belongs to a growing family of receptors with homology to the yeast Vps10 protein, which acts as a lysosomal sorting receptor for carboxypeptidase Y. In this study we examined the effects of the sortilin gene inactivation in mice. The inactivation of this gene did not yield any noticeable lysosomal pathology. To determine the existence of an alternative receptor complementing the sorting function of sortilin, we quantified the concentration of prosaposin in the lysosomes of the nonciliated epithelial cells lining the efferent ducts. These cells were chosen because they express sortilin and have a large number of lysosomes containing prosaposin. In addition, the nonciliated cells are known to endocytose luminal prosaposin that is synthesized and secreted by Sertoli cells into the seminiferous luminal fluids. Consequently, the nonciliated cells are capable of targeting both exogenous and endogenous prosaposin to the lysosomes. Using electron microscope immunogold labeling and quantitative analysis, our results demonstrate that inactivation of the sortilin gene produces a significant decrease of prosaposin in the lysosomes. When luminal prosaposin was excluded from the efferent ducts, the level of prosaposin in lysosomes was even lower in the mutant mice. Nonetheless, a significant amount of prosaposin continues to reach the lysosomal compartment. These results strongly suggest the existence of an alternative receptor that complements the function of sortilin and explains the lack of lysosomal storage disorders in the sortilin

  17. Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A.

    Science.gov (United States)

    Böckenhoff, Annika; Cramer, Sandra; Wölte, Philipp; Knieling, Simeon; Wohlenberg, Claudia; Gieselmann, Volkmar; Galla, Hans-Joachim; Matzner, Ulrich

    2014-02-26

    Enzyme replacement therapy (ERT) is a treatment option for lysosomal storage disorders (LSDs) caused by deficiencies of soluble lysosomal enzymes. ERT depends on receptor-mediated transport of intravenously injected recombinant enzyme to lysosomes of patient cells. The blood-brain barrier (BBB) prevents efficient transfer of therapeutic polypeptides from the blood to the brain parenchyma and thus hinders effective treatment of LSDs with CNS involvement. We compared the potential of five brain-targeting peptides to promote brain delivery of the lysosomal enzyme arylsulfatase A (ASA). Fusion proteins between ASA and the protein transduction domain of the human immunodeficiency virus TAT protein (Tat), an Angiopep peptide (Ang-2), and the receptor-binding domains of human apolipoprotein B (ApoB) and ApoE (two versions, ApoE-I and ApoE-II) were generated. All ASA fusion proteins were enzymatically active and targeted to lysosomes when added to cultured cells. In contrast to wild-type ASA, which is taken up by mannose-6-phosphate receptors, all chimeric proteins were additionally endocytosed via mannose-6-phosphate-independent routes. For ASA-Ang-2, ASA-ApoE-I, and ASA-ApoE-II, uptake was partially due to the low-density lipoprotein receptor-related protein 1. Transendothelial transfer in a BBB cell culture model was elevated for ASA-ApoB, ASA-ApoE-I, and ASA-ApoE-II. Brain delivery was, however, increased only for ASA-ApoE-II. ApoE-II was also superior to wild-type ASA in reducing lysosomal storage in the CNS of ASA-knock-out mice treated by ERT. Therefore, the ApoE-derived peptide appears useful to treat metachromatic leukodystrophy and possibly other neurological disorders more efficiently.

  18. Cytosolic peroxidases protect the lysosome of bloodstream African trypanosomes from iron-mediated membrane damage.

    Directory of Open Access Journals (Sweden)

    Corinna Hiller

    2014-04-01

    Full Text Available African trypanosomes express three virtually identical non-selenium glutathione peroxidase (Px-type enzymes which preferably detoxify lipid-derived hydroperoxides. As shown previously, bloodstream Trypanosoma brucei lacking the mitochondrial Px III display only a weak and transient proliferation defect whereas parasites that lack the cytosolic Px I and Px II undergo extremely fast lipid peroxidation and cell lysis. The phenotype can completely be rescued by supplementing the medium with the α-tocopherol derivative Trolox. The mechanism underlying the rapid cell death remained however elusive. Here we show that the lysosome is the origin of the cellular injury. Feeding the px I-II knockout parasites with Alexa Fluor-conjugated dextran or LysoTracker in the presence of Trolox yielded a discrete lysosomal staining. Yet upon withdrawal of the antioxidant, the signal became progressively spread over the whole cell body and was completely lost, respectively. T. brucei acquire iron by endocytosis of host transferrin. Supplementing the medium with iron or transferrin induced, whereas the iron chelator deferoxamine and apo-transferrin attenuated lysis of the px I-II knockout cells. Immunofluorescence microscopy with MitoTracker and antibodies against the lysosomal marker protein p67 revealed that disintegration of the lysosome precedes mitochondrial damage. In vivo experiments confirmed the negligible role of the mitochondrial peroxidase: Mice infected with px III knockout cells displayed only a slightly delayed disease development compared to wild-type parasites. Our data demonstrate that in bloodstream African trypanosomes, the lysosome, not the mitochondrion, is the primary site of oxidative damage and cytosolic trypanothione/tryparedoxin-dependent peroxidases protect the lysosome from iron-induced membrane peroxidation. This process appears to be closely linked to the high endocytic rate and distinct iron acquisition mechanisms of the infective

  19. Lysosomal exoglycosidases in serum and urine of patients with pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Anna Stypułkowska

    2010-11-01

    Full Text Available Lysosomal exoglycosidases: N-acetyl-β-D-hexosaminidase (HEX, β-D-galactosidase (GAL, ι-L-fucosidase (FUC and ι-D-mannosidase (MAN modify oligosaccharide chains of glycoconjugates in endoplasmatic reticulum and/or Golgi apparatus and degrade them in lysosomes. In acid environment of lysosome, exoglycosidases degrade oligosaccharide chains of glycoproteins, glycolipids and glycosaminoglycans by eliminating single sugars from the edges of oligosaccharide chains. Neoplasms change biochemical processes in tissues and may significantly change the activity of many enzymes including the activity of lysosomal exoglycosidasses in serum and urine of persons with neoplasmatic diseases. The aim of the present paper was evaluation the activity of HEX, GAL, FUC and MAN in serum and urine of patients with pancreatic adenocarcinoma. Serum and urine samples were collected from 15 patients with adenocarcinoma of the pancreas and 15 healthy persons. The activity of lysosomal exoglycosidases was determined by the method of Marciniak et al. adapted to serum and urine of patients with adenocarcinoma of the pancreas. Our results indicate significant decrease in activity of GAL (p=0.037 in serum of patients with pancreatic adenocarcinoma, significant increase in activity of HEX (p<0.001 and FUC (p=0.027 in serum, and HEX (p=0.003 in urine, as well as significant decrease of FUC (p=0.016 and MAN (p=0.029 in urine o patients with adenocarcinoma of the pancreas, in comparison to the control group. Increase in activity of some lysosomal enzymes in serum and urine of pancreatic adenocarcinoma patients, may indicate on destruction of pancreatic tissue by pancreatic adenocarcinoma. Determination of the HEX, GAL, FUC and MAN in serum and urine may be useful in diagnostics of pancreatic adenocarcinoma.

  20. Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity.

    Science.gov (United States)

    Marino, Julieta; García Vior, María C; Furmento, Verónica A; Blank, Viviana C; Awruch, Josefina; Roguin, Leonor P

    2013-11-01

    In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells. ROS led to an early permeabilization of lysosomal membranes as demonstrated by the reduction of lysosome fluorescence with acridine orange and the release of lysosomal proteases to cytosol. Treatment with antioxidants inhibited ROS generation, preserved the integrity of lysosomal membrane and increased cell proliferation in a concentration-dependent manner. Lysosome disruption was followed by mitochondrial depolarization, cytosolic release of cytochrome C and caspases activation. Although no change in the total amount of Bax was observed, the translocation of Bax from cytosol to mitochondria, the cleavage of the pro-apoptotic protein Bid, together with the decrease of the anti-apoptotic proteins Bcl-XL and Bcl-2 indicated the involvement of Bcl-2 family proteins in the induction of the mitochondrial pathway. It was also demonstrated that cathepsin D, but not caspase-8, contributed to Bid cleavage. In conclusion, Pc13-induced cell photodamage is triggered by ROS generation and activation of the mitochondrial apoptotic pathway through the release of lysosomal proteases. In addition, our results also indicated that Pc13 induced

  1. Rapid recycling of Ca2+ between IP3-sensitive stores and lysosomes.

    Directory of Open Access Journals (Sweden)

    Cristina I López Sanjurjo

    Full Text Available Inositol 1,4,5-trisphosphate (IP3 evokes release of Ca2+ from the endoplasmic reticulum (ER, but the resulting Ca2+ signals are shaped by interactions with additional intracellular organelles. Bafilomycin A1, which prevents lysosomal Ca2+ uptake by inhibiting H+ pumping into lysosomes, increased the amplitude of the initial Ca2+ signals evoked by carbachol in human embryonic kidney (HEK cells. Carbachol alone and carbachol in combination with parathyroid hormone (PTH evoke Ca2+ release from distinct IP3-sensitive Ca2+ stores in HEK cells stably expressing human type 1 PTH receptors. Bafilomycin A1 similarly exaggerated the Ca2+ signals evoked by carbachol or carbachol with PTH, indicating that Ca2+ released from distinct IP3-sensitive Ca2+ stores is sequestered by lysosomes. The Ca2+ signals resulting from store-operated Ca2+ entry, whether evoked by thapsigargin or carbachol, were unaffected by bafilomycin A1. Using Gd3+ (1 mM to inhibit both Ca2+ entry and Ca2+ extrusion, HEK cells were repetitively stimulated with carbachol to assess the effectiveness of Ca2+ recycling to the ER after IP3-evoked Ca2+ release. Blocking lysosomal Ca2+ uptake with bafilomycin A1 increased the amplitude of each carbachol-evoked Ca2+ signal without affecting the rate of Ca2+ recycling to the ER. This suggests that Ca2+ accumulated by lysosomes is rapidly returned to the ER. We conclude that lysosomes rapidly, reversibly and selectively accumulate the Ca2+ released by IP3 receptors residing within distinct Ca2+ stores, but not the Ca2+ entering cells via receptor-regulated, store-operated Ca2+ entry pathways.

  2. Characterization of Two-pore Channel 2 (TPCN2)-mediated Ca2+ Currents in Isolated Lysosomes*

    OpenAIRE

    Schieder, Michael; Rötzer, Katrin; Brüggemann, Andrea; Biel, Martin; Wahl-Schott, Christian A.

    2010-01-01

    Two-pore channels (TPCNs) have been proposed to form lysosomal Ca2+ release channels that are activated by nicotinic acid adenine dinucleotide phosphate. Here, we employ a glass chip-based method to record for the first time nicotinic acid adenine dinucleotide phosphate -dependent currents through a two-pore channel (TPCN2) from intact lysosomes. We show that TPCN2 is a highly selective Ca2+ channel that is regulated by intralysosomal pH. Using site-directed mutagenesis, we identify an amino ...

  3. Three-layer poly(methyl methacrylate) microsystem for analysis of lysosomal enzymes for diagnostic purposes

    DEFF Research Database (Denmark)

    Kwapiszewski, Radoslaw; Kwapiszewska, Karina; Kutter, Jörg P

    2015-01-01

    Lysosomal storage diseases are chronic, progressive and typically have a devastating impact on the patient and the family. The diagnosis of these diseases is still a challenge, however, even for trained specialists. Accurate diagnostic methods and high-throughput tools that could be readily...... incorporated into existing screening laboratories are urgently required. We propose a new method for measuring the activity of lysosomal enzymes using a microfluidic device. The principle of the method is the fluorometric determination of a protonated form of 4-methylumbelliferone directly in the enzymatic...

  4. Effects of the lysosomal destabilizing drug siramesine on glioblastoma in vitro and in vivo

    DEFF Research Database (Denmark)

    Jensen, Stine S.; Asferg Petterson, Stine; Halle, Bo

    2017-01-01

    confirmed by immunohistochemical staining of histological sections of spheroids, spheroids in brain slice cultures and tumors in mice brains. Results: The results showed that siramesine killed standard glioma cell lines in vitro, and loss of acridine orange staining suggested a compromised lysosomal...... cell death and inhibited tumor cell migration. This could not be reproduced in the organotypic three dimensional spheroid-brain slice culture model or in the mice xenograft model. Conclusions: In conclusion the in vitro results obtained with tumor cells and spheroids suggest a potential of lysosomal...

  5. Amyloid-β secretion, generation, and lysosomal sequestration in response to proteasome inhibition

    DEFF Research Database (Denmark)

    Agholme, Lotta; Hallbeck, Martin; Benedikz, Eirikur

    2012-01-01

    that proteasome inhibition resulted in autophagy-dependent accumulation of Aβ in lysosomes, and increased levels of intracellular and secreted Aβ. The enhanced levels of Aβ could not be explained by increased amounts of AβPP. Instead, reduced degradation of the C-terminal fragment of AβPP (C99) by the proteasome....... Furthermore, proteasome inhibition caused a reduction in cellular viability, which was reverted by inhibition of autophagy. Dysfunction of the proteasome could cause lysosomal accumulation of Aβ, as well as increased generation and secretion of Aβ, which is partly facilitated by autophagy. As a decrease...

  6. Lysosomal membrane stability of the mussel, Mytilus galloprovincialis (L.), as a biomarker of tributyltin exposure.

    Science.gov (United States)

    Okoro, Hussein K; Snyman, Reinette G; Fatoki, Olalekan S; Adekola, Folahan A; Ximba, Bhekumusa J; Slabber, Michelle Y

    2015-05-01

    The effect of tributyltin (TBT) on the stability of hemocytic lysosome membranes of the mussel, Mytilus galloprovincialis, and the use thereof as a biomarker of TBT-induced stress, was investigated. Mussels were exposed to 0.1 and 1.0 µg/L tributyltin respectively for 4 weeks. Lysosomal membrane stability of hemocytes was tested weekly by means of the neutral red retention time (NRRT) assay, after which the mussel samples were analyzed for TBT content. The two exposed groups exhibited significantly increased (p galloprovincialis.

  7. Effect of various lysosomes and endotoxin on vascular permeability in frogs and mice.

    Science.gov (United States)

    Csákó, G; Reichel, A; Csernyánszky, H; Reichel, U

    1975-01-01

    Blood-lymph permeability increasing effects of frog liver lysosomes, Escherichia coli 0111 endotoxin, bradykinin and serotonin were demonstrated in frogs with a method developed by the authors. These actions were expressed in a faster dye saturation in the lymph as compared to that of the controls. 2. The method is based on the determinations of concentration of Evans blue transported as protein-bound dye into the lymph. 3. Frog liver and polymorphonuclear leukocyte lysosomes had a capillary permeability increasing action tested by local skin response when injecting Evans blue intravenously in mice. 4. All these phenomena are similar to events described earlier in mammalian systems.

  8. Conformal expansions and renormalons

    CERN Document Server

    Gardi, E; Gardi, Einan; Grunberg, Georges

    2001-01-01

    The large-order behaviour of QCD is dominated by renormalons. On the other hand renormalons do not occur in conformal theories, such as the one describing the infrared fixed-point of QCD at small beta_0 (the Banks--Zaks limit). Since the fixed-point has a perturbative realization, all-order perturbative relations exist between the conformal coefficients, which are renormalon-free, and the standard perturbative coefficients, which contain renormalons. Therefore, an explicit cancellation of renormalons should occur in these relations. The absence of renormalons in the conformal limit can thus be seen as a constraint on the structure of the QCD perturbative expansion. We show that the conformal constraint is non-trivial: a generic model for the large-order behaviour violates it. We also analyse a specific example, based on a renormalon-type integral over the two-loop running-coupling, where the required cancellation does occur.

  9. Optical imaging. Expansion microscopy.

    Science.gov (United States)

    Chen, Fei; Tillberg, Paul W; Boyden, Edward S

    2015-01-30

    In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. We discovered that by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labels located within the specimen directly to the polymer network, labels spaced closer than the optical diffraction limit can be isotropically separated and optically resolved, a process we call expansion microscopy (ExM). Thus, this process can be used to perform scalable superresolution microscopy with diffraction-limited microscopes. We demonstrate ExM with apparent ~70-nanometer lateral resolution in both cultured cells and brain tissue, performing three-color superresolution imaging of ~10(7) cubic micrometers of the mouse hippocampus with a conventional confocal microscope.

  10. Effects of emergency department expansion on emergency department patient flow.

    Science.gov (United States)

    Mumma, Bryn E; McCue, James Y; Li, Chin-Shang; Holmes, James F

    2014-05-01

    Emergency department (ED) crowding is an increasing problem associated with adverse patient outcomes. ED expansion is one method advocated to reduce ED crowding. The objective of this analysis was to determine the effect of ED expansion on measures of ED crowding. This was a retrospective study using administrative data from two 11-month periods before and after the expansion of an ED from 33 to 53 adult beds in an academic medical center. ED volume, staffing, and hospital admission and occupancy data were obtained either from the electronic health record (EHR) or from administrative records. The primary outcome was the rate of patients who left without being treated (LWBT), and the secondary outcome was total ED boarding time for admitted patients. A multivariable robust linear regression model was used to determine whether ED expansion was associated with the outcome measures. The mean (±SD) daily adult volume was 128 (±14) patients before expansion and 145 (±17) patients after. The percentage of patients who LWBT was unchanged: 9.0% before expansion versus 8.3% after expansion (difference = 0.6%, 95% confidence interval [CI] = -0.16% to 1.4%). Total ED boarding time increased from 160 to 180 hours/day (difference = 20 hours, 95% CI = 8 to 32 hours). After daily ED volume, low-acuity area volume, daily wait time, daily boarding hours, and nurse staffing were adjusted for, the percentage of patients who LWBT was not independently associated with ED expansion (p = 0.053). After ED admissions, ED intensive care unit (ICU) admissions, elective surgical admissions, hospital occupancy rate, ICU occupancy rate, and number of operational ICU beds were adjusted for, the increase in ED boarding hours was independently associated with the ED expansion (p = 0.005). An increase in ED bed capacity was associated with no significant change in the percentage of patients who LWBT, but had an unintended consequence of an increase in ED boarding hours. ED expansion alone does

  11. The Possible "Proton Sponge " Effect of Polyethylenimine (PEI) Does Not Include Change in Lysosomal pH

    DEFF Research Database (Denmark)

    Søndergaard, Rikke Vicki; Mattebjerg, Maria Ahlm; Henriksen, Jonas Rosager

    2013-01-01

    " hypothesis. Our measurements show that PEI does not induce change in lysosomal pH as previously suggested and quantification of PEI concentrations in lysosomes makes it uncertain that the "proton sponge " effect is the dominant mechanism of polyplex escape.Molecular Therapy (2012); doi:10.1038/mt.2012.185....

  12. Disorders of lysosomal acidification-The emerging role of v-ATPase in aging and neurodegenerative disease.

    Science.gov (United States)

    Colacurcio, Daniel J; Nixon, Ralph A

    2016-12-01

    Autophagy and endocytosis deliver unneeded cellular materials to lysosomes for degradation. Beyond processing cellular waste, lysosomes release metabolites and ions that serve signaling and nutrient sensing roles, linking the functions of the lysosome to various pathways for intracellular metabolism and nutrient homeostasis. Each of these lysosomal behaviors is influenced by the intraluminal pH of the lysosome, which is maintained in the low acidic range by a proton pump, the vacuolar ATPase (v-ATPase). New reports implicate altered v-ATPase activity and lysosomal pH dysregulation in cellular aging, longevity, and adult-onset neurodegenerative diseases, including forms of Parkinson disease and Alzheimer disease. Genetic defects of subunits composing the v-ATPase or v-ATPase-related proteins occur in an increasingly recognized group of familial neurodegenerative diseases. Here, we review the expanding roles of the v-ATPase complex as a platform regulating lysosomal hydrolysis and cellular homeostasis. We discuss the unique vulnerability of neurons to persistent low level lysosomal dysfunction and review recent clinical and experimental studies that link dysfunction of the v-ATPase complex to neurodegenerative diseases across the age spectrum. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Iron content and acid phosphatase activity in hepatic parenchymal lysosomes of patients with hemochromatosis before and after phlebotomy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cleton, M.I.; de Bruijn, W.C.; van Blokland, W.T.; Marx, J.J.; Roelofs, J.M.; Rademakers, L.H.

    1988-03-01

    Lysosomal structures in liver parenchymal cells of 3 patients with iron overload and of 3 subjects without iron-storage disorders were investigated. A combination of enzyme cytochemistry--with cerium as a captive ion to demonstrate lysosomal acid phosphatase activity--and electron probe X-ray microanalysis (EPMA) was used. We were able (1) to define and quantify lysosomal structures as lysosomes, siderosomes, or residual bodies, (2) to quantify the amount of iron and cerium simultaneously in these structures, and (3) to evaluate a possible relation between iron storage and enzyme activity. With histopathologically increased iron storage, the number of siderosomes had increased at the cost of lysosomes, with a corresponding increase in acid phosphatase activity in both organelles. In histopahtologically severe iron overload, however, acid phosphatase activity was low or not detectable and most of the iron was stored in residual bodies. After phlebotomy treatment, the number of siderosomes had decreased in favor of the lysosomes, approaching values obtained in control subjects, and acid phosphatase activity was present in all iron-containing structures. In this way a relationship between iron storage and enzyme activity was established. The iron content of the individual lysosomal structures per unit area had increased with histopathologically increased iron storage and had decreased after phlebotomy treatment. From this observation, it is concluded that the iron status of the patient is not only reflected by the amount of iron-containing hepatocytes but, as well, by the iron content lysosomal unit area.

  14. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro.

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A; Busto, Rebeca

    2016-03-18

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes' internal milieu induced by haloperidol affects lysosomal functionality.

  15. Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis.

    Science.gov (United States)

    Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel W; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A

    2011-07-01

    The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. We recently observed broad therapeutic effects of stimulating autophagic-lysosomal proteolysis in the TgCRND8 mouse model of AD that exhibits defective proteolytic clearance of autophagic substrates, robust intralysosomal amyloid-β peptide (Aβ) accumulation, extracellular β-amyloid deposition and cognitive deficits. By genetically deleting the lysosomal cysteine protease inhibitor, cystatin B (CstB), to selectively restore depressed cathepsin activities, we substantially cleared Aβ, ubiquitinated proteins and other autophagic substrates from autolysosomes/lysosomes and rescued autophagic-lysosomal pathology, as well as reduced total Aβ40/42 levels and extracellular amyloid deposition, highlighting the underappreciated importance of the lysosomal system for Aβ clearance. Most importantly, lysosomal remediation prevented the marked learning and memory deficits in TgCRND8 mice. Our findings underscore the pathogenic significance of autophagic-lysosomal dysfunction in AD and demonstrate the value of reversing this dysfunction as an innovative therapeautic strategy for AD.

  16. Impact of high cholesterol in a Parkinson's disease model: Prevention of lysosomal leakage versus stimulation of α-synuclein aggregation.

    Science.gov (United States)

    Eriksson, Ida; Nath, Sangeeta; Bornefall, Per; Giraldo, Ana Maria Villamil; Öllinger, Karin

    2017-03-01

    Parkinson's disease is characterized by accumulation of intraneuronal cytoplasmic inclusions, Lewy bodies, which mainly consist of aggregated α-synuclein. Controversies exist as to whether high blood cholesterol is a risk factor for the development of the disease and whether statin treatment could have a protective effect. Using a model system of BE(2)-M17 neuroblastoma cells treated with the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)), we found that MPP(+)-induced cell death was accompanied by cholesterol accumulation in a lysosomal-like pattern in pre-apoptotic cells. To study the effects of lysosomal cholesterol accumulation, we increased lysosomal cholesterol through pre-treatment with U18666A and found delayed leakage of lysosomal contents into the cytosol, which reduced cell death. This suggests that increased lysosomal cholesterol is a stress response mechanism to protect lysosomal membrane integrity in response to early apoptotic stress. However, high cholesterol also stimulated the accumulation of α-synuclein. Treatment with the cholesterol-lowering drug lovastatin reduced MPP(+)-induced cell death by inhibiting the production of reactive oxygen species, but did not prevent lysosomal cholesterol increase nor affect α-synuclein accumulation. Our study indicates a dual role of high cholesterol in Parkinson's disease, in which it acts both as a protector against lysosomal membrane permeabilization and as a stimulator of α-synuclein accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Burial Ground Expansion Hydrogeologic Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gaughan , T.F.

    1999-02-26

    Sirrine Environmental Consultants provided technical oversight of the installation of eighteen groundwater monitoring wells and six exploratory borings around the location of the Burial Ground Expansion.

  18. EQUIVALENT MODEL OF EXPANSION OF CEMENT MORTAR UNDER SULPHATE EROSION

    Institute of Scientific and Technical Information of China (English)

    Jue Zhu; Minqiang Jiaug; Jiankang Chen

    2008-01-01

    The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods.First,cement mortars are fabricated with the ratio of water to cement of 0.4,0.6,and 0.8.Secondly,the expansion of specimen immerged in sulphate solution is measured at different times.Thirdly,a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method.In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account.Finally,the numerical calculation is performed.The numerical and experimental results indicate that the model perfectly describes the expansion of the cement mortar.

  19. Role of lysosomal enzymes released by alveolar macrophages in the pathogenesis of the acute phase of hypersensitivity pneumonitis

    Directory of Open Access Journals (Sweden)

    J. L. Pérez-Arellano

    1995-01-01

    Full Text Available Hydrolytic enzymes are the major constituents of alveolar macrophages (AM and have been shown to be involved in many aspects of the inflammatory pulmonary response. The aim of this study was to evaluate the role of lysosomal enzymes in the acute phase of hypersensitivity pneumonitis (HPs. An experimental study on AM lysosomal enzymes of an HP-guinea-pig model was performed. The results obtained both in vivo and in vitro suggest that intracellular enzymatic activity decrease is, at least partly, due to release of lysosomal enzymes into the medium. A positive but slight correlation was found between extracellular lysosomal activity and four parameters of lung lesion (lung index, bronchoalveolar fluid total (BALF protein concentration, BALF LDH and BALF alkaline phosphatase activities. All the above findings suggest that the AM release of lysosomal enzymes during HP is a factor involved, although possibly not the only one, in the pulmonary lesions appearing in this disease.

  20. Frequency dependent thermal expansion in binary viscoelasticcomposites

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, James G.

    2007-12-01

    The effective thermal expansion coefficient beta* of abinary viscoelastic composite is shown to be frequency dependent even ifthe thermal expansion coefficients beta A and beta B of both constituentsare themselves frequency independent. Exact calculations for binaryviscoelastic systems show that beta* is related to constituent valuesbeta A, beta B, volume fractions, and bulk moduli KA, KB, as well as tothe overall bulk modulus K* of the composite system. Then, beta* isdetermined for isotropic systems by first bounding (or measuring) K* andtherefore beta*. For anisotropic systems with hexagonal symmetry, theprincipal values of the thermal expansion beta*perp and beta*para can bedetermined exactly when the constituents form a layered system. In allthe examples studied, it is shown explicitly that the eigenvectors of thethermoviscoelastic system possess non-negative dissipation -- despite thecomplicated analytical behavior of the frequency dependent thermalexpansivities themselves. Methods presented have a variety ofapplications from fluid-fluid mixtures to fluid-solid suspensions, andfrom fluid-saturated porous media to viscoelastic solid-solidcomposites.

  1. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

    Science.gov (United States)

    Varga, Rita-Eva; Khundadze, Mukhran; Damme, Markus; Nietzsche, Sandor; Hoffmann, Birgit; Stauber, Tobias; Koch, Nicole; Hennings, J Christopher; Franzka, Patricia; Huebner, Antje K; Kessels, Michael M; Biskup, Christoph; Jentsch, Thomas J; Qualmann, Britta; Braulke, Thomas; Kurth, Ingo; Beetz, Christian; Hübner, Christian A

    2015-08-01

    Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

  2. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

    Directory of Open Access Journals (Sweden)

    Rita-Eva Varga

    2015-08-01

    Full Text Available Hereditary spastic paraplegia (HSP is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs. Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

  3. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

    Directory of Open Access Journals (Sweden)

    Rita-Eva Varga

    2015-08-01

    Full Text Available Hereditary spastic paraplegia (HSP is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs. Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

  4. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11

    Science.gov (United States)

    Varga, Rita-Eva; Khundadze, Mukhran; Damme, Markus; Nietzsche, Sandor; Hoffmann, Birgit; Stauber, Tobias; Koch, Nicole; Hennings, J. Christopher; Franzka, Patricia; Huebner, Antje K.; Kessels, Michael M.; Biskup, Christoph; Jentsch, Thomas J.; Qualmann, Britta; Braulke, Thomas; Kurth, Ingo; Beetz, Christian; Hübner, Christian A.

    2015-01-01

    Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice. PMID:26284655

  5. TPC1 Has Two Variant Isoforms, and Their Removal Has Different Effects on Endo-Lysosomal Functions Compared to Loss of TPC2

    OpenAIRE

    Ruas, Margarida; Chuang, Kai-Ting; Davis, Lianne C.; Al-Douri, Areej; Tynan, Patricia W.; Tunn, Ruth; Teboul, Lydia; Galione, Antony; Parrington, John

    2014-01-01

    Organelle ion homeostasis within the endo-lysosomal system is critical for physiological functions. Two-pore channels (TPCs) are cation channels that reside in endo-lysosomal organelles, and overexpression results in endo-lysosomal trafficking defects. However, the impact of a lack of TPC expression on endo-lysosomal trafficking is unknown. Here, we characterize Tpcn1 expression in two transgenic mouse lines (Tpcn1 XG716 and Tpcn1 T159) and show expression of a novel evolutionarily conserved ...

  6. Involvement of lysosomal dysfunction in autophagosome accumulation and early pathologies in adipose tissue of obese mice.

    Science.gov (United States)

    Mizunoe, Yuhei; Sudo, Yuka; Okita, Naoyuki; Hiraoka, Hidenori; Mikami, Kentaro; Narahara, Tomohiro; Negishi, Arisa; Yoshida, Miki; Higashibata, Rikako; Watanabe, Shukoh; Kaneko, Hiroki; Natori, Daiki; Furuichi, Takuma; Yasukawa, Hiromine; Kobayashi, Masaki; Higami, Yoshikazu

    2017-04-03

    Whether obesity accelerates or suppresses autophagy in adipose tissue is still debatable. To clarify dysregulation of autophagy and its role in pathologies of obese adipose tissue, we focused on lysosomal function, protease maturation and activity, both in vivo and in vitro. First, we showed that autophagosome formation was accelerated, but autophagic clearance was impaired in obese adipose tissue. We also found protein and activity levels of CTSL (cathepsin L) were suppressed in obese adipose tissue, while the activity of CTSB (cathepsin B) was significantly enhanced. Moreover, cellular senescence and inflammasomes were activated in obese adipose tissue. In 3T3L1 adipocytes, downregulation of CTSL deteriorated autophagic clearance, upregulated expression of CTSB, promoted cellular senescence and activated inflammasomes. Upregulation of CTSB promoted additional activation of inflammasomes. Therefore, we suggest lysosomal dysfunction observed in obese adipose tissue leads to lower autophagic clearance, resulting in autophagosome accumulation. Simultaneously, lysosomal abnormalities, including deteriorated CTSL function and compensatory activation of CTSB, caused cellular senescence and inflammasome activation. Our findings strongly suggest lysosomal dysfunction is involved in early pathologies of obese adipose tissue.

  7. Structural and functional analysis of lysosomal ss-galactosidase and its relation to the protective protein.

    NARCIS (Netherlands)

    H. Morreau (Hans)

    1992-01-01

    textabstractLysosomal B-galactosidase is the glycosidase, that cleaves B-linked galactosyl mmenes from a variety of natural and synthetic substrates. In normal tissues of various species this enzyme appears to associate with two other hydrolases, N-acetyl-o:-neuraminidase and the protective protein.

  8. AP-3 and Rabip4' coordinately regulate spatial distribution of lysosomes.

    Directory of Open Access Journals (Sweden)

    Viorica Ivan

    Full Text Available The RUN and FYVE domain proteins rabip4 and rabip4' are encoded by RUFY1 and differ in a 108 amino acid N-terminal extension in rabip4'. Their identical C terminus binds rab5 and rab4, but the function of rabip4s is incompletely understood. We here found that silencing RUFY1 gene products promoted outgrowth of plasma membrane protrusions, and polarized distribution and clustering of lysosomes at their tips. An interactor screen for proteins that function together with rabip4' yielded the adaptor protein complex AP-3, of which the hinge region in the β3 subunit bound directly to the FYVE domain of rabip4'. Rabip4' colocalized with AP-3 on a tubular subdomain of early endosomes and the extent of colocalization was increased by a dominant negative rab4 mutant. Knock-down of AP-3 had an ever more dramatic effect and caused accumulation of lysosomes in protrusions at the plasma membrane. The most peripheral lysosomes were localized beyond microtubules, within the cortical actin network. Our results uncover a novel function for AP-3 and rabip4' in regulating lysosome positioning through an interorganellar pathway.

  9. Brucella suis-Impaired Specific Recognition of Phagosomes by Lysosomes due to Phagosomal Membrane Modifications

    Science.gov (United States)

    Naroeni, Aroem; Jouy, Nicolas; Ouahrani-Bettache, Safia; Liautard, Jean-Pierre; Porte, Françoise

    2001-01-01

    Brucella species are gram-negative, facultatively intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment in phagocytic and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both types of cells. However, the biochemical mechanisms and microbial factors implicated in Brucella maturation are still completely unknown. We developed two different approaches in an attempt to gain further insight into these mechanisms: (i) a fluorescence microscopy analysis of general intracellular trafficking on whole cells in the presence of Brucella and (ii) a flow cytometry analysis of in vitro reconstitution assays showing the interaction between Brucella suis-containing phagosomes and lysosomes. The fluorescence microscopy results revealed that fusion properties of latex bead-containing phagosomes with lysosomes were not modified in the presence of live Brucella suis in the cells. We concluded that fusion inhibition was restricted to the pathogen phagosome and that the host cell fusion machinery was not altered by the presence of live Brucella in the cell. By in vitro reconstitution experiments, we observed a specific association between killed B. suis-containing phagosomes and lysosomes, which was dependent on exogenously supplied cytosol, energy, and temperature. This association was observed with killed bacteria but not with live bacteria. Hence, this specific recognition inhibition seemed to be restricted to the pathogen phagosomal membrane, as noted in the in vivo experiments. PMID:11119541

  10. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells

    DEFF Research Database (Denmark)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library...... in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 si......), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide...

  11. Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology

    DEFF Research Database (Denmark)

    Clayton, Emma L.; Mizielinska, Sarah; Edgar, James R.;

    2015-01-01

    Mutations in the charged multivesicular body protein 2B (CHMP2B) cause frontotemporal dementia (FTD). We report that mice which express FTD-causative mutant CHMP2B at physiological levels develop a novel lysosomal storage pathology characterised by large neuronal autofluorescent aggregates. The a...

  12. Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology

    DEFF Research Database (Denmark)

    Clayton, Emma L.; Mizielinska, Sarah; Edgar, James R.

    2015-01-01

    Mutations in the charged multivesicular body protein 2B (CHMP2B) cause frontotemporal dementia (FTD). We report that mice which express FTD-causative mutant CHMP2B at physiological levels develop a novel lysosomal storage pathology characterised by large neuronal autofluorescent aggregates. The a...

  13. Reference values for lysosomal enzymes activities using dried blood spots samples - a Brazilian experience

    Directory of Open Access Journals (Sweden)

    Martins Ana M

    2010-09-01

    Full Text Available Abstract Background Lysosomal storage diseases (LSD are inherited disorders caused by deficiency of lysosomal enzymes in which early diagnosis is essential to provide timely treatment. This study reports interval values for the activity of lysosomal enzymes that are deficient in Mucopolysaccharidosis type I, Fabry, Gaucher and Pompe disease, using dried blood spots on filter paper (DBS samples in a Brazilian population. Results Reference activity values were obtained from healthy volunteers samples for alpha-galactosidase A (4.57 ± 1.37 umol/L/h, beta-glucosidase (3.06 ± 0.99 umol/L/h, alpha-glucosidase (ratio: 13.19 ± 4.26; % inhibition: 70.66 ± 7.60, alpha-iduronidase (3.45 ± 1.21 umol/L/h and beta-galactosidase (14.09 ± 4.36 umol/L/h. Conclusion Reference values of five lysosomal enzymes were determined for a Brazilian population sample. However, as our results differ from other laboratories, it highlights the importance of establishing specific reference values for each center.

  14. Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease

    Science.gov (United States)

    Gan-Or, Ziv; Dion, Patrick A; Rouleau, Guy A

    2015-01-01

    Parkinson disease (PD), once considered as a prototype of a sporadic disease, is now known to be considerably affected by various genetic factors, which interact with environmental factors and the normal process of aging, leading to PD. Large studies determined that the hereditary component of PD is at least 27%, and in some populations, single genetic factors are responsible for more than 33% of PD patients. Interestingly, many of these genetic factors, such as LRRK2, GBA, SMPD1, SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved in the autophagy-lysosome pathway (ALP). Some of these genes encode lysosomal enzymes, whereas others correspond to proteins that are involved in transport to the lysosome, mitophagy, or other autophagic-related functions. Is it possible that all these factors converge into a single pathway that causes PD? In this review, we will discuss these genetic findings and the role of the ALP in the pathogenesis of PD and will try to answer this question. We will suggest a novel hypothesis for the pathogenic mechanism of PD that involves the lysosome and the different autophagy pathways. PMID:26207393

  15. Lysosomal Enzyme Glucocerebrosidase Protects against Aβ1-42 Oligomer-Induced Neurotoxicity

    Science.gov (United States)

    Kam, Tae-In; Yun, Seungpil; Kim, Sangjune; Park, Hyejin; Hwang, Heehong; Pletnikova, Olga; Troncoso, Juan C.; Dawson, Valina L.; Dawson, Ted M.; Ko, Han Seok

    2015-01-01

    Glucocerebrosidase (GCase) functions as a lysosomal enzyme and its mutations are known to be related to many neurodegenerative diseases, including Gaucher’s disease (GD), Parkinson’s disease (PD), and Dementia with Lewy Bodies (DLB). However, there is little information about the role of GCase in the pathogenesis of Alzheimer’s disease (AD). Here we demonstrate that GCase protein levels and enzyme activity are significantly decreased in sporadic AD. Moreover, Aβ1–42 oligomer treatment results in neuronal cell death that is concomitant with decreased GCase protein levels and enzyme activity, as well as impairment in lysosomal biogenesis and acidification. Importantly, overexpression of GCase promotes the lysosomal degradation of Aβ1–42 oligomers, restores the lysosomal impairment, and protects against the toxicity in neurons treated with Aβ1–42 oligomers. Our findings indicate that a deficiency of GCase could be involved in progression of AD pathology and suggest that augmentation of GCase activity may be a potential therapeutic option for the treatment of AD. PMID:26629917

  16. Lysosomal Enzyme Glucocerebrosidase Protects against Aβ1-42 Oligomer-Induced Neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Seulah Choi

    Full Text Available Glucocerebrosidase (GCase functions as a lysosomal enzyme and its mutations are known to be related to many neurodegenerative diseases, including Gaucher's disease (GD, Parkinson's disease (PD, and Dementia with Lewy Bodies (DLB. However, there is little information about the role of GCase in the pathogenesis of Alzheimer's disease (AD. Here we demonstrate that GCase protein levels and enzyme activity are significantly decreased in sporadic AD. Moreover, Aβ1-42 oligomer treatment results in neuronal cell death that is concomitant with decreased GCase protein levels and enzyme activity, as well as impairment in lysosomal biogenesis and acidification. Importantly, overexpression of GCase promotes the lysosomal degradation of Aβ1-42 oligomers, restores the lysosomal impairment, and protects against the toxicity in neurons treated with Aβ1-42 oligomers. Our findings indicate that a deficiency of GCase could be involved in progression of AD pathology and suggest that augmentation of GCase activity may be a potential therapeutic option for the treatment of AD.

  17. Phototoxic effects of lysosome-associated genetically encoded photosensitizer KillerRed

    Science.gov (United States)

    Serebrovskaya, Ekaterina O.; Ryumina, Alina P.; Boulina, Maria E.; Shirmanova, Marina V.; Zagaynova, Elena V.; Bogdanova, Ekaterina A.; Lukyanov, Sergey A.; Lukyanov, Konstantin A.

    2014-07-01

    KillerRed is a unique phototoxic red fluorescent protein that can be used to induce local oxidative stress by green-orange light illumination. Here we studied phototoxicity of KillerRed targeted to cytoplasmic surface of lysosomes via fusion with Rab7, a small GTPase that is known to be attached to membranes of late endosomes and lysosomes. It was found that lysosome-associated KillerRed ensures efficient light-induced cell death similar to previously reported mitochondria- and plasma membrane-localized KillerRed. Inhibitory analysis demonstrated that lysosomal cathepsins play an important role in the manifestation of KillerRed-Rab7 phototoxicity. Time-lapse monitoring of cell morphology, membrane integrity, and nuclei shape allowed us to conclude that KillerRed-Rab7-mediated cell death occurs via necrosis at high light intensity or via apoptosis at lower light intensity. Potentially, KillerRed-Rab7 can be used as an optogenetic tool to direct target cell populations to either apoptosis or necrosis.

  18. Lysosomal-associated transmembrane protein 5 (LAPTM5 is a molecular partner of CD1e.

    Directory of Open Access Journals (Sweden)

    Catherine Angénieux

    Full Text Available The CD1e protein participates in the presentation of lipid antigens in dendritic cells. Its transmembrane precursor is transported to lysosomes where it is cleaved into an active soluble form. In the presence of bafilomycin, which inhibits vacuolar ATPase and consequently the acidification of endosomal compartments, CD1e associates with a 27 kD protein. In this work, we identified this molecular partner as LAPTM5. The latter protein and CD1e colocalize in trans-Golgi and late endosomal compartments. The quantity of LAPTM5/CD1e complexes increases when the cells are treated with bafilomycin, probably due to the protection of LAPTM5 from lysosomal proteases. Moreover, we could demonstrate that LAPTM5/CD1e association occurs under physiological conditions. Although LAPTM5 was previously shown to act as a platform recruiting ubiquitin ligases and facilitating the transport of receptors to lysosomes, we found no evidence that LATPM5 controls either CD1e ubiquitination or the generation of soluble lysosomal CD1e proteins. Notwithstanding these last observations, the interaction of LAPTM5 with CD1e and their colocalization in antigen processing compartments both suggest that LAPTM5 might influence the role of CD1e in the presentation of lipid antigens.

  19. Lysosomal Acid Lipase Activity Is Reduced Both in Cryptogenic Cirrhosis and in Cirrhosis of Known Etiology.

    Directory of Open Access Journals (Sweden)

    Umberto Vespasiani-Gentilucci

    Full Text Available Liver cirrhosis is characterized by a severe acquired reduction of LAL-activity, the precise causes and consequences of which need to be further addressed. DBS-determined lysosomal enzyme activities seem to be affected by white blood cell and platelet counts, and the specificity of these tests can be reduced when applied to determined populations, such as cirrhotics.

  20. Two-photon fluorescence probes for imaging of mitochondria and lysosomes.

    Science.gov (United States)

    Yang, Wanggui; Chan, Pui Shan; Chan, Miu Shan; Li, King Fai; Lo, Pik Kwan; Mak, Nai Ki; Cheah, Kok Wai; Wong, Man Shing

    2013-04-28

    Novel biocompatible cyanines show not only a very large two-photon cross-section of up to 5130 GM at 910 nm in aqueous medium for high-contrast and -brightness two-photon fluorescence live cell imaging but also highly selective subcellular localization properties including localization of mitochondria and lysosomes.

  1. Diagnosing lysosomal storage diseases in a Brazilian non-newborn population by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Guilherme Dotto Brand

    2013-11-01

    Full Text Available OBJECTIVES: High-throughput mass spectrometry methods have been developed to screen newborns for lysosomal storage disorders, allowing the implementation of newborn screening pilot studies in North America and Europe. It is currently feasible to diagnose Pompe, Fabry, Gaucher, Krabbe, and Niemann-Pick A/B diseases, as well as mucopolysaccharidosis I, by tandem mass spectrometry in dried blood spots, which offers considerable technical advantages compared with standard methodologies. We aimed to investigate whether the mass spectrometry methodology for lysosomal storage disease screening, originally developed for newborns, can also discriminate between affected patients and controls of various ages. METHODS: A total of 205 control individuals were grouped according to age and subjected to mass spectrometry quantification of lysosomal α-glucosidase, β-glucocerebrosidase, α-galactosidase, acid sphingomyelinase, galactocerebrosidase, and α−L-iduronidase activities. Additionally, 13 affected patients were analyzed. RESULTS: The median activities for each enzyme and each age group were determined. Enzyme activities were significantly lower in individuals aged older than 18 years compared with those in newborns. Affected patients presented enzymatic activities corresponding to less than 20% of the age-matched controls. CONCLUSIONS: Our data indicate that the mass spectrometry methodology can be used for the screening of lysosomal storage diseases in non-newborn patients. However, for some diseases, such as Fabry and mucopolysaccharidosis I, a combination of biochemical and clinical data may be necessary to achieve accurate diagnoses.

  2. Possible existence of lysosome-like organella within mitochondria and its role in mitochondrial quality control.

    Directory of Open Access Journals (Sweden)

    Yuji Miyamoto

    Full Text Available The accumulation of unhealthy mitochondria results in mitochondrial dysfunction, which has been implicated in aging, cancer, and a variety of degenerative diseases. However, the mechanism by which mitochondrial quality is regulated remains unclear. Here, we show that Mieap, a novel p53-inducible protein, induces intramitochondrial lysosome-like organella that plays a critical role in mitochondrial quality control. Mieap expression is directly regulated by p53 and is frequently lost in human cancer as result of DNA methylation. Mieap dramatically induces the accumulation of lysosomal proteins within mitochondria and mitochondrial acidic condition without destroying the mitochondrial structure (designated MALM, for Mieap-induced accumulation of lysosome-like organelles within mitochondria in response to mitochondrial damage. MALM was not related to canonical autophagy. MALM is involved in the degradation of oxidized mitochondrial proteins, leading to increased ATP synthesis and decreased reactive oxygen species generation. These results suggest that Mieap induces intramitochondrial lysosome-like organella that plays a critical role in mitochondrial quality control by eliminating oxidized mitochondrial proteins. Cancer cells might accumulate unhealthy mitochondria due to p53 mutations and/or Mieap methylation, representing a potential cause of the Warburg effect.

  3. Autophagy-Independent Lysosomal Targeting Regulated by ULK1/2-FIP200 and ATG9

    Directory of Open Access Journals (Sweden)

    Jonathan M. Goodwin

    2017-09-01

    Full Text Available Iron is vital for many homeostatic processes, and its liberation from ferritin nanocages occurs in the lysosome. Studies indicate that ferritin and its binding partner nuclear receptor coactivator-4 (NCOA4 are targeted to lysosomes by a form of selective autophagy. By using genome-scale functional screening, we identify an alternative lysosomal transport pathway for ferritin that requires FIP200, ATG9A, VPS34, and TAX1BP1 but lacks involvement of the ATG8 lipidation machinery that constitutes classical macroautophagy. TAX1BP1 binds directly to NCOA4 and is required for lysosomal trafficking of ferritin under basal and iron-depleted conditions. Under basal conditions ULK1/2-FIP200 controls ferritin turnover, but its deletion leads to TAX1BP1-dependent activation of TBK1 that regulates redistribution of ATG9A to the Golgi enabling continued trafficking of ferritin. Cells expressing an amyotrophic lateral sclerosis (ALS-associated TBK1 allele are incapable of degrading ferritin suggesting a molecular mechanism that explains the presence of iron deposits in patient brain biopsies.

  4. TDP-43 loss of function increases TFEB activity and blocks autophagosome-lysosome fusion.

    Science.gov (United States)

    Xia, Qin; Wang, Hongfeng; Hao, Zongbing; Fu, Cheng; Hu, Qingsong; Gao, Feng; Ren, Haigang; Chen, Dong; Han, Junhai; Ying, Zheng; Wang, Guanghui

    2016-01-18

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by selective loss of motor neurons in brain and spinal cord. TAR DNA-binding protein 43 (TDP-43) was identified as a major component of disease pathogenesis in ALS, frontotemporal lobar degeneration (FTLD), and other neurodegenerative disease. Despite the fact that TDP-43 is a multi-functional protein involved in RNA processing and a large number of TDP-43 RNA targets have been discovered, the initial toxic effect and the pathogenic mechanism underlying TDP-43-linked neurodegeneration remain elusive. In this study, we found that loss of TDP-43 strongly induced a nuclear translocation of TFEB, the master regulator of lysosomal biogenesis and autophagy, through targeting the mTORC1 key component raptor. This regulation in turn enhanced global gene expressions in the autophagy-lysosome pathway (ALP) and increased autophagosomal and lysosomal biogenesis. However, loss of TDP-43 also impaired the fusion of autophagosomes with lysosomes through dynactin 1 downregulation, leading to accumulation of immature autophagic vesicles and overwhelmed ALP function. Importantly, inhibition of mTORC1 signaling by rapamycin treatment aggravated the neurodegenerative phenotype in a TDP-43-depleted Drosophila model, whereas activation of mTORC1 signaling by PA treatment ameliorated the neurodegenerative phenotype. Taken together, our data indicate that impaired mTORC1 signaling and influenced ALP may contribute to TDP-43-mediated neurodegeneration. © 2015 The Authors.

  5. Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage.

    Science.gov (United States)

    Feofanov, Alexei V; Sharonov, George V; Astapova, Maria V; Rodionov, Dmitriy I; Utkin, Yuriy N; Arseniev, Alexander S

    2005-08-15

    Cytotoxins from cobra venom are known to manifest cytotoxicity in various cell types. It is widely accepted that the plasma membrane is a target of cytotoxins, but the mechanism of their action remains obscure. Using the confocal spectral imaging technique, we show for the first time that cytotoxins from cobra venom penetrate readily into living cancer cells and accumulate markedly in lysosomes. Cytotoxins CT1 and CT2 from Naja oxiana, CT3 from Naja kaouthia and CT1 from Naja haje are demonstrated to possess this property with respect to human lung adenocarcinoma A549 and promyelocytic leukaemia HL60 cells. Immobilized plasma membrane binding accompanies the internalization of CT3 from Naja kaouthia in the HL60 cells, but it is very weak for other cytotoxins. Detectable membrane binding is not a property of any of the cytotoxins tested in A549 cells. The kinetics and concentration-dependence of cytotoxin accumulation in lysosomes correlate well with their cytotoxic effects. On the basis of the results obtained, we propose that lysosomes are a primary target of the lytic action of cytotoxins. Plasma membrane permeabilization seems to be a downstream event relative to lysosome rupture. Direct damage to the plasma membrane may be a complementary mechanism, but its relative contribution to the cytotoxic action depends on the cytotoxin structure and cell type.

  6. Histopathologic correlates of radial stripes on MR images in lysosomal storage disorders.

    NARCIS (Netherlands)

    Voorn, J.P. van der; Pouwels, P.J.; Kamphorst, W.; Powers, J.M.; Lammens, M.M.Y.; Barkhof, F.; Knaap, M.S. van der

    2005-01-01

    BACKGROUND AND PURPOSE: Radially oriented hypointense stripes in hyperintense cerebral white matter are recognized on T2-weighted images of certain lysosomal storage disorders. We compared in vivo and postmortem MR imaging with histopathologic findings in three patients with metachromatic leukodystr

  7. Transcriptional control of the autophagy-lysosome system in pancreatic cancer

    Science.gov (United States)

    Perera, Rushika M.; Stoykova, Svetlana; Nicolay, Brandon N.; Ross, Kenneth N.; Fitamant, Julien; Boukhali, Myriam; Lengrand, Justine; Deshpande, Vikram; Selig, Martin K.; Ferrone, Cristina R.; Settleman, Jeff; Stephanopoulos, Gregory; Dyson, Nicholas J.; Zoncu, Roberto; Ramaswamy, Sridhar; Haas, Wilhelm; Bardeesy, Nabeel

    2016-01-01

    Activation of cellular stress response pathways to maintain metabolic homeostasis is emerging as a critical growth and survival mechanism in many cancers1. The pathogenesis of pancreatic ductal adenocarcinoma (PDA) requires high levels of autophagy2–4, a conserved self-degradative process5. However, the regulatory circuits that activate autophagy and reprogram PDA cell metabolism are unknown. We now show that autophagy induction in PDA occurs as part of a broader transcriptional program that coordinates activation of lysosome biogenesis and function, and nutrient scavenging, mediated by the MiT/TFE family transcription factors. In PDA cells, the MiT/TFE proteins6 – MITF, TFE3 and TFEB – are decoupled from regulatory mechanisms that control their cytoplasmic retention. Increased nuclear import in turn drives the expression of a coherent network of genes that induce high levels of lysosomal catabolic function essential for PDA growth. Unbiased global metabolite profiling reveals that MiT/TFE-dependent autophagy-lysosomal activation is specifically required to maintain intracellular amino acid (AA) pools. These results identify the MiT/TFE transcription factors as master regulators of metabolic reprogramming in pancreatic cancer and demonstrate activation of clearance pathways converging on the lysosome as a novel hallmark of aggressive malignancy. PMID:26168401

  8. WNK4 enhances the degradation of NCC through a sortilin-mediated lysosomal pathway.

    Science.gov (United States)

    Zhou, Bo; Zhuang, Jieqiu; Gu, Dingying; Wang, Hua; Cebotaru, Liudmila; Guggino, William B; Cai, Hui

    2010-01-01

    WNK kinase is a serine/threonine kinase that plays an important role in electrolyte homeostasis. WNK4 significantly inhibits the surface expression of the sodium chloride co-transporter (NCC) by enhancing the degradation of NCC through a lysosomal pathway, but the mechanisms underlying this trafficking are unknown. Here, we investigated the effect of the lysosomal targeting receptor sortilin on NCC expression and degradation. In Cos-7 cells, we observed that the presence of WNK4 reduced the steady-state amount of NCC by approximately half. Co-transfection with truncated sortilin (a dominant negative mutant) prevented this WNK4-induced reduction in NCC. NCC immunoprecipitated with both wild-type sortilin and, to a lesser extent, truncated sortilin. Immunostaining revealed that WNK4 increased the co-localization of NCC with the lysosomal marker cathepsin D, and NCC co-localized with wild-type sortilin, truncated sortilin, and WNK4 in the perinuclear region. These findings suggest that WNK4 promotes NCC targeting to the lysosome for degradation via a mechanism involving sortilin.

  9. Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules.

    Science.gov (United States)

    Pulipparacharuvil, Suprabha; Akbar, Mohammed Ali; Ray, Sanchali; Sevrioukov, Evgueny A; Haberman, Adam S; Rohrer, Jack; Krämer, Helmut

    2005-08-15

    Mutations that disrupt trafficking to lysosomes and lysosome-related organelles cause multiple diseases, including Hermansky-Pudlak syndrome. The Drosophila eye is a model system for analyzing such mutations. The eye-color genes carnation and deep orange encode two subunits of the Vps-C protein complex required for endosomal trafficking and pigment-granule biogenesis. Here we demonstrate that dVps16A (CG8454) encodes another Vps-C subunit. Biochemical experiments revealed a specific interaction between the dVps16A C-terminus and the Sec1/Munc18 homolog Carnation but not its closest homolog, dVps33B. Instead, dVps33B interacted with a related protein, dVps16B (CG18112). Deep orange bound both Vps16 homologs. Like a deep orange null mutation, eye-specific RNAi-induced knockdown of dVps16A inhibited lysosomal delivery of internalized ligands and interfered with biogenesis of pigment granules. Ubiquitous knockdown of dVps16A was lethal. Together, these findings demonstrate that Drosophila Vps16A is essential for lysosomal trafficking. Furthermore, metazoans have two types of Vps-C complexes with non-redundant functions.

  10. Lysosomal acid lipase deficiency--an under-recognized cause of dyslipidaemia and liver dysfunction.

    Science.gov (United States)

    Reiner, Željko; Guardamagna, Ornella; Nair, Devaki; Soran, Handrean; Hovingh, Kees; Bertolini, Stefano; Jones, Simon; Ćorić, Marijana; Calandra, Sebastiano; Hamilton, John; Eagleton, Terence; Ros, Emilio

    2014-07-01

    Lysosomal acid lipase deficiency (LAL-D) is a rare autosomal recessive lysosomal storage disease caused by deleterious mutations in the LIPA gene. The age at onset and rate of progression vary greatly and this may relate to the nature of the underlying mutations. Patients presenting in infancy have the most rapidly progressive disease, developing signs and symptoms in the first weeks of life and rarely surviving beyond 6 months of age. Children and adults typically present with some combination of dyslipidaemia, hepatomegaly, elevated transaminases, and microvesicular hepatosteatosis on biopsy. Liver damage with progression to fibrosis, cirrhosis and liver failure occurs in a large proportion of patients. Elevated low-density lipoprotein cholesterol levels and decreased high-density lipoprotein cholesterol levels are common features, and cardiovascular disease may manifest as early as childhood. Given that these clinical manifestations are shared with other cardiovascular, liver and metabolic diseases, it is not surprising that LAL-D is under-recognized in clinical practice. This article provides practical guidance to lipidologists, endocrinologists, cardiologists and hepatologists on how to recognize individuals with this life-limiting disease. A diagnostic algorithm is proposed with a view to achieving definitive diagnosis using a recently developed blood test for lysosomal acid lipase. Finally, current management options are reviewed in light of the ongoing development of enzyme replacement therapy with sebelipase alfa (Synageva BioPharma Corp., Lexington, MA, USA), a recombinant human lysosomal acid lipase enzyme.

  11. Orthogonal Query Expansion

    CERN Document Server

    Ackerman, Margareta; Lopez-Ortiz, Alejandro

    2011-01-01

    Over the last fifteen years, web searching has seen tremendous improvements. Starting from a nearly random collection of matching pages in 1995, today, search engines tend to satisfy the user's informational need on well-formulated queries. One of the main remaining challenges is to satisfy the users' needs when they provide a poorly formulated query. When the pages matching the user's original keywords are judged to be unsatisfactory, query expansion techniques are used to alter the result set. These techniques find keywords that are similar to the keywords given by the user, which are then appended to the original query leading to a perturbation of the result set. However, when the original query is sufficiently ill-posed, the user's informational need is best met using entirely different keywords, and a small perturbation of the original result set is bound to fail. We propose a novel approach that is not based on the keywords of the original query. We intentionally seek out orthogonal queries, which are r...

  12. Lattice harmonics expansion revisited

    Science.gov (United States)

    Kontrym-Sznajd, G.; Holas, A.

    2017-04-01

    The main subject of the work is to provide the most effective way of determining the expansion of some quantities into orthogonal polynomials, when these quantities are known only along some limited number of sampling directions. By comparing the commonly used Houston method with the method based on the orthogonality relation, some relationships, which define the applicability and correctness of these methods, are demonstrated. They are verified for various sets of sampling directions applicable for expanding quantities having the full symmetry of the Brillouin zone of cubic and non-cubic lattices. All results clearly show that the Houston method is always better than the orthogonality-relation one. For the cubic symmetry we present a few sets of special directions (SDs) showing how their construction and, next, a proper application depend on the choice of various sets of lattice harmonics. SDs are important mainly for experimentalists who want to reconstruct anisotropic quantities from their measurements, performed at a limited number of sampling directions.

  13. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range.

    Science.gov (United States)

    Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-01-01

    Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion.

  14. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion

    National Research Council Canada - National Science Library

    Kouprina, Natalay; Pavlicek, Adam; Mochida, Ganeshwaran H; Solomon, Gregory; Gersch, William; Yoon, Young-Ho; Collura, Randall; Ruvolo, Maryellen; Barrett, J Carl; Woods, C Geoffrey; Walsh, Christopher A; Jurka, Jerzy; Larionov, Vladimir

    2004-01-01

    .... The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex...

  15. Isotropic Negative Thermal Expansion Metamaterials.

    Science.gov (United States)

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  16. Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells.

    Science.gov (United States)

    Canonico, B; Campana, R; Luchetti, F; Arcangeletti, M; Betti, M; Cesarini, E; Ciacci, C; Vittoria, E; Galli, L; Papa, S; Baffone, W

    2014-08-01

    Campylobacter jejuni is the most common cause of bacterial gastroenteritis in humans. The synthesis of cytolethal distending toxin appears essential in the infection process. In this work we evaluated the sequence of lethal events in HeLa cells exposed to cell lysates of two distinct strains, C. jejuni ATCC 33291 and C. jejuni ISS3. C. jejuni cell lysates (CCLys) were added to HeLa cell monolayers which were analysed to detect DNA content, death features, bcl-2 and p53 status, mitochondria/lysosomes network and finally, CD54 and CD59 alterations, compared to cell lysates of C. jejuni 11168H cdtA mutant. We found mitochondria and lysosomes differently targeted by these bacterial lysates. Death, consistent with apoptosis for C. jejuni ATCC 33291 lysate, occurred in a slow way (>48 h); concomitantly HeLa cells increase their endolysosomal compartment, as a consequence of toxin internalization besides a simultaneous and partial lysosomal destabilization. C. jejuni CCLys induces death in HeLa cells mainly via a caspase-dependent mechanism although a p53 lysosomal pathway (also caspase-independent) seems to appear in addition. In C. jejuni ISS3-treated cells, the p53-mediated oxidative degradation of mitochondrial components seems to be lost, inducing the deepest lysosomal alterations. Furthermore, CD59 considerably decreases, suggesting both a degradation or internalisation pathway. CCLys-treated HeLa cells increase CD54 expression on their surface, because of the action of lysate as its double feature of toxin and bacterial peptide. In conclusion, we revealed that C. jejuni CCLys-treated HeLa cells displayed different features, depending on the particular strain.

  17. Neurologic abnormalities in mouse models of the lysosomal storage disorders mucolipidosis II and mucolipidosis III γ.

    Directory of Open Access Journals (Sweden)

    Rachel A Idol

    Full Text Available UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is an α2β2γ2 hexameric enzyme that catalyzes the synthesis of the mannose 6-phosphate targeting signal on lysosomal hydrolases. Mutations in the α/β subunit precursor gene cause the severe lysosomal storage disorder mucolipidosis II (ML II or the more moderate mucolipidosis III alpha/beta (ML III α/β, while mutations in the γ subunit gene cause the mildest disorder, mucolipidosis III gamma (ML III γ. Here we report neurologic consequences of mouse models of ML II and ML III γ. The ML II mice have a total loss of acid hydrolase phosphorylation, which results in depletion of acid hydrolases in mesenchymal-derived cells. The ML III γ mice retain partial phosphorylation. However, in both cases, total brain extracts have normal or near normal activity of many acid hydrolases reflecting mannose 6-phosphate-independent lysosomal targeting pathways. While behavioral deficits occur in both models, the onset of these changes occurs sooner and the severity is greater in the ML II mice. The ML II mice undergo progressive neurodegeneration with neuronal loss, astrocytosis, microgliosis and Purkinje cell depletion which was evident at 4 months whereas ML III γ mice have only mild to moderate astrocytosis and microgliosis at 12 months. Both models accumulate the ganglioside GM2, but only ML II mice accumulate fucosylated glycans. We conclude that in spite of active mannose 6-phosphate-independent targeting pathways in the brain, there are cell types that require at least partial phosphorylation function to avoid lysosomal dysfunction and the associated neurodegeneration and behavioral impairments.

  18. Lysine suppresses protein degradation through autophagic-lysosomal system in C2C12 myotubes.

    Science.gov (United States)

    Sato, Tomonori; Ito, Yoshiaki; Nedachi, Taku; Nagasawa, Takashi

    2014-06-01

    Muscle mass is determined between protein synthesis and protein degradation. Reduction of muscle mass leads to bedridden condition and attenuation of resistance to diseases. Moreover, bedridden condition leads to additional muscle loss due to disuse muscle atrophy. In our previous study (Sato et al. 2013), we showed that administered lysine (Lys), one of essential amino acid, suppressed protein degradation in skeletal muscle. In this study, we investigated that the mechanism of the suppressive effects of Lys on skeletal muscle proteolysis in C2C12 cell line. C2C12 myotubes were incubated in the serum-free medium containing 10 mM Lys or 20 mM Lys, and myofibrillar protein degradation was determined by the rates of 3-methylhistidine (MeHis) release from the cells. The mammalian target of rapamycin (mTOR) activity from the phosphorylation levels of p70-ribosormal protein S6 kinase 1 and eIF4E-binding protein 1 and the autophagic-lysosomal system activity from the ratio of LC3-II/I in C2C12 myotubes stimulated by 10 mM Lys for 0-3 h were measured. The rates of MeHis release were markedly reduced by addition of Lys. The autophagic-lysosomal system activity was inhibited upon 30 min of Lys supplementation. The activity of mTOR was significantly increased upon 30 min of Lys supplementation. The suppressive effect of Lys on the proteolysis by the autophagic-lysosomal system was maintained partially when mTOR activity was inhibited by 100 nM rapamycin, suggesting that some regulator other than mTOR signaling, for example, Akt, might also suppress the autophagic-lysosomal system. From these results, we suggested that Lys suppressed the activity of the autophagic-lysosomal system in part through activation of mTOR and reduced myofibrillar protein degradation in C2C12 myotubes.

  19. Glucolipotoxicity diminishes cardiomyocyte TFEB and inhibits lysosomal autophagy during obesity and diabetes.

    Science.gov (United States)

    Trivedi, Purvi C; Bartlett, Jordan J; Perez, Lester J; Brunt, Keith R; Legare, Jean Francois; Hassan, Ansar; Kienesberger, Petra C; Pulinilkunnil, Thomas

    2016-12-01

    Impaired cardiac metabolism in the obese and diabetic heart leads to glucolipotoxicity and ensuing cardiomyopathy. Glucolipotoxicity causes cardiomyocyte injury by increasing energy insufficiency, impairing proteasomal-mediated protein degradation and inducing apoptosis. Proteasome-evading proteins are degraded by autophagy in the lysosome, whose metabolism and function are regulated by master regulator transcription factor EB (TFEB). Limited studies have examined the impact of glucolipotoxicity on intra-lysosomal signaling proteins and their regulators. By utilizing a mouse model of diet-induced obesity, type-1 diabetes (Akita) and ex-vivo model of glucolipotoxicity (H9C2 cells and NRCM, neonatal rat cardiomyocyte), we examined whether glucolipotoxicity negatively targets TFEB and lysosomal proteins to dysregulate autophagy and cause cardiac injury. Despite differential effects of obesity and diabetes on LC3B-II, expression of proteins facilitating autophagosomal clearance such as TFEB, LAMP-2A, Hsc70 and Hsp90 were decreased in the obese and diabetic heart. In-vivo data was recapitulated in H9C2 and NRCM cells, which exhibited impaired autophagic flux and reduced TFEB content when exposed to a glucolipotoxic milieu. Notably, overloading myocytes with a saturated fatty acid (palmitate) but not an unsaturated fatty acid (oleate) depleted cellular TFEB and suppressed autophagy, suggesting a fatty acid specific regulation of TFEB and autophagy in the cardiomyocyte. The effect of glucolipotoxicity to reduce TFEB content was also confirmed in heart tissue from patients with Class-I obesity. Therefore, during glucolipotoxicity, suppression of lysosomal autophagy was associated with reduced lysosomal content, decreased cathepsin-B activity and diminished cellular TFEB content likely rendering myocytes susceptible to cardiac injury.

  20. UVA causes dual inactivation of cathepsin B and L underlying lysosomal dysfunction in human dermal fibroblasts.

    Science.gov (United States)

    Lamore, Sarah D; Wondrak, Georg T

    2013-06-05

    Cutaneous exposure to chronic solar UVA-radiation is a causative factor in photocarcinogenesis and photoaging. Recently, we have identified the thiol-dependent cysteine-protease cathepsin B as a novel UVA-target undergoing photo-oxidative inactivation upstream of autophagic-lysosomal dysfunction in fibroblasts. In this study, we examined UVA effects on a wider range of cathepsins and explored the occurrence of UVA-induced cathepsin inactivation in other cultured skin cell types. In dermal fibroblasts, chronic exposure to non-cytotoxic doses of UVA caused pronounced inactivation of the lysosomal cysteine-proteases cathepsin B and L, effects not observed in primary keratinocytes and occurring only to a minor extent in primary melanocytes. In order to determine if UVA-induced lysosomal impairment requires single or dual inactivation of cathepsin B and/or L, we used a genetic approach (siRNA) to selectively downregulate enzymatic activity of these target cathepsins. Monitoring an established set of protein markers (including LAMP1, LC3-II, and p62) and cell ultrastructural changes detected by electron microscopy, we observed that only dual genetic antagonism (targeting both CTSB and CTSL expression) could mimic UVA-induced autophagic-lysosomal alterations, whereas single knockdown (targeting CTSB or CTSL only) did not display 'UVA-mimetic' effects failing to reproduce the UVA-induced phenotype. Taken together, our data demonstrate that chronic UVA inhibits both cathepsin B and L enzymatic activity and that dual inactivation of both enzymes is a causative factor underlying UVA-induced impairment of lysosomal function in dermal fibroblasts.

  1. Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis.

    Science.gov (United States)

    Chen, Yang; Li, Xiang; Boini, Krishna M; Pitzer, Ashley L; Gulbins, Erich; Zhang, Yang; Li, Pin-Lan

    2015-02-01

    Inflammasomes play a critical role in the development of vascular diseases. However, the molecular mechanisms activating the inflammasome in endothelial cells and the relevance of this inflammasome activation is far from clear. Here, we investigated the mechanisms by which an Nlrp3 inflammasome is activated to result in endothelial dysfunction during coronary arteritis by Lactobacillus casei (L. casei) cell wall fragments (LCWE) in a mouse model for Kawasaki disease. Endothelial dysfunction associated with increased vascular cell adhesion protein 1 (VCAM-1) expression and endothelial-leukocyte adhesion was observed during coronary arteritis in mice treated with LCWE. Accompanied with these changes, the inflammasome activation was also shown in coronary arterial endothelium, which was characterized by a marked increase in caspase-1 activity and IL-1β production. In cultured endothelial cells, LCWE induced Nlrp3 inflammasome formation, caspase-1 activation and IL-1β production, which were blocked by Nlrp3 gene silencing or lysosome membrane stabilizing agents such as colchicine, dexamethasone, and ceramide. However, a potassium channel blocker glibenclamide or an oxygen free radical scavenger N-acetyl-l-cysteine had no effects on LCWE-induced inflammasome activation. LCWE also increased endothelial cell lysosomal membrane permeability and triggered lysosomal cathepsin B release into cytosol. Silencing cathepsin B blocked LCWE-induced Nlrp3 inflammasome formation and activation in endothelial cells. In vivo, treatment of mice with cathepsin B inhibitor also abolished LCWE-induced inflammasome activation in coronary arterial endothelium. It is concluded that LCWE enhanced lysosomal membrane permeabilization and consequent release of lysosomal cathepsin B, resulting in activation of the endothelial Nlrp3 inflammasome, which may contribute to the development of coronary arteritis.

  2. A Comparative Study on the Alterations of Endocytic Pathways in Multiple Lysosomal Storage Disorders.

    Science.gov (United States)

    Rappaport, Jeff; Manthe, Rachel L; Solomon, Melani; Garnacho, Carmen; Muro, Silvia

    2016-02-01

    Many cellular activities and pharmaceutical interventions involve endocytosis and delivery to lysosomes for processing. Hence, lysosomal processing defects can cause cell and tissue damage, as in lysosomal storage diseases (LSDs) characterized by lysosomal accumulation of undegraded materials. This storage causes endocytic and trafficking alterations, which exacerbate disease and hinder treatment. However, there have been no systematic studies comparing different endocytic routes in LSDs. Here, we used genetic and pharmacological models of four LSDs (type A Niemann-Pick, type C Niemann-Pick, Fabry, and Gaucher diseases) and evaluated the pinocytic and receptor-mediated activity of the clathrin-, caveolae-, and macropinocytic routes. Bulk pinocytosis was diminished in all diseases, suggesting a generic endocytic alteration linked to lysosomal storage. Fluid-phase (dextran) and ligand (transferrin) uptake via the clathrin route were lower for all LSDs. Fluid-phase and ligand (cholera toxin B) uptake via the caveolar route were both affected but less acutely in Fabry or Gaucher diseases. Epidermal growth factor-induced macropinocytosis was altered in Niemann-Pick cells but not other LSDs. Intracellular trafficking of ligands was also distorted in LSD versus wild-type cells. The extent of these endocytic alterations paralleled the level of cholesterol storage in disease cell lines. Confirming this, pharmacological induction of cholesterol storage in wild-type cells disrupted endocytosis, and model therapeutics restored uptake in proportion to their efficacy in attenuating storage. This suggests a proportional and reversible relationship between endocytosis and lipid (cholesterol) storage. By analogy, the accumulation of biological material in other diseases, or foreign material from drugs or their carriers, may cause similar deficits, warranting further investigation.

  3. N370S-GBA1 mutation causes lysosomal cholesterol accumulation in Parkinson's disease.

    Science.gov (United States)

    García-Sanz, Patricia; Orgaz, Lorena; Bueno-Gil, Guillermo; Espadas, Isabel; Rodríguez-Traver, Eva; Kulisevsky, Jaime; Gutierrez, Antonia; Dávila, José C; González-Polo, Rosa A; Fuentes, José M; Mir, Pablo; Vicario, Carlos; Moratalla, Rosario

    2017-08-05

    Heterozygous mutations in the GBA1 gene, which encodes the lysosomal enzyme β-glucocerebrosidase-1, increase the risk of developing Parkinson's disease, although the underlying mechanisms remain unclear. The aim of this study was to explore the impact of the N370S-GBA1 mutation on cellular homeostasis and vulnerability in a patient-specific cellular model of PD. We isolated fibroblasts from 4 PD patients carrying the N370S/wild type GBA1 mutation and 6 controls to study the autophagy-lysosome pathway, endoplasmic reticulum stress, and Golgi apparatus structure by Western blot, immunofluorescence, LysoTracker and Filipin stainings, mRNA analysis, and electron microscopy. We evaluated cell vulnerability by apoptosis, reactive oxygen species and mitochondrial membrane potential with flow cytometry. The N370S mutation produced a significant reduction in β-glucocerebrosidase-1 protein and enzyme activity and β-glucocerebrosidase-1 retention within the endoplasmic reticulum, which interrupted its traffic to the lysosome. This led to endoplasmic reticulum stress activation and triggered unfolded protein response and Golgi apparatus fragmentation. Furthermore, these alterations resulted in autophagosome and p62/SQSTM1 accumulation. This impaired autophagy was a result of dysfunctional lysosomes, indicated by multilamellar body accumulation probably caused by increased cholesterol, enlarged lysosomal mass, and reduced enzyme activity. This phenotype impaired the removal of damaged mitochondria and reactive oxygen species production and enhanced cell death. Our results support a connection between the loss of β-glucocerebrosidase-1 function, cholesterol accumulation, and the disruption of cellular homeostasis in GBA1-PD. Our work reveals new insights into the cellular pathways underlying PD pathogenesis, providing evidence that GBA1-PD shares common features with lipid-storage diseases. © 2017 International Parkinson and Movement Disorder Society. © 2017 International

  4. Plasma Volume Expansion in Rats: Effects on Thermoregulation and Exercise,

    Science.gov (United States)

    1988-02-01

    15,18), and especially during the euhydrated and hyperhydrated condition. Methods Adult male Sprague-Dawley rats (Charles River Breeding Laboratories...microcentrifugation. The plasma fraction from the microhematocrit tube was immediately analyzed for protein content by refractometry . The ~ ~ * ~ V...automated spectrophotometer (Stasar IV) and Gilford Diagnostic reagent kits according to methods outlined in the respective technical bulletins. Sodium

  5. On genus expansion of superpolynomials

    CERN Document Server

    Mironov, A; Sleptsov, A; Smirnov, A

    2013-01-01

    Recently it was shown that the (Ooguri-Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present letter we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis:the Casimir operators are beta-deformed to Hamiltonians of the Calogero-Moser-Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is rather straightforward only for the thin knots. Beyond this family additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpol...

  6. Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells.

    Science.gov (United States)

    Bomberger, Jennifer M; Coutermarsh, Bonita A; Barnaby, Roxanna L; Stanton, Bruce A

    2012-05-18

    Arsenic exposure significantly increases respiratory bacterial infections and reduces the ability of the innate immune system to eliminate bacterial infections. Recently, we observed in the gill of killifish, an environmental model organism, that arsenic exposure induced the ubiquitinylation and degradation of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that is essential for the mucociliary clearance of respiratory pathogens in humans. Accordingly, in this study, we tested the hypothesis that low dose arsenic exposure reduces the abundance and function of CFTR in human airway epithelial cells. Arsenic induced a time- and dose-dependent increase in multiubiquitinylated CFTR, which led to its lysosomal degradation, and a decrease in CFTR-mediated chloride secretion. Although arsenic had no effect on the abundance or activity of USP10, a deubiquitinylating enzyme, siRNA-mediated knockdown of c-Cbl, an E3 ubiquitin ligase, abolished the arsenic-stimulated degradation of CFTR. Arsenic enhanced the degradation of CFTR by increasing phosphorylated c-Cbl, which increased its interaction with CFTR, and subsequent ubiquitinylation of CFTR. Because epidemiological studies have shown that arsenic increases the incidence of respiratory infections, this study suggests that one potential mechanism of this effect involves arsenic-induced ubiquitinylation and degradation of CFTR, which decreases chloride secretion and airway surface liquid volume, effects that would be proposed to reduce mucociliary clearance of respiratory pathogens.

  7. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range

    OpenAIRE

    Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-01-01

    Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the syste...

  8. Internal Curing Using Water-releasing Material for High Strength Micro-expansive Concrete

    Institute of Scientific and Technical Information of China (English)

    LU Linnu; YANG Wen; HE Yongjia; WU Jing; HU Shuguang

    2009-01-01

    Due to its low water content,it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion.To solve this problem,water-releasing material with water storage and releasing characteristics was incorporated into high strength micro-expansive concrete to provide internal curing,and expansive effect of expansive agent was improved.Migration of water from initially saturated water-releasing material to the surrounding hydrating cement paste was investigated.Based on a given efficient diffusion distance of water stored in water-releasing material,the mass and real water-cement ratio of cured cement paste were estimated.At the same time,the effect of internal curing of water-releasing material on the volume deformation of high strength micro-expansive concrete was investigated.

  9. Volume Entropy

    CERN Document Server

    Astuti, Valerio; Rovelli, Carlo

    2016-01-01

    Building on a technical result by Brunnemann and Rideout on the spectrum of the Volume operator in Loop Quantum Gravity, we show that the dimension of the space of the quadrivalent states --with finite-volume individual nodes-- describing a region with total volume smaller than $V$, has \\emph{finite} dimension, bounded by $V \\log V$. This allows us to introduce the notion of "volume entropy": the von Neumann entropy associated to the measurement of volume.

  10. Tissue regeneration during tissue expansion and choosing an expander

    Directory of Open Access Journals (Sweden)

    K Agrawal

    2012-01-01

    Full Text Available This paper reviews the various aspects of tissue regeneration during the process of tissue expansion. "Creep" and mechanical and biological "stretch" are responsible for expansion. During expansion, the epidermis thickens, the dermis thins out, vascularity improves, significant angiogenesis occurs, hair telogen phase becomes shorter and the peripheral nerves, vessels and muscle fibres lengthen. Expansion is associated with molecular changes in the tissue. Almost all these biological changes are reversible after the removal of the expander.This study is also aimed at reviewing the difficulty in deciding the volume and dimension of the expander for a defect. Basic mathematical formulae and the computer programmes for calculating the dimension of tissue expanders, although available in the literature, are not popular. A user-friendly computer programme based on the easily available Microsoft Excel spread sheet has been introduced. When we feed the area of defect and base dimension of the donor area or tissue expander, this programme calculates the volume and height of the expander. The shape of the expander is decided clinically based on the availability of the donor area and the designing of the future tissue movement. Today, tissue expansion is better understood biologically and mechanically. Clinical judgement remains indispensable in choosing the size and shape of the tissue expander.

  11. Recognition of arylsulfatase A and B by the UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-phosphotransferase.

    Science.gov (United States)

    Yaghootfam, Afshin; Schestag, Frank; Dierks, Thomas; Gieselmann, Volkmar

    2003-08-29

    The critical step for sorting of lysosomal enzymes is the recognition by a Golgi-located phosphotransferase. The topogenic structure common to all lysosomal enzymes essential for this recognition is still not well defined, except that lysine residues seem to play a critical role. Here we have substituted surface-located lysine residues of lysosomal arylsulfatases A and B. In lysosomal arylsulfatase A only substitution of lysine residue 457 caused a reduction of phosphorylation to 33% and increased secretion of the mutant enzyme. In contrast to critical lysines in various other lysosomal enzymes, lysine 457 is not located in an unstructured loop region but in a helix. It is not strictly conserved among six homologous lysosomal sulfatases. Based on three-dimensional structure comparison, lysines 497 and 507 in arylsulfatase B are in a similar position as lysine 457 of arylsulfatase A. Also, the position of oligosaccharide side chains phosphorylated in arylsulfatase A is similar in arylsulfatase B. Despite the high degree of structural homology between these two sulfatases substitution of lysines 497 and 507 in arylsulfatase B has no effect on the sorting and phosphorylation of this sulfatase. Thus, highly homologous lysosomal arylsulfatases A and B did not develop a single conserved phosphotransferase recognition signal, demonstrating the high variability of this signal even in evolutionary closely related enzymes.

  12. Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases.

    Science.gov (United States)

    Oh, Doo-Byoung

    2015-08-01

    Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy.

  13. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Directory of Open Access Journals (Sweden)

    Alberto Canfrán-Duque

    2016-03-01

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2 and LBPA (lysobisphosphatidic acid, which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1 and coatomer subunit β (β-COP were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality.

  14. Loss of β-glucocerebrosidase activity does not affect alpha-synuclein levels or lysosomal function in neuronal cells.

    Science.gov (United States)

    Dermentzaki, Georgia; Dimitriou, Evangelia; Xilouri, Maria; Michelakakis, Helen; Stefanis, Leonidas

    2013-01-01

    To date, a plethora of studies have provided evidence favoring an association between Gaucher disease (GD) and Parkinson's disease (PD). GD, the most common lysosomal storage disorder, results from the diminished activity of the lysosomal enzyme β-glucocerebrosidase (GCase), caused by mutations in the β-glucocerebrosidase gene (GBA). Alpha-synuclein (ASYN), a presynaptic protein, has been strongly implicated in PD pathogenesis. ASYN may in part be degraded by the lysosomes and may itself aberrantly impact lysosomal function. Therefore, a putative link between deficient GCase and ASYN, involving lysosomal dysfunction, has been proposed to be responsible for the risk for PD conferred by GBA mutations. In this current work, we aimed to investigate the effects of pharmacological inhibition of GCase on ASYN accumulation/aggregation, as well as on lysosomal function, in differentiated SH-SY5Y cells and in primary neuronal cultures. Following profound inhibition of the enzyme activity, we did not find significant alterations in ASYN levels, or any changes in the clearance or formation of its oligomeric species. We further observed no significant impairment of the lysosomal degradation machinery. These findings suggest that additional interaction pathways together with aberrant GCase and ASYN must govern this complex relation between GD and PD.

  15. Cytosolic chloride ion is a key factor in lysosomal acidification and function of autophagy in human gastric cancer cell.

    Science.gov (United States)

    Hosogi, Shigekuni; Kusuzaki, Katsuyuki; Inui, Toshio; Wang, Xiangdong; Marunaka, Yoshinori

    2014-06-01

    The purpose of the present study was to clarify roles of cytosolic chloride ion (Cl(-) ) in regulation of lysosomal acidification [intra-lysosomal pH (pHlys )] and autophagy function in human gastric cancer cell line (MKN28). The MKN28 cells cultured under a low Cl(-) condition elevated pHlys and reduced the intra-lysosomal Cl(-) concentration ([Cl(-) ]lys ) via reduction of cytosolic Cl(-) concentration ([Cl(-) ]c ), showing abnormal accumulation of LC3II and p62 participating in autophagy function (dysfunction of autophagy) accompanied by inhibition of cell proliferation via G0 /G1 arrest without induction of apoptosis. We also studied effects of direct modification of H(+) transport on lysosomal acidification and autophagy. Application of bafilomycin A1 (an inhibitor of V-type H(+) -ATPase) or ethyl isopropyl amiloride [EIPA; an inhibitor of Na(+) /H(+) exchanger (NHE)] elevated pHlys and decreased [Cl(-) ]lys associated with inhibition of cell proliferation via induction of G0 /G1 arrest similar to the culture under a low Cl(-) condition. However, unlike low Cl(-) condition, application of the compound, bafilomycin A1 or EIPA, induced apoptosis associated with increases in caspase 3 and 9 without large reduction in [Cl(-) ]c compared with low Cl(-) condition. These observations suggest that the lowered [Cl(-) ]c primarily causes dysfunction of autophagy without apoptosis via dysfunction of lysosome induced by disturbance of intra-lysosomal acidification. This is the first study showing that cytosolic Cl(-) is a key factor of lysosome acidification and autophagy.

  16. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C.; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A.; Busto, Rebeca

    2016-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality. PMID:26999125

  17. Thermal expansion and phase transitions of α-AlF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Morelock, Cody R.; Hancock, Justin C. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2014-11-15

    ReO{sub 3}-type materials are of interest for their potential low or negative thermal expansion. Many metal trifluorides MF{sub 3} adopt the cubic form of this structure at elevated temperatures, which rhombohedrally distorts upon cooling. The rhombohedral form displays strong positive volume thermal expansion, but cubic MF{sub 3} display much lower and sometimes negative thermal expansion. The expansion behavior of α-AlF{sub 3} was characterized via synchrotron powder diffraction between 323 and 1177 K. α-AlF{sub 3} is rhombohedral at ambient conditions and displays strongly anisotropic thermal expansion. The volume coefficient of thermal expansion (CTE), α{sub V}, at 500 K is ∼86 ppm K{sup −1}, but the linear CTE along the c-axis, α{sub c}, is close to zero. α-AlF{sub 3} becomes cubic on heating to ∼713 K and continues to show positive thermal expansion above the phase transition (α{sub V}(900 K) ∼25 ppm K{sup −1}). - Graphical abstract: α-AlF{sub 3} has a rhombohedrally distorted ReO{sub 3}-type structure at ambient conditions and displays strongly positive volume thermal expansion that is highly anisotropic; the material becomes cubic on heating above ∼713 K and continues to show positive thermal expansion. - Highlights: • ReO{sub 3}-type α-AlF{sub 3} displays strongly anisotropic thermal expansion below 713 K. • α-AlF{sub 3} is cubic above 713 K and maintains positive (isotropic) thermal expansion. • The volume CTE changes from ∼86 to ∼25 ppm K{sup −1} on heating from 500 to 900 K. • The PTE of cubic α-AlF{sub 3} may be due to the presence of local octahedral tilts.

  18. Characterization of the egg vesicular components in the seaweed, Fucus serratus L. (Fucales, Phaeophyta), using enzyme histochemistry and vital staining: the search for a lysosome-like body.

    Science.gov (United States)

    Holland, R D; Pitt, D; Moore, M N; Brownlee, C

    1997-03-01

    Fucus serratus eggs were examined for evidence of the existence of a lysosome-like body using enzyme histochemical and vital staining techniques. Simultaneous coupling azo-dye techniques for lysosomal acid phosphatase proved inappropriate owing to endogenous phenolic binding artefacts. The large number of alginate polysaccharide and polyphenolic egg vesicles interfered with vital staining techniques for lysosomes. Lysosomal esterase activity was detected in the abundant egg lipid bodies. The role of the egg lipid body as an equivalent lysosome-like body of higher plants, the spherosome, is discussed in relation to egg fertilization and early zygote development.

  19. Impact of the loss of caveolin-1 on lung mass and cholesterol metabolism in mice with and without the lysosomal cholesterol transporter, Niemann-Pick type C1.

    Science.gov (United States)

    Mundy, Dorothy I; Lopez, Adam M; Posey, Kenneth S; Chuang, Jen-Chieh; Ramirez, Charina M; Scherer, Philipp E; Turley, Stephen D

    2014-07-01

    Caveolin-1 (Cav-1) is a major structural protein in caveolae in the plasma membranes of many cell types, particularly endothelial cells and adipocytes. Loss of Cav-1 function has been implicated in multiple diseases affecting the cardiopulmonary and central nervous systems, as well as in specific aspects of sterol and lipid metabolism in the liver and intestine. Lungs contain an exceptionally high level of Cav-1. Parameters of cholesterol metabolism in the lung were measured, initially in Cav-1-deficient mice (Cav-1(-/-)), and subsequently in Cav-1(-/-) mice that also lacked the lysosomal cholesterol transporter Niemann-Pick C1 (Npc1) (Cav-1(-/-):Npc1(-/-)). In 50-day-old Cav-1(-/-) mice fed a low- or high-cholesterol chow diet, the total cholesterol concentration (mg/g) in the lungs was marginally lower than in the Cav-1(+/+) controls, but due to an expansion in their lung mass exceeding 30%, whole-lung cholesterol content (mg/organ) was moderately elevated. Lung mass (g) in the Cav-1(-/-):Npc1(-/-) mice (0.356±0.022) markedly exceeded that in their Cav-1(+/+):Npc1(+/+) controls (0.137±0.009), as well as in their Cav-1(-/-):Npc1(+/+) (0.191±0.013) and Cav-1(+/+):Npc1(-/-) (0.213±0.022) littermates. The corresponding lung total cholesterol contents (mg/organ) in mice of these genotypes were 6.74±0.17, 0.71±0.05, 0.96±0.05 and 3.12±0.43, respectively, with the extra cholesterol in the Cav-1(-/-):Npc1(-/-) and Cav-1(+/+):Npc1(-/-) mice being nearly all unesterified (UC). The exacerbation of the Npc1 lung phenotype and increase in the UC level in the Cav-1(-/-):Npc1(-/-) mice imply a regulatory role of Cav-1 in pulmonary cholesterol metabolism when lysosomal sterol transport is disrupted.

  20. Mice Doubly-deficient in lysosomal hexosaminidase a and neuraminidase 4 show epileptic crises and rapid neuronal loss

    OpenAIRE

    Seyrantepe, Volkan; Lema, Pablo; Caqueret, Aurore; Dridi, Larbi; Hadj, Samar Bel; Carpentier, Stephane; Boucher, Francine; Levade, Thierry; Carmant, Lionel; Gravel, Roy A.; Hamel, Edith; Vachon, Pascal; Di Cristo, Graziella; Michaud, Jacques L.; Morales, Carlos R.

    2010-01-01

    Tay-Sachs disease is a severe lysosomal disorder caused by mutations in the HexA gene coding for the a-subunit of lysosomal β-hexosaminidase A, which converts GM2 to GM3 ganglioside. Hexa-/- mice, depleted of b-hexosaminidase A, remain asymptomatic to 1 year of age, because they catabolise GM2 ganglioside via a lysosomal sialidase into glycolipid GA2, which is further processed by β-hexosaminidase B to lactosyl-ceramide, thereby bypassing the β-hexosaminidase A defect. Since this bypass is no...

  1. Study on Expansion Cracking of Hydration in Concrete Aggregates

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In accordance with a fresh accident by severe expansion cracks of structural elements,based on systematic detection and analyses such as X-ray diffraction,differential thermal analysis,scanning electron microscory,chemical analysis,petrographic analysis, electronic probe analysis,and atomic absorption spectroscopy analysis, it is pointed out that the dominant reasons lie in the hydration reaction of magnesia in concrete aggregates, resulting in a volume expansion in structure members.A wholly new corresponding strengthening method is applied to the cracked elements and turned out to be effective.

  2. Effects of pH and Iminosugar Pharmacological Chaperones on Lysosomal Glycosidase Structure and Stability

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, Raquel L.; D’aquino, J. Alejandro; Ringe, Dagmar; Petsko, Gregory A.; (Harvard-Med); (Brandeis)

    2009-06-05

    Human lysosomal enzymes acid-{beta}-glucosidase (GCase) and acid-{alpha}-galactosidase ({alpha}-Gal A) hydrolyze the sphingolipids glucosyl- and globotriaosylceramide, respectively, and mutations in these enzymes lead to the lipid metabolism disorders Gaucher and Fabry disease, respectively. We have investigated the structure and stability of GCase and {alpha}-Gal A in a neutral-pH environment reflective of the endoplasmic reticulum and an acidic-pH environment reflective of the lysosome. These details are important for the development of pharmacological chaperone therapy for Gaucher and Fabry disease, in which small molecules bind mutant enzymes in the ER to enable the mutant enzyme to meet quality control requirements for lysosomal trafficking. We report crystal structures of apo GCase at pH 4.5, at pH 5.5, and in complex with the pharmacological chaperone isofagomine (IFG) at pH 7.5. We also present thermostability analysis of GCase at pH 7.4 and 5.2 using differential scanning calorimetry. We compare our results with analogous experiments using {alpha}-Gal A and the chaperone 1-deoxygalactonijirimycin (DGJ), including the first structure of {alpha}-Gal A with DGJ. Both GCase and {alpha}-Gal A are more stable at lysosomal pH with and without their respective iminosugars bound, and notably, the stability of the GCase-IFG complex is pH sensitive. We show that the conformations of the active site loops in GCase are sensitive to ligand binding but not pH, whereas analogous galactose- or DGJ-dependent conformational changes in {alpha}-Gal A are not seen. Thermodynamic parameters obtained from {alpha}-Gal A unfolding indicate two-state, van't Hoff unfolding in the absence of the iminosugar at neutral and lysosomal pH, and non-two-state unfolding in the presence of DGJ. Taken together, these results provide insight into how GCase and {alpha}-Gal A are thermodynamically stabilized by iminosugars and suggest strategies for the development of new pharmacological

  3. Strong anisotropic thermal expansion in cristobalite-type BPO 4

    Science.gov (United States)

    Achary, S. N.; Tyagi, A. K.

    2004-11-01

    In this communication, the thermal expansion behavior of cristobalite-type BPO 4, determined from high-temperature X-ray diffraction studies, is being reported. BPO 4 crystallizes in tetragonal lattice, with space group I-4 (No. 82) at room temperature, with unit cell parameters: a=4.3447(2), c=6.6415(5) Å and V=125.37(1) Å 3. The tetragonal unit cell parameters at 900 °C are: a=4.3939(2), c=6.6539(6) Å and V=128.46(1) Å 3. The results show a very strong anisotropic expansion in the lattice, with the typical thermal expansion coefficients along a- and c-axis 12.9×10 -6 and 2.1×10 -6/°C, respectively. The volume thermal expansion coefficient of the lattice is 28.2×10 -6/°C in the temperature range of 25-900 °C. The variation of the crystal structure with temperature and the thermal expansion behavior are explained in this manuscript. The role of inter-polyhedral angle on the thermal expansion behavior has also been established.

  4. Gradient expansion for anisotropic hydrodynamics

    Science.gov (United States)

    Florkowski, Wojciech; Ryblewski, Radoslaw; Spaliński, Michał

    2016-12-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of nonhydrodynamic modes.

  5. Gradient expansion for anisotropic hydrodynamics

    CERN Document Server

    Florkowski, Wojciech; Spaliński, Michał

    2016-01-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.

  6. Strategic Complexity and Global Expansion

    DEFF Research Database (Denmark)

    Oladottir, Asta Dis; Hobdari, Bersant; Papanastassiou, Marina

    2012-01-01

    The purpose of this paper is to analyse the determinants of global expansion strategies of newcomer Multinational Corporations (MNCs) by focusing on Iceland, Israel and Ireland. We argue that newcomer MNCs from small open economies pursue complex global expansion strategies (CGES). We distinguish....... The empirical evidence suggests that newcomer MNCs move away from simplistic dualities in the formulation of their strategic choices towards more complex options as a means of maintaining and enhancing their global competitiveness....

  7. Localization of acid hydrolases in protoplasts. Examination of the proposed lysosomal function of the mature vacuole

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, H.C.; Wagner, G.J.; Siegelman, H.W.

    1977-06-01

    The development of techniques to isolate and purify relatively large quantities of intact vacuoles from mature tissues permits direct biochemical analysis of this ubiquitous mature plant cell organelle. Vacuoles and a fraction enriched in soluble cytoplasmic constituents were quantitatively prepared from Hippeastrum flower petal protoplasts. Vacuolar lysate and soluble cytoplasmic fractions were examined for acid hydrolase activities commonly associated with animal lysosomes, and pH optima were determined. Esterase, protease, carboxypeptidase, ..beta..-galactosidase, ..cap alpha..-glycosidase and ..beta..-glycosidase, not found in the vacuole lysate fraction, were components of the soluble cytoplasmic fraction. Acid phosphatase, RNase and DNase were present in both fractions. Vacuolar enzyme activities were also examined as a function of flower development from bud through senescent stages. The data obtained are not consistent with the concept that the mature plant cell vacuole functions as a generalized lysosome.

  8. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes.

    Directory of Open Access Journals (Sweden)

    Robert O Watson

    2008-01-01

    Full Text Available Campylobacter jejuni is one of the major causes of infectious diarrhea world-wide, although relatively little is know about its mechanisms of pathogenicity. This bacterium can gain entry into intestinal epithelial cells, which is thought to be important for its ability to persistently infect and cause disease. We found that C. jejuni is able to survive within intestinal epithelial cells. However, recovery of intracellular bacteria required pre-culturing under oxygen-limiting conditions, suggesting that C. jejuni undergoes significant physiological changes within the intracellular environment. We also found that in epithelial cells the C. jejuni-containing vacuole deviates from the canonical endocytic pathway immediately after a unique caveolae-dependent entry pathway, thus avoiding delivery into lysosomes. In contrast, in macrophages, C. jejuni is delivered to lysosomes and consequently is rapidly killed. Taken together, these studies indicate that C. jejuni has evolved specific adaptations to survive within host cells.

  9. uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV

    DEFF Research Database (Denmark)

    Kjøller, Lars; Engelholm, Lars H; Høyer-Hansen, Maria

    2004-01-01

    transmembrane glycoprotein urokinase plasminogen activator receptor-associated protein (uPARAP/endo180) directs collagen IV for lysosomal delivery and degradation. In wild-type fibroblasts, fluorescently labeled collagen IV was first internalized into vesicular structures with diffuse fluorescence eventually......Collagen turnover is crucial for tissue homeostasis and remodeling and pathological processes such as cancer invasion, but the underlying molecular mechanisms are poorly understood. A major pathway appears to be internalization and degradation by fibroblasts. We now show that the endocytic...... appearing uniformly within the wild-type cells after longer incubation times. In these cells, some collagen-containing vesicles were identified as lysosomes by staining for LAMP-1. In contrast, collagen IV remained extracellular and associated with fiber-like structures on uPARAP/endo180-deficient...

  10. Preventive effect of phytic acid on lysosomal hydrolases in normal and isoproterenol-induced myocardial infarction in Wistar rats.

    Science.gov (United States)

    Brindha, E; Rajasekapandiyan, M

    2015-02-01

    This study was aimed to evaluate the preventive role of phytic acid on lysosomal enzymes in isoproterenol (ISO)-induced myocardial infarction (MI) in male Wistar rats. Rats subcutaneously injected with ISO (85 mg/kg) at an interval of 24 h for two days showed a significant increase in the activities of lysosomal enzymes (glucuronidase, N-acetyl glucosaminidase, galactosidase, cathepsin-B and cathepsin-D) were increased significantly in serum and the heart of ISO-induced rats, but the activities of glucuronidase and cathepsin-D were decreased significantly in the lysosomal fraction of the heart. Pretreatment with phytic acid (25 and 50 mg/kg) daily for a period of 56 d positively altered activities of lysosomal hydrolases in ISO-induced rats. Thus, phytic acid possesses a cardioprotective effect in ISO-induced MI in rats.

  11. A Genome-wide RNAi Screen for Microtubule Bundle Formation and Lysosome Motility Regulation in Drosophila S2 Cells

    Directory of Open Access Journals (Sweden)

    Amber L. Jolly

    2016-01-01

    Full Text Available Long-distance intracellular transport of organelles, mRNA, and proteins (“cargo” occurs along the microtubule cytoskeleton by the action of kinesin and dynein motor proteins, but the vast network of factors involved in regulating intracellular cargo transport are still unknown. We capitalize on the Drosophila melanogaster S2 model cell system to monitor lysosome transport along microtubule bundles, which require enzymatically active kinesin-1 motor protein for their formation. We use an automated tracking program and a naive Bayesian classifier for the multivariate motility data to analyze 15,683 gene phenotypes and find 98 proteins involved in regulating lysosome motility along microtubules and 48 involved in the formation of microtubule filled processes in S2 cells. We identify innate immunity genes, ion channels, and signaling proteins having a role in lysosome motility regulation and find an unexpected relationship between the dynein motor, Rab7a, and lysosome motility regulation.

  12. High Resolution Crystal Structure of Human [beta]-Glucuronidase Reveals Structural Basis of Lysosome Targeting: e79687

    National Research Council Canada - National Science Library

    Md Imtaiyaz Hassan; Abdul Waheed; Jeffery H Grubb; Herbert E Klei; Sergey Korolev; William S Sly

    2013-01-01

    ...). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases...

  13. Identification of the amino acid sequence that targets peroxiredoxin 6 to lysosome-like structures of lung epithelial cells

    National Research Council Canada - National Science Library

    Elena M. Sorokina; Sheldon I. Feinstein; Tatyana N. Milovanova; Aron B. Fisher

    2009-01-01

    ... (lung lamellar bodies and lysosomes) and cytosol. On the basis of their pH optima, we have postulated that protein subcellular localization determines the balance between the two activities of Prdx6...

  14. Endo-lysosomal TRP mucolipin-1 channels trigger global ER Ca2+ release and Ca2+ influx

    Science.gov (United States)

    Kilpatrick, Bethan S.; Yates, Elizabeth; Grimm, Christian; Schapira, Anthony H.

    2016-01-01

    ABSTRACT Transient receptor potential (TRP) mucolipins (TRPMLs), encoded by the MCOLN genes, are patho-physiologically relevant endo-lysosomal ion channels crucial for membrane trafficking. Several lines of evidence suggest that TRPMLs mediate localised Ca2+ release but their role in Ca2+ signalling is not clear. Here, we show that activation of endogenous and recombinant TRPMLs with synthetic agonists evoked global Ca2+ signals in human cells. These signals were blocked by a dominant-negative TRPML1 construct and a TRPML antagonist. We further show that, despite a predominant lysosomal localisation, TRPML1 supports both Ca2+ release and Ca2+ entry. Ca2+ release required lysosomal and ER Ca2+ stores suggesting that TRPMLs, like other endo-lysosomal Ca2+ channels, are capable of ‘chatter’ with ER Ca2+ channels. Our data identify new modalities for TRPML1 action. PMID:27577094

  15. Constitutively internalized dopamine transporter is targeted to late endosomes and lysosomal degradation in heterologous cell lines and dopaminergic neurons

    DEFF Research Database (Denmark)

    Eriksen, Jacob; Madsen, Kenneth; Vægter, Christian Bjerggaard;

    (leupeptin, chloroquine, or ammonium chloride) increased the amount of transporter accumulated intracellularly over time, suggesting that constitutively endocytosed transporter was targeted to lysosomal degradation. This was further supported by expression of Tac-DAT in the immortalized dopaminergic cell...

  16. Malondialdehyde-acetaldehyde haptenated protein binds macrophage scavenger receptor(s) and induces lysosomal damage.

    Science.gov (United States)

    Willis, Monte S; Klassen, Lynell W; Carlson, Deborah L; Brouse, Chad F; Thiele, Geoffrey M

    2004-07-01

    There is evidence that the chemical modification of proteins (haptens) with malondialdehyde-acetaldehyde (MAA) and the immune response to these haptenated proteins is associated with the initiation and/or progression of alcohol liver disease. Experimentally, proteins modified with MAA induce antibody and T cell responses, which are mediated by scavenger receptor(s). Moreover, macrophages have been shown to play an important role in processing and presenting MAA-haptenated proteins in vitro. In vitro, MAA-modified proteins have been shown to induce both apoptosis and necrosis in a dose- and cell-type-dependent manner. Natural ligands modified by oxidative stress, such as oxidized LDL, similarly initiate not only antibody responses, but also cause cell death by disrupting lysosomes after binding to scavenger receptors and internalization. We therefore investigated the binding, internalization, and lysosomal integrity in a macrophage cell line to a MAA-haptenated protein. We demonstrate for the first time that MAA-haptenated proteins are preferentially bound by scavenger receptors on macrophages, which internalize the ligands and shuttle them to lysosomes. Moreover, MAA-haptenated proteins are demonstrated to be associated with a rapid dose-dependent disruption in lysosomal integrity, resulting in leakage and caspase activation. Similarly, as hen egg lysozyme (HEL)-MAA concentrations increased (>31.3 microg/ml), increased levels of apoptosis and a G1/S cell cycle checkpoint inhibition were identified. This study identifies mechanisms by which MAA-haptenated proteins are taken up by a representative antigen-presenting cell and may delineate steps by which MAA-haptenated proteins induce cell death and induce their immunogenicity to the carrier protein. Copyright 2004 Elsevier B.V.

  17. Arsenic induces apoptosis by the lysosomal-mitochondrial pathway in INS-1 cells.

    Science.gov (United States)

    Pan, Xiao; Jiang, Liping; Zhong, Laifu; Geng, Chengyan; Jia, Li; Liu, Shuang; Guan, Huai; Yang, Guang; Yao, Xiaofeng; Piao, Fengyuan; Sun, Xiance

    2016-02-01

    Recently, long term arsenic exposure was considered to be associated with an increased risk of diabetes mellitus. While a relation of cause-and-effect between apoptosis of pancreatic β-cells and arsenic exposure, the precise mechanisms of these events remains unclear. The aim of this study was to explore arsenic-induced pancreatic β-cell apoptosis and the mechanisms of through the possible link between lysosomal and the mitochondrial apoptotic pathway. After exposure to 10 μM of arsenic, the reactive oxygen species (ROS) level was significantly increased at 12 h, while the mitochondrial membrane potential was reduced at 24 h and the lysosomal membrane integrity was disrupted at 48 h. A significant increase in protein expression for cytochrome c was also observed using Western blot analysis after exposure to arsenic for 48 h. To further demonstrate that arsenic reduced the lysosomal membrane integrity, cells pretreated with NH4 Cl and exposed to arsenic harbored a lower fluorescence increase than cells that were only exposed to arsenic. In addition, apoptosis was mesured using Hoechst 33342/PI dual staining by microscopy and annexin V-FITC/propidium iodide dual staining by flow cytometry. The results show an increased uptake of the arsenic dose and the cells changed from dark blue to light blue, karyopyknosis, nuclear chromatin condensation, side set or fracture, and a correlation was found between the number of apoptotic cells and arsenic dose. The result of present study suggest that arsenic may induce pancreatic β-cell apoptosis through activation of the lysosome-mitochondrial pathway.

  18. Factors influencing the measurement of lysosomal enzymes activity in human cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Emanuele Persichetti

    Full Text Available Measurements of the activities of lysosomal enzymes in cerebrospinal fluid have recently been proposed as putative biomarkers for Parkinson's disease and other synucleinopathies. To define the operating procedures useful for ensuring the reliability of these measurements, we analyzed several pre-analytical factors that may influence the activity of β-glucocerebrosidase, α-mannosidase, β-mannosidase, β-galactosidase, α-fucosidase, β-hexosaminidase, cathepsin D and cathepsin E in cerebrospinal fluid. Lysosomal enzyme activities were measured by well-established fluorimetric assays in a consecutive series of patients (n = 28 with different neurological conditions, including Parkinson's disease. The precision, pre-storage and storage conditions, and freeze/thaw cycles were evaluated. All of the assays showed within- and between-run variabilities below 10%. At -20°C, only cathepsin D was stable up to 40 weeks. At -80°C, the cathepsin D, cathepsin E, and β-mannosidase activities did not change significantly up to 40 weeks, while β-glucocerebrosidase activity was stable up to 32 weeks. The β-galactosidase and α-fucosidase activities significantly increased (+54.9±38.08% after 4 weeks and +88.94±36.19% after 16 weeks, respectively. Up to four freeze/thaw cycles did not significantly affect the activities of cathepsins D and E. The β-glucocerebrosidase activity showed a slight decrease (-14.6% after two freeze/thaw cycles. The measurement of lysosomal enzyme activities in cerebrospinal fluid is reliable and reproducible if pre-analytical factors are accurately taken into consideration. Therefore, the analytical recommendations that ensue from this study may contribute to the establishment of actual values for the activities of cerebrospinal fluid lysosomal enzymes as putative biomarkers for Parkinson's disease and other neurodegenerative disorders.

  19. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Directory of Open Access Journals (Sweden)

    G.B. Peres

    2014-06-01

    Full Text Available It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old, while 26 age-matched controls received only vehicle. The livers were removed on either the 10th or the 30th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA of cathepsins B and L was also decreased on the 10th, but not on the 30th day. Sulfatase decreased 30% on the 30th day, while glycosidases did not vary (or presented a transitory and slight decrease. There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  20. C. elegans Major Fats Are Stored in Vesicles Distinct from Lysosome-Related Organelles

    OpenAIRE

    O’Rourke, Eyleen J.; Soukas, Alexander A.; Carr, Christopher E.; Ruvkun, Gary

    2009-01-01

    Genetic conservation allows ancient features of fat storage endocrine pathways to be explored in C. elegans. Multiple studies have used Nile red or BODIPY-labeled fatty acids to identify regulators of fat mass. When mixed with their food, E. coli bacteria, Nile red, and BODIPY-labeled fatty acids stain multiple spherical cellular structures in the C. elegans major fat storage organ, the intestine. However, here we demonstrate that, in the conditions previously reported, the lysosome-related o...

  1. The phylogeny and evolution of deoxyribonuclease II: An enzyme essential for lysosomal DNA degradation

    OpenAIRE

    Shpak, Max; Kugelman, Jeffrey R.; Varela-Ramirez, Armando; Aguilera, Renato J.

    2007-01-01

    Deoxyribonuclease II (DNase II) is an endonuclease with optimal activity at low pH, localized within the lysosomes of higher eukaryotes. The origin of this enzyme remains in dispute, and its phylogenetic distribution leaves many questions about its subsequent evolutionary history open. Earlier studies have documented its presence in various metazoans, as well as in Dictyostelium, Trichomonas and, anomalously, a single genus of bacteria (Burkholderia). This study makes use of searches of the g...

  2. Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells.

    Science.gov (United States)

    Granger, B L; Green, S A; Gabel, C A; Howe, C L; Mellman, I; Helenius, A

    1990-07-15

    lgp110 is a heavily glycosylated intrinsic protein of lysosomal membranes. Initially defined by monoclonal antibodies against mouse liver lysosomes, it consists of a 45-kilodalton core polypeptide with O-linked and 17 asparagine-linked oligosaccharide side chains in mouse cells. Sialic acid residues make the mature protein extremely acidic, with an isoelectric point of between 2 and 4 in both normal tissues and most cultured cell lines. Partial sequencing of mouse lgp110 allowed oligonucleotide probes to be constructed for the screening of several mouse cDNA libraries. A partial cDNA clone for mouse lgp110 was found and used for additional library screening, generating a cDNA clone covering all of the coding sequence of mature rat lgp110 as well as genomic clones covering most of the mouse gene. These new clones bring to seven the number of lysosomal membrane proteins whose amino acid sequences can be deduced, and two distinct but highly similar groups (designated lgp-A and lgp-B) can now be defined. Sequence comparisons suggest that differences within each group reflect species variations of the same protein and that lgp-A and lgp-B probably diverged from a common ancestor prior to the evolup4f1ary divergence of birds and mammals. Individual cells and individual lysosomes possess both lgp-A and lgp-B, suggesting that these two proteins have different functions. Mouse lgp110 is encoded by at least seven exons; intron positions suggest that the two homologous ectodomains of each lgp arose through gene duplication.

  3. Lysosomal membrane stability in laboratory- and field-exposed terrestrial isopods Porcellio scaber (Isopoda, Crustacea).

    Science.gov (United States)

    Nolde, Natasa; Drobne, Damjana; Valant, Janez; Padovan, Ingrid; Horvat, Milena

    2006-08-01

    Two established methods for assessment of the cytotoxicity of contaminants, the lysosomal latency (LL) assay and the neutral red retention (NRR) assay, were successfully applied to in toto digestive gland tubes (hepatopancreas) of the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). In vitro exposure of isolated gland tubes to copper was used as a positive control to determine the performance of the two methods. Lysosomal latency and the NRR assay were then used on in vivo (via food) laboratory-exposed animals and on field populations. Arbitrarily selected criteria for determination of the fitness of P. scaber were set on the basis of lysosomal membrane stability (LMS) as assessed with in toto digestive gland tubes. Decreased LMS was detected in animals from all polluted sites, but cytotoxicity data were not in agreement with concentrations of pollutants. Lysosomal membrane stability in the digestive gland tubes of animals from an environment in Idrija, Slovenia that was highly polluted with mercury (260 microg/g dry wt food and 1,600 microg/g dry wt soil) was less affected than LMS in laboratory animals fed with 5 and 50 microg Hg/g dry weight for 3 d. This probably indicates tolerance of P. scaber to mercury in the mercury-polluted environment and/or lower bioavailability of environmental mercury. In animals from the vicinity of a thermal power plant with environmental mercury concentrations three to four orders of magnitude lower than those in Idrija, LMS was severely affected. In general, the LL assay was more sensitive than the NRR assay. The LMS assay conducted on digestive gland tubes of terrestrial isopods is highly recommended for integrated biomarker studies.

  4. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Peres, G.B. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Juliano, M.A. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Biofísica, São Paulo, SP, Brasil, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Aguiar, J.A.K.; Michelacci, Y.M. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-05-09

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10{sup th} or the 30{sup th} day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10{sup th}, but not on the 30{sup th} day. Sulfatase decreased 30% on the 30{sup th} day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  5. Seasonality of bioaccumulation of trace organics and lysosomal integrity in green-lipped mussel Perna viridis.

    Science.gov (United States)

    Fang, James K H; Wu, Rudolf S S; Zheng, Gene J; Lam, Paul K S; Shin, Paul K S

    2010-02-15

    Lysosomal integrity in mussels is widely used as a biomarker in coastal environments to demonstrate exposure to trace organic pollutants. However, few studies have determined the long-term influences of seasonal variations on the bioaccumulation of trace organics and subsequently altered response of lysosomal integrity in mussels. This study aimed to test three null hypotheses that (1) bioaccumulations of total polycyclic aromatic hydrocarbon (SigmaPAH) and (2) total polychlorinated biphenyl (SigmaPCB), and (3) lysosomal integrity as indicated by Neutral Red retention time (NRRT) in haemocytes, in the green-lipped mussel Perna viridis were not seasonally dependent. The tissue concentrations of SigmaPAH and SigmaPCB and haemocytic NRRT were determined in P. viridis in a metropolitan harbour, subtropical Hong Kong during the wet and dry seasons from 2004 to 2007. Additional information on temperature, salinity, dissolved oxygen and total ammonia nitrogen in seawater, and sediment levels of SigmaPAH and SigmaPCB, were extracted from published data and re-analyzed. Our results accepted all null hypotheses, based on the minimal seasonal influences of seawater temperature and salinity on all studied parameters, in which no significant differences between the wet and dry seasons were detected. The seasonal effect was likely outweighed by the greatly improved water quality and pollution abatement noted inside the harbour, with a gradual shift in mussel PAHs from a pyrolytic origin to a petrogenic origin. Spatially, the site east of the harbour was relatively unpolluted. The single use of NRRT in P. viridis explained 25% of the total variation of the integrated pollution patterns in seawater, sediments and mussels. The present study suggested that the dynamic change of trace organics could be reflected by the response on lysosomal integrity in P. viridis, which was recommended as a routine screening biomarker in monitoring of harbour water quality across seasons.

  6. Lysosomal trafficking of {beta}-catenin induced by the tea polyphenol epigallocatechin-3-gallate

    Energy Technology Data Exchange (ETDEWEB)

    Dashwood, Wan-Mohaiza [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Carter, Orianna [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Al-Fageeh, Mohamed [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Li, Qingjie [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Dashwood, Roderick H. [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States)]. E-mail: Rod.Dashwood@oregonstate.edu

    2005-12-11

    {beta}-Catenin is a cadherin-binding protein involved in cell-cell adhesion, which also functions as a transcriptional activator when complexed in the nucleus with members of the T-cell factor (TCF)/lymphoid enhancer factor (LEF) family of proteins. There is considerable interest in mechanisms that down-regulate {beta}-catenin, since this provides an avenue for the prevention of colorectal and other cancers in which {beta}-catenin is frequently over-expressed. We show here that physiologically relevant concentrations of the tea polyphenol epigallocatechin-3-gallate (EGCG) inhibited {beta}-catenin/TCF-dependent reporter activity in human embryonic kidney 293 cells transfected with wild type or mutant {beta}-catenins, and there was a corresponding decrease in {beta}-catenin protein levels in the nuclear, cytosolic and membrane-associated fractions. However, {beta}-catenin accumulated as punctate aggregates in response to EGCG treatment, including in human colon cancer cells over-expressing {beta}-catenin endogenously. Confocal microscopy studies revealed that the aggregated {beta}-catenin in HEK293 cells was extra-nuclear and co-localized with lysosomes, suggesting that EGCG activated a pathway involving lysosomal trafficking of {beta}-catenin. Lysosomal inhibitors leupeptin and transepoxysuccinyl-L-leucylamido(4-guanido)butane produced an increase in {beta}-catenin protein in total cell lysates, without a concomitant increase in {beta}-catenin transcriptional activity. These data provide the first evidence that EGCG facilitates the trafficking of {beta}-catenin into lysosomes, presumably as a mechanism for sequestering {beta}-catenin and circumventing further nuclear transport and activation of {beta}-catenin/TCF/LEF signaling.

  7. Protective Role of Endogenous Gangliosides for Lysosomal Pathology in a Cellular Model of Synucleinopathies

    OpenAIRE

    Wei, Jianshe; Fujita, Masayo; Nakai, Masaaki; Waragai, Masaaki; Sekigawa, Akio; Sugama, Shuei; Takenouchi, Takato; Masliah, Eliezer; Hashimoto,Makoto

    2009-01-01

    Gangliosides may be involved in the pathogenesis of Parkinson’s disease and related disorders, although the precise mechanisms governing this involvement remain unknown. In this study, we determined whether changes in endogenous ganglioside levels affect lysosomal pathology in a cellular model of synucleinopathy. For this purpose, dementia with Lewy body-linked P123H β-synuclein (β-syn) neuroblastoma cells transfected with α-synuclein were used as a model system because these cells were chara...

  8. Para-toluenesulfonamide induces tongue squamous cell carcinoma cell death through disturbing lysosomal stability

    OpenAIRE

    Liu, Zhe; Liang, Chenyuan; Zhang, Zhuoyuan; Pan, Jian; Xia, Hui; Zhong, Nanshan; Li, Longjiang

    2015-01-01

    Para-toluenesulfonamide (PTS) has been implicated with anticancer effects against a variety of tumors. In the present study, we investigated the inhibitory effects of PTS on tongue squamous cell carcinoma (Tca-8113) and explored the lysosomal and mitochondrial changes after PTS treatment in vitro. High-performance liquid chromatography showed that PTS selectively accumulated in Tca-8113 cells with a relatively low concentration in normal fibroblasts. Next, the effects of PTS on cell viability...

  9. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The lysosomal degradation pathway.

    Science.gov (United States)

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S; Ambudkar, Suresh V

    2015-10-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7±1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1±0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp- expressing cancer cells towards chemotherapeutic drugs.

  10. MDMA induces cardiac contractile dysfunction through autophagy upregulation and lysosome destabilization in rats.

    Science.gov (United States)

    Shintani-ishida, Kaori; Saka, Kanju; Yamaguchi, Koji; Hayashida, Makiko; Nagai, Hisashi; Takemura, Genzou; Yoshida, Ken-ichi

    2014-05-01

    The underlying mechanisms of cardiotoxicity of 3,4-methylenedioxymethylamphetamine (MDMA, "ecstasy") abuse are unclear. Autophagy exerts either adaptive or maladaptive effects on cardiac function in various pathological settings, but nothing is known on the role of autophagy in the MDMA cardiotoxicity. Here, we investigated the mechanism through which autophagy may be involved in MDMA-induced cardiac contractile dysfunction. Rats were injected intraperitoneally with MDMA (20mg/kg) or saline. Left ventricular (LV) echocardiography and LV pressure measurement demonstrated reduction of LV systolic contractility 24h after MDMA administration. Western blot analysis showed a time-dependent increase in the levels of microtubule-associated protein light chain 3-II (LC3-II) and cathepsin-D after MDMA administration. Electron microscopy showed the presence of autophagic vacuoles in cardiomyocytes. MDMA upregulated phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) at Thr172, mammalian target of rapamycin (mTOR) at Thr2446, Raptor at Ser792, and Unc51-like kinase (ULK1) at Ser555, suggesting activation of autophagy through the AMPK-mTOR pathway. The effects of autophagic inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) on LC3-II levels indicated that MDMA enhanced autophagosome formation, but attenuated autophagosome clearance. MDMA also induced release of cathepsins into cytosol, and western blotting and electron microscopy showed cardiac troponin I (cTnI) degradation and myofibril damage, respectively. 3-MA, CQ, and a lysosomal inhibitor, E64c, inhibited cTnI proteolysis and improved contractile dysfunction after MDMA administration. In conclusion, MDMA causes lysosome destabilization following activation of the autophagy-lysosomal pathway, through which released lysosomal proteases damage myofibrils and induce LV systolic dysfunction in rat heart.

  11. The lysosomal stability as a biomarker for the determination of pollution in aquatic environments

    Directory of Open Access Journals (Sweden)

    Maria Loreto Nazar

    2008-10-01

    Full Text Available This work studied the effects caused by five different formulae of gasoline on the stability of the lysosomes isolated from the liver of the tilapia fish (Oreochromis niloticus. The functional integrity of the lysosomal membranes was evaluated via the acid phosphatase activity. The results showed that there were significant changes in the stability of the lysosomes exposed to the presence of the hydrocarbons in the environment. Therefore, considering the method's simplicity, the sensitivity of the responses and its low cost the assessment of the lysosomal activity could be an important tool for the study of the effects of pollution in the aquatic environments.A procura de biomarcadores de agentes poluidores, mais simples e menos custosos, tem levado ao estudo dos lisossomos, isolados de animais componentes da biota nos ambientes contaminados, principalmente por poluentes com características lipofílicas, a exemplo dos hidrocarbonetos policíclicos e seus derivados. Este trabalho estudou os efeitos provocados por 05 diferentes formulações de gasolina sobre a estabilidade de lisossomos, isolados de fígado de tilápia (Oreochromis niloticus. A integridade funcional das membranas lisossômicas foi avaliada através da atividade da fosfatase ácida, expressa em mU/mg de proteínas totais. Os resultados obtidos mostraram que existem alterações significativas na estabilidade dos lisossomos isolados de fígado de tilápias submetidas aos efeitos de hidrocarbonetos presentes no meio ambiente. Portanto, levando em conta a simplicidade, a sensibilidade de resposta e o baixo custo, os autores recomendam a avaliação da atividade lisossômica, como uma importante ferramenta para o estudo dos efeitos da poluição dos meios aquáticos.

  12. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The Lysosomal Degradation Pathway

    Science.gov (United States)

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S.; Ambudkar, Suresh V.

    2015-01-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7 ± 1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1± 0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp expressing cancer cells towards chemotherapeutic drugs. PMID:26057472

  13. A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy-lysosome pathway.

    Directory of Open Access Journals (Sweden)

    Andrew M Arsham

    Full Text Available The highly conserved autophagy-lysosome pathway is the primary mechanism for breakdown and recycling of macromolecular and organellar cargo in the eukaryotic cell. Autophagy has recently been implicated in protection against cancer, neurodegeneration, and infection, and interest is increasing in additional roles of autophagy in human health, disease, and aging. To search for novel cytoprotective features of this pathway, we carried out a genetic mosaic screen for mutations causing increased lysosomal and/or autophagic activity in the Drosophila melanogaster larval fat body. By combining Drosophila genetics with live-cell imaging of the fluorescent dye LysoTracker Red and fixed-cell imaging of autophagy-specific fluorescent protein markers, the screen was designed to identify essential metazoan genes whose disruption causes increased flux through the autophagy-lysosome pathway. The screen identified a large number of genes associated with the protein synthesis and ER-secretory pathways (e.g. aminoacyl tRNA synthetases, Oligosaccharyl transferase, Sec61alpha, and with mitochondrial function and dynamics (e.g. Rieske iron-sulfur protein, Dynamin-related protein 1. We also observed that increased lysosomal and autophagic activity were consistently associated with decreased cell size. Our work demonstrates that disruption of the synthesis, transport, folding, or glycosylation of ER-targeted proteins at any of multiple steps leads to autophagy induction. In addition to illuminating cytoprotective features of autophagy in response to cellular damage, this screen establishes a genetic methodology for investigating cell biological phenotypes in live cells, in the context of viable wild type organisms.

  14. Legendre Expansions for Two-Hadron Reactions

    Science.gov (United States)

    Strakovsky, Igor; Azimov, Yakov; Briscoe, William

    2017-01-01

    Modern experimental facilities and detectors provide tremendous volumes of detailed data. For two-hadron reactions, they are usually presented as a set of multiple panels, e . g . , angular distributions at many particular energies. Such presentations lose visuality, and their physical content may be extracted only through some model-dependent treatment. Instead, we suggest to use expansion into the Legendre series with a relatively small number of essential coefficients. This approach was applied in several experimental investigations and demonstrated its higher visualization. This talk presents some general properties of the Legendre coefficients which allow one to extract physical information even without any model-dependent assumptions. The U.S. Department of Energy, Office of Science, Office of Nuclear Physics, Award Numbers DE-SC0014133 and DE-SC0016582 and the Russian Science Foundation, Award No.14-22-00281.

  15. A lysosome-targeted drug delivery system based on sorbitol backbone towards efficient cancer therapy.

    Science.gov (United States)

    Maniganda, Santhi; Sankar, Vandana; Nair, Jyothi B; Raghu, K G; Maiti, Kaustabh K

    2014-09-14

    A straightforward synthetic approach was adopted for the construction of a lysosome-targeted drug delivery system (TDDS) using sorbitol scaffold (Sor) linked to octa-guanidine and tetrapeptide GLPG, a peptide substrate of lysosomal cysteine protease, cathepsin B. The main objective was to efficiently deliver the potential anticancer drug, doxorubicin to the target sites, thereby minimizing dose-limiting toxicity. Three TDDS vectors were synthesized viz., DDS1: Sor-GLPG-Fl, DDS2: Sor-Fl (control) and DDS3: Sor-GLPGC-SMCC-Dox. Dox release from DDS3 in the presence of cathepsin B was studied by kinetics measurement based on the fluorescent property of Dox. The cytotoxicity of DDS1 was assessed and found to be non-toxic. Cellular internalization and colocalization studies of all the 3 systems were carried out by flow cytometry and confocal microscopy utilizing cathepsin B-expressing HeLa cells. DDS1 and DDS3 revealed significant localization within the lysosomes, in contrast to DDS2 (control). The doxorubicin-conjugated carrier, DDS3, demonstrated significant cytotoxic effect when compared to free Dox by MTT assay and also by flow cytometric analysis. The targeted approach with DDS3 is expected to be promising, because it is indicated to be advantageous over free Dox, which possesses dose-limiting toxicity, posing risk of injury to normal tissues.