WorldWideScience

Sample records for lysosomal membrane destabilization

  1. Polycyclic aromatic hydrocarbon body residues and lysosomal membrane destabilization in mussels exposed to the Dubai Star bunker fuel oil (intermediate fuel oil 380) spill in San Francisco Bay.

    Science.gov (United States)

    Hwang, Hyun-Min; Stanton, Beckye; McBride, Toby; Anderson, Michael J

    2014-05-01

    Following the spill of bunker fuel oil (intermediate fuel oil 380, approximately 1500-3000 L) into San Francisco Bay in October 2009, polycyclic aromatic hydrocarbon (PAH) concentrations in mussels from moderately oiled areas increased up to 87 554 ng/g (dry wt) and, 3 mo later, decreased to concentrations found in mussels collected prior to oiling, with a biological half-life of approximately 16 d. Lysosomal membrane destabilization increased in mussels with higher PAH body burdens.

  2. Calpains mediate epithelial-cell death during mammary gland involution: mitochondria and lysosomal destabilization.

    Science.gov (United States)

    Arnandis, T; Ferrer-Vicens, I; García-Trevijano, E R; Miralles, V J; García, C; Torres, L; Viña, J R; Zaragozá, R

    2012-09-01

    Our aim was to elucidate the physiological role of calpains (CAPN) in mammary gland involution. Both CAPN-1 and -2 were induced after weaning and its activity increased in isolated mitochondria and lysosomes. CAPN activation within the mitochondria could trigger the release of cytochrome c and other pro-apoptotic factors, whereas in lysosomes it might be essential for tissue remodeling by releasing cathepsins into the cytosol. Immunohistochemical analysis localized CAPNs mainly at the luminal side of alveoli. During weaning, CAPNs translocate to the lysosomes processing membrane proteins. To identify these substrates, lysosomal fractions were treated with recombinant CAPN and cleaved products were identified by 2D-DIGE. The subunit b(2) of the v-type H(+) ATPase is proteolyzed and so is the lysosomal-associated membrane protein 2a (LAMP2a). Both proteins are also cleaved in vivo. Furthermore, LAMP2a cleavage was confirmed in vitro by addition of CAPNs to isolated lysosomes and several CAPN inhibitors prevented it. Finally, in vivo inhibition of CAPN1 in 72-h-weaned mice decreased LAMP2a cleavage. Indeed, calpeptin-treated mice showed a substantial delay in tissue remodeling and involution of the mammary gland. These results suggest that CAPNs are responsible for mitochondrial and lysosomal membrane permeabilization, supporting the idea that lysosomal-mediated cell death is a new hallmark of mammary gland involution.

  3. Characterization of lysosome-destabilizing DOPE/PLGA nanoparticles designed for cytoplasmic drug release.

    Science.gov (United States)

    Chhabra, Resham; Grabrucker, Andreas M; Veratti, Patrizia; Belletti, Daniela; Boeckers, Tobias M; Vandelli, Maria Angela; Forni, Flavio; Tosi, Giovanni; Ruozi, Barbara

    2014-08-25

    Polymeric nanoparticles (NPs) offer a promising approach for therapeutic intracellular delivery of proteins, conventionally hampered by short half-lives, instability and immunogenicity. Remarkably, NPs uptake occurs via endocytic internalization leading to NPs content's release within lysosomes. To overcome lysosomal degradation and achieve NPs and/or loaded proteins release into cytosol, we propose the formulation of hybrid NPs by adding 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as pH sensitive component in the formulation of poly-lactide-co-glycolide (PLGA) NPs. Hybrid NPs, featured by different DOPE/PLGA ratios, were characterized in terms of structure, stability and lipid organization within the polymeric matrix. Experiments on NIH cells and rat primary neuronal cultures highlighted the safety profile of hybrid NPs. Moreover, after internalization, NPs are able to transiently destabilize the integrity of lysosomes in which they are taken up, speeding their escape and favoring cytoplasmatic localization. Thus, these DOPE/PLGA-NPs configure themselves as promising carriers for intracellular protein delivery.

  4. Lysosome

    National Research Council Canada - National Science Library

    Ursula Matte BSc, PhD; Gabriela Pasqualim BSc, MSc

    2016-01-01

    Since Christian de Duve first described the lysosome in the 1950s, it has been generally presented as a membrane-bound compartment containing acid hydrolases that enables the cell to degrade molecules...

  5. MDMA induces cardiac contractile dysfunction through autophagy upregulation and lysosome destabilization in rats.

    Science.gov (United States)

    Shintani-ishida, Kaori; Saka, Kanju; Yamaguchi, Koji; Hayashida, Makiko; Nagai, Hisashi; Takemura, Genzou; Yoshida, Ken-ichi

    2014-05-01

    The underlying mechanisms of cardiotoxicity of 3,4-methylenedioxymethylamphetamine (MDMA, "ecstasy") abuse are unclear. Autophagy exerts either adaptive or maladaptive effects on cardiac function in various pathological settings, but nothing is known on the role of autophagy in the MDMA cardiotoxicity. Here, we investigated the mechanism through which autophagy may be involved in MDMA-induced cardiac contractile dysfunction. Rats were injected intraperitoneally with MDMA (20mg/kg) or saline. Left ventricular (LV) echocardiography and LV pressure measurement demonstrated reduction of LV systolic contractility 24h after MDMA administration. Western blot analysis showed a time-dependent increase in the levels of microtubule-associated protein light chain 3-II (LC3-II) and cathepsin-D after MDMA administration. Electron microscopy showed the presence of autophagic vacuoles in cardiomyocytes. MDMA upregulated phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) at Thr172, mammalian target of rapamycin (mTOR) at Thr2446, Raptor at Ser792, and Unc51-like kinase (ULK1) at Ser555, suggesting activation of autophagy through the AMPK-mTOR pathway. The effects of autophagic inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) on LC3-II levels indicated that MDMA enhanced autophagosome formation, but attenuated autophagosome clearance. MDMA also induced release of cathepsins into cytosol, and western blotting and electron microscopy showed cardiac troponin I (cTnI) degradation and myofibril damage, respectively. 3-MA, CQ, and a lysosomal inhibitor, E64c, inhibited cTnI proteolysis and improved contractile dysfunction after MDMA administration. In conclusion, MDMA causes lysosome destabilization following activation of the autophagy-lysosomal pathway, through which released lysosomal proteases damage myofibrils and induce LV systolic dysfunction in rat heart.

  6. Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis.

    Science.gov (United States)

    Chen, Yang; Li, Xiang; Boini, Krishna M; Pitzer, Ashley L; Gulbins, Erich; Zhang, Yang; Li, Pin-Lan

    2015-02-01

    Inflammasomes play a critical role in the development of vascular diseases. However, the molecular mechanisms activating the inflammasome in endothelial cells and the relevance of this inflammasome activation is far from clear. Here, we investigated the mechanisms by which an Nlrp3 inflammasome is activated to result in endothelial dysfunction during coronary arteritis by Lactobacillus casei (L. casei) cell wall fragments (LCWE) in a mouse model for Kawasaki disease. Endothelial dysfunction associated with increased vascular cell adhesion protein 1 (VCAM-1) expression and endothelial-leukocyte adhesion was observed during coronary arteritis in mice treated with LCWE. Accompanied with these changes, the inflammasome activation was also shown in coronary arterial endothelium, which was characterized by a marked increase in caspase-1 activity and IL-1β production. In cultured endothelial cells, LCWE induced Nlrp3 inflammasome formation, caspase-1 activation and IL-1β production, which were blocked by Nlrp3 gene silencing or lysosome membrane stabilizing agents such as colchicine, dexamethasone, and ceramide. However, a potassium channel blocker glibenclamide or an oxygen free radical scavenger N-acetyl-l-cysteine had no effects on LCWE-induced inflammasome activation. LCWE also increased endothelial cell lysosomal membrane permeability and triggered lysosomal cathepsin B release into cytosol. Silencing cathepsin B blocked LCWE-induced Nlrp3 inflammasome formation and activation in endothelial cells. In vivo, treatment of mice with cathepsin B inhibitor also abolished LCWE-induced inflammasome activation in coronary arterial endothelium. It is concluded that LCWE enhanced lysosomal membrane permeabilization and consequent release of lysosomal cathepsin B, resulting in activation of the endothelial Nlrp3 inflammasome, which may contribute to the development of coronary arteritis.

  7. The Octyl Ester of Ginsenoside Rh2 Induces Lysosomal Membrane Permeabilization via Bax Translocation.

    Science.gov (United States)

    Chen, Fang; Zhang, Bing; Sun, Yong; Xiong, Zeng-Xing; Peng, Han; Deng, Ze-Yuan; Hu, Jiang-Ning

    2016-04-25

    Ginsenoside Rh2 is a potential pharmacologically active metabolite of ginseng. Previously, we have reported that an octyl ester derivative of ginsenoside Rh2 (Rh2-O), has been confirmed to possess higher bioavailability and anticancer effect than Rh2 in vitro. In order to better assess the possibility that Rh2-O could be used as an anticancer compound, the underlying mechanism was investigated in this study. The present results revealed that lysosomal destabilization was involved in the early stage of cell apoptosis in HepG2 cells induced by Rh2-O. Rh2-O could induce an early lysosomal membrane permeabilization with the release of lysosomal protease cathepsins to the cytosol in HepG2 cells. The Cat B inhibitor (leu) and Cat D inhibitor (pepA) inhibited Rh2-O-induced HepG2 apoptosis as well as tBid production and Δφm depolarization, indicating that lysosomal permeabilization occurred upstream of mitochondrial dysfunction. In addition, Rh2-O induced a significant increase in the protein levels of DRAM1 and Bax (p lysosomes of HepG2 cells. Knockdown of Bax partially inhibited Rh2-O-induced Cat D release from lysosomes. Thus it was concluded that Rh2-O induced apoptosis of HepG2 cells through activation of the lysosomal-mitochondrial apoptotic pathway involving the translocation of Bax to the lysosome.

  8. Lysosome

    Directory of Open Access Journals (Sweden)

    Ursula Matte BSc, PhD

    2016-12-01

    Full Text Available Since Christian de Duve first described the lysosome in the 1950s, it has been generally presented as a membrane-bound compartment containing acid hydrolases that enables the cell to degrade molecules without being digested by autolysis. For those working on the field of lysosomal storage disorders, the lack of one such hydrolase would lead to undegraded or partially degraded substrate storage inside engorged organelles disturbing cellular function by yet poorly explored mechanisms. However, in recent years, a much more complex scenario of lysosomal function has emerged, beyond and above the cellular “digestive” system. Knowledge on how the impairment of this organelle affects cell functioning may shed light on signs and symptoms of lysosomal disorders and open new roads for therapy.

  9. Lysosomal enlargement and lysosomal membrane destabilisation in mussel digestive cells measured by an integrative index

    Energy Technology Data Exchange (ETDEWEB)

    Izagirre, Urtzi [Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Cell Biology, School of Sciences and Technology, University of the Basque Country, P.O. box 644, E-48080 Bilbo (Spain); Marigomez, Ionan, E-mail: ionan.marigomez@ehu.e [Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Cell Biology, School of Sciences and Technology, University of the Basque Country, P.O. box 644, E-48080 Bilbo (Spain)

    2009-05-15

    Lysosomal responses (enlargement and membrane destabilisation) in mussel digestive cells are well-known environmental stress biomarkers in pollution effects monitoring in marine ecosystems. Presently, in laboratory and field studies, both responses were measured separately (in terms of lysosomal volume density - Vv - and labilisation period -LP) and combined (lysosomal response index - LRI) in order to contribute to their understanding and to develop an index useful for decisions makers. LRI integrates Vv and LP, which are not necessarily dependent lysosomal responses. It is unbiased and more sensitive than Vv and LP alone and diminishes background due to confounding factors. LRI provides a simple numerical index (consensus reference = 0; critical threshold = 1) directly related to the pollution impact degree. Moreover, LRI can be represented in a way that allows the interpretation of lysosomal responses, which is useful for environmental scientists. - Lysosomal responses to pollutants measured by an integrative index.

  10. Effects of the lysosomal destabilizing drug siramesine on glioblastoma in vitro and in vivo

    DEFF Research Database (Denmark)

    Jensen, Stine S.; Asferg Petterson, Stine; Halle, Bo

    2017-01-01

    confirmed by immunohistochemical staining of histological sections of spheroids, spheroids in brain slice cultures and tumors in mice brains. Results: The results showed that siramesine killed standard glioma cell lines in vitro, and loss of acridine orange staining suggested a compromised lysosomal...... cell death and inhibited tumor cell migration. This could not be reproduced in the organotypic three dimensional spheroid-brain slice culture model or in the mice xenograft model. Conclusions: In conclusion the in vitro results obtained with tumor cells and spheroids suggest a potential of lysosomal...

  11. Discriminating lysosomal membrane protein types using dynamic neural network.

    Science.gov (United States)

    Tripathi, Vijay; Gupta, Dwijendra Kumar

    2014-01-01

    This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.

  12. PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization.

    Science.gov (United States)

    Liu, Jiazhuo; Peng, Leiwen; Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting

    2016-01-26

    PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the "verge of apoptosis". When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways.

  13. Septins as modulators of endo-lysosomal membrane traffic

    Directory of Open Access Journals (Sweden)

    Kyungyeun Song

    2016-11-01

    Full Text Available Septins constitute a family of GTP-binding proteins, which assemble into non-polar filaments in a nucleotide-dependent manner. These filaments can be recruited to negatively charged membrane surfaces. When associated with membranes septin filaments can act as diffusion barriers, which confine subdomains of distinct biological functions. In addition, they serve scaffolding roles by recruiting cytosolic proteins and other cytoskeletal elements. Septins have been implicated in a large variety of membrane-dependent processes, including cytokinesis, signaling, cell migration, and membrane traffic, and several family members have been implicated in disease. However, surprisingly little is known about the molecular mechanisms underlying their biological functions. This review summarizes evidence in support of regulatory roles of septins during endo-lysosomal sorting, with a particular focus on phosphoinositides, which serve as spatial landmarks guiding septin recruitment to distinct subcellular localizations.

  14. Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx

    Directory of Open Access Journals (Sweden)

    Wilke Sonja

    2012-07-01

    Full Text Available Abstract Background The family of lysosome-associated membrane proteins (LAMP comprises the multifunctional, ubiquitous LAMP-1 and LAMP-2, and the cell type-specific proteins DC-LAMP (LAMP-3, BAD-LAMP (UNC-46, C20orf103 and macrosialin (CD68. LAMPs have been implicated in a multitude of cellular processes, including phagocytosis, autophagy, lipid transport and aging. LAMP-2 isoform A acts as a receptor in chaperone-mediated autophagy. LAMP-2 deficiency causes the fatal Danon disease. The abundant proteins LAMP-1 and LAMP-2 are major constituents of the glycoconjugate coat present on the inside of the lysosomal membrane, the 'lysosomal glycocalyx'. The LAMP family is characterized by a conserved domain of 150 to 200 amino acids with two disulfide bonds. Results The crystal structure of the conserved domain of human DC-LAMP was solved. It is the first high-resolution structure of a heavily glycosylated lysosomal membrane protein. The structure represents a novel β-prism fold formed by two β-sheets bent by β-bulges and connected by a disulfide bond. Flexible loops and a hydrophobic pocket represent possible sites of molecular interaction. Computational models of the glycosylated luminal regions of LAMP-1 and LAMP-2 indicate that the proteins adopt a compact conformation in close proximity to the lysosomal membrane. The models correspond to the thickness of the lysosomal glycoprotein coat of only 5 to 12 nm, according to electron microscopy. Conclusion The conserved luminal domain of lysosome-associated membrane proteins forms a previously unknown β-prism fold. Insights into the structure of the lysosomal glycoprotein coat were obtained by computational models of the LAMP-1 and LAMP-2 luminal regions.

  15. Noxa couples lysosomal membrane permeabilization and apoptosis during oxidative stress.

    Science.gov (United States)

    Eno, Colins O; Zhao, Guoping; Venkatanarayan, Avinashnarayan; Wang, Bing; Flores, Elsa R; Li, Chi

    2013-12-01

    The exact roles of lysosomal membrane permeabilization (LMP) in oxidative stress-triggered apoptosis are not completely understood. Here, we first studied the temporal relation between LMP and mitochondrial outer membrane permeabilization (MOMP) during the initial stage of apoptosis caused by the oxidative stress inducer H2O2. Despite its essential role in mediating apoptosis, the expression of the BH3-only Bcl-2 protein Noxa was dispensable for LMP. In contrast, MOMP was dependent on Noxa expression and occurred downstream of LMP. When lysosomal membranes were stabilized by the iron-chelating agent desferrioxamine, H2O2-induced increase in DNA damage, Noxa expression, and subsequent apoptosis were abolished by the inhibition of LMP. Importantly, LMP-induced Noxa expression increase was mediated by p53 and seems to be a unique feature of apoptosis caused by oxidative stress. Finally, exogenous iron loading recapitulated the effects of H2O2 on the expression of BH3-only Bcl-2 proteins. Overall, these data reveal a Noxa-mediated signaling pathway that couples LMP with MOMP and ultimate apoptosis during oxidative stress.

  16. Glycolipid-dependent sorting of melanosomal from lysosomal membrane proteins by lumenal determinants

    NARCIS (Netherlands)

    Groux-Degroote, S.; Dijk, S.M. van; Wolthoorn, J.; Neumann, S.; Theos, A.C.; Mazière, A.M. de; Klumperman, J.; Meer, G. van; Sprong, H.

    2008-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes in mammalian pigment cells. Melanosomal and lysosomal membrane proteins share similar sorting signals in their cytoplasmic tail, raising the question how they are segregated. We show that in control melanocytes, the melanosomal

  17. Glycolipid-dependent sorting of melanosomal from lysosomal membrane proteins by lumenal determinants

    NARCIS (Netherlands)

    Groux-Degroote, S.; Dijk, S.M. van; Wolthoorn, J.; Neumann, S.; Theos, A.C.; Mazière, A.M. de; Klumperman, J.; Meer, G. van; Sprong, H.

    2008-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes in mammalian pigment cells. Melanosomal and lysosomal membrane proteins share similar sorting signals in their cytoplasmic tail, raising the question how they are segregated. We show that in control melanocytes, the melanosomal

  18. EDTA-induced membrane fluidization and destabilization: biophysical studies on artificial lipid membranes.

    Science.gov (United States)

    Prachayasittikul, Virapong; Isarankura-Na-Ayudhya, Chartchalerm; Tantimongcolwat, Tanawut; Nantasenamat, Chanin; Galla, Hans-Joachim

    2007-11-01

    The molecular mechanism of ethylenediaminetetraacetic acid (EDTA)-induced membrane destabilization has been studied using a combination of four biophysical techniques on artificial lipid membranes. Data from Langmuir film balance and epifluorescence microscopy revealed the fluidization and expansion effect of EDTA on phase behavior of monolayers of either 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or mixtures of DPPC and metal-chelating lipids, such as N(alpha),N(alpha)-Bis[carboxymethyl]-N(epsilon)-[(dioctadecylamino)succinyl]-L-lysine or 1,2-dioleoyl-sn-glycero-3-[N-(5-amino-1-carboxypentyl iminodiacetic acid) succinyl]. A plausible explanation could be drawn from the electrostatic interaction between negatively charged groups of EDTA and the positively charged choline head group of DPPC. Intercalation of EDTA into the lipid membrane induced membrane curvature as elucidated by atomic force microscopy. Growth in size and shape of the membrane protrusion was found to be time-dependent upon exposure to EDTA. Further loss of material from the lipid membrane surface was monitored in real time using a quartz crystal microbalance. This indicates membrane restabilization by exclusion of the protrusions from the surface. Loss of lipid components facilitates membrane instability, leading to membrane permeabilization and lysis.

  19. EDTA-induced Membrane Fluidization and Destabilization: Biophysical Studies on Artificial Lipid Membranes

    Institute of Scientific and Technical Information of China (English)

    Virapong PRACHAYASITTIKUL; Chartchalerm ISARANKURA-NA-AYUDHYA; Tanawut TANTIMONGCOLWAT; Chanin NANTASENAMAT; Hans-Joachim GALLA

    2007-01-01

    The molecular mechanism of ethylenediaminetetraacetic acid (EDTA)-induced membrane destabilization has been studied using a combination of four biophysical techniques on artificial lipid membranes.Data from Langmuir film balance and epifluorescence microscopy revealed the fluidization and expansion effect of EDTA on phase behavior of monolayers of either 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or mixtures of DPPC and metal-chelating lipids, such as Nα,Nα-Bis[carboxymethyl]-Nε-[(dioctadecylamino)succinyl]-L-lysine or 1,2-dioleoyl-sn-glycero-3-[N-(5-amino- 1-carboxypentyl iminodiacetic acid) succinyl]. A plausible explanation could be drawn from the electrostatic interaction between negatively charged groups of EDTA and the positively charged choline head group of DPPC.Intercalation of EDTA into the lipid membrane induced membrane curvature as elucidated by atomic force microscopy. Growth in size and shape of the membrane protrusion was found to be time-dependent upon exposure to EDTA. Further loss of material from the lipid membrane surface was monitored in real time using a quartz crystal microbalance. This indicates membrane restabilization by exclusion of the protrusions from the surface. Loss of lipid components facilitates membrane instability, leading to membrane permeabilization and lysis.

  20. EMC1-dependent stabilization drives membrane penetration of a partially destabilized non-enveloped virus

    Science.gov (United States)

    Bagchi, Parikshit; Inoue, Takamasa; Tsai, Billy

    2016-01-01

    Destabilization of a non-enveloped virus generates a membrane transport-competent viral particle. Here we probe polyomavirus SV40 endoplasmic reticulum (ER)-to-cytosol membrane transport, a decisive infection step where destabilization initiates this non-enveloped virus for membrane penetration. We find that a member of the ER membrane protein complex (EMC) called EMC1 promotes SV40 ER membrane transport and infection. Surprisingly, EMC1 does so by using its predicted transmembrane residue D961 to bind to and stabilize the membrane-embedded partially destabilized SV40, thereby preventing premature viral disassembly. EMC1-dependent stabilization enables SV40 to engage a cytosolic extraction complex that ejects the virus into the cytosol. Thus EMC1 acts as a molecular chaperone, bracing the destabilized SV40 in a transport-competent state. Our findings reveal the novel principle that coordinated destabilization-stabilization drives membrane transport of a non-enveloped virus. DOI: http://dx.doi.org/10.7554/eLife.21470.001 PMID:28012275

  1. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells.

    Directory of Open Access Journals (Sweden)

    Bárbara Hissa

    Full Text Available BACKGROUND: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages and non-professional (epithelial phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING: In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of

  2. The Role of a Destabilized Membrane for OMP Insertion.

    Science.gov (United States)

    Plummer, Ashlee M; Gessmann, Dennis; Fleming, Karen G

    2015-01-01

    Here we describe the procedures used in our laboratory for the in vitro investigation of the apparent folding kinetics as well as the folding efficiencies of outer membrane proteins (OMPs). Because microbial OMPs display a change in their gel migration upon folding, the usage of traditional gel electrophoresis is a standard method of folding analysis. Additional aspects of the method we detail herein include the preparation and storage of OMP stocks, the setup procedures for a folding reaction, and the analysis of fraction folded from scanned gel images.

  3. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; Olsen, Ole D; Groth-Pedersen, Line

    2013-01-01

    Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome......-destabilizing experimental anticancer agent siramesine inhibits ASM by interfering with the binding of ASM to its essential lysosomal cofactor, bis(monoacylglycero)phosphate. Like siramesine, several clinically relevant ASM inhibitors trigger cancer-specific lysosomal cell death, reduce tumor growth in vivo, and revert...

  4. Enantioselective effects of methamidophos on the coelomocytes lysosomal membrane stability of Eisenia fetida.

    Science.gov (United States)

    Chen, Linhua; Lu, Xianting; Ma, Yun

    2012-12-01

    Many of organophosphorous insecticides are chiral compounds. In this study, the enantioselective effects of organophosphate insecticide methamidophos on the coelomocytes lysosomal membrane stability of earthworm Eisenia fetida were studied: (1) The enantiomers of methamidophos were absolutely separated by high-performance liquid chromatography with a commercial chiral column; (2) The neutral red retention assay was used to judge the lysosomal membrane stability. The results showed that with the concentration increasing, lysosomal membranes have been significantly destroyed by individual stereoisomers and racemate of methamidophos. The neutral red retention times were significantly descended from 76.88 to 29.78 min. Both (+)- and (-)-methamidophos showed more prone to destroy the integrity of the lysosomal membrane than the racemate. However, the different effect between stereoisomers is slight.

  5. Morphological alteration, lysosomal membrane fragility and apoptosis of the cells of Indian freshwater sponge exposed to washing soda (sodium carbonate).

    Science.gov (United States)

    Mukherjee, Soumalya; Ray, Mitali; Dutta, Manab Kumar; Acharya, Avanti; Mukhopadhyay, Sandip Kumar; Ray, Sajal

    2015-12-01

    Washing soda is chemically known as sodium carbonate and is a component of laundry detergent. Domestic effluent, drain water and various anthropogenic activities have been identified as major routes of sodium carbonate contamination of the freshwater ecosystem. The freshwater sponge, Eunapius carteri, bears ecological and evolutionary significance and is considered as a bioresource in aquatic ecosystems. The present study involves estimation of morphological damage, lysosomal membrane integrity, activity of phosphatases and apoptosis in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Exposure to washing soda resulted in severe morphological alterations and damages in cells of E. carteri. Fragility and destabilization of lysosomal membranes of E. carteri under the sublethal exposure was indicative to toxin induced physiological stress in sponge. Prolonged exposure to sodium carbonate resulted a reduction in the activity of acid and alkaline phosphatases in the cells of E. carteri. Experimental concentration of 8 mg/l of washing soda for 192 h yielded an increase in the physiological level of cellular apoptosis among the semigranulocytes and granulocytes of E. carteri, which was suggestive to possible shift in apoptosis mediated immunoprotection. The results were indicative of an undesirable shift in the immune status of sponge. Contamination of the freshwater aquifers by washing soda thus poses an alarming ecotoxicological threat to sponges.

  6. Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx

    OpenAIRE

    Wilke Sonja; Krausze Joern; Büssow Konrad

    2012-01-01

    Abstract Background The family of lysosome-associated membrane proteins (LAMP) comprises the multifunctional, ubiquitous LAMP-1 and LAMP-2, and the cell type-specific proteins DC-LAMP (LAMP-3), BAD-LAMP (UNC-46, C20orf103) and macrosialin (CD68). LAMPs have been implicated in a multitude of cellular processes, including phagocytosis, autophagy, lipid transport and aging. LAMP-2 isoform A acts as a receptor in chaperone-mediated autophagy. LAMP-2 deficiency causes the fatal Danon disease. The ...

  7. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Christensen, Karina; Aaberg-Jessen, Charlotte

    Targeting lysosomes is a novel approach in cancer therapy providing a possible way of killing the otherwise apoptosis-resistant cancer cells. Recent research has thus shown that lysosome targeting compounds induce cell death in a cervix cancer cell line. Tumor stem cells in glioblastomas have...... recently been suggested to possess innate resistance mechanisms against radiation and chemotherapy possibly explaining the high level of therapeutic resistance of these tumors. Since the presence and distribution of lysosomes in tumor cells and especially in tumor stem cells in astrocytomas is unknown......, the aim of this study was to investigate the immunohistochemical expression of LAMP-1, a membrane bound protein in lysosomes, in formalin fixed paraffin embedded tumor tissue from 23 diffuse astrocytomas, 17 anaplastic astrocytomas and 72 glioblastomas. The LAMP-1 expression was scored and compared...

  8. TFEB activation promotes the recruitment of lysosomal glycohydrolases β-hexosaminidase and β-galactosidase to the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Magini, Alessandro [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Department of Medical and Biological Sciences (DSMB), University of Udine, Udine (Italy); Polchi, Alice; Urbanelli, Lorena [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Cesselli, Daniela; Beltrami, Antonio [Department of Medical and Biological Sciences (DSMB), University of Udine, Udine (Italy); Tancini, Brunella [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Emiliani, Carla, E-mail: carla.emiliani@unipg.it [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy)

    2013-10-18

    Highlights: •TFEB activation promotes the increase of Hex and Gal activities. •The increase of Hex and Gal activities is related to transcriptional regulation. •TFEB promotes the recruitment of mature Hex and Gal on cell surface. -- Abstract: Lysosomes are membrane-enclosed organelles containing acid hydrolases. They mediate a variety of physiological processes, such as cellular clearance, lipid homeostasis, energy metabolism and pathogen defence. Lysosomes can secrete their content through a process called lysosome exocytosis in which lysosomes fuse with the plasma membrane realising their content into the extracellular milieu. Lysosomal exocytosis is not only responsible for the secretion of lysosomal enzymes, but it also has a crucial role in the plasma membrane repair. Recently, it has been demonstrated that lysosome response to the physiologic signals is regulated by the transcription factor EB (TFEB). In particular, lysosomal secretion is transcriptionally regulated by TFEB which induces both the docking and fusion of lysosomes with the plasma membrane. In this work we demonstrated that TFEB nuclear translocation is accompanied by an increase of mature glycohydrolases β-hexosaminidase and β-galactosidase on cell surface. This evidence contributes to elucidate an unknown TFEB biological function leading the lysosomal glycohydrolases on plasma membrane.

  9. Lysosomal membrane stability of the mussel, Mytilus galloprovincialis (L.), as a biomarker of tributyltin exposure.

    Science.gov (United States)

    Okoro, Hussein K; Snyman, Reinette G; Fatoki, Olalekan S; Adekola, Folahan A; Ximba, Bhekumusa J; Slabber, Michelle Y

    2015-05-01

    The effect of tributyltin (TBT) on the stability of hemocytic lysosome membranes of the mussel, Mytilus galloprovincialis, and the use thereof as a biomarker of TBT-induced stress, was investigated. Mussels were exposed to 0.1 and 1.0 µg/L tributyltin respectively for 4 weeks. Lysosomal membrane stability of hemocytes was tested weekly by means of the neutral red retention time (NRRT) assay, after which the mussel samples were analyzed for TBT content. The two exposed groups exhibited significantly increased (p galloprovincialis.

  10. Sub-lethal oxidative stress induces lysosome biogenesis via a lysosomal membrane permeabilization-cathepsin-caspase 3-transcription factor EB-dependent pathway.

    Science.gov (United States)

    Leow, San Min; Chua, Shu Xian Serene; Venkatachalam, Gireedhar; Shen, Liang; Luo, Le; Clement, Marie-Veronique

    2016-12-18

    Here we provide evidence to link sub-lethal oxidative stress to lysosomal biogenesis. Exposure of cells to sub-lethal concentrations of exogenously added hydrogen peroxide resulted in cytosol to nuclear translocation of the Transcription Factor EB (TFEB), the master controller of lysosome biogenesis and function. Nuclear translocation of TFEB was dependent upon the activation of a cathepsin-caspase 3 signaling pathway, downstream of a lysosomal membrane permeabilization and accompanied by a significant increase in lysosome numbers as well as induction of TFEB dependent lysosome-associated genes expression such as Ctsl, Lamp2 and its spliced variant Lamp2a, Neu1and Ctsb and Sqstm1 and Atg9b. The effects of sub-lethal oxidative stress on lysosomal gene expression and biogenesis were rescued upon gene silencing of caspase 3 and TFEB. Notably, caspase 3 activation was not associated with phenotypic hallmarks of apoptosis, evidenced by the absence of caspase 3 substrate cleavage, such as PARP, Lamin A/C or gelsolin. Taken together, these data demonstrate for the first time an unexpected and non-canonical role of a cathepsin-caspase 3 axis in the nuclear translocation of TFEB leading to lysosomes biogenesis under conditions of sub-lethal oxidative stress.

  11. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas.

    Science.gov (United States)

    Jensen, Stine S; Aaberg-Jessen, Charlotte; Christensen, Karina G; Kristensen, Bjarne

    2013-01-01

    Targeting of lysosomes is a novel therapeutic anti-cancer strategy for killing the otherwise apoptosis-resistant cancer cells. Such strategies are urgently needed for treatment of brain tumors, especially the glioblastoma, which is the most frequent and most malignant type. The aim of the present study was to investigate the presence of lysosomes in astrocytic brain tumors focussing also on the therapy resistant tumor stem cells. Expression of the lysosomal marker LAMP-1 (lysosomal-associated membrane protein-1) was investigated by immunohistochemistry in 112 formalin fixed paraffin embedded astrocytomas and compared with tumor grade and overall patient survival. Moreover, double immunofluorescence stainings were performed with LAMP-1 and the astrocytic marker GFAP and the putative stem cell marker CD133 on ten glioblastomas. Most tumors expressed the LAMP-1 protein in the cytoplasm of the tumor cells, while the blood vessels were positive in all tumors. The percentage of LAMP-1 positive tumor cells and staining intensities increased with tumor grade but variations in tumors of the same grade were also found. No association was found between LAMP-1 expression and patient overall survival in the individual tumor grades. LAMP-1/GFAP showed pronounced co-expression and LAMP-1/CD133 was co-expressed as well suggesting that tumor cells including the proposed tumor stem cells contain lysosomes. The results suggest that high amounts of lysosomes are present in glioblastomas and in the proposed tumor stem cells. Targeting of lysosomes may be a promising novel therapeutic strategy against this highly malignant neoplasm.

  12. Cyclotides insert into lipid bilayers to form membrane pores and destabilize the membrane through hydrophobic and phosphoethanolamine-specific interactions.

    Science.gov (United States)

    Wang, Conan K; Wacklin, Hanna P; Craik, David J

    2012-12-21

    Cyclotides are a family of plant-derived circular proteins with potential therapeutic applications arising from their remarkable stability, broad sequence diversity, and range of bioactivities. Their membrane-binding activity is believed to be a critical component of their mechanism of action. Using isothermal titration calorimetry, we studied the binding of the prototypical cyclotides kalata B1 and kalata B2 (and various mutants) to dodecylphosphocholine micelles and phosphoethanolamine-containing lipid bilayers. Although binding is predominantly an entropy-driven process, suggesting that hydrophobic forces contribute significantly to cyclotide-lipid complex formation, specific binding to the phosphoethanolamine-lipid headgroup is also required, which is evident from the enthalpic changes in the free energy of binding. In addition, using a combination of dissipative quartz crystal microbalance measurements and neutron reflectometry, we elucidated the process by which cyclotides interact with bilayer membranes. Initially, a small number of cyclotides bind to the membrane surface and then insert first into the outer membrane leaflet followed by penetration through the membrane and pore formation. At higher concentrations of cyclotides, destabilization of membranes occurs. Our results provide significant mechanistic insight into how cyclotides exert their bioactivities.

  13. Brucella suis-Impaired Specific Recognition of Phagosomes by Lysosomes due to Phagosomal Membrane Modifications

    Science.gov (United States)

    Naroeni, Aroem; Jouy, Nicolas; Ouahrani-Bettache, Safia; Liautard, Jean-Pierre; Porte, Françoise

    2001-01-01

    Brucella species are gram-negative, facultatively intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment in phagocytic and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both types of cells. However, the biochemical mechanisms and microbial factors implicated in Brucella maturation are still completely unknown. We developed two different approaches in an attempt to gain further insight into these mechanisms: (i) a fluorescence microscopy analysis of general intracellular trafficking on whole cells in the presence of Brucella and (ii) a flow cytometry analysis of in vitro reconstitution assays showing the interaction between Brucella suis-containing phagosomes and lysosomes. The fluorescence microscopy results revealed that fusion properties of latex bead-containing phagosomes with lysosomes were not modified in the presence of live Brucella suis in the cells. We concluded that fusion inhibition was restricted to the pathogen phagosome and that the host cell fusion machinery was not altered by the presence of live Brucella in the cell. By in vitro reconstitution experiments, we observed a specific association between killed B. suis-containing phagosomes and lysosomes, which was dependent on exogenously supplied cytosol, energy, and temperature. This association was observed with killed bacteria but not with live bacteria. Hence, this specific recognition inhibition seemed to be restricted to the pathogen phagosomal membrane, as noted in the in vivo experiments. PMID:11119541

  14. Stabilization of lysosomal membrane and cell membrane glycoprotein profile by Semecarpus anacardium linn. nut milk extract in experimental hepatocellular carcinoma.

    Science.gov (United States)

    Premalatha, B; Sachdanandam, P

    2000-08-01

    Semecarpus anacardium Linn. nut milk extract administered orally at a dose of 200 mg/kg/day for 14 days exerted an in vivo stabilizing effect on lysosomal membrane and glycoprotein content in rat hepatocellular carcinoma. This was demonstrated in normal rats and in animals whose biomembranes were rendered fragile by induction of hepatocellular carcinoma with aflatoxin B(1) and subsequent treatment with Semecarpus anacardium nut extract. In this condition, the discharge of lysosomal enzymes increased significantly with a subsequent increase in glycoprotein components. The nut extract administration reversed these adverse changes to near normal in treated animals. The possible reason for this reversal is discussed. Such stabilization of biomembranes by Semecarpus anacardium nut extract may have a beneficial effect in the treatment of hepatocellular carcinoma and other cancers involving abnormal fragility of lysosomes and glycoprotein content providing the extract demonstrates safety in a full toxicity study. Copyright 2000 John Wiley & Sons, Ltd.

  15. Cytosolic peroxidases protect the lysosome of bloodstream African trypanosomes from iron-mediated membrane damage.

    Directory of Open Access Journals (Sweden)

    Corinna Hiller

    2014-04-01

    Full Text Available African trypanosomes express three virtually identical non-selenium glutathione peroxidase (Px-type enzymes which preferably detoxify lipid-derived hydroperoxides. As shown previously, bloodstream Trypanosoma brucei lacking the mitochondrial Px III display only a weak and transient proliferation defect whereas parasites that lack the cytosolic Px I and Px II undergo extremely fast lipid peroxidation and cell lysis. The phenotype can completely be rescued by supplementing the medium with the α-tocopherol derivative Trolox. The mechanism underlying the rapid cell death remained however elusive. Here we show that the lysosome is the origin of the cellular injury. Feeding the px I-II knockout parasites with Alexa Fluor-conjugated dextran or LysoTracker in the presence of Trolox yielded a discrete lysosomal staining. Yet upon withdrawal of the antioxidant, the signal became progressively spread over the whole cell body and was completely lost, respectively. T. brucei acquire iron by endocytosis of host transferrin. Supplementing the medium with iron or transferrin induced, whereas the iron chelator deferoxamine and apo-transferrin attenuated lysis of the px I-II knockout cells. Immunofluorescence microscopy with MitoTracker and antibodies against the lysosomal marker protein p67 revealed that disintegration of the lysosome precedes mitochondrial damage. In vivo experiments confirmed the negligible role of the mitochondrial peroxidase: Mice infected with px III knockout cells displayed only a slightly delayed disease development compared to wild-type parasites. Our data demonstrate that in bloodstream African trypanosomes, the lysosome, not the mitochondrion, is the primary site of oxidative damage and cytosolic trypanothione/tryparedoxin-dependent peroxidases protect the lysosome from iron-induced membrane peroxidation. This process appears to be closely linked to the high endocytic rate and distinct iron acquisition mechanisms of the infective

  16. Phase coexistence in a triolein-phosphatidylcholine system. Implications for lysosomal membrane properties.

    Science.gov (United States)

    Pakkanen, Kirsi I; Duelund, Lars; Vuento, Matti; Ipsen, John Hjort

    2010-02-01

    The effects of tri- and monoglycerides on phospholipid (POPC) membranes were studied using spectroscopical methods. Triolein was found to form two types of POPC-rich membranes, both with POPC or as a three-component system with monopalmitin. These two membrane types were determined as co-existing phases based on their spontaneous and stable separation and named heavy and light phase according to their sedimentation behaviour. Marked differences were seen in the physical properties of these phases, even though only minor compositional variation was detected. The light, less polar phase was found to be less ordered and more fluid and seemed to allow significantly lower amount of water penetration into the membrane-water interface than pure POPC membrane. The heavy phase, apart from their slightly altered water penetration, resembled more a pure POPC membrane. As triglycerides are present in lysosomal membranes, the present results can be seen as an implication for polarity-based water permeability barrier possibly contributing to the integrity of lysosomes.

  17. Validation of merocyanine 540 staining as a technique for assessing capacitation-related membrane destabilization of fresh dog sperm

    NARCIS (Netherlands)

    Steckler, D; Stout, T A E; Durandt, C; Nöthling, J O

    2015-01-01

    The aim of this study was to determine whether flow cytometric evaluation of combined merocyanine 540 and Yo-Pro 1 (M540-YP) staining would identify viable dog sperm that had undergone membrane stabilization known to be associated with capacitation in other species, and whether such destabilization

  18. COOH-terminal isoleucine of lysosome-associated membrane protein-1 is optimal for its efficient targeting to dense secondary lysosomes.

    Science.gov (United States)

    Akasaki, Kenji; Suenobu, Michihisa; Mukaida, Maki; Michihara, Akihiro; Wada, Ikuo

    2010-12-01

    Lysosome-associated membrane protein-1 (LAMP-1) consists of a highly glycosylated luminal domain, a single-transmembrane domain and a short cytoplasmic tail that possesses a lysosome-targeting signal (GYQTI(382)) at the COOH terminus. It is hypothesized that the COOH-terminal isoleucine, I(382), could be substituted with any other bulky hydrophobic amino acid residue for LAMP-1 to exclusively localize in lysosomes. In order to test this hypothesis, we compared subcellular distribution of four substitution mutants with phenylalanine, leucine, methionine and valine at the COOH-terminus (termed I382F, I382L, I382M and I382V, respectively) with that of wild-type (WT)-LAMP-1. Double-labelled immunofluorescence analyses showed that these substitution mutants were localized as significantly to late endocytic organelles as WT-LAMP-1. However, the quantitative subcellular fractionation study revealed different distribution of WT-LAMP-1 and these four COOH-terminal mutants in late endosomes and dense secondary lysosomes. WT-LAMP-1 was accumulated three to six times more in the dense lysosomal fraction than the four mutants. The level of WT-LAMP-1 in late endosomal fraction was comparable to those of I382F, I382M and I382V. Conversely, I382L in the late endosomal fraction was approximately three times more abundant than WT-LAMP-1. These findings define the presence of isoleucine residue at the COOH-terminus of LAMP-1 as critical in governing its efficient delivery to secondary lysosomes and its ratio of lysosomes to late endosomes.

  19. Urothelial endocytic vesicle recycling and lysosomal degradative pathway regulated by lipid membrane composition.

    Science.gov (United States)

    Grasso, E J; Calderón, R O

    2013-02-01

    The urothelium, a specialized epithelium that covers the mucosa cell surface of the urinary bladder, undergoes dramatic morphological changes during the micturition cycle that involve a membrane apical traffic. This traffic was first described as a lysosomal pathway, in addition to the known endocytosis/exocytosis membrane recycling. In an attempt to understand the role of membrane lipid composition in those effects, we previously described the lipid-dependent leakage of the endocytosed vesicle content. In this work, we demonstrated clear differences in the traffic of both the fluid probe and the membrane-bound probe in urothelial umbrella cells by using spectrofluorometry and/or confocal and epifluorescence microscopy. Different membrane lipid compositions were established by using three diet formulae enriched in oleic acid, linoleic acid and a commercial formula. Between three and five animals for each dietary treatment were used for each analysis. The decreased endocytosis of both fluid and membrane-bound probes (approximately 32 and 49 % lower, respectively) in oleic acid-derived umbrella cells was concomitant with an increased recycling (approximately 4.0 and 3.7 times, respectively) and diminished sorting to the lysosome (approximately 23 and 37 %, respectively) when compared with the control umbrella cells. The higher intravesicular pH and the impairment of the lysosomal pathway of oleic acid diet-derived vesicles compared to linoleic acid diet-derived vesicles and control diet-derived vesicles correlate with our findings of a lower V-ATPase activity previously reported. We integrated the results obtained in the present and previous work to determine the sorting of endocytosed material (fluid and membrane-bound probes) into the different cell compartments. Finally, the weighted average effect of the individual alterations on the intracellular distribution was evaluated. The results shown in this work add evidences for the modulatory role of the membrane

  20. Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells.

    Science.gov (United States)

    Granger, B L; Green, S A; Gabel, C A; Howe, C L; Mellman, I; Helenius, A

    1990-07-15

    lgp110 is a heavily glycosylated intrinsic protein of lysosomal membranes. Initially defined by monoclonal antibodies against mouse liver lysosomes, it consists of a 45-kilodalton core polypeptide with O-linked and 17 asparagine-linked oligosaccharide side chains in mouse cells. Sialic acid residues make the mature protein extremely acidic, with an isoelectric point of between 2 and 4 in both normal tissues and most cultured cell lines. Partial sequencing of mouse lgp110 allowed oligonucleotide probes to be constructed for the screening of several mouse cDNA libraries. A partial cDNA clone for mouse lgp110 was found and used for additional library screening, generating a cDNA clone covering all of the coding sequence of mature rat lgp110 as well as genomic clones covering most of the mouse gene. These new clones bring to seven the number of lysosomal membrane proteins whose amino acid sequences can be deduced, and two distinct but highly similar groups (designated lgp-A and lgp-B) can now be defined. Sequence comparisons suggest that differences within each group reflect species variations of the same protein and that lgp-A and lgp-B probably diverged from a common ancestor prior to the evolup4f1ary divergence of birds and mammals. Individual cells and individual lysosomes possess both lgp-A and lgp-B, suggesting that these two proteins have different functions. Mouse lgp110 is encoded by at least seven exons; intron positions suggest that the two homologous ectodomains of each lgp arose through gene duplication.

  1. Lysosomal membrane stability in laboratory- and field-exposed terrestrial isopods Porcellio scaber (Isopoda, Crustacea).

    Science.gov (United States)

    Nolde, Natasa; Drobne, Damjana; Valant, Janez; Padovan, Ingrid; Horvat, Milena

    2006-08-01

    Two established methods for assessment of the cytotoxicity of contaminants, the lysosomal latency (LL) assay and the neutral red retention (NRR) assay, were successfully applied to in toto digestive gland tubes (hepatopancreas) of the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). In vitro exposure of isolated gland tubes to copper was used as a positive control to determine the performance of the two methods. Lysosomal latency and the NRR assay were then used on in vivo (via food) laboratory-exposed animals and on field populations. Arbitrarily selected criteria for determination of the fitness of P. scaber were set on the basis of lysosomal membrane stability (LMS) as assessed with in toto digestive gland tubes. Decreased LMS was detected in animals from all polluted sites, but cytotoxicity data were not in agreement with concentrations of pollutants. Lysosomal membrane stability in the digestive gland tubes of animals from an environment in Idrija, Slovenia that was highly polluted with mercury (260 microg/g dry wt food and 1,600 microg/g dry wt soil) was less affected than LMS in laboratory animals fed with 5 and 50 microg Hg/g dry weight for 3 d. This probably indicates tolerance of P. scaber to mercury in the mercury-polluted environment and/or lower bioavailability of environmental mercury. In animals from the vicinity of a thermal power plant with environmental mercury concentrations three to four orders of magnitude lower than those in Idrija, LMS was severely affected. In general, the LL assay was more sensitive than the NRR assay. The LMS assay conducted on digestive gland tubes of terrestrial isopods is highly recommended for integrated biomarker studies.

  2. Eicosanoid release is increased by membrane destabilization and CFTR inhibition in Calu-3 cells.

    Directory of Open Access Journals (Sweden)

    Florence Borot

    Full Text Available The antiinflammatory protein annexin-1 (ANXA1 and the adaptor S100A10 (p11, inhibit cytosolic phospholipase A2 (cPLA2alpha by direct interaction. Since the latter is responsible for the cleavage of arachidonic acid at membrane phospholipids, all three proteins modulate eicosanoid production. We have previously shown the association of ANXA1 expression with that of CFTR, the multifactorial protein mutated in cystic fibrosis. This could in part account for the abnormal inflammatory status characteristic of this disease. We postulated that CFTR participates in the regulation of eicosanoid release by direct interaction with a complex containing ANXA1, p11 and cPLA2alpha. We first analyzed by plasmon surface resonance the in vitro binding of CFTR to the three proteins. A significant interaction between p11 and the NBD1 domain of CFTR was found. We observed in Calu-3 cells a rapid and partial redistribution of all four proteins in detergent resistant membranes (DRM induced by TNF-alpha. This was concomitant with increased IL-8 synthesis and cPLA2alpha activation, ultimately resulting in eicosanoid (PGE2 and LTB4 overproduction. DRM destabilizing agent methyl-beta-cyclodextrin induced further cPLA2alpha activation and eicosanoid release, but inhibited IL-8 synthesis. We tested in parallel the effect of short exposure of cells to CFTR inhibitors Inh172 and Gly-101. Both inhibitors induced a rapid increase in eicosanoid production. Longer exposure to Inh172 did not increase further eicosanoid release, but inhibited TNF-alpha-induced relocalization to DRM. These results show that (i CFTR may form a complex with cPLA2alpha and ANXA1 via interaction with p11, (ii CFTR inhibition and DRM disruption induce eicosanoid synthesis, and (iii suggest that the putative cPLA2/ANXA1/p11/CFTR complex may participate in the modulation of the TNF-alpha-induced production of eicosanoids, pointing to the importance of membrane composition and CFTR function in the

  3. Eicosanoid release is increased by membrane destabilization and CFTR inhibition in Calu-3 cells.

    Science.gov (United States)

    Borot, Florence; Vieu, Diane-Lore; Faure, Grazyna; Fritsch, Janine; Colas, Julien; Moriceau, Sandra; Baudouin-Legros, Maryvonne; Brouillard, Franck; Ayala-Sanmartin, Jesus; Touqui, Lhousseine; Chanson, Marc; Edelman, Aleksander; Ollero, Mario

    2009-10-22

    The antiinflammatory protein annexin-1 (ANXA1) and the adaptor S100A10 (p11), inhibit cytosolic phospholipase A2 (cPLA2alpha) by direct interaction. Since the latter is responsible for the cleavage of arachidonic acid at membrane phospholipids, all three proteins modulate eicosanoid production. We have previously shown the association of ANXA1 expression with that of CFTR, the multifactorial protein mutated in cystic fibrosis. This could in part account for the abnormal inflammatory status characteristic of this disease. We postulated that CFTR participates in the regulation of eicosanoid release by direct interaction with a complex containing ANXA1, p11 and cPLA2alpha. We first analyzed by plasmon surface resonance the in vitro binding of CFTR to the three proteins. A significant interaction between p11 and the NBD1 domain of CFTR was found. We observed in Calu-3 cells a rapid and partial redistribution of all four proteins in detergent resistant membranes (DRM) induced by TNF-alpha. This was concomitant with increased IL-8 synthesis and cPLA2alpha activation, ultimately resulting in eicosanoid (PGE2 and LTB4) overproduction. DRM destabilizing agent methyl-beta-cyclodextrin induced further cPLA2alpha activation and eicosanoid release, but inhibited IL-8 synthesis. We tested in parallel the effect of short exposure of cells to CFTR inhibitors Inh172 and Gly-101. Both inhibitors induced a rapid increase in eicosanoid production. Longer exposure to Inh172 did not increase further eicosanoid release, but inhibited TNF-alpha-induced relocalization to DRM. These results show that (i) CFTR may form a complex with cPLA2alpha and ANXA1 via interaction with p11, (ii) CFTR inhibition and DRM disruption induce eicosanoid synthesis, and (iii) suggest that the putative cPLA2/ANXA1/p11/CFTR complex may participate in the modulation of the TNF-alpha-induced production of eicosanoids, pointing to the importance of membrane composition and CFTR function in the regulation of

  4. LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium.

    Science.gov (United States)

    Lee, Eun-Ju; Park, Kwan-Sik; Jeon, In-Sook; Choi, Jae-Woon; Lee, Sang-Jeon; Choy, Hyun E; Song, Ki-Duk; Lee, Hak-Kyo; Choi, Joong-Kook

    2016-07-01

    Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella-induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation.

  5. Lack of the Lysosomal Membrane Protein, GLMP, in Mice Results in Metabolic Dysregulation in Liver.

    Directory of Open Access Journals (Sweden)

    Xiang Yi Kong

    Full Text Available Ablation of glycosylated lysosomal membrane protein (GLMP, formerly known as NCU-G1 has been shown to cause chronic liver injury which progresses into liver fibrosis in mice. Both lysosomal dysfunction and chronic liver injury can cause metabolic dysregulation. Glmp gt/gt mice (formerly known as Ncu-g1gt/gt mice were studied between 3 weeks and 9 months of age. Body weight gain and feed efficiency of Glmp gt/gt mice were comparable to wild type siblings, only at the age of 9 months the Glmp gt/gt siblings had significantly reduced body weight. Reduced size of epididymal fat pads was accompanied by hepatosplenomegaly in Glmp gt/gt mice. Blood analysis revealed reduced levels of blood glucose, circulating triacylglycerol and non-esterified fatty acids in Glmp gt/gt mice. Increased flux of glucose, increased de novo lipogenesis and lipid accumulation were detected in Glmp gt/gt primary hepatocytes, as well as elevated triacylglycerol levels in Glmp gt/gt liver homogenates, compared to hepatocytes and liver from wild type mice. Gene expression analysis showed an increased expression of genes involved in fatty acid uptake and lipogenesis in Glmp gt/gt liver compared to wild type. Our findings are in agreement with the metabolic alterations observed in other mouse models lacking lysosomal proteins, and with alterations characteristic for advanced chronic liver injury.

  6. Membrane cholesterol removal changes mechanical properties of cells and induces secretion of a specific pool of lysosomes.

    Directory of Open Access Journals (Sweden)

    Barbara Hissa

    Full Text Available In a previous study we had shown that membrane cholesterol removal induced unregulated lysosomal exocytosis events leading to the depletion of lysosomes located at cell periphery. However, the mechanism by which cholesterol triggered these exocytic events had not been uncovered. In this study we investigated the importance of cholesterol in controlling mechanical properties of cells and its connection with lysosomal exocytosis. Tether extraction with optical tweezers and defocusing microscopy were used to assess cell dynamics in mouse fibroblasts. These assays showed that bending modulus and surface tension increased when cholesterol was extracted from fibroblasts plasma membrane upon incubation with MβCD, and that the membrane-cytoskeleton relaxation time increased at the beginning of MβCD treatment and decreased at the end. We also showed for the first time that the amplitude of membrane-cytoskeleton fluctuation decreased during cholesterol sequestration, showing that these cells become stiffer. These changes in membrane dynamics involved not only rearrangement of the actin cytoskeleton, but also de novo actin polymerization and stress fiber formation through Rho activation. We found that these mechanical changes observed after cholesterol sequestration were involved in triggering lysosomal exocytosis. Exocytosis occurred even in the absence of the lysosomal calcium sensor synaptotagmin VII, and was associated with actin polymerization induced by MβCD. Notably, exocytosis triggered by cholesterol removal led to the secretion of a unique population of lysosomes, different from the pool mobilized by actin depolymerizing drugs such as Latrunculin-A. These data support the existence of at least two different pools of lysosomes with different exocytosis dynamics, one of which is directly mobilized for plasma membrane fusion after cholesterol removal.

  7. Effects of lysosomal membrane protein depletion on the Salmonella-containing vacuole.

    Directory of Open Access Journals (Sweden)

    Everett A Roark

    Full Text Available Salmonella is an intracellular bacterial pathogen that replicates within a membrane-bound vacuole in host cells. The major lysosomal membrane proteins 1 and 2 (LAMP-1 and LAMP-2 are recruited to the Salmonella-containing vacuole as well as Salmonella- associated filaments (Sifs that emerge from the vacuole. LAMP-1 is a dominant membrane marker for the vacuole and Sifs. Its colocalization with both is dependent on a major secreted bacterial virulence protein, SifA. Here, we show that SifA is required for the recruitment of LAMP-2 and can be used as a second independent marker for both the bacterial vacuolar membrane and Sifs. Further, RNAi studies revealed that in LAMP-1 depleted cells, the bacteria remain membrane bound as measured by their association with LAMP-2 protein. In contrast, LAMP-2 depletion increased the amount of LAMP-1 free bacteria. Together, the data suggests that despite its abundance, LAMP-1 is not essential, but LAMP-2 may be partially important for the Salmonella-containing vacuolar membrane.

  8. Development of nanoparticles incorporating a novel liposomal membrane destabilization peptide for efficient release of cargos into cancer cells.

    Directory of Open Access Journals (Sweden)

    Shoko Itakura

    Full Text Available In anti-cancer therapy mediated by a nanoparticle-based drug delivery system (DDS, overall efficacy depends on the release efficiency of cargos from the nanoparticles in the cancer cells as well as the specificity of delivery to tumor tissue. However, conventional liposome-based DDS have no mechanism for specifically releasing the encapsulated cargos inside the cancer cells. To overcome this barrier, we developed nanoparticles containing a novel liposomal membrane destabilization peptide (LMDP that can destabilize membranes by cleavage with intramembranous proteases on/in cancer cells. Calcein encapsulated in liposomes modified with LMDP (LMDP-lipo was effectively released in the presence of a membrane fraction containing an LMDP-cleavable protease. The release was inhibited by a protease inhibitor, suggesting that LMDP-lipo could effectively release its cargo into cells in response to a cancer-specific protease. Moreover, when LMDP-lipo contained fusogenic lipids, the release of cargo was accelerated, suggesting that the fusion of LMDP-lipo with cellular membranes was the initial step in the intracellular delivery. Time-lapse microscopic observations showed that the release of cargo from LMDP-lipo occurred immediately after association of LMDP-lipo with target cells. Consequently, LMDP-lipo could be a useful nanoparticle capable of effective release of cargos specifically into targeted cancer cells.

  9. Characterization of lysosomal membrane proteins of Dictyostelium discoideum. A complex population of acidic integral membrane glycoproteins, Rab GTP-binding proteins and vacuolar ATPase subunits.

    Science.gov (United States)

    Temesvari, L; Rodriguez-Paris, J; Bush, J; Steck, T L; Cardelli, J

    1994-10-14

    Highly purified lysosomes, prepared by magnetic fractionation of homogenates from Dictyostelium discoideum cells fed colloidal iron, were lysed under hypoosmotic conditions, and the membrane-associated proteins were subjected to gel electrophoresis. Thirteen major membrane polypeptides, ranging in molecular weight from 25,000 to 100,000 were identified. The isoelectric points of these proteins ranged from below 3.8 to greater than 7.0. Most of these proteins were stripped from membranes exposed to a chaotropic agent, 3,5-diodo-2-hydroxybenzoic acid lithium salt, and were therefore classified as peripheral membrane proteins. Twenty five glycoprotein species were detected by lectin blot analysis; 19 were classified as integral membrane proteins, and were, in general, larger than 45 kDa and negatively charged due in part to the presence of mannose 6-sulfate. Western blot analysis also demonstrated that a Rab 4-like GTPase, a Rab 7-like GTPase, and at least three subunits of the vacuolar ATPase were associated with the lysosomal membrane; the ATPase subunits appeared to be major proteins in lysosomal membranes. Finally, based on N-terminal sequence analysis of a major 41-kDa lysosome-associated membrane protein, we cloned a cDNA that encodes a protein (DVA41) highly homologous to a yeast and a bovine vacuolar ATPase subunit of approximately 41 kDa. The D. discoideum DVA41 gene was apparently a single copy gene, expressed at constant levels during growth and development.

  10. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin

    Science.gov (United States)

    Li, Yanyan; Chen, Man; Xu, Yanyan; Yu, Xiao; Xiong, Ting; Du, Min; Sun, Jian; Liu, Liegang; Tang, Yuhan; Yao, Ping

    2016-01-01

    Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD). As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories) were cotreated by quercetin or deferoxamine (DFO) for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP) and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD. PMID:27057276

  11. Azadirachtin-induced apoptosis involves lysosomal membrane permeabilization and cathepsin L release in Spodoptera frugiperda Sf9 cells.

    Science.gov (United States)

    Wang, Zheng; Cheng, Xingan; Meng, Qianqian; Wang, Peidan; Shu, Benshui; Hu, Qiongbo; Hu, Meiying; Zhong, Guohua

    2015-07-01

    Azadirachtin as a kind of botanical insecticide has been widely used in pest control. We previously reported that azadirachtin could induce apoptosis of Spodoptera litura cultured cell line Sl-1, which involves in the up-regulation of P53 protein. However, the detailed mechanism of azadirachtin-induced apoptosis is not clearly understood in insect cultured cells. The aim of the present study was to address the involvement of lysosome and lysosomal protease in azadirachtin-induced apoptosis in Sf9 cells. The result confirmed that azadirachtin indeed inhibited proliferation and induced apoptosis. The lysosomes were divided into different types as time-dependent manner, which suggested that changes of lysosomes were necessarily physiological processes in azadirachtin-induced apoptosis in Sf9 cells. Interestingly, we noticed that azadirachtin could trigger lysosomal membrane permeabilization and cathepsin L releasing to cytosol. Z-FF-FMK (a cathepsin L inhibitor), but not CA-074me (a cathepsin B inhibitor), could effectively hinder the apoptosis induced by azadirachtin in Sf9 cells. Meanwhile, the activity of caspase-3 could also be inactivated by the inhibition of cathepsin L enzymatic activity induced by Z-FF-FMK. Taken together, our findings suggest that azadirachtin could induce apoptosis in Sf9 cells in a lysosomal pathway, and cathepsin L plays a pro-apoptosis role in this process through releasing to cytosol and activating caspase-3.

  12. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin.

    Science.gov (United States)

    Li, Yanyan; Chen, Man; Xu, Yanyan; Yu, Xiao; Xiong, Ting; Du, Min; Sun, Jian; Liu, Liegang; Tang, Yuhan; Yao, Ping

    2016-01-01

    Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD). As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories) were cotreated by quercetin or deferoxamine (DFO) for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP) and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD.

  13. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin

    Directory of Open Access Journals (Sweden)

    Yanyan Li

    2016-01-01

    Full Text Available Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD. As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories were cotreated by quercetin or deferoxamine (DFO for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD.

  14. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Christensen, Karina; Aaberg-Jessen, Charlotte

    , the aim of this study was to investigate the immunohistochemical expression of LAMP-1, a membrane bound protein in lysosomes, in formalin fixed paraffin embedded tumor tissue from 23 diffuse astrocytomas, 17 anaplastic astrocytomas and 72 glioblastomas. The LAMP-1 expression was scored and compared...... with both tumor grade and patient survival. Moreover double immunofluorescence stainings with LAMP-1 and the stem cell marker CD133 as well as the macrophage marker CD68 were performed. The results showed that LAMP-1 was expressed in the vast majority of tumors being present in the cytoplasm of single tumor...... cells, cell clusters and in blood vessel endothelial cells. The LAMP-1 expression in glioblastomas was significantly higher than in diffuse and anaplastic astrocytomas (pLAMP-1 and patient overall survival was found. Double immunofluorescence staining...

  15. Mechanism of Aloe Vera extract protection against UVA: shelter of lysosomal membrane avoids photodamage.

    Science.gov (United States)

    Rodrigues, Daniela; Viotto, Ana Cláudia; Checchia, Robert; Gomide, Andreza; Severino, Divinomar; Itri, Rosangela; Baptista, Maurício S; Martins, Waleska Kerllen

    2016-03-01

    The premature aging (photoaging) of skin characterized by wrinkles, a leathery texture and mottled pigmentation is a well-documented consequence of exposure to sunlight. UVA is an important risk factor for human cancer also associated with induction of inflammation, immunosuppression, photoaging and melanogenesis. Although herbal compounds are commonly used as photoprotectants against the harmful effects of UVA, the mechanisms involved in the photodamage are not precisely known. In this study, we investigated the effects of Aloe Vera (Aloe barbadensis mil) on the protection against UVA-modulated cell killing of HaCaT keratinocytes. Aloe Vera exhibited the remarkable ability of reducing both in vitro and in vivo photodamage, even though it does not have anti-radical properties. Interestingly, the protection conferred by Aloe Vera was associated with the maintenance of membrane integrity in both mimetic membranes and intracellular organelles. The increased lysosomal stability led to a decrease in lipofuscinogenesis and cell death. This study explains why Aloe Vera extracts offer protection against photodamage at a cellular level in both the UV and visible spectra, leading to its beneficial use as a supplement in protective dermatological formulations.

  16. Increased expression of lysosome membrane protein 2 in glomeruli of patients with idiopathic membranous nephropathy

    NARCIS (Netherlands)

    Rood, I.M.; Merchant, M.L.; Wilkey, D.W.; Zhang, T.; Zabrouskov, V.; Vlag, J. van der; Dijkman, H.B.P.M.; Willemsen, B.K.; Wetzels, J.F.M.; Klein, J.B.; Deegens, J.K.J.

    2015-01-01

    Urinary microvesicles constitute a rich source of membrane-bound and intracellular proteins that may provide important clues of pathophysiological mechanisms in renal disease. In the current study, we analyzed and compared the proteome of urinary microvesicles from patients with idiopathic

  17. Lysosomal membrane stability and metallothioneins in digestive gland of mussels (Mytilus galloprovincialis Lam.) as biomarkers in a field study

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, S.; Ozretic, B.; Krajnovic-Ozretic, M. [Ruder Boskovic Inst., Center for Marine Research, Rovinj (Croatia); Bobinac, D. [Rijeka Univ., Dept. of Anatomy, Rijeka (Croatia)

    2001-07-01

    The lysosomal membrane destabilisation and the metallothionein content in the digestive gland cells of mussels (Mytilus galloprovincialis Lam.), collected along the east coast of the North Adriatic (Istrian and Kvarnerine coast, Croatia), were examined over a period of four years (1996-1999). The lysosomal membrane stability, as a biomarker of general stress, showed that the membrane labilisation period in mussels from polluted, urban- and industrial-related areas was significantly decreased (p<0.05) when compared to mussels from control, clean sea water sites. In the harbour of Rijeka, the most contaminated site, the lysosomal membrane stability was reduced by more than 70% compared to the control. This method also proved to be a useful biomarker for detection of additional stress caused by short-term hypoxia that occurred once during this study inside the polluted and periodically quite eutrophic Pula Harbour. The concentration of metallothioneins in the mussel digestive gland, as a specific biomarker of exposure to heavy metals, did not reveal significant differences (p<0.05) between sites covered by this study. (Author)

  18. Engineered nanomaterial-induced lysosomal membrane permeabilization and anti-cathepsin agents.

    Science.gov (United States)

    Bunderson-Schelvan, Melisa; Holian, Andrij; Hamilton, Raymond F

    2017-01-01

    Engineered nanomaterials (ENMs), or small anthropogenic particles approximately < 100 nm in size and of various shapes and compositions, are increasingly incorporated into commercial products and used for industrial and medical purposes. There is an exposure risk to both the population at large and individuals in the workplace with inhalation exposures to ENMs being a primary concern. Further, there is increasing evidence to suggest that certain ENMs may represent a significant health risk, and many of these ENMs exhibit distinct similarities with other particles and fibers that are known to induce adverse health effects, such as asbestos, silica, and particulate matter (PM). Evidence regarding the importance of lysosomal membrane permeabilization (LMP) and release of cathepsins in ENM toxicity has been accumulating. The aim of this review was to describe our current understanding of the mechanisms leading to ENM-associated pathologies, including LMP and the role of cathepsins with a focus on inflammation. In addition, anti-cathepsin agents, some of which have been tested in clinical trials and may prove useful for ameliorating the harmful effects of ENM exposure, are examined.

  19. Niemann-Pick C1 Functions Independently of Niemann-Pick C2 in the Initial Stage of Retrograde Transport of Membrane-impermeable Lysosomal Cargo*

    Science.gov (United States)

    Goldman, Stephen D. B.; Krise, Jeffrey P.

    2010-01-01

    The rare neurodegenerative disease Niemann-Pick Type C (NPC) results from mutations in either NPC1 or NPC2, which are membrane-bound and soluble lysosomal proteins, respectively. Previous studies have shown that mutations in either protein result in biochemically indistinguishable phenotypes, most notably the hyper-accumulation of cholesterol and other cargo in lysosomes. We comparatively evaluated the kinetics of [3H]dextran release from lysosomes of wild type, NPC1, NPC2, and NPC1/NPC2 pseudo-double mutant cells and found significant differences between all cell types examined. Specifically, NPC1 or NPC2 mutant fibroblasts treated with NPC1 or NPC2 siRNA (to create NPC1/NPC2 pseudo-double mutants) secreted dextran less efficiently than did either NPC1 or NPC2 single mutant cell lines, suggesting that the two proteins may work independently of one another in the egress of membrane-impermeable lysosomal cargo. To investigate the basis for these differences, we examined the role of NPC1 and NPC2 in the retrograde fusion of lysosomes with late endosomes to create so-called hybrid organelles, which is believed to be the initial step in the egress of cargo from lysosomes. We show here that cells with mutated NPC1 have significantly reduced rates of late endosome/lysosome fusion relative to wild type cells, whereas cells with mutations in NPC2 have rates that are similar to those observed in wild type cells. Instead of being involved in hybrid organelle formation, we show that NPC2 is required for efficient membrane fission events from nascent hybrid organelles, which is thought to be required for the reformation of lysosomes and the release of lysosomal cargo-containing membrane vesicles. Collectively, these results suggest that NPC1 and NPC2 can function independently of one another in the egress of certain membrane-impermeable lysosomal cargo. PMID:20007703

  20. Niemann-Pick C1 functions independently of Niemann-Pick C2 in the initial stage of retrograde transport of membrane-impermeable lysosomal cargo.

    Science.gov (United States)

    Goldman, Stephen D B; Krise, Jeffrey P

    2010-02-12

    The rare neurodegenerative disease Niemann-Pick Type C (NPC) results from mutations in either NPC1 or NPC2, which are membrane-bound and soluble lysosomal proteins, respectively. Previous studies have shown that mutations in either protein result in biochemically indistinguishable phenotypes, most notably the hyper-accumulation of cholesterol and other cargo in lysosomes. We comparatively evaluated the kinetics of [(3)H]dextran release from lysosomes of wild type, NPC1, NPC2, and NPC1/NPC2 pseudo-double mutant cells and found significant differences between all cell types examined. Specifically, NPC1 or NPC2 mutant fibroblasts treated with NPC1 or NPC2 siRNA (to create NPC1/NPC2 pseudo-double mutants) secreted dextran less efficiently than did either NPC1 or NPC2 single mutant cell lines, suggesting that the two proteins may work independently of one another in the egress of membrane-impermeable lysosomal cargo. To investigate the basis for these differences, we examined the role of NPC1 and NPC2 in the retrograde fusion of lysosomes with late endosomes to create so-called hybrid organelles, which is believed to be the initial step in the egress of cargo from lysosomes. We show here that cells with mutated NPC1 have significantly reduced rates of late endosome/lysosome fusion relative to wild type cells, whereas cells with mutations in NPC2 have rates that are similar to those observed in wild type cells. Instead of being involved in hybrid organelle formation, we show that NPC2 is required for efficient membrane fission events from nascent hybrid organelles, which is thought to be required for the reformation of lysosomes and the release of lysosomal cargo-containing membrane vesicles. Collectively, these results suggest that NPC1 and NPC2 can function independently of one another in the egress of certain membrane-impermeable lysosomal cargo.

  1. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) assemble via distinct modes.

    Science.gov (United States)

    Terasawa, Kazue; Tomabechi, Yuri; Ikeda, Mariko; Ehara, Haruhiko; Kukimoto-Niino, Mutsuko; Wakiyama, Motoaki; Podyma-Inoue, Katarzyna A; Rajapakshe, Anupama R; Watabe, Tetsuro; Shirouzu, Mikako; Hara-Yokoyama, Miki

    2016-10-21

    Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) have a large, heavily glycosylated luminal domain composed of two subdomains, and are the most abundant protein components in lysosome membranes. LAMP-1 and LAMP-2 have distinct functions, and the presence of both proteins together is required for the essential regulation of autophagy to avoid embryonic lethality. However, the structural aspects of LAMP-1 and LAMP-2 have not been elucidated. In the present study, we demonstrated that the subdomains of LAMP-1 and LAMP-2 adopt the unique β-prism fold, similar to the domain structure of the dendritic cell-specific-LAMP (DC-LAMP, LAMP-3), confirming the conserved aspect of this family of lysosome-associated membrane proteins. Furthermore, we evaluated the effects of the N-domain truncation of LAMP-1 or LAMP-2 on the assembly of LAMPs, based on immunoprecipitation experiments. We found that the N-domain of LAMP-1 is necessary, whereas that of LAMP-2 is repressive, for the organization of a multimeric assembly of LAMPs. Accordingly, the present study suggests for the first time that the assembly modes of LAMP-1 and LAMP-2 are different, which may underlie their distinct functions.

  2. Concanavalin A/IFN-gamma triggers autophagy-related necrotic hepatocyte death through IRGM1-mediated lysosomal membrane disruption.

    Directory of Open Access Journals (Sweden)

    Chih-Peng Chang

    Full Text Available Interferon-gamma (IFN-γ, a potent Th1 cytokine with multiple biological functions, can induce autophagy to enhance the clearance of the invading microorganism or cause cell death. We have reported that Concanavalin A (Con A can cause autophagic cell death in hepatocytes and induce both T cell-dependent and -independent acute hepatitis in immunocompetent and immunodeficient mice, respectively. Although IFN-γ is known to enhance liver injury in Con A-induced hepatitis, its role in autophagy-related hepatocyte death is not clear. In this study we report that IFN-γ can enhance Con A-induced autophagic flux and cell death in hepatoma cell lines. A necrotic cell death with increased lysosomal membrane permeabilization (LMP is observed in Con A-treated hepatoma cells in the presence of IFN-γ. Cathepsin B and L were released from lysosomes to cause cell death. Furthermore, IFN-γ induces immunity related GTPase family M member 1(IRGM1 translocation to lysosomes and prolongs its activity in Con A-treated hepatoma cells. Knockdown of IRGM1 inhibits the IFN-γ/Con A-induced LMP change and cell death. Furthermore, IFN-γ(-/- mice are resistant to Con A-induced autophagy-associated necrotic hepatocyte death. We conclude that IFN-γ enhances Con A-induced autophagic flux and causes an IRGM1-dependent lysosome-mediated necrotic cell death in hepatocytes.

  3. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis : LAMP-2 deficient mice develop pancreatitis

    NARCIS (Netherlands)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-01-01

    BACKGROUND & AIMS: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated memb

  4. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis : LAMP-2 deficient mice develop pancreatitis

    NARCIS (Netherlands)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-01-01

    BACKGROUND & AIMS: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated

  5. Lysosomal membrane permeabilization: Carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mei, E-mail: happy_deercn@163.com [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Zhang, Minfang; Tahara, Yoshio; Chechetka, Svetlana; Miyako, Eijiro [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Iijima, Sumio [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku, Nagoya 468-8502 (Japan); Yudasaka, Masako, E-mail: m-yudasaka@aist.go.jp [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan)

    2014-10-01

    Understanding the molecular mechanisms responsible for the cytotoxic effects of carbon nanomaterials is important for their future biomedical applications. Carbon nanotubular materials induce the generation of reactive oxygen species (ROS), which causes cell death; however, the exact details of this process are still unclear. Here, we identify a mechanism of ROS generation that is involved in the apoptosis of RAW264.7 macrophages caused by excess uptake of carbon nanohorns (CNHs), a typical type of carbon nanotubule. CNH accumulated in the lysosomes, where they induced lysosomal membrane permeabilization (LMP) and the subsequent release of lysosomal proteases, such as cathepsins, which in turn caused mitochondrial dysfunction and triggered the generation of ROS in the mitochondria. The nicotinamide adenine dinucleotide phosphate oxidase was not directly involved in CNH-related ROS production, and the ROS generation cannot be regulated by mitochondrial electron transport chain. ROS fed back to amplify the mitochondrial dysfunction, leading to the subsequent activation of caspases and cell apoptosis. Carbon nanotubules commonly accumulate in the lysosomes after internalization in cells; however, lysosomal dysfunction has not attracted much attention in toxicity studies of these materials. These results suggest that LMP, a neglected mechanism, may be the primary reason for carbon nanotubule toxicity. - Highlights: • We clarify an apoptotic mechanism of RAW264.7 cells caused by carbon nanohorns. • In the meantime, the mechanism of CNH-induced ROS generation is identified. • LMP is the initial factor of CNH-induced ROS generation and cell death. • Cathepsins work as mediators that connect LMP and mitochondrial dysfunction.

  6. Vertebrate scavenger receptor class B member 2 (SCARB2: comparative studies of a major lysosomal membrane glycoprotein

    Directory of Open Access Journals (Sweden)

    Roger Stephen Holmes

    2012-06-01

    Full Text Available Scavenger receptor class B member 2 (SCARB2 (also LIMP-2, CD36L2 or LGP85 is a major lysosomal membrane glycoprotein involved in endosomal and lysosomal biogenesis and maintenance. SCARB2 acts as a receptor for the lysosomal mannose-6-phosphate independent targeting of β-glucuronidase and enterovirus 71 and influences Parkinson’s disease and epilepsy. Genetic deficiency of this protein causes deafness and peripheral neuropathy in mice as well as myoclonic epilepsy and nephrotic syndrome in humans. Comparative SCARB2 amino acid sequences and structures and SCARB2 gene locations were examined using data from several vertebrate genome projects. Vertebrate SCARB2 sequences shared 43-100% identity as compared with 30-36% sequence identities with other CD36-like superfamily members, SCARB1 and CD36. At least 10 N-glycosylation sites were conserved among most vertebrate SCARB2 proteins examined. Sequence alignments, key amino acid residues and conserved predicted secondary structures were examined, including cytoplasmic, transmembrane and external lysosomal membrane sequences: cysteine disulfide residues, thrombospondin (THP1 binding sites and 16 proline and 20 glycine conserved residues, which may contribute to short loop formation within the exomembrane SCARB2 sequences. Vertebrate SCARB2 genes contained 12 coding exons. The human SCARB2 gene contained a CpG island (CpG100, ten microRNA-binding sites and several transcription factor binding sites (including PPARA which may contribute to a higher level (2.4 times average of gene expression. Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate SCARB2 gene with vertebrate SCARB1 and CD36 genes. These suggested that SCARB2 originated from duplications of the CD36 gene in an ancestral genome forming three vertebrate CD36 gene family members: SCARB1, SCARB2 and CD36.

  7. Lysosomal Membrane Permeabilization is an Early Event in Sigma-2 Receptor Ligand Mediated Cell Death in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Hornick John R

    2012-05-01

    Full Text Available Abstract Background Sigma-2 receptor ligands have been studied for treatment of pancreatic cancer because they are preferentially internalized by proliferating cells and induce apoptosis. This mechanism of apoptosis is poorly understood, with varying reports of caspase-3 dependence. We evaluated multiple sigma-2 receptor ligands in this study, each shown to decrease tumor burden in preclinical models of human pancreatic cancer. Results Fluorescently labeled sigma-2 receptor ligands of two classes (derivatives of SW43 and PB282 localize to cell membrane components in Bxpc3 and Aspc1 pancreatic cancer cells and accumulate in lysosomes. We found that interactions in the lysosome are critical for cell death following sigma-2 ligand treatment because selective inhibition of a protective lysosomal membrane glycoprotein, LAMP1, with shRNA greatly reduced the viability of cells following treatment. Sigma-2 ligands induced lysosomal membrane permeabilization (LMP and protease translocation triggering downstream effectors of apoptosis. Subsequently, cellular oxidative stress was greatly increased following treatment with SW43, and the hydrophilic antioxidant N-acetylcysteine (NAC gave greater protection against this than a lipophilic antioxidant, α-tocopherol (α-toco. Conversely, PB282-mediated cytotoxicity relied less on cellular oxidation, even though α-toco did provide protection from this ligand. In addition, we found that caspase-3 induction was not as significantly inhibited by cathepsin inhibitors as by antioxidants. Both NAC and α-toco protected against caspase-3 induction following PB282 treatment, while only NAC offered protection following SW43 treatment. The caspase-3 inhibitor DEVD-FMK offered significant protection from PB282, but not SW43. Conclusions Sigma-2 ligand SW43 commits pancreatic cancer cells to death by a caspase-independent process involving LMP and oxidative stress which is protected from by NAC. PB282 however undergoes a

  8. Action of low-energy monochromatic coherent light on the stability of retinal lysosomes

    Science.gov (United States)

    Metelitsina, Irina P.; Leus, N. F.

    1995-05-01

    The data had been obtained during the experiment in vitro by irradiation of solubilized lysosomal enzymes, retinal homogenates and native lysosomes enabled us to conclude that the laser beam ((lambda) equals 632.8 nm, power density from 0.1 to 15.0 mWt/cm2) acts on the level of membranous structures of lysosomes. During irradiation of rabbits eyes in vitro with an unfocused laser beam (power density on the cornea aur face from 0.01 to 15.0 mWt/cm2 was shown, that low-energy, ranged from 0.01 to 1.0 mWt/cm2 promotes stabilization of lysosomal membranes. Irradiation with laser beam of 8.0 mWt/cm2 and more power induces destabilization of lysosomal membranes. We have also shown that vitamins A and E effecting membranotropic on lysosomes may be corrected by low-energy radiation of helium-neon laser. It is substantiated experimentally that the stabilizing effect of vitamin E may be intensified in case of the combined action of laser radiation on lysosomes. The labilizing effect of vitamin A on membranes of organelles, as was studied, may be weakened by application of laser radiation of low intensities.

  9. Constitutive expression of a COOH-terminal leucine mutant of lysosome-associated membrane protein-1 causes its exclusive localization in low density intracellular vesicles.

    Science.gov (United States)

    Akasaki, Kenji; Shiotsu, Keiko; Michihara, Akihiro; Ide, Norie; Wada, Ikuo

    2014-07-01

    Lysosome-associated membrane protein-1 (LAMP-1) is a type I transmembrane protein with a short cytoplasmic tail that possesses a lysosome-targeting signal of GYQTI(382)-COOH. Wild-type (WT)-LAMP-1 was exclusively localized in high density lysosomes, and efficiency of LAMP-1's transport to lysosomes depends on its COOH-terminal amino acid residue. Among many different COOH-terminal amino acid substitution mutants of LAMP-1, a leucine-substituted mutant (I382L) displays the most efficient targeting to late endosomes and lysosomes [Akasaki et al. (2010) J. Biochem. 148: , 669-679]. In this study, we generated two human hepatoma cell lines (HepG2 cell lines) that stably express WT-LAMP-1 and I382L, and compared their intracellular distributions. The subcellular fractionation study using Percoll density gradient centrifugation revealed that WT-LAMP-1 had preferential localization in the high density secondary lysosomes where endogenous human LAMP-1 was enriched. In contrast, a major portion of I382L was located in a low density fraction. The low density fraction also contained approximately 80% of endogenous human LAMP-1 and significant amounts of endogenous β-glucuronidase and LAMP-2, which probably represents occurrence of low density lysosomes in the I382L-expressing cells. Double immunofluorescence microscopic analyses distinguished I382L-containing intracellular vesicles from endogenous LAMP-1-containing lysosomes and early endosomes. Altogether, constitutive expression of I382L causes its aberrant intracellular localization and generation of low density lysosomes, indicating that the COOH-terminal isoleucine is critical for normal localization of LAMP-1 in the dense lysosomes.

  10. Modulating immunogenic properties of HIV-1 gp41 membrane-proximal external region by destabilizing six-helix bundle structure

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Saikat; Shi, Heliang; Habte, Habtom H.; Qin, Yali; Cho, Michael W., E-mail: mcho@iastate.edu

    2016-03-15

    The C-terminal alpha-helix of gp41 membrane-proximal external region (MPER; {sup 671}NWFDITNWLWYIK{sup 683}) encompassing 4E10/10E8 epitopes is an attractive target for HIV-1 vaccine development. We previously reported that gp41-HR1-54Q, a trimeric protein comprised of the MPER in the context of a stable six-helix bundle (6HB), induced strong immune responses against the helix, but antibodies were directed primarily against the non-neutralizing face of the helix. To better target 4E10/10E8 epitopes, we generated four putative fusion intermediates by introducing double point mutations or deletions in the heptad repeat region 1 (HR1) that destabilize 6HB in varying degrees. One variant, HR1-∆10-54K, elicited antibodies in rabbits that targeted W672, I675 and L679, which are critical for 4E10/10E8 recognition. Overall, the results demonstrated that altering structural parameters of 6HB can influence immunogenic properties of the MPER and antibody targeting. Further exploration of this strategy could allow development of immunogens that could lead to induction of 4E10/10E8-like antibodies. - Highlights: • Four gp41 MPER-based immunogens that resemble fusion intermediates were generated. • C-terminal region of MPER that contains 4E10/10E8 epitopes was highly immunogenic. • Altering 6HB structure can influence immunogenic properties of the MPER. • Induced antibodies targeted multiple residues critical for 4E10/10E8 binding. • Development of immunogens based on fusion intermediates is a promising strategy.

  11. Chromatographic finger print analysis and lysosomal membrane stabilisation activity of active fraction of Alstonia scholaris leaf extract in arthritic rats

    Directory of Open Access Journals (Sweden)

    Swapnil Goyal

    2014-01-01

    Full Text Available Object: The present study was aimed to assess the anti-arthritic activity of chloroform fraction of Alstonia scholaris leaf extract against Freund′s complete adjuvant (FCA-induced arthritis in rats. Materials and Methods: The anti-inflammatory activity of various fractions of ethanolic extract of Alstonia scholaris at concentration of 100 mg/kg was studied using the carrageenan-induced inflammatory models. The chloroform fraction shows significant anti-inflammatory activity. The chloroform fraction was further studied for anti-arthritic activity and HPTLC fingerprint analysis. For anti-arthritic activity, the active chloroform fraction was administered at the concentrations of 50 and 100 mg/kg body weight. The effect of chloroform fraction on liver ALP, ACP and LDH levels of lysosomal enzymes of FCA arthritic animals were studied. Indomethacin and prednisolone (10 mg/kg was used as standard. HPTLC studies were carried out using CAMAG HPTLC system equipped with linomat IV applicator, TLC scanner; Reprostar 3 and WIN CATS-4 software were used. Results: The chloroform fraction at 100 mg/kg, showed maximum inhibition (34.16% of inflammation induced by carrageenan. In FCA-induced arthritis, the chloroform fraction showed a highly significant reduction in paw volume (50 mg/kg-72.71%; 100 mg/kg-74.35%. The levels of lysosomal enzymes were significantly decreased in the chloroform fraction-treated groups. Conclusion: The possible mechanism of action of the chloroform fraction of Alstonia scholaris leaf extract may be through its stabilising action on lysosomal membranes. Future studies will provide new insights into the anti-arthritic activity of Alstonia scholaris and isolation of compound from it may eventually lead to development of a new class of anti-arthritic agent.

  12. The proteome of lysosomes.

    Science.gov (United States)

    Schröder, Bernd A; Wrocklage, Christian; Hasilik, Andrej; Saftig, Paul

    2010-11-01

    Lysosomes are organelles of eukaryotic cells that are critically involved in the degradation of macromolecules mainly delivered by endocytosis and autophagocytosis. Degradation is achieved by more than 60 hydrolases sequestered by a single phospholipid bilayer. The lysosomal membrane facilitates interaction and fusion with other compartments and harbours transport proteins catalysing the export of catabolites, thereby allowing their recycling. Lysosomal proteins have been addressed in various proteomic studies that are compared in this review regarding the source of material, the organelle/protein purification scheme, the proteomic methodology applied and the proteins identified. Distinguishing true constituents of an organelle from co-purifying contaminants is a central issue in subcellular proteomics, with additional implications for lysosomes as being the site of degradation of many cellular and extracellular proteins. Although many of the lysosomal hydrolases were identified by classical biochemical approaches, the knowledge about the protein composition of the lysosomal membrane has remained fragmentary for a long time. Using proteomics many novel lysosomal candidate proteins have been discovered and it can be expected that their functional characterisation will help to understand functions of lysosomes at a molecular level that have been characterised only phenomenologically so far and to generally deepen our understanding of this indispensable organelle.

  13. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells.

    Science.gov (United States)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth; Petersen, Nikolaj H T; Nylandsted, Jesper; Jäättelä, Marja

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets.

  14. Lysosomal cell death at a glance

    DEFF Research Database (Denmark)

    Aits, Sonja; Jaattela, Marja

    2013-01-01

    Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form...... of cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream...... mechanisms that lead to lysosomal membrane permeabilization....

  15. Lysosomal membrane permeabilization is involved in oxidative stress-induced apoptotic cell death in LAMP2-deficient iPSCs-derived cerebral cortical neurons

    Directory of Open Access Journals (Sweden)

    Cheuk-Yiu Law

    2016-03-01

    Our results from cellular fractionation and inhibitor blockade experiments further revealed that oxidative stress-induced apoptosis in the LAMP2-deficient cortical neurons was caused by increased abundance of cytosolic cathepsin L. These results suggest the involvement of lysosomal membrane permeabilization in the LAMP2 deficiency associated neural injury.

  16. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas

    DEFF Research Database (Denmark)

    Jensen, Stine S; Aaberg-Jessen, Charlotte; Christensen, Karina G

    2013-01-01

    astrocytomas and compared with tumor grade and overall patient survival. Moreover, double immunofluorescence stainings were performed with LAMP-1 and the astrocytic marker GFAP and the putative stem cell marker CD133 on ten glioblastomas. Most tumors expressed the LAMP-1 protein in the cytoplasm of the tumor...... cells, while the blood vessels were positive in all tumors. The percentage of LAMP-1 positive tumor cells and staining intensities increased with tumor grade but variations in tumors of the same grade were also found. No association was found between LAMP-1 expression and patient overall survival......Targeting of lysosomes is a novel therapeutic anti-cancer strategy for killing the otherwise apoptosis-resistant cancer cells. Such strategies are urgently needed for treatment of brain tumors, especially the glioblastoma, which is the most frequent and most malignant type. The aim of the present...

  17. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice.

    Science.gov (United States)

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4 (DR4), have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MR) clustering and the formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and co-localized with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1 (+/+)) mice. Furthermore, TRAIL triggered ASM translocation, ceramide production, and NADPH oxidase aggregation in MR clusters in Smpd1 ( +/+ ) CAECs, whereas these observations were not found in Smpd1 (-/-) CAECs. Moreover, ASM deficiency reduced TRAIL-induced O(2) (-[Symbol: see text]) production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer, we found that Lamp-1 (lysosome membrane marker protein) and ganglioside G(M1) (MR marker) were trafficking together in Smpd1 (+/+) CAECs, which was absent in Smpd1 (-/-) CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1 (-/-) CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking, membrane fusion and formation of MR redox signaling platforms

  18. Internalization, lysosomal degradation and new synthesis of surface membrane CD4 in phorbol ester-activated T-lymphocytes and U-937 cells

    DEFF Research Database (Denmark)

    Petersen, C M; Christensen, E I; Andresen, B S

    1992-01-01

    degradation was low in resting cells. Endocytosis and/or degradation of anti-CD4 mAb was suppressed by H7, and by inhibitors of membrane traffic (Monensin) and lysosome function (methylamine, chloroquine). Immunocytochemistry localized CD4 to the surface of unstimulated T-cells. Upon PMA stimulation...... occasional labeling was seen in endosomes but whole cell CD4 decreased dramatically. However, methylamine-treated PMA blasts showed accumulation of CD4 in lysosomes and accordingly, pulse-chase experiments in biolabeled cell cultures suggested a manifest reduction of CD4 half-life in response to PMA. Despite...... in activated cells was further evidenced by metabolic labeling and Northern blot analysis demonstrating unaltered or slightly increased CD4 protein and mRNA levels resulting from PMA. Our findings demonstrate that phorbol esters downregulate the cellular CD4 pool by endocytosis and subsequent lysosomal...

  19. Membrane-Associated RING-CH proteins associate with Bap31 and target CD81 and CD44 to lysosomes.

    Directory of Open Access Journals (Sweden)

    Eric Bartee

    Full Text Available Membrane-associated RING-CH (MARCH proteins represent a family of transmembrane ubiquitin ligases modulating intracellular trafficking and turnover of transmembrane protein targets. While homologous proteins encoded by gamma-2 herpesviruses and leporipoxviruses have been studied extensively, limited information is available regarding the physiological targets of cellular MARCH proteins. To identify host cell proteins targeted by the human MARCH-VIII ubiquitin ligase we used stable isotope labeling of amino-acids in cell culture (SILAC to monitor MARCH-dependent changes in the membrane proteomes of human fibroblasts. Unexpectedly, we observed that MARCH-VIII reduced the surface expression of Bap31, a chaperone that predominantly resides in the endoplasmic reticulum (ER. We demonstrate that Bap31 associates with the transmembrane domains of several MARCH proteins and controls intracellular transport of MARCH proteins. In addition, we observed that MARCH-VIII reduced the surface expression of the hyaluronic acid-receptor CD44 and both MARCH-VIII and MARCH-IV sequestered the tetraspanin CD81 in endo-lysosomal vesicles. Moreover, gene knockdown of MARCH-IV increased surface levels of endogenous CD81 suggesting a constitutive involvement of this family of ubiquitin ligases in the turnover of tetraspanins. Our data thus suggest a role of MARCH-VIII and MARCH-IV in the regulated turnover of CD81 and CD44, two ubiquitously expressed, multifunctional proteins.

  20. Membrane-Associated RING-CH proteins associate with Bap31 and target CD81 and CD44 to lysosomes.

    Science.gov (United States)

    Bartee, Eric; Eyster, Craig A; Viswanathan, Kasinath; Mansouri, Mandana; Donaldson, Julie G; Früh, Klaus

    2010-12-02

    Membrane-associated RING-CH (MARCH) proteins represent a family of transmembrane ubiquitin ligases modulating intracellular trafficking and turnover of transmembrane protein targets. While homologous proteins encoded by gamma-2 herpesviruses and leporipoxviruses have been studied extensively, limited information is available regarding the physiological targets of cellular MARCH proteins. To identify host cell proteins targeted by the human MARCH-VIII ubiquitin ligase we used stable isotope labeling of amino-acids in cell culture (SILAC) to monitor MARCH-dependent changes in the membrane proteomes of human fibroblasts. Unexpectedly, we observed that MARCH-VIII reduced the surface expression of Bap31, a chaperone that predominantly resides in the endoplasmic reticulum (ER). We demonstrate that Bap31 associates with the transmembrane domains of several MARCH proteins and controls intracellular transport of MARCH proteins. In addition, we observed that MARCH-VIII reduced the surface expression of the hyaluronic acid-receptor CD44 and both MARCH-VIII and MARCH-IV sequestered the tetraspanin CD81 in endo-lysosomal vesicles. Moreover, gene knockdown of MARCH-IV increased surface levels of endogenous CD81 suggesting a constitutive involvement of this family of ubiquitin ligases in the turnover of tetraspanins. Our data thus suggest a role of MARCH-VIII and MARCH-IV in the regulated turnover of CD81 and CD44, two ubiquitously expressed, multifunctional proteins.

  1. Prion infection impairs lysosomal degradation capacity by interfering with rab7 membrane attachment in neuronal cells

    OpenAIRE

    Su Yeon Shim; Srinivasarao Karri; Sampson Law; Schatzl, Hermann M.; Sabine Gilch

    2016-01-01

    Prions are proteinaceous infectious particles which cause fatal neurodegenerative disorders in humans and animals. They consist of a mostly β-sheeted aggregated isoform (PrPSc) of the cellular prion protein (PrPc). Prions replicate autocatalytically in neurons and other cell types by inducing conformational conversion of PrPc into PrPSc. Within neurons, PrPSc accumulates at the plasma membrane and in vesicles of the endocytic pathway. To better understand the mechanisms underlying neuronal dy...

  2. Lysosomal membrane stability and metallothionein content in Mytilus galloprovincialis (L.), as biomarkers Combination with trace metal concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Domouhtsidou, G.P.; Dailianis, S.; Kaloyianni, M.; Dimitriadis, V.K

    2004-03-01

    The simultaneous study of two biomarkers, the lysosomal membrane stability (LMS) of the digestive gland and the metallothionein (MT) content of the digestive gland, the gills and the mantle/gonad complex of the mussel Mytilus galloprovincialis was examined in an enclosed estuarine system in June and October 2001. Mussels were collected along the Gulf of Thermaikos (northern Greece) from stations displaying a pollution gradient, while Olympiada in the Gulf of Strymonikos was used as a reference station. In addition, the heavy metal (Cd, Pb, Cu and Zn) content, using atomic absorption spectrophotometry (AAS), were evaluated in the digestive gland, the gills and the mantle/gonad complex of mussels collected from the same sites and seasons. LMS values were significantly greater, and the MT content of the studied tissues were significantly less in mussels collected from the reference station compared to mussels from more polluted stations located in the Gulf of Thermaikos. Significant correlation was observed between the MT content of the gills and the mantle/gonad complex with the LMS values.

  3. Cardenolide-Induced Lysosomal Membrane Permeabilization Demonstrates Therapeutic Benefits in Experimental Human Non-Small Cell Lung Cancers

    Directory of Open Access Journals (Sweden)

    Tatjana Mijatovic

    2006-05-01

    Full Text Available Non-small cell lung cancers (NSCLCs are the leading cause of cancer deaths in most developed countries. Targeting heat shock protein 70 (Hsp70 expression and function, together with the induction of lysosomal membrane permeabilization (LMP, could overcome the multiple anti-cell death mechanisms evidenced in NSCLCs that are responsible for the failure of currently used chemotherapeutic drugs. Because cardenolides bind to the sodium pump, they affect multiple signaling pathways and thus have a number of marked effects on tumor cell behavior. The aim of the present study was to characterize in vitro and in vivo the antitumor effects of a new cardenolide (UNBS1450 on experimental human NSCLCs. UNBS1450 is a potent source of in vivo antitumor activity in the case of paclitaxeland oxaliplatin-resistant subcutaneous human NCIH727 and orthotopic A549 xenografts in nude mice. In vitro UNBS1450-mediated antitumor activity results from the induction of nonapoptotic cell death. UNBS1450 mediates the decrease of Hsp70 at both mRNA and protein levels, and this is at least partly due to UNBS1450-induced downregulation of NFAT5/ TonEBP (a factor responsible for the transcriptional control of Hsp70. These effects were paralleled by the induction of LMP, as evidenced by acridine orange staining and immunofluorescence analysis for cathepsin B accumulation.

  4. Molecular cloning of cDNAs encoding lamp A, a human lysosomal membrane glycoprotein with apparent M sub r approx 120,000

    Energy Technology Data Exchange (ETDEWEB)

    Viitala, J.; Carlsson, S.R.; Siebert, P.D.; Fukuda, M. (La Jolla Cancer Research Foundation, CA (USA))

    1988-06-01

    Although several lysosomal membrane glycoproteins have been characterized by using specific antibodies, none of the studies so far elucidated the amino acid sequence of a lysosomal membrane glycoprotein. Here we describe cDNA clones encoding for one of the lysosome-associated membrane proteins with apparent M{sub r} {approx} 120,000, lamp A. The amino acid sequence based on the fully coded cDNA shows that as many as 18 potential N-glycosylation sites can be found in the total of 385 amino acid residues. The results obtained by endoglycosidase F digestion support the conclusion that this glycoprotein contains 18 N-glycans. These N-glycosylation sites are clustered in two domains; one contains 10 and the other contains 8 N-glycosylation sites. These domains are separated by a (proline-serine)-rich region that has a distinct homology to the IgA hinge structure. The first N-glycosylated domain is elongated to a potential leader peptide toward the NH{sub 2}-terminal end. The second N-glycosylated domain, on the other hand, is connected to a putative transmembrane portion consisting of hydrophobic amino acids. This segment, in turn, is elongated to a short cytoplasmic segment composed of 11 amino acid residues at the COOH-terminal end.

  5. Structure of transmembrane domain of lysosome-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone-mediated autophagy.

    Science.gov (United States)

    Rout, Ashok K; Strub, Marie-Paule; Piszczek, Grzegorz; Tjandra, Nico

    2014-12-19

    Chaperone-mediated autophagy (CMA) is a highly regulated cellular process that mediates the degradation of a selective subset of cytosolic proteins in lysosomes. Increasing CMA activity is one way for a cell to respond to stress, and it leads to enhanced turnover of non-critical cytosolic proteins into sources of energy or clearance of unwanted or damaged proteins from the cytosol. The lysosome-associated membrane protein type 2a (LAMP-2A) together with a complex of chaperones and co-chaperones are key regulators of CMA. LAMP-2A is a transmembrane protein component for protein translocation to the lysosome. Here we present a study of the structure and dynamics of the transmembrane domain of human LAMP-2A in n-dodecylphosphocholine micelles by nuclear magnetic resonance (NMR). We showed that LAMP-2A exists as a homotrimer in which the membrane-spanning helices wrap around each other to form a parallel coiled coil conformation, whereas its cytosolic tail is flexible and exposed to the cytosol. This cytosolic tail of LAMP-2A interacts with chaperone Hsc70 and a CMA substrate RNase A with comparable affinity but not with Hsp40 and RNase S peptide. Because the substrates and the chaperone complex can bind at the same time, thus creating a bimodal interaction, we propose that substrate recognition by chaperones and targeting to the lysosomal membrane by LAMP-2A are coupled. This can increase substrate affinity and specificity as well as prevent substrate aggregation, assist in the unfolding of the substrate, and promote the formation of the higher order complex of LAMP-2A required for translocation.

  6. Anthrax lethal toxin induced lysosomal membrane permeabilization and cytosolic cathepsin release is Nlrp1b/Nalp1b-dependent.

    Directory of Open Access Journals (Sweden)

    Kathleen M Averette

    Full Text Available NOD-like receptors (NLRs are a group of cytoplasmic molecules that recognize microbial invasion or 'danger signals'. Activation of NLRs can induce rapid caspase-1 dependent cell death termed pyroptosis, or a caspase-1 independent cell death termed pyronecrosis. Bacillus anthracis lethal toxin (LT, is recognized by a subset of alleles of the NLR protein Nlrp1b, resulting in pyroptotic cell death of macrophages and dendritic cells. Here we show that LT induces lysosomal membrane permeabilization (LMP. The presentation of LMP requires expression of an LT-responsive allele of Nlrp1b, and is blocked by proteasome inhibitors and heat shock, both of which prevent LT-mediated pyroptosis. Further the lysosomal protease cathepsin B is released into the cell cytosol and cathepsin inhibitors block LT-mediated cell death. These data reveal a role for lysosomal membrane permeabilization in the cellular response to bacterial pathogens and demonstrate a shared requirement for cytosolic relocalization of cathepsins in pyroptosis and pyronecrosis.

  7. Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT).

    Science.gov (United States)

    Gutierrez, Elaine M; Seebacher, Nicole A; Arzuman, Laila; Kovacevic, Zaklina; Lane, Darius J R; Richardson, Vera; Merlot, Angelica M; Lok, Hiu; Kalinowski, Danuta S; Sahni, Sumit; Jansson, Patric J; Richardson, Des R

    2016-07-01

    The potent and selective anti-tumor agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), localizes in lysosomes and forms cytotoxic copper complexes that generate reactive oxygen species (ROS), resulting in lysosomal membrane permeabilization (LMP) and cell death. Herein, the role of lysosomal membrane stability in the anti-tumor activity of Dp44mT was investigated. Studies were performed using molecules that protect lysosomal membranes against Dp44mT-induced LMP, namely heat shock protein 70 (HSP70) and cholesterol. Up-regulation or silencing of HSP70 expression did not affect Dp44mT-induced LMP in MCF7 cells. In contrast, cholesterol accumulation in lysosomes induced by the well characterized cholesterol transport inhibitor, 3-β-[2-(diethyl-amino)ethoxy]androst-5-en-17-one (U18666A), inhibited Dp44mT-induced LMP and markedly and significantly (peffect of U18666A in increasing lysosomal cholesterol and preventing the cytotoxic activity of Dp44mT was not due to induced autophagy. Instead, U18666A was found to decrease lysosomal turnover, resulting in autophagosome accumulation. Moreover, preincubation with U18666A did not prevent the ability of Dp44mT to induce autophagosome synthesis, indicating that autophagic initiation via Dp44mT occurs independently of LMP. These studies demonstrate the significance of lysosomal membrane stability in relation to the ability of Dp44mT to execute tumor cell death and overcome pro-survival autophagy. Hence, lysosomal-dependent cell death induced by Dp44mT serves as an important anti-tumor strategy. These results are important for comprehensively understanding the mechanism of action of Dp44mT.

  8. Lysosomal cell death mechanisms in aging.

    Science.gov (United States)

    Gómez-Sintes, Raquel; Ledesma, María Dolores; Boya, Patricia

    2016-12-01

    Lysosomes are degradative organelles essential for cell homeostasis that regulate a variety of processes, from calcium signaling and nutrient responses to autophagic degradation of intracellular components. Lysosomal cell death is mediated by the lethal effects of cathepsins, which are released into the cytoplasm following lysosomal damage. This process of lysosomal membrane permeabilization and cathepsin release is observed in several physiopathological conditions and plays a role in tissue remodeling, the immune response to intracellular pathogens and neurodegenerative diseases. Many evidences indicate that aging strongly influences lysosomal activity by altering the physical and chemical properties of these organelles, rendering them more sensitive to stress. In this review we focus on how aging alters lysosomal function and increases cell sensitivity to lysosomal membrane permeabilization and lysosomal cell death, both in physiological conditions and age-related pathologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Calcium binding promotes prion protein fragment 90-231 conformational change toward a membrane destabilizing and cytotoxic structure.

    Directory of Open Access Journals (Sweden)

    Sacha Sorrentino

    Full Text Available The pathological form of prion protein (PrP(Sc, as other amyloidogenic proteins, causes a marked increase of membrane permeability. PrP(Sc extracted from infected Syrian hamster brains induces a considerable change in membrane ionic conductance, although the contribution of this interaction to the molecular mechanism of neurodegeneration process is still controversial. We previously showed that the human PrP fragment 90-231 (hPrP₉₀₋₂₃₁ increases ionic conductance across artificial lipid bilayer, in a calcium-dependent manner, producing an alteration similar to that observed for PrP(Sc. In the present study we demonstrate that hPrP₉₀₋₂₃₁, pre-incubated with 10 mM Ca⁺⁺ and then re-suspended in physiological external solution increases not only membrane conductance but neurotoxicity as well. Furthermore we show the existence of a direct link between these two effects as demonstrated by a highly statistically significant correlation in several experimental conditions. A similar correlation between increased membrane conductance and cell degeneration has been observed assaying hPrP₉₀₋₂₃₁ bearing pathogenic mutations (D202N and E200K. We also report that Ca⁺⁺ binding to hPrP₉₀₋₂₃₁ induces a conformational change based on an alteration of secondary structure characterized by loss of alpha-helix content causing hydrophobic amino acid exposure and proteinase K resistance. These features, either acquired after controlled thermal denaturation or induced by D202N and E200K mutations were previously identified as responsible for hPrP₉₀₋₂₃₁ cytotoxicity. Finally, by in silico structural analysis, we propose that Ca⁺⁺ binding to hPrP₉₀₋₂₃₁ modifies amino acid orientation, in the same way induced by E200K mutation, thus suggesting a pathway for the structural alterations responsible of PrP neurotoxicity.

  10. Calcium binding promotes prion protein fragment 90-231 conformational change toward a membrane destabilizing and cytotoxic structure.

    Science.gov (United States)

    Sorrentino, Sacha; Bucciarelli, Tonino; Corsaro, Alessandro; Tosatto, Alessio; Thellung, Stefano; Villa, Valentina; Schininà, M Eugenia; Maras, Bruno; Galeno, Roberta; Scotti, Luca; Creati, Francesco; Marrone, Alessandro; Re, Nazzareno; Aceto, Antonio; Florio, Tullio; Mazzanti, Michele

    2012-01-01

    The pathological form of prion protein (PrP(Sc)), as other amyloidogenic proteins, causes a marked increase of membrane permeability. PrP(Sc) extracted from infected Syrian hamster brains induces a considerable change in membrane ionic conductance, although the contribution of this interaction to the molecular mechanism of neurodegeneration process is still controversial. We previously showed that the human PrP fragment 90-231 (hPrP₉₀₋₂₃₁) increases ionic conductance across artificial lipid bilayer, in a calcium-dependent manner, producing an alteration similar to that observed for PrP(Sc). In the present study we demonstrate that hPrP₉₀₋₂₃₁, pre-incubated with 10 mM Ca⁺⁺ and then re-suspended in physiological external solution increases not only membrane conductance but neurotoxicity as well. Furthermore we show the existence of a direct link between these two effects as demonstrated by a highly statistically significant correlation in several experimental conditions. A similar correlation between increased membrane conductance and cell degeneration has been observed assaying hPrP₉₀₋₂₃₁ bearing pathogenic mutations (D202N and E200K). We also report that Ca⁺⁺ binding to hPrP₉₀₋₂₃₁ induces a conformational change based on an alteration of secondary structure characterized by loss of alpha-helix content causing hydrophobic amino acid exposure and proteinase K resistance. These features, either acquired after controlled thermal denaturation or induced by D202N and E200K mutations were previously identified as responsible for hPrP₉₀₋₂₃₁ cytotoxicity. Finally, by in silico structural analysis, we propose that Ca⁺⁺ binding to hPrP₉₀₋₂₃₁ modifies amino acid orientation, in the same way induced by E200K mutation, thus suggesting a pathway for the structural alterations responsible of PrP neurotoxicity.

  11. Loss of lysosomal membrane protein NCU-G1 in mice results in spontaneous liver fibrosis with accumulation of lipofuscin and iron in Kupffer cells

    Directory of Open Access Journals (Sweden)

    Xiang Y. Kong

    2014-03-01

    Full Text Available Human kidney predominant protein, NCU-G1, is a highly conserved protein with an unknown biological function. Initially described as a nuclear protein, it was later shown to be a bona fide lysosomal integral membrane protein. To gain insight into the physiological function of NCU-G1, mice with no detectable expression of this gene were created using a gene-trap strategy, and Ncu-g1gt/gt mice were successfully characterized. Lysosomal disorders are mainly caused by lack of or malfunctioning of proteins in the endosomal-lysosomal pathway. The clinical symptoms vary, but often include liver dysfunction. Persistent liver damage activates fibrogenesis and, if unremedied, eventually leads to liver fibrosis/cirrhosis and death. We demonstrate that the disruption of Ncu-g1 results in spontaneous liver fibrosis in mice as the predominant phenotype. Evidence for an increased rate of hepatic cell death, oxidative stress and active fibrogenesis were detected in Ncu-g1gt/gt liver. In addition to collagen deposition, microscopic examination of liver sections revealed accumulation of autofluorescent lipofuscin and iron in Ncu-g1gt/gt Kupffer cells. Because only a few transgenic mouse models have been identified with chronic liver injury and spontaneous liver fibrosis development, we propose that the Ncu-g1gt/gt mouse could be a valuable new tool in the development of novel treatments for the attenuation of fibrosis due to chronic liver damage.

  12. Endocytosed 2-Microglobulin Amyloid Fibrils Induce Necrosis and Apoptosis of Rabbit Synovial Fibroblasts by Disrupting Endosomal/Lysosomal Membranes: A Novel Mechanism on the Cytotoxicity of Amyloid Fibrils.

    Directory of Open Access Journals (Sweden)

    Tadakazu Okoshi

    Full Text Available Dialysis-related amyloidosis is a major complication in long-term hemodialysis patients. In dialysis-related amyloidosis, β2-microglobulin (β2-m amyloid fibrils deposit in the osteoarticular tissue, leading to carpal tunnel syndrome and destructive arthropathy with cystic bone lesions, but the mechanism by which these amyloid fibrils destruct bone and joint tissue is not fully understood. In this study, we assessed the cytotoxic effect of β2-m amyloid fibrils on the cultured rabbit synovial fibroblasts. Under light microscopy, the cells treated with amyloid fibrils exhibited both necrotic and apoptotic changes, while the cells treated with β2-m monomers and vehicle buffer exhibited no morphological changes. As compared to β2-m monomers and vehicle buffer, β2-m amyloid fibrils significantly reduced cellular viability as measured by the lactate dehydrogenase release assay and the 3-(4,5-di-methylthiazol-2-yl-2,5-diphenyltetrazolium bromide reduction assay and significantly increased the percentage of apoptotic cells as measured by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method. β2-m amyloid fibrils added to the medium adhered to cell surfaces, but did not disrupt artificial plasma membranes as measured by the liposome dye release assay. Interestingly, when the cells were incubated with amyloid fibrils for several hours, many endosomes/lysosomes filled with amyloid fibrils were observed under confocal laser microscopy and electron microscopy, Moreover, some endosomal/lysosomal membranes were disrupted by intravesicular fibrils, leading to the leakage of the fibrils into the cytosol and adjacent to mitochondria. Inhibition of actin-dependent endocytosis by cytochalasin D attenuated the toxicity of amyloid fibrils. These results suggest that endocytosed β2-m amyloid fibrils induce necrosis and apoptosis by disrupting endosomal/lysosomal membranes, and this novel mechanism on the cytotoxicity of amyloid

  13. LYSOSOMAL DISRUPTION BY BACTERIAL TOXINS

    Science.gov (United States)

    Bernheimer, Alan W.; Schwartz, Lois L.

    1964-01-01

    Bernheimer, Alan W. (New York University School of Medicine, New York), and Lois L. Schwartz. Lysosomal disruption by bacterial toxins. J. Bacteriol. 87:1100–1104. 1964.—Seventeen bacterial toxins were examined for capacity (i) to disrupt rabbit leukocyte lysosomes as indicated by decrease in turbidity of lysosomal suspensions, and (ii) to alter rabbit liver lysosomes as measured by release of β-glucuronidase and acid phosphatase. Staphylococcal α-toxin, Clostridium perfringens α-toxin, and streptolysins O and S affected lysosomes in both systems. Staphylococcal β-toxin, leucocidin and enterotoxin, Shiga neurotoxin, Serratia endotoxin, diphtheria toxin, tetanus neurotoxin, C. botulinum type A toxin, and C. perfringens ε-toxin were not active in either system. Staphylococcal δ-toxin, C. histolyticum collagenase, crude C. perfringens β-toxin, and crude anthrax toxin caused lysosomal damage in only one of the test systems. There is a substantial correlation between the hemolytic property of a toxin and its capacity to disrupt lysosomes, lending support to the concept that erythrocytes and lysosomes are bounded by similar membranes. PMID:5874534

  14. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice.

    Science.gov (United States)

    Kook, Seunghyi; Wang, Ping; Young, Lisa R; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S; Gonzales, Linda; Beers, Michael F; Guttentag, Susan

    2016-04-15

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients.

  15. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin

    OpenAIRE

    Yanyan Li; Man Chen; Yanyan Xu; Xiao Yu; Ting Xiong; Min Du; Jian Sun; Liegang Liu; Yuhan Tang; Ping Yao

    2016-01-01

    Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD). As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total c...

  16. Copper Induced Lysosomal Membrane Destabilisation in Haemolymph Cells of Mediterranean Green Crab (Carcinus aestuarii, Nardo, 1847 from the Narta Lagoon (Albania

    Directory of Open Access Journals (Sweden)

    Valbona Aliko

    2015-10-01

    Full Text Available ABSTRACTDestabilisation of blood cell lysosomes in Mediterranean green crabCarcinus aestuarii was investigated using Neutral Red Retention Assay (NRRA. Crabs collected in Narta Lagoon, Vlora (Albania during May 2014 were exposed in the laboratory to sub-lethal, environmentally realistic concentrations of copper. Neutral Red Retention Time (NRRT and glucose concentration in haemolymph of animals were measured. The mean NRRT showed a significant reduction for the animals of the treatment group compared to the control one (from 118.6 ± 28.4 to 36.4 ± 10.48 min, p<0.05, indicating damage of lysosomal membrane. Haemolymph glucose concentration was significantly higher in the treatment group (from 37.8 ± 2.7 to 137.8.4 ± 16.2 mg/dL, p<0.05 than in control group, demonstrating the presence of stress on the animals. These results showed thatC. aestuarii could be used as a successful and reliable bioindicator for evaluating the exposure to contaminants in laboratory conditions. NRRA provides a successful tool for rapid assessment of heavy metal pollution effects on marine biota.

  17. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP fused antigens: a potential tool to develop DNA vaccines against flaviviruses

    Directory of Open Access Journals (Sweden)

    Rafael Dhalia

    2009-12-01

    Full Text Available Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the developent of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP. The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.A vacinação é a estratégia mais prática e o melhor custo-benefício para prevenir a maioria das infecções dos flavivirus, para os quais existe vacina disponível. Entretanto, as vacinas baseadas em vírus atenuados podem potencialmente promover efeitos colaterais e, mais raramente, reações fatais. Diante deste cenário, o desenvolvimento de estratégias alternativas de vacinação, como vacinas baseadas em DNA codificando seqüências específicas dos flavivirus, está sendo considerado

  18. Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content.

    Directory of Open Access Journals (Sweden)

    Hanna Appelqvist

    Full Text Available Alterations in lipid homeostasis are implicated in several neurodegenerative diseases, although the mechanisms responsible are poorly understood. We evaluated the impact of cholesterol accumulation, induced by U18666A, quinacrine or mutations in the cholesterol transporting Niemann-Pick disease type C1 (NPC1 protein, on lysosomal stability and sensitivity to lysosome-mediated cell death. We found that neurons with lysosomal cholesterol accumulation were protected from oxidative stress-induced apoptosis. In addition, human fibroblasts with cholesterol-loaded lysosomes showed higher lysosomal membrane stability than controls. Previous studies have shown that cholesterol accumulation is accompanied by the storage of lipids such as sphingomyelin, glycosphingolipids and sphingosine and an up regulation of lysosomal associated membrane protein-2 (LAMP-2, which may also influence lysosomal stability. However, in this study the use of myriocin and LAMP deficient fibroblasts excluded these factors as responsible for the rescuing effect and instead suggested that primarily lysosomal cholesterol content determineD the cellular sensitivity to toxic insults. Further strengthening this concept, depletion of cholesterol using methyl-β-cyclodextrin or 25-hydroxycholesterol decreased the stability of lysosomes and cells became more prone to undergo apoptosis. In conclusion, cholesterol content regulated lysosomal membrane permeabilization and thereby influenced cell death sensitivity. Our data suggests that lysosomal cholesterol modulation might be used as a therapeutic strategy for conditions associated with accelerated or repressed apoptosis.

  19. Brief exposure to copper activates lysosomal exocytosis.

    Science.gov (United States)

    Peña, Karina; Coblenz, Jessica; Kiselyov, Kirill

    2015-04-01

    Copper (Cu) is essential mineral, but its toxicity necessitates existence of powerful machinery responsible for the extraction of excess Cu from the cell. Cu exposure was recently shown to induce the translocation of Cu pump ATP7B to the lysosomes followed by lysosomal exocytosis. Here we sought to investigate the mechanisms underlying the effect of Cu on lysosomal exocytosis. We found that brief exposure to Cu activates lysosomal exocytosis, which was measured as a release of the lysosomal digestive enzyme β-hexosaminidase (β-hex) into the extracellular medium and by the presence lysosomal protein LAMP1 at the plasma membrane. Such release depends on calcium (Ca) and on the lysosomal SNARE VAMP7. ATP7B knockdown using RNAi suppressed the basal lysosomal exocytosis, but did not affect the ability of Cu to activate it. ATP7B knockdown was associated with sustained oxidative stress. The removal of Ca from the extracellular medium suppressed the Cu-dependent component of the lysosomal exocytosis. We propose that Cu promotes lysosomal exocytosis by facilitating a Ca-dependent step of the lysosomal exocytosis.

  20. [Application of lysosomal detection in marine pollution monitoring: research progress].

    Science.gov (United States)

    Weng, You-Zhu; Fang, Yong-Qiang; Zhang, Yu-Sheng

    2013-11-01

    Lysosome is an important organelle existing in eukaryotic cells. With the development of the study on the structure and function of lysosome in recent years, lysosome is considered as a target of toxic substances on subcellular level, and has been widely applied abroad in marine pollution monitoring. This paper summarized the biological characteristics of lysosomal marker enzyme, lysosome-autophagy system, and lysosomal membrane, and introduced the principles and methods of applying lysosomal detection in marine pollution monitoring. Bivalve shellfish digestive gland and fish liver are the most sensitive organs for lysosomal detection. By adopting the lysosomal detection techniques such as lysosomal membrane stability (LMS) test, neutral red retention time (NRRT) assay, morphological measurement (MM) of lysosome, immunohistochemical (Ih) assay of lysosomal marker enzyme, and electron microscopy (EM), the status of marine pollution can be evaluated. It was suggested that the lysosome could be used as a biomarker for monitoring marine environmental pollution. The advantages and disadvantages of lysosomal detection and some problems worthy of attention were analyzed, and the application prospects of lysosomal detection were discussed.

  1. DNA adducts, benzo(a)pyrene monooxygenase activity, and lysosomal membrane stability in Mytilus galloprovincialis from different areas in Taranto coastal waters (Italy).

    Science.gov (United States)

    Pisoni, M; Cogotzi, L; Frigeri, A; Corsi, I; Bonacci, S; Iacocca, A; Lancini, L; Mastrototaro, F; Focardi, S; Svelto, M

    2004-10-01

    The aim of this study was to investigate the impact of environmental pollution at different stations along the Taranto coastline (Ionian Sea, Puglia, Italy) using several biomarkers of exposure and the effect on mussels, Mytilus galloprovincialis, collected in October 2001 and October 2002. Five sampling sites were compared with a "cleaner" reference site in the Aeronautics Area. In this study we also investigated the differences between adduct levels in gills and digestive gland. This Taranto area is the most significant industrial settlement on the Ionian Sea known to be contaminated by polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, heavy metals, etc. Exposure to PAHs was evaluated by measuring DNA adduct levels and benzo(a)pyrene monooxygenase activity (B(a)PMO); DNA adducts were analyzed by 32P-postlabeling with nuclease P1 enhancement in both gills and digestive glands to evaluate differences between DNA adduct levels in the two tissues. B(a)PMO was assayed in the microsomal fraction of the digestive glands as a result of the high expression of P450-metabolizing enzymes in this tissue. Lysosomal membrane stability, a potential biomarker of anthropogenic stress, was also evaluated in the digestive glands of mussels, by measuring the latent activity of beta-N-acetylhexosaminidase. Induction of DNA adducts was evident in both tissues, although the results revealed large tissue differences in DNA adduct formation. In fact, gills showed higher DNA adduct levels than did digestive gland. No significant differences were found in DNA adduct levels over time, with both tissues providing similar results in both years. DNA adduct levels were correlated with B(a)PMO activity in digestive gland in both years (r = 0.60 in 2001; r = 0.73 in 2002). Increases were observed in B(a)PMO activity and DNA adduct levels at different stations; no statistical difference was observed in B(a)PMO activity over the two monitoring campaigns. The membrane labilization

  2. Lysosomal-associated protein multispanning transmembrane 5 gene (LAPTM5 is associated with spontaneous regression of neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Jun Inoue

    Full Text Available BACKGROUND: Neuroblastoma (NB is the most frequently occurring solid tumor in children, and shows heterogeneous clinical behavior. Favorable tumors, which are usually detected by mass screening based on increased levels of catecholamines in urine, regress spontaneously via programmed cell death (PCD or mature through differentiation into benign ganglioneuroma (GN. In contrast, advanced-type NB tumors often grow aggressively, despite intensive chemotherapy. Understanding the molecular mechanisms of PCD during spontaneous regression in favorable NB tumors, as well as identifying genes with a pro-death role, is a matter of urgency for developing novel approaches to the treatment of advanced-type NB tumors. PRINCIPAL FINDINGS: We found that the expression of lysosomal associated protein multispanning transmembrane 5 (LAPTM5 was usually down-regulated due to DNA methylation in an NB cell-specific manner, but up-regulated in degenerating NB cells within locally regressing areas of favorable tumors detected by mass-screening. Experiments in vitro showed that not only a restoration of its expression but also the accumulation of LAPTM5 protein, was required to induce non-apoptotic cell death with autophagic vacuoles and lysosomal destabilization with lysosomal-membrane permeabilization (LMP in a caspase-independent manner. While autophagy is a membrane-trafficking pathway to degrade the proteins in lysosomes, the LAPTM5-mediated lysosomal destabilization with LMP leads to an interruption of autophagic flux, resulting in the accumulation of immature autophagic vacuoles, p62/SQSTM1, and ubiqitinated proteins as substrates of autophagic degradation. In addition, ubiquitin-positive inclusion bodies appeared in degenerating NB cells. CONCLUSIONS: We propose a novel molecular mechanism for PCD with the accumulation of autophagic vacuoles due to LAPTM5-mediated lysosomal destabilization. LAPTM5-induced cell death is lysosomal cell death with impaired autophagy

  3. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation.

    Science.gov (United States)

    Li, Xinran; Rydzewski, Nicholas; Hider, Ahmad; Zhang, Xiaoli; Yang, Junsheng; Wang, Wuyang; Gao, Qiong; Cheng, Xiping; Xu, Haoxing

    2016-04-01

    To mediate the degradation of biomacromolecules, lysosomes must traffic towards cargo-carrying vesicles for subsequent membrane fusion or fission. Mutations of the lysosomal Ca(2+) channel TRPML1 cause lysosomal storage disease (LSD) characterized by disordered lysosomal membrane trafficking in cells. Here we show that TRPML1 activity is required to promote Ca(2+)-dependent centripetal movement of lysosomes towards the perinuclear region (where autophagosomes accumulate) following autophagy induction. ALG-2, an EF-hand-containing protein, serves as a lysosomal Ca(2+) sensor that associates physically with the minus-end-directed dynactin-dynein motor, while PtdIns(3,5)P(2), a lysosome-localized phosphoinositide, acts upstream of TRPML1. Furthermore, the PtdIns(3,5)P(2)-TRPML1-ALG-2-dynein signalling is necessary for lysosome tubulation and reformation. In contrast, the TRPML1 pathway is not required for the perinuclear accumulation of lysosomes observed in many LSDs, which is instead likely to be caused by secondary cholesterol accumulation that constitutively activates Rab7-RILP-dependent retrograde transport. Ca(2+) release from lysosomes thus provides an on-demand mechanism regulating lysosome motility, positioning and tubulation.

  4. BK Channels Alleviate Lysosomal Storage Diseases by Providing Positive Feedback Regulation of Lysosomal Ca2+ Release.

    Science.gov (United States)

    Cao, Qi; Zhong, Xi Zoë; Zou, Yuanjie; Zhang, Zhu; Toro, Ligia; Dong, Xian-Ping

    2015-05-26

    Promoting lysosomal trafficking represents a promising therapeutic approach for lysosome storage diseases. Efficient Ca(2+) mobilization from lysosomes is important for lysosomal trafficking. Ca(2+) release from lysosomes could generate a negative potential in the lumen to disturb subsequent Ca(2+) release in the absence of counter ion flux. Here we report that lysosomes express big-conductance Ca(2+)-activated potassium (BK) channels that form physical and functional coupling with the lysosomal Ca(2+) release channel, TRPML1. Ca(2+) release via TRPML1 causes BK activation, which in turn facilitates further lysosomal Ca(2+) release and membrane trafficking. Importantly, BK overexpression rescues the impaired TRPML1-mediated Ca(2+) release and abnormal lysosomal storage in cells from Niemann-Pick C1 patients. Therefore, we have identified a lysosomal K(+) channel that provides a positive feedback mechanism to facilitate TRPML1-mediated Ca(2+) release and membrane trafficking. Our findings suggest that upregulating BK may be a potential therapeutic strategy for certain lysosomal storage diseases and common neurodegenerative disorders.

  5. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells

    DEFF Research Database (Denmark)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library...... in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 si......), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide...

  6. ErbB2-associated changes in the lysosomal proteome

    DEFF Research Database (Denmark)

    Nylandsted, Jesper; Becker, Andrea C; Bunkenborg, Jakob

    2011-01-01

    Late endosomes and lysosomes (hereafter referred to as lysosomes) play an essential role in the turnover of cellular macromolecules and organelles. Their biochemical characterization has so far depended on purification methods based on either density gradient centrifugations or magnetic...... purification of iron-loaded organelles. Owing to dramatic changes in lysosomal density and stability associated with lysosomal diseases and cancer, these methods are not optimal for the comparison of normal and pathological lysosomes. Here, we introduce an efficient method for the purification of intact...... lysosomes by magnetic immunoprecipitation with antibodies against the vacuolar-type H(+) -ATPase. Quantitative MS-based proteomics analysis of the obtained lysosomal membranes identified 60 proteins, most of which have previously been associated with the lysosomal compartment. Interestingly, the lysosomal...

  7. Geometrical Destabilization of Inflation

    Science.gov (United States)

    Renaux-Petel, Sébastien; Turzyński, Krzysztof

    2016-09-01

    We show the existence of a general mechanism by which heavy scalar fields can be destabilized during inflation, relying on the fact that the curvature of the field space manifold can dominate the stabilizing force from the potential and destabilize inflationary trajectories. We describe a simple and rather universal setup in which higher-order operators suppressed by a large energy scale trigger this instability. This phenomenon can prematurely end inflation, thereby leading to important observational consequences and sometimes excluding models that would otherwise perfectly fit the data. More generally, it modifies the interpretation of cosmological constraints in terms of fundamental physics. We also explain how the geometrical destabilization can lead to powerful selection criteria on the field space curvature of inflationary models.

  8. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release.

    Science.gov (United States)

    Shen, Dongbiao; Wang, Xiang; Li, Xinran; Zhang, Xiaoli; Yao, Zepeng; Dibble, Shannon; Dong, Xian-ping; Yu, Ting; Lieberman, Andrew P; Showalter, Hollis D; Xu, Haoxing

    2012-03-13

    Lysosomal lipid accumulation, defects in membrane trafficking and altered Ca(2+) homoeostasis are common features in many lysosomal storage diseases. Mucolipin transient receptor potential channel 1 (TRPML1) is the principle Ca(2+) channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca(2+) release, measured using a genetically encoded Ca(2+) indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells. Sphingomyelins (SMs) are plasma membrane lipids that undergo sphingomyelinase (SMase)-mediated hydrolysis in the lysosomes of normal cells, but accumulate distinctively in lysosomes of NP cells. Patch-clamp analyses revealed that TRPML1 channel activity is inhibited by SMs, but potentiated by SMases. In NP-type C cells, increasing TRPML1's expression or activity was sufficient to correct the trafficking defects and reduce lysosome storage and cholesterol accumulation. We propose that abnormal accumulation of luminal lipids causes secondary lysosome storage by blocking TRPML1- and Ca(2+)-dependent lysosomal trafficking.

  9. TRPML: transporters of metals in lysosomes essential for cell survival?

    Science.gov (United States)

    Kiselyov, Kirill; Colletti, Grace A; Terwilliger, Austen; Ketchum, Kathleen; Lyons, Christopher W P; Quinn, James; Muallem, Shmuel

    2011-09-01

    Key aspects of lysosomal function are affected by the ionic content of the lysosomal lumen and, therefore, by the ion permeability in the lysosomal membrane. Such functions include regulation of lysosomal acidification, a critical process in delivery and activation of the lysosomal enzymes, release of metals from lysosomes into the cytoplasm and the Ca(2+)-dependent component of membrane fusion events in the endocytic pathway. While the basic mechanisms of lysosomal acidification have been largely defined, the lysosomal metal transport system is not well understood. TRPML1 is a lysosomal ion channel whose malfunction is implicated in the lysosomal storage disease Mucolipidosis Type IV. Recent evidence suggests that TRPML1 is involved in Fe(2+), Ca(2+) and Zn(2+) transport across the lysosomal membrane, ascribing novel physiological roles to this ion channel, and perhaps to its relatives TRPML2 and TRPML3 and illuminating poorly understood aspects of lysosomal function. Further, alterations in metal transport by the TRPMLs due to mutations or environmental factors may contribute to their role in the disease phenotype and cell death.

  10. Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization.

    Science.gov (United States)

    Stefani, Christian; Al-Eisawi, Zaynab; Jansson, Patric J; Kalinowski, Danuta S; Richardson, Des R

    2015-11-01

    Bis(thiosemicarbazones) and their copper (Cu) complexes possess unique anti-neoplastic properties. However, their mechanism of action remains unclear. We examined the structure-activity relationships of twelve bis(thiosemicarbazones) to elucidate factors regarding their anti-cancer efficacy. Importantly, the alkyl substitutions at the diimine position of the ligand backbone resulted in two distinct groups, namely, unsubstituted/monosubstituted and disubstituted bis(thiosemicarbazones). This alkyl substitution pattern governed their: (1) Cu(II/I) redox potentials; (2) ability to induce cellular (64)Cu release; (3) lipophilicity; and (4) anti-proliferative activity. The potent anti-cancer Cu complex of the unsubstituted bis(thiosemicarbazone) analog, glyoxal bis(4-methyl-3-thiosemicarbazone) (GTSM), generated intracellular reactive oxygen species (ROS), which was attenuated by Cu sequestration by a non-toxic Cu chelator, tetrathiomolybdate, and the anti-oxidant, N-acetyl-l-cysteine. Fluorescence microscopy suggested that the anti-cancer activity of Cu(GTSM) was due, in part, to lysosomal membrane permeabilization (LMP). For the first time, this investigation highlights the role of ROS and LMP in the anti-cancer activity of bis(thiosemicarbazones).

  11. The nucleotide sequence of a CpG island demonstrates the presence of the first exon of the gene encoding the human lysosomal membrane protein lamp2 and assigns the gene to Xq24.

    Science.gov (United States)

    Manoni, M; Tribioli, C; Lazzari, B; DeBellis, G; Patrosso, C; Pergolizzi, R; Pellegrini, M; Maestrini, E; Rivella, S; Vezzoni, P

    1991-03-01

    An EagI-EcoRI clone of human genomic DNA, p2-7, mapped to Xq24 has been sequenced. This analysis has confirmed the presence of a CpG island and has identified the first exon of the human LAMP2 gene, encoding a glycoprotein of the lysosomal membrane. Since the p2-7 clone corresponds to single-copy DNA, we can assign the human LAMP2 gene to Xq24.

  12. The Role of Oxidized Cholesterol in Diabetes-Induced Lysosomal Dysfunction in the Brain.

    Science.gov (United States)

    Sims-Robinson, Catrina; Bakeman, Anna; Rosko, Andrew; Glasser, Rebecca; Feldman, Eva L

    2016-05-01

    Abnormalities in lysosomal function have been reported in diabetes, aging, and age-related degenerative diseases. These lysosomal abnormalities are an early manifestation of neurodegenerative diseases and often precede the onset of clinical symptoms such as learning and memory deficits; however, the mechanism underlying lysosomal dysfunction is not known. In the current study, we investigated the mechanism underlying lysosomal dysfunction in the cortex and hippocampi, key structures involved in learning and memory, of a type 2 diabetes (T2D) mouse model, the leptin receptor deficient db/db mouse. We demonstrate for the first time that diabetes leads to destabilization of lysosomes as well as alterations in the protein expression, activity, and/or trafficking of two lysosomal enzymes, hexosaminidase A and cathepsin D, in the hippocampus of db/db mice. Pioglitazone, a thiazolidinedione (TZD) commonly used in the treatment of diabetes due to its ability to improve insulin sensitivity and reverse hyperglycemia, was ineffective in reversing the diabetes-induced changes on lysosomal enzymes. Our previous work revealed that pioglitazone does not reverse hypercholesterolemia; thus, we investigated whether cholesterol plays a role in diabetes-induced lysosomal changes. In vitro, cholesterol promoted the destabilization of lysosomes, suggesting that lysosomal-related changes associated with diabetes are due to elevated levels of cholesterol. Since lysosome dysfunction precedes neurodegeneration, cognitive deficits, and Alzheimer's disease neuropathology, our results may provide a potential mechanism that links diabetes with complications of the central nervous system.

  13. BAX channel activity mediates lysosomal disruption linked to Parkinson disease.

    Science.gov (United States)

    Bové, Jordi; Martínez-Vicente, Marta; Dehay, Benjamin; Perier, Celine; Recasens, Ariadna; Bombrun, Agnes; Antonsson, Bruno; Vila, Miquel

    2014-05-01

    Lysosomal disruption is increasingly regarded as a major pathogenic event in Parkinson disease (PD). A reduced number of intraneuronal lysosomes, decreased levels of lysosomal-associated proteins and accumulation of undegraded autophagosomes (AP) are observed in PD-derived samples, including fibroblasts, induced pluripotent stem cell-derived dopaminergic neurons, and post-mortem brain tissue. Mechanistic studies in toxic and genetic rodent PD models attribute PD-related lysosomal breakdown to abnormal lysosomal membrane permeabilization (LMP). However, the molecular mechanisms underlying PD-linked LMP and subsequent lysosomal defects remain virtually unknown, thereby precluding their potential therapeutic targeting. Here we show that the pro-apoptotic protein BAX (BCL2-associated X protein), which permeabilizes mitochondrial membranes in PD models and is activated in PD patients, translocates and internalizes into lysosomal membranes early following treatment with the parkinsonian neurotoxin MPTP, both in vitro and in vivo, within a time-frame correlating with LMP, lysosomal disruption, and autophagosome accumulation and preceding mitochondrial permeabilization and dopaminergic neurodegeneration. Supporting a direct permeabilizing effect of BAX on lysosomal membranes, recombinant BAX is able to induce LMP in purified mouse brain lysosomes and the latter can be prevented by pharmacological blockade of BAX channel activity. Furthermore, pharmacological BAX channel inhibition is able to prevent LMP, restore lysosomal levels, reverse AP accumulation, and attenuate mitochondrial permeabilization and overall nigrostriatal degeneration caused by MPTP, both in vitro and in vivo. Overall, our results reveal that PD-linked lysosomal impairment relies on BAX-induced LMP, and point to small molecules able to block BAX channel activity as potentially beneficial to attenuate both lysosomal defects and neurodegeneration occurring in PD.

  14. DNA encoding an HIV-1 Gag/human lysosome-associated membrane protein-1 chimera elicits a broad cellular and humoral immune response in Rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Priya Chikhlikar

    Full Text Available Previous studies of HIV-1 p55Gag immunization of mice have demonstrated the usefulness of targeting antigens to the cellular compartment containing the major histocompatibility complex type II (MHC II complex molecules by use of a DNA antigen formulation encoding Gag as a chimera with the mouse lysosome-associated membrane protein (mLAMP/gag. In the present study, we have analyzed the magnitude and breadth of Gag-specific T-lymphocyte and antibody responses elicited in Rhesus macaques after immunization with DNA encoding a human LAMP/gag (hLAMP/gag chimera. ELISPOT analyses indicated that the average Gag-specific IFN-gamma response elicited by the hLAMP/gag chimera was detectable after only two or three naked DNA immunizations in all five immunized macaques and reached an average of 1000 spot-forming cells (SFC/10(6 PBMCs. High IFN-gamma ELISPOT responses were detected in CD8(+-depleted cells, indicating that CD4(+ T-cells play a major role in these responses. The T-cell responses of four of the macaques were also tested by use of ELISPOT to 12 overlapping 15-amino acids (aa peptide pools containing ten peptides each, encompassing the complete Gag protein sequence. The two Mamu 08 immunized macaques responded to eight and twelve of the pools, the Mamu B01 to six, and the other macaque to five pools indicating that the hLAMP/gag DNA antigen formulation elicits a broad T-cell response against Gag. Additionally, there was a strong HIV-1-specific IgG response. The IgG antibody titers increased after each DNA injection, indicating a strong amnestic B-cell response, and were highly elevated in all the macaques after three immunizations. Moreover, the serum of each macaque recognized 13 of the 49 peptides of a 20-aa peptide library covering the complete Gag amino acid sequence. In addition, HIV-1-specific IgA antibodies were present in the plasma and external secretions, including nasal washes. These data support the findings of increased

  15. Methods for monitoring Ca(2+) and ion channels in the lysosome.

    Science.gov (United States)

    Zhong, Xi Zoë; Yang, Yiming; Sun, Xue; Dong, Xian-Ping

    2016-12-09

    Lysosomes and lysosome-related organelles are emerging as intracellular Ca(2+) stores and play important roles in a variety of membrane trafficking processes, including endocytosis, exocytosis, phagocytosis and autophagy. Impairment of lysosomal Ca(2+) homeostasis and membrane trafficking has been implicated in many human diseases such as lysosomal storage diseases (LSDs), neurodegeneration, myopathy and cancer. Lysosomal membrane proteins, in particular ion channels, are crucial for lysosomal Ca(2+) signaling. Compared with ion channels in the plasma membrane, lysosomal ion channels and their roles in lysosomal Ca(2+) signaling are less understood, largely due to their intracellular localization and the lack of feasible functional assays directly applied to the native environment. Recent advances in biomedical methodology have made it possible to directly investigate ion channels in the lysosomal membrane. In this review, we provide a summary of the newly developed methods for monitoring lysosomal Ca(2+) and ion channels, as well as the recent discovery of lysosomal ion channels and their significances in intracellular Ca(2+) signaling. These new techniques will expand our research scope and our understanding of the nature of lysosomes and lysosome-related diseases.

  16. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yusuke; Nada, Shigeyuki; Mori, Shunsuke; Soma-Nagae, Taeko; Oneyama, Chitose [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Masato, E-mail: okadam@biken.osaka-u.ac.jp [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. Black-Right-Pointing-Pointer We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. Black-Right-Pointing-Pointer The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. Black-Right-Pointing-Pointer Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. Black-Right-Pointing-Pointer The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome-lysosome fusion, which is required for processing of various macromolecules.

  17. TRPML and lysosomal function.

    Science.gov (United States)

    Zeevi, David A; Frumkin, Ayala; Bach, Gideon

    2007-08-01

    Mucolipin 1 (MLN1), also known as TRPML1, is a member of the mucolipin family. The mucolipins are the only lysosomal proteins within the TRP superfamily. Mutations in the gene coding for TRPML1 result in a lysosomal storage disorder (LSD). This review summarizes the current knowledge related to this protein and the rest of the mucolipin family.

  18. Cell biology in China: Focusing on the lysosome.

    Science.gov (United States)

    Yang, Chonglin; Wang, Xiaochen

    2017-06-01

    The view that lysosomes are merely the recycling bins of the cell has changed greatly during recent years. Lysosomes are now known to play a central role in signal transduction, cellular adaptation, plasma membrane repair, immune responses and many other fundamental cellular processes. In conjunction with the seminal discoveries made by international colleagues, many important questions regarding lysosomes are being addressed by Chinese scientists. In this review, we briefly summarize recent exciting findings in China on lysosomal signaling, biogenesis, integrity and physiological functions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors

    Science.gov (United States)

    Sukhai, Mahadeo A.; Prabha, Swayam; Hurren, Rose; Rutledge, Angela C.; Lee, Anna Y.; Sriskanthadevan, Shrivani; Sun, Hong; Wang, Xiaoming; Skrtic, Marko; Seneviratne, Ayesh; Cusimano, Maria; Jhas, Bozhena; Gronda, Marcela; MacLean, Neil; Cho, Eunice E.; Spagnuolo, Paul A.; Sharmeen, Sumaiya; Gebbia, Marinella; Urbanus, Malene; Eppert, Kolja; Dissanayake, Dilan; Jonet, Alexia; Dassonville-Klimpt, Alexandra; Li, Xiaoming; Datti, Alessandro; Ohashi, Pamela S.; Wrana, Jeff; Rogers, Ian; Sonnet, Pascal; Ellis, William Y.; Corey, Seth J.; Eaves, Connie; Minden, Mark D.; Wang, Jean C.Y.; Dick, John E.; Nislow, Corey; Giaever, Guri; Schimmer, Aaron D.

    2012-01-01

    Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML. PMID:23202731

  20. Regulation of lysosomal ion homeostasis by channels and transporters.

    Science.gov (United States)

    Xiong, Jian; Zhu, Michael X

    2016-08-01

    Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H(+), Ca(2+), Na(+), K(+), and Cl(-) across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease.

  1. Secondary Lysosomal Changes in Liver in Preclinical Drug Development

    Institute of Scientific and Technical Information of China (English)

    Vincent P. Meador; D. V. M.; Ph. D.; Diplomate ACVP

    2005-01-01

    @@ Lysosomes are intracytoplasmic membrane-bound organelles that function to degrade intracellular substances by enzymatic digestion. They occur normally in all cells, being especially prominent in phagocytic cells of the reticuloendothelial system.

  2. Lysosome Biogenesis and Autophagy

    NARCIS (Netherlands)

    Reggiori, Fulvio; Klumperman, Judith|info:eu-repo/dai/nl/075097273

    2016-01-01

    Lysosomes degrade biological components acquired by endocytosis, the major cellular pathway for internalization of extracellular material, and macroautophagy. This chapter presents an overview of these two major degradative intracellular pathways, and highlights the emerging cross talks between

  3. Endosome-lysosomes and neurodegeneration.

    Science.gov (United States)

    Mayer, R J; Tipler, C; Laszlo, L; Arnold, J; Lowe, J; Landon, M

    1994-01-01

    A number of the major human and animal neurodegenerative diseases, such as Alzheimer's disease and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins. Although our knowledge concerning these diseases is increasing, they remain largely untreatable. Recently, attention has focussed on the mechanisms of production of different types of amyloid and the likely involvement within cells of acid compartments called endosome-lysosomes. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials. These subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Common features of the disease processes give new direction to therapeutic intervention.

  4. A lysosome-centered view of nutrient homeostasis.

    Science.gov (United States)

    Mony, Vinod K; Benjamin, Shawna; O'Rourke, Eyleen J

    2016-01-01

    Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks, cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their substrates by fusing with endosomes or autophagosomes, or through specialized translocation mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their substrates using up to 60 different soluble hydrolases and release their products either to the cytosol through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a signaling hub that can integrate and relay external and internal nutritional information to promote cellular and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to the past and future discoveries of how the lysosome simultaneously executes and controls cellular homeostasis.

  5. Mitochondrial Dysfunction in Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Mario de la Mata

    2016-10-01

    Full Text Available Lysosomal storage diseases (LSDs describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS, where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm, diminished ATP production and increased generation of reactive oxygen species (ROS. Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD, the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase. Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer and glucosylsphingosine (GlcSph in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs.

  6. Moduli destabilization via gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong-il [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Pedro, Francisco G. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Yeom, Dong-han [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics

    2013-06-15

    We examine the interplay between gravitational collapse and moduli stability in the context of black hole formation. We perform numerical simulations of the collapse using the double null formalism and show that the very dense regions one expects to find in the process of black hole formation are able to destabilize the volume modulus. We establish that the effects of the destabilization will be visible to an observer at infinity, opening up a window to a region in spacetime where standard model's couplings and masses can differ significantly from their background values.

  7. Reactivation of Lysosomal Ca2+ Efflux Rescues Abnormal Lysosomal Storage in FIG4-Deficient Cells.

    Science.gov (United States)

    Zou, Jianlong; Hu, Bo; Arpag, Sezgi; Yan, Qing; Hamilton, Audra; Zeng, Yuan-Shan; Vanoye, Carlos G; Li, Jun

    2015-04-29

    Loss of function of FIG4 leads to Charcot-Marie-Tooth disease Type 4J, Yunis-Varon syndrome, or an epilepsy syndrome. FIG4 is a phosphatase with its catalytic specificity toward 5'-phosphate of phosphatidylinositol-3,5-diphosphate (PI3,5P2). However, the loss of FIG4 decreases PI3,5P2 levels likely due to FIG4's dominant effect in scaffolding a PI3,5P2 synthetic protein complex. At the cellular level, all these diseases share similar pathology with abnormal lysosomal storage and neuronal degeneration. Mice with no FIG4 expression (Fig4(-/-)) recapitulate the pathology in humans with FIG4 deficiency. Using a flow cytometry technique that rapidly quantifies lysosome sizes, we detected an impaired lysosomal fission, but normal fusion, in Fig4(-/-) cells. The fission defect was associated with a robust increase of intralysosomal Ca(2+) in Fig4(-/-) cells, including FIG4-deficient neurons. This finding was consistent with a suppressed Ca(2+) efflux of lysosomes because the endogenous ligand of lysosomal Ca(2+) channel TRPML1 is PI3,5P2 that is deficient in Fig4(-/-) cells. We reactivated the TRPML1 channels by application of TRPML1 synthetic ligand, ML-SA1. This treatment reduced the intralysosomal Ca(2+) level and rescued abnormal lysosomal storage in Fig4(-/-) culture cells and ex vivo DRGs. Furthermore, we found that the suppressed Ca(2+) efflux in Fig4(-/-) culture cells and Fig4(-/-) mouse brains profoundly downregulated the expression/activity of dynamin-1, a GTPase known to scissor organelle membranes during fission. This downregulation made dynamin-1 unavailable for lysosomal fission. Together, our study revealed a novel mechanism explaining abnormal lysosomal storage in FIG4 deficiency. Synthetic ligands of the TRPML1 may become a potential therapy against diseases with FIG4 deficiency.

  8. Lysosomes serve as a platform for hepatitis A virus particle maturation and nonlytic release.

    Science.gov (United States)

    Seggewiß, Nicole; Paulmann, Dajana; Dotzauer, Andreas

    2016-01-01

    Early studies on hepatitis A virus (HAV) in cell culture demonstrated the inclusion of several viral particles in an intracellular lipid-bilayer membrane. However, the origin of these virus-associated membranes and the mechanism for the non-lytic release of HAV into bile are still unknown. Analyzing the association of this virus with cell organelles, we found that newly synthesized HAV particles accumulate in lysosomal organelles and that lysosomal enzymes are involved in the maturation cleavage of the virion. Furthermore, by inhibiting the processes of fusion of lysosomes with the plasma membrane, we found that the nonlytic release of HAV from infected cells occurs via lysosome-related organelles.

  9. Regulation of HIV-Gag expression and targeting to the endolysosomal/secretory pathway by the luminal domain of lysosomal-associated membrane protein (LAMP-1 enhance Gag-specific immune response.

    Directory of Open Access Journals (Sweden)

    Rodrigo Maciel da Costa Godinho

    Full Text Available We have previously demonstrated that a DNA vaccine encoding HIV-p55gag in association with the lysosomal associated membrane protein-1 (LAMP-1 elicited a greater Gag-specific immune response, in comparison to a DNA encoding the native gag. In vitro studies have also demonstrated that LAMP/Gag was highly expressed and was present in MHCII containing compartments in transfected cells. In this study, the mechanisms involved in these processes and the relative contributions of the increased expression and altered traffic for the enhanced immune response were addressed. Cells transfected with plasmid DNA constructs containing p55gag attached to truncated sequences of LAMP-1 showed that the increased expression of gag mRNA required p55gag in frame with at least 741 bp of the LAMP-1 luminal domain. LAMP luminal domain also showed to be essential for Gag traffic through lysosomes and, in this case, the whole sequence was required. Further analysis of the trafficking pathway of the intact LAMP/Gag chimera demonstrated that it was secreted, at least in part, associated with exosome-like vesicles. Immunization of mice with LAMP/gag chimeric plasmids demonstrated that high expression level alone can induce a substantial transient antibody response, but targeting of the antigen to the endolysosomal/secretory pathways was required for establishment of cellular and memory response. The intact LAMP/gag construct induced polyfunctional CD4+ T cell response, which presence at the time of immunization was required for CD8+ T cell priming. LAMP-mediated targeting to endolysosomal/secretory pathway is an important new mechanistic element in LAMP-mediated enhanced immunity with applications to the development of novel anti-HIV vaccines and to general vaccinology field.

  10. Regulation of HIV-Gag expression and targeting to the endolysosomal/secretory pathway by the luminal domain of lysosomal-associated membrane protein (LAMP-1) enhance Gag-specific immune response.

    Science.gov (United States)

    Godinho, Rodrigo Maciel da Costa; Matassoli, Flavio Lemos; Lucas, Carolina Gonçalves de Oliveira; Rigato, Paula Ordonhez; Gonçalves, Jorge Luiz Santos; Sato, Maria Notomi; Maciel, Milton; Peçanha, Ligia Maria Torres; August, J Thomas; Marques, Ernesto Torres de Azevedo; de Arruda, Luciana Barros

    2014-01-01

    We have previously demonstrated that a DNA vaccine encoding HIV-p55gag in association with the lysosomal associated membrane protein-1 (LAMP-1) elicited a greater Gag-specific immune response, in comparison to a DNA encoding the native gag. In vitro studies have also demonstrated that LAMP/Gag was highly expressed and was present in MHCII containing compartments in transfected cells. In this study, the mechanisms involved in these processes and the relative contributions of the increased expression and altered traffic for the enhanced immune response were addressed. Cells transfected with plasmid DNA constructs containing p55gag attached to truncated sequences of LAMP-1 showed that the increased expression of gag mRNA required p55gag in frame with at least 741 bp of the LAMP-1 luminal domain. LAMP luminal domain also showed to be essential for Gag traffic through lysosomes and, in this case, the whole sequence was required. Further analysis of the trafficking pathway of the intact LAMP/Gag chimera demonstrated that it was secreted, at least in part, associated with exosome-like vesicles. Immunization of mice with LAMP/gag chimeric plasmids demonstrated that high expression level alone can induce a substantial transient antibody response, but targeting of the antigen to the endolysosomal/secretory pathways was required for establishment of cellular and memory response. The intact LAMP/gag construct induced polyfunctional CD4+ T cell response, which presence at the time of immunization was required for CD8+ T cell priming. LAMP-mediated targeting to endolysosomal/secretory pathway is an important new mechanistic element in LAMP-mediated enhanced immunity with applications to the development of novel anti-HIV vaccines and to general vaccinology field.

  11. Regulation of HIV-Gag Expression and Targeting to the Endolysosomal/Secretory Pathway by the Luminal Domain of Lysosomal-Associated Membrane Protein (LAMP-1) Enhance Gag-Specific Immune Response

    Science.gov (United States)

    Lucas, Carolina Gonçalves de Oliveira; Rigato, Paula Ordonhez; Gonçalves, Jorge Luiz Santos; Sato, Maria Notomi; Maciel, Milton; Peçanha, Ligia Maria Torres; August, J. Thomas; de Azevedo Marques, Ernesto Torres; de Arruda, Luciana Barros

    2014-01-01

    We have previously demonstrated that a DNA vaccine encoding HIV-p55gag in association with the lysosomal associated membrane protein-1 (LAMP-1) elicited a greater Gag-specific immune response, in comparison to a DNA encoding the native gag. In vitro studies have also demonstrated that LAMP/Gag was highly expressed and was present in MHCII containing compartments in transfected cells. In this study, the mechanisms involved in these processes and the relative contributions of the increased expression and altered traffic for the enhanced immune response were addressed. Cells transfected with plasmid DNA constructs containing p55gag attached to truncated sequences of LAMP-1 showed that the increased expression of gag mRNA required p55gag in frame with at least 741 bp of the LAMP-1 luminal domain. LAMP luminal domain also showed to be essential for Gag traffic through lysosomes and, in this case, the whole sequence was required. Further analysis of the trafficking pathway of the intact LAMP/Gag chimera demonstrated that it was secreted, at least in part, associated with exosome-like vesicles. Immunization of mice with LAMP/gag chimeric plasmids demonstrated that high expression level alone can induce a substantial transient antibody response, but targeting of the antigen to the endolysosomal/secretory pathways was required for establishment of cellular and memory response. The intact LAMP/gag construct induced polyfunctional CD4+ T cell response, which presence at the time of immunization was required for CD8+ T cell priming. LAMP-mediated targeting to endolysosomal/secretory pathway is an important new mechanistic element in LAMP-mediated enhanced immunity with applications to the development of novel anti-HIV vaccines and to general vaccinology field. PMID:24932692

  12. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders.

    Science.gov (United States)

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J; Sims, Katherine B; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-04-17

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role.

  13. Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes.

    Directory of Open Access Journals (Sweden)

    Margrét H Ögmundsdóttir

    Full Text Available Mammalian Target of Rapamycin Complex 1 (mTORC1 is activated by growth factor-regulated phosphoinositide 3-kinase (PI3K/Akt/Rheb signalling and extracellular amino acids (AAs to promote growth and proliferation. These AAs induce translocation of mTOR to late endosomes and lysosomes (LELs, subsequent activation via mechanisms involving the presence of intralumenal AAs, and interaction between mTORC1 and a multiprotein assembly containing Rag GTPases and the heterotrimeric Ragulator complex. However, the mechanisms by which AAs control these different aspects of mTORC1 activation are not well understood. We have recently shown that intracellular Proton-assisted Amino acid Transporter 1 (PAT1/SLC36A1 is an essential mediator of AA-dependent mTORC1 activation. Here we demonstrate in Human Embryonic Kidney (HEK-293 cells that PAT1 is primarily located on LELs, physically interacts with the Rag GTPases and is required for normal AA-dependent mTOR relocalisation. We also use the powerful in vivo genetic methodologies available in Drosophila to investigate the regulation of the PAT1/Rag/Ragulator complex. We show that GFP-tagged PATs reside at both the cell surface and LELs in vivo, mirroring PAT1 distribution in several normal mammalian cell types. Elevated PI3K/Akt/Rheb signalling increases intracellular levels of PATs and synergistically enhances PAT-induced growth via a mechanism requiring endocytosis. In light of the recent identification of the vacuolar H(+-ATPase as another Rag-interacting component, we propose a model in which PATs function as part of an AA-sensing engine that drives mTORC1 activation from LEL compartments.

  14. Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes.

    Science.gov (United States)

    Ögmundsdóttir, Margrét H; Heublein, Sabine; Kazi, Shubana; Reynolds, Bruno; Visvalingam, Shivanthy M; Shaw, Michael K; Goberdhan, Deborah C I

    2012-01-01

    Mammalian Target of Rapamycin Complex 1 (mTORC1) is activated by growth factor-regulated phosphoinositide 3-kinase (PI3K)/Akt/Rheb signalling and extracellular amino acids (AAs) to promote growth and proliferation. These AAs induce translocation of mTOR to late endosomes and lysosomes (LELs), subsequent activation via mechanisms involving the presence of intralumenal AAs, and interaction between mTORC1 and a multiprotein assembly containing Rag GTPases and the heterotrimeric Ragulator complex. However, the mechanisms by which AAs control these different aspects of mTORC1 activation are not well understood. We have recently shown that intracellular Proton-assisted Amino acid Transporter 1 (PAT1)/SLC36A1 is an essential mediator of AA-dependent mTORC1 activation. Here we demonstrate in Human Embryonic Kidney (HEK-293) cells that PAT1 is primarily located on LELs, physically interacts with the Rag GTPases and is required for normal AA-dependent mTOR relocalisation. We also use the powerful in vivo genetic methodologies available in Drosophila to investigate the regulation of the PAT1/Rag/Ragulator complex. We show that GFP-tagged PATs reside at both the cell surface and LELs in vivo, mirroring PAT1 distribution in several normal mammalian cell types. Elevated PI3K/Akt/Rheb signalling increases intracellular levels of PATs and synergistically enhances PAT-induced growth via a mechanism requiring endocytosis. In light of the recent identification of the vacuolar H(+)-ATPase as another Rag-interacting component, we propose a model in which PATs function as part of an AA-sensing engine that drives mTORC1 activation from LEL compartments.

  15. Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View

    Directory of Open Access Journals (Sweden)

    Catherine Staudt

    2016-12-01

    Full Text Available Lysosomes clear macromolecules, maintain nutrient and cholesterol homeostasis, participate in tissue repair, and in many other cellular functions. To assume these tasks, lysosomes rely on their large arsenal of acid hydrolases, transmembrane proteins and membrane-associated proteins. It is therefore imperative that, post-synthesis, these proteins are specifically recognized as lysosomal components and are correctly sorted to this organelle through the endosomes. Lysosomal transmembrane proteins contain consensus motifs in their cytosolic regions (tyrosine- or dileucine-based that serve as sorting signals to the endosomes, whereas most lysosomal acid hydrolases acquire mannose 6-phosphate (Man-6-P moieties that mediate binding to two membrane receptors with endosomal sorting motifs in their cytosolic tails. These tyrosine- and dileucine-based motifs are tickets for boarding in clathrin-coated carriers that transport their cargo from the trans-Golgi network and plasma membrane to the endosomes. However, increasing evidence points to additional mechanisms participating in the biogenesis of lysosomes. In some cell types, for example, there are alternatives to the Man-6-P receptors for the transport of some acid hydrolases. In addition, several “non-consensus” sorting motifs have been identified, and atypical transport routes to endolysosomes have been brought to light. These “unconventional” or “less known” transport mechanisms are the focus of this review.

  16. Cholinergic Manipulations Bidirectionally Regulate Object Memory Destabilization

    Science.gov (United States)

    Stiver, Mikaela L.; Jacklin, Derek L.; Mitchnick, Krista A.; Vicic, Nevena; Carlin, Justine; O'Hara, Matthew; Winters, Boyer D.

    2015-01-01

    Consolidated memories can become destabilized and open to modification upon retrieval. Destabilization is most reliably prompted when novel information is present during memory reactivation. We hypothesized that the neurotransmitter acetylcholine (ACh) plays an important role in novelty-induced memory destabilization because of its established…

  17. Changes in the morphology and lability of lysosomal subpopulations in caerulein-induced acute pancreatitis.

    Science.gov (United States)

    Sarmiento, Nancy; Sánchez-Yagüe, Jesús; Juanes, Pedro P; Pérez, Nieves; Ferreira, Laura; García-Hernández, Violeta; Mangas, Arturo; Calvo, José J; Sánchez-Bernal, Carmen

    2011-02-01

    Lysosomes play an important role in acute pancreatitis (AP). Here we developed a method for the isolation of lysosome subpopulations from rat pancreas and assessed the stability of lysosomal membranes. AP was induced by four subcutaneous injections of 20 μg caerulein/kg body weight at hourly intervals. The animals were killed 9h after the first injection. Marker enzymes [N-acetyl-β-D-glucosaminidase (NAG), cathepsin B and succinate dehydrogenase (SDH)] were assayed in subcellular fractions from control pancreas and in pancreatitis. Lysosomal subpopulations were separated by Percoll density gradient centrifugation and observed by electron microscopy. NAG molecular forms were determined by DEAE-cellulose chromatography. AP was associated with: (i) increases in the specific activity of lysosomal enzymes in the soluble fraction, (ii) changes in the size and alterations in the morphology of the organelles from the lysosomal subpopulations, (iii) the appearance of large vacuoles in the primary and secondary lysosome subpopulations, (iv) the increase in the amount of the NAG form associated with the pancreatic lysosomal membrane as well as its release towards the soluble fraction. Lysosome subpopulations are separated by a combination of differential and Percoll density gradient centrifugations. Primary lysosome membrane stability decreases in AP. Copyright © 2010 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  18. Lipid Storage Disorders Block Lysosomal Trafficking By Inhibiting TRP Channel and Calcium Release

    OpenAIRE

    2012-01-01

    Lysosomal lipid accumulation, defects in membrane trafficking, and altered Ca2+ homeostasis are common features in many lysosomal storage diseases. Mucolipin TRP channel 1 (TRPML1) is the principle Ca2+ channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca2+ release, measured using a genetically-encoded Ca2+ indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells....

  19. The relationship between Cd-induced autophagy and lysosomal activation in WRL-68 cells.

    Science.gov (United States)

    Meng, Su-Fang; Mao, Wei-Ping; Wang, Fang; Liu, Xiao-Qian; Shao, Luan-Luan

    2015-11-01

    This study shows that Cd induces autophagy in the human's embryonic normal liver cell line (WRL-68). The expression of LC3B-II and the mature cathepsin L were analyzed by Western blotting. The autophagosomes and lysosomes were directly visualized by electron microscopy and confocal microscopy analysis in Cd-exposed WRL-68 cells. In this study, we first found that autophagy induced the activation of lysosomal function in WRL-68 cells. The lysosomal activation was markedly decreased when the cells were co-treated with 3-MA (an inhibitor of autophagy). Secondly, we provided the evidence that the activation of lysosomal function depended on autophagosome-lysosome fusion. The colocalization of lysosome-associated membrane protein-2 (LAMP2) and GFP-LC3 was significantly reduced, when they were treated with thapsigargin (an inhibitor of autophagosome-lysosome fusion). We demonstrated that deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, which suggests that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Thirdly, we provided evidence that the activation of lysosomal function was associated with lysosomal acid. We investigated the relationship between autophagosome-lysosome fusion and pH in acidic compartments by visualizing fusion process in WRL-68 cells. This suggests that increasing pH in acidic compartments in WRL-68 cells inhibits the autophagosome-lysosome fusion. Finally, we found that the activation of lysosomal function was associated with Ca(2+) stores and the intracellular Ca(2+) channels or pumps were possibly pH-dependent.

  20. The lysosome and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Lisha Zhang; Rui Sheng; Zhenghong Qin

    2009-01-01

    It has long been believed that the lysosome is an important digestive organelle. There is increasing evidence that the lysosome is also involved in pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Abnormal protein degradation and deposition induced by lysosoreal dysfunction may be the primary contributor to age-related neurodegeneration. In this review, the possible relationship between lysosome and various neurodegenerative diseases is described.

  1. Syntaxin 7 and VAMP-7 are soluble N-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages.

    Science.gov (United States)

    Ward, D M; Pevsner, J; Scullion, M A; Vaughn, M; Kaplan, J

    2000-07-01

    Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome-lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome-lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome-lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome-lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages.

  2. A TRP Channel in the Lysosome Regulates Large Particle Phagocytosis via Focal Exocytosis

    OpenAIRE

    2013-01-01

    Phagocytosis of large extracellular particles such as apoptotic bodies requires delivery of the intracellular endosomal and lysosomal membranes to form plasmalemmal pseudopods. Here we identified Mucolipin TRP channel 1 (TRPML1) as the key lysosomal Ca2+ channel regulating focal exocytosis and phagosome biogenesis. Both particle ingestion and lysosomal exocytosis are inhibited by synthetic TRPML1 blockers, and are defective in macrophages isolated from TRPML1 knockout mice. Furthermore, TRPML...

  3. Cancer-associated lysosomal changes

    DEFF Research Database (Denmark)

    Kallunki, T; Olsen, O D; Jaattela, Marja

    2013-01-01

    Rapidly dividing and invasive cancer cells are strongly dependent on effective lysosomal function. Accordingly, transformation and cancer progression are characterized by dramatic changes in lysosomal volume, composition and cellular distribution. Depending on one's point of view, the cancer-asso......:10.1038/onc.2012.292....

  4. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis.

    Science.gov (United States)

    Samie, Mohammad; Wang, Xiang; Zhang, Xiaoli; Goschka, Andrew; Li, Xinran; Cheng, Xiping; Gregg, Evan; Azar, Marlene; Zhuo, Yue; Garrity, Abigail G; Gao, Qiong; Slaugenhaupt, Susan; Pickel, Jim; Zolov, Sergey N; Weisman, Lois S; Lenk, Guy M; Titus, Steve; Bryant-Genevier, Marthe; Southall, Noel; Juan, Marugan; Ferrer, Marc; Xu, Haoxing

    2013-09-16

    Phagocytosis of large extracellular particles such as apoptotic bodies requires delivery of the intracellular endosomal and lysosomal membranes to form plasmalemmal pseudopods. Here, we identified mucolipin TRP channel 1 (TRPML1) as the key lysosomal Ca2+ channel regulating focal exocytosis and phagosome biogenesis. Both particle ingestion and lysosomal exocytosis are inhibited by synthetic TRPML1 blockers and are defective in macrophages isolated from TRPML1 knockout mice. Furthermore, TRPML1 overexpression and TRPML1 agonists facilitate both lysosomal exocytosis and particle uptake. Using time-lapse confocal imaging and direct patch clamping of phagosomal membranes, we found that particle binding induces lysosomal PI(3,5)P2 elevation to trigger TRPML1-mediated lysosomal Ca2+ release specifically at the site of uptake, rapidly delivering TRPML1-resident lysosomal membranes to nascent phagosomes via lysosomal exocytosis. Thus phagocytic ingestion of large particles activates a phosphoinositide- and Ca2+-dependent exocytosis pathway to provide membranes necessary for pseudopod extension, leading to clearance of senescent and apoptotic cells in vivo.

  5. Expression Pattern of Lysosomal Protective Protein/Cathepsin A: Implications for the analysis of hnman galactosialidosis

    NARCIS (Netherlands)

    R.J. Rottier (Robbert)

    1998-01-01

    textabstractThe lysosome represents a well characterized, membrane-contained intracellular digestive system. Iu this important organelle a battery of lysosomal hydro lases and accessory proteins work in concert on the step-wise conversion of macromolecular substrates into small biological building b

  6. Vamp-7 Mediates Vesicular Transport from Endosomes to Lysosomes

    Science.gov (United States)

    Advani, Raj J.; Yang, Bin; Prekeris, Rytis; Lee, Kelly C.; Klumperman, Judith; Scheller, Richard H.

    1999-01-01

    A more complete picture of the molecules that are critical for the organization of membrane compartments is beginning to emerge through the characterization of proteins in the vesicle-associated membrane protein (also called synaptobrevin) family of membrane trafficking proteins. To better understand the mechanisms of membrane trafficking within the endocytic pathway, we generated a series of monoclonal and polyclonal antibodies against the cytoplasmic domain of vesicle-associated membrane protein 7 (VAMP-7). The antibodies recognize a 25-kD membrane-associated protein in multiple tissues and cell lines. Immunohistochemical analysis reveals colocalization with a marker of late endosomes and lysosomes, lysosome-associated membrane protein 1 (LAMP-1), but not with other membrane markers, including p115 and transferrin receptor. Treatment with nocodozole or brefeldin A does not disrupt the colocalization of VAMP-7 and LAMP-1. Immunoelectron microscopy analysis shows that VAMP-7 is most concentrated in the trans-Golgi network region of the cell as well as late endosomes and transport vesicles that do not contain the mannose-6 phosphate receptor. In streptolysin- O–permeabilized cells, antibodies against VAMP-7 inhibit the breakdown of epidermal growth factor but not the recycling of transferrin. These data are consistent with a role for VAMP-7 in the vesicular transport of proteins from the early endosome to the lysosome. PMID:10459012

  7. Lysosomal trafficking functions of mucolipin-1 in murine macrophages

    Directory of Open Access Journals (Sweden)

    Dang Hope

    2007-12-01

    Full Text Available Abstract Background Mucolipidosis Type IV is currently characterized as a lysosomal storage disorder with defects that include corneal clouding, achlorhydria and psychomotor retardation. MCOLN1, the gene responsible for this disease, encodes the protein mucolipin-1 that belongs to the "Transient Receptor Potential" family of proteins and has been shown to function as a non-selective cation channel whose activity is modulated by pH. Two cell biological defects that have been described in MLIV fibroblasts are a hyperacidification of lysosomes and a delay in the exit of lipids from lysosomes. Results We show that mucolipin-1 localizes to lysosomal compartments in RAW264.7 mouse macrophages that show subcompartmental accumulations of endocytosed molecules. Using stable RNAi clones, we show that mucolipin-1 is required for the exit of lipids from these compartments, for the transport of endocytosed molecules to terminal lysosomes, and for the transport of the Major Histocompatibility Complex II to the plasma membrane. Conclusion Mucolipin-1 functions in the efficient exit of molecules, destined for various cellular organelles, from lysosomal compartments.

  8. Presence of a lysosomal enzyme, arylsulfatase-A, in the prelysosome-endosome compartments of human cultured fibroblasts.

    Science.gov (United States)

    Kelly, B M; Yu, C Z; Chang, P L

    1989-02-01

    Although endosomes and lysosomes are associated with different subcellular functions, we present evidence that a lysosomal enzyme, arylsulfatase-A, is present in prelysosomal vesicles which constitute part of the endosomal compartment. When human cultured fibroblasts were subfractionated with Percoll gradients, arylsulfatase-A activity was enriched in three subcellular fractions: dense lysosomes, light lysosomes, and light membranous vesicles. Pulsing the cells for 1 to 10 min with the fluid-phase endocytic marker, horseradish peroxidase, showed that endosomes enriched with the marker were distributed partly in the light lysosome fraction but mainly in the light membranous fraction. By pulsing the fibroblasts for 10 min with horseradish peroxidase conjugated to colloidal gold and then staining the light membranous and light lysosomal fractions for arylsulfatase-A activity with a specific cytochemical technique, the endocytic marker was detected under the electron microscope in the same vesicles as the lysosomal enzyme. The origin of the lysosomal enzyme in this endosomal compartment was shown not to be acquired through mannose 6-phosphate receptor-mediated endocytosis of enzymes previously secreted from the cell. Together with our recent finding that the light membranous fraction contains prelysosomes distinct from bona fide lysosomes and was highly enriched with newly synthesized arylsulfatase-A molecules, these results demonstrate that prelysosomes also constitute part of the endosomal compartment to which intracellular lysosomal enzymes are targeted.

  9. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy.

    Science.gov (United States)

    Zhang, Xiaoli; Cheng, Xiping; Yu, Lu; Yang, Junsheng; Calvo, Raul; Patnaik, Samarjit; Hu, Xin; Gao, Qiong; Yang, Meimei; Lawas, Maria; Delling, Markus; Marugan, Juan; Ferrer, Marc; Xu, Haoxing

    2016-06-30

    Cellular stresses trigger autophagy to remove damaged macromolecules and organelles. Lysosomes 'host' multiple stress-sensing mechanisms that trigger the coordinated biogenesis of autophagosomes and lysosomes. For example, transcription factor (TF)EB, which regulates autophagy and lysosome biogenesis, is activated following the inhibition of mTOR, a lysosome-localized nutrient sensor. Here we show that reactive oxygen species (ROS) activate TFEB via a lysosomal Ca(2+)-dependent mechanism independent of mTOR. Exogenous oxidants or increasing mitochondrial ROS levels directly and specifically activate lysosomal TRPML1 channels, inducing lysosomal Ca(2+) release. This activation triggers calcineurin-dependent TFEB-nuclear translocation, autophagy induction and lysosome biogenesis. When TRPML1 is genetically inactivated or pharmacologically inhibited, clearance of damaged mitochondria and removal of excess ROS are blocked. Furthermore, TRPML1's ROS sensitivity is specifically required for lysosome adaptation to mitochondrial damage. Hence, TRPML1 is a ROS sensor localized on the lysosomal membrane that orchestrates an autophagy-dependent negative-feedback programme to mitigate oxidative stress in the cell.

  10. Lysosomal acid phosphatase is internalized via clathrin-coated pits

    NARCIS (Netherlands)

    Klumperman, J.; Hille, A.; Geuze, H.J.; Peters, C.; Brodsky, F.M.; Figura, K. von

    1992-01-01

    The presence of lysosomal acid phosphatase (LAP) in coated pits at the plasma membrane was investigated by immunocytochemistry in thymidine kinase negative mouse L-cells (Ltk-) and baby hamster kidney (BHK) cells overexpressing human LAP (Ltk-LAP and BHK-LAP cells). Double immunogold labeling showed

  11. TRPML1: an ion channel in the lysosome.

    Science.gov (United States)

    Wang, Wuyang; Zhang, Xiaoli; Gao, Qiong; Xu, Haoxing

    2014-01-01

    The first member of the mammalian mucolipin TRP channel subfamily (TRPML1) is a cation-permeable channel that is predominantly localized on the membranes of late endosomes and lysosomes (LELs) in all mammalian cell types. In response to the regulatory changes of LEL-specific phosphoinositides or other cellular cues, TRPML1 may mediate the release of Ca(2+) and heavy metal Fe(2+)/Zn(2+)ions into the cytosol from the LEL lumen, which in turn may regulate membrane trafficking events (fission and fusion), signal transduction, and ionic homeostasis in LELs. Human mutations in TRPML1 result in type IV mucolipidosis (ML-IV), a childhood neurodegenerative lysosome storage disease. At the cellular level, loss-of-function mutations of mammalian TRPML1 or its C. elegans or Drosophila homolog gene results in lysosomal trafficking defects and lysosome storage. In this chapter, we summarize recent advances in our understandings of the cell biological and channel functions of TRPML1. Studies on TRPML1's channel properties and its regulation by cellular activities may provide clues for developing new therapeutic strategies to delay neurodegeneration in ML-IV and other lysosome-related pediatric diseases.

  12. Cancer-associated lysosomal changes

    DEFF Research Database (Denmark)

    Kallunki, T; Olsen, O D; Jaattela, Marja

    2013-01-01

    Rapidly dividing and invasive cancer cells are strongly dependent on effective lysosomal function. Accordingly, transformation and cancer progression are characterized by dramatic changes in lysosomal volume, composition and cellular distribution. Depending on one's point of view, the cancer-associated......-targeting anti-cancer drugs. In this review we compile our current knowledge on cancer-associated changes in lysosomal composition and discuss the consequences of these alterations to cancer progression and the possibilities they can bring to cancer therapy.Oncogene advance online publication, 9 July 2012; doi...

  13. Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75

    Directory of Open Access Journals (Sweden)

    Leoh Lai

    2009-08-01

    Full Text Available Abstract Background Hormone-refractory prostate cancer (HRPC is characterized by poor response to chemotherapy and high mortality, particularly among African American men when compared to other racial/ethnic groups. It is generally accepted that docetaxel, the standard of care for chemotherapy of HRPC, primarily exerts tumor cell death by inducing mitotic catastrophe and caspase-dependent apoptosis following inhibition of microtubule depolymerization. However, there is a gap in our knowledge of mechanistic events underlying docetaxel-induced caspase-independent cell death, and the genes that antagonize this process. This knowledge is important for circumventing HRPC chemoresistance and reducing disparities in prostate cancer mortality. Results We investigated mechanistic events associated with docetaxel-induced death in HRPC cell lines using various approaches that distinguish caspase-dependent from caspase-independent cell death. Docetaxel induced both mitotic catastrophe and caspase-dependent apoptosis at various concentrations. However, caspase activity was not essential for docetaxel-induced cytotoxicity since cell death associated with lysosomal membrane permeabilization still occurred in the presence of caspase inhibitors. Partial inhibition of docetaxel-induced cytotoxicity was observed after inhibition of cathepsin B, but not inhibition of cathepsins D and L, suggesting that docetaxel induces caspase-independent, lysosomal cell death. Simultaneous inhibition of caspases and cathepsin B dramatically reduced docetaxel-induced cell death. Ectopic expression of lens epithelium-derived growth factor p75 (LEDGF/p75, a stress survival autoantigen and transcription co-activator, attenuated docetaxel-induced lysosomal destabilization and cell death. Interestingly, LEDGF/p75 overexpression did not protect cells against DTX-induced mitotic catastrophe, and against apoptosis induced by tumor necrosis factor related apoptosis inducing ligand (TRAIL

  14. Destabilization of artificial biomembrane induced by the penetration of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liuhua [Department of Chemistry, Tongji University, Shanghai 200092 (China); Gan Lihua, E-mail: ganlh@tongji.edu.cn [Department of Chemistry, Tongji University, Shanghai 200092 (China); Liu Mingxian; Fan Rong; Xu Zijie; Hao Zhixian; Chen Longwu [Department of Chemistry, Tongji University, Shanghai 200092 (China)

    2011-03-15

    The effect of tryptophan on the membrane stability was studied by using three artificial biological membranes including liposome, Langmuir monolayer and solid supported bilayer lipid membrane (s-BLM) as models. All the results indicate that the penetration of tryptophan can destabilize different artificial biological membranes. The diameter of liposome and the leakage of calcein from liposome increased with the increase of tryptophan concentration because the penetration of tryptophan was beneficial for dehydrating the polar head groups of lipids and the formation of fusion intermediates. {pi}-A isotherms of lecithin on the subphase of tryptophan solution further confirm that tryptophan can penetrate into lipid monolayer and reduce the stability of lipid monolayer. When the concentration of tryptophan increased from 0 to 2 x 10{sup -3} mol L{sup -1}, the limiting molecular area of lecithin increased from 110.5 to 138.5 A{sup 2}, but the collapse pressure of the monolayer decreased from 47.6 to 42.3 mN m{sup -1}, indicating the destabilization of lipid monolayer caused by the penetration of tryptophan. The resistance spectra of s-BLM demonstrate that the existence of tryptophan leads to the formation of some defects in s-BLM and the destabilization of s-BLM. The values of electron-transfer resistance and double layer capacitance respectively decreased from 5.765 x 10{sup 6} {Omega} and 3.573 x 10{sup -8} F to 1.391 x 10{sup 6} {Omega} and 3.340 x 10{sup -8} F when the concentration of tryptophan increased from 0 to 2 x 10{sup -3} mol L{sup -1}. Correspondingly, the breakdown voltage of s-BLM decreased from 2.51 to 1.72 V.

  15. Salinomycin kills cancer stem cells by sequestering iron in lysosomes

    Science.gov (United States)

    Mai, Trang Thi; Hamaï, Ahmed; Hienzsch, Antje; Cañeque, Tatiana; Müller, Sebastian; Wicinski, Julien; Cabaud, Olivier; Leroy, Christine; David, Amandine; Acevedo, Verónica; Ryo, Akihide; Ginestier, Christophe; Birnbaum, Daniel; Charafe-Jauffret, Emmanuelle; Codogno, Patrice; Mehrpour, Maryam; Rodriguez, Raphaël

    2017-10-01

    Cancer stem cells (CSCs) represent a subset of cells within tumours that exhibit self-renewal properties and the capacity to seed tumours. CSCs are typically refractory to conventional treatments and have been associated to metastasis and relapse. Salinomycin operates as a selective agent against CSCs through mechanisms that remain elusive. Here, we provide evidence that a synthetic derivative of salinomycin, which we named ironomycin (AM5), exhibits a more potent and selective activity against breast CSCs in vitro and in vivo, by accumulating and sequestering iron in lysosomes. In response to the ensuing cytoplasmic depletion of iron, cells triggered the degradation of ferritin in lysosomes, leading to further iron loading in this organelle. Iron-mediated production of reactive oxygen species promoted lysosomal membrane permeabilization, activating a cell death pathway consistent with ferroptosis. These findings reveal the prevalence of iron homeostasis in breast CSCs, pointing towards iron and iron-mediated processes as potential targets against these cells.

  16. hLGDB: a database of human lysosomal genes and their regulation.

    Science.gov (United States)

    Brozzi, Alessandro; Urbanelli, Lorena; Germain, Pierre Luc; Magini, Alessandro; Emiliani, Carla

    2013-01-01

    Lysosomes are cytoplasmic organelles present in almost all eukaryotic cells, which play a fundamental role in key aspects of cellular homeostasis such as membrane repair, autophagy, endocitosis and protein metabolism. The characterization of the genes and enzymes constituting the lysosome represents a central issue to be addressed toward a better understanding of the biology of this organelle. In humans, mutations that cause lysosomal enzyme deficiencies result in >50 different disorders and severe pathologies. So far, many experimental efforts using different methodologies have been carried out to identity lysosomal genes. The Human Lysosome Gene Database (hLGDB) is the first resource that provides a comprehensive and accessible census of the human genes belonging to the lysosomal system. This database was developed by collecting and annotating gene lists from many different sources. References to the studies that have identified each gene are provided together with cross databases gene related information. Special attention has been given to the regulation of the genes through microRNAs and the transcription factor EB. The hLGDB can be easily queried to retrieve, combine and analyze information on different lists of lysosomal genes and their regulation by microRNA (binding sites predicted by five different algorithms). The hLGDB is an open access dynamic project that will permit in the future to collapse in a unique publicly accessible resource all the available biological information about lysosome genes and their regulation. Database URL: http://lysosome.unipg.it/.

  17. Mucolipidosis type IV: the effect of increased lysosomal pH on the abnormal lysosomal storage.

    Science.gov (United States)

    Kogot-Levin, Aviram; Zeigler, Marsha; Ornoy, Asher; Bach, Gideon

    2009-06-01

    Mucolipidosis type IV (MLIV) is a neurodegenerative channelopathy that is caused by the deficiency of TRPML1 activity, a nonselective cation channel. TRPML1 is a lysosomal membrane protein, and thus, MLIV is a lysosomal storage disorder. The basic, specific function of TRPML1 has not been yet clarified. A recent report (Soyombo AA, Tjon-Kon-Sang S, Rbaibi Y, Bashllari E, Bisceglia J, Muallem S, Kiselyov K: J Biol Chem 281:7294-7301, 2006) indicated that TRPML1 functions as an outwardly proton channel whose function is the prevention of overacidification of these organelles. Thus, in MLIV the lysosomal pH is lower than normal. Furthermore, attempts by these investigators to increase slightly the lysososmal pH with either Nigericin or Chloroquine suggested corrective effect of the abnormal storage in MLIV cells. We investigated this approach using these agents with cultured fibroblasts from severely affected and milder patients. Our data indicated that there was no reduction in the total number of storage vesicles by either agent, although Nigericin resulted in a change in the nature of the storage materials, reducing the presence of lamellated substances (lipids) so that the storage vesicles contained predominantly granulated substances. On the other hand, transfection with the normal MCOLN1 cDNA (the gene coding for TRPML1) resulted in the removal of almost all the storage materials.

  18. Protective effect of squalene on certain lysosomal hydrolases and free amino acids in isoprenaline-induced myocardial infarction in rats

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Surendraraj, A.; Anandan, R.

    2010-01-01

    This study was aimed to evaluate the preventive role of squalene on free amino acids and lysosomal alterations in experimentally induced myocardial infarction in rats. The levels of lysosomal enzymes (beta-glucuronidase, beta-galactosidase, beta-glucosidase, acid phosphatase and cathepsin D......) in plasma and lysosomal fractions, hydroxyproline content and free amino acids in heart tissue were determined. Isoprenaline administration to rats resulted in decreased stability of the membranes which was reflected by significantly (p...

  19. Enhancing lysosomal biogenesis and autophagic flux by activating the transcription factor EB protects against cadmium-induced neurotoxicity

    Science.gov (United States)

    Pi, Huifeng; Li, Min; Tian, Li; Yang, Zhiqi; Yu, Zhengping; Zhou, Zhou

    2017-01-01

    Cadmium (Cd), a highly ubiquitous heavy metal, is a well-known inducer of neurotoxicity. However, the mechanism underlying cadmium-induced neurotoxicity remains unclear. In this study, we found that Cd inhibits autophagosome-lysosome fusion and impairs lysosomal function by reducing the levels of lysosomal-associated membrane proteins, inhibiting lysosomal proteolysis and altering lysosomal pH, contributing to defects in autophagic clearance and subsequently leading to nerve cell death. In addition, Cd decreases transcription factor EB (TFEB) expression at both the mRNA and protein levels. Furthermore, Cd induces the nuclear translocation of TFEB and TFEB target-gene expression, associated with compromised lysosomal function or a compensatory effect after the impairment of the autophagic flux. Notably, restoration of the levels of lysosomal-associated membrane protein, lysosomal proteolysis, lysosomal pH and autophagic flux through Tfeb overexpression protects against Cd-induced neurotoxicity, and this protective effect is incompletely dependent on TFEB nuclear translocation. Moreover, gene transfer of the master autophagy regulator TFEB results in the clearance of toxic proteins and the correction of Cd-induced neurotoxicity in vivo. Our study is the first to demonstrate that Cd disrupts lysosomal function and autophagic flux and manipulation of TFEB signalling may be a therapeutic approach for antagonizing Cd-induced neurotoxicity. PMID:28240313

  20. Syntaxin 7 and VAMP-7 are Soluble N-Ethylmaleimide–sensitive Factor Attachment Protein Receptors Required for Late Endosome–Lysosome and Homotypic Lysosome Fusion in Alveolar Macrophages

    Science.gov (United States)

    Ward, Diane McVey; Pevsner, Jonathan; Scullion, Matthew A.; Vaughn, Michael; Kaplan, Jerry

    2000-01-01

    Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome–lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome–lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome–lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome–lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages. PMID:10888671

  1. High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A

    Science.gov (United States)

    Gabandé-Rodríguez, E; Boya, P; Labrador, V; Dotti, C G; Ledesma, M D

    2014-01-01

    Niemann Pick disease type A (NPA), which is caused by loss of function mutations in the acid sphingomyelinase (ASM) gene, is a lysosomal storage disorder leading to neurodegeneration. Yet, lysosomal dysfunction and its consequences in the disease are poorly characterized. Here we show that undegraded molecules build up in neurons of acid sphingomyelinase knockout mice and in fibroblasts from NPA patients in which autophagolysosomes accumulate. The latter is not due to alterations in autophagy initiation or autophagosome–lysosome fusion but because of inefficient autophago–lysosomal clearance. This, in turn, can be explained by lysosomal membrane permeabilization leading to cytosolic release of Cathepsin B. High sphingomyelin (SM) levels account for these effects as they can be induced in control cells on addition of the lipid and reverted on SM-lowering strategies in ASM-deficient cells. These results unveil a relevant role for SM in autophagy modulation and characterize autophagy anomalies in NPA, opening new perspectives for therapeutic interventions. PMID:24488099

  2. Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions.

    Science.gov (United States)

    Lee, Sook-Jeong; Park, Mi-Ha; Kim, Hyun-Jae; Koh, Jae-Young

    2010-08-01

    Cellular zinc plays a key role in lysosomal change and cell death in neurons and astrocytes under oxidative stress. Here, using astrocytes lacking metallothionein-3 (MT3), a potential source of labile zinc in the brain, we studied the role of MT3 in oxidative stress responses. H(2)O(2) induced a large increase in labile zinc in wild-type (WT) astrocytes, but stimulated only a modest rise in MT3-null astrocytes. In addition, H(2)O(2)-induced lysosomal membrane permeabilization (LMP) and cell death were comparably attenuated in MT3-null astrocytes. Expression and glycosylation of Lamp1 (lysosome-associated membrane protein 1) and Lamp2 were increased in MT3-null astrocytes, and the activities of several lysosomal enzymes were significantly reduced, indicating an effect of MT3 on lysosomal components. Consistent with lysosomal dysfunction in MT3-null cells, the level of LC3-II (microtubule-associated protein 1 light chain 3), a marker of early autophagy, was increased by oxidative stress in WT astrocytes, but not in MT3-null cells. Similar changes in Lamp1, LC3, and cathepsin-D were induced by the lysosomal inhibitors bafilomycin A1, chloroquine, and monensin, indicating that lysosomal dysfunction may lie upstream of changes observed in MT3-null astrocytes. Consistent with this idea, lysosomal accumulation of cholesterol and lipofuscin were augmented in MT3-null astrocytes. Similar to the results seen in MT3-null cells, MT3 knockdown by siRNA inhibited oxidative stress-induced increases in zinc and LMP. These results indicate that MT3 may play a key role in normal lysosomal function in cultured astrocytes.

  3. Cross-talk between TRPML1 channel, lipids and lysosomal storage diseases.

    Science.gov (United States)

    Weiss, Norbert

    2012-03-01

    Described by the Belgian cytologist Christian De Duve in 1949,(1) lysosomes (from the Greek "digestive bodies") are ubiquitous specialized intracellular organelles that ensure the degradation/recycling of macromolecules (proteins, lipids, membranes) through the activity of specific enzymes (i.e., acid hydrolases). They receive their substrates through different internalization pathways (i.e., endocytosis, phagocytosis and autophagy) and are involved in a wide range of physiological functions from cell death and signaling to cholesterol homeostasis and plasma membrane repair.(2) In Mammals, 50 soluble lysosomal hydrolases have been described, each targeting specific substrates. They are confined in the lumen of the lysosome and require an optimum pH (i.e., pH 4.5) to work. This acidic pH compared with the slightly alkaline pH of the cytosol (i.e., ~pH 7.2) is maintained by the activity of integral lysosomal membrane proteins (LMPs, that represent the second class of lysosomal proteins), including the V-type proton (H(+))-ATPase(3) and the chloride ion channel CLC7(4) that pumps protons from the cytosol across the lysosomal membrane.

  4. Biomarkers in Lysosomal Storage Diseases

    Directory of Open Access Journals (Sweden)

    Joaquin Bobillo Lobato

    2016-12-01

    Full Text Available A biomarker is generally an analyte that indicates the presence and/or extent of a biological process, which is in itself usually directly linked to the clinical manifestations and outcome of a particular disease. The biomarkers in the field of lysosomal storage diseases (LSDs have particular relevance where spectacular therapeutic initiatives have been achieved, most notably with the introduction of enzyme replacement therapy (ERT. There are two main types of biomarkers. The first group is comprised of those molecules whose accumulation is directly enhanced as a result of defective lysosomal function. These molecules represent the storage of the principal macro-molecular substrate(s of a specific enzyme or protein, whose function is deficient in the given disease. In the second group of biomarkers, the relationship between the lysosomal defect and the biomarker is indirect. In this group, the biomarker reflects the effects of the primary lysosomal defect on cell, tissue, or organ functions. There is no “gold standard” among biomarkers used to diagnosis and/or monitor LSDs, but there are a number that exist that can be used to reasonably assess and monitor the state of certain organs or functions. A number of biomarkers have been proposed for the analysis of the most important LSDs. In this review, we will summarize the most promising biomarkers in major LSDs and discuss why these are the most promising candidates for screening systems.

  5. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner.

    Directory of Open Access Journals (Sweden)

    Christine Burkard

    2014-11-01

    Full Text Available Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs. Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV. Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion.

  6. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner.

    Science.gov (United States)

    Burkard, Christine; Verheije, Monique H; Wicht, Oliver; van Kasteren, Sander I; van Kuppeveld, Frank J; Haagmans, Bart L; Pelkmans, Lucas; Rottier, Peter J M; Bosch, Berend Jan; de Haan, Cornelis A M

    2014-11-01

    Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion.

  7. Protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

    Science.gov (United States)

    Roy, Subhro Jyoti; Stanely Mainzen Prince, Ponnian

    2012-11-01

    In the pathology of myocardial infarction, lysosomal lipid peroxidation and resulting enzyme release play an important role. We evaluated the protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats. Male Wistar rats were treated with sinapic acid (12 mg/kg body weight) orally daily for 10 days and isoproterenol (100 mg/kg body weight) was injected twice at an interval of 24 h (9th and 10th day). Then, lysosomal lipid peroxidation, lysosomal enzymes in serum, heart homogenate, lysosomal fraction and myocardial infarct size were measured. Isoproterenol induced myocardial infarcted rats showed a significant increase in serum creatine kinase-MB and lysosomal lipid peroxidation. The activities of β-glucuronidase, β-galactosidase, cathepsin-B and D were significantly increased in serum, heart and the activities of β-glucuronidase and cathepsin-D were significantly decreased in lysosomal fraction of myocardial infarcted rats. Pre-and-co-treatment with sinapic acid normalized all the biochemical parameters and reduced myocardial infarct size in myocardial infarcted rats. In vitro studies confirmed the free radical scavenging effects of sinapic acid. The possible mechanisms for the observed effects are attributed to sinapic acid's free radical scavenging and membrane stabilizing properties. Thus, sinapic acid has protective effects on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

  8. Artesunate Activates Mitochondrial Apoptosis in Breast Cancer Cells via Iron-catalyzed Lysosomal Reactive Oxygen Species Production*

    Science.gov (United States)

    Hamacher-Brady, Anne; Stein, Henning A.; Turschner, Simon; Toegel, Ina; Mora, Rodrigo; Jennewein, Nina; Efferth, Thomas; Eils, Roland; Brady, Nathan R.

    2011-01-01

    The antimalarial agent artesunate (ART) activates programmed cell death (PCD) in cancer cells in a manner dependent on the presence of iron and the generation of reactive oxygen species. In malaria parasites, ART cytotoxicity originates from interactions with heme-derived iron within the food vacuole. The analogous digestive compartment of mammalian cells, the lysosome, similarly contains high levels of redox-active iron and in response to specific stimuli can initiate mitochondrial apoptosis. We thus investigated the role of lysosomes in ART-induced PCD and determined that in MCF-7 breast cancer cells ART activates lysosome-dependent mitochondrial outer membrane permeabilization. ART impacted endolysosomal and autophagosomal compartments, inhibiting autophagosome turnover and causing perinuclear clustering of autophagosomes, early and late endosomes, and lysosomes. Lysosomal iron chelation blocked all measured parameters of ART-induced PCD, whereas lysosomal iron loading enhanced death, thus identifying lysosomal iron as the lethal source of reactive oxygen species upstream of mitochondrial outer membrane permeabilization. Moreover, lysosomal inhibitors chloroquine and bafilomycin A1 reduced ART-activated PCD, evidencing a requirement for lysosomal function during PCD signaling. ART killing did not involve activation of the BH3-only protein, Bid, yet ART enhanced TNF-mediated Bid cleavage. We additionally demonstrated the lysosomal PCD pathway in T47D and MDA-MB-231 breast cancer cells. Importantly, non-tumorigenic MCF-10A cells resisted ART-induced PCD. Together, our data suggest that ART triggers PCD via engagement of distinct, interconnected PCD pathways, with hierarchical signaling from lysosomes to mitochondria, suggesting a potential clinical use of ART for targeting lysosomes in cancer treatment. PMID:21149439

  9. Inhibitors of lysosomal cysteine proteases

    Directory of Open Access Journals (Sweden)

    Lyanna O. L.

    2011-04-01

    Full Text Available The review is devoted to the inhibitors of cysteine proteinases which are believed to be very important in many biochemical processes of living organisms. They participate in the development and progression of numerous diseases that involve abnormal protein turnover. One of the main regulators of these proteinases is their specific inhibitors: cystatins. The aim of this review was to present current knowledge about endogenous inhibitors of lysosomal cysteine proteases and their synthetic analogs.

  10. Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type IV.

    Science.gov (United States)

    Park, Soonhong; Ahuja, Malini; Kim, Min Seuk; Brailoiu, G Cristina; Jha, Archana; Zeng, Mei; Baydyuk, Maryna; Wu, Ling-Gang; Wassif, Christopher A; Porter, Forbes D; Zerfas, Patricia M; Eckhaus, Michael A; Brailoiu, Eugen; Shin, Dong Min; Muallem, Shmuel

    2016-02-01

    Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.

  11. Endosome-lysosomes, ubiquitin and neurodegeneration.

    Science.gov (United States)

    Mayer, R J; Tipler, C; Arnold, J; Laszlo, L; Al-Khedhairy, A; Lowe, J; Landon, M

    1996-01-01

    Before the advent of ubiquitin immunochemistry and immunogold electron microscopy, there was no known intracellular molecular commonality between neurodegenerative diseases. The application of antibodies which primarily detect ubiquitin protein conjugates has shown that all of the human and animal idiopathic and transmissible chronic neurodegenerative diseases, (including Alzheimer's disease (AD), Lewy body disease (LBD), amyotrophic lateral sclerosis (ALS), Creutzfeldt-Jakob disease (CJD) and scrapie) are related by some form of intraneuronal inclusion which contains ubiquitin protein conjugates. In addition, disorders such as Alzheimer's disease, CJD and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins which may be associated with cytoskeletal reorganisation. Although our knowledge about these diseases is increasing, they remain largely untreatable. Recently, attention has focused on the mechanisms of production of different types of amyloid and the likely involvement within cells of the endosome-lysosome system, organelles which are immuno-positive for ubiquitin protein conjugates. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials or their precursors which subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Such common features of the disease processes give new direction to therapeutic intervention.

  12. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  13. Revisiting the flocculation kinetics of destabilized asphaltenes.

    Science.gov (United States)

    Vilas Bôas Fávero, Cláudio; Maqbool, Tabish; Hoepfner, Michael; Haji-Akbari, Nasim; Fogler, H Scott

    2017-06-01

    A comprehensive review of the recently published work on asphaltene destabilization and flocculation kinetics is presented. Four different experimental techniques were used to study asphaltenes undergoing flocculation process in crude oils and model oils. The asphaltenes were destabilized by different n-alkanes and a geometric population balance with the Smoluchowski collision kernel was used to model the asphaltene aggregation process. Additionally, by postulating a relation between the aggregation collision efficiency and the solubility parameter of asphaltenes and the solution, a unified model of asphaltene aggregation model was developed. When the aggregation model is applied to the experimental data obtained from several different crude oil and model oils, the detection time curves collapsed onto a universal single line, indicating that the model successfully captures the underlying physics of the observed process. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Destabilization of free convection by weak rotation

    CERN Document Server

    Gelfgat, Alexander

    2011-01-01

    This study offers an explanation of a recently observed effect of destabilization of free convective flows by weak rotation. After studying several models where flows are driven by a simultaneous action of convection and rotation, it is concluded that the destabilization is observed in the cases where centrifugal force acts against main convective circulation. At relatively low Prandtl numbers this counter action can split the main vortex into two counter rotating vortices, where the interaction leads to instability. At larger Prandtl numbers, the counter action of the centrifugal force steepens an unstable thermal stratification, which triggers Rayleigh-B\\'enard instability mechanism. Both cases can be enhanced by advection of azimuthal velocity disturbances towards the axis, where they grow and excite perturbations of the radial velocity. The effect was studied considering a combined convective/rotating flow in a cylinder with a rotating lid and a parabolic temperature profile at the sidewall. Next, explana...

  15. Evidence for lysosomal exocytosis and release of aggrecan-degrading hydrolases from hypertrophic chondrocytes, in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Edward R. Bastow

    2012-02-01

    The abundant proteoglycan, aggrecan, is resorbed from growth plate cartilage during endochondral bone ossification, yet mice with genetically-ablated aggrecan-degrading activity have no defects in bone formation. To account for this apparent anomaly, we propose that lysosomal hydrolases degrade extracellular, hyaluronan-bound aggrecan aggregates in growth plate cartilage, and that lysosomal hydrolases are released from hypertrophic chondrocytes into growth plate cartilage via Ca2+-dependent lysosomal exocytosis. In this study we confirm that hypertrophic chondrocytes release hydrolases via lysosomal exocytosis in vitro and we show in vivo evidence for lysosomal exocytosis in hypertrophic chondrocytes during skeletal development. We show that lysosome-associated membrane protein 1 (LAMP1 is detected at the cell surface following in vitro treatment of epiphyseal chondrocytes with the calcium ionophore, ionomycin. Furthermore, we show that in addition to the lysosomal exocytosis markers, cathepsin D and β-hexosaminidase, ionomycin induces release of aggrecan- and hyaluronan-degrading activity from cultured epiphyseal chondrocytes. We identify VAMP-8 and VAMP7 as v-SNARE proteins with potential roles in lysosomal exocytosis in hypertrophic chondrocytes, based on their colocalisation with LAMP1 at the cell surface in secondary ossification centers in mouse tibiae. We propose that resorbing growth plate cartilage involves release of destructive hydrolases from hypertrophic chondrocytes, via lysosomal exocytosis.

  16. Glucagon-like Peptide-1 Protects Pancreatic Beta-cells from Death by Increasing Autophagic Flux and Restoring Lysosomal Function.

    Science.gov (United States)

    Zummo, Francesco P; Cullen, Kirsty S; Honkanen-Scott, Minna; Shaw, James Am; Lovat, Penny E; Arden, Catherine

    2017-02-23

    Studies in animal models of type 2 diabetes have shown that glucagon-like peptide-1 (GLP-1) receptor agonists prevent β-cell loss. Whether GLP-1 mediates β-cell survival via the key lysosomal-mediated process of autophagy is unknown.Here we report that treatment of INS-1E β-cells and primary islets with glucolipotoxicity (0.5mmol/l palmitate, 25mmol/l glucose) increases LC3 II, a marker of autophagy. Further analysis indicates a blockage in autophagic flux associated with lysosomal dysfunction. Accumulation of defective lysosomes leads to lysosomal membrane permeabilisation (LMP) and release of Cathepsin D, which contributes to cell death. Our data further demonstrated defects in autophagic flux and lysosomal staining in human samples of type 2 diabetes. Co-treatment with the GLP-1 receptor agonist exendin-4 reversed the lysosomal dysfunction, relieving the impairment in autophagic flux and further stimulated autophagy. siRNA knockdown showed the restoration of autophagic flux is also essential for the protective effects of exendin-4.Collectively, our data highlights lysosomal dysfunction as a critical mediator of β-cell loss and shows that exendin-4 improves cell survival via restoration of lysosomal function and autophagic flux. Modulation of autophagy / lysosomal homeostasis may thus define a novel therapeutic strategy for type 2 diabetes, with the GLP-1 signalling pathway as a potential focus.

  17. Impact of high cholesterol in a Parkinson's disease model: Prevention of lysosomal leakage versus stimulation of α-synuclein aggregation.

    Science.gov (United States)

    Eriksson, Ida; Nath, Sangeeta; Bornefall, Per; Giraldo, Ana Maria Villamil; Öllinger, Karin

    2017-03-01

    Parkinson's disease is characterized by accumulation of intraneuronal cytoplasmic inclusions, Lewy bodies, which mainly consist of aggregated α-synuclein. Controversies exist as to whether high blood cholesterol is a risk factor for the development of the disease and whether statin treatment could have a protective effect. Using a model system of BE(2)-M17 neuroblastoma cells treated with the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)), we found that MPP(+)-induced cell death was accompanied by cholesterol accumulation in a lysosomal-like pattern in pre-apoptotic cells. To study the effects of lysosomal cholesterol accumulation, we increased lysosomal cholesterol through pre-treatment with U18666A and found delayed leakage of lysosomal contents into the cytosol, which reduced cell death. This suggests that increased lysosomal cholesterol is a stress response mechanism to protect lysosomal membrane integrity in response to early apoptotic stress. However, high cholesterol also stimulated the accumulation of α-synuclein. Treatment with the cholesterol-lowering drug lovastatin reduced MPP(+)-induced cell death by inhibiting the production of reactive oxygen species, but did not prevent lysosomal cholesterol increase nor affect α-synuclein accumulation. Our study indicates a dual role of high cholesterol in Parkinson's disease, in which it acts both as a protector against lysosomal membrane permeabilization and as a stimulator of α-synuclein accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. GNeosomes: Highly Lysosomotropic Nanoassemblies for Lysosomal Delivery.

    Science.gov (United States)

    Wexselblatt, Ezequiel; Esko, Jeffrey D; Tor, Yitzhak

    2015-01-01

    GNeosomes, lysosomotropic lipid vesicles decorated with guanidinoneomycin, can encapsulate and facilitate the cellular internalization and lysosomal delivery of cargo ranging from small molecules to high molecular weight proteins, in a process that is exclusively dependent on cell surface glycosaminoglycans. Their cellular uptake mechanism and co-localization with lysosomes, as well as the delivery, release, and activity of internalized cargo, are quantified. GNeosomes are proposed as a universal platform for lysosomal delivery with potential as a basic research tool and a therapeutic vehicle.

  19. Combined effects of thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis.

    Science.gov (United States)

    Izagirre, Urtzi; Errasti, Aitzpea; Bilbao, Eider; Múgica, María; Marigómez, Ionan

    2014-04-01

    In estuaries and coastal areas, intertidal organisms may be subject to thermal stress resulting from global warming, together with pollution. In the present study, the combined effects of thermal stress and exposure to Cd were investigated in the endo-lysosomal system of digestive cells in mussels, Mytilus galloprovincialis. Mussels were maintained for 24h at 18°C and 26°C seawater temperature in absence and presence of 50 μg Cd/L seawater. Cadmium accumulation in digestive gland tissue, lysosomal structural changes and membrane stability were determined. Semi-quantitative PCR was applied to reveal the changes elicited by the different experimental conditions in hexosaminidase (hex), β-glucuronidase (gusb), cathepsin L (ctsl) and heat shock protein 70 (hsp70) gene transcription levels. Thermal stress provoked lysosomal enlargement whilst Cd-exposure led to fusion of lysosomes. Both thermal stress and Cd-exposure caused lysosomal membrane destabilisation. hex, gusb and ctsl genes but not hsp70 gene were transcriptionally up-regulated as a result of thermal stress. In contrast, all the studied genes were transcriptionally down-regulated in response to Cd-exposure. Cd bioaccumulation was comparable at 18°C and 26°C seawater temperatures but interactions between thermal stress and Cd-exposure were remarkable both in lysosomal biomarkers and in gene transcription. hex, gusb and ctsl genes, reacted to elevated temperature in absence of Cd but not in Cd-exposed mussels. Therefore, thermal stress resulting from global warming might influence the use and interpretation of lysosomal biomarkers in marine pollution monitoring programmes and, vice versa, the presence of pollutants may condition the capacity of mussels to respond against thermal stress in a climate change scenario.

  20. Lysosomal responses to heat-shock of seasonal temperature extremes in Cd-exposed mussels.

    Science.gov (United States)

    Múgica, M; Izagirre, U; Marigómez, I

    2015-07-01

    The present study was aimed at determining the effect of temperature extremes on lysosomal biomarkers in mussels exposed to a model toxic pollutant (Cd) at different seasons. For this purpose, temperature was elevated 10°C (from 12°C to 22°C in winter and from 18°C to 28°C in summer) for a period of 6h (heat-shock) in control and Cd-exposed mussels, and then returned back to initial one. Lysosomal membrane stability and lysosomal structural changes in digestive gland were investigated. In winter, heat-shock reduced the labilisation period (LP) of the lysosomal membrane, especially in Cd-exposed mussels, and provoked transient lysosomal enlargement. LP values recovered after the heat-shock cessation but lysosomal enlargement prevailed in both experimental groups. In summer, heat-shock induced remarkable reduction in LP and lysosomal enlargement (more markedly in Cd-exposed mussels), which recovered within 3 days. Besides, whilst heat-shock effects on LP were practically identical for Cd-exposed mussels in winter and summer, the effects were longer-lasting in summer than in winter for control mussels. Thus, lysosomal responsiveness after heat-shock was higher in summer than in winter but recovery was faster as well, and therefore the consequences of the heat shock seem to be more decisive in winter. In contrast, inter-season differences were attenuated in the presence of Cd. Consequently, mussels seem to be better prepared in summer than in winter to stand short periods of abrupt temperature change; this is, however, compromised when mussels are exposed to pollutants such as Cd.

  1. Combined effects of thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Izagirre, Urtzi; Errasti, Aitzpea; Bilbao, Eider; Múgica, María; Marigómez, Ionan, E-mail: ionan.marigomez@ehu.es

    2014-04-01

    Highlights: • Thermal stress and Cd caused lysosomal enlargement and membrane destabilisation. • hex, gusb and ctsl but not hsp70 were up-regulated at elevated temperature but down-regulated by Cd. • Thermal stress influenced lysosomal responses to Cd exposure. • The presence of Cd jeopardised responsiveness against thermal stress. - Abstract: In estuaries and coastal areas, intertidal organisms may be subject to thermal stress resulting from global warming, together with pollution. In the present study, the combined effects of thermal stress and exposure to Cd were investigated in the endo-lysosomal system of digestive cells in mussels, Mytilus galloprovincialis. Mussels were maintained for 24 h at 18 °C and 26 °C seawater temperature in absence and presence of 50 μg Cd/L seawater. Cadmium accumulation in digestive gland tissue, lysosomal structural changes and membrane stability were determined. Semi-quantitative PCR was applied to reveal the changes elicited by the different experimental conditions in hexosaminidase (hex), β-glucuronidase (gusb), cathepsin L (ctsl) and heat shock protein 70 (hsp70) gene transcription levels. Thermal stress provoked lysosomal enlargement whilst Cd-exposure led to fusion of lysosomes. Both thermal stress and Cd-exposure caused lysosomal membrane destabilisation. hex, gusb and ctsl genes but not hsp70 gene were transcriptionally up-regulated as a result of thermal stress. In contrast, all the studied genes were transcriptionally down-regulated in response to Cd-exposure. Cd bioaccumulation was comparable at 18 °C and 26 °C seawater temperatures but interactions between thermal stress and Cd-exposure were remarkable both in lysosomal biomarkers and in gene transcription. hex, gusb and ctsl genes, reacted to elevated temperature in absence of Cd but not in Cd-exposed mussels. Therefore, thermal stress resulting from global warming might influence the use and interpretation of lysosomal biomarkers in marine pollution

  2. Not nanocarbon but dispersant induced abnormality in lysosome in macrophages in vivo

    Science.gov (United States)

    Yudasaka, Masako; Zhang, Minfang; Matsumura, Sachiko; Yuge, Ryota; Ichihashi, Toshinari; Irie, Hiroshi; Shiba, Kiyotaka; Iijima, Sumio

    2015-05-01

    The properties of nanocarbons change from hydrophobic to hydrophilic as a result of coating them with dispersants, typically phospholipid polyethylene glycols, for biological studies. It has been shown that the dispersants remain attached to the nanocarbons when they are injected in mice and influence the nanocarbons’ biodistribution in vivo. We show in this report that the effects of dispersants also appear at the subcellular level in vivo. Carbon nanohorns (CNHs), a type of nanocarbon, were dispersed with ceramide polyethylene glycol (CPEG) and intravenously injected in mice. Histological observations and electron microscopy with energy dispersive x-ray analysis revealed that, in liver and spleen, the lysosome membranes were damaged, and the nanohorns formed a complex with hemosiderin in the lysosomes of the macrophages. It is inferred that the lysosomal membrane was damaged by sphigosine generated as a result of CPEG decomposition, which changed the intra lysosomal conditions, inducing the formation of the CPEG-CNH and hemosiderin complex. For comparison, when glucose was used instead of CPEG, neither the nanohorn-hemosiderin complex nor lysosomal membrane damage was found. Our results suggest that surface functionalization can control the behavior of nancarbons in cells in vivo and thereby improve their suitability for medical applications.

  3. 溶酶体膜蛋白LAMP3对肝癌转移影响的研究进展%Progress of metastasis in hepatic cell carcinoma effected by lysosome-associated mem-brane proteins(LAMP3)

    Institute of Scientific and Technical Information of China (English)

    任庆; 谭宁

    2015-01-01

    原发性肝细胞肝癌( hepatic cell carcinoma,HCC)是广西区域性高发恶性肿瘤,其预后与肝癌是否转移密切相关。目前有研究发现溶酶体膜相关蛋白LAMP3在肝癌细胞稳定过表达后,可促进肝癌细胞的转移,同时诱导细胞骨架F-actin重排并上调Cdc42活性,提示LAMP3可能是肝癌转移的促进因子。本文就溶酶体膜蛋白LAMP3对肝癌转移的意义作一综述。%Hepatic cell carcinoma( HCC)was regional and high incidence of malignant tumor in Guangxi Province, the prognosis was closely related with metastasis whether or not. At present,some studies have discovered that lyso-some-associated membrane proteins( LAMP3 )stable over expression in hepatocellular carcinoma cells,which could promote the metastasis,at the same time induced cytoskeletal F-actin rearrangement and upregulation of Cdc42 ac-tivity. Results suggest that LAMP3 is a metastasis promoting factor. The lysosomal membrane protein LAMP3 on liver metastasis were reviewed in this article.

  4. Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage.

    Science.gov (United States)

    Feofanov, Alexei V; Sharonov, George V; Astapova, Maria V; Rodionov, Dmitriy I; Utkin, Yuriy N; Arseniev, Alexander S

    2005-08-15

    Cytotoxins from cobra venom are known to manifest cytotoxicity in various cell types. It is widely accepted that the plasma membrane is a target of cytotoxins, but the mechanism of their action remains obscure. Using the confocal spectral imaging technique, we show for the first time that cytotoxins from cobra venom penetrate readily into living cancer cells and accumulate markedly in lysosomes. Cytotoxins CT1 and CT2 from Naja oxiana, CT3 from Naja kaouthia and CT1 from Naja haje are demonstrated to possess this property with respect to human lung adenocarcinoma A549 and promyelocytic leukaemia HL60 cells. Immobilized plasma membrane binding accompanies the internalization of CT3 from Naja kaouthia in the HL60 cells, but it is very weak for other cytotoxins. Detectable membrane binding is not a property of any of the cytotoxins tested in A549 cells. The kinetics and concentration-dependence of cytotoxin accumulation in lysosomes correlate well with their cytotoxic effects. On the basis of the results obtained, we propose that lysosomes are a primary target of the lytic action of cytotoxins. Plasma membrane permeabilization seems to be a downstream event relative to lysosome rupture. Direct damage to the plasma membrane may be a complementary mechanism, but its relative contribution to the cytotoxic action depends on the cytotoxin structure and cell type.

  5. [Population pressure: a factor of political destabilization].

    Science.gov (United States)

    Tallon, F

    1993-04-01

    Political stability throughout the world appears to be greater in countries with slowly growing populations than in those with rapid growth. Population is not the only influence on political stability, however. The relationship between political stability and development is strong. The rich countries with the slowest growth are the most stable, while poor developing countries with rapid growth suffer from chronic instability. Demographic pressure and density are not the same thing and must be distinguished. A fragile environment like that of the Sahel will experience demographic pressure despite low density. Japan has a greater population density than Rwanda and little cultivable land, but the population has a high standard of living. demographic pressure is not comparable in Japan and Rwanda because Japan has slow population growth and stable democratic political institutions. The rate of growth seems to be a more important element in destabilization than density. Rapid growth creates enormous political tensions especially when profound ethnic divisions exist, and it complicates problems of government by encouraging rapid urbanization. The unbalanced age structures resulting from rapid growth hinder the satisfaction of employment, educational, and health care needs for the ever-increasing masses of young people. 49% of Rwanda's population is under 15 and 66% is under 25. Rwanda is already densely populated, with around 300 inhabitants/sq km, and its population is projected to double in 20 years. 95% of the population is dependent on agriculture, but by 1988 the average landholding per family was only 1.25 hectares and 58% of families did not grown sufficient food for household needs. Further reduction in the size of holdings or a growing landless population will have multiple consequences. Urban migration will inevitably increase, bringing with it all the problems so evident in other poor countries where the process is more advanced than in Rwanda. Chaotic

  6. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation.

    Science.gov (United States)

    Wang, Wuyang; Gao, Qiong; Yang, Meimei; Zhang, Xiaoli; Yu, Lu; Lawas, Maria; Li, Xinran; Bryant-Genevier, Marthe; Southall, Noel T; Marugan, Juan; Ferrer, Marc; Xu, Haoxing

    2015-03-17

    Upon nutrient starvation, autophagy digests unwanted cellular components to generate catabolites that are required for housekeeping biosynthesis processes. A complete execution of autophagy demands an enhancement in lysosome function and biogenesis to match the increase in autophagosome formation. Here, we report that mucolipin-1 (also known as TRPML1 or ML1), a Ca(2+) channel in the lysosome that regulates many aspects of lysosomal trafficking, plays a central role in this quality-control process. By using Ca(2+) imaging and whole-lysosome patch clamping, lysosomal Ca(2+) release and ML1 currents were detected within hours of nutrient starvation and were potently up-regulated. In contrast, lysosomal Na(+)-selective currents were not up-regulated. Inhibition of mammalian target of rapamycin (mTOR) or activation of transcription factor EB (TFEB) mimicked a starvation effect in fed cells. The starvation effect also included an increase in lysosomal proteostasis and enhanced clearance of lysosomal storage, including cholesterol accumulation in Niemann-Pick disease type C (NPC) cells. However, this effect was not observed when ML1 was pharmacologically inhibited or genetically deleted. Furthermore, overexpression of ML1 mimicked the starvation effect. Hence, lysosomal adaptation to environmental cues such as nutrient levels requires mTOR/TFEB-dependent, lysosome-to-nucleus regulation of lysosomal ML1 channels and Ca(2+) signaling.

  7. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro.

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A; Busto, Rebeca

    2016-03-18

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes' internal milieu induced by haloperidol affects lysosomal functionality.

  8. Para-toluenesulfonamide induces tongue squamous cell carcinoma cell death through disturbing lysosomal stability.

    Science.gov (United States)

    Liu, Zhe; Liang, Chenyuan; Zhang, Zhuoyuan; Pan, Jian; Xia, Hui; Zhong, Nanshan; Li, Longjiang

    2015-11-01

    Para-toluenesulfonamide (PTS) has been implicated with anticancer effects against a variety of tumors. In the present study, we investigated the inhibitory effects of PTS on tongue squamous cell carcinoma (Tca-8113) and explored the lysosomal and mitochondrial changes after PTS treatment in vitro. High-performance liquid chromatography showed that PTS selectively accumulated in Tca-8113 cells with a relatively low concentration in normal fibroblasts. Next, the effects of PTS on cell viability, invasion, and cell death were determined. PTS significantly inhibited Tca-8113 cells' viability and invasive ability with increased cancer cell death. Flow cytometric analysis and the lactate dehydrogenase release assay showed that PTS induced cancer cell death by activating apoptosis and necrosis simultaneously. Morphological changes, such as cellular shrinkage, nuclear condensation as well as formation of apoptotic body and secondary lysosomes, were observed, indicating that PTS might induce cell death through disturbing lysosomal stability. Lysosomal integrity assay and western blot showed that PTS increased lysosomal membrane permeabilization associated with activation of lysosomal cathepsin B. Finally, PTS was shown to inhibit ATP biosynthesis and induce the release of mitochondrial cytochrome c. Therefore, our findings provide a novel insight into the use of PTS in cancer therapy.

  9. Streptococcus oralis Induces Lysosomal Impairment of Macrophages via Bacterial Hydrogen Peroxide.

    Science.gov (United States)

    Okahashi, Nobuo; Nakata, Masanobu; Kuwata, Hirotaka; Kawabata, Shigetada

    2016-07-01

    Streptococcus oralis, an oral commensal, belongs to the mitis group of streptococci and occasionally causes opportunistic infections, such as bacterial endocarditis and bacteremia. Recently, we found that the hydrogen peroxide (H2O2) produced by S. oralis is sufficient to kill human monocytes and epithelial cells, implying that streptococcal H2O2 is a cytotoxin. In the present study, we investigated whether streptococcal H2O2 impacts lysosomes, organelles of the intracellular digestive system, in relation to cell death. S. oralis infection induced the death of RAW 264 macrophages in an H2O2-dependent manner, which was exemplified by the fact that exogenous H2O2 also induced cell death. Infection with either a mutant lacking spxB, which encodes pyruvate oxidase responsible for H2O2 production, or Streptococcus mutans, which does not produce H2O2, showed less cytotoxicity. Visualization of lysosomes with LysoTracker revealed lysosome deacidification after infection with S. oralis or exposure to H2O2, which was corroborated by acridine orange staining. Similarly, fluorescent labeling of lysosome-associated membrane protein-1 gradually disappeared during infection with S. oralis or exposure to H2O2 The deacidification and the following induction of cell death were inhibited by chelating iron in lysosomes. Moreover, fluorescent staining of cathepsin B indicated lysosomal destruction. However, treatment of infected cells with a specific inhibitor of cathepsin B had negligible effects on cell death; instead, it suppressed the detachment of dead cells from the culture plates. These results suggest that streptococcal H2O2 induces cell death with lysosomal destruction and then the released lysosomal cathepsins contribute to the detachment of the dead cells.

  10. Eps8 is recruited to lysosomes and subjected to chaperone-mediated autophagy in cancer cells.

    Science.gov (United States)

    Welsch, Thilo; Younsi, Alexander; Disanza, Andrea; Rodriguez, Jose Antonio; Cuervo, Ana Maria; Scita, Giorgio; Schmidt, Jan

    2010-07-15

    Eps8 controls actin dynamics directly through its barbed end capping and actin-bundling activity, and indirectly by regulating Rac-activation when engaged into a trimeric complex with Eps8-Abi1-Sos1. Recently, Eps8 has been associated with promotion of various solid malignancies, but neither its mechanisms of action nor its regulation in cancer cells have been elucidated. Here, we report a novel association of Eps8 with the late endosomal/lysosomal compartment, which is independent from actin polymerization and specifically occurs in cancer cells. Endogenous Eps8 localized to large vesicular lysosomal structures in metastatic pancreatic cancer cell lines, such as AsPC-1 and Capan-1 that display high Eps8 levels. Additionally, ectopic expression of Eps8 increased the size of lysosomes. Structure-function analysis revealed that the region encompassing the amino acids 184-535 of Eps8 was sufficient to mediate lysosomal recruitment. Notably, this fragment harbors two KFERQ-like motifs required for chaperone-mediated autophagy (CMA). Furthermore, Eps8 co-immunoprecipitated with Hsc70 and LAMP-2, which are key elements for the CMA degradative pathway. Consistently, in vitro, a significant fraction of Eps8 bound to (11.9+/-5.1%) and was incorporated into (5.3+/-6.5%) lysosomes. Additionally, Eps8 binding to lysosomes was competed by other known CMA-substrates. Fluorescence recovery after photobleaching revealed that Eps8 recruitment to the lysosomal membrane was highly dynamic. Collectively, these results indicate that Eps8 in certain human cancer cells specifically localizes to lysosomes, and is directed to CMA. These results open a new field for the investigation of how Eps8 is regulated and contributes to tumor promotion in human cancers.

  11. Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells.

    Science.gov (United States)

    Canonico, B; Campana, R; Luchetti, F; Arcangeletti, M; Betti, M; Cesarini, E; Ciacci, C; Vittoria, E; Galli, L; Papa, S; Baffone, W

    2014-08-01

    Campylobacter jejuni is the most common cause of bacterial gastroenteritis in humans. The synthesis of cytolethal distending toxin appears essential in the infection process. In this work we evaluated the sequence of lethal events in HeLa cells exposed to cell lysates of two distinct strains, C. jejuni ATCC 33291 and C. jejuni ISS3. C. jejuni cell lysates (CCLys) were added to HeLa cell monolayers which were analysed to detect DNA content, death features, bcl-2 and p53 status, mitochondria/lysosomes network and finally, CD54 and CD59 alterations, compared to cell lysates of C. jejuni 11168H cdtA mutant. We found mitochondria and lysosomes differently targeted by these bacterial lysates. Death, consistent with apoptosis for C. jejuni ATCC 33291 lysate, occurred in a slow way (>48 h); concomitantly HeLa cells increase their endolysosomal compartment, as a consequence of toxin internalization besides a simultaneous and partial lysosomal destabilization. C. jejuni CCLys induces death in HeLa cells mainly via a caspase-dependent mechanism although a p53 lysosomal pathway (also caspase-independent) seems to appear in addition. In C. jejuni ISS3-treated cells, the p53-mediated oxidative degradation of mitochondrial components seems to be lost, inducing the deepest lysosomal alterations. Furthermore, CD59 considerably decreases, suggesting both a degradation or internalisation pathway. CCLys-treated HeLa cells increase CD54 expression on their surface, because of the action of lysate as its double feature of toxin and bacterial peptide. In conclusion, we revealed that C. jejuni CCLys-treated HeLa cells displayed different features, depending on the particular strain.

  12. Thermodynamics of protein destabilization in live cells.

    Science.gov (United States)

    Danielsson, Jens; Mu, Xin; Lang, Lisa; Wang, Huabing; Binolfi, Andres; Theillet, François-Xavier; Bekei, Beata; Logan, Derek T; Selenko, Philipp; Wennerström, Håkan; Oliveberg, Mikael

    2015-10-06

    Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a β-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 °C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein's interplay with the functionally optimized "interaction landscape" of the cellular interior.

  13. Lysosomal exoglycosidases in nasal polyps.

    Science.gov (United States)

    Chojnowska, Sylwia; Minarowska, Alina; Knaś, Małgorzata; Niemcunowicz-Janica, Anna; Kołodziejczyk, Paweł; Zalewska-Szajda, Beata; Kępka, Alina; Minarowski, Łukasz; Waszkiewicz, Napoleon; Zwierz, Krzysztof; Szajda, Sławomir Dariusz

    2013-01-01

    Nasal polyps are smooth outgrowths assuming a shape of grapes, formed from the nasal mucosa, limiting air flow by projecting into a lumen of a nasal cavity. Up to now the surgical resection is the best method of their treatment, but etiology and pathogenesis of the nasal polyps is not yet fully established. The aim of the study was the assessment of the selected lysosomal exoglycosidases activity in the nasal polyps. In this study the activity of β-galactosidase, α-mannosidase and α-fucosidase was determined in the tissue of the nasal polyps obtained from 40 patients (10F, 30M) and control tissues derived from mucosa of lower nasal conchas obtained during mucotomy from 20 patients (10F, 10M). We observed significant lower values of GAL, FUC and tendency to decrease of MAN and GLU concentration in nasal polyps (P) in comparison to control healthy nasal mucosa (C). In nasal polyp tissue (P) no differences of GAL, MAN and FUC specific activity in comparison to control mucosa (C) were found. Our research supports bioelectrical theory of the nasal polyps pathogenesis and directs attention at research on glycoconjugates and glycosidases of the nasal mucosa extracellular matrix. Copyright © 2013 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  14. Presenilin 1 maintains lysosomal Ca2+ homeostasis by regulating vATPase-mediated lysosome acidification

    Science.gov (United States)

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M.; Haslett, Luke J.; Kumar, Asok; Sato, Yutaka; Lie, Pearl P. Y.; Mohan, Panaiyur; Coffey, Erin E.; Kompella, Uday; Mitchell, Claire H.; Lloyd-Evans, Emyr; Nixon, Ralph A.

    2015-01-01

    Summary Presenilin-1 (PS1) deletion or Alzheimer’s Disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss of function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism. PMID:26299959

  15. Phototoxic effects of lysosome-associated genetically encoded photosensitizer KillerRed

    Science.gov (United States)

    Serebrovskaya, Ekaterina O.; Ryumina, Alina P.; Boulina, Maria E.; Shirmanova, Marina V.; Zagaynova, Elena V.; Bogdanova, Ekaterina A.; Lukyanov, Sergey A.; Lukyanov, Konstantin A.

    2014-07-01

    KillerRed is a unique phototoxic red fluorescent protein that can be used to induce local oxidative stress by green-orange light illumination. Here we studied phototoxicity of KillerRed targeted to cytoplasmic surface of lysosomes via fusion with Rab7, a small GTPase that is known to be attached to membranes of late endosomes and lysosomes. It was found that lysosome-associated KillerRed ensures efficient light-induced cell death similar to previously reported mitochondria- and plasma membrane-localized KillerRed. Inhibitory analysis demonstrated that lysosomal cathepsins play an important role in the manifestation of KillerRed-Rab7 phototoxicity. Time-lapse monitoring of cell morphology, membrane integrity, and nuclei shape allowed us to conclude that KillerRed-Rab7-mediated cell death occurs via necrosis at high light intensity or via apoptosis at lower light intensity. Potentially, KillerRed-Rab7 can be used as an optogenetic tool to direct target cell populations to either apoptosis or necrosis.

  16. Trehalose-induced destabilization of interdigitated gel phase in dihexadecylphosphatidylcholine.

    Science.gov (United States)

    Takahashi, H; Ohmae, H; Hatta, I

    1997-01-01

    Trehalose is believed to have the ability to protect some organisms against low temperatures. To clarify the cryoprotective mechanism of trehalose, the structure and the phase behavior of fully hydrated dihexadecylphosphatidylcholine (DHPC) membranes in the presence of various concentrations of trehalose were studied by means of differential scanning calorimetry (DSC), static x-ray diffraction, and simultaneous x-ray diffraction and DSC measurements. The temperature of the interdigitated gel (Lbeta(i))-to-ripple (Pbeta') phase transition of DHPC decreases with a rise in trehalose concentration up to approximately 1.0 M. Above a trehalose concentration of approximately 1.0 M, no Lbeta(i) phase is observed. In this connection, the electron density profile calculated from the lamellar diffraction data in the presence of 1.6 M trehalose indicates that DHPC forms noninterdigitated bilayers below the P beta' phase. It was concluded that trehalose destabilizes the Lbeta(i) phase of DHPC bilayers. This suggests that trehalose reduces the area at the interface between the lipid and water. The relation between this effect of trehalose and a low temperature tolerance was discussed from the viewpoint of cold-induced denaturation of proteins. PMID:9414217

  17. Application of a battery of biomarkers in mussel digestive gland to assess long-term effects of the Prestige oil spill in Galicia and the Bay of Biscay: lysosomal responses.

    Science.gov (United States)

    Garmendia, Larraitz; Izagirre, Urtzi; Cajaraville, Miren P; Marigómez, Ionan

    2011-04-01

    In order to assess the long-term lysosomal responses to the Prestige oil spill (POS), mussels, Mytilus galloprovincialis, were collected in 22 localities from Galicia and the Bay of Biscay (North Iberian peninsula) in July, and September 2003, April, July, and October 2004-2005 and April 2006. Lysosomal membrane stability (labilisation period, LP) and lysosomal structural changes (lysosomal volume density, Vv(L) and lysosomal surface-to-volume ratio, S/V(L)) were measured as general stress biomarkers. The most remarkable long-term effects after the POS were drastic changes in lysosomal size (lysosomal enlargement) and membrane stability (extremely low LP values) up to April-04. Later on, a recovery trend was envisaged all along the studied area after July-04, albeit membrane stability continued to be below 20 min throughout the studied period up to April-06, which indicates a "distress-to-moderate-stress" condition. Lysosomal Response Index (LRI) revealed that environmental stress was more marked in Galicia than in the Bay of Biscay, mainly in the first sampling year, although a "moderate-to-high-stress" condition persisted until July-05. Overall, although lysosomal size returned to reference values, membrane stability was not fully recovered indicating a stress situation throughout the studied period.

  18. Lysosomal Storage Disorders and Malignancy

    Directory of Open Access Journals (Sweden)

    Gregory M. Pastores

    2017-02-01

    Full Text Available Lysosomal storage disorders (LSDs are infrequent to rare conditions caused by mutations that lead to a disruption in the usual sequential degradation of macromolecules or their transit within the cell. Gaucher disease (GD, a lipidosis, is among the most common LSD, with an estimated incidence of 1 in 40,000 among the Caucasian, non-Jewish population. Studies have indicated an increased frequency of polyclonal and monoclonal gammopathy among patients with GD. It has been shown that two major sphingolipids that accumulate in GD, namely, β-glucosylceramide 22:0 (βGL1-22 and glucosylsphingosine (LGL1, can be recognized by a distinct subset of CD1d-restricted human and murine type II natural killer T (NKT cells. Investigations undertaken in an affected mouse model revealed βGL1-22- and LGL1-specific NKT cells were present and constitutively promoted the expression of a T-follicular helper (TFH phenotype; injection of these lipids led to downstream induction of germinal center B cells, hypergammaglobulinemia, and the production of antilipid antibodies. Subsequent studies have found clonal immunoglobulin in 33% of sporadic human monoclonal gammopathies is also specific for the lysolipids LGL1 and lysophosphatidylcholine (LPC. Furthermore, substrate reduction ameliorated GD-associated gammopathy in mice. It had been hypothesized that chronic antigenic stimulation by the abnormal lipid storage and associated immune dysregulation may be the underlying mechanism for the increased incidence of monoclonal and polyclonal gammopathies, as well as an increased incidence of multiple myeloma in patients with GD. Current observations support this proposition and illustrate the value of investigations into rare diseases, which as ‘experiments of nature’ may provide insights into conditions found in the general population that continue to remain incompletely understood.

  19. Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases.

    Science.gov (United States)

    Oh, Doo-Byoung

    2015-08-01

    Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy.

  20. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Directory of Open Access Journals (Sweden)

    Alberto Canfrán-Duque

    2016-03-01

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2 and LBPA (lysobisphosphatidic acid, which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1 and coatomer subunit β (β-COP were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality.

  1. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C.; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A.; Busto, Rebeca

    2016-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality. PMID:26999125

  2. A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency

    Science.gov (United States)

    Tharkeshwar, Arun Kumar; Trekker, Jesse; Vermeire, Wendy; Pauwels, Jarne; Sannerud, Ragna; Priestman, David A.; Te Vruchte, Danielle; Vints, Katlijn; Baatsen, Pieter; Decuypere, Jean-Paul; Lu, Huiqi; Martin, Shaun; Vangheluwe, Peter; Swinnen, Johannes V.; Lagae, Liesbet; Impens, Francis; Platt, Frances M.; Gevaert, Kris; Annaert, Wim

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have mainly been used as cellular carriers for genes and therapeutic products, while their use in subcellular organelle isolation remains underexploited. We engineered SPIONs targeting distinct subcellular compartments. Dimercaptosuccinic acid-coated SPIONs are internalized and accumulate in late endosomes/lysosomes, while aminolipid-SPIONs reside at the plasma membrane. These features allowed us to establish standardized magnetic isolation procedures for these membrane compartments with a yield and purity permitting proteomic and lipidomic profiling. We validated our approach by comparing the biomolecular compositions of lysosomes and plasma membranes isolated from wild-type and Niemann-Pick disease type C1 (NPC1) deficient cells. While the accumulation of cholesterol and glycosphingolipids is seen as a primary hallmark of NPC1 deficiency, our lipidomics analysis revealed the buildup of several species of glycerophospholipids and other storage lipids in selectively late endosomes/lysosomes of NPC1-KO cells. While the plasma membrane proteome remained largely invariable, we observed pronounced alterations in several proteins linked to autophagy and lysosomal catabolism reflecting vesicular transport obstruction and defective lysosomal turnover resulting from NPC1 deficiency. Thus the use of SPIONs provides a major advancement in fingerprinting subcellular compartments, with an increased potential to identify disease-related alterations in their biomolecular compositions.

  3. A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency

    Science.gov (United States)

    Tharkeshwar, Arun Kumar; Trekker, Jesse; Vermeire, Wendy; Pauwels, Jarne; Sannerud, Ragna; Priestman, David A.; te Vruchte, Danielle; Vints, Katlijn; Baatsen, Pieter; Decuypere, Jean-Paul; Lu, Huiqi; Martin, Shaun; Vangheluwe, Peter; Swinnen, Johannes V.; Lagae, Liesbet; Impens, Francis; Platt, Frances M.; Gevaert, Kris; Annaert, Wim

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have mainly been used as cellular carriers for genes and therapeutic products, while their use in subcellular organelle isolation remains underexploited. We engineered SPIONs targeting distinct subcellular compartments. Dimercaptosuccinic acid-coated SPIONs are internalized and accumulate in late endosomes/lysosomes, while aminolipid-SPIONs reside at the plasma membrane. These features allowed us to establish standardized magnetic isolation procedures for these membrane compartments with a yield and purity permitting proteomic and lipidomic profiling. We validated our approach by comparing the biomolecular compositions of lysosomes and plasma membranes isolated from wild-type and Niemann-Pick disease type C1 (NPC1) deficient cells. While the accumulation of cholesterol and glycosphingolipids is seen as a primary hallmark of NPC1 deficiency, our lipidomics analysis revealed the buildup of several species of glycerophospholipids and other storage lipids in selectively late endosomes/lysosomes of NPC1-KO cells. While the plasma membrane proteome remained largely invariable, we observed pronounced alterations in several proteins linked to autophagy and lysosomal catabolism reflecting vesicular transport obstruction and defective lysosomal turnover resulting from NPC1 deficiency. Thus the use of SPIONs provides a major advancement in fingerprinting subcellular compartments, with an increased potential to identify disease-related alterations in their biomolecular compositions. PMID:28134274

  4. The role of VAMP7/TI-VAMP in cell polarity and lysosomal exocytosis in vivo.

    Science.gov (United States)

    Sato, Mahito; Yoshimura, Shinichiro; Hirai, Rika; Goto, Ayako; Kunii, Masataka; Atik, Nur; Sato, Takashi; Sato, Ken; Harada, Reiko; Shimada, Junko; Hatabu, Toshimitsu; Yorifuji, Hiroshi; Harada, Akihiro

    2011-10-01

    VAMP7 or tetanus neurotoxin-insensitive vesicle- associated membrane protein (TI-VAMP) has been proposed to regulate apical transport in polarized epithelial cells, axonal transport in neurons and lysosomal exocytosis. To investigate the function of VAMP7 in vivo, we generated VAMP7 knockout mice. Here, we show that VAMP7 knockout mice are indistinguishable from control mice and display a similar localization of apical proteins in the kidney and small intestine and a similar localization of axonal proteins in the nervous system. Neurite outgrowth of cultured mutant hippocampal neurons was reduced in mutant neurons. However, lysosomal exocytosis was not affected in mutant fibroblasts. Our results show that VAMP7 is required in neurons to extend axons to the full extent. However, VAMP7 does not seem to be required for epithelial cell polarity and lysosomal exocytosis.

  5. The Phosphoinositide-Gated Lysosomal Ca(2+) Channel, TRPML1, Is Required for Phagosome Maturation.

    Science.gov (United States)

    Dayam, Roya M; Saric, Amra; Shilliday, Ryan E; Botelho, Roberto J

    2015-09-01

    Macrophages internalize and sequester pathogens into a phagosome. Phagosomes then sequentially fuse with endosomes and lysosomes, converting into degradative phagolysosomes. Phagosome maturation is a complex process that requires regulators of the endosomal pathway including the phosphoinositide lipids. Phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2 ), which respectively control early endosomes and late endolysosomes, are both required for phagosome maturation. Inhibition of PIKfyve, which synthesizes PtdIns(3,5)P2 , blocked phagosome-lysosome fusion and abated the degradative capacity of phagosomes. However, it is not known how PIKfyve and PtdIns(3,5)P2 participate in phagosome maturation. TRPML1 is a PtdIns(3,5)P2 -gated lysosomal Ca(2+) channel. Because Ca(2+) triggers membrane fusion, we postulated that TRPML1 helps mediate phagosome-lysosome fusion. Using Fcγ receptor-mediated phagocytosis as a model, we describe our research showing that silencing of TRPML1 hindered phagosome acquisition of lysosomal markers and reduced the bactericidal properties of phagosomes. Specifically, phagosomes isolated from TRPML1-silenced cells were decorated with lysosomes that docked but did not fuse. We could rescue phagosome maturation in TRPML1-silenced and PIKfyve-inhibited cells by forcible Ca(2+) release with ionomycin. We also provide evidence that cytosolic Ca(2+) concentration increases upon phagocytosis in a manner dependent on TRPML1 and PIKfyve. Overall, we propose a model where PIKfyve and PtdIns(3,5)P2 activate TRPML1 to induce phagosome-lysosome fusion.

  6. Adaptor Protein Complexes AP-1 and AP-3 Are Required by the HHV-7 Immunoevasin U21 for Rerouting of Class I MHC Molecules to the Lysosomal Compartment

    Science.gov (United States)

    Kimpler, Lisa A.; Glosson, Nicole L.; Downs, Deanna; Gonyo, Patrick; May, Nathan A.; Hudson, Amy W.

    2014-01-01

    The human herpesvirus-7 (HHV-7) U21 gene product binds to class I major histocompatibility complex (MHC) molecules and reroutes them to a lysosomal compartment. Trafficking of integral membrane proteins to lysosomes is mediated through cytoplasmic sorting signals that recruit heterotetrameric clathrin adaptor protein (AP) complexes, which in turn mediate protein sorting in post-Golgi vesicular transport. Since U21 can mediate rerouting of class I molecules to lysosomes even when lacking its cytoplasmic tail, we hypothesize the existence of a cellular protein that contains the lysosomal sorting information required to escort class I molecules to the lysosomal compartment. If such a protein exists, we expect that it might recruit clathrin adaptor protein complexes as a means of lysosomal sorting. Here we describe experiments demonstrating that the μ adaptins from AP-1 and AP-3 are involved in U21-mediated trafficking of class I molecules to lysosomes. These experiments support the idea that a cellular protein(s) is necessary for U21-mediated lysosomal sorting of class I molecules. We also examine the impact of transient versus chronic knockdown of these adaptor protein complexes, and show that the few remaining μ subunits in the cells are eventually able to reroute class I molecules to lysosomes. PMID:24901711

  7. Thrombin-induced lysosomal exocytosis in human platelets is dependent on secondary activation by ADP and regulated by endothelial-derived substances.

    Science.gov (United States)

    Södergren, Anna L; Svensson Holm, Ann-Charlotte B; Ramström, Sofia; Lindström, Eva G; Grenegård, Magnus; Öllinger, Karin

    2016-01-01

    Exocytosis of lysosomal contents from platelets has been speculated to participate in clearance of thrombi and vessel wall remodelling. The mechanisms that regulate lysosomal exocytosis in platelets are, however, still unclear. The aim of this study was to identify the pathways underlying platelet lysosomal secretion and elucidate how this process is controlled by platelet inhibitors. We found that high concentrations of thrombin induced partial lysosomal exocytosis as assessed by analysis of the activity of released N-acetyl-β-glucosaminidase (NAG) and by identifying the fraction of platelets exposing the lysosomal-associated membrane protein (LAMP)-1 on the cell surface by flow cytometry. Stimulation of thrombin receptors PAR1 or PAR4 with specific peptides was equally effective in inducing LAMP-1 surface expression. Notably, lysosomal exocytosis in response to thrombin was significantly reduced if the secondary activation by ADP was inhibited by the P2Y12 antagonist cangrelor, while inhibition of thromboxane A2 formation by treatment with acetylsalicylic acid was of minor importance in this regard. Moreover, the NO-releasing drug S-nitroso-N-acetyl penicillamine (SNAP) or the cyclic AMP-elevating eicosanoid prostaglandin I2 (PGI2) significantly suppressed lysosomal exocytosis. We conclude that platelet inhibitors that mimic functional endothelium such as PGI2 or NO efficiently counteract lysosomal exocytosis. Furthermore, we suggest that secondary release of ADP and concomitant signaling via PAR1/4- and P2Y12 receptors is important for efficient platelet lysosomal exocytosis by thrombin.

  8. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology

    DEFF Research Database (Denmark)

    Kirkegaard, Thomas; Roth, Anke G; Petersen, Nikolaj H T

    2010-01-01

    inhibition of ASM, effectively revert the Hsp70-mediated stabilization of lysosomes. Notably, the reduced ASM activity in cells from patients with Niemann-Pick disease (NPD) A and B-severe lysosomal storage disorders caused by mutations in the sphingomyelin phosphodiesterase 1 gene (SMPD1) encoding for ASM...

  9. Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity.

    Science.gov (United States)

    Marino, Julieta; García Vior, María C; Furmento, Verónica A; Blank, Viviana C; Awruch, Josefina; Roguin, Leonor P

    2013-11-01

    In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells. ROS led to an early permeabilization of lysosomal membranes as demonstrated by the reduction of lysosome fluorescence with acridine orange and the release of lysosomal proteases to cytosol. Treatment with antioxidants inhibited ROS generation, preserved the integrity of lysosomal membrane and increased cell proliferation in a concentration-dependent manner. Lysosome disruption was followed by mitochondrial depolarization, cytosolic release of cytochrome C and caspases activation. Although no change in the total amount of Bax was observed, the translocation of Bax from cytosol to mitochondria, the cleavage of the pro-apoptotic protein Bid, together with the decrease of the anti-apoptotic proteins Bcl-XL and Bcl-2 indicated the involvement of Bcl-2 family proteins in the induction of the mitochondrial pathway. It was also demonstrated that cathepsin D, but not caspase-8, contributed to Bid cleavage. In conclusion, Pc13-induced cell photodamage is triggered by ROS generation and activation of the mitochondrial apoptotic pathway through the release of lysosomal proteases. In addition, our results also indicated that Pc13 induced

  10. LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes.

    Science.gov (United States)

    Hubert, Virginie; Peschel, Andrea; Langer, Brigitte; Gröger, Marion; Rees, Andrew; Kain, Renate

    2016-10-15

    Autophagy is an evolutionarily conserved process used for removing surplus and damaged proteins and organelles from the cytoplasm. The unwanted material is incorporated into autophagosomes that eventually fuse with lysosomes, leading to the degradation of their cargo. The fusion event is mediated by the interaction between the Qa-SNARE syntaxin-17 (STX17) on autophagosomes and the R-SNARE VAMP8 on lysosomes. Cells deficient in lysosome membrane-associated protein-2 (LAMP-2) have increased numbers of autophagosomes but the underlying mechanism is poorly understood. By transfecting LAMP-2-deficient and LAMP-1/2--double-deficient mouse embryonic fibroblasts (MEFs) with a tandem fluorescent-tagged LC3 we observed a failure of fusion between the autophagosomes and the lysosomes that could be rescued by complementation with LAMP-2A. Although we observed no change in expression and localization of VAMP8, its interacting partner STX17 was absent from autophagosomes of LAMP-2-deficient cells. Thus, LAMP-2 is essential for STX17 expression by the autophagosomes and this absence is sufficient to explain their failure to fuse with lysosomes. The results have clear implications for situations associated with a reduction of LAMP-2 expression.

  11. Endo-lysosomal TRP mucolipin-1 channels trigger global ER Ca2+ release and Ca2+ influx

    Science.gov (United States)

    Kilpatrick, Bethan S.; Yates, Elizabeth; Grimm, Christian; Schapira, Anthony H.

    2016-01-01

    ABSTRACT Transient receptor potential (TRP) mucolipins (TRPMLs), encoded by the MCOLN genes, are patho-physiologically relevant endo-lysosomal ion channels crucial for membrane trafficking. Several lines of evidence suggest that TRPMLs mediate localised Ca2+ release but their role in Ca2+ signalling is not clear. Here, we show that activation of endogenous and recombinant TRPMLs with synthetic agonists evoked global Ca2+ signals in human cells. These signals were blocked by a dominant-negative TRPML1 construct and a TRPML antagonist. We further show that, despite a predominant lysosomal localisation, TRPML1 supports both Ca2+ release and Ca2+ entry. Ca2+ release required lysosomal and ER Ca2+ stores suggesting that TRPMLs, like other endo-lysosomal Ca2+ channels, are capable of ‘chatter’ with ER Ca2+ channels. Our data identify new modalities for TRPML1 action. PMID:27577094

  12. Visualization of ceramide channels in lysosomes following endogenous palmitoyl-ceramide accumulation as an initial step in the induction of necrosis

    Directory of Open Access Journals (Sweden)

    Mototeru Yamane

    2017-09-01

    Full Text Available In this study, we showed that the dual addition of glucosyl ceramide synthase and ceramidase inhibitors to A549 cell culture led to the possibility of ceramide channel formation via endogenous palmitoyl-ceramide accumulation with an increase in cholesterol contents in the lysosome membrane as an initial step prior to initiation of necrotic cell death. In addition, the dual addition led to black circular structures of 10–20 nm, interpreted as stain-filled cylindrical channels on transmission electron microscopy. The formation of palmitoyl-ceramide channels in the lysosome membrane causes the liberation of cathepsin B from lysosomes for necrotic cell death. On the other hand, necrotic cell death in the dual addition was not caused by oxidative stress or cathepsin B activity, and the cell death was free from the contribution of the translation of Bax protein to the lysosome membrane.

  13. AP-3 and Rabip4' coordinately regulate spatial distribution of lysosomes.

    Directory of Open Access Journals (Sweden)

    Viorica Ivan

    Full Text Available The RUN and FYVE domain proteins rabip4 and rabip4' are encoded by RUFY1 and differ in a 108 amino acid N-terminal extension in rabip4'. Their identical C terminus binds rab5 and rab4, but the function of rabip4s is incompletely understood. We here found that silencing RUFY1 gene products promoted outgrowth of plasma membrane protrusions, and polarized distribution and clustering of lysosomes at their tips. An interactor screen for proteins that function together with rabip4' yielded the adaptor protein complex AP-3, of which the hinge region in the β3 subunit bound directly to the FYVE domain of rabip4'. Rabip4' colocalized with AP-3 on a tubular subdomain of early endosomes and the extent of colocalization was increased by a dominant negative rab4 mutant. Knock-down of AP-3 had an ever more dramatic effect and caused accumulation of lysosomes in protrusions at the plasma membrane. The most peripheral lysosomes were localized beyond microtubules, within the cortical actin network. Our results uncover a novel function for AP-3 and rabip4' in regulating lysosome positioning through an interorganellar pathway.

  14. Klebsiella pneumoniae survives within macrophages by avoiding delivery to lysosomes.

    Science.gov (United States)

    Cano, Victoria; March, Catalina; Insua, Jose Luis; Aguiló, Nacho; Llobet, Enrique; Moranta, David; Regueiro, Verónica; Brennan, Gerard P; Millán-Lou, Maria Isabel; Martín, Carlos; Garmendia, Junkal; Bengoechea, José A

    2015-11-01

    Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that Klebsiella might be able to persist intracellularly within a vacuolar compartment. This study was designed to investigate the interaction between Klebsiella and macrophages. Engulfment of K. pneumoniae was dependent on host cytoskeleton, cell plasma membrane lipid rafts and the activation of phosphoinositide 3-kinase (PI3K). Microscopy studies revealed that K. pneumoniae resides within a vacuolar compartment, the Klebsiella-containing vacuole (KCV), which traffics within vacuoles associated with the endocytic pathway. In contrast to UV-killed bacteria, the majority of live bacteria did not co-localize with markers of the lysosomal compartment. Our data suggest that K. pneumoniae triggers a programmed cell death in macrophages displaying features of apoptosis. Our efforts to identify the mechanism(s) whereby K. pneumoniae prevents the fusion of the lysosomes to the KCV uncovered the central role of the PI3K-Akt-Rab14 axis to control the phagosome maturation. Our data revealed that the capsule is dispensable for Klebsiella intracellular survival if bacteria were not opsonized. Furthermore, the environment found by Klebsiella within the KCV triggered the down-regulation of the expression of cps. Altogether, this study proves evidence that K. pneumoniae survives killing by macrophages by manipulating phagosome maturation that may contribute to Klebsiella pathogenesis.

  15. Effects of contaminant exposure and food restriction on hepatic autophagic lysosomal parameters in Herring Gull (Larus argentatus) chicks.

    Science.gov (United States)

    Hegseth, Marit Nøst; Gorbi, Stephania; Bocchetti, Raffaella; Camus, Lionel; Gabrielsen, Geir Wing; Regoli, Francesco

    2014-08-01

    Lysosomal autophagic responses, such as lysosomal membrane stability, neutral lipids (NL), lipofuscin (LF), and malondialdehyde (MDA) levels, are valuable measures of cellular early-onset effects induced by environmental stress factors, such as contaminant exposure and fasting. In this study, these parameters were analysed and related to levels of halogenated organic contaminants (HOCs) in 40 Herring Gull (Larus argentatus) chicks. Chicks were experimentally exposed to HOCs through diet and went through a period of nutrient deprivation at the end of the experiment. HOC exposure and fasting were conducted separately and in combination. NL storages were depleted, and lysosomal membranes were destabilised after HOC exposure and nutrient deprivation. These responses were not related specifically to one type of stress or the extent of the treatment. No synergistic or additive effects from the combination of HOC exposure and fasting were observed. LF accumulated, and MDA levels increased as a result of fasting, but were unaffected by HOC exposure. LF accumulation was strongly associated with the percent weight change in the chicks. Large weight loss was associated with high LF levels, and slight weight gain was associated with low LF levels. Hence, food deprivation affected all the measured parameters, and HOC exposure decreased NL levels and lysosomal membrane stability in HG chick liver. Furthermore, autophagic lysosomal parameters have frequently been applied as biomarkers of cellular health status in previous studies of marine and terrestrial invertebrates, and this study suggests that these parameters may be good candidates for biomarkers of cellular health status in seabirds as well.

  16. Citreoviridin Induces Autophagy-Dependent Apoptosis through Lysosomal-Mitochondrial Axis in Human Liver HepG2 Cells.

    Science.gov (United States)

    Wang, Yuexia; Liu, Yanan; Liu, Xiaofang; Jiang, Liping; Yang, Guang; Sun, Xiance; Geng, Chengyan; Li, Qiujuan; Yao, Xiaofeng; Chen, Min

    2015-08-06

    Citreoviridin (CIT) is a mycotoxin derived from fungal species in moldy cereals. In our previous study, we reported that CIT stimulated autophagosome formation in human liver HepG2 cells. Here, we aimed to explore the relationship of autophagy with lysosomal membrane permeabilization and apoptosis in CIT-treated cells. Our data showed that CIT increased the expression of LC3-II, an autophagosome biomarker, from the early stage of treatment (6 h). After treatment with CIT for 12 h, lysosomal membrane permeabilization occurred, followed by the release of cathepsin D in HepG2 cells. Inhibition of autophagosome formation with siRNA against Atg5 attenuated CIT-induced lysosomal membrane permeabilization. In addition, CIT induced collapse of mitochondrial transmembrane potential as assessed by JC-1 staining. Furthermore, caspase-3 activity assay showed that CIT induced apoptosis in HepG2 cells. Inhibition of autophagosome formation attenuated CIT-induced apoptosis, indicating that CIT-induced apoptosis was autophagy-dependent. Cathepsin D inhibitor, pepstatin A, relieved CIT-induced apoptosis as well, suggesting the involvement of the lysosomal-mitochondrial axis in CIT-induced apoptosis. Taken together, our data demonstrated that CIT induced autophagy-dependent apoptosis through the lysosomal-mitochondrial axis in HepG2 cells. The study thus provides essential mechanistic insight, and suggests clues for the effective management and treatment of CIT-related diseases.

  17. Lysosomal Ca(2+) homeostasis: role in pathogenesis of lysosomal storage diseases.

    Science.gov (United States)

    Lloyd-Evans, Emyr; Platt, Frances M

    2011-08-01

    Disrupted cellular Ca(2+) signaling is believed to play a role in a number of human diseases including lysosomal storage diseases (LSD). LSDs are a group of ∼50 diseases caused predominantly by mutations in lysosomal proteins that result in accumulation of macromolecules within the lysosome. We recently reported that Niemann-Pick type C (NPC) is the first human disease to be associated with defective lysosomal Ca(2+) uptake and defective NAADP-mediated lysosomal Ca(2+) release. These defects in NPC cells leads to the disruption in endocytosis and subsequent lipid storage that is a feature of this disease. In contrast, Chediak-Higashi Syndrome cells have been reported to have enhanced lysosomal Ca(2+) uptake whilst the TRPML1 protein defective in mucolipidosis type IV is believed to function as a Ca(2+) channel. In this review we provide a summary of the current knowledge on the role of lysosomal Ca(2+) signaling in the pathogenesis of this group of diseases.

  18. Endo-lysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin.

    Directory of Open Access Journals (Sweden)

    Ekaterina A Ivanova

    Full Text Available Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles.

  19. Lysosomal stress: a new player in perturbed lipid metabolism

    NARCIS (Netherlands)

    Gabriel, T.L.

    2017-01-01

    Lysosomes are involved in many different essential cellular processes, among others organelle and molecule degradation, exocytosis, cell energy metabolism, cholesterol and sphingolipid level regulation. Lysosomal stress has a strong impact on the immune system, affecting specially macrophages as the

  20. Lysosomal stress: a new player in perturbed lipid metabolism

    NARCIS (Netherlands)

    Gabriel, T.L.

    2017-01-01

    Lysosomes are involved in many different essential cellular processes, among others organelle and molecule degradation, exocytosis, cell energy metabolism, cholesterol and sphingolipid level regulation. Lysosomal stress has a strong impact on the immune system, affecting specially macrophages as the

  1. Temporally remote destabilization of prediction after rare breaches of expectancy.

    Science.gov (United States)

    Kühn, Anne B; Schubotz, Ricarda I

    2012-08-01

    While neural signatures of breaches of expectancy and their immediate effects have been investigated, thus far, temporally more remote effects have been neglected. The present fMRI study explored neural correlates of temporally remote destabilization of prediction following rare breaches of expectancy with a mean delay of 14 s. We hypothesized temporally remote destabilization to be reflected either in an attenuation of areas related to long-term memory or in an increase of lateral fronto-parietal loops related to the encoding of new stimuli. Monitoring a deterministic 24-digit sequence, subjects were asked to indicate occasional sequential omissions by key press. Temporally remote destabilization of prediction was expected to be revealed by contrasting sequential events whose equivalent was omitted in the preceding sequential run n-1 (destabilized events) with sequential events without such history (nondestabilized events). Temporally remote destabilization of prediction was reflected in an attenuation of activity in the dorsal frontomedian cortex (Brodmann Area (BA) 9) bilaterally. Moreover, activation of the left medial BA 9 was enhanced by contrasting nondestabilized events with breaches. The decrease of dorsal frontomedian activation in the case of destabilized events might be interpreted as a top-down modulation on perception causing a less expectation-restricted encoding of the current stimulus and hence enabling the adaptation of expectation and prediction in the long run.

  2. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion

    Institute of Scientific and Technical Information of China (English)

    Jing Zhou; Shi-Hao Tan; Valérie Nicolas; Chantal Bauvy; Nai-Di Yang; Jianbin Zhang; Yuan Xue

    2013-01-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy.In this study,we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torinl),but not by an allosteric inhibitor (rapamycin),leads to activation of lysosomal function.Second,we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1),but not mTORC2,and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function.Third,we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation.Finally,Atg5 or Atg7deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation,suggesting that lysosomal activation occurring in the course of autophagy is dependent on antophagosome-lysosome fusion.Taken together,this study demonstrates that in the course of autophagy,lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  3. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion.

    Science.gov (United States)

    Zhou, Jing; Tan, Shi-Hao; Nicolas, Valérie; Bauvy, Chantal; Yang, Nai-Di; Zhang, Jianbin; Xue, Yuan; Codogno, Patrice; Shen, Han-Ming

    2013-04-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  4. Mucolipidosis type IV protein TRPML1-dependent lysosome formation.

    Science.gov (United States)

    Miller, Austin; Schafer, Jessica; Upchurch, Cameron; Spooner, Ellen; Huynh, Julie; Hernandez, Sebastian; McLaughlin, Brooke; Oden, Liam; Fares, Hanna

    2015-03-01

    Lysosomes are dynamic organelles that undergo cycles of fusion and fission with themselves and with other organelles. Following fusion with late endosomes to form hybrid organelles, lysosomes are reformed as discrete organelles. This lysosome reformation or formation is a poorly understood process that has not been systematically analyzed and that lacks known regulators. In this study, we quantitatively define the multiple steps of lysosome formation and identify the first regulator of this process.

  5. Effects of ethanol, acetaldehyde and cholesteryl esters on pancreatic lysosomes.

    OpenAIRE

    Wilson, J S; Apte, M V; Thomas, M. C.; Haber, P S; Pirola, R C

    1992-01-01

    Recent studies indicate that altered lysosomal function may be involved in the early stages of pancreatic injury. Chronic consumption of ethanol increases rat pancreatic lysosomal fragility. The aim of this study is to determine whether the lysosomal fragility observed after chronic ethanol consumption is mediated by ethanol per se, its oxidative metabolite acetaldehyde or cholesteryl esters (substances which accumulate in the pancreas after ethanol consumption). Pancreatic lysosomes from cho...

  6. Lysosomal storage disease 2 - Pompe's disease

    NARCIS (Netherlands)

    van der Ploeg, Ans T.; Reuser, Arnold J. J.

    2008-01-01

    Pompe's disease, glycogen-storage disease type II, and acid maltase deficiency are alternative names for the same metabolic disorder. It is a pan-ethnic autosomal recessive trait characterised by acid alpha-glucosidase deficiency leading to lysosomal glycogen storage. Pompe's disease is also

  7. Transport of Lysosome-Related Organelles

    NARCIS (Netherlands)

    Jordens, Ingrid

    2005-01-01

    Many intracellular compartments, including (MHC class II-containing) lysosomes, melanosomes and phagosomes, move along microtubules in a bi-directional manner due to the alternating activities of the plus-end directed kinesin motor and the minus-end directed dynein-dynactin motor. However, it is lar

  8. Transport of Lysosome-Related Organelles

    NARCIS (Netherlands)

    Jordens, Ingrid

    2005-01-01

    Many intracellular compartments, including (MHC class II-containing) lysosomes, melanosomes and phagosomes, move along microtubules in a bi-directional manner due to the alternating activities of the plus-end directed kinesin motor and the minus-end directed dynein-dynactin motor. However, it is

  9. Lysosomal proteolysis: effects of aging and insulin.

    Science.gov (United States)

    Gromakova, I A; Konovalenko, O A

    2003-07-01

    Age-related characteristics of the effect of insulin on the activity of lysosomal proteolytic enzymes were studied. The relationship between the insulin effect on protein degradation and insulin degradation was analyzed. The effect of insulin on the activities of lysosomal enzymes was opposite in young and old rats (inhibitory in 3-month-old and stimulatory in 24-month-old animals). The activities of proteolytic enzymes were regulated by insulin in a glucose-independent manner: similar hypoglycemic effects of insulin in animals of different ages were accompanied by opposite changes in the activities of lysosomal enzymes. The inhibition of lysosomal enzymes by insulin in 3-month-old rats is consistent with a notion on the inhibitory effect of insulin on protein degradation. An opposite insulin effect in 24-month-old rats (i.e., stimulation of proteolytic activity by insulin) may be partly associated with attenuation of the degradation of insulin, resulting in disturbances in signaling that mediates the regulatory effects of insulin on protein degradation.

  10. TPC1 has two variant isoforms, and their removal has different effects on endo-lysosomal functions compared to loss of TPC2.

    Science.gov (United States)

    Ruas, Margarida; Chuang, Kai-Ting; Davis, Lianne C; Al-Douri, Areej; Tynan, Patricia W; Tunn, Ruth; Teboul, Lydia; Galione, Antony; Parrington, John

    2014-11-01

    Organelle ion homeostasis within the endo-lysosomal system is critical for physiological functions. Two-pore channels (TPCs) are cation channels that reside in endo-lysosomal organelles, and overexpression results in endo-lysosomal trafficking defects. However, the impact of a lack of TPC expression on endo-lysosomal trafficking is unknown. Here, we characterize Tpcn1 expression in two transgenic mouse lines (Tpcn1(XG716) and Tpcn1(T159)) and show expression of a novel evolutionarily conserved Tpcn1B transcript from an alternative promoter, raising important questions regarding the status of Tpcn1 expression in mice recently described to be Tpcn1 knockouts. We show that the transgenic Tpcn1(T159) line lacks expression of both Tpcn1 isoforms in all tissues analyzed. Using mouse embryonic fibroblasts (MEFs) from Tpcn1(-/-) and Tpcn2(-/-) animals, we show that a lack of Tpcn1 or Tpcn2 expression has no significant impact on resting endo-lysosomal pH or morphology. However, differential effects in endo-lysosomal function were observed upon the loss of Tpcn1 or Tpcn2 expression; thus, while Tpcn1(-/-) MEFs have impaired trafficking of cholera toxin from the plasma membrane to the Golgi apparatus, Tpcn2(-/-) MEFs show slower kinetics of ligand-induced platelet-derived growth factor receptor β (PDGFRβ) degradation, which is dependent on trafficking to lysosomes. Our findings indicate that TPC1 and TPC2 have important but distinct roles in the endo-lysosomal pathway.

  11. Ca2+ -regulated lysosome fusion mediates angiotensin II-induced lipid raft clustering in mesenteric endothelial cells.

    Science.gov (United States)

    Han, Wei-Qing; Chen, Wen-Dong; Zhang, Ke; Liu, Jian-Jun; Wu, Yong-Jie; Gao, Ping-Jin

    2016-04-01

    It has been reported that intracellular Ca2+ is involved in lysosome fusion and membrane repair in skeletal cells. Given that angiotensin II (Ang II) elicits an increase in intracellular Ca2+ and that lysosome fusion is a crucial mediator of lipid raft (LR) clustering, we hypothesized that Ang II induces lysosome fusion and activates LR formation in rat mesenteric endothelial cells (MECs). We found that Ang II acutely increased intracellular Ca2+ content, an effect that was inhibited by the extracellular Ca2+ chelator ethylene glycol tetraacetic acid (EGTA) and the inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release inhibitor 2-aminoethoxydiphenyl borate (2-APB). Further study showed that EGTA almost completely blocked Ang II-induced lysosome fusion, the translocation of acid sphingomyelinase (ASMase) to LR clusters, ASMase activation and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase activation. In contrast, 2-APB had a slight inhibitory effect. Functionally, both the lysosome inhibitor bafilomycin A1 and the ASMase inhibitor amitriptyline reversed Ang II-induced impairment of vasodilation. We conclude that Ca2+ -regulated lysosome fusion mediates the Ang II-induced regulation of the LR-redox signaling pathway and mesenteric endothelial dysfunction.

  12. ESCRT-Dependent Cell Death in a Caenorhabditis elegans Model of the Lysosomal Storage Disorder Mucolipidosis Type IV.

    Science.gov (United States)

    Huynh, Julie M; Dang, Hope; Munoz-Tucker, Isabel A; O'Ketch, Marvin; Liu, Ian T; Perno, Savannah; Bhuyan, Natasha; Crain, Allison; Borbon, Ivan; Fares, Hanna

    2016-02-01

    Mutations in MCOLN1, which encodes the cation channel protein TRPML1, result in the neurodegenerative lysosomal storage disorder Mucolipidosis type IV. Mucolipidosis type IV patients show lysosomal dysfunction in many tissues and neuronal cell death. The ortholog of TRPML1 in Caenorhabditis elegans is CUP-5; loss of CUP-5 results in lysosomal dysfunction in many tissues and death of developing intestinal cells that results in embryonic lethality. We previously showed that a null mutation in the ATP-Binding Cassette transporter MRP-4 rescues the lysosomal defect and embryonic lethality of cup-5(null) worms. Here we show that reducing levels of the Endosomal Sorting Complex Required for Transport (ESCRT)-associated proteins DID-2, USP-50, and ALX-1/EGO-2, which mediate the final de-ubiquitination step of integral membrane proteins being sequestered into late endosomes, also almost fully suppresses cup-5(null) mutant lysosomal defects and embryonic lethality. Indeed, we show that MRP-4 protein is hypo-ubiquitinated in the absence of CUP-5 and that reducing levels of ESCRT-associated proteins suppresses this hypo-ubiquitination. Thus, increased ESCRT-associated de-ubiquitinating activity mediates the lysosomal defects and corresponding cell death phenotypes in the absence of CUP-5.

  13. Preventive effects of p-coumaric acid on lysosomal dysfunction and myocardial infarct size in experimentally induced myocardial infarction.

    Science.gov (United States)

    Jyoti Roy, Abhro; Stanely Mainzen Prince, P

    2013-01-15

    The present study was designed to evaluate the preventive effects of p-coumaric acid on lysosomal dysfunction and myocardial infarct size in isoproterenol induced myocardial infarcted rats. Male albino Wistar rats were pretreated with p-coumaric acid (8 mg/kg body weight) daily for a period of 7 days after which isoproterenol (100mg/kg body weight) was injected subcutaneously into rats twice at an interval of 24h (8th and 9th day).The activity/levels of serum cardiac diagnostic markers, heart lysosomal lipid peroxidation products and the activities of lysosomal enzymes (β-glucuronidase, β-galactosidase, cathepsin-B and cathepsin-D) were significantly (Plysosomal fraction. The pretreatment with p-coumaric acid significantly (Plysosomal lipid peroxidation products and the activities of lysosomal enzymes. In addition, p-coumaric acid greatly reduced myocardial infarct size. p-Coumaric acid pretreatment (8 mg/kg body weight) to normal rats did not show any significant effect. Thus, this study showed that p-coumaric acid prevents lysosomal dysfunction against cardiac damage induced by isoproterenol and brings back the levels of lipid peroxidation products and activities of lysosomal enzymes to near normal levels. The in vitro study also revealed the free radical scavenging activity of p-coumaric acid. Thus, the observed effects are due to p-coumaric acid's free radical scavenging and membrane stabilizing properties.

  14. A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Di Malta, Chiara; Wen, Jiayu

    2014-01-01

    Sulfatases are key enzymatic regulators of sulfate homeostasis with several biological functions including degradation of glycosaminoglycans (GAGs) and other macromolecules in lysosomes. In a severe lysosomal storage disorder, multiple sulfatase deficiency (MSD), global sulfatase activity...

  15. Neuroinflammatory paradigms in lysosomal storage diseases

    Directory of Open Access Journals (Sweden)

    Megan Elizabeth Bosch

    2015-10-01

    Full Text Available Lysosomal storage diseases (LSDs include approximately 70 distinct disorders that collectively account for 14% of all inherited metabolic diseases. LSDs are caused by mutations in various enzymes/proteins that disrupt lysosomal function, which impairs macromolecule degradation following endosome-lysosome and phagosome-lysosome fusion and autophagy, ultimately disrupting cellular homeostasis. LSDs are pathologically typified by lysosomal inclusions composed of a heterogeneous mixture of various proteins and lipids that can be found throughout the body. However, in many cases the CNS is dramatically affected, which may result from heightened neuronal vulnerability based on their post-mitotic state. Besides intrinsic neuronal defects, another emerging factor common to many LSDs is neuroinflammation, which may negatively impact neuronal survival and contribute to neurodegeneration. Microglial and astrocyte activation is a hallmark of many LSDs that affect the CNS, which often precedes and predicts regions where eventual neuron loss will occur. However, the timing, intensity, and duration of neuroinflammation may ultimately dictate the impact on CNS homeostasis. For example, a transient inflammatory response following CNS insult/injury can be neuroprotective, as glial cells attempt to remove the insult and provide trophic support to neurons. However, chronic inflammation, as seen in several LSDs, can promote neurodegeneration by creating a neurotoxic environment due to elevated levels of cytokines, chemokines, and pro-apoptotic molecules. Although neuroinflammation has been reported in several LSDs, the cellular basis and mechanisms responsible for eliciting neuroinflammatory pathways are just beginning to be defined. This review highlights the role of neuroinflammation in select LSDs and its potential contribution to neuron loss.

  16. 溶酶体相关膜蛋白2基因新突变导致Danon病的临床病理特点%Clinical and pathological features of Danon disease associated with a novel lysosome-associated membrane protein-2B mutation

    Institute of Scientific and Technical Information of China (English)

    洪道俊; 石志鸿; 张巍; 王朝霞; 袁云

    2010-01-01

    目的 报道1例Danon病患者的临床表现、病理改变特点和基因突变位点.方法 16岁男性患者表现为缓慢进展的骨骼肌无力和萎缩,以近端为主,伴随轻度脊柱强直.心电图示Ⅰ度房室传导阻滞,心脏超声示二尖瓣局限性增厚伴舒张功能损害,肌电图提示神经源性合并肌源性损害.患者左腓肠肌活体组织检查后,进行组织学、酶组织化学、电镜观察及抗肌营养不良素蛋白、层黏连蛋白α2、C5b9等免疫组织化学染色.患者及其父母进行溶酶体相关膜蛋白2(LAMP2)B基因的直接测序.结果 骨骼肌纤维内出现大小不一的自嗜空泡和镶边空泡,空泡内缺乏糖原,免疫组织化学显示多数肌纤维内的空泡边缘出现肌营养不良素蛋白、层黏连蛋白α2和C5b9的表达.电镜显示肌纤维内大量膜性空泡和溶酶体聚集.患者的LAMP2B基因9号外显子存在K402X突变,患者母亲无此突变,50名健康对照无此突变.结论 LAMP2B的9号外显子羧基末端的截断突变可以导致相对良性的Danon病,其心脏损害相对轻微.%Objectives To report the clinical and myopathological features in a case with Danon disease caused by a novel mutation in the lysosome-associated membrane protein-2 ( LAMP2 ) B gene.Methods A 16-year-old boy presenting progressive muscle weakness and atrophy, accompanied with spinal ankylosis was clinically evaluated including electrocardiogram, echocardiogram and electromyogram.Muscle biopsy was carried out in the patient.The histological staining, ultrastructural examination, and immunohistochemical staining with antibodies against dystrophin, merosin and C5b9 were performed in frozen sections.LAMP2B sequence was analyzed in the patient and his parents.Results Electrocardiogram in the patient showed Ⅰ atrioventricular block; echocardiogram revealed focal hypertrophy in mitral valve with mild cardiac diastolic dysfunction; electromyogram indicated myogenic and neurogenic

  17. Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance.

    Science.gov (United States)

    Seebacher, Nicole; Lane, Darius J R; Richardson, Des R; Jansson, Patric J

    2016-07-01

    Oxidative stress plays a role in the development of drug resistance in cancer cells. Cancer cells must constantly and rapidly adapt to changes in the tumor microenvironment, due to alterations in the availability of nutrients, such as glucose, oxygen and key transition metals (e.g., iron and copper). This nutrient flux is typically a consequence of rapid growth, poor vascularization and necrosis. It has been demonstrated that stress factors, such as hypoxia and glucose deprivation up-regulate master transcription factors, namely hypoxia inducible factor-1α (HIF-1α), which transcriptionally regulate the multi-drug resistance (MDR), transmembrane drug efflux transporter, P-glycoprotein (Pgp). Interestingly, in addition to the established role of plasma membrane Pgp in MDR, a new paradigm of intracellular resistance has emerged that is premised on the ability of lysosomal Pgp to transport cytotoxic agents into this organelle. This mechanism is enabled by the topological inversion of Pgp via endocytosis resulting in the transporter actively pumping agents into the lysosome. In this way, classical Pgp substrates, such as doxorubicin (DOX), can be actively transported into this organelle. Within the lysosome, DOX becomes protonated upon acidification of the lysosomal lumen, causing its accumulation. This mechanism efficiently traps DOX, preventing its cytotoxic interaction with nuclear DNA. This review discusses these effects and highlights a novel mechanism by which redox-active and protonatable Pgp substrates can utilize lysosomal Pgp to gain access to this compartment, resulting in catastrophic lysosomal membrane permeabilization and cell death. Hence, a key MDR mechanism that utilizes Pgp (the "gun") to sequester protonatable drug substrates safely within lysosomes can be "turned on" MDR cancer cells to destroy them from within.

  18. Assembly of BODIPY-carbazole dyes with liposomes to fabricate fluorescent nanoparticles for lysosomal bioimaging in living cells.

    Science.gov (United States)

    Lv, Hai-Juan; Zhang, Xiao-Tai; Wang, Shu; Xing, Guo-Wen

    2017-01-31

    Two BODIPY-carbazole dye based fluorescent probes BCA and BCAS were designed, synthesized and encapsulated by liposomes to obtain fluorescent nanoparticles BCA-FNP and BCAS-FNP. The fluorescence imaging showed that BCA-FNP was membrane-permeable and capable of localizing lysosomes in living cells.

  19. Effects of induced breeding with various ion concentrations of cadmium on the lysosomal membrane of coelomocytes in Pheretima aspergillum%不同镉离子浓度诱导饲养对参环毛蚓体腔细胞溶酶体膜的影响

    Institute of Scientific and Technical Information of China (English)

    吴波; 李薇; 喻良文; 付玉梅

    2010-01-01

    目的 观察不同浓度镉离子诱导饲养对参环毛蚓体腔细胞溶酶体膜的毒性效应.方法 选取健康参环毛蚓70只,按照饲养土壤镉离子浓度的不同随机分为7组,每组10只.各组土壤镉离子浓度分别为0.28(对照组)、3.28、6.28、12.28、18.28、24.28和30.28 mg/kg,采用不同浓度镉离子诱导参环毛蚓染毒并饲养14 d.诱导饲养7 d和14 d时观察参环毛蚓体腔细胞的形态变化,测定其体腔细胞溶酶体中性红保留时间.结果 高浓度镉离子诱导参环毛蚓体腔细胞溶酶体的损害明显.诱导饲养7 d,对照组、3.28、6.28、12.28、18.28、24.28和30.28 mg/kg镉离子浓度组参环毛蚓体腔细胞溶酶体中性红保留时间随着镉离子浓度的增加而逐渐缩短,分别为(71.3±2.4)、(60.5±1.6)、(55.1±2.9)、(51.9±3.6)、(46.0±2.5)、(38.8±1.8)、(34.2±2.0)min.与对照组比较,诱导饲养7 d、14d时各实验组参环毛蚓溶酶体中性红保留时间明显缩短(均P<0.05).结论 体腔细胞溶酶体中性红保留时间可用于评价土壤中重金属镉对参环毛蚓的毒性效应.%Objective To investigate the toxicity effects of induced breeding with various ion concentrations of cadmium on the lysosomal membrane of coelomocytes in Pheretima aspergillum. Methods Seventy healthy Pheretima aspergilla were selected and randomized into 7 groups (n=10 each) according to different levels of cadmium ion in the soils [0.28 mg/kg (control group) , 3.28 mg/kg, 6.28 mg/kg, 12.28 mg/kg, 18.28 mg/kg, 24.28 mg/kg and 30.28 mg/kg, respectively] and were bred with the contaminating cadmium ions for 14 days. On day 7 and day 14, the morphological changes in coelomocytes were studied and neutral red retention time (NRRT) of coelomocyte lysosome was determined in Pheretima aspergilla.Results High levels of cadmium ion were associated with apparent damages to the coelomocyte lysosome in Pheretima asperillum. NRRT decreased along with increasing levels of

  20. Activity of lysosomal exoglycosidases in human gliomas.

    Science.gov (United States)

    Wielgat, P; Walczuk, U; Szajda, S; Bień, M; Zimnoch, L; Mariak, Z; Zwierz, K

    2006-12-01

    There is a lot of data suggesting that modifications of cell glycoconjugates may be important in progression of cancer. In the present work we studied activities of lysosomal exoglycosidases: beta-hexosaminidase and its isoenzymes A and B, beta-galactosidase and alpha-mannosidase, in human gliomas. Enzyme activity was determined spectrophotometrically based on the release of p-nitrophenol from p-nitrophenyl-derivative of appropriate sugars. The activities of the exoglycosidases tested were significantly higher in malignant glial tumors than in control tissue (normal brain tissue) and non-glial tumors. The highest activities of exoglycosidases were observed in high-grade gliomas, and a positive correlation of enzyme activities and degree of malignancy was noted. Our results suggest that lysosomal exoglycosidases may participate in the progression and dynamical development of glial tumors.

  1. Reversible storage of hydrogen in destabilized LiBH4.

    Science.gov (United States)

    Vajo, John J; Skeith, Sky L; Mertens, Florian

    2005-03-10

    Destabilization of LiBH4 for reversible hydrogen storage has been studied using MgH2 as a destabilizing additive. Mechanically milled mixtures of LiBH4 + (1/2)MgH2 or LiH + (1/2)MgB2 including 2-3 mol % TiCl3 are shown to reversibly store 8-10 wt % hydrogen. Variation of the equilibrium pressure obtained from isotherms measured at 315-400 degrees C indicate that addition of MgH2 lowers the hydrogenation/dehydrogenation enthalpy by 25 kJ/(mol of H2) compared with pure LiBH4. Formation of MgB2 upon dehydrogenation stabilizes the dehydrogenated state and, thereby, destabilizes the LiBH4. Extrapolation of the isotherm data yields a predicted equilibrium pressure of 1 bar at approximately 225 degrees C. However, the kinetics were too slow for direct measurements at these temperatures.

  2. Arsenic induces apoptosis by the lysosomal-mitochondrial pathway in INS-1 cells.

    Science.gov (United States)

    Pan, Xiao; Jiang, Liping; Zhong, Laifu; Geng, Chengyan; Jia, Li; Liu, Shuang; Guan, Huai; Yang, Guang; Yao, Xiaofeng; Piao, Fengyuan; Sun, Xiance

    2016-02-01

    Recently, long term arsenic exposure was considered to be associated with an increased risk of diabetes mellitus. While a relation of cause-and-effect between apoptosis of pancreatic β-cells and arsenic exposure, the precise mechanisms of these events remains unclear. The aim of this study was to explore arsenic-induced pancreatic β-cell apoptosis and the mechanisms of through the possible link between lysosomal and the mitochondrial apoptotic pathway. After exposure to 10 μM of arsenic, the reactive oxygen species (ROS) level was significantly increased at 12 h, while the mitochondrial membrane potential was reduced at 24 h and the lysosomal membrane integrity was disrupted at 48 h. A significant increase in protein expression for cytochrome c was also observed using Western blot analysis after exposure to arsenic for 48 h. To further demonstrate that arsenic reduced the lysosomal membrane integrity, cells pretreated with NH4 Cl and exposed to arsenic harbored a lower fluorescence increase than cells that were only exposed to arsenic. In addition, apoptosis was mesured using Hoechst 33342/PI dual staining by microscopy and annexin V-FITC/propidium iodide dual staining by flow cytometry. The results show an increased uptake of the arsenic dose and the cells changed from dark blue to light blue, karyopyknosis, nuclear chromatin condensation, side set or fracture, and a correlation was found between the number of apoptotic cells and arsenic dose. The result of present study suggest that arsenic may induce pancreatic β-cell apoptosis through activation of the lysosome-mitochondrial pathway.

  3. Insight into the Mechanism of Human Herpesvirus 7 U21-mediated Diversion of Class I MHC Molecules to Lysosomes*

    Science.gov (United States)

    Glosson, Nicole L.; Gonyo, Patrick; May, Nathan A.; Schneider, Christine L.; Ristow, Laura C.; Wang, Qiuhong; Hudson, Amy W.

    2010-01-01

    The U21 open reading frame from human herpesvirus-7 encodes a membrane protein that associates with and redirects class I MHC molecules to the lysosomal compartment. The mechanism by which U21 accomplishes this trafficking excursion is unknown. Here we have examined the contribution of localization, glycosylation, domain structure, and the absence of substrate class I MHC molecules on the ability of U21 to traffic to lysosomes. Our results suggest the existence of a cellular protein necessary for U21-mediated rerouting of class I MHC molecules. PMID:20833720

  4. Destabilization and intracranial fragmentation of a full metal jacket bullet.

    Science.gov (United States)

    Farrugia, A; Raul, J S; Geraut, A; Tortel, M C; Ludes, B

    2009-10-01

    We report a case with an atypical entrance wound as a result of a destabilized full metal jacket bullet penetration. The destabilized bullet by an impact with the dorsal hand experiences a yawing to tumbling motion in flight. The large angle of yaw induces a larger presenting profile upon impact that contributes, associated to a rapid deceleration, to a greater mechanical force on the projectile structure and a fragmentation into core and jacket. Forensic pathologists have to be aware that the metal jacket bullet could tend to break up outside or inside the body particularly after a shooting through a target. This phenomenon induces atypical entrance wounds and atypical X-ray presentation.

  5. Lysosomal exoglycosidases and cathepsin D in colon adenocarcinoma.

    Science.gov (United States)

    Waszkiewicz, Napoleon; Zalewska-Szajda, Beata; Szajda, Sławomir D; Kępka, Alina; Waszkiewicz, Magdalena; Roszkowska-Jakimiec, Wiesława; Wojewódzka-Żeleźniakowicz, Marzena; Milewska, Anna J; Dadan, Jacek; Szulc, Agata; Zwierz, Krzysztof; Ladny, Jerzy R

    2012-01-01

    Changes in the structure of membrane glycoconjugates and activity of glycosidases and proteases are important in tumor formation. The aim of the study was to compare the specific activity of lysosomal exoglycosidases: N-acetyl-β-D-hexosaminidase (HEX), its isoenzymes A (HEX A) and B (HEX B), β-D-galactosidase (GAL), α-fucosidase (FUC), and α-mannosidase (MAN) with the activity of cathepsin D (CD) in serum, urine, and carcinoma tissue of patients with colon adenocarcinoma. The specific activity of HEX, HEX A, HEX B, GAL, FUC, MAN, and CD was assayed in serum, urine, and carcinoma tissue of 12 patients with colon adenocarcinoma. Lysosomal exoglycosidases and CD have similar specific activity in colon adenocarcinoma tissue and urine, which is higher than their activity in serum (with the exception of the highest specific activity of CD in urine). A positive correlation was observed between the specific activity of CD and that of HEX, HEX A, FUC, and MAN in the carcinoma tissue and urine as well as between CD and GAL in the urine of patients with colon adenocarcinoma. Negative correlations were observed between protein levels and the specific activity of HEX, HEX A, FUC, MAN, and CD in the carcinoma tissue and urine, and between protein levels and GAL in urine. Increased degradation and remodeling of glycoconjugates in the colon adenocarcinoma tissue is reflected by increased specific activity of exoglycosidases and CD. The results suggest a strong effect of exoglycosidase action on tissue degradation and a potential role of exoglycosidases in the initiation of proteolysis.

  6. 乌司他丁对双瓣置换患者围术期溶酶体膜稳定性及凝血功能的影响%Effects of ulinastatin on the stability of lysosomal membrane and blood coagulation functions in patients undergoing mitral and aortic valves replacement:a double blinded randomized controlled study

    Institute of Scientific and Technical Information of China (English)

    王臻; 程亮; 曹轶; 赵璧君; 张秀静; 金振晓

    2013-01-01

    目的观察体外循环中应用乌司他丁对双瓣置换患者围术期溶酶体膜稳定性及凝血功能的影响。方法在体外循环下行二尖瓣联合主动脉瓣置换患者20例,随机分为乌司他丁组及对照组,乌司他丁组患者按20000 U/kg总量给予乌司他丁,其中半量预充,半量于主动脉开放前加入到体外循环管路中,对照组患者给予等量生理盐水。分别于术前30 min,体外循环60 min、120 min及体外循环结束后30 min采集血样,ELISA方法检测血浆中组织蛋白酶D( CTSD)及N-乙酰-β-D-氨基葡萄糖苷酶( NAG)含量;采用血栓弹力图比较手术前后凝血功能。同时,记录术后ICU滞留时间、引流量、24 h尿量及呋塞米用量,以及术后呼吸机辅助时间、死亡等情况。结果两组患者均顺利出院,无死亡,无严重并发症;术后ICU时间、机械通气时间、术后第1个24小时尿量及呋塞米用量组间无显著差异( P>0.05);与对照组比较,凝血功能各项指标在手术结束后未见明显差异( P>0.05);体外循环过程中各时间点NAG及CTSD含量组间无显著差异( P>0.05)。结论体外循环中应用乌司他丁20000 U/kg对双瓣置换患者围术期溶酶体稳定性及凝血功能的保护作用与对照组没有明显差异。%Objective To investigate the effects of ulinastatin on the stability of lysosomal membrane and blood coagulation functions in patients undergoing mitral and aortic valves replacement .Methods Twenty consecutive patients scheduled for mitral and aortic valve replacement surgery under cardiopulmonary bypass (CPB) were randomized into two groups:ulinastatin group , who received 20 000 U/kg ulinastatin during CPB with half added into the prime solution and half added to the circuit upon aortic clamping removal;control group , who received same volume of saline .Blood sample were collected at 30 min before the operation ,60 min and 120

  7. Actin-binding protein coronin 1A controls osteoclastic bone resorption by regulating lysosomal secretion of cathepsin K

    Science.gov (United States)

    Ohmae, Saori; Noma, Naruto; Toyomoto, Masayasu; Shinohara, Masahiro; Takeiri, Masatoshi; Fuji, Hiroaki; Takemoto, Kenji; Iwaisako, Keiko; Fujita, Tomoko; Takeda, Norihiko; Kawatani, Makoto; Aoyama, Mineyoshi; Hagiwara, Masatoshi; Ishihama, Yasushi; Asagiri, Masataka

    2017-01-01

    Osteoclasts degrade bone matrix proteins via the secretion of lysosomal enzymes. However, the precise mechanisms by which lysosomal components are transported and fused to the bone-apposed plasma membrane, termed ruffled border membrane, remain elusive. Here, we identified coronin 1A as a negative regulator of exocytotic release of cathepsin K, one of the most important bone-degrading enzymes in osteoclasts. The modulation of coronin 1A expression did not alter osteoclast differentiation and extracellular acidification, but strongly affected the secretion of cathepsin K and osteoclast bone-resorption activity, suggesting the coronin 1A-mediated regulation of lysosomal trafficking and protease exocytosis. Further analyses suggested that coronin 1A prevented the lipidation-mediated sorting of the autophagy-related protein LC3 to the ruffled border and attenuated lysosome–plasma membrane fusion. In this process, the interactions between coronin 1A and actin were crucial. Collectively, our findings indicate that coronin 1A is a pivotal component that regulates lysosomal fusion and the secretion pathway in osteoclast-lineage cells and may provide a novel therapeutic target for bone diseases. PMID:28300073

  8. Biphasic regulation of lysosomal exocytosis by oxidative stress.

    Science.gov (United States)

    Ravi, Sreeram; Peña, Karina A; Chu, Charleen T; Kiselyov, Kirill

    2016-11-01

    Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca(2+). We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.

  9. A potentially dynamic lysosomal role for the endogenous TRPML proteins.

    Science.gov (United States)

    Zeevi, David A; Frumkin, Ayala; Offen-Glasner, Vered; Kogot-Levin, Aviram; Bach, Gideon

    2009-10-01

    Lysosomal storage disorders (LSDs) constitute a diverse group of inherited diseases that result from lysosomal storage of compounds occurring in direct consequence to deficiencies of proteins implicated in proper lysosomal function. Pathology in the LSD mucolipidosis type IV (MLIV), is characterized by lysosomal storage of lipids together with water-soluble materials in cells from every tissue and organ of affected patients. Mutations in the mucolipin 1 (TRPML1) protein cause MLIV and TRPML1 has also been shown to interact with two of its paralogous proteins, mucolipin 2 (TRPML2) and mucolipin 3 (TRPML3), in heterologous expression systems. Heterogeneous lysosomal storage is readily identified in electron micrographs of MLIV patient cells, suggesting that proper TRPML1 function is essential for the maintenance of lysosomal integrity. In order to investigate whether TRPML2 and TRPML3 also play a role in the maintenance of lysosomal integrity, we conducted gene-specific knockdown assays against these protein targets. Ultrastructural analysis revealed lysosomal inclusions in both TRPML2 and TRPML3 knockdown cells, suggestive of a common mechanism for these proteins, in parallel with TRPML1, in the regulation of lysosomal integrity. However, co-immunoprecipitation assays revealed that physical interactions between each of the endogenous TRPML proteins are quite limited. In addition, we found that all three endogenous proteins only partially co-localize with each other in lysosomal as well as extra-lysosomal compartments. This suggests that native TRPML2 and TRPML3 might participate with native TRPML1 in a dynamic form of lysosomal regulation. Given that depletion of TRPML2/3 led to lysosomal storage typical to an LSD, we propose that depletion of these proteins might also underlie novel LSD pathologies not described hitherto.

  10. N370S-GBA1 mutation causes lysosomal cholesterol accumulation in Parkinson's disease.

    Science.gov (United States)

    García-Sanz, Patricia; Orgaz, Lorena; Bueno-Gil, Guillermo; Espadas, Isabel; Rodríguez-Traver, Eva; Kulisevsky, Jaime; Gutierrez, Antonia; Dávila, José C; González-Polo, Rosa A; Fuentes, José M; Mir, Pablo; Vicario, Carlos; Moratalla, Rosario

    2017-08-05

    Heterozygous mutations in the GBA1 gene, which encodes the lysosomal enzyme β-glucocerebrosidase-1, increase the risk of developing Parkinson's disease, although the underlying mechanisms remain unclear. The aim of this study was to explore the impact of the N370S-GBA1 mutation on cellular homeostasis and vulnerability in a patient-specific cellular model of PD. We isolated fibroblasts from 4 PD patients carrying the N370S/wild type GBA1 mutation and 6 controls to study the autophagy-lysosome pathway, endoplasmic reticulum stress, and Golgi apparatus structure by Western blot, immunofluorescence, LysoTracker and Filipin stainings, mRNA analysis, and electron microscopy. We evaluated cell vulnerability by apoptosis, reactive oxygen species and mitochondrial membrane potential with flow cytometry. The N370S mutation produced a significant reduction in β-glucocerebrosidase-1 protein and enzyme activity and β-glucocerebrosidase-1 retention within the endoplasmic reticulum, which interrupted its traffic to the lysosome. This led to endoplasmic reticulum stress activation and triggered unfolded protein response and Golgi apparatus fragmentation. Furthermore, these alterations resulted in autophagosome and p62/SQSTM1 accumulation. This impaired autophagy was a result of dysfunctional lysosomes, indicated by multilamellar body accumulation probably caused by increased cholesterol, enlarged lysosomal mass, and reduced enzyme activity. This phenotype impaired the removal of damaged mitochondria and reactive oxygen species production and enhanced cell death. Our results support a connection between the loss of β-glucocerebrosidase-1 function, cholesterol accumulation, and the disruption of cellular homeostasis in GBA1-PD. Our work reveals new insights into the cellular pathways underlying PD pathogenesis, providing evidence that GBA1-PD shares common features with lipid-storage diseases. © 2017 International Parkinson and Movement Disorder Society. © 2017 International

  11. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury.

    Science.gov (United States)

    Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury.

  12. Destabilizing DNA during Rejoining Enhances Fidelity of Repair.

    Directory of Open Access Journals (Sweden)

    Richard Robinson

    2015-08-01

    Full Text Available A new study shows that during repair of DNA, the effect of a single-strand annealing protein is to destabilize DNA duplex formation so that annealing only occurs between perfectly matched strands; the protein then clamps the strands together for repair. Read the Research Article.

  13. How Do Amateur Soccer Referees Destabilize a Match?

    Science.gov (United States)

    Fruchart, Eric; Carton, Annie

    2012-01-01

    The refereeing system in amateur football is not without weakness. Some referees could be deliberately led to destabilize a match in order to demonstrate their skills in regulating a situation of potential conflict. This has posed an ethical problem to soccer institutions. Our study proposes to focus on this phenomenon by questioning seventy four…

  14. Superhelical destabilization in regulatory regions of stress response genes.

    Directory of Open Access Journals (Sweden)

    Huiquan Wang

    2008-01-01

    Full Text Available Stress-induced DNA duplex destabilization (SIDD analysis exploits the known structural and energetic properties of DNA to predict sites that are susceptible to strand separation under negative superhelical stress. When this approach was used to calculate the SIDD profile of the entire Escherichia coli K12 genome, it was found that strongly destabilized sites occur preferentially in intergenic regions that are either known or inferred to contain promoters, but rarely occur in coding regions. Here, we investigate whether the genes grouped in different functional categories have characteristic SIDD properties in their upstream flanks. We report that strong SIDD sites in the E. coli K12 genome are statistically significantly overrepresented in the upstream regions of genes encoding transcriptional regulators. In particular, the upstream regions of genes that directly respond to physiological and environmental stimuli are more destabilized than are those regions of genes that are not involved in these responses. Moreover, if a pathway is controlled by a transcriptional regulator whose gene has a destabilized 5' flank, then the genes (operons in that pathway also usually contain strongly destabilized SIDD sites in their 5' flanks. We observe this statistically significant association of SIDD sites with upstream regions of genes functioning in transcription in 38 of 43 genomes of free-living bacteria, but in only four of 18 genomes of endosymbionts or obligate parasitic bacteria. These results suggest that strong SIDD sites 5' to participating genes may be involved in transcriptional responses to environmental changes, which are known to transiently alter superhelicity. We propose that these SIDD sites are active and necessary participants in superhelically mediated regulatory mechanisms governing changes in the global pattern of gene expression in prokaryotes in response to physiological or environmental changes.

  15. Quantitative modeling of selective lysosomal targeting for drug design

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rosania, G.; Horobin, R.W.;

    2008-01-01

    Lysosomes are acidic organelles and are involved in various diseases, the most prominent is malaria. Accumulation of molecules in the cell by diffusion from the external solution into cytosol, lysosome and mitochondrium was calculated with the Fick–Nernst–Planck equation. The cell model considers....... This demonstrates that the cell model can be a useful tool for the design of effective lysosome-targeting drugs with minimal off-target interactions....

  16. Release and uptake of lysosomal enzymes : studied in cultured cells

    OpenAIRE

    1980-01-01

    textabstractThe purpose of the experimental work described in this thesiswas to investigate some aspects of the release and uptake of lysosomal enzymes. The experiments involved the use of normal human and animal fibroblasts and some other cell types such as hepatocytes and hepatoma cells as sources of hydrolytic enzymes, and fibroblasts from patients with lysosomal storage diseases associated with a single lysosomal enzyme deficiency and with "1-cell" disease as recipient cells. In a number ...

  17. Factors and processes modulating phenotypes in neuronopathic lysosomal storage diseases

    OpenAIRE

    Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Banecka-Majkutewicz, Zyta; Banecki, Bogdan; Węgrzyn, Alicja; Węgrzyn, Grzegorz

    2013-01-01

    Lysosomal storage diseases are inherited metabolic disorders caused by genetic defects causing deficiency of various lysosomal proteins, and resultant accumulation of non-degraded compounds. They are multisystemic diseases, and in most of them (>70 %) severe brain dysfunctions are evident. However, expression of various phenotypes in particular diseases is extremely variable, from non-neuronopathic to severely neurodegenerative in the deficiency of the same enzyme. Although all lysosomal stor...

  18. A Novel High Content Imaging-Based Screen Identifies the Anti-Helminthic Niclosamide as an Inhibitor of Lysosome Anterograde Trafficking and Prostate Cancer Cell Invasion.

    Directory of Open Access Journals (Sweden)

    Magdalena L Circu

    Full Text Available Lysosome trafficking plays a significant role in tumor invasion, a key event for the development of metastasis. Previous studies from our laboratory have demonstrated that the anterograde (outward movement of lysosomes to the cell surface in response to certain tumor microenvironment stimulus, such as hepatocyte growth factor (HGF or acidic extracellular pH (pHe, increases cathepsin B secretion and tumor cell invasion. Anterograde lysosome trafficking depends on sodium-proton exchanger activity and can be reversed by blocking these ion pumps with Troglitazone or EIPA. Since these drugs cannot be advanced into the clinic due to toxicity, we have designed a high-content assay to discover drugs that block peripheral lysosome trafficking with the goal of identifying novel drugs that inhibit tumor cell invasion. An automated high-content imaging system (Cellomics was used to measure the position of lysosomes relative to the nucleus. Among a total of 2210 repurposed and natural product drugs screened, 18 "hits" were identified. One of the compounds identified as an anterograde lysosome trafficking inhibitor was niclosamide, a marketed human anti-helminthic drug. Further studies revealed that niclosamide blocked acidic pHe, HGF, and epidermal growth factor (EGF-induced anterograde lysosome redistribution, protease secretion, motility, and invasion of DU145 castrate resistant prostate cancer cells at clinically relevant concentrations. In an effort to identify the mechanism by which niclosamide prevented anterograde lysosome movement, we found that this drug exhibited no significant effect on the level of ATP, microtubules or actin filaments, and had minimal effect on the PI3K and MAPK pathways. Niclosamide collapsed intralysosomal pH without disruption of the lysosome membrane, while bafilomycin, an agent that impairs lysosome acidification, was also found to induce JLA in our model. Taken together, these data suggest that niclosamide promotes

  19. Lysosomal degradation of receptor-bound urokinase-type plasminogen activator is enhanced by its inhibitors in human trophoblastic choriocarcinoma cells

    DEFF Research Database (Denmark)

    Jensen, Poul Henning; Christensen, Erik Ilsø; Ebbesen, P.

    1990-01-01

    in an apparently intact form in the medium or was still cell associated. The degradation could be inhibited by inhibitors of vesicle transport and lysosomal hydrolases. By electron microscopic autoradiography, both 125I-u-PA and 125I-u-PA-inhibitor complexes were located over the cell membrane at 4 degrees C......, with the highest density of grains over the membrane at cell-cell interphases, but, after incubation at 37 degrees C, 17 and 27% of the grains for u-PA and u-PA-PAI-1 complexes, respectively, appeared over lysosomal-like bodies. These findings suggest that the u-PA receptor possesses a clearance function...

  20. Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Lee

    2015-09-01

    Full Text Available Presenilin 1 (PS1 deletion or Alzheimer’s disease (AD-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  1. Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification.

    Science.gov (United States)

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M; Haslett, Luke J; Kumar, Asok; Sato, Yutaka; Lie, Pearl P Y; Mohan, Panaiyur; Coffey, Erin E; Kompella, Uday; Mitchell, Claire H; Lloyd-Evans, Emyr; Nixon, Ralph A

    2015-09-01

    Presenilin 1 (PS1) deletion or Alzheimer's disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO) cells induces abnormal Ca(2+) efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca(2+). In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca(2+) homeostasis, but correcting lysosomal Ca(2+) deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca(2+) homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  2. Gaucher disease: a lysosomal neurodegenerative disorder.

    Science.gov (United States)

    Huang, W J; Zhang, X; Chen, W W

    2015-04-01

    Gaucher disease is a multisystemic disorder that affects men and woman in equal numbers and occurs in all ethnic groups at any age with racial variations and an estimated worldwide incidence of 1/75,000. It is caused by a genetic deficient activity of the lysosomal enzyme glucocerebrosidase due to mutations in the β-glucocerebrosidase gene, and resulting in lack of glucocerebroside degradation. The subsequent accumulation of glucocerebroside in lysosomes of tissue macrophages primarily in the liver, bone marrow and spleen, causes damage in haematological, skeletal and nervous systems. The clinical manifestations show a high degree of variability with symptoms that varies according to organs involved. In many cases, these disorders do not correlate with mutations in the β-glucocerebrosidase gene. Although several mutations have been identified as responsible for the deficient activity of glucocerebrosidase, mechanisms by which this enzymatic defect leads to Gaucher disease remain poorly understood. Recent reports indicate the implication of complex mechanisms, including enzyme deficiency, substrate accumulation, unfolded protein response, and macrophage activation. Further elucidating these mechanisms will advance understanding of Gaucher disease and related disorders.

  3. Enhanced lysosomal activity by overexpressed aminopeptidase Y in Saccharomyces cerevisiae.

    Science.gov (United States)

    Yoon, Jihee; Sekhon, Simranjeet Singh; Kim, Yang-Hoon; Min, Jiho

    2016-06-01

    Saccharomyces cerevisiae contains vacuoles corresponding to lysosomes in higher eukaryotes. Lysosomes are dynamic (not silent) organelles in which enzymes can be easily integrated or released when exposed to stressful conditions. Changes in lysosomal enzymes have been observed due to oxidative stress, resulting in an increased function of lysosomes. The protein profiles from H2O2- and NH4Cl-treated lysosomes showed different expression patterns, observed with two-dimensional gel electrophoresis. The aminopeptidase Y protein (APE3) that conspicuously enhanced antimicrobial activity than other proteins was selected for further studies. The S. cerevisiae APE3 gene was isolated and inserted into pYES2.0 expression vector. The GFP gene was inserted downstream to the APE3 gene for confirmation of APE3 targeting to lysosomes, and S. cerevisiae was transformed to pYES2::APE3::GFP. The APE3 did not enter in lysosomes and formed an inclusion body at 30 °C, but it inserted to lysosomes as shown by the merger of GFP with lysosomes at 28 °C. Antimicrobial activity of the cloned S. cerevisiae increased about 5 to 10 % against eight strains, compared to normal cells, and galactose induction is increased more two folds than that of normal cells. Therefore, S. cerevisiae was transformed to pYES2::APE3::GFP, accumulating a large amount of APE3, resulting in increased lysosomal activity. Increase in endogenous levels of lysosomes and their activity following genetic modification can lead to its use in applications such as antimicrobial agents and apoptosis-inducing materials for cancer cells, and consequently, it may also be possible to use the organelles for improving in vitro functions.

  4. Lysosome/lipid droplet interplay in metabolic diseases.

    Science.gov (United States)

    Dugail, Isabelle

    2014-01-01

    Lysosomes and lipid droplets are generally considered as intracellular compartments with divergent roles in cell metabolism, lipid droplets serving as lipid reservoirs in anabolic pathways, whereas lysosomes are specialized in the catabolism of intracellular components. During the last few years, new insights in the biology of lysosomes has challenged this view by providing evidence for the importance of lysosome recycling as a sparing mechanism to maintain cellular fitness. On the other hand the understanding of lipid droplets has evolved from an inert intracellular deposit toward the status of an intracellular organelle with dynamic roles in cellular homeostasis beyond storage. These unrelated aspects have also recently converged in the finding of unexpected lipid droplet/lysosome communication through autophagy, and the discovery of lysosome-mediated lipid droplet degradation called lipopagy. Furthermore, adipocytes which are professional cells for lipid droplet formation were also shown to be active in peptide antigen presentation a pathway requiring lysosomal activity. The potential importance of lipid droplet/lysosome interplay is discussed in the context of metabolic diseases and the setting of chronic inflammation.

  5. [The blood-brain barrier and neurodegenerative lysosomal storage diseases].

    Science.gov (United States)

    Urayama, Akihiko

    2013-02-01

    Enzyme replacement therapy has been a very effective treatment for several lysosomal storage diseases. However, correcting central nervous system (CNS) storage has been challenging due to the presence of the blood-brain barrier (BBB), which hampers the entry of circulating lysosomal enzymes into the brain. In our previous studies, we discovered that luminally expressed cation-independent mannose 6-phosphate (M6P) receptor is a universal transporter for lysosomal enzymes that contain M6P moieties on the enzyme molecule. This receptor-mediated transport of lysosomal enzymes showed developmental down-regulation that resulted in a failure of delivery of lysosomal enzymes across the BBB in the adult brain. Conceptually, if one can re-induce M6P receptor-mediated transport of lysosomal enzymes in adult BBB, this could provide a novel brain targeting approach for treating abnormal storage in the CNS, regardless of the age of subjects. We found that systemic adrenergic stimuli restored functional transport of β-glucuronidase across the adult BBB. The concept of manipulating BBB transport activity by endogenous characteristics has also been demonstrated by another group who showed effective treatment in a Pompe disease model animal in vivo. It is intriguing that lysosomal enzymes utilize multiple mechanisms for their transport across the BBB. This review explores pharmacological manipulations for the delivery of lysosomal enzymes into the CNS, and the mechanisms of their transport across the BBB, based on existing evidence from studies of β-glucuronidase, sulfamidase, acid α-glucosidase, and arylsulfatase A.

  6. Photoaffinity labeling of the lysosomal neuraminidase from bovine testis

    NARCIS (Netherlands)

    G.T.J. van der Horst (Gijsbertus); U. Rose (Ursula); R. Brossmer (Reinhard); F.W. Verheijen (Frans)

    1990-01-01

    markdownabstractAbstract ASA-NeuAc2en, a photoreactive arylazide derivative of sialic acid, is shown to be a powerful competitive inhibitor of lysosomal neuraminidase from bovine testis (Ki ≈ 21 μM). Photoaffinity labeling and partial purification of preparations containing this lysosomal neuramin

  7. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin.

    Science.gov (United States)

    Yang, Nai-Di; Tan, Shi-Hao; Ng, Shukie; Shi, Yin; Zhou, Jing; Tan, Kevin Shyong Wei; Wong, Wai-Shiu Fred; Shen, Han-Ming

    2014-11-28

    Artesunate (ART) is an anti-malaria drug that has been shown to exhibit anti-tumor activity, and functional lysosomes are reported to be required for ART-induced cancer cell death, whereas the underlying molecular mechanisms remain largely elusive. In this study, we aimed to elucidate the molecular mechanisms underlying ART-induced cell death. We first confirmed that ART induces apoptotic cell death in cancer cells. Interestingly, we found that ART preferably accumulates in the lysosomes and is able to activate lysosomal function via promotion of lysosomal V-ATPase assembly. Furthermore, we found that lysosomes function upstream of mitochondria in reactive oxygen species production. Importantly, we provided evidence showing that lysosomal iron is required for the lysosomal activation and mitochondrial reactive oxygen species production induced by ART. Finally, we showed that ART-induced cell death is mediated by the release of iron in the lysosomes, which results from the lysosomal degradation of ferritin, an iron storage protein. Meanwhile, overexpression of ferritin heavy chain significantly protected cells from ART-induced cell death. In addition, knockdown of nuclear receptor coactivator 4, the adaptor protein for ferritin degradation, was able to block ART-mediated ferritin degradation and rescue the ART-induced cell death. In summary, our study demonstrates that ART treatment activates lysosomal function and then promotes ferritin degradation, subsequently leading to the increase of lysosomal iron that is utilized by ART for its cytotoxic effect on cancer cells. Thus, our data reveal a new mechanistic action underlying ART-induced cell death in cancer cells.

  8. Drosha mediates destabilization of Lin28 mRNA targets.

    Science.gov (United States)

    Qiao, Chong; Ma, Jing; Xu, Jie; Xie, Mingyi; Ma, Wei; Huang, Yingqun

    2012-10-01

    Lin28 plays important roles in development, stem cell maintenance, oncogenesis and metabolism. As an RNA-binding protein, it blocks the biogenesis primarily of let-7 family miRNAs and also promotes translation of a cohort of mRNAs involved in cell growth, metabolism and pluripotency, likely through recognition of distinct sequence and structural motifs within mRNAs. Here, we show that one such motif, shared by multiple Lin28-responsive elements (LREs) present in Lin28 mRNA targets also participates in a Drosha-dependent regulation and may contribute to destabilization of its cognate mRNAs. We further show that the same mutations in the LREs known to abolish Lin28 binding and stimulation of translation also abrogate Drosha-dependent mRNA destabilization, and that this effect is independent of miRNAs, uncovering a previously unsuspected coupling between Drosha-dependent destabilization and Lin28-mediated regulation. Thus, Lin28-dependent stimulation of translation of target mRNAs may, in part, serve to compensate for their intrinsic instability, thereby ensuring optimal levels of expression of genes critical for cell viability, metabolism and pluripotency.

  9. Atherosclerotic Plaque Destabilization in Mice: A Comparative Study.

    Directory of Open Access Journals (Sweden)

    Helene Hartwig

    Full Text Available Atherosclerosis-associated diseases are the main cause of mortality and morbidity in western societies. The progression of atherosclerosis is a dynamic process evolving from early to advanced lesions that may become rupture-prone vulnerable plaques. Acute coronary syndromes are the clinical manifestation of life-threatening thrombotic events associated with high-risk vulnerable plaques. Hyperlipidemic mouse models have been extensively used in studying the mechanisms controlling initiation and progression of atherosclerosis. However, the understanding of mechanisms leading to atherosclerotic plaque destabilization has been hampered by the lack of proper animal models mimicking this process. Although various mouse models generate atherosclerotic plaques with histological features of human advanced lesions, a consensus model to study atherosclerotic plaque destabilization is still lacking. Hence, we studied the degree and features of plaque vulnerability in different mouse models of atherosclerotic plaque destabilization and find that the model based on the placement of a shear stress modifier in combination with hypercholesterolemia represent with high incidence the most human like lesions compared to the other models.

  10. Analysis of specific mRNA destabilization during Dictyostelium development.

    Science.gov (United States)

    Mangiarotti, G; Bulfone, S; Giorda, R; Morandini, P; Ceccarelli, A; Hames, B D

    1989-07-01

    A number of specific mRNAs are destabilized upon disaggregation of developing Dictyostelium discoideum cells. Analysis of a family of cloned genes indicates that only prespore-enriched mRNAs are affected; constitutive mRNAs that are expressed throughout development and mRNAs that accumulate preferentially in prestalk cells are stable under these conditions. The decay of sensitive prespore mRNAs can be halted by allowing the cells to reaggregate, indicating that destabilization occurs by the progressive selection of individual molecules rather than on all members of an mRNA subpopulation at the time of disaggregation. Individual molecules of the sensitive mRNA species remain engaged in protein synthesis in the disaggregated cells until selected. Destabilization of sensitive mRNAs is induced by cell dissociation even in the presence of concentrations of nogalamycin that inhibit RNA synthesis. The reported prevention of disaggregation-induced mRNA decay by actinomycin D and daunomycin is therefore probably a secondary effect unrelated to the inhibition of transcription.

  11. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    Science.gov (United States)

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  12. Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6.

    Science.gov (United States)

    Poët, Mallorie; Kornak, Uwe; Schweizer, Michaela; Zdebik, Anselm A; Scheel, Olaf; Hoelter, Sabine; Wurst, Wolfgang; Schmitt, Anja; Fuhrmann, Jens C; Planells-Cases, Rosa; Mole, Sara E; Hübner, Christian A; Jentsch, Thomas J

    2006-09-12

    Mammalian CLC proteins function as Cl(-) channels or as electrogenic Cl(-)/H(+) exchangers and are present in the plasma membrane and intracellular vesicles. We now show that the ClC-6 protein is almost exclusively expressed in neurons of the central and peripheral nervous systems, with a particularly high expression in dorsal root ganglia. ClC-6 colocalized with markers for late endosomes in neuronal cell bodies. The disruption of ClC-6 in mice reduced their pain sensitivity and caused moderate behavioral abnormalities. Neuronal tissues showed autofluorescence at initial axon segments. At these sites, electron microscopy revealed electron-dense storage material that caused a pathological enlargement of proximal axons. These deposits were positive for several lysosomal proteins and other marker proteins typical for neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. However, the lysosomal pH of Clcn6(-/-) neurons appeared normal. CLCN6 is a candidate gene for mild forms of human NCL. Analysis of 75 NCL patients identified ClC-6 amino acid exchanges in two patients but failed to prove a causative role of CLCN6 in that disease.

  13. Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila.

    Directory of Open Access Journals (Sweden)

    Daijun Ling

    Full Text Available The mechanism of widespread neuronal death occurring in Alzheimer's disease (AD remains enigmatic even after extensive investigation during the last two decades. Amyloid beta 42 peptide (Abeta(1-42 is believed to play a causative role in the development of AD. Here we expressed human Abeta(1-42 and amyloid beta 40 (Abeta(1-40 in Drosophila neurons. Abeta(1-42 but not Abeta(1-40 causes an extensive accumulation of autophagic vesicles that become increasingly dysfunctional with age. Abeta(1-42-induced impairment of the degradative function, as well as the structural integrity, of post-lysosomal autophagic vesicles triggers a neurodegenerative cascade that can be enhanced by autophagy activation or partially rescued by autophagy inhibition. Compromise and leakage from post-lysosomal vesicles result in cytosolic acidification, additional damage to membranes and organelles, and erosive destruction of cytoplasm leading to eventual neuron death. Neuronal autophagy initially appears to play a pro-survival role that changes in an age-dependent way to a pro-death role in the context of Abeta(1-42 expression. Our in vivo observations provide a mechanistic understanding for the differential neurotoxicity of Abeta(1-42 and Abeta(1-40, and reveal an Abeta(1-42-induced death execution pathway mediated by an age-dependent autophagic-lysosomal injury.

  14. Risk assessment of mountain infrastructure destabilization in the French Alps

    Science.gov (United States)

    Duvillard, Pierre-Allain; Ravanel, Ludovic; Deline, Philip

    2015-04-01

    In the current context of imbalance of geosystems in connection with the rising air temperature for several decades, high mountain environments are especially affected by the shrinkage of glaciers and the permafrost degradation which can trigger slope movements in the rock slopes (rockfall, rock avalanches) or in superficial deposits (slides, rock glacier rupture, thermokarst). These processes generate a risk of direct destabilization for high mountain infrastructure (huts, cable-cars...) in addition to indirect risks for people and infrastructure located on the path of moving rock masses. We here focus on the direct risk of infrastructure destabilization due to permafrost degradation and/or glacier shrinkage in the French Alps. To help preventing these risks, an inventory of all the infrastructure was carried out with a GIS using different data layers among which the Alpine Permafrost Index Map and inventories of the French Alps glaciers in 2006-2009, 1967-1971 and at the end of the Little Ice Age. 1769 infrastructures have been identified in areas likely characterized by permafrost and/or possibly affected by glacier shrinkage. An index of risk of destabilization has been built to identify and to rank infrastructure at risk. This theoretical risk index includes a characterization of hazards and a diagnosis of the vulnerability. The value of hazard is dependent on passive factors (topography, lithology, geomorphological context...) and on so-considered active factors (thermal state of the permafrost, and changing constraints on slopes related to glacier shrinkage). The diagnosis of vulnerability has meanwhile been established by combining the level of potential damage to the exposed elements with their operational and financial values. The combination of hazard and vulnerability determines a degree of risk of infrastructure destabilization (from low to very high). Field work and several inventories of infrastructure damages were used to validate it. The

  15. Dynein Clusters into Lipid Microdomains on Phagosomes to Drive Rapid Transport toward Lysosomes

    Science.gov (United States)

    Rai, Ashim; Pathak, Divya; Thakur, Shreyasi; Singh, Shampa; Dubey, Alok Kumar; Mallik, Roop

    2016-01-01

    Summary Diverse cellular processes are driven by motor proteins that are recruited to and generate force on lipid membranes. Surprisingly little is known about how membranes control the force from motors and how this may impact specific cellular functions. Here, we show that dynein motors physically cluster into microdomains on the membrane of a phagosome as it matures inside cells. Such geometrical reorganization allows many dyneins within a cluster to generate cooperative force on a single microtubule. This results in rapid directed transport of the phagosome toward microtubule minus ends, likely promoting phagolysosome fusion and pathogen degradation. We show that lipophosphoglycan, the major molecule implicated in immune evasion of Leishmania donovani, inhibits phagosome motion by disrupting the clustering and therefore the cooperative force generation of dynein. These findings appear relevant to several pathogens that prevent phagosome-lysosome fusion by targeting lipid microdomains on phagosomes. PMID:26853472

  16. Fluence- and time-dependant lysosomal and mitochondrial damage induced by LS11 PDT characterized with light scattering

    Science.gov (United States)

    Wilson, Jeremy D.; Foster, Thomas H.

    2007-02-01

    Light scattering from cells originates from sub-cellular organelles. Our measurements of angularly resolved light scattering have demonstrated that at 633 nm, the dominant scattering centers within EMT6 cells are mitochondria and lysosomes. To assess their specific contributions, we have used photodynamic therapy (PDT) to induce organelle-specific perturbations within intact cells. We have developed a coated sphere scattering model for mitochondrial swelling in response to ALA- and Pc 4-PDT, and in the case of Pc 4-PDT we have used this model to map the scattering responses into clonogenic cell survival. More recently, we demonstrated the ability to measure the size, scattering contribution, and refractive index of lysosomes within cells by exploiting the localization and high extinction of the photosensitizer LS11 and an absorbing sphere scattering model. Here we report on time- and fluence-dependant scattering measurements from cells treated with LS11-PDT. LS11-PDT causes rapid lysosomal disruption, as quantified by uptake of acridine orange, and can induce downstream effects including release of mitochondrial cytochrome c preceding the loss of mitochondrial membrane potential (Reiners et al., Cell Death Differ. 9:934, 2002). Using scattering and these various methods of analysis, we observed that the induction of lysosomal morphology changes requires a fluence significantly higher than that reported for cell killing. At lower fluences, we observe that at 1 h after irradiation there is significant mitochondrial swelling, consistent with the onset of cytochrome c-induced cell death, while the morphology of lysosomes remains unchanged. We also expand on the ideas of lysosomal staining to demonstrate the sensitivity of scattering measurements at different wavelengths to different organelle populations.

  17. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells.

    Science.gov (United States)

    Safaei, Roohangiz; Larson, Barrett J; Cheng, Timothy C; Gibson, Michael A; Otani, Shinji; Naerdemann, Wiltrud; Howell, Stephen B

    2005-10-01

    Previous work has shown that cisplatin (CDDP) becomes concentrated in lysosomes, and that acquired resistance to CDDP is associated with abnormalities of protein trafficking and secretion. The lysosomal compartment in CDDP-sensitive 2008 human ovarian carcinoma cells was compared with that in CDDP-resistant 2008/C13*5.25 subline using deconvoluting imaging and specific dyes and antibodies. The lysosomal compartment in CDDP-resistant cells was reduced to just 40% of that in the parental CDDP-sensitive cells (P<0.002). This was accompanied by a reduced expression of the lysosome-associated proteins 1 and 2 (LAMP1 and LAMP2) as determined by both microscopy and Western blot analysis. The CDDP-resistant cells released more protein as exosomes and Western blot analysis revealed that these exosomes contained substantially more LAMP1 than those released by the CDDP-sensitive cells. Following loading of the whole cell with CDDP, the exosomes released from 2008/C13*5.25 cells contained 2.6-fold more platinum than those released from sensitive cells. Enhanced exosomal export was accompanied by higher exosomal levels of the putative CDDP export transporters MRP2, ATP7A, and ATP7B. Expression profiling identified significant increases in the expression of several genes whose products function in membrane fusion and vesicle trafficking. This study shows that the lysosomal compartment of human ovarian carcinoma cells selected for stable resistance to CDDP is markedly reduced in size, and that these cells abnormally sort some lysosomal proteins and the putative CDDP transporters into an exosomal pathway that also exports CDDP.

  18. The serotonin transporter undergoes constitutive internalization and is primarily sorted to late endosomes and lysosomal degradation

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Troels; Bay, Tina; Eriksen, Jacob

    2014-01-01

    The serotonin transporter (SERT) plays a critical role in regulating serotonin signaling by mediating reuptake of serotonin from the extracellular space. The molecular and cellular mechanisms controlling SERT levels in the membrane remain poorly understood. To study trafficking of surface resident....... Furthermore, internalized SERT co-localized with the lysosomal marker LysoTracker and not with transferrin. The sorting pattern was further confirmed by visualizing internalization of SERT using the fluorescent cocaine analogue JHC1-64, and by reversible and pulse chase biotinylation assays showing evidence...

  19. Contribution of mitochondria and lysosomes to photodynamic therapy-induced death in cancer cells

    Science.gov (United States)

    Nieminen, Anna-Liisa; Azizuddin, Kashif; Zhang, Ping; Kenney, Malcolm E.; Pediaditakis, Peter; Lemasters, John J.; Oleinick, Nancy L.

    2008-02-01

    In photodynamic therapy (PDT), visible light activates a photosensitizing drug added to a tissue, resulting in singlet oxygen formation and cell death. Employing confocal microscopy, we previously found that the phthalocyanine Pc 4 localized primarily to mitochondrial membranes in various cancer cell lines, resulting in mitochondrial reactive oxygen species (ROS) production, followed by inner membrane permeabilization (mitochondrial permeability transition) with mitochondrial depolarization and swelling, which in turn led to cytochrome c release and apoptotic death. Recently, derivatives of Pc 4 with OH groups added to one of the axial ligands were synthesized. These derivatives appeared to be taken up more avidly by cells and caused more cytotoxicity than the parent compound Pc 4. Using organelle-specific fluorophores, we found that one of these derivatives, Pc 181, accumulated into lysosomes and that PDT with Pc 181 caused rapid disintegration of lysosomes. We hypothesized that chelatable iron released from lysosomes during PDT contributes to mitochondrial damage and subsequent cell death. We monitored cytosolic Fe2+ concentrations after PDT with calcein. Fe2+ binds to calcein causing quenching of calcein fluorescence. After bafilomycin, an inhibitor of the vacuolar proton-translocating ATPase, calcein fluorescence became quenched, an effect prevented by starch desferal s-DFO, an iron chelator that enters cells by endocytosis. After Pc 181-PDT, cytosolic calcein fluorescence also decreased, indicating increased chelatable Fe2+ in the cytosol, and apoptosis occurred. s-DFO decreased Pc 181-PDT-induced apoptosis as measured by a decrease of caspase-3 activation. In isolated mitochondria preparations, Fe2+ induced mitochondrial swelling, which was prevented by Ru360, an inhibitor of the mitochondrial Ca2+ uniporter. The data support a hypothesis of oxidative injury in which Pc 181-PDT disintegrates lysosomes and releases constituents that synergistically promote

  20. Syntaxin 7 is localized to late endosome compartments, associates with Vamp 8, and Is required for late endosome-lysosome fusion.

    Science.gov (United States)

    Mullock, B M; Smith, C W; Ihrke, G; Bright, N A; Lindsay, M; Parkinson, E J; Brooks, D A; Parton, R G; James, D E; Luzio, J P; Piper, R C

    2000-09-01

    Protein traffic from the cell surface or the trans-Golgi network reaches the lysosome via a series of endosomal compartments. One of the last steps in the endocytic pathway is the fusion of late endosomes with lysosomes. This process has been reconstituted in vitro and has been shown to require NSF, alpha and gamma SNAP, and a Rab GTPase based on inhibition by Rab GDI. In Saccharomyces cerevisiae, fusion events to the lysosome-like vacuole are mediated by the syntaxin protein Vam3p, which is localized to the vacuolar membrane. In an effort to identify the molecular machinery that controls fusion events to the lysosome, we searched for mammalian homologues of Vam3p. One such candidate is syntaxin 7. Here we show that syntaxin 7 is concentrated in late endosomes and lysosomes. Coimmunoprecipitation experiments show that syntaxin 7 is associated with the endosomal v-SNARE Vamp 8, which partially colocalizes with syntaxin 7. Importantly, we show that syntaxin 7 is specifically required for the fusion of late endosomes with lysosomes in vitro, resulting in a hybrid organelle. Together, these data identify a SNARE complex that functions in the late endocytic system of animal cells.

  1. Syntaxin 7 Is Localized to Late Endosome Compartments, Associates with Vamp 8, and Is Required for Late Endosome–Lysosome Fusion

    Science.gov (United States)

    Mullock, Barbara M.; Smith, Chez W.; Ihrke, Gudrun; Bright, Nicholas A.; Lindsay, Margaret; Parkinson, Emma J.; Brooks, Doug A.; Parton, Robert G.; James, David E.; Luzio, J. Paul; Piper, Robert C.

    2000-01-01

    Protein traffic from the cell surface or the trans-Golgi network reaches the lysosome via a series of endosomal compartments. One of the last steps in the endocytic pathway is the fusion of late endosomes with lysosomes. This process has been reconstituted in vitro and has been shown to require NSF, α and γ SNAP, and a Rab GTPase based on inhibition by Rab GDI. In Saccharomyces cerevisiae, fusion events to the lysosome-like vacuole are mediated by the syntaxin protein Vam3p, which is localized to the vacuolar membrane. In an effort to identify the molecular machinery that controls fusion events to the lysosome, we searched for mammalian homologues of Vam3p. One such candidate is syntaxin 7. Here we show that syntaxin 7 is concentrated in late endosomes and lysosomes. Coimmunoprecipitation experiments show that syntaxin 7 is associated with the endosomal v-SNARE Vamp 8, which partially colocalizes with syntaxin 7. Importantly, we show that syntaxin 7 is specifically required for the fusion of late endosomes with lysosomes in vitro, resulting in a hybrid organelle. Together, these data identify a SNARE complex that functions in the late endocytic system of animal cells. PMID:10982406

  2. Lysosomal trafficking of {beta}-catenin induced by the tea polyphenol epigallocatechin-3-gallate

    Energy Technology Data Exchange (ETDEWEB)

    Dashwood, Wan-Mohaiza [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Carter, Orianna [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Al-Fageeh, Mohamed [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Li, Qingjie [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Dashwood, Roderick H. [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States)]. E-mail: Rod.Dashwood@oregonstate.edu

    2005-12-11

    {beta}-Catenin is a cadherin-binding protein involved in cell-cell adhesion, which also functions as a transcriptional activator when complexed in the nucleus with members of the T-cell factor (TCF)/lymphoid enhancer factor (LEF) family of proteins. There is considerable interest in mechanisms that down-regulate {beta}-catenin, since this provides an avenue for the prevention of colorectal and other cancers in which {beta}-catenin is frequently over-expressed. We show here that physiologically relevant concentrations of the tea polyphenol epigallocatechin-3-gallate (EGCG) inhibited {beta}-catenin/TCF-dependent reporter activity in human embryonic kidney 293 cells transfected with wild type or mutant {beta}-catenins, and there was a corresponding decrease in {beta}-catenin protein levels in the nuclear, cytosolic and membrane-associated fractions. However, {beta}-catenin accumulated as punctate aggregates in response to EGCG treatment, including in human colon cancer cells over-expressing {beta}-catenin endogenously. Confocal microscopy studies revealed that the aggregated {beta}-catenin in HEK293 cells was extra-nuclear and co-localized with lysosomes, suggesting that EGCG activated a pathway involving lysosomal trafficking of {beta}-catenin. Lysosomal inhibitors leupeptin and transepoxysuccinyl-L-leucylamido(4-guanido)butane produced an increase in {beta}-catenin protein in total cell lysates, without a concomitant increase in {beta}-catenin transcriptional activity. These data provide the first evidence that EGCG facilitates the trafficking of {beta}-catenin into lysosomes, presumably as a mechanism for sequestering {beta}-catenin and circumventing further nuclear transport and activation of {beta}-catenin/TCF/LEF signaling.

  3. The lysosomal stability as a biomarker for the determination of pollution in aquatic environments

    Directory of Open Access Journals (Sweden)

    Maria Loreto Nazar

    2008-10-01

    Full Text Available This work studied the effects caused by five different formulae of gasoline on the stability of the lysosomes isolated from the liver of the tilapia fish (Oreochromis niloticus. The functional integrity of the lysosomal membranes was evaluated via the acid phosphatase activity. The results showed that there were significant changes in the stability of the lysosomes exposed to the presence of the hydrocarbons in the environment. Therefore, considering the method's simplicity, the sensitivity of the responses and its low cost the assessment of the lysosomal activity could be an important tool for the study of the effects of pollution in the aquatic environments.A procura de biomarcadores de agentes poluidores, mais simples e menos custosos, tem levado ao estudo dos lisossomos, isolados de animais componentes da biota nos ambientes contaminados, principalmente por poluentes com características lipofílicas, a exemplo dos hidrocarbonetos policíclicos e seus derivados. Este trabalho estudou os efeitos provocados por 05 diferentes formulações de gasolina sobre a estabilidade de lisossomos, isolados de fígado de tilápia (Oreochromis niloticus. A integridade funcional das membranas lisossômicas foi avaliada através da atividade da fosfatase ácida, expressa em mU/mg de proteínas totais. Os resultados obtidos mostraram que existem alterações significativas na estabilidade dos lisossomos isolados de fígado de tilápias submetidas aos efeitos de hidrocarbonetos presentes no meio ambiente. Portanto, levando em conta a simplicidade, a sensibilidade de resposta e o baixo custo, os autores recomendam a avaliação da atividade lisossômica, como uma importante ferramenta para o estudo dos efeitos da poluição dos meios aquáticos.

  4. Singlet oxygen mediated apoptosis by anthrone involving lysosomes and mitochondria at ambient UV exposure

    Energy Technology Data Exchange (ETDEWEB)

    Mujtaba, Syed Faiz [Photobiology Division, (CSIR)-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); College of Pharmacy, Faculty of Pharmaceutical Sciences, Pt. B.D.S University of Health Sciences, Rohtak, Haryana (India); Dwivedi, Ashish; Yadav, Neera [Photobiology Division, (CSIR)-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Ray, R.S., E-mail: ratanray.2011@rediffmail.com [Photobiology Division, (CSIR)-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Singh, Gajendra [College of Pharmacy, Faculty of Pharmaceutical Sciences, Pt. B.D.S University of Health Sciences, Rohtak, Haryana (India)

    2013-05-15

    Highlights: ► Photomodification of anthrone at ambient environmental intensities of UV-radiation. ► Phototoxicity of anthrone through type-II photodynamic reaction by generating {sup 1}O{sub 2}. ► Role of DNA damage and lipid peroxidation in anthrone phototoxicity. ► Apototic cell death and involvement of lysosomes and mitochondria. ► Up-regulation of p21 and bax concomitantly down regulation of bcl2 genes expression. -- Abstract: Anthrone a tricyclic aromatic hydrocarbon which is toxic environmental pollutant comes in the environment through photooxidation of anthracene. We have studied the photomodification of anthrone under environmental conditions. Anthrone generates reactive oxygen species (ROS) like {sup 1}O{sub 2} through Type-II photodynamic reaction. Significant intracellular ROS generation was measured through dichlorohydrofluorescein fluorescence intensity. The generation of {sup 1}O{sub 2} was further substantiated by using specific quencher like sodium azide. UV induced photodegradation of 2-deoxyguanosine and photoperoxidation of linoleic acid accorded the involvement of {sup 1}O{sub 2} in the manifestation of anthrone phototoxicity. Phototoxicity of anthrone was done on human keratinocytes (HaCaT) through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and neutral red uptake assays. Anthrone induced cell cycle arrest (G2/M-phase) and DNA damage in a concentration dependent manner. We found apoptosis as a pattern of cell death which was confirmed through sub-G1 fraction, morphological changes, caspase-3 activation, acridine orange/ethidium bromide staining and phosphatidylserine translocation. Mitochondrial depolarization and lysosomal destabilization was parallel to apoptotic process. Our RT-PCR results strongly supports our view point of apoptotic cell death through up-regulation of pro-apoptotic genes p21 and Bax, and down regulation of anti-apoptotic gene Bcl{sub 2}. Therefore, much attention should be paid to concomitant

  5. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity

    Directory of Open Access Journals (Sweden)

    Stern Stephan T

    2012-06-01

    Full Text Available Abstract The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  6. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity.

    Science.gov (United States)

    Stern, Stephan T; Adiseshaiah, Pavan P; Crist, Rachael M

    2012-06-14

    The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy) pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  7. Cyclosporin a, but not FK506, induces osmotic lysis of pancreas zymogen granules, intra-acinar enzyme release, and lysosome instability by activating K+ channel.

    Science.gov (United States)

    Lee, Wing-Kee; Braun, Matthias; Langelüddecke, Christian; Thévenod, Frank

    2012-05-01

    The immunosuppressant tacrolimus (FK506) has improved pancreas allograft survival compared with cyclosporin A (CsA), possibly because of reduced acute pancreatitis following ischemia-reperfusion injury. Ion permeabilities in zymogen granule (ZG) membranes, including a KCNQ1 K channel, promote hormone-stimulated enzyme secretion. We investigated whether a differential modulation of ZG and lysosomal ion permeabilities and enzyme secretion by CsA/FK506 contributes to pancreatitis. Rat ZGs and lysosomes were isolated by gradient centrifugation, ion permeabilities assayed by osmotic lysis, and single-channel currents recorded in a planar lipid bilayer. Amylase release was measured in permeabilized acini and lysosomal cathepsin B release detected by immunoblotting. CsA (1-10 μM), but not FK506, enhanced ZGs osmotic lysis by selectively increasing K permeability up to 5-fold. Zymogen granule membrane K channels showed ∼2-fold increased single-channel open probability with CsA only. Cyclosporin A selectively increased basal (∼2-fold), but not cholecystokinin-octapeptide (1 nM)-induced amylase secretion in K medium only. Cyclosporin A (5 μM), but not FK506, increased cathepsin B release from lysosomes. Cyclosporin A selectively opens the ZG K channel and induces cathepsin B release from lysosomes, which cause increased in situ lysis of ZGs and may aggravate or fuel acute allograft pancreatitis following hypoxia-reperfusion injury.

  8. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy.

    Science.gov (United States)

    Shi, Yin; Tan, Shi-Hao; Ng, Shukie; Zhou, Jing; Yang, Na-Di; Koo, Gi-Bang; McMahon, Kerrie-Ann; Parton, Robert G; Hill, Michelle M; Del Pozo, Miguel A; Kim, You-Sun; Shen, Han-Ming

    2015-01-01

    CAV1 (caveolin 1, caveolae protein, 22kDa) is well known as a principal scaffolding protein of caveolae, a specialized plasma membrane structure. Relatively, the caveolae-independent function of CAV1 is less studied. Autophagy is a process known to involve various membrane structures, including autophagosomes, lysosomes, and autolysosomes for degradation of intracellular proteins and organelles. Currently, the function of CAV1 in autophagy remains largely elusive. In this study, we demonstrate for the first time that CAV1 deficiency promotes both basal and inducible autophagy. Interestingly, the promoting effect was found mainly in the late stage of autophagy via enhancing lysosomal function and autophagosome-lysosome fusion. Notably, the regulatory function of CAV1 in lysosome and autophagy was found to be caveolae-independent, and acts through lipid rafts. Furthermore, the elevated autophagy level induced by CAV1 deficiency serves as a cell survival mechanism under starvation. Importantly, downregulation of CAV1 and enhanced autophagy level were observed in human breast cancer cells and tissues. Taken together, our data reveal a novel function of CAV1 and lipid rafts in breast cancer development via modulation of lysosomal function and autophagy.

  9. Unfolding Ubiquitin by force: water mediated H-bond destabilization

    Directory of Open Access Journals (Sweden)

    Germán Pabón

    2012-12-01

    Full Text Available Using the “pull and wait” (PNW simulation protocol at 300 K, we studied the unfolding by force of an ubiquitin molecule. PNW was implemented in the CHARMM program using an integration time step of 1 fs and a uniform dielectric constant of 1. The ubiquitin molecule, initially solvated, was put under mechanical stress, exerting forces from different directions. The rupture of five hydrogen bonds between parallel strands β1 and β5 takes place during the extension from 13 to 15 Å, defines a mechanical barrier for unfolding and dominates the point of maximum unfolding force. The simulations described here show that given adequate time, a small applied force can destabilize those five H-bonds relative to the bonds that can be created to water molecules; allowing the formation of stable H-bonds between a single water molecule and the donor and acceptor groups of the interstrand H-bonds. Thus, simulations run with PNW show that the force is not responsible for “ripping apart” the backbone H-bonds; it merely destabilizes them making them less stable than the H-bonds they can make with water. Additional simulations show that the force necessary to destabilize the H-bonds and allow them to be replaced by H-bonds to water molecules depends strongly on the pulling direction. By using a simulation protocol that allows equilibration at each extension we have been able to observe the details of the events leading to the unfolding of ubiquitin by mechanical force.

  10. Early involvement of lysosome dysfunction in the degeneration of cerebral cortical neurons caused by the lipid peroxidation product 4-hydroxynonenal.

    Science.gov (United States)

    Zhang, Shi; Eitan, Erez; Mattson, Mark P

    2017-03-01

    Free radical-mediated oxidative damage to proteins, lipids, and DNA occurs in neurons during acute brain injuries and in neurodegenerative disorders. Membrane lipid peroxidation contributes to neuronal dysfunction and death, in part by disrupting neuronal ion homeostasis and cellular bioenergetics. Emerging findings suggest that 4-hydroxynonenal (HNE), an aldehyde produced during lipid peroxidation, impairs the function of various proteins involved in neuronal homeostasis. Here we tested the hypothesis that HNE impairs the cellular system that removes damaged proteins and organelles, the autophagy-lysosome pathway in rat primary cortical neurons. We found that HNE, at a concentration that causes apoptosis over a 48-72 h period, increases protein levels of LC3 II and p62 and within 1 and 4 h of exposure, respectively; LC3 II and p62 immunoreactive puncta were observed in the cytoplasm of HNE-treated neurons at 6 h. The extent of up-regulation of p62 and LC3 II in response to HNE was not affected by co-treatment with the lysosome inhibitor bafilomycin A1, suggesting that the effects of HNE on autophagy were secondary to lysosome inhibition. Indeed, we found that neurons exposed to HNE exhibit elevated pH levels, and decreased protein substrate hydrolysis and cathepsin B activity. Neurons exposed to HNE also exhibited the accumulation of K63-linked polyubiquitinated proteins, which are substrates targeted for lysosomal degradation. Moreover, we found that the levels of LAMP2a and constitutively active heat-shock protein 70, and numbers of LAMP2a-positive lysosomes, are decreased in neurons exposed to HNE. Our findings demonstrate that the lipid peroxidation product HNE causes early impairment of lysosomes which may contribute to the accumulation of damaged and dysfunctional proteins and organelles and consequent neuronal death. Because impaired lysosome function is increasingly recognized as an early event in the neuronal death that occurs in neurodegenerative

  11. Trapped particle destabilization of the internal kink mode

    Energy Technology Data Exchange (ETDEWEB)

    White, R.B.; Chen, L.; Romanelli, F.; Hay, R.

    1984-06-01

    The internal kink mode is destabilized by trapped high energy particles, leading to a new branch of the internal kink dispersion relation with a real frequency near the average trapped particle precession frequency and a growth rate of the same magnitude. This trapped particle branch of the dispersion relation is investigated numerically for a variety of particle distributions. Mode growth rate and frequency are found as a function of plasma ..beta.., density, and trapped particle energy and distribution. The high energy trapped particle sources considered are neutral beam injection, ion cyclotron heating, and fusion alpha particles. Relevance for various plasma heating schemes is discussed.

  12. Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH.

    Science.gov (United States)

    Lu, Yingying; Hao, Bai-Xia; Graeff, Richard; Wong, Connie W M; Wu, Wu-Tian; Yue, Jianbo

    2013-08-16

    Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca(2+) mobilizing messengers, elicits Ca(2+) release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca(2+) signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression.

  13. Mechanism for the catastrophe-promoting activity of the microtubule destabilizer Op18/stathmin.

    Science.gov (United States)

    Gupta, Kamlesh K; Li, Chunlei; Duan, Aranda; Alberico, Emily O; Kim, Oleg V; Alber, Mark S; Goodson, Holly V

    2013-12-17

    Regulation of microtubule dynamic instability is crucial for cellular processes, ranging from mitosis to membrane transport. Stathmin (also known as oncoprotein 18/Op18) is a prominent microtubule destabilizer that acts preferentially on microtubule minus ends. Stathmin has been studied intensively because of its association with multiple types of cancer, but its mechanism of action remains controversial. Two models have been proposed. One model is that stathmin promotes microtubule catastrophe indirectly, and does so by sequestering tubulin; the other holds that stathmin alters microtubule dynamics by directly destabilizing growing microtubules. Stathmin's sequestration activity is well established, but the mechanism of any direct action is mysterious because stathmin binds to microtubules very weakly. To address these issues, we have studied interactions between stathmin and varied tubulin polymers. We show that stathmin binds tightly to Dolastatin-10 tubulin rings, which mimic curved tubulin protofilaments, and that stathmin depolymerizes stabilized protofilament-rich polymers. These observations lead us to propose that stathmin promotes catastrophe by binding to and acting upon protofilaments exposed at the tips of growing microtubules. Moreover, we suggest that stathmin's minus-end preference results from interactions between stathmin's N terminus and the surface of α-tubulin that is exposed only at the minus end. Using computational modeling of microtubule dynamics, we show that these mechanisms could account for stathmin's observed activities in vitro, but that both the direct and sequestering activities are likely to be relevant in a cellular context. Taken together, our results suggest that stathmin can promote catastrophe by direct action on protofilament structure and interactions.

  14. Destabilization of confined granular packings due to fluid flow

    Science.gov (United States)

    Monloubou, Martin; Sandnes, Bjørnar

    2016-04-01

    Fluid flow through granular materials can cause fluidization when fluid drag exceeds the frictional stress within the packing. Fluid driven failure of granular packings is observed in both natural and engineered settings, e.g. soil liquefaction and flowback of proppants during hydraulic fracturing operations. We study experimentally the destabilization and flow of an unconsolidated granular packing subjected to a point source fluid withdrawal using a model system consisting of a vertical Hele-Shaw cell containing a water-grain mixture. The fluid is withdrawn from the cell at a constant rate, and the emerging flow patterns are imaged in time-lapse mode. Using Particle Image Velocimetry (PIV), we show that the granular flow gets localized in a narrow channel down the center of the cell, and adopts a Gaussian velocity profile similar to those observed in dry grain flows in silos. We investigate the effects of the experimental parameters (flow rate, grain size, grain shape, fluid viscosity) on the packing destabilization, and identify the physical mechanisms responsible for the observed complex flow behaviour.

  15. Dramatic destabilization of the Ru(0001) surface upon oxygen adsorption

    Science.gov (United States)

    Reuter, K.; Ganduglia-Pirovano, M. V.; Scheffler, M.; Stampfl, C.

    2000-03-01

    Under high oxygen pressures, where most other transition metal surfaces typically form inert surface oxides, Ru(0001) displays the highest rates for oxidation reactions. This unusual behavior has been attributed to the fact that Ru can exist in different oxidation states and to the ease with which its surface can be loaded with high concentrations of subsurface oxygen. Yet, recent experiments have also indicated that high oxygen loads in the subsurface region destabilize Ru(0001) and lead to the emission of RuOx (xA. Böttcher, H. Conrad and H. Niehus, J. Chem. Phys. (submitted).). We perform density functional theory calculations to gain a fundamental understanding of the O-Ru bond in on-surface as well as subsurface oxygen phases. After completion of a full monolayer coverage on the surface, Ru(0001) is found to strongly bind even up to another full monolayer in the sites directly below the first substrate layer. In agreement with the experimental findings, this highly loaded O-Ru-O fringe is then relatively instable against lift-off, which might lead to either RuOx fragmentation or restructuring. The relation between charge transfer towards the oxygen and bond formation, as well as substrate destabilization is discussed.

  16. Cationic lipids delay the transfer of plasmid DNA to lysosomes.

    Science.gov (United States)

    Wattiaux, R; Jadot, M; Laurent, N; Dubois, F; Wattiaux-De Coninck, S

    1996-10-14

    Plasmid 35S DNA, naked or associated with different cationic lipid preparations was injected to rats. Subcellular distribution of radioactivity in the liver one hour after injection, was established by centrifugation methods. Results show that at that time, 35S DNA has reached lysosomes. On the contrary, when 35S DNA was complexed with lipids, radioactivity remains located in organelles whose distribution after differential and isopycnic centrifugation, is clearly distinct from that of arylsulfatase, lysosome marker enzyme. Injection of Triton WR 1339, a specific density perturbant of lysosomes, four days before 35S DNA injection causes a density decrease of radioactivity bearing structures, apparent one hour after naked 35S DNA injection but visible only after more than five hours, when 35S DNA associated with a cationic lipid is injected. These observations show that cationic lipids delay the transfer to lysosomes, of plasmid DNA taken up by the liver.

  17. LINGO-1 promotes lysosomal degradation of amyloid-β protein precursor.

    Science.gov (United States)

    de Laat, Rian; Meabon, James S; Wiley, Jesse C; Hudson, Mark P; Montine, Thomas J; Bothwell, Mark

    2015-01-01

    Sequential proteolytic cleavages of amyloid-β protein precursor (AβPP) by β-secretase and γ-secretase generate amyloid β (Aβ) peptides, which are thought to contribute to Alzheimer's disease (AD). Much of this processing occurs in endosomes following endocytosis of AβPP from the plasma membrane. However, this pathogenic mode of processing AβPP may occur in competition with lysosomal degradation of AβPP, a common fate of membrane proteins trafficking through the endosomal system. Following up on published reports that LINGO-1 binds and promotes the amyloidogenic processing of AβPP we have examined the consequences of LINGO-1/AβPP interactions. We report that LINGO-1 and its paralogs, LINGO-2 and LINGO-3, decrease processing of AβPP in the amyloidogenic pathway by promoting lysosomal degradation of AβPP. We also report that LINGO-1 levels are reduced in AD brain, representing a possible pathogenic mechanism stimulating the generation of Aβ peptides in AD.

  18. LINGO-1 promotes lysosomal degradation of amyloid-β protein precursor

    Directory of Open Access Journals (Sweden)

    Rian de Laat

    2015-03-01

    Full Text Available Sequential proteolytic cleavages of amyloid-β protein precursor (AβPP by β-secretase and γ-secretase generate amyloid β (Aβ peptides, which are thought to contribute to Alzheimer's disease (AD. Much of this processing occurs in endosomes following endocytosis of AβPP from the plasma membrane. However, this pathogenic mode of processing AβPP may occur in competition with lysosomal degradation of AβPP, a common fate of membrane proteins trafficking through the endosomal system. Following up on published reports that LINGO-1 binds and promotes the amyloidogenic processing of AβPP we have examined the consequences of LINGO-1/AβPP interactions. We report that LINGO-1 and its paralogs, LINGO-2 and LINGO-3, decrease processing of AβPP in the amyloidogenic pathway by promoting lysosomal degradation of AβPP. We also report that LINGO-1 levels are reduced in AD brain, representing a possible pathogenic mechanism stimulating the generation of Aβ peptides in AD.

  19. WO3/Pt nanoparticles promote light-induced lipid peroxidation and lysosomal instability within tumor cells

    Science.gov (United States)

    Clark, Andrea J.; Petty, Howard R.

    2016-02-01

    Although metal-metal oxide nanoparticles have attracted considerable interest as catalysts, they have attracted little interest in nanomedicine. This is likely due to the fact that metal oxide semiconductors generally require biologically harmful ultraviolet excitation. In contrast, this study focuses upon WO3/Pt nanoparticles, which can be excited by visible light. To optimize the nanoparticles’ catalytic performance, platinization was performed at alkaline pH. These nanoparticles destroyed organic dyes, consumed dissolved oxygen and produced hydroxyl radicals. 4T1 breast cancer cells internalized WO3/Pt nanoparticles within the membrane-bound endo-lysosomal compartment as shown by electron and fluorescence microscopy. During visible light exposure, but not in darkness, WO3/Pt nanoparticles manufacture reactive oxygen species, promote lipid peroxidation, and trigger lysosomal membrane disruption. As cells of the immune system degrade organic molecules, produce reactive oxygen species, and activate the lipid peroxidation pathway within target cells, these nanoparticles mimic the chemical attributes of immune effector cells. These biomimetic nanoparticles should become useful in managing certain cancers, especially ocular cancer.

  20. Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion.

    Directory of Open Access Journals (Sweden)

    Yeon Ja Choi

    Full Text Available Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time-dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel

  1. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  2. Lysosome-associated protein 1 (LAMP-1) and lysosome-associated protein 2 (LAMP-2) in a larger family carrier of Fabry disease.

    Science.gov (United States)

    Pereira, Ester M; do Monte, Semiramis J H; do Nascimento, Fernando F; de Castro, Jose A F; Sousa, Jackeline L M; Filho, Henrique C S A L C; da Silva, Raimundo N; Labilloy, Anatália; Monte Neto, José T; da Silva, Adalberto S

    2014-02-15

    This study investigated the potential relationship between the expression levels of lysosome-associated membrane proteins (LAMP) 1 and 2 and responses to enzyme replacement therapy (ERT) in the members of a single family with Fabry disease (FD). LAMP levels were assessed by flow cytometry in leukocytes from 17 FD patients who received an eight-month course of ERT course and 101 healthy individuals. We found that phagocytic cells from the FD patients had higher expression levels of both LAMP-1 and LAMP-2, relative to the levels in phagocytes from the healthy controls (p=0.001). Furthermore, the LAMP-1 and LAMP-2 levels in phagocytes from the FD carriers continuously decreased with ERT administration to reach levels similar to those in healthy controls. We suggest that LAMP-1 and LAMP-2 could be used as additional markers with which to assess ERT effectiveness in FD.

  3. Destabilizing Tachyonic Vacua at or above the BF Bound

    CERN Document Server

    Kanno, Sugumi; Soda, Jiro

    2012-01-01

    It is well known that tachyonic vacua in an asymptotically Anti-de Sitter (AdS) space-time are classically stable if the mass squared is at or above the Breitenlohner and Freedman (BF) bound. We study the quantum stability of these tachyonic vacua in terms of instantons. We find a series of exact instanton solutions destabilizing tachyonic state at or above the BF bound in asymptotically AdS space. We also give an analytic formula for the decay rate and show that it is finite. Comparing our result with the well-known algebraic condition for the stability, we discuss stability conditions of tachyonic vacua at or above the BF bound.

  4. Nutrient flows between ecosystems can destabilize simple food chains.

    Science.gov (United States)

    Marleau, Justin N; Guichard, Frédéric; Mallard, François; Loreau, Michel

    2010-09-07

    Dispersal of organisms has large effects on the dynamics and stability of populations and communities. However, current metacommunity theory largely ignores how the flows of limiting nutrients across ecosystems can influence communities. We studied a meta-ecosystem model where two autotroph-consumer communities are spatially coupled through the diffusion of the limiting nutrient. We analyzed regional and local stability, as well as spatial and temporal synchrony to elucidate the impacts of nutrient recycling and diffusion on trophic dynamics. We show that nutrient diffusion is capable of inducing asynchronous local destabilization of biotic compartments through a diffusion-induced spatiotemporal bifurcation. Nutrient recycling interacts with nutrient diffusion and influences the susceptibility of the meta-ecosystem to diffusion-induced instabilities. This interaction between nutrient recycling and transport is further shown to depend on ecosystem enrichment. It more generally emphasizes the importance of meta-ecosystem theory for predicting species persistence and distribution in managed ecosystems.

  5. A mechanism for dust-induced destabilization of glacial climates

    Directory of Open Access Journals (Sweden)

    B. F. Farrell

    2012-05-01

    Full Text Available Abrupt transitions between cold/dry stadial and warm/wet interstadial states occurred during glacial periods in the absence of any known external forcing. The climate record preserved in polar glaciers, mountain glaciers, and widespread cave deposits reveals that these events were global in extent with temporal distribution implying an underlying memoryless process with millennial time scale. Here a theory is advanced implicating feedback between atmospheric dust and the hydrological cycle in producing these abrupt transitions. Calculations are performed using a radiative-convective model that includes the interaction of aerosols with radiation to reveal the mechanism of this dust/precipitation interaction feedback process and a Langevin equation is used to illustrate qualitatively glacial climate destabilization by this mechanism. This theory explains the observed abrupt, bimodal, and memoryless nature of these transitions as well as their intrinsic connection with the hydrological cycle.

  6. A mechanism for dust-induced destabilization of glacial climates

    Directory of Open Access Journals (Sweden)

    B. F. Farrell

    2012-12-01

    Full Text Available Abrupt transitions between cold/dry stadial and warm/wet interstadial states occurred during glacial periods in the absence of any known external forcing. The climate record preserved in polar glaciers, mountain glaciers, and widespread cave deposits reveals that these events were global in extent with temporal distribution implying an underlying memoryless process with millennial time scale. Here a theory is advanced implicating feedback between atmospheric dust and the hydrological cycle in producing these abrupt transitions. Calculations are performed using a radiative-convective model that includes the interaction of aerosols with radiation to reveal the mechanism of this dust/precipitation interaction feedback process and a Langevin equation is used to illustrate glacial climate destabilization by this mechanism. This theory explains the observed abrupt, bimodal, and memoryless nature of these transitions as well as their intrinsic connection with the hydrological cycle.

  7. Destabilization of Akt Promotes the Death of Myeloma Cell Lines

    Directory of Open Access Journals (Sweden)

    Yanan Zhang

    2014-01-01

    Full Text Available Constitutive activation of Akt is believed to be an oncogenic signal in multiple myeloma and is associated with poor patient prognosis and resistance to available treatment. The stability of Akt proteins is regulated by phosphorylating the highly conserved turn motif (TM of these proteins and the chaperone protein HSP90. In this study we investigate the antitumor effects of inhibiting mTORC2 plus HSP90 in myeloma cell lines. We show that chronic exposure of cells to rapamycin can inhibit mTORC2 pathway, and AKT will be destabilized by administration of the HSP90 inhibitor 17-allylamino-geldanamycin (17-AAG. Finally, we show that the rapamycin synergizes with 17-AAG and inhibits myeloma cells growth and promotes cell death to a greater extent than either drug alone. Our studies provide a clinical rationale of use mTOR inhibitors and chaperone protein inhibitors in combination regimens for the treatment of human blood cancers.

  8. Redistribution of cathepsin B activity from the endosomal-lysosomal pathway in chick intestine within 3 min of calcium absorption.

    Science.gov (United States)

    Nemere, I; Norman, A W

    1991-06-01

    Earlier work has suggested that calcium-containing lysosomes are involved in 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-stimulated intestinal absorption of the divalent cation. In the present report immunofluorescent labelling studies on fixed frozen sections of chick intestine were undertaken to determine whether lysosomes could respond to calcium transport conditions in less than 5 min. Tissue prepared from vitamin D-deficient chicks dosed with vehicle or 1.3 nmol of 1,25(OH)2D3 15 h prior to use was immunofluorescently labelled for cathepsin B, a lysosomal protease. In the absence of calcium absorption, punctate staining was found in the region below the terminal web, and more diffusely in the cytoplasm. The intensity of staining was noticeably greater in sections from 1,25(OH)2D3-treated than control chicks. In sections prepared after 3 min of calcium absorption, cathepsin B staining was localized near the basal and lateral membranes of the epithelial cells. After 30 min of transport, the protease was found in the villus core regardless of vitamin D status; however, immunoreactivity within the epithelial cells of 1,25(OH)2D3-treated chick intestine had returned to pretransport intensity, whereas that of controls had not. To further investigate the specificity of the cathepsin B antibody, the intracellular compartmentalization of the protease was determined by biochemical methods. Using dosing procedures and calcium transport times equivalent to those for the immunofluorescent studies mucosae were collected by scraping, homogenized, and subcellular fractions prepared by a combination of differential and Percoll gradient centrifugation. In the absence of calcium transport, cathepsin B-specific activity was enhanced in whole homogenates, endocytic vesicles, and a lysosomal fraction prepared from intestinal epithelium of 1,25(OH)2D3-treated chicks, relative to vitamin D-deficient controls. After 3 min of calcium absorption, a profound (approximately 4-fold) decrease in

  9. Lysosomal storage disorders: Molecular basis and laboratory testing

    Directory of Open Access Journals (Sweden)

    Filocamo Mirella

    2011-03-01

    Full Text Available Abstract Lysosomal storage disorders (LSDs are a large group of more than 50 different inherited metabolic diseases which, in the great majority of cases, result from the defective function of specific lysosomal enzymes and, in cases, of non-enzymatic lysosomal proteins or non-lysosomal proteins involved in lysosomal biogenesis. The progressive lysosomal accumulation of undegraded metabolites results in generalised cell and tissue dysfunction, and, therefore, multi-systemic pathology. Storage may begin during early embryonic development, and the clinical presentation for LSDs can vary from an early and severe phenotype to late-onset mild disease. The diagnosis of most LSDs--after accurate clinical/paraclinical evaluation, including the analysis of some urinary metabolites--is based mainly on the detection of a specific enzymatic deficiency. In these cases, molecular genetic testing (MGT can refine the enzymatic diagnosis. Once the genotype of an individual LSD patient has been ascertained, genetic counselling should include prediction of the possible phenotype and the identification of carriers in the family at risk. MGT is essential for the identification of genetic disorders resulting from non-enzymatic lysosomal protein defects and is complementary to biochemical genetic testing (BGT in complex situations, such as in cases of enzymatic pseudodeficiencies. Prenatal diagnosis is performed on the most appropriate samples, which include fresh or cultured chorionic villus sampling or cultured amniotic fluid. The choice of the test--enzymatic and/or molecular--is based on the characteristics of the defect to be investigated. For prenatal MGT, the genotype of the family index case must be known. The availability of both tests, enzymatic and molecular, enormously increases the reliability of the entire prenatal diagnostic procedure. To conclude, BGT and MGT are mostly complementary for post- and prenatal diagnosis of LSDs. Whenever genotype

  10. Involvement of oxidative stress and mitochondrial/lysosomal cross-talk in olanzapine cytotoxicity in freshly isolated rat hepatocytes.

    Science.gov (United States)

    Eftekhari, Aziz; Azarmi, Yadollah; Parvizpur, Alireza; Eghbal, Mohammad Ali

    2016-01-01

    1. Olanzapine (OLZ) is a widely used atypical antipsychotic agent for the treatment of schizophrenia and other disorders. Serious hepatotoxicity and elevated liver enzymes have been reported in patients receiving OLZ. However, the cellular and molecular mechanisms of the OLZ hepatotoxicity are unknown. 2. In this study, the cytotoxic effect of OLZ on freshly isolated rat hepatocytes was assessed. Our results showed that the cytotoxicity of OLZ in hepatocytes is mediated by overproduction of reactive oxygen species (ROS), mitochondrial potential collapse, lysosomal membrane leakiness, GSH depletion and lipid peroxidation preceding cell lysis. All the aforementioned OLZ-induced cellular events were significantly (p lysosomal involvement following the initiation of oxidative stress in hepatocytes.

  11. Inspired by nonenveloped viruses escaping from endo-lysosomes: a pH-sensitive polyurethane micelle for effective intracellular trafficking

    Science.gov (United States)

    Song, Nijia; Zhou, Lijuan; Li, Jiehua; Pan, Zhicheng; He, Xueling; Tan, Hong; Wan, Xinyuan; Li, Jianshu; Ran, Rong; Fu, Qiang

    2016-03-01

    A multifunctional drug delivery system (DDS) for cancer therapy still faces great challenges due to multiple physiological barriers encountered in vivo. To increase the efficacy of current cancer treatment a new anticancer DDS mimicking the response of nonenveloped viruses, triggered by acidic pH to escape endo-lysosomes, is developed. Such a smart DDS is self-assembled from biodegradable pH-sensitive polyurethane containing hydrazone bonds in the backbone, named pHPM. The pHPM exhibits excellent micellization characteristics and high loading capacity for hydrophobic chemotherapeutic drugs. The responses of the pHPM in acidic media, undergoing charge conversion and hydrophobic core exposure, resulting from the detachment of the hydrophilic polyethylene glycol (PEG) shell, are similar to the behavior of a nonenveloped virus when trapped in acidic endo-lysosomes. Moreover, the degradation mechanism was verified by gel permeation chromatography (GPC). The endo-lysosomal membrane rupture induced by these transformed micelles is clearly observed by transmission electron microscopy. Consequently, excellent antitumor activity is confirmed both in vitro and in vivo. The results verify that the pHPM could be a promising new drug delivery tool for the treatment of cancer and other diseases.A multifunctional drug delivery system (DDS) for cancer therapy still faces great challenges due to multiple physiological barriers encountered in vivo. To increase the efficacy of current cancer treatment a new anticancer DDS mimicking the response of nonenveloped viruses, triggered by acidic pH to escape endo-lysosomes, is developed. Such a smart DDS is self-assembled from biodegradable pH-sensitive polyurethane containing hydrazone bonds in the backbone, named pHPM. The pHPM exhibits excellent micellization characteristics and high loading capacity for hydrophobic chemotherapeutic drugs. The responses of the pHPM in acidic media, undergoing charge conversion and hydrophobic core

  12. CUP-5, the C. elegans ortholog of the mammalian lysosomal channel protein MLN1/TRPML1, is required for proteolytic degradation in autolysosomes.

    Science.gov (United States)

    Sun, Tao; Wang, Xingwei; Lu, Qun; Ren, Haiyan; Zhang, Hong

    2011-11-01

    The process of macroautophagy (herein referred to as autophagy) involves the formation of a closed double-membrane structure, called the autophagosome, and its subsequent fusion with lysosomes to form an autolysosome. Lysosomes are regenerated from autolysosomes after degradation of the sequestrated materials. In this study, we showed that mutations in cup-5, encoding the C. elegans Mucolipin 1 homolog, cause defects in the autophagy pathway. In cup-5 mutants, a variety of autophagy substrates accumulate in enlarged vacuoles that display characteristics of late endosomes and lysosomes, indicating defective proteolytic degradation in autolysosomes. We further revealed that lysosomes in coelomocytes (scavenger cells located in the body cavity) are smaller in size and more numerous in mutants with loss of autophagy activity. Furthermore, the enlarged vacuole accumulation abnormality and embryonic lethality of cup-5 mutants are partially suppressed by reduced autophagy activity. Our results indicate that the basal constitutive level of autophagy activity regulates the size and number of lysosomes and provides insights into the molecular mechanisms underlying mucolipidosis type IV disease.

  13. Lysosomal iron mobilization and induction of the mitochondrial permeability transition in acetaminophen-induced toxicity to mouse hepatocytes.

    Science.gov (United States)

    Kon, Kazuyoshi; Kim, Jae-Sung; Uchiyama, Akira; Jaeschke, Hartmut; Lemasters, John J

    2010-09-01

    Acetaminophen induces the mitochondrial permeability transition (MPT) in hepatocytes. Reactive oxygen species (ROS) trigger the MPT and play an important role in AAP-induced hepatocellular injury. Because iron is a catalyst for ROS formation, our aim was to investigate the role of chelatable iron in MPT-dependent acetaminophen toxicity to mouse hepatocytes. Hepatocytes were isolated from fasted male C3Heb/FeJ mice. Necrotic cell killing was determined by propidium iodide fluorometry. Mitochondrial membrane potential was visualized by confocal microscopy of tetramethylrhodamine methylester. Chelatable ferrous ion was monitored by calcein quenching, and 70 kDa rhodamine-dextran was used to visualize lysosomes. Cell killing after acetaminophen (10mM) was delayed and decreased by more than half after 6 h by 1mM desferal or 1mM starch-desferal. In a cell-free system, ferrous but not ferric iron quenched calcein fluorescence, an effect reversed by dipyridyl, a membrane-permeable iron chelator. In hepatocytes loaded with calcein, intracellular calcein fluorescence decreased progressively beginning about 4 h after acetaminophen. Mitochondria then depolarized after about 6 h. Dipyridyl (20mM) dequenched calcein fluorescence. Desferal and starch-desferal conjugate prevented acetaminophen-induced calcein quenching and mitochondrial depolarization. As calcein fluorescence became quenched, lysosomes disappeared, consistent with release of iron from ruptured lysosomes. In conclusion, an increase of cytosolic chelatable ferrous iron occurs during acetaminophen hepatotoxicity, which triggers the MPT and cell killing. Disrupted lysosomes are the likely source of iron, and chelation of this iron decreases acetaminophen toxicity to hepatocytes.

  14. The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3

    Directory of Open Access Journals (Sweden)

    Liping He

    2012-11-01

    Membrane proteins make up ∼30% of the proteome. During the early stages of maturation, this class of proteins can experience localized misfolding in distinct cellular compartments, such as the cytoplasm, endoplasmic reticulum (ER lumen and ER membrane. ER quality control (ERQC mechanisms monitor folding and determine whether a membrane protein is appropriately folded or is misfolded and warrants degradation. ERQC plays crucial roles in human diseases, such as cystic fibrosis, in which deletion of a single amino acid (F508 results in the misfolding and degradation of the cystic fibrosis transmembrane conductance regulator (CFTR Cl– channel. We introduced the ΔF508 mutation into Caenorhabditis elegans PGP-3, a 12-transmembrane ABC transporter with 15% identity to CFTR. When expressed in intestinal epithelial cells, PGP-3wt was stable and efficiently trafficked to the apical plasma membrane through a COPII-dependent mechanism. However, PGP-3ΔF508 was post-transcriptionally destabilized, resulting in reduced total and apical membrane protein levels. Genetic or physiological activation of the osmotic stress response pathway, which causes accumulation of the chemical chaperone glycerol, stabilized PGP-3ΔF508. Efficient degradation of PGP-3ΔF508 required the function of several C. elegans ER-associated degradation (ERAD homologs, suggesting that destabilization occurs through an ERAD-type mechanism. Our studies show that the ΔF508 mutation causes post-transcriptional destabilization and degradation of PGP-3 in C. elegans epithelial cells. This model, combined with the power of C. elegans genetics, provides a new opportunity to genetically dissect metazoan ERQC.

  15. Triazoles inhibit cholesterol export from lysosomes by binding to NPC1.

    Science.gov (United States)

    Trinh, Michael N; Lu, Feiran; Li, Xiaochun; Das, Akash; Liang, Qiren; De Brabander, Jef K; Brown, Michael S; Goldstein, Joseph L

    2017-01-03

    Niemann-Pick C1 (NPC1), a membrane protein of lysosomes, is required for the export of cholesterol derived from receptor-mediated endocytosis of LDL. Lysosomal cholesterol export is reportedly inhibited by itraconazole, a triazole that is used as an antifungal drug [Xu et al. (2010) Proc Natl Acad Sci USA 107:4764-4769]. Here we show that posaconazole, another triazole, also blocks cholesterol export from lysosomes. We prepared P-X, a photoactivatable cross-linking derivative of posaconazole. P-X cross-linked to NPC1 when added to intact cells. Cross-linking was inhibited by itraconazole but not by ketoconazole, an imidazole that does not block cholesterol export. Cross-linking of P-X was also blocked by U18666A, a compound that has been shown to bind to NPC1 and inhibit cholesterol export. P-X also cross-linked to purified NPC1 that was incorporated into lipid bilayer nanodiscs. In this in vitro system, cross-linking of P-X was inhibited by itraconazole, but not by U18666A. P-X cross-linking was not prevented by deletion of the N-terminal domain of NPC1, which contains the initial binding site for cholesterol. In contrast, P-X cross-linking was reduced when NPC1 contained a point mutation (P691S) in its putative sterol-sensing domain. We hypothesize that the sterol-sensing domain has a binding site that can accommodate structurally different ligands.

  16. The Link Between Lysosomal Storage Disorders and More Common Diseases

    Directory of Open Access Journals (Sweden)

    Michael Beck MD

    2016-12-01

    Full Text Available In the last decades, it has become more and more evident that lysosomal storage disorders and common neurodegenerative diseases such as Alzheimer and Parkinson diseases have clinical, neuropathological, and genetic features in common, including lysosomal dysfunction and impaired autophagy. Patients with Gaucher and even carriers of Gaucher disease have an increased risk to develop Parkinson disease. Likewise, individuals who are heterozygous for a mutation of a gene that causes an adult form of neuronal ceroid lipofuscinosis are more likely to be affected by a form of frontotemporal dementia in their later life. A further example is the gene NAGLU encoding the enzyme α- N -acetylglucosaminidase, which is deficient in patients with mucopolysaccharidosis type IIIB. Mutations of the NAGLU gene have been observed in patients affected by an axonal neuropathy. An interesting unexpected finding was the link between stuttering and genes that are essential for the function of all lysosomal enzymes. This review will present some example of the association of lysosomal storage disorders and neurodegenerative disease and discuss possible pathogenic mechanisms that are common to both conditions. The understanding of the pathophysiology of the endosomal–lysosomal–autophagic system may help to develop drugs, which might provide benefit not only for patients with rare lysosomal storage disorders but also for individuals affected by more common diseases.

  17. The Link Between Lysosomal Storage Disorders and More Common Diseases

    Directory of Open Access Journals (Sweden)

    Michael Beck MD

    2016-12-01

    Full Text Available In the last decades, it has become more and more evident that lysosomal storage disorders and common neurodegenerative diseases such as Alzheimer and Parkinson diseases have clinical, neuropathological, and genetic features in common, including lysosomal dysfunction and impaired autophagy. Patients with Gaucher and even carriers of Gaucher disease have an increased risk to develop Parkinson disease. Likewise, individuals who are heterozygous for a mutation of a gene that causes an adult form of neuronal ceroid lipofuscinosis are more likely to be affected by a form of frontotemporal dementia in their later life. A further example is the gene NAGLU encoding the enzyme α-N-acetylglucosaminidase, which is deficient in patients with mucopolysaccharidosis type IIIB. Mutations of the NAGLU gene have been observed in patients affected by an axonal neuropathy. An interesting unexpected finding was the link between stuttering and genes that are essential for the function of all lysosomal enzymes. This review will present some example of the association of lysosomal storage disorders and neurodegenerative disease and discuss possible pathogenic mechanisms that are common to both conditions. The understanding of the pathophysiology of the endosomal–lysosomal–autophagic system may help to develop drugs, which might provide benefit not only for patients with rare lysosomal storage disorders but also for individuals affected by more common diseases.

  18. Involvement of Protein Phosphatases in the Destabilization of Methamphetamine-Associated Contextual Memory

    Science.gov (United States)

    Yu, Yang-Jung; Huang, Chien-Hsuan; Chang, Chih-Hua; Gean, Po-Wu

    2016-01-01

    Destabilization refers to a memory that becomes unstable when reactivated and is susceptible to disruption by amnestic agents. Here we delineated the cellular mechanism underlying the destabilization of drug memory. Mice were conditioned with methamphetamine (MeAM) for 3 d, and drug memory was assessed with a conditioned place preference (CPP)…

  19. A mechanistic study on the destabilization of whole inactivated influenza virus vaccine in gastric environment.

    Directory of Open Access Journals (Sweden)

    Hyo-Jick Choi

    Full Text Available Oral immunization using whole inactivated influenza virus vaccine promises an efficient vaccination strategy. While oral vaccination was hampered by harsh gastric environment, a systematic understanding about vaccine destabilization mechanisms was not performed. Here, we investigated the separate and combined effects of temperature, retention time, pH, and osmotic stress on the stability of influenza vaccine by monitoring the time-dependent morphological change using stopped-flow light scattering. When exposed to osmotic stress, clustering of vaccine particles was enhanced in an acidic medium (pH 2.0 at ≥25°C. Fluorescence spectroscopic studies showed that hyper-osmotic stress at pH 2.0 and 37°C caused a considerable increase in conformational change of antigenic proteins compared to that in acidic iso-osmotic medium. A structural integrity of membrane was destroyed upon exposure to hyper-osmotic stress, leading to irreversible morphological change, as observed by undulation in stopped-flow light scattering intensity and transmission electron microscopy. Consistent with these analyses, hemagglutination activity decreased more significantly with an increasing magnitude of hyper-osmotic stress than in the presence of the hypo- and iso-osmotic stresses. This study shows that the magnitude and direction of the osmotic gradient has a substantial impact on the stability of orally administrated influenza vaccine.

  20. Rab2 promotes autophagic and endocytic lysosomal degradation.

    Science.gov (United States)

    Lőrincz, Péter; Tóth, Sarolta; Benkő, Péter; Lakatos, Zsolt; Boda, Attila; Glatz, Gábor; Zobel, Martina; Bisi, Sara; Hegedűs, Krisztina; Takáts, Szabolcs; Scita, Giorgio; Juhász, Gábor

    2017-07-03

    Rab7 promotes fusion of autophagosomes and late endosomes with lysosomes in yeast and metazoan cells, acting together with its effector, the tethering complex HOPS. Here we show that another small GTPase, Rab2, is also required for autophagosome and endosome maturation and proper lysosome function in Drosophila melanogaster We demonstrate that Rab2 binds to HOPS, and that its active, GTP-locked form associates with autolysosomes. Importantly, expression of active Rab2 promotes autolysosomal fusions unlike that of GTP-locked Rab7, suggesting that its amount is normally rate limiting. We also demonstrate that RAB2A is required for autophagosome clearance in human breast cancer cells. In conclusion, we identify Rab2 as a key factor for autophagic and endocytic cargo delivery to and degradation in lysosomes. © 2017 Lőrincz et al.

  1. Parkinson's Disease Shares the Lysosome with Gaucher's Disease

    Science.gov (United States)

    Dawson, Ted M.; Dawson, Valina L.

    2015-01-01

    Summary The second most common neurodegenerative disorder, Parkinson's disease (PD) is an age dependent progressive neurodegenerative disorder that affects movement. While many of the causes of PD remain unclear, a consistent finding in PD is the abnormal accumulation of α-synuclein that has lead to the widely held notion that PD is a synucleinopathy. In a recent Cell manuscript Mazzuli et al., provide a potential mechanistic link between Gaucher's disease, a glycolipid lysosomal storage disorder due to Glucocerebrocidase (GBA) deficiency and PD. The authors reveal a reciprocal connection between the loss of GBA activity and accumulation of α-synuclein in the lysosome establishing a bidirectional positive feed back loop with pathologic consequences. These findings should stimulate further work on role of the lysosome in PD pathogenesis and the identification of new treatment strategies for PD. PMID:21753118

  2. The Ankrd13 Family of Ubiquitin-interacting Motif-bearing Proteins Regulates Valosin-containing Protein/p97 Protein-mediated Lysosomal Trafficking of Caveolin 1.

    Science.gov (United States)

    Burana, Daocharad; Yoshihara, Hidehito; Tanno, Hidetaka; Yamamoto, Akitsugu; Saeki, Yasushi; Tanaka, Keiji; Komada, Masayuki

    2016-03-18

    Caveolin 1 (Cav-1) is an oligomeric protein that forms flask-shaped, lipid-rich pits, termed caveolae, on the plasma membrane. Cav-1 is targeted for lysosomal degradation in ubiquitination- and valosin-containing protein (VCP)-dependent manners. VCP, an ATPase associated with diverse cellular activities that remodels or segregates ubiquitinated protein complexes, has been proposed to disassemble Cav-1 oligomers on the endosomal membrane, facilitating the trafficking of Cav-1 to the lysosome. Genetic mutations in VCP compromise the lysosomal trafficking of Cav-1, leading to a disease called inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia (IBMPFD). Here we identified the Ankrd13 family of ubiquitin-interacting motif (UIM)-containing proteins as novel VCP-interacting molecules on the endosome. Ankrd13 proteins formed a ternary complex with VCP and Cav-1 and exhibited high binding affinity for ubiquitinated Cav-1 oligomers in an UIM-dependent manner. Mass spectrometric analyses revealed that Cav-1 undergoes Lys-63-linked polyubiquitination, which serves as a lysosomal trafficking signal, and that the UIMs of Ankrd13 proteins bind preferentially to this ubiquitin chain type. The overexpression of Ankrd13 caused enlarged hollow late endosomes, which was reminiscent of the phenotype of the VCP mutations in IBMPFD. Overexpression of Ankrd13 proteins also stabilized ubiquitinated Cav-1 oligomers on the limiting membrane of enlarged endosomes. The interaction with Ankrd13 was abrogated in IMBPFD-associated VCP mutants. Collectively, our results suggest that Ankrd13 proteins cooperate with VCP to regulate the lysosomal trafficking of ubiquitinated Cav-1.

  3. The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Changkeun; Guo, Jiangtao; Zeng, Weizhong; Kim, Sunghoon; She, Ji; Cang, Chunlei; Ren, Dejian; Jiang, Youxing

    2017-07-19

    TMEM175 is a lysosomal K+ channel that is important for maintaining the membrane potential and pH stability in lysosomes1. It contains two homologous copies of a six-transmembrane-helix (6-TM) domain, which has no sequence homology to the canonical tetrameric K+ channels and lacks the TVGYG selectivity filter motif found in these channels2, 3, 4. The prokaryotic TMEM175 channel, which is present in a subset of bacteria and archaea, contains only a single 6-TM domain and functions as a tetramer. Here, we present the crystal structure of a prokaryotic TMEM175 channel from Chamaesiphon minutus, CmTMEM175, the architecture of which represents a completely different fold from that of canonical K+ channels. All six transmembrane helices of CmTMEM175 are tightly packed within each subunit without undergoing domain swapping. The highly conserved TM1 helix acts as the pore-lining inner helix, creating an hourglass-shaped ion permeation pathway in the channel tetramer. Three layers of hydrophobic residues on the carboxy-terminal half of the TM1 helices form a bottleneck along the ion conduction pathway and serve as the selectivity filter of the channel. Mutagenesis analysis suggests that the first layer of the highly conserved isoleucine residues in the filter is primarily responsible for channel selectivity. Thus, the structure of CmTMEM175 represents a novel architecture of a tetrameric cation channel whose ion selectivity mechanism appears to be distinct from that of the classical K+ channel family.

  4. The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture.

    Science.gov (United States)

    Lee, Changkeun; Guo, Jiangtao; Zeng, Weizhong; Kim, Sunghoon; She, Ji; Cang, Chunlei; Ren, Dejian; Jiang, Youxing

    2017-07-27

    TMEM175 is a lysosomal K(+) channel that is important for maintaining the membrane potential and pH stability in lysosomes. It contains two homologous copies of a six-transmembrane-helix (6-TM) domain, which has no sequence homology to the canonical tetrameric K(+) channels and lacks the TVGYG selectivity filter motif found in these channels. The prokaryotic TMEM175 channel, which is present in a subset of bacteria and archaea, contains only a single 6-TM domain and functions as a tetramer. Here, we present the crystal structure of a prokaryotic TMEM175 channel from Chamaesiphon minutus, CmTMEM175, the architecture of which represents a completely different fold from that of canonical K(+) channels. All six transmembrane helices of CmTMEM175 are tightly packed within each subunit without undergoing domain swapping. The highly conserved TM1 helix acts as the pore-lining inner helix, creating an hourglass-shaped ion permeation pathway in the channel tetramer. Three layers of hydrophobic residues on the carboxy-terminal half of the TM1 helices form a bottleneck along the ion conduction pathway and serve as the selectivity filter of the channel. Mutagenesis analysis suggests that the first layer of the highly conserved isoleucine residues in the filter is primarily responsible for channel selectivity. Thus, the structure of CmTMEM175 represents a novel architecture of a tetrameric cation channel whose ion selectivity mechanism appears to be distinct from that of the classical K(+) channel family.

  5. Nanoparticle size and combined toxicity of TiO2 and DSLS (surfactant) contribute to lysosomal responses in digestive cells of mussels exposed to TiO2 nanoparticles.

    Science.gov (United States)

    Jimeno-Romero, A; Oron, M; Cajaraville, M P; Soto, M; Marigómez, I

    2016-10-01

    The aim of this investigation was to understand the bioaccumulation, cell and tissue distribution and biological effects of disodium laureth sulfosuccinate (DSLS)-stabilised TiO2 nanoparticles (NPs) in marine mussels, Mytilus galloprovincialis. Mussels were exposed in vivo to 0.1, 1 and 10 mg Ti/L either as TiO2 NPs (60 and 180 nm) or bulk TiO2, as well as to DSLS alone. A significant Ti accumulation was observed in mussels exposed to TiO2 NPs, which were localised in endosomes, lysosomes and residual bodies of digestive cells, and in the lumen of digestive tubules, as demonstrated by ultrastructural observations and electron probe X-ray microanalysis. TiO2 NPs of 60 nm were internalised within digestive cell lysosomes to a higher extent than TiO2 NPs of 180 nm, as confirmed by the quantification of black silver deposits after autometallography. The latter were localised mainly forming large aggregates in the lumen of the gut. Consequently, lysosomal membrane stability (LMS) was significantly reduced upon exposure to both TiO2 NPs although more markedly after exposure to TiO2-60 NPs. Exposure to bulk TiO2 and to DSLS also affected the stability of the lysosomal membrane. Thus, effects on the lysosomal membrane depended on the nanoparticle size and on the combined biological effects of TiO2 and DSLS.

  6. Importance of lysosomal cysteine proteases in lung disease

    Directory of Open Access Journals (Sweden)

    Chapman Harold A

    2000-11-01

    Full Text Available Abstract The human lysosomal cysteine proteases are a family of 11 proteases whose members include cathepsins B, C, H, L, and S. The biology of these proteases was largely ignored for decades because of their lysosomal location and the belief that their function was limited to the terminal degradation of proteins. In the past 10 years, this view has changed as these proteases have been found to have specific functions within cells. This review highlights some of these functions, specifically their roles in matrix remodeling and in regulating the immune response, and their relationship to lung diseases.

  7. PDT: loss of autophagic cytoprotection after lysosomal photodamage

    Science.gov (United States)

    Kessel, David; Price, Michael

    2012-02-01

    Photodynamic therapy is known to evoke both autophagy and apoptosis. Apoptosis is an irreversible death pathway while autophagy can serve a cytoprotective function. In this study, we examined two photosensitizing agents that target lysosomes, although they differ in the reactive oxygen species (ROS) formed during irradiation. With both agents, the 'shoulder' on the PDT dose-response curve was substantially attenuated, consistent with loss of a cytoprotective pathway. In contrast, this 'shoulder' is commonly observed when PDT targets mitochondria or the ER. We propose that lysosomal targets may offer the possibility of promoting PDT efficacy by eliminating a potentially protective pathway.

  8. Lysosome stability during lytic infection by simian virus 40.

    Science.gov (United States)

    Einck, K H; Norkin, L C

    1979-01-01

    By 48 h postinfection, 40--80% of SV40-infected CV-1 cells have undergone irreversible injury as indicated by trypan blue staining. Nevertheless, at this time the lysosomes of these cells appear as discrete structures after vital staining with either acridine orange or neutral red. Lysosomes, vitally stained with neutral red at 24 h postinfection, were still intact in cells stained with trypan blue at 48 h. Acid phosphatase activity is localized in discrete cytoplasmic particles at 48 h, as indicated by histochemical staining of both fixed and unfixed cells.

  9. Analyzing Lysosome-Related Organelles by Electron Microscopy

    KAUST Repository

    Hurbain, Ilse

    2017-04-29

    Intracellular organelles have a particular morphological signature that can only be appreciated by ultrastructural analysis at the electron microscopy level. Optical imaging and associated methodologies allow to explore organelle localization and their dynamics at the cellular level. Deciphering the biogenesis and functions of lysosomes and lysosome-related organelles (LROs) and their dysfunctions requires their visualization and detailed characterization at high resolution by electron microscopy. Here, we provide detailed protocols for studying LROs by transmission electron microscopy. While conventional electron microscopy and its recent improvements is the method of choice to investigate organelle morphology, immunoelectron microscopy allows to localize organelle components and description of their molecular make up qualitatively and quantitatively.

  10. The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes.

    Science.gov (United States)

    Garrity, Abigail G; Wang, Wuyang; Collier, Crystal Md; Levey, Sara A; Gao, Qiong; Xu, Haoxing

    2016-05-23

    Impaired homeostasis of lysosomal Ca(2+) causes lysosome dysfunction and lysosomal storage diseases (LSDs), but the mechanisms by which lysosomes acquire and refill Ca(2+) are not known. We developed a physiological assay to monitor lysosomal Ca(2+) store refilling using specific activators of lysosomal Ca(2+) channels to repeatedly induce lysosomal Ca(2+) release. In contrast to the prevailing view that lysosomal acidification drives Ca(2+) into the lysosome, inhibiting the V-ATPase H(+) pump did not prevent Ca(2+) refilling. Instead, pharmacological depletion or chelation of Endoplasmic Reticulum (ER) Ca(2+) prevented lysosomal Ca(2+) stores from refilling. More specifically, antagonists of ER IP3 receptors (IP3Rs) rapidly and completely blocked Ca(2+) refilling of lysosomes, but not in cells lacking IP3Rs. Furthermore, reducing ER Ca(2+) or blocking IP3Rs caused a dramatic LSD-like lysosome storage phenotype. By closely apposing each other, the ER may serve as a direct and primary source of Ca(2+)for the lysosome.

  11. Dlic1 deficiency impairs ciliogenesis of photoreceptors by destabilizing dynein

    Institute of Scientific and Technical Information of China (English)

    Shanshan Kong; Xinrong Du; Chao Peng; Yiming Wu; Huirong Li; Xi Jin; Ling Hou

    2013-01-01

    Cytoplasmic dynein 1 is fundamentally important for transporting a variety of essential cargoes along microtubules within eukaryotic cells.However,in mammals,few mutants are available for studying the effects of defects in dynein-controlled processes in the context of the whole organism.Here,we deleted mouse Dlic1 gene encoding DLIC1,a subunit of the dynein complex.Dlic1-/-mice are viable,but display severe photoreceptor degeneration.Ablation of Dlic1 results in ectopic accumulation of outer segment (OS) proteins,and impairs OS growth and ciliogenesis of photoreceptors by interfering with Rabll-vesicle trafficking and blocking efficient OS protein transport from Golgi to the basal body.Our studies show that Dlic1 deficiency partially blocks vesicle export from endoplasmic reticulum (ER),but seems not to affect vesicle transport from the ER to Golgi.Further mechanistic study reveals that lack of Dlic1 destabilizes dynein subunits and alters the normal subcellular distribution of dynein in photoreceptors,probably due to the impaired transport function of dynein.Our results demonstrate that Dlic1 plays important roles in ciliogenesis and protein transport to the OS,and is required for photoreceptor development and survival.The Dlic1-/-mice also provide a new mouse model to study human retinal degeneration.

  12. Destabilization of Surfactant-Dispersed Carbon Nanotubes by Anions

    Science.gov (United States)

    Hirano, Atsushi; Gao, Weilu; He, Xiaowei; Kono, Junichiro

    2017-01-01

    The colloidal stability of surfactant-dispersed single-wall carbon nanotubes (SWCNTs) is determined by microscopic physicochemical processes, such as association, partitioning, and adsorption propensities. These processes can be controlled by the addition of solutes. While the effects of cations on the colloidal stability of SWCNTs are relatively well understood, little is known about the effects of anions. In this study, we examined the effects of anions on the stability of SWCNTs dispersed by sodium dodecyl sulfate (SDS) using sodium salts, such as NaCl and NaSCN. We observed that the intensity of the radial breathing mode Raman peaks rapidly decreased as the salts were added, even at concentrations less than 25 mM, indicating the association of SWCNTs. The effect was stronger with NaSCN than NaCl. We propose that the association of SWCNTs was caused by thermodynamic destabilization of SDS assemblies on SWCNT surfaces by these salts, which was confirmed through SWCNT separation experiments using aqueous two-phase extraction and gel chromatography. These results demonstrate that neutral salts can be used to control the colloidal stability of surfactant-dispersed SWCNTs.

  13. Microfluidic destabilization of viscous stratifications: Interfacial waves and droplets

    Science.gov (United States)

    Hu, Xiaoyi; Cubaud, Thomas

    2016-11-01

    Microfluidic two-fluid flows with large differences in viscosity are experimentally investigated to examine the role of fluid properties on hydrodynamic destabilization processes at the small scale. Two- and three-layer flow configurations are systematically studied in straight square microchannels using miscible and immiscible fluid pairs. We focus our attention on symmetric three-layer stratifications with a fast central stream made of low-viscosity fluid and a slow sheath flow composed of high-viscosity fluid. We quantify the influence of the capillary and the Reynolds numbers on the formation and evolution of droplets and wavy stratifications. Several functional relationships are developed for the morphology and dynamics of droplets and interfacial waves including size, celerity and frequency. In the wavy stratification regime, the formation and entrainment of thin viscous ligaments from wave crests display a rich variety of dynamics either in the presence or in the absence of interfacial tension between liquids. This work is supported by NSF (CBET-1150389).

  14. Acoustic emissions in granular structures under gravitational destabilization

    Science.gov (United States)

    Thirot, J.-L.; Le Gonidec, Y.; Kergosien, B.

    2012-05-01

    In this work, we perform experiments in an acoustic tank to record acoustic emissions (AEs) occurring when a granular medium is submitted to a gravitational destabilization. The granular medium is composed of monodisperse glass beads filling a box which can be inclined from α=0° up to the avalanche threshold angle α0=28°. To respect quasi-static conditions, the angle increases by steps less than 3°/mn. An omnidirectional hydrophone records the continuous acoustic field in the bead structure until the avalanche occurs. We compare the results for different experimental configurations, in particular for dry and water saturated granular media, but also for different bead diameters (d=8, 3 and 0.3 mm) in order to span the viscosity range of the granular structure. We show that the AE signatures strongly depend on the viscosity parameter, which can be related to the Stokes number and the fluid/solid density ratio. The transition from a viscous to an inertial dynamic of the granular structure is discussed, based on these experimental results.

  15. Normoxic destabilization of ATF-4 depends on proteasomal degradation.

    Science.gov (United States)

    Wottawa, M; Köditz, J; Katschinski, D M

    2010-04-01

    Hypoxia-inducible gene expression is an important physiological adaptive mechanism in response to a decreased oxygen supply. We have recently described an oxygen- and prolyl-4-hydroxylase (PHD)3-dependent stabilization of the activating transcription factor 4 (ATF-4). The aim of the present study was to examine if the normoxic destabilization of ATF-4 is regulated by oxygen-dependent proteasomal degradation. We determined poly-ubiquitination of ATF-4 in normoxia compared to hypoxia by immunoprecipitation and immunoblots. Furthermore, we analysed the expression of the ATF-4 target gene GADD153 as a function of oxygen concentration. ATF-4 protein levels were not detectable in normoxia. Normoxic degradation correlated with an oxygen-dependent poly-ubiquitination of ATF-4, which was hindered by hypoxic incubation of the cells. As a result of hypoxia, GADD153 was expressed. The hypoxic GADD153 expression was attenuated or increased by transfecting the cells with ATF-4 siRNA or PHD3 siRNA respectively. Our results demonstrate the involvement of oxygen-dependent proteasomal degradation of ATF-4 in the hypoxia-induced expression of GADD153. Taken together, hypoxia/PHD3-regulated stabilization of ATF-4 by hindering oxygen-dependent degradation may play a critical role in linking cell fate decisions to oxygen availability.

  16. Anthrax toxin-induced rupture of artificial lipid bilayer membranes

    Science.gov (United States)

    Nablo, Brian J.; Panchal, Rekha G.; Bavari, Sina; Nguyen, Tam L.; Gussio, Rick; Ribot, Wil; Friedlander, Art; Chabot, Donald; Reiner, Joseph E.; Robertson, Joseph W. F.; Balijepalli, Arvind; Halverson, Kelly M.; Kasianowicz, John J.

    2013-08-01

    We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.

  17. Synthetic High-Density Lipoprotein-Like Nanocarrier Improved Cellular Transport of Lysosomal Cholesterol in Human Sterol Carrier Protein-Deficient Fibroblasts.

    Science.gov (United States)

    Nam, Da-Eun; Kim, Ok-Kyung; Park, Yoo Kyoung; Lee, Jeongmin

    2016-01-01

    Sterol carrier protein-2 (SCP-2), which is not found in tissues of people with Zellweger syndrome, facilitates the movement of cholesterol within cells, resulting in abnormal accumulation of cholesterol in SCP-2-deficient cells. This study investigated whether synthetic high-density lipoprotein-like nanocarrier (sHDL-NC) improves the cellular transport of lysosomal cholesterol to plasma membrane in SCP-2-deficient fibroblasts. Human SCP-2-deficient fibroblasts were incubated with [(3)H-cholesterol]LDL as a source of cholesterol and sHDL-NC. The cells were fractionated by centrifugation permit tracking of [(3)H]-cholesterol from lysosome into plasma membrane. Furthermore, cellular content of cholesteryl ester as a storage form and mRNA expression of low-density lipoprotein (LDL) receptor were measured to support the cholesterol transport to plasma membrane. Incubation with sHDL-NC for 8 h significantly increased uptake of [(3)H]-cholesterol to lysosome by 53% and further enhanced the transport of [(3)H]-cholesterol to plasma membrane by 32%. Treatment with sHDL-NC significantly reduced cellular content of cholesteryl ester and increased mRNA expression of LDL receptor (LDL-R). In conclusion, sHDL-NC enables increased transport of lysosomal cholesterol to plasma membrane. In addition, these data were indirectly supported by decreased cellular content of cholesteryl ester and increased gene expression of LDL-R. Therefore, sHDL-NC may be a useful vehicle for transporting cholesterol, which may help to prevent accumulation of cholesterol in SCP-2-deficient fibroblasts.

  18. Genomic expression analyses reveal lysosomal, innate immunity proteins, as disease correlates in murine models of a lysosomal storage disorder.

    Directory of Open Access Journals (Sweden)

    Md Suhail Alam

    Full Text Available Niemann-Pick Type C (NPC disease is a rare, genetic, lysosomal disorder with progressive neurodegeneration. Poor understanding of the pathophysiology and a lack of blood-based diagnostic markers are major hurdles in the treatment and management of NPC and several additional, neurological lysosomal disorders. To identify disease severity correlates, we undertook whole genome expression profiling of sentinel organs, brain, liver, and spleen of Balb/c Npc1(-/- mice relative to Npc1(+/- at an asymptomatic stage, as well as early- and late-symptomatic stages. Unexpectedly, we found prominent up regulation of innate immunity genes with age-dependent change in their expression, in all three organs. We shortlisted a set of 12 secretory genes whose expression steadily increased with age in both brain and liver, as potential plasma correlates of neurological and/or liver disease. Ten were innate immune genes with eight ascribed to lysosomes. Several are known to be elevated in diseased organs of murine models of other lysosomal diseases including Gaucher's disease, Sandhoff disease and MPSIIIB. We validated the top candidate lysozyme, in the plasma of Npc1(-/- as well as Balb/c Npc1(nmf164 mice (bearing a point mutation closer to human disease mutants and show its reduction in response to an emerging therapeutic. We further established elevation of innate immunity in Npc1(-/- mice through multiple functional assays including inhibition of bacterial infection as well as cellular analysis and immunohistochemistry. These data revealed neutrophil elevation in the Npc1(-/- spleen and liver (where large foci were detected proximal to damaged tissue. Together our results yield a set of lysosomal, secretory innate immunity genes that have potential to be developed as pan or specific plasma markers for neurological diseases associated with lysosomal storage and where diagnosis is a major problem. Further, the accumulation of neutrophils in diseased organs

  19. 1,25-Dihydroxyvitamin D3-mediated intestinal calcium transport. Biochemical identification of lysosomes containing calcium and calcium-binding protein (calbindin-D28K).

    Science.gov (United States)

    Nemere, I; Leathers, V; Norman, A W

    1986-12-05

    A variety of intestinal cell organelles and proteins have been proposed to mediate 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)-stimulated calcium absorption. In the present study biochemical analyses were undertaken to determine the subcellular localization of 45Ca after calcium transport in vivo in ligated duodenal loops of vitamin D-deficient chicks injected with 1.3 nmol of 1,25-(OH)2D3 or vehicle 15 h prior to experimentation. Separation of Golgi, mitochondria, basal lateral membrane, and lysosome fractions in the epithelial homogenates was achieved by differential sedimentation followed by centrifugation in Percoll gradients and evaluation of appropriate marker enzyme activities. Both vitamin D-deficient and 1,25-(OH)2D3-treated chicks had the highest levels of 45Ca-specific activity in lysosomal fractions. The lysosomes were also the only organelles to exhibit a 1,25-(OH)2D3-mediated difference in calcium content, increasing to 138% of controls. Lysosomes prepared from 1,25-(OH)2D3-treated chicks also contained the greatest levels of immunoreactive calbindin-D28k (calcium-binding protein). Chloroquine, a drug known to interfere with lysosomal function, was tested and found to inhibit 1,25-(OH)2D3-stimulated intestinal calcium absorption. Neither 1,25-(OH)2D3 nor chloroquine affected [3H]2O transport. In additional experiments, microsomal membranes (105,000 X g pellets) were subjected to gradient centrifugation. The highest levels of 45Ca-specific activity and calcium-binding protein in material from 1,25-(OH)2D3-treated chicks were found in fractions denser than endoplasmic reticulum and may represent endocytic vesicles. In studies on intestinal mucosa of 1,25-(OH)2D3-treated birds fractionated after 30 min of exposure to lumenal Ca2+ or Ca2+ plus chloroquine, 45Ca was found to accumulate in lysosomes and putative endocytic vesicles, relative to controls. A mechanism involving vesicular flow is proposed for 1,25-(OH)2D3-mediated intestinal calcium transport

  20. Chloroquine-induced glioma cells death is associated with mitochondrial membrane potential loss, but not oxidative stress.

    Science.gov (United States)

    Vessoni, Alexandre Teixeira; Quinet, Annabel; de Andrade-Lima, Leonardo Carmo; Martins, Davi Jardim; Garcia, Camila Carrião Machado; Rocha, Clarissa Ribeiro Reily; Vieira, Debora Braga; Menck, Carlos Frederico Martins

    2016-01-01

    Chloroquine (CQ), a quinolone derivative widely used to treat and prevent malaria, has been shown to exert a potent adjuvant effect when combined with conventional glioblastoma therapy. Despite inducing lysosome destabilization and activating p53 in human glioma cells, the mechanisms underlying cell death induced by this drug are poorly understood. Here, we analyzed in a time- and dose-dependent manner, the effects of CQ upon mitochondria integrity, autophagy regulation and redox processes in four human glioma cell lines that differ in their resistance to this drug. NAC-containing media protected cells against CQ-induced loss of mitochondrial membrane potential (MMP), autophagic vacuoles (LC3II) accumulation and loss of cell viability induced by CQ. However, we noticed that part of this protection was due to media acidification in NAC preparations, alerting for problems in experimental procedures using NAC. The results indicate that although CQ induces accumulation of LC3II, mitochondria, and oxidative stress, neither of these events is clearly correlated to cell death induced by this drug. The only event elicited in all cell lines at equitoxic doses of CQ was the loss of MMP, indicating that mitochondrial stability is important for cells resistance to this drug. Finally, the data indicate that higher steady-state MMP values can predict cell resistance to CQ treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase

    Science.gov (United States)

    Glukhova, Alisa; Hinkovska-Galcheva, Vania; Kelly, Robert; Abe, Akira; Shayman, James A.; Tesmer, John J. G.

    2015-03-01

    Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid-metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. Here we describe several high-resolution crystal structures of human LPLA2 and a low-resolution structure of LCAT that confirms its close structural relationship to LPLA2. Insertions in the α/β hydrolase core of LPLA2 form domains that are responsible for membrane interaction and binding the acyl chains and head groups of phospholipid substrates. The LCAT structure suggests the molecular basis underlying human disease for most of the known LCAT missense mutations, and paves the way for rational development of new therapeutics to treat LCAT deficiency, atherosclerosis and acute coronary syndrome.

  2. A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila.

    Science.gov (United States)

    Sevrioukov, E A; He, J P; Moghrabi, N; Sunio, A; Krämer, H

    1999-10-01

    Deep orange and carnation are two of the classic eye color genes in Drosophila. Here, we demonstrate that Deep orange is part of a protein complex that localizes to endosomal compartments. A second component of this complex is Carnation, a homolog of Sec1p-like regulators of membrane fusion. Because complete loss of deep orange function is lethal, the role of this complex in intracellular trafficking was analyzed in deep orange mutant clones. Retinal cells devoid of deep orange function completely lacked pigmentation and exhibited exaggerated multivesicular structures. Furthermore, a defect in endocytic trafficking was visualized in developing photoreceptor cells. These results provide direct evidence that eye color mutations of the granule group also disrupt vesicular trafficking to lysosomes.

  3. Recent advances in gene therapy for lysosomal storage disorders

    Directory of Open Access Journals (Sweden)

    Rastall DP

    2015-06-01

    Full Text Available David PW Rastall,1 Andrea Amalfitano1,2 1Department of Microbiology and Molecular Genetics, 2Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA Abstract: Lysosomal storage disorders (LSDs are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme's substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood–brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field. Keywords: human trials, clinical trials, gene therapy, lysosomal storage disease, blood-brain barrier, adeno-associated virus, lentivirus, adenovirus 

  4. The frequency of lysosomal storage diseases in The Netherlands

    NARCIS (Netherlands)

    Poorthuis, BJHM; Wevers, RA; Kleijer, WJ; Groener, JEM; de Jong, JGN; van Weely, S; Niezen-Koning, KE; van Diggelen, OP

    1999-01-01

    We have calculated the relative frequency and the birth prevalence of lysosomal storage diseases (LSDs) in The Netherlands based on all 963 enzymatically confirmed cases diagnosed during the period 1970-1996. The combined birth prevalence for all LSDs is 14 per 100,000 live births. Glycogenosis type

  5. Clinical, biochemical and genetic heterogeneity in lysosomal storage diseases

    NARCIS (Netherlands)

    A.J.J. Reuser (Arnold)

    1977-01-01

    textabstractThe history of lysosomal storage diseases dates back to the end of the last century when the first clinical reports appeared of patients suffering from these genetic, metabolic disorders (Tay, 1881; Gaucher, 1882; Sachs, 1887; Fabry, 1898). About seventy years wouid pass before the term

  6. The frequency of lysosomal storage diseases in The Netherlands

    NARCIS (Netherlands)

    Poorthuis, BJHM; Wevers, RA; Kleijer, WJ; Groener, JEM; de Jong, JGN; van Weely, S; Niezen-Koning, KE; van Diggelen, OP

    1999-01-01

    We have calculated the relative frequency and the birth prevalence of lysosomal storage diseases (LSDs) in The Netherlands based on all 963 enzymatically confirmed cases diagnosed during the period 1970-1996. The combined birth prevalence for all LSDs is 14 per 100,000 live births. Glycogenosis type

  7. Release and uptake of lysosomal enzymes : studied in cultured cells

    NARCIS (Netherlands)

    D.J.J. Halley (Dicky)

    1980-01-01

    textabstractThe purpose of the experimental work described in this thesiswas to investigate some aspects of the release and uptake of lysosomal enzymes. The experiments involved the use of normal human and animal fibroblasts and some other cell types such as hepatocytes and hepatoma cells as sources

  8. Neuronopathic Lysosomal Storage Diseases: Clinical and Pathologic Findings

    Science.gov (United States)

    Prada, Carlos E.; Grabowski, Gregory A.

    2013-01-01

    Background: The lysosomal--autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. Methods: Literature review provided insight into the current clinical neurological findings,…

  9. Olaquindox induces DNA damage via the lysosomal and mitochondrial pathway involving ROS production and p53 activation in HEK293 cells.

    Science.gov (United States)

    Yang, Yang; Jiang, Liping; She, Yan; Chen, Min; Li, Qiujuan; Yang, Guang; Geng, Chengyan; Tang, Liyun; Zhong, Laifu; Jiang, Lijie; Liu, Xiaofang

    2015-11-01

    Olaquindox (OLA) is a potent antibacterial agent used as a feed additive and growth promoter. In this study, the genotoxic potential of OLA was investigated in the human embryonic kidney cell line 293 (HEK293). Results showed that OLA caused significant increases of DNA migration. Lysosomal membrane permeability and mitochondrial membrane potential were reduced after treatment with OLA. OLA was shown to induce ROS production and GSH depletion. The expression of p53 protein is increased in cells incubated with OLA. The activation of p53 and ATM gene was assessed by exposure to OLA. Furthermore, NAC reduced DNA migration, ROS formation, GSH depletion and the expression of the p53 protein and gene. And desipramine significantly decreased AO fluorescence intensity and the expression of the p53 protein and gene. These results support the assumption that OLA exerted genotoxic effects and induced DNA strand breaks in HEK293 cells, possibly through lysosomal-mitochondrial pathway involving ROS production and p53 activation.

  10. Cognitive Fatigue Destabilizes Economic Decision Making Preferences and Strategies.

    Directory of Open Access Journals (Sweden)

    O'Dhaniel A Mullette-Gillman

    Full Text Available It is common for individuals to engage in taxing cognitive activity for prolonged periods of time, resulting in cognitive fatigue that has the potential to produce significant effects in behaviour and decision making. We sought to examine whether cognitive fatigue modulates economic decision making.We employed a between-subject manipulation design, inducing fatigue through 60 to 90 minutes of taxing cognitive engagement against a control group that watched relaxing videos for a matched period of time. Both before and after the manipulation, participants engaged in two economic decision making tasks (one for gains and one for losses. The analyses focused on two areas of economic decision making--preferences and choice strategies. Uncertainty preferences (risk and ambiguity were quantified as premium values, defined as the degree and direction in which participants alter the valuation of the gamble in comparison to the certain option. The strategies that each participant engaged in were quantified through a choice strategy metric, which contrasts the degree to which choice behaviour relies upon available satisficing or maximizing information. We separately examined these metrics for alterations within both the gains and losses domains, through the two choice tasks.The fatigue manipulation resulted in significantly greater levels of reported subjective fatigue, with correspondingly higher levels of reported effort during the cognitively taxing activity. Cognitive fatigue did not alter uncertainty preferences (risk or ambiguity or informational strategies, in either the gains or losses domains. Rather, cognitive fatigue resulted in greater test-retest variability across most of our economic measures. These results indicate that cognitive fatigue destabilizes economic decision making, resulting in inconsistent preferences and informational strategies that may significantly reduce decision quality.

  11. The research of neurospecific proteins and lysosomal peptidehydrolases in frontal neocortex during forming conditioned reaction of active avoiding of rats

    Directory of Open Access Journals (Sweden)

    Vyatkin O. K.

    2009-04-01

    Full Text Available Dynamics of the activity of neuronal cell adhesion molecule (NCAM and lysosomal cysteine cathepsins B, L, H was researched in frontal neocortex of rat brain during forming a conditioned reaction of active avoiding. The quantitative estimation of NCAM content in the neocortex membrane fraction was carried on by ELISA in 3, 7, 14 and 21 days after starting animals’ training. The dynamics correlation between the NCAM content increasing and cysteine cathepsins activity was obtained, especially for aminopeptidase cathepsin H during the process of memory engram forming in frontal neocortex of rat brain.

  12. Acute effects of the sigma-2 receptor agonist siramesine on lysosomal and extra-lysosomal proteolytic systems in lens epithelial cells

    OpenAIRE

    Jonhede, S.; Petersen, A; Zetterberg, M.; Karlsson, J-O

    2010-01-01

    Purpose The aim of the present study was to examine the effects of the sigma-2 receptor agonist, siramesine, on morphology, growth, cell death, lysosomal function, and effects on extra-lysosomal proteolytic systems in human lens epithelial cells. Methods Human lens epithelial cells in culture were exposed to siramesine and examined for morphological changes using Nomarski optics or calcein. Lysosomes were evaluated using acridine orange and Magic Red (RR-cresyl violet). Nuclear morphology was...

  13. Mechanisms governing the reactivation-dependent destabilization of memories and their role in extinction

    OpenAIRE

    Charlotte Rachael Flavell; Elliot eLambert; Winters, Boyer D.; Bredy, Timothy W.

    2013-01-01

    The extinction of learned associations has traditionally been considered to involve new learning, which competes with the original memory for control over behaviour. However, a recent resurgence of interest in reactivation-dependent amnesia has revealed that the retrieval of fear-related memory (with what is essentially a brief extinction session) can result in it’s destabilization. This review discusses some of the cellular and molecular mechanisms that are involved in the destabilization of...

  14. Autophagic flux promotes cisplatin resistance in human ovarian carcinoma cells through ATP-mediated lysosomal function.

    Science.gov (United States)

    Ma, Liwei; Xu, Ye; Su, Jing; Yu, Huimei; Kang, Jinsong; Li, Hongyan; Li, Xiaoning; Xie, Qi; Yu, Chunyan; Sun, Liankun; Li, Yang

    2015-11-01

    Lysosomes are involved in promoting resistance of cancer cells to chemotherapeutic agents. However, the mechanisms underlying lysosomal influence of cisplatin resistance in ovarian cancer remain incompletely understood. We report that, compared with cisplatin-sensitive SKOV3 cells, autophagy increases in cisplatin-resistant SKOV3/DDP cells treated with cisplatin. Inhibition of early-stage autophagy enhanced cisplatin-mediated cytotoxicity in SKOV3/DDP cells, but autophagy inhibition at a later stage by disturbing autophagosome-lysosome fusion is more effective. Notably, SKOV3/DDP cells contained more lysosomes than cisplatin-sensitive SKOV3 cells. Abundant lysosomes and lysosomal cathepsin D activity were required for continued autolysosomal degradation and maintenance of autophagic flux in SKOV3/DDP cells. Furthermore, SKOV3/DDP cells contain abundant lysosomal ATP required for lysosomal function, and inhibition of lysosomal ATP accumulation impaired lysosomal function and blocked autophagic flux. Therefore, our findings suggest that lysosomes at least partially contribute to cisplatin resistance in ovarian cancer cells through their role in cisplatin-induced autophagic processes, and provide insight into the mechanism of cisplatin resistance in tumors.

  15. LKB1 destabilizes microtubules in myoblasts and contributes to myoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Isma Mian

    Full Text Available BACKGROUND: Skeletal muscle myoblast differentiation and fusion into multinucleate myotubes is associated with dramatic cytoskeletal changes. We find that microtubules in differentiated myotubes are highly stabilized, but premature microtubule stabilization blocks differentiation. Factors responsible for microtubule destabilization in myoblasts have not been identified. FINDINGS: We find that a transient decrease in microtubule stabilization early during myoblast differentiation precedes the ultimate microtubule stabilization seen in differentiated myotubes. We report a role for the serine-threonine kinase LKB1 in both microtubule destabilization and myoblast differentiation. LKB1 overexpression reduced microtubule elongation in a Nocodazole washout assay, and LKB1 RNAi increased it, showing LKB1 destabilizes microtubule assembly in myoblasts. LKB1 levels and activity increased during myoblast differentiation, along with activation of the known LKB1 substrates AMP-activated protein kinase (AMPK and microtubule affinity regulating kinases (MARKs. LKB1 overexpression accelerated differentiation, whereas RNAi impaired it. CONCLUSIONS: Reduced microtubule stability precedes myoblast differentiation and the associated ultimate microtubule stabilization seen in myotubes. LKB1 plays a positive role in microtubule destabilization in myoblasts and in myoblast differentiation. This work suggests a model by which LKB1-induced microtubule destabilization facilitates the cytoskeletal changes required for differentiation. Transient destabilization of microtubules might be a useful strategy for enhancing and/or synchronizing myoblast differentiation.

  16. Biochemical Activities of Three Pairs of Ehrlichia chaffeensis Two-Component Regulatory System Proteins Involved in Inhibition of Lysosomal Fusion†

    Science.gov (United States)

    Kumagai, Yumi; Cheng, Zhihui; Lin, Mingqun; Rikihisa, Yasuko

    2006-01-01

    Ehrlichia chaffeensis, the etiologic agent of human monocytic ehrlichiosis, replicates in early endosomes by avoiding lysosomal fusion in monocytes and macrophages. In E. chaffeensis we predicted three pairs of putative two-component regulatory systems (TCSs) designated PleC-PleD, NtrY-NtrX, and CckA-CtrA based on amino acid sequence homology. In the present study to determine biochemical pairs and specificities of the TCSs, the recombinant proteins of the three putative histidine kinase (HK) kinase domains (rPleCHKD, rNtrYHKD, and MBP-rCckAHKD) and the full-length forms of three putative response regulators (RRs) (rPleD, rNtrX, and rCtrA) as well as the respective mutant recombinant proteins (rPleCHKDH244A, rNtrYHKDH498A, MBP-rCckAHKDH449A, rPleDD53A, rNtrXD59A, and rCtrAD53A) were expressed and purified as soluble proteins. The in vitro HK activity, the specific His residue-dependent autophosphorylation of the kinase domain, was demonstrated in the three HKs. The specific Asp residue-dependent in vitro phosphotransfer from the kinase domain to the putative cognate RR was demonstrated in each of the three RRs. Western blot analysis of E. chaffeensis membrane and soluble fractions using antibodies specific for each recombinant protein detected PleC and CckA in the membrane fraction, whereas it detected NtrY, NtrX, and PleD in the soluble fraction. CtrA was found in the two fractions at similar levels. E. chaffeensis was sensitive to closantel, an HK inhibitor. Closantel treatment induced lysosomal fusion of the E. chaffeensis inclusion in a human monocytic leukemia cell line, THP-1 cells, implying that functional TCSs are essential in preventing lysosomal fusion of the E. chaffeensis inclusion compartment. PMID:16926392

  17. Myelin lesions associated with lysosomal and peroxisomal disorders.

    Science.gov (United States)

    Faust, Phyllis L; Kaye, Edward M; Powers, James M

    2010-09-01

    Abnormalities of myelin are common in lysosomal and peroxisomal disorders. Most display a primary loss of myelin in which the myelin sheath and/or oligodendrocytes are selectively targeted by diverse pathogenetic processes. The most severe and, hence, clinically relevant are heritable diseases predominantly of infants and children, the leukodystrophies: metachromatic, globoid cell (Krabbe disease) and adreno-leukodystrophy. Our still limited understanding of these diseases has derived from multiple sources: originally, neurological-neuropathologic-neurochemical correlative studies of the natural disease in humans or other mammals, which has been enhanced by more sophisticated and contemporary techniques of cell and molecular biology. Transgenic mouse models seem to be the most promising methodology, allowing the examination of the cellular role of lysosomes and peroxisomes for formation and maintenance of both myelin and axons, and providing initial platforms to evaluate therapies. Treatment options are woefully inadequate and in their nascent stages, but still inspire some hope for the future.

  18. Induced pluripotent stem cell models of lysosomal storage disorders

    Directory of Open Access Journals (Sweden)

    Daniel K. Borger

    2017-06-01

    Full Text Available Induced pluripotent stem cells (iPSCs have provided new opportunities to explore the cell biology and pathophysiology of human diseases, and the lysosomal storage disorder research community has been quick to adopt this technology. Patient-derived iPSC models have been generated for a number of lysosomal storage disorders, including Gaucher disease, Pompe disease, Fabry disease, metachromatic leukodystrophy, the neuronal ceroid lipofuscinoses, Niemann-Pick types A and C1, and several of the mucopolysaccharidoses. Here, we review the strategies employed for reprogramming and differentiation, as well as insights into disease etiology gleaned from the currently available models. Examples are provided to illustrate how iPSC-derived models can be employed to develop new therapeutic strategies for these disorders. We also discuss how models of these rare diseases could contribute to an enhanced understanding of more common neurodegenerative disorders such as Parkinson’s disease, and discuss key challenges and opportunities in this area of research.

  19. Immune response hinders therapy for lysosomal storage diseases.

    Science.gov (United States)

    Ponder, Katherine P

    2008-08-01

    Enzyme replacement therapy (ERT) for the lysosomal storage disease mucopolysaccharidosis I (MPS I) involves i.v. injection of alpha-l-iduronidase, which can be taken up by cells throughout the body. While a significant immune response to ERT has been shown in patients with MPS I, little is known about what effect anti-enzyme antibodies have on treatment efficacy. In this issue of the JCI, Dickson et al. demonstrate that anti-enzyme antibodies inhibit enzyme uptake and substantially limit the therapeutic efficacy of ERT in canines with MPS I (see the related article beginning on page 2868). Furthermore, the induction of immune tolerance--via oral delivery of cyclosporine A and azathioprine for two months at the time of initiation of ERT with recombinant human alpha-L-iduronidase--improved enzyme uptake in organs. Therefore, transient immunosuppression may enhance ERT for lysosomal storage diseases.

  20. Targeting Androgen Receptor by Lysosomal Degradation in Prostate Cancer

    Science.gov (United States)

    2014-09-01

    were done as described.13 Protein Sample Preparation and Mass Spectrometry Tandem Affinity Purification of FLAG-His-EWS-Fli-1- Interacting Proteins . Forty...incubated with Ni-NTA agarose (Qiagen), FLAG-His-EWS-Fli-1 and its interacting proteins were collected by centrifugation, washed three times with TN buffer...the lysosome fraction was loaded at 100x compared to the input. ■ RESULTS AND DISCUSSION Proteomic Analysis of the EWS-Fli-1- Interacting Proteins To

  1. Staccato/Unc-13-4 controls secretory lysosome-mediated lumen fusion during epithelial tube anastomosis.

    Science.gov (United States)

    Caviglia, Sara; Brankatschk, Marko; Fischer, Elisabeth J; Eaton, Suzanne; Luschnig, Stefan

    2016-07-01

    A crucial yet ill-defined step during the development of tubular networks, such as the vasculature, is the formation of connections (anastomoses) between pre-existing lumenized tubes. By studying tracheal tube anastomosis in Drosophila melanogaster, we uncovered a key role of secretory lysosome-related organelle (LRO) trafficking in lumen fusion. We identified the conserved calcium-binding protein Unc-13-4/Staccato (Stac) and the GTPase Rab39 as critical regulators of this process. Stac and Rab39 accumulate on dynamic vesicles, which form exclusively in fusion tip cells, move in a dynein-dependent manner, and contain late-endosomal, lysosomal, and SNARE components characteristic of LROs. The GTPase Arl3 is necessary and sufficient for Stac LRO formation and promotes Stac-dependent intracellular fusion of juxtaposed apical plasma membranes, thereby forming a transcellular lumen. Concomitantly, calcium is released locally from ER exit sites and apical membrane-associated calcium increases. We propose that calcium-dependent focused activation of LRO exocytosis restricts lumen fusion to appropriate domains within tip cells.

  2. Microvesicle shedding and lysosomal repair fulfill divergent cellular needs during the repair of streptolysin O-induced plasmalemmal damage.

    Directory of Open Access Journals (Sweden)

    Alexander P Atanassoff

    Full Text Available Pathogenic bacteria secrete pore-forming toxins that permeabilize the plasma membrane of host cells. Nucleated cells possess protective mechanisms that repair toxin-damaged plasmalemma. Currently two putative repair scenarios are debated: either the isolation of the damaged membrane regions and their subsequent expulsion as microvesicles (shedding or lysosome-dependent repair might allow the cell to rid itself of its toxic cargo and prevent lysis. Here we provide evidence that both mechanisms operate in tandem but fulfill diverse cellular needs. The prevalence of the repair strategy varies between cell types and is guided by the severity and the localization of the initial toxin-induced damage, by the morphology of a cell and, most important, by the incidence of the secondary mechanical damage. The surgically precise action of microvesicle shedding is best suited for the instant elimination of individual toxin pores, whereas lysosomal repair is indispensable for mending of self-inflicted mechanical injuries following initial plasmalemmal permeabilization by bacterial toxins. Our study provides new insights into the functioning of non-immune cellular defenses against bacterial pathogens.

  3. Structural factors and mechanisms underlying the improved photodynamic cell killing with silicon phthalocyanine photosensitizers directed to lysosomes versus mitochondria.

    Science.gov (United States)

    Rodriguez, Myriam E; Zhang, Ping; Azizuddin, Kashif; Delos Santos, Grace B; Chiu, Song-mao; Xue, Liang-yan; Berlin, Jeffery C; Peng, Xinzhan; Wu, Hongqiao; Lam, Minh; Nieminen, Anna-Liisa; Kenney, Malcolm E; Oleinick, Nancy L

    2009-01-01

    The phthalocyanine photosensitizer Pc 4 has been shown to bind preferentially to mitochondrial and endoplasmic reticulum membranes. Upon photoirradiation of Pc 4-loaded cells, membrane components, especially Bcl-2, are photodamaged and apoptosis, as indicated by activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase, is triggered. A series of analogs of Pc 4 were synthesized, and the results demonstrate that Pcs with the aminopropylsiloxy ligand of Pc 4 or a similar one on one side of the Pc ring and a second large axial ligand on the other side of the ring have unexpected properties, including enhanced cell uptake, greater monomerization resulting in greater intracellular fluorescence and three-fold higher affinity constants for liposomes. The hydroxyl-bearing axial ligands tend to reduce aggregation of the Pc and direct it to lysosomes, resulting in four to six times more killing of cells, as defined by loss of clonogenicity, than with Pc 4. Whereas Pc 4-PDT photodamages Bcl-2 and Bcl-xL, Pc 181-PDT causes much less photodamage to Bcl-2 over the same dose-response range relative to cell killing, with earlier cleavage of Bid and slower caspase-3-dependent apoptosis. Therefore, within this series of photosensitizers, these hydroxyl-bearing axial ligands are less aggregated than is Pc 4, tend to localize to lysosomes and are more effective in overall cell killing than is Pc 4, but induce apoptosis more slowly and by a modified pathway.

  4. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification.

    Science.gov (United States)

    Li, Dan L; Wang, Zhao V; Ding, Guanqiao; Tan, Wei; Luo, Xiang; Criollo, Alfredo; Xie, Min; Jiang, Nan; May, Herman; Kyrychenko, Viktoriia; Schneider, Jay W; Gillette, Thomas G; Hill, Joseph A

    2016-04-26

    The clinical use of doxorubicin is limited by cardiotoxicity. Histopathological changes include interstitial myocardial fibrosis and the appearance of vacuolated cardiomyocytes. Whereas dysregulation of autophagy in the myocardium has been implicated in a variety of cardiovascular diseases, the role of autophagy in doxorubicin cardiomyopathy remains poorly defined. Most models of doxorubicin cardiotoxicity involve intraperitoneal injection of high-dose drug, which elicits lethargy, anorexia, weight loss, and peritoneal fibrosis, all of which confound the interpretation of autophagy. Given this, we first established a model that provokes modest and progressive cardiotoxicity without constitutional symptoms, reminiscent of the effects seen in patients. We report that doxorubicin blocks cardiomyocyte autophagic flux in vivo and in cardiomyocytes in culture. This block was accompanied by robust accumulation of undegraded autolysosomes. We go on to localize the site of block as a defect in lysosome acidification. To test the functional relevance of doxorubicin-triggered autolysosome accumulation, we studied animals with diminished autophagic activity resulting from haploinsufficiency for Beclin 1. Beclin 1(+/-) mice exposed to doxorubicin were protected in terms of structural and functional changes within the myocardium. Conversely, animals overexpressing Beclin 1 manifested an amplified cardiotoxic response. Doxorubicin blocks autophagic flux in cardiomyocytes by impairing lysosome acidification and lysosomal function. Reducing autophagy initiation protects against doxorubicin cardiotoxicity. © 2016 American Heart Association, Inc.

  5. Recent advances in gene therapy for lysosomal storage disorders.

    Science.gov (United States)

    Rastall, David Pw; Amalfitano, Andrea

    2015-01-01

    Lysosomal storage disorders (LSDs) are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme's substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood-brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field.

  6. Decoupling internalization, acidification and phagosomal-endosomal/lysosomal fusion during phagocytosis of InlA coated beads in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Craig D Blanchette

    Full Text Available BACKGROUND: Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK and Caco-2 epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA, a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification. CONCLUSIONS/SIGNIFICANCE: Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23-32 min, 3-4 min and 74-120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply

  7. Preubiquitinated chimeric ErbB2 is constitutively endocytosed and subsequently degraded in lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Vuong, Tram Thu [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Berger, Christian [Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway); Bertelsen, Vibeke; Rødland, Marianne Skeie [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Stang, Espen [Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway); Madshus, Inger Helene, E-mail: i.h.madshus@medisin.uio.no [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway)

    2013-02-01

    The oncoprotein ErbB2 is endocytosis-deficient, probably due to its interaction with Heat shock protein 90. We previously demonstrated that clathrin-dependent endocytosis of ErbB2 is induced upon incubation of cells with Ansamycin derivatives, such as geldanamycin and its derivative 17-AAG. Furthermore, we have previously demonstrated that a preubiquitinated chimeric EGFR (EGFR-Ub{sub 4}) is constitutively endocytosed in a clathrin-dependent manner. We now demonstrate that also an ErbB2-Ub{sub 4} chimera is endocytosed constitutively and clathrin-dependently. Upon expression, the ErbB2-Ub{sub 4} was further ubiquitinated, and by Western blotting, we demonstrated the formation of both Lys48-linked and Lys63-linked polyubiquitin chains. ErbB2-Ub{sub 4} was constitutively internalized and eventually sorted to late endosomes and lysosomes where the fusion protein was degraded. ErbB2-Ub{sub 4} was not cleaved prior to internalization. Interestingly, over-expression of Ubiquitin Interaction Motif-containing dominant negative fragments of the clathrin adaptor proteins epsin1 and Eps15 negatively affected endocytosis of ErbB2. Altogether, this argues that ubiquitination is sufficient to induce clathrin-mediated endocytosis and lysosomal degradation of the otherwise plasma membrane localized ErbB2. Also, it appears that C-terminal cleavage is not required for endocytosis. -- Highlights: ► A chimera containing ErbB2 and a tetra-Ubiquitin chain internalizes constitutively. ► Receptor fragmentation is not required for endocytosis of ErbB2. ► Ubiquitination is sufficient to induce endocytosis and degradation of ErbB2. ► ErbB2-Ub4 is internalized clathrin-dependently.

  8. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions.

    Science.gov (United States)

    Gorojod, R M; Alaimo, A; Porte Alcon, S; Pomilio, C; Saravia, F; Kotler, M L

    2015-10-01

    Manganese (Mn) overexposure is frequently associated with the development of a neurodegenerative disorder known as Manganism. The Mn-mediated generation of reactive oxygen species (ROS) promotes cellular damage, finally leading to apoptotic cell death in rat astrocytoma C6 cells. In this scenario, the autophagic pathway could play an important role in preventing cytotoxicity. In the present study, we found that Mn induced an increase in the amount and total volume of acidic vesicular organelles (AVOs), a process usually related to the activation of the autophagic pathway. Particularly, the generation of enlarged AVOs was a ROS- dependent event. In this report we demonstrated for the first time that Mn induces autophagy in glial cells. This conclusion emerged from the results obtained employing a battery of autophagy markers: a) the increase in LC3-II expression levels, b) the formation of autophagic vesicles labeled with monodansylcadaverine (MDC) or LC3 and, c) the increase in Beclin 1/ Bcl-2 and Beclin 1/ Bcl-X(L) ratio. Autophagy inhibition employing 3-MA and mAtg5(K130R) resulted in decreased cell viability indicating that this event plays a protective role in Mn- induced cell death. In addition, mitophagy was demonstrated by an increase in LC3 and TOM-20 colocalization. On the other hand, we proposed the occurrence of lysosomal membrane permeabilization (LMP) based in the fact that cathepsins B and D activities are essential for cell death. Both cathepsin B inhibitor (Ca-074 Me) or cathepsin D inhibitor (Pepstatin A) completely prevented Mn- induced cytotoxicity. In addition, low dose of Bafilomycin A1 showed a similar effect, a finding that adds evidence about the lysosomal role in Mn cytotoxicity. Finally, in vivo experiments demonstrated that Mn induces injury and alters LC3 expression levels in rat striatal astrocytes. In summary, our results demonstrated that autophagy is activated to counteract the harmful effect caused by Mn. These data is valuable to

  9. Presenilin 1 regulates epidermal growth factor receptor turnover and signaling in the endosomal-lysosomal pathway.

    Science.gov (United States)

    Repetto, Emanuela; Yoon, Il-Sang; Zheng, Hui; Kang, David E

    2007-10-26

    Mutations in the gene encoding presenilin 1 (PS1) cause the most aggressive form of early-onset familial Alzheimer disease. In addition to its well established role in Abeta production and Notch proteolysis, PS1 has been shown to mediate other physiological activities, such as regulation of the Wnt/beta-catenin signaling pathway, modulation of phosphatidylinositol 3-kinase/Akt and MEK/ERK signaling, and trafficking of select membrane proteins and/or intracellular vesicles. In this study, we present evidence that PS1 is a critical regulator of a key signaling receptor tyrosine kinase, epidermal growth factor receptor (EGFR). Specifically, EGFR levels were robustly increased in fibroblasts deficient in both PS1 and PS2 (PS(-/-)) due to delayed turnover of EGFR protein. Stable transfection of wild-type PS1 but not PS2 corrected EGFR to levels comparable to PS(+/+) cells, while FAD PS1 mutations showed partial loss of activity. The C-terminal fragment of PS1 was sufficient to fully reduce EGFR levels. In addition, the rapid ligand-induced degradation of EGFR was markedly delayed in PS(-/-) cells, resulting in prolonged signal activation. Despite the defective turnover of EGFR, ligand-induced autophosphorylation, ubiquitination, and endocytosis of EGFR were not affected by the lack of PS1. Instead, the trafficking of EGFR from early endosomes to lysosomes was severely delayed by PS1 deficiency. Elevation of EGFR was also seen in brains of adult mice conditionally ablated in PS1 and in skin tumors associated with the loss of PS1. These findings demonstrate a critical role of PS1 in the trafficking and turnover of EGFR and suggest potential pathogenic effects of elevated EGFR as well as perturbed endosomal-lysosomal trafficking in cell cycle control and Alzheimer disease.

  10. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei; Chen Chunying; Ye Chang; Zhao Yuliang; Chen Zhen; Meng Huan; Gao Yuxi; Yuan Hui; Xing Genmei; Zhao Feng; Chai Zhifang [Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Nanotechnology of China and Institute of High Energy Physics, Chinese Academy of Science, Yuquan Road 19B, Beijing 100049 (China); Wei Taotao; Zhang Xujia; Yang Fuyu [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Lao Fang; Han Dong [National Center for Nanoscience and Technology of China, No 2, Ist North Street Zhongguancun, Beijing 100080 (China); Tang Xianhua; Zhang Yingge [Chinese Academy of Military Medical Sciences, Beijing 100039 (China)], E-mail: chenchy@nanoctr.cn, E-mail: weitt@moon.ibp.ac.cn, E-mail: zhaoyuliang@ihep.ac.cn

    2008-04-09

    Manufactured fullerene nanoparticles easily enter into cells and hence have been rapidly developed for biomedical uses. However, it is generally unknown which route the nanoparticles undergo when crossing cell membranes and where they localize to the intracellular compartments. Herein we have used both microscopic imaging and biological techniques to explore the processes of [C{sub 60}(C(COOH){sub 2}){sub 2}]{sub n} nanoparticles across cellular membranes and their intracellular translocation in 3T3 L1 and RH-35 living cells. The fullerene nanoparticles are quickly internalized by the cells and then routed to the cytoplasm with punctate localization. Upon entering the cell, they are synchronized to lysosome-like vesicles. The [C{sub 60}(C(COOH){sub 2}){sub 2}]{sub n} nanoparticles entering cells are mainly via endocytosis with time-, temperature- and energy-dependent manners. The cellular uptake of [C{sub 60}(C(COOH){sub 2}){sub 2}]{sub n} nanoparticles was found to be clathrin-mediated but not caveolae-mediated endocytosis. The endocytosis mechanism and the subcellular target location provide key information for the better understanding and predicting of the biomedical function of fullerene nanoparticles inside cells.

  11. Slurry Erosion Behavior of Destabilized and Deep Cryogenically Treated Cr-Mn-Cu White Cast Irons

    Directory of Open Access Journals (Sweden)

    S. Gupta

    2016-12-01

    Full Text Available The effects of destabilization treatment and destabilization followed by cryogenic treatment have been evaluated on the microstructural evolution and sand-water slurry erosion behavior of Cr-Mn-Cu white cast irons. The phase transformations after the destabilization and cryotreatment have been characterized by bulk hardness measurement, optical and scanning electron microscopy, x-ray diffraction analysis. The static corrosion rate has been measured in tap water (with pH=7 and the erosion-corrosion behavior has been studied by slurry pot tester using sand-water slurry. The test results indicate that the cryogenic treatment has a significant effect in minimizing the as-cast retained austenite content and transforming into martensitic and bainitic matrix embedded with ultra-fine M7C3 alloy carbides. In contrast, by conventional destabilization treatment retained austenite in the matrix are not fully eliminated. The slurry erosive wear resistance has been compared with reference to destabilized and cryotreated high chromium iron samples which are commonly employed for such applications. The cryotreated Cr-Mn-Cu irons have exhibited a comparable erosive wear performance to those of high chromium irons. Higher hardness combined with improved corrosion resistance result in better slurry erosion resistance.

  12. Pattern destabilization and emotional processing in cognitive therapy for personality disorders

    Directory of Open Access Journals (Sweden)

    Adele M. Hayes

    2015-02-01

    Full Text Available Clinical trials of treatments for personality disorders can provide a medium for studying the process of therapeutic change with particularly entrenched and self-perpetuating systems and might reveal important principles of system transition. We examined the extent to which maladaptive personality patterns were destabilized in a trial of cognitive therapy personality disorders (CT-PD and how destabilization was associated with emotional processing and treatment outcomes. Dynamic systems theory was used as a theoretical framework for studying change. Method: Participants were 27 patients diagnosed with Avoidant or Obsessive Compulsive Personality Disorder, who completed an open trial of CT-PD. Raters coded treatment sessions using a coding system that operationalizes emotional processing, as well as cognitive, affective, behavioral, and somatic components of pathological (negative and more adaptive (positive patterns of functioning. Pattern destabilization (dispersion scores during the early phase of treatment (phase 1: session 1-10 and the schema-focused phase (phase 2: session 11-34 were calculated using a program called GridWare. Results: More pattern destabilization and emotional processing in the schema-focused phase of CT-PD predicted more improvement in personality disorder symptoms and positive pattern strength at the end of treatment, whereas these variables in phase 1 did not predict outcome. Conclusions: In addition to illustrating a quantitative method for studying destabilization and change of patterns of psychopathology, we present findings that are consistent with recent updates of emotional processing theory and with principles from dynamic systems theory.

  13. Destabilization analysis of overlapping underground chambers induced by blasting vibration with catastrophe theory

    Institute of Scientific and Technical Information of China (English)

    YAN Chang-bin; XU Guo-yuan; ZUO Yu-jun

    2006-01-01

    According to the main characters of overlapping underground chambers, the roof (floor) of two adjacent underground chambers is simplified to the mechanical model that is the beam with build-in ends. And vibration load due to blasting is simplified to harmonic wave. The catastrophic model of double cusp for underground chambers destabilization induced by blasting vibration has been established under the circumstances of considering deadweight of the beam, and the condition of destabilization has been worked out. The critical safety thickness of the roof (floor) of underground chambers has been confirmed according to the destabilization condition. The influence of amplitude and frequency of blasting vibration load on the critical safety thickness has been analyzed, and the quantitative relation between velocity, frequency of blasting vibration and critical safety thickness has been determined. Research results show that the destabilization of underground chambers is not only dependent on the amplitude and frequency of blasting vibration load, but also related to deadweight load and intrinsic attribute. It is accordant to testing results and some related latest research results of blasting seismic effect. With increasing amplitude, the critical safety thickness of underground chambers decreases gradually. And the possibility of underground chambers destabilization increases. When the frequency of blasting vibration is equal to or very close to the frequency of beam, resonance effect will take place in the system. Then the critical safety thickness will turn to zero, underground chambers will be damaged severely, and its loading capacity will lose on the whole.

  14. Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection.

    Science.gov (United States)

    Qi, Xiaopeng; Man, Si Ming; Malireddi, R K Subbarao; Karki, Rajendra; Lupfer, Christopher; Gurung, Prajwal; Neale, Geoffrey; Guy, Clifford S; Lamkanfi, Mohamed; Kanneganti, Thirumala-Devi

    2016-09-19

    Lysosomal cathepsins regulate an exquisite range of biological functions, and their deregulation is associated with inflammatory, metabolic, and degenerative diseases in humans. In this study, we identified a key cell-intrinsic role for cathepsin B as a negative feedback regulator of lysosomal biogenesis and autophagy. Mice and macrophages lacking cathepsin B activity had increased resistance to the cytosolic bacterial pathogen Francisella novicida Genetic deletion or pharmacological inhibition of cathepsin B down-regulated mechanistic target of rapamycin activity and prevented cleavage of the lysosomal calcium channel TRPML1. These events drove transcription of lysosomal and autophagy genes via transcription factor EB, which increased lysosomal biogenesis and activation of autophagy initiation kinase ULK1 for clearance of the bacteria. Our results identified a fundamental biological function of cathepsin B in providing a checkpoint for homeostatic maintenance of lysosome populations and basic recycling functions in the cell.

  15. TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress.

    Science.gov (United States)

    Raben, Nina; Puertollano, Rosa

    2016-10-06

    In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.

  16. Disruption of Lysosome Function Promotes Tumor Growth and Metastasis in Drosophila *

    OpenAIRE

    Chi, Congwu; Zhu, Huanhu; Han,Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-01-01

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the RasV12 cells....

  17. Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    CERN Document Server

    Kómár, A; Fülöp, T

    2013-01-01

    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

  18. Mechanisms governing the reactivation-dependent destabilization of memories and their role in extinction

    Directory of Open Access Journals (Sweden)

    Charlotte Rachael Flavell

    2013-12-01

    Full Text Available The extinction of learned associations has traditionally been considered to involve new learning, which competes with the original memory for control over behaviour. However, a recent resurgence of interest in reactivation-dependent amnesia has revealed that the retrieval of fear-related memory (with what is essentially a brief extinction session can result in it’s destabilization. This review discusses some of the cellular and molecular mechanisms that are involved in the destabilization of a memory following it’s reactivation and/or extinction, and investigates the evidence that extinction may involve both new learning as well as a partial destabilization-induced erasure of the original memory trace.

  19. A new lysosomal storage disorder resembling Morquio syndrome in sibs.

    Science.gov (United States)

    Perrin, Laurence; Fenneteau, Odile; Ilharreborde, Brice; Capri, Yline; Gérard, Marion; Quoc, Emmanuel Bui; Passemard, Sandrine; Ghoumid, Jamal; Caillaud, Catherine; Froissart, Roseline; Tabet, Anne-Claude; Lebon, Sophie; El Ghouzzi, Vincent; Mazda, Keyvan; Verloes, Alain

    2012-03-01

    We report two male sibs, born from unrelated French Caribbean parents, presenting with an unclassifiable storage disorder. Pregnancy and delivery were uneventful. Stunted growth was noted during the first year of life. Both children have short stature (below - 4SD) with short trunk, barrel chest, micromelia with rhizomelic shortening, severe kyphoscoliosis, pectus carinatum, short hands and feet with metatarsus adductus, and excessive joint laxity of the small joints. Learning difficulties with borderline intelligence quotient (IQ) were noted in one of them. They had no hepatomegaly, no splenomegaly, and no dysmorphism. Skeletal X-rays survey demonstrated generalized platyspondyly with tongue-like deformity of the anterior part of the vertebral bodies, hypoplasia of the odontoid process, generalized epiphyseal dysplasia and abnormally shaped metaphyses. The acetabular roofs had a trident aspect. Ophthalmologic and cardiac examinations were normal. Spine deformity required surgical correction in one of the patient at age 4 years. Lysosomal enzymes assays including N-acetylgalactosamine-6-sulfate sulfatase and β-galactosidase were normal, excluding mucopolysaccharidoses type IV A and IV B (Morquio syndrome), respectively. Qualitative analysis found traces of dermatan and chondroitin-sulfates in urine, but quantitative glycosaminoglycan excretion fell within normal limits. They were no vacuolated lymphocytes. Abnormal coarse inclusions were present in eosinophils. Mild Alder anomaly was observed in polymorphonuclears. Granulations were discretely metachromatic with toluidine blue. Those morphological anomalies are in favor of a lysosomal storage disease. No inclusions were found in skin fibroblasts. We hypothesize that these two boys have a distinct autosomal recessive or X-linked lysosomal storage disorder of unknown origin that shares clinical and radiological features with Morquio disease.

  20. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization.

    Science.gov (United States)

    Phrampus, Benjamin J; Hornbach, Matthew J

    2012-10-25

    The Gulf Stream is an ocean current that modulates climate in the Northern Hemisphere by transporting warm waters from the Gulf of Mexico into the North Atlantic and Arctic oceans. A changing Gulf Stream has the potential to thaw and convert hundreds of gigatonnes of frozen methane hydrate trapped below the sea floor into methane gas, increasing the risk of slope failure and methane release. How the Gulf Stream changes with time and what effect these changes have on methane hydrate stability is unclear. Here, using seismic data combined with thermal models, we show that recent changes in intermediate-depth ocean temperature associated with the Gulf Stream are rapidly destabilizing methane hydrate along a broad swathe of the North American margin. The area of active hydrate destabilization covers at least 10,000 square kilometres of the United States eastern margin, and occurs in a region prone to kilometre-scale slope failures. Previous hypothetical studies postulated that an increase of five degrees Celsius in intermediate-depth ocean temperatures could release enough methane to explain extreme global warming events like the Palaeocene-Eocene thermal maximum (PETM) and trigger widespread ocean acidification. Our analysis suggests that changes in Gulf Stream flow or temperature within the past 5,000 years or so are warming the western North Atlantic margin by up to eight degrees Celsius and are now triggering the destabilization of 2.5 gigatonnes of methane hydrate (about 0.2 per cent of that required to cause the PETM). This destabilization extends along hundreds of kilometres of the margin and may continue for centuries. It is unlikely that the western North Atlantic margin is the only area experiencing changing ocean currents; our estimate of 2.5 gigatonnes of destabilizing methane hydrate may therefore represent only a fraction of the methane hydrate currently destabilizing globally. The transport from ocean to atmosphere of any methane released--and thus its

  1. Destabilization and recovery of a yeast prion after mild heat shock.

    Science.gov (United States)

    Newnam, Gary P; Birchmore, Jennifer L; Chernoff, Yury O

    2011-05-06

    Yeast prion [PSI(+)] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI(+)] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI(+)]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI(+)] destabilization, sometimes persisting for several cell divisions after heat shock. Prion loss occurring in the first division after heat shock is preferentially detected in a daughter cell, indicating the impairment of prion segregation that results in asymmetric prion distribution between a mother cell and a bud. Longer heat shock or prolonged incubation in the absence of nutrients after heat shock led to [PSI(+)] recovery. Both prion destabilization and recovery during heat shock depend on protein synthesis. Maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps such as Hsp70-Ssa. Deletions of individual SSA genes increase prion destabilization and/or counteract recovery. The dynamics of prion aggregation during destabilization and recovery are consistent with the notion that efficient prion fragmentation and segregation require a proper balance between Hsp104 and other (e.g., Hsp70-Ssa) chaperones. In contrast to heat shock, [PSI(+)] destabilization by osmotic stressors does not always depend on cell proliferation and/or protein synthesis, indicating that different stresses may impact the prion via different mechanisms. Our data demonstrate that heat stress causes asymmetric prion distribution in a cell division and confirm that the effects of Hsps on prions are physiologically relevant.

  2. Reporter Assay for Endo/Lysosomal Escape of Toxin-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Roger Gilabert-Oriol

    2014-05-01

    Full Text Available Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters—horseradish peroxidase (HRP, Alexa Fluor 488 (Alexa and ricin A-chain (RTA—were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates—saporin-HRP, Alexasaporin and saporin-KQ-RTA—were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of Alexasaporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10–1000 nM.

  3. Reporter assay for endo/lysosomal escape of toxin-based therapeutics.

    Science.gov (United States)

    Gilabert-Oriol, Roger; Thakur, Mayank; von Mallinckrodt, Benedicta; Bhargava, Cheenu; Wiesner, Burkhard; Eichhorst, Jenny; Melzig, Matthias F; Fuchs, Hendrik; Weng, Alexander

    2014-05-22

    Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters-horseradish peroxidase (HRP), Alexa Fluor 488 (Alexa) and ricin A-chain (RTA)-were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates-saporin-HRP, (Alexa)saporin and saporin-KQ-RTA-were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release) or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape) was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of (Alexa)saporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10-1000 nM.

  4. Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose.

    Science.gov (United States)

    Jung, Minjeong; Lee, Jaemeun; Seo, Hye-Young; Lim, Ji Sun; Kim, Eun-Kyoung

    2015-01-01

    Autophagy is a lysosomal degradative pathway that plays an important role in maintaining cellular homeostasis. We previously showed that the inhibition of autophagy causes pancreatic β-cell apoptosis, suggesting that autophagy is a protective mechanism for the survival of pancreatic β-cells. The current study demonstrates that treatment with inhibitors and knockdown of the lysosomal cysteine proteases such as cathepsins B and L impair autophagy, enhancing the caspase-dependent apoptosis of INS-1 cells and islets upon exposure to high concentration of glucose. Interestingly, treatment with cathepsin B and L inhibitors prevented the proteolytic processing of cathepsins B, D and L, as evidenced by gradual accumulation of the respective pro-forms. Of note, inhibition of aspartic cathepsins had no effect on autophagy and cell viability, suggesting the selective role of cathepsins B and L in the regulation of β-cell autophagy and apoptosis. Lysosomal localization of accumulated pro-cathepsins in the presence of cathepsin B and L inhibitors was verified via immunocytochemistry and lysosomal fractionation. Lysotracker staining indicated that cathepsin B and L inhibitors led to the formation of severely enlarged lysosomes in a time-dependent manner. The abnormal accumulation of pro-cathepsins following treatment with inhibitors of cathepsins B and L suppressed normal lysosomal degradation and the processing of lysosomal enzymes, leading to lysosomal dysfunction. Collectively, our findings suggest that cathepsin defects following the inhibition of cathepsin B and L result in lysosomal dysfunction and consequent cell death in pancreatic β-cells.

  5. Antioxidant, genotoxic and lysosomal biomarkers in the freshwater bivalve (Unio pictorum) transplanted in a metal polluted river basin.

    Science.gov (United States)

    Guidi, Patrizia; Frenzilli, Giada; Benedetti, Maura; Bernardeschi, Margherita; Falleni, Alessandra; Fattorini, Daniele; Regoli, Francesco; Scarcelli, Vittoria; Nigro, Marco

    2010-10-01

    The freshwater painter's mussel (Unio pictorum) was used as sentinel species to assess the chemical disturbance in an Italian river (the river Cecina) characterized by elevated levels of trace metals of both natural and anthropogenic origin. Organisms were transplanted for 4 weeks in different locations of the river basin and the bioaccumulation of metals was integrated with a wide battery of biomarkers consisting of oxidative, genotoxic and lysosomal responses. Such parameters included the levels of individual antioxidants (catalase, glutathione-S-transferases, glutathione reductase, Se-dependent and Se-independent glutathione peroxidases, total glutathione), the total oxyradical scavenging capacity (TOSC), metallothionein-like proteins, the assessment of DNA integrity, chromosomal damages and lysosomal membrane stability. Elevated levels of several metals were measured in sediments, but the relatively low tissue concentrations suggested a moderate bioaccumulation, possibly due to a high excretion efficiency, of U. pictorum and/or to a limited bioavailability of these elements, partly deriving from erosion of bedrocks. Among antioxidant responses, those based on glutathione metabolism and the activity of catalase were mostly affected in bivalves showing a significant accumulation of arsenic, mercury and/or nickel. In these specimens, the content of glutathione and the activities of glutathione reductase and glutathione peroxidases (H2O2) were respectively 9-, 6- and 4-fold lower than in controls, while a 3-fold increase was observed for catalase. Despite some differences in the response of individual antioxidants, a significant reduction of the capability to neutralize peroxyl radicals was observed in bivalves caged in all the impacted sites of the river basin; these organisms also exhibited a significant impairment at the DNA, chromosomal and lysosomal levels. Considering the mild contamination gradient in the investigated area, the overall results suggested that

  6. Destabilization of fast particle stabilized sawteeth in ASDEX Upgrade with electron cyclotron current drive

    DEFF Research Database (Denmark)

    Igochine, V.; Chapman, I.T.; Bobkov, V.

    2011-01-01

    It is often observed that large sawteeth trigger the neoclassical tearing mode well below the usual threshold for this instability. At the same time, fast particles in the plasma core stabilize sawteeth and provide these large crashes. The paper presents results of first experiments in ASDEX...... Upgrade for destabilization of fast particle stabilized sawteeth with electron cyclotron current drive (ECCD). It is shown that moderate ECCD from a single gyrotron is able to destabilize the fast particle stabilized sawteeth. A reduction in sawtooth period by about 40% was achieved in first experiments...

  7. In Vitro and in Silico Tools To Assess Extent of Cellular Uptake and Lysosomal Sequestration of Respiratory Drugs in Human Alveolar Macrophages.

    Science.gov (United States)

    Ufuk, Ayşe; Assmus, Frauke; Francis, Laura; Plumb, Jonathan; Damian, Valeriu; Gertz, Michael; Houston, J Brian; Galetin, Aleksandra

    2017-04-03

    Accumulation of respiratory drugs in human alveolar macrophages (AMs) has not been extensively studied in vitro and in silico despite its potential impact on therapeutic efficacy and/or occurrence of phospholipidosis. The current study aims to characterize the accumulation and subcellular distribution of drugs with respiratory indication in human AMs and to develop an in silico mechanistic AM model to predict lysosomal accumulation of investigated drugs. The data set included 9 drugs previously investigated in rat AM cell line NR8383. Cell-to-unbound medium concentration ratio (Kp,cell) of all drugs (5 μM) was determined to assess the magnitude of intracellular accumulation. The extent of lysosomal sequestration in freshly isolated human AMs from multiple donors (n = 5) was investigated for clarithromycin and imipramine (positive control) using an indirect in vitro method (±20 mM ammonium chloride, NH4Cl). The AM cell parameters and drug physicochemical data were collated to develop an in silico mechanistic AM model. Three in silico models differing in their description of drug membrane partitioning were evaluated; model (1) relied on octanol-water partitioning of drugs, model (2) used in vitro data to account for this process, and model (3) predicted membrane partitioning by incorporating AM phospholipid fractions. In vitro Kp,cell ranged >200-fold for respiratory drugs, with the highest accumulation seen for clarithromycin. A good agreement in Kp,cell was observed between human AMs and NR8383 (2.45-fold bias), highlighting NR8383 as a potentially useful in vitro surrogate tool to characterize drug accumulation in AMs. The mean Kp,cell of clarithromycin (81, CV = 51%) and imipramine (963, CV = 54%) were reduced in the presence of NH4Cl by up to 67% and 81%, respectively, suggesting substantial contribution of lysosomal sequestration and intracellular binding in the accumulation of these drugs in human AMs. The in vitro data showed variability in drug

  8. Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling [v1; ref status: indexed, http://f1000r.es/32q

    Directory of Open Access Journals (Sweden)

    Nicola Fameli

    2014-04-01

    Full Text Available Herein we demonstrate how nanojunctions between lysosomes and sarcoplasmic reticulum (L-SR junctions serve to couple lysosomal activation to regenerative, ryanodine receptor-mediated cellular Ca2+ waves. In pulmonary artery smooth muscle cells (PASMCs it has been proposed that nicotinic acid adenine dinucleotide phosphate (NAADP triggers increases in cytoplasmic Ca2+ via L-SR junctions, in a manner that requires initial Ca2+ release from lysosomes and subsequent Ca2+-induced Ca2+ release (CICR via ryanodine receptor (RyR subtype 3 on the SR membrane proximal to lysosomes. L-SR junction membrane separation has been estimated to be < 400 nm and thus beyond the resolution of light microscopy, which has restricted detailed investigations of the junctional coupling process. The present study utilizes standard and tomographic transmission electron microscopy to provide a thorough ultrastructural characterization of the L-SR junctions in PASMCs. We show that L-SR nanojunctions are prominent features within these cells and estimate that the junctional membrane separation and extension are about 15 nm and 300 nm, respectively. Furthermore, we develop a quantitative model of the L-SR junction using these measurements, prior kinetic and specific Ca2+ signal information as input data. Simulations of NAADP-dependent junctional Ca2+ transients demonstrate that the magnitude of these signals can breach the threshold for CICR via RyR3. By correlation analysis of live cell Ca2+ signals and simulated Ca2+ transients within L-SR junctions, we estimate that “trigger zones” comprising 60–100 junctions are required to confer a signal of similar magnitude. This is compatible with the 110 lysosomes/cell estimated from our ultrastructural observations. Most importantly, our model shows that increasing the L-SR junctional width above 50 nm lowers the magnitude of junctional [Ca2+] such that there is a failure to breach the threshold for CICR via RyR3. L

  9. From Lysosomal Storage Diseases to NKT Cell Activation and Back

    Science.gov (United States)

    Pereira, Cátia S.; Ribeiro, Helena; Macedo, M. Fatima

    2017-01-01

    Lysosomal storage diseases (LSDs) are inherited metabolic disorders characterized by the accumulation of different types of substrates in the lysosome. With a multisystemic involvement, LSDs often present a very broad clinical spectrum. In many LSDs, alterations of the immune system were described. Special emphasis was given to Natural Killer T (NKT) cells, a population of lipid-specific T cells that is activated by lipid antigens bound to CD1d (cluster of differentiation 1 d) molecules at the surface of antigen-presenting cells. These cells have important functions in cancer, infection, and autoimmunity and were altered in a variety of LSDs’ mouse models. In some cases, the observed decrease was attributed to defects in either lipid antigen availability, trafficking, processing, or loading in CD1d. Here, we review the current knowledge about NKT cells in the context of LSDs, including the alterations detected, the proposed mechanisms to explain these defects, and the relevance of these findings for disease pathology. Furthermore, the effect of enzyme replacement therapy on NKT cells is also discussed. PMID:28245613

  10. From Lysosomal Storage Diseases to NKT Cell Activation and Back

    Directory of Open Access Journals (Sweden)

    Cátia S. Pereira

    2017-02-01

    Full Text Available Lysosomal storage diseases (LSDs are inherited metabolic disorders characterized by the accumulation of different types of substrates in the lysosome. With a multisystemic involvement, LSDs often present a very broad clinical spectrum. In many LSDs, alterations of the immune system were described. Special emphasis was given to Natural Killer T (NKT cells, a population of lipid-specific T cells that is activated by lipid antigens bound to CD1d (cluster of differentiation 1 d molecules at the surface of antigen-presenting cells. These cells have important functions in cancer, infection, and autoimmunity and were altered in a variety of LSDs’ mouse models. In some cases, the observed decrease was attributed to defects in either lipid antigen availability, trafficking, processing, or loading in CD1d. Here, we review the current knowledge about NKT cells in the context of LSDs, including the alterations detected, the proposed mechanisms to explain these defects, and the relevance of these findings for disease pathology. Furthermore, the effect of enzyme replacement therapy on NKT cells is also discussed.

  11. Frustrated phagocytosis on micro-patterned immune complexes to characterize lysosome movements in live macrophages.

    Directory of Open Access Journals (Sweden)

    Arnaud M. Labrousse

    2011-10-01

    Full Text Available Lysosome mobilization is a key cellular process in phagocytes for bactericidal activities and trans-matrix migration. The molecular mechanisms that regulate lysosome mobilization are still poorly known. Lysosomes are hard to track as they move towards phagosomes throughout the cell volume. In order to anticipate cell regions where lysosomes are recruited to, human and RAW264.7 macrophages were seeded on surfaces that were micro-patterned with immune complexes (ICs as 4 µm-side squares. Distances between IC patterns were adapted to optimize cell spreading in order to constrain lysosome movements mostly in 2 dimensions. Fc receptors triggered local frustrated phagocytosis, frustrated phagosomes appeared as rings of F-actin dots around the IC patterns as early as 5 minutes after cells made contact with the substratum. Frustrated phagosomes recruited actin-associated proteins (vinculin, paxillin and gelsolin. The fusion of lysosomes with frustrated phagosomes was shown by the release of beta-hexosaminidase and the recruitment of Lamp-1 to frustrated phagosomes. Lysosomes of RAW264.7 macrophages were labeled with cathepsinD-mCherry to visualize their movements towards frustrated phagosomes. Lysosomes saltatory movements were markedly slowed down compared to cells layered on non-opsonized patterns. In addition, the linearity of the trajectories and the frequency and duration of contacts of lysosomes with frustrated phagosomes were measured.¬¬¬¬¬¬¬¬ Using PP2 we showed that instant velocity, pauses and frequency of lysosome/phagosome contacts were at least in part dependent on Src tyrosine kinases. This experimental set-up is the first step towards deciphering molecular mechanisms which are involved in lysosome movements in the cytoplasm (directionality, docking and fusion using RNA interference, pharmacological inhibition or mutant expression.

  12. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    Science.gov (United States)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  13. Biochemical and lysosomal biomarkers in the mussel Mytilus galloprovincialis from the Mar Piccolo of Taranto (Ionian Sea, Southern Italy).

    Science.gov (United States)

    Moschino, Vanessa; Da Ros, Luisa

    2016-07-01

    Biomarkers are internationally recognized as useful tools in marine coastal biomonitoring, in particular, as early-warning signals at the level of individual organisms to assess biological effects of pollutants and other stressors. In the present study, Mytilus galloprovincialis has been employed as a sentinel organism to assess biological pollution effects in the Mar Piccolo of Taranto (Southern Italy), a coastal lagoon divided into two small inlets, connected to the open sea through one natural and one artificial narrow openings. Mussels were collected in June 2013 at three sites located within each of the two inlets of the Mar Piccolo. Biological effects were investigated through a suite of biomarkers suitable to reflect effects and/or exposure to contaminants at biochemical and cellular levels. Biochemical biomarkers included glutathione-S-transferase (GST) and acetylcholinesterase (AChE) enzyme activities; as histochemical biomarkers, lysosomal membrane stability, lipofuscin and neutral lipid accumulation, and lysosomal structural changes were considered. As a whole, results highlighted differences among the three study sites, particularly for GST, AChE, and lipofuscins, which are consistent with the variations of the chemical pollutants in sediments. The applied biomarkers showed that a stress syndrome likely to be ascribed to environmental pollutants is occurring in mussels living in the Mar Piccolo of Taranto, in particular, the ones inhabiting the first inlet.

  14. Amygdala Dopamine Receptors Are Required for the Destabilization of a Reconsolidating Appetitive Memory(1,2).

    Science.gov (United States)

    Merlo, Emiliano; Ratano, Patrizia; Ilioi, Elena C; Robbins, Miranda A L S; Everitt, Barry J; Milton, Amy L

    2015-01-01

    Disrupting maladaptive memories may provide a novel form of treatment for neuropsychiatric disorders, but little is known about the neurochemical mechanisms underlying the induction of lability, or destabilization, of a retrieved consolidated memory. Destabilization has been theoretically linked to the violation of expectations during memory retrieval, which, in turn, has been suggested to correlate with prediction error (PE). It is well-established that PE correlates with dopaminergic signaling in limbic forebrain structures that are critical for emotional learning. The basolateral amygdala is a key neural substrate for the reconsolidation of pavlovian reward-related memories, but the involvement of dopaminergic mechanisms in inducing lability of amygdala-dependent memories has not been investigated. Therefore, we tested the hypothesis that dopaminergic signaling within the basolateral amygdala is required for the destabilization of appetitive pavlovian memories by investigating the effects dopaminergic and protein synthesis manipulations on appetitive memory reconsolidation in rats. Intra-amygdala administration of either the D1-selective dopamine receptor antagonist SCH23390 or the D2-selective dopamine receptor antagonist raclopride prevented memory destabilization at retrieval, thereby protecting the memory from the effects of an amnestic agent, the protein synthesis inhibitor anisomycin. These data show that dopaminergic transmission within the basolateral amygdala is required for memory labilization during appetitive memory reconsolidation.

  15. Stabilization and destabilization effects of the electric field on stochastic precipitate pattern formation

    NARCIS (Netherlands)

    Lagzi, István; Izsák, Ferenc

    2004-01-01

    Stabilization and destabilization effects of an applied electric field on the Liesegang pattern formation in low concentration gradient were studied with numerical model simulations. In the absence of an electric field pattern formation exhibits increasingly stochastic behaviour as the initial conce

  16. Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates

    Institute of Scientific and Technical Information of China (English)

    JIANG Ganqing; SHI Xiaoying; ZHANG Shihong

    2006-01-01

    Methane hydrates constitute the largest pool of readily exchangeable carbon at the Earth's sedimentary carapace and may destabilize, in some cases catastrophically, during times of global-scale warming and/or sea level changes. Given the extreme cold during Neoproterozoic ice ages, the aftermath of such events is perhaps amongst the most likely intervals in Earth history to witness a methane hydrate destabilization event. The coincidence of localized but widespread methane seep-like structures and textures, methane-derived isotopic signal,low sulfate concentration, marine barites, and a prominent, short-lived carbon isotope excursion (δ13C≤-5‰) from the post-Marinoan cap carbonates (~635 Ma) provides strong evidence for a methane hydrate destabilization event during the late Neoproterozoic postglacial warming and transgression. Methane release from hydrates could cause a positive feedback to global warming and oxidation of methane could result in ocean anoxia and fluctuation of atmospheric oxygen, providing an environmental force for the early animal evolution in the latest Neoproterozoic. The issues that remain to be clarified for this event include the trigger of methane hydrate destabilization, the time of initial methane release, the predicted ocean anoxia event and its relationship with the biological innovation, additional geochemical signals in response to methane release, and the regional and global synchrony of cap carbonate precipitation. The Doushantuo cap carbonate in South China provides one of the best examples of its age for a better understanding of these issues.

  17. Thermal Destabilization of Collagen Matrix Hierarchical Structure by Freeze/Thaw.

    Directory of Open Access Journals (Sweden)

    Altug Ozcelikkale

    Full Text Available This study aims to characterize and understand the effects of freezing on collagen structures and functionality. Specifically, thermodynamic destabilization of collagen at molecular- and fibril-levels by combination of low temperatures and freezing were experimentally characterized using modulated differential scanning calorimetry. In order to delineate the effects of sub-zero temperature and water-ice phase change, we hypothesized that the extent of destabilization can be determined based on post-thaw heat induced thermal denaturation of collagen. It is found that thermal denaturation temperature of collagen in hydrogel decreases by 1.4-1.6°C after freeze/thaw while no such decrease is observed in the case of molecular solution. The destabilization is predominantly due to ice formation. Exposure to low temperatures in the absence of ice has only minimal effect. Calorimetry measurements combined with morphological examination of collagen matrices by scanning electron microscopy suggest that freezing results in destabilization of collagen fibrils due to expansion of intrafibrillar space by ice formation. This fibril-level damage can be alleviated by use of cryoprotectant DMSO at concentrations as low as 0.5 M. A theoretical model explaining the change in collagen post-thaw thermal stability by freezing-induced fibril expansion is also proposed.

  18. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp).

    Science.gov (United States)

    Jansson, Patric J; Yamagishi, Tetsuo; Arvind, Akanksha; Seebacher, Nicole; Gutierrez, Elaine; Stacy, Alexandra; Maleki, Sanaz; Sharp, Danae; Sahni, Sumit; Richardson, Des R

    2015-04-10

    Multidrug resistance (MDR) is a major obstacle in cancer treatment. More than half of human cancers express multidrug-resistant P-glycoprotein (Pgp), which correlates with a poor prognosis. Intriguingly, through an unknown mechanism, some drugs have greater activity in drug-resistant tumor cells than their drug-sensitive counterparts. Herein, we investigate how the novel anti-tumor agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes MDR. Four different cell types were utilized to evaluate the effect of Pgp-potentiated lysosomal targeting of drugs to overcome MDR. To assess the mechanism of how Dp44mT overcomes drug resistance, cellular studies utilized Pgp inhibitors, Pgp silencing, lysosomotropic agents, proliferation assays, immunoblotting, a Pgp-ATPase activity assay, radiolabeled drug uptake/efflux, a rhodamine 123 retention assay, lysosomal membrane permeability assessment, and DCF (2',7'-dichlorofluorescin) redox studies. Anti-tumor activity and selectivity of Dp44mT in Pgp-expressing, MDR cells versus drug-sensitive cells were studied using a BALB/c nu/nu xenograft mouse model. We demonstrate that Dp44mT is transported by the lysosomal Pgp drug pump, causing lysosomal targeting of Dp44mT and resulting in enhanced cytotoxicity in MDR cells. Lysosomal Pgp and pH were shown to be crucial for increasing Dp44mT-mediated lysosomal damage and subsequent cytotoxicity in drug-resistant cells, with Dp44mT being demonstrated to be a Pgp substrate. Indeed, Pgp-dependent lysosomal damage and cytotoxicity of Dp44mT were abrogated by Pgp inhibitors, Pgp silencing, or increasing lysosomal pH using lysosomotropic bases. In vivo, Dp44mT potently targeted chemotherapy-resistant human Pgp-expressing xenografted tumors relative to non-Pgp-expressing tumors in mice. This study highlights a novel Pgp hijacking strategy of the unique dipyridylthiosemicarbazone series of thiosemicarbazones that overcome MDR via utilization of lysosomal Pgp transport activity.

  19. Characterization of storage material in cultured fibroblasts by specific lectin binding in lysosomal storage diseases.

    Science.gov (United States)

    Virtanen, I; Ekblom, P; Laurila, P; Nordling, S; Raivio, K O; Aula, P

    1980-11-01

    The lysosomal storage material in cultured fibroblasts from patients with various lysosomal storage diseases was characterized by fluorescence microscopy using lectins specific for different saccharide moieties. In normal fibroblasts and cultured amniotic fluid cells lectins specific for mannosyl and glucosyl moieties, Con A and LcA gave a bright perinuclear cytoplasmic staining corresponding to the localization of endoplasmic reticulum in the cells. All other lectins stained the Golgi apparatus as a juxtanuclear reticular structure. In fucosidosis fibroblasts, only lectins specific for fucosyl groups LTA and UEA, distinctly stained the lysosomal inclusions. The lysosomes in mannosidosis fibroblasts did not react with Con A and LcA, both specific for mannosyl moieties of glycoconjugates, but were brightly labeled with WGA, a lectin specific for N-acetyl glucosaminyl moieties. In I-cell fibroblasts, the numerous perinuclear phase-dense granules, representing abnormal lysosomes, were labeled with every lectin used. In fibroblasts from patients with Salla disease, a newly discovered lysosomal storage disorder, the lysosomes were brightly stained only with LPA, indicating the presence of increased amounts of sialic acid residues in the lysosomal inclusions.

  20. Autophagy-lysosomal pathway is involved in lipid degradation in rat liver.

    Science.gov (United States)

    Skop, V; Cahová, M; Papáčková, Z; Páleníčková, E; Daňková, H; Baranowski, M; Zabielski, P; Zdychová, J; Zídková, J; Kazdová, L

    2012-01-01

    We present data supporting the hypothesis that the lysosomal-autophagy pathway is involved in the degradation of intracellular triacylglycerols in the liver. In primary hepatocytes cultivated in the absence of exogenous fatty acids (FFA), both inhibition of autophagy flux (asparagine) or lysosomal activity (chloroquine) decreased secretion of VLDL (very low density lipoproteins) and formation of FFA oxidative products while the stimulation of autophagy by rapamycine increased some of these parameters. Effect of rapamycine was completely abolished by inactivation of lysosomes. Similarly, when autophagic activity was influenced by cultivating the hepatocytes in "starving" (amino-acid poor medium) or "fed" (serum-supplemented medium) conditions, VLDL secretion and FFA oxidation mirrored the changes in autophagy being higher in starvation and lower in fed state. Autophagy inhibition as well as lysosomal inactivation depressed FFA and DAG (diacylglycerol) formation in liver slices in vitro. In vivo, intensity of lysosomal lipid degradation depends on the formation of autophagolysosomes, i.e. structures bringing the substrate for degradation and lysosomal enzymes into contact. We demonstrated that lysosomal lipase (LAL) activity in liver autophagolysosomal fraction was up-regulated in fasting and down-regulated in fed state together with the increased translocation of LAL and LAMP2 proteins from lysosomal pool to this fraction. Changes in autophagy intensity (LC3-II/LC3-I ratio) followed a similar pattern.

  1. The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation.

    Science.gov (United States)

    Moskot, Marta; Montefusco, Sandro; Jakóbkiewicz-Banecka, Joanna; Mozolewski, Paweł; Węgrzyn, Alicja; Di Bernardo, Diego; Węgrzyn, Grzegorz; Medina, Diego L; Ballabio, Andrea; Gabig-Cimińska, Magdalena

    2014-06-13

    Genistein (5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) has been previously proposed as a potential drug for use in substrate reduction therapy for mucopolysaccharidoses, a group of inherited metabolic diseases caused by mutations leading to inefficient degradation of glycosaminoglycans (GAGs) in lysosomes. It was demonstrated that this isoflavone can cross the blood-brain barrier, making it an especially desirable potential drug for the treatment of neurological symptoms present in most lysosomal storage diseases. So far, no comprehensive genomic analyses have been performed to elucidate the molecular mechanisms underlying the effect elicited by genistein. Therefore, the aim of this work was to identify the genistein-modulated gene network regulating GAG biosynthesis and degradation, taking into consideration the entire lysosomal metabolism. Our analyses identified over 60 genes with known roles in lysosomal biogenesis and/or function whose expression was enhanced by genistein. Moreover, 19 genes whose products are involved in both GAG synthesis and degradation pathways were found to be remarkably differentially regulated by genistein treatment. We found a regulatory network linking genistein-mediated control of transcription factor EB (TFEB) gene expression, TFEB nuclear translocation, and activation of TFEB-dependent lysosome biogenesis to lysosomal metabolism. Our data indicate that the molecular mechanism of genistein action involves not only impairment of GAG synthesis but more importantly lysosomal enhancement via TFEB. These findings contribute to explaining the beneficial effects of genistein in lysosomal storage diseases as well as envisage new therapeutic approaches to treat these devastating diseases.

  2. Vps33B is required for delivery of endocytosed cargo to lysosomes

    NARCIS (Netherlands)

    Galmes, Romain; ten Brink, Corlinda; Oorschot, Viola; Veenendaal, Tineke; Jonker, Caspar; van der Sluijs, Peter; Klumperman, Judith

    2015-01-01

    In mammalian cells Vps33B forms a complex with VIPAS-39 that is recruited to recycling endosomes. Here we show that when Vps33B is expressed together with Rab7-interacting lysosomal protein (RILP) it is recruited to late endosomes-lysosomes and that depletion of Vps33B impairs late

  3. Glycogenosis type II : cloning and characterization of the human lysosomal α-glucosidase gene

    NARCIS (Netherlands)

    E.H. Hoefsloot (Lies)

    1991-01-01

    textabstractGlycogenosis type II is a lysosomal storage disorder. Characteristic features are heart failure and generalized muscle weakness. The disease is caused by the inherited deficiency of acid α-glucosidase, the enzyme responsible for the degradation of lysosomal glycogen. The aim of the work

  4. Lysosomal cholesterol accumulation : driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis

    NARCIS (Netherlands)

    Hendrikx, T.; Walenbergh, S. M. A.; Hofker, M. H.; Shiri-Sverdlov, R.

    2014-01-01

    Many studies show an association between the accumulation of cholesterol inside lysosomes and the progression towards inflammatory disease states that are closely related to obesity. While in the past, the knowledge regarding lysosomal cholesterol accumulation was limited to its association with pla

  5. E-cadherin destabilization accounts for the pathogenicity of missense mutations in hereditary diffuse gastric cancer.

    Directory of Open Access Journals (Sweden)

    Joana Simões-Correia

    Full Text Available E-cadherin is critical for the maintenance of tissue architecture due to its role in cell-cell adhesion. E-cadherin mutations are the genetic cause of Hereditary Diffuse Gastric Cancer (HDGC and missense mutations represent a clinical burden, due to the uncertainty of their pathogenic role. In vitro and in vivo, most mutations lead to loss-of-function, although the causal factor is unknown for the majority. We hypothesized that destabilization could account for the pathogenicity of E-cadherin missense mutations in HDGC, and tested our hypothesis using in silico and in vitro tools. FoldX algorithm was used to calculate the impact of each mutation in E-cadherin native-state stability, and the analysis was complemented with evolutionary conservation, by SIFT. Interestingly, HDGC patients harbouring germline E-cadherin destabilizing mutants present a younger age at diagnosis or death, suggesting that the loss of native-state stability of E-cadherin accounts for the disease phenotype. To elucidate the biological relevance of E-cadherin destabilization in HDGC, we investigated a group of newly identified HDGC-associated mutations (E185V, S232C and L583R, of which L583R is predicted to be destabilizing. We show that this mutation is not functional in vitro, exhibits shorter half-life and is unable to mature, due to premature proteasome-dependent degradation, a phenotype reverted by stabilization with the artificial mutation L583I (structurally tolerated. Herein we report E-cadherin structural models suitable to predict the impact of the majority of cancer-associated missense mutations and we show that E-cadherin destabilization leads to loss-of-function in vitro and increased pathogenicity in vivo.

  6. Lower-extremity electromyography measures during walking with ankle-destabilization devices.

    Science.gov (United States)

    Donovan, Luke; Hart, Joseph M; Hertel, Jay

    2014-05-01

    Ankle-destabilization devices are rehabilitation tools that may improve neuromuscular control by increasing lower-extremity muscle activation. Their effects should be tested in healthy individuals before being implemented in rehabilitation programs. To compare EMG activation of lower-extremity muscles during walking while wearing 2 different ankle-destabilization devices. Crossover. Laboratory. 15 healthy young adults (5 men, 10 women). Surface EMG activity was recorded from the anterior tibialis, peroneus longus, lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius as subjects walked on a treadmill shod, with an ankle-destabilization boot (ADB), and an ankle-destabilization sandal (ADS). Normalized amplitudes 100 ms before and 200 ms after initial heel contact, time of onset activation relative to initial contact, and percent of activation time across the stride cycle were calculated for each muscle in each condition. The precontact amplitudes of the peroneus longus and lateral gastrocnemius and the postcontact amplitudes of the lateral gastrocnemius were significantly greater in the ADB and ADS conditions. In the ADB condition, the rectus femoris and biceps femoris postcontact amplitudes were significantly greater than shod. The peroneus longus and lateral gastrocnemius were activated significantly earlier, and the anterior tibialis, lateral gastrocnemius, and rectus femoris were activated significantly longer across the stride cycle in the ADB and the ADS conditions. In addition, the peroneus longus was activated significantly longer in the ADB condition when compared with shod. Both ankle-destabilization devices caused an alteration in muscle activity during walking, which may be favorable to an injured patient. Therefore, implementing these devices in rehabilitation programs may be beneficial to improving neuromuscular control.

  7. Molecular mechanisms for the destabilization and restabilization of reactivated spatial memory in the Morris water maze

    Directory of Open Access Journals (Sweden)

    Kim Ryang

    2011-02-01

    Full Text Available Abstract Background Memory retrieval is not a passive process. Recent studies have shown that reactivated memory is destabilized and then restabilized through gene expression-dependent reconsolidation. Molecular studies on the regulation of memory stability after retrieval have focused almost exclusively on fear memory, especially on the restabilization process of the reactivated fear memory. We previously showed that, similarly with fear memories, reactivated spatial memory undergoes reconsolidation in the Morris water maze. However, the underlying molecular mechanisms by which reactivated spatial memory is destabilized and restabilized remain poorly understood. In this study, we investigated the molecular mechanism that regulates the stability of the reactivated spatial memory. Results We first showed that pharmacological inactivation of the N-methyl-D-aspartate glutamate receptor (NMDAR in the hippocampus or genetic inhibition of cAMP-responsible element binding protein (CREB-mediated transcription disrupted reactivated spatial memory. Finally, we showed that pharmacological inhibition of cannabinoid receptor 1 (CB1 and L-type voltage gated calcium channels (LVGCCs in the hippocampus blocked the disruption of the reactivated spatial memory by the inhibition of protein synthesis. Conclusions Our findings indicated that the reactivated spatial memory is destabilized through the activation of CB1 and LVGCCs and then restabilized through the activation of NMDAR- and CREB-mediated transcription. We also suggest that the reactivated spatial memory undergoes destabilization and restabilization in the hippocampus, through similar molecular processes as those for reactivated contextual fear memories, which require CB1 and LVGCCs for destabilization and NMDAR and CREB for restabilization.

  8. Arecoline inhibits and destabilizes agrin-induced acetylcholine receptor cluster formation in C2C12 myotubes.

    Science.gov (United States)

    Chang, Yung-Fu; Liu, Ting-Yuan; Liu, Shao-Tung

    2013-10-01

    Areca nut (Areca catechu) is chewed as a medical and psychoactive food by roughly 10% of the world population. Areca nut chewing may lead to low birth weight, premature delivery and impaired muscle development. Our previous study showed that arecoline, a major alkaloid in the areca nut, inhibited the myogenic differentiation of C2C12 myoblastic cells. The clustering of acetylcholine receptors (AChRs) in the postsynaptic membrane at the neuromuscular junction (NMJ) by agrin, a signaling protein released by motor neurons, is critical for the development of functional muscles. Here, we further investigate whether arecoline affects the AChR clustering using cultured C2C12 myotubes. Rhodamine-conjugated α-bungarotoxin was used to detect the presence of AChR clusters. Our results showed that arecoline inhibited the formation of agrin-induced AChR clusters and destabilized agrin-induced or spontaneous AChR cluster formation. In addition, arecoline inhibited the expression of myogenin in C2C12 myotubes. These results shed light on the important role of arecoline on the detrimental effect of areca nut to muscle development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Membrane protein crystallization in lipidic mesophases: detergent effects.

    OpenAIRE

    Ai, X.; Caffrey, M.

    2000-01-01

    The "cubic phase method" for growing crystals of membrane proteins uses a complex mixture of water, lipid, protein, and other components. The current view is that the cubic phase is integral to the process. Thus additives from whatever source introduce the possibility of destabilizing the phase, thereby compromising the crystallization process. Detergents are used to solubilize membrane proteins and are likely to be ported into the cubic medium with the target protein. Depending on the identi...

  10. Lysosomal Regulation of mTORC1 by Amino Acids in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Yao Yao

    2017-07-01

    Full Text Available The mechanistic target of rapamycin complex 1 (mTORC1 is a master regulator of cell growth in eukaryotic cells. The active mTORC1 promotes cellular anabolic processes including protein, pyrimidine, and lipid biosynthesis, and inhibits catabolic processes such as autophagy. Consistent with its growth-promoting functions, hyper-activation of mTORC1 signaling is one of the important pathomechanisms underlying major human health problems including diabetes, neurodegenerative disorders, and cancer. The mTORC1 receives multiple upstream signals such as an abundance of amino acids and growth factors, thus it regulates a wide range of downstream events relevant to cell growth and proliferation control. The regulation of mTORC1 by amino acids is a fast-evolving field with its detailed mechanisms currently being revealed as the precise picture emerges. In this review, we summarize recent progress with respect to biochemical and biological findings in the regulation of mTORC1 signaling on the lysosomal membrane by amino acids.

  11. Activation of Notch in lgd mutant cells requires the fusion of late endosomes with the lysosome.

    Science.gov (United States)

    Schneider, Markus; Troost, Tobias; Grawe, Ferdi; Martinez-Arias, Alfonso; Klein, Thomas

    2013-01-15

    The tumour suppressor Lethal (2) giant discs (Lgd) is a regulator of endosomal trafficking of the Notch signalling receptor as well as other transmembrane proteins in Drosophila. The loss of its function results in an uncontrolled ligand-independent activation of the Notch signalling receptor. Here, we investigated the consequences of loss of lgd function and the requirements for the activation of Notch. We show that the activation of Notch in lgd cells is independent of Kuz and dependent on γ-secretase. We found that the lgd cells have a defect that delays degradation of transmembrane proteins, which are residents of the plasma membrane. Furthermore, our results show that the activation of Notch in lgd cells occurs in the lysosome. By contrast, the pathway is activated at an earlier phase in mutants of the gene that encodes the ESCRT-III component Shrub, which is an interaction partner of Lgd. We further show that activation of Notch appears to be a general consequence of loss of lgd function. In addition, electron microscopy of lgd cells revealed that they contain enlarged multi-vesicular bodies. The presented results further elucidate the mechanism of uncontrolled Notch activation upon derailed endocytosis.

  12. The role of ubiquitination in lysosomal trafficking of δ-opioid receptors.

    Science.gov (United States)

    Henry, Anastasia G; White, Ian J; Marsh, Mark; von Zastrow, Mark; Hislop, James N

    2011-02-01

    The δ-opioid receptor (DOR) undergoes ligand-induced downregulation by endosomal sorting complex required for transport (ESCRT)-dependent endocytic trafficking to lysosomes. In contrast to a number of other signaling receptors, the DOR can downregulate effectively when its ubiquitination is prevented. We explored the membrane trafficking basis of this behavior. First, we show that internalized DORs traverse the canonical multivesicular body (MVB) pathway and localize to intralumenal vesicles (ILVs). Second, we show that DOR ubiquitination stimulates, but is not essential for, receptor transfer to ILVs and proteolysis of the receptor endodomain. Third, we show that receptor ubiquitination plays no detectable role in the early sorting of internalized DORs out of the recycling pathway. Finally, we show that DORs undergo extensive proteolytic fragmentation in the ectodomain, even when receptor ubiquitination is prevented or ILV formation itself is blocked. Together, these results are sufficient to explain why DORs downregulate effectively in the absence of ubiquitination, and they place a discrete molecular sorting operation in the MVB pathway effectively upstream of the ESCRT. More generally, these findings support the hypothesis that mammalian cells can control the cytoplasmic accessibility of internalized signaling receptors independently from their ultimate trafficking fate.

  13. Ubiquitin trafficking to the lysosome: keeping the house tidy and getting rid of unwanted guests.

    Science.gov (United States)

    Purdy, Georgiana E; Russell, David G

    2007-01-01

    Bacterial killing by autophagic delivery to the lysosomal compartment has been shown for Mycobacteria, Streptococcus, Shigella, Legionella and Salmonella, indicating an important role for this conserved trafficking pathway for the control of intracellular bacterial pathogens.(1-5) In a recent study we found that solubilized lysosomes isolated from bone marrow-derived macrophages had potent antibacterial properties against M. tuberculosis and M. smegmatis that were associated with ubiquitin and ubiquitin-derived peptides. We propose that ubiquitinated proteins are delivered to the lysosomal compartment, where degradation by lysosomal proteinases generates ubiquitin-derived peptides with antimycobacterial properties. This surprising finding provokes a number of questions regarding the nature and trafficking of ubiquitin and ubiquitin-modified proteins in mammalian cells. We discuss the possible role(s) that the multivesicular body (MVB), the late endosome and the autophagosome may play in trafficking of ubiquitinated proteins to the lysosome.

  14. Membrane tethering complexes in the endosomal system

    Directory of Open Access Journals (Sweden)

    Anne eSpang

    2016-05-01

    Full Text Available Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the CORVET complex, while fusion of late endosomes with lysosomes depends on the HOPS complex. Recycling through the TGN and to the plasma membrane is facilitated by the GARP and EARP complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, complexes that may be part of novel tethering complexes have been recently identified. Thus it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic.

  15. The effects of hydrocortisone and glycyrrhizine on the enzyme releases of arylsulfatase and hyaluronidase from lysosomes of liver.

    Science.gov (United States)

    Ozeki, T; Tokawa, Y; Ogasawara, T; Sato, K; Kan, M

    1978-03-15

    Hydrocortisone and glycyrrhizine act as both stabilizers and labilizers of the lysosomes of liver. The effect of both agents on the lysosomes is changeable according to the duration of their administration.

  16. Role of the Brucella suis Lipopolysaccharide O Antigen in Phagosomal Genesis and in Inhibition of Phagosome-Lysosome Fusion in Murine Macrophages

    Science.gov (United States)

    Porte, Françoise; Naroeni, Aroem; Ouahrani-Bettache, Safia; Liautard, Jean-Pierre

    2003-01-01

    Brucella species are gram-negative, facultative intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment inside professional and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both cell types. However, the molecular mechanisms and the microbial factors involved are poorly understood. Smooth lipopolysaccharide (LPS) of Brucella has been reported to be an important virulence factor, although its precise role in pathogenesis is not yet clear. In this study, we show that the LPS O side chain is involved in inhibition of the early fusion between Brucella suis-containing phagosomes and lysosomes in murine macrophages. In contrast, the phagosomes containing rough mutants, which fail to express the O antigen, rapidly fuse with lysosomes. In addition, we show that rough mutants do not enter host cells by using lipid rafts, contrary to smooth strains. Thus, we propose that the LPS O chain might be a major factor that governs the early behavior of bacteria inside macrophages. PMID:12595466

  17. The second report of a new hypomyelinating disease due to a defect in the VPS11 gene discloses a massive lysosomal involvement.

    Science.gov (United States)

    Hörtnagel, Konstanze; Krägeloh-Mann, Inge; Bornemann, Antje; Döcker, Miriam; Biskup, Saskia; Mayrhofer, Heidi; Battke, Florian; du Bois, Gabriele; Harzer, Klaus

    2016-11-01

    Vesicular protein sorting-associated proteins (VPS, including VPS11) are indispensable in the endocytic network, in particular the endosome-lysosome biogenesis. Exome sequencing revealed the homozygous variant p.Leu387_ Gly395del in the VPS11 gene in two siblings. On immunoblotting, the mutant VPS11 protein showed a distinctly reduced immunostaining intensity. The children presented with primary and severe developmental delay associated with myoclonic seizures, spastic tetraplegia, trunk and neck hypotonia, blindness, hearing loss, and microcephaly. Neuro-imaging showed severe hypomyelination affecting cerebral and cerebellar white matter and corpus callosum, in the absence of a peripheral neuropathy. Electron microscopy of a skin biopsy revealed clusters of membranous cytoplasmic bodies in dermal unmyelinated nerve axons, and numbers of vacuoles in eccrine sweat glands, similar to what is seen in a classic lysosomal storage disease (LSD). Bone marrow cytology showed a high number of storage macrophages with a micro-vacuolated cytoplasm. Biochemically, changes in urinary glycosphingolipids were reminiscent of those in prosaposin deficiency (another LSD). The clinical and neuro-imaged features in our patients were almost identical to those in some recently reported patients with another variant in the VPS11 gene, p.Cys846Gly; underlining the presumed pathogenic potential of VPS11 defects. A new feature was the morphological evidence for lysosomal storage in VPS11 deficiency: This newly characterised disease can be viewed as belonging to the complex field of LSD.

  18. D-Pinitol attenuates 7, 12 dimethylbenz [a] anthracene induced hazards through modulating protein bound carbohydrates, adenosine triphosphatases and lysosomal enzymes during experimental mammary carcinogenesis.

    Science.gov (United States)

    Rengarajan, Thamaraiselvan; Nandakumar, Natarajan; Balasubramanian, Maruthaiveeran Periyasamy

    2012-01-01

    We have reported here that the ameliorative potentials of D-Pinitol during 7, 12-Dimethylbenz [a] anthracene induced experimental breast carcinogenesis. DMBA is a potent organ specific carcinogen which is widely employed to induce mammary carcinoma in rats. D-Pinitol a natural inositol has been reported to found in soybean with many biological functions. The female sprague dawley rats were subjected to carcinogen 7, 12-DMBA and the ameliorative potentials of dietary compound D-Pinitol was investigated with reference to cell surface glycoproteins, lysosomal enzymes and adenosine triphosphatases. Interestingly, administration of D-Pinitol was found to be significantly down regulated the breast tissue glycoproteins and lysosomal enzymes and in contrast the levels of adenosine triphosphatases were remarkably up regulated. Further, the biochemical changes were well reflected and evidenced in the histology of breast and liver tissues. Thus, it can be concluded from the present study that D-Pinitol efficiently attenuates the hazardous consequences of the environmental carcinogen 7,12-DMBA through modulating cell surface glycoproteins, membrane protective role both in lysosomal and ATPase compartment via its antioxidant nature which ultimately results in the findings of future innovative remedies for genotoxin mediated hazards.

  19. Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    Xin Zhou; Chun Yang; Yufeng Liu; Peng Li; Huiying Yang; Jingxing Dai; Rongmei Qu; Lin Yuan

    2014-01-01

    Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei-mer’s disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer’s disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg-radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer’s disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer’s disease treatment.

  20. Mild MPP(+) exposure impairs autophagic degradation through a novel lysosomal acidity-independent mechanism.

    Science.gov (United States)

    Miyara, Masatsugu; Kotake, Yaichiro; Tokunaga, Wataru; Sanoh, Seigo; Ohta, Shigeru

    2016-10-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but its underlying cause remains unknown. Although recent studies using PD-related neurotoxin MPP(+) suggest autophagy involvement in the pathogenesis of PD, the effect of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of PD, remains largely unclear. We examined the effect of mild MPP(+) exposure (10 and 200 μM for 48 h), which induces a more slowly developing cell death, on autophagic processes and the mechanistic differences with acute MPP(+) toxicity (2.5 and 5 mM for 24 h). In SH-SY5Y cells, mild MPP(+) exposure predominantly inhibited autophagosome degradation, whereas acute MPP(+) exposure inhibited both autophagosome degradation and basal autophagy. Mild MPP(+) exposure reduced lysosomal hydrolase cathepsin D activity without changing lysosomal acidity, whereas acute exposure decreased lysosomal density. Lysosome biogenesis enhancers trehalose and rapamycin partially alleviated mild MPP(+) exposure induced impaired autophagosome degradation and cell death, but did not prevent the pathogenic response to acute MPP(+) exposure, suggesting irreversible lysosomal damage. We demonstrated impaired autophagic degradation by MPP(+) exposure and mechanistic differences between mild and acute MPP(+) toxicities. Mild MPP(+) toxicity impaired autophagosome degradation through novel lysosomal acidity-independent mechanisms. Sustained mild lysosomal damage may contribute to PD. We examined the effects of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of Parkinson's disease, in SH-SY5Y cells. This study demonstrated impaired autophagic degradation through a reduction in lysosomal cathepsin D activity without altering lysosomal acidity by mild MPP(+) exposure. Mechanistic differences between acute and mild MPP(+) toxicity were also observed. Sustained mild damage of lysosome may be an underlying cause

  1. Oxidant-induced autophagy and ferritin degradation contribute to epithelial–mesenchymal transition through lysosomal iron

    Science.gov (United States)

    Sioutas, Apostolos; Vainikka, Linda K; Kentson, Magnus; Dam-Larsen, Sören; Wennerström, Urban; Jacobson, Petra; Persson, Hans Lennart

    2017-01-01

    Purpose Transforming growth factor (TGF)-β1 triggers epithelial–mesenchymal transition (EMT) through autophagy, which is partly driven by reactive oxygen species (ROS). The aim of this study was to determine whether leaking lysosomes and enhanced degradation of H-ferritin could be involved in EMT and whether it could be possible to prevent EMT by iron chelation targeting of the lysosome. Materials and methods EMT, H-ferritin, and autophagy were evaluated in TGF-β1-stimulated A549 human lung epithelial cells cultured in vitro using Western blotting, with the additional morphological assessment of EMT. By using immunofluorescence and flow cytometry, lysosomes and ROS were assessed by acridine orange and 6-carboxy-2′,7′-dichlorodihydrofluorescein acetate assays, respectively. Results TGF-β1-stimulated cells demonstrated a loss of H-ferritin, which was prevented by the antioxidant N-acetyl-L-cysteine (NAC) and inhibitors of lysosomal degradation. TGF-β1 stimulation generated ROS and autophagosome formation and led to EMT, which was further promoted by the additional ROS-generating cytokine, tumor necrosis factor-α. Lysosomes of TGF-β1-stimulated cells were sensitized to oxidants but also completely protected by lysosomal loading with dextran-bound deferoxamine (DFO). Autophagy and EMT were prevented by NAC, DFO, and inhibitors of autophagy and lysosomal degradation. Conclusion The findings of this study support the role of enhanced autophagic degradation of H-ferritin as a mechanism for increasing the vulnerability of lysosomes to iron-driven oxidant injury that triggers further autophagy during EMT. This study proposes that lysosomal leakage is a novel pathway of TGF-β1-induced EMT that may be prevented by iron-chelating drugs that target the lysosome.

  2. Muscle intermediate filaments and their links to membranes and membranous organelles.

    Science.gov (United States)

    Capetanaki, Yassemi; Bloch, Robert J; Kouloumenta, Asimina; Mavroidis, Manolis; Psarras, Stelios

    2007-06-10

    Intermediate filaments (IFs) play a key role in the integration of structure and function of striated muscle, primarily by mediating mechanochemical links between the contractile apparatus and mitochondria, myonuclei, the sarcolemma and potentially the vesicle trafficking apparatus. Linkage of all these membranous structures to the contractile apparatus, mainly through the Z-disks, supports the integration and coordination of growth and energy demands of the working myocyte, not only with force transmission, but also with de novo gene expression, energy production and efficient protein and lipid trafficking and targeting. Desmin, the most abundant and intensively studied muscle intermediate filament protein, is linked to proper costamere organization, myoblast and stem cell fusion and differentiation, nuclear shape and positioning, as well as mitochondrial shape, structure, positioning and function. Similar links have been established for lysosomes and lysosome-related organelles, consistent with the presence of widespread links between IFs and membranous structures and the regulation of their fusion, morphology and stabilization necessary for cell survival.

  3. Anisotropic membrane curvature sensing by antibacterial peptides

    CERN Document Server

    Gómez-Llobregat, Jordi; Lindén, Martin

    2014-01-01

    Many proteins and peptides have an intrinsic capacity to sense and induce membrane curvature, and play crucial roles for organizing and remodeling cell membranes. However, the molecular driving forces behind these processes are not well understood. Here, we describe a new approach to study curvature sensing, by simulating the direction-dependent interactions of single molecules with a buckled lipid bilayer. We analyze three antimicrobial peptides, a class of membrane-associated molecules that specifically target and destabilize bacterial membranes, and find qualitatively different sensing characteristics that would be difficult to resolve with other methods. These findings provide new insights into the microscopic mechanisms of antimicrobial peptides, which might aid the development of new antibiotics. Our approach is generally applicable to a wide range of curvature sensing molecules, and our results provide strong motivation to develop new experimental methods to track position and orientation of membrane p...

  4. Bupivacaine can enhance lysosomal activity in mouse muscle myoblasts%布比卡因增强小鼠成肌细胞溶酶体的活性

    Institute of Scientific and Technical Information of China (English)

    熊静薇; 毛雨; 李荣荣; 丁正年

    2015-01-01

    Objective To investigate the effects of bupivacaine on lysosomal abundance and activity in mouse muscle myoblasts.Methods Mouse myoblasts C2C12 was randomly divided into control group (without any treatment) and bupivacaine group (treated with bupivacaine 600 μ mol/L for 6 h).After then,the changes of lysosomal pH was assessed by LysoSensor pH indicator.The content of lysosomes was detected by LysoTracker probe.The expression of lysosomal-associated membrane protein-1 (LAMP-1) and Cathepsin B was detected by Western blot analysis.The activity of lysosomal proteolytic enzymes Cathepsin B was determined by MagicRed assay kit.Results Bupivacaine did not affect lysosomal pH.However,compared with the controls,lysosomal abundance was significantly increased 15.15% following bupivacaine treatment(P<0.01).Moreover,protein expression levels of LAMP-1 and Cathepsin B were significantly upregulated 36.41% and 35.29% respetctively by bupivacaine (P<0.01).Furthermore,the activity of Cathepsin B was significantly increased 23.74% by bupivacaine(P<0.01).Conclusions Bupivacaine increased lysosomal content and enhance lysosomal activity in mouse muscle myoblasts.%目的 探讨局部麻醉药布比卡因对小鼠成肌细胞溶酶体的影响. 方法 将体外培养的小鼠成肌细胞C2C12分为2组.对照组:不加任何药物;布比卡因组:以600μmol/L布比卡因刺激细胞6h.实验结束后,用LysoSensor探针评价溶酶体腔pH,用LysoTrackor探针检测溶酶体含量,用蛋白免疫印迹法检测溶酶体相关膜蛋白-1(LAMP-1)和溶酶体蛋白水解酶Cathepsin B的表达水平,并以MagicRed染色法测定Cathepsin B的活性.结果 布比卡因对溶酶体腔pH没有影响.但是,与对照组相比,布比卡因组溶酶体含量增加15.15% (P<0.01),LAMP-1与Cathepsin B表达量分别增加36.41%、35.29% (P<0.01),Cathepsin B活性增加23.74%(P<0.01).结论 布比卡因能增加小鼠成肌细胞溶酶体含量,增强溶酶体活性.

  5. Cloning and expression of mouse legumain, a lysosomal endopeptidase.

    Science.gov (United States)

    Chen, J M; Dando, P M; Stevens, R A; Fortunato, M; Barrett, A J

    1998-01-01

    Legumain, a recently discovered mammalian cysteine endopeptidase, was found in all mouse tissues examined, but was particularly abundant in kidney and placenta. The distribution in subcellular fractions of mouse and rat kidney showed a lysosomal localization, and activity was detectable only after the organelles were disrupted. Nevertheless, ratios of legumain activity to that of cathepsin B differed considerably between mouse tissues. cDNA encoding mouse legumain was cloned and sequenced, the deduced amino acid sequence proving to be 83% identical to that of the human protein [Chen, Dando, Rawlings, Brown, Young, Stevens, Hewitt, Watts and Barrett (1997) J. Biol. Chem. 272, 8090-8098]. Recombinant mouse legumain was expressed in human embryonic kidney 293 cells by use of a vector containing a cytomegalovirus promoter. The recombinant enzyme was partially purified and found to be an asparagine-specific endopeptidase closely similar to naturally occurring pig kidney legumain. PMID:9742219

  6. Ground state destabilization by anionic nucleophiles contributes to the activity of phosphoryl transfer enzymes.

    Directory of Open Access Journals (Sweden)

    Logan D Andrews

    2013-07-01

    Full Text Available Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 10²²-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound P(i was determined from pH dependencies of the binding of Pi and tungstate, a P(i analog lacking titratable protons over the pH range of 5-11, and from the ³¹P chemical shift of bound P(i. The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥10⁸-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and P(i binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the

  7. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  8. The Antioxidant Profiles, Lysosomal and Membrane Enzymes Activity in Patients with Acute Pancreatitis

    Science.gov (United States)

    Milnerowicz, Halina; Bukowski, Radosław; Jabłonowska, Monika; Ściskalska, Milena; Milnerowicz, Stanisław

    2014-01-01

    Oxidative stress and inflammatory mediators, such as IL-6, play an important role in the pathophysiology of acute pancreatitis. The study was aimed to assess the degree of the pro/antioxidative imbalance and estimate which antioxidant plays a role in the maintenance of pro/antioxidative balance during acute pancreatitis. The study was investigated in the blood of 32 patients with acute pancreatitis and 37 healthy subjects. IL-6 concentration as early marker of inflammation was determinated. The intensity of oxidative stress was assessed by TBARS concentration. To investigate antioxidative status, the GPx and Cu/Zn SOD activities and the levels of GSH, MT, SH groups, and TRAP were measured. The concentrations of Cu and Zn as ions participating in the maintenance of antioxidant enzymes stability and playing a role in the course of disease were determinated. The activities of GGT, AAP, NAG, and β-GD as markers of tissue damage were also measured. An increase in IL-6 concentration, which correlated with Ranson criteria, and an increase in GPx activity, levels of MT, TBARS, or GGT, and NAG activities in patients group compared to healthy subjects were demonstrated. A decrease in GSH level in patients group compared to control group was noted. The studies suggest that GPx/GSH and MT play the role of the first line of defence against oxidative stress and pro/antioxidant imbalance in the course of acute pancreatitis. PMID:25298618

  9. The Antioxidant Profiles, Lysosomal and Membrane Enzymes Activity in Patients with Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Halina Milnerowicz

    2014-01-01

    Full Text Available Oxidative stress and inflammatory mediators, such as IL-6, play an important role in the pathophysiology of acute pancreatitis. The study was aimed to assess the degree of the pro/antioxidative imbalance and estimate which antioxidant plays a role in the maintenance of pro/antioxidative balance during acute pancreatitis. The study was investigated in the blood of 32 patients with acute pancreatitis and 37 healthy subjects. IL-6 concentration as early marker of inflammation was determinated. The intensity of oxidative stress was assessed by TBARS concentration. To investigate antioxidative status, the GPx and Cu/Zn SOD activities and the levels of GSH, MT, SH groups, and TRAP were measured. The concentrations of Cu and Zn as ions participating in the maintenance of antioxidant enzymes stability and playing a role in the course of disease were determinated. The activities of GGT, AAP, NAG, and β-GD as markers of tissue damage were also measured. An increase in IL-6 concentration, which correlated with Ranson criteria, and an increase in GPx activity, levels of MT, TBARS, or GGT, and NAG activities in patients group compared to healthy subjects were demonstrated. A decrease in GSH level in patients group compared to control group was noted. The studies suggest that GPx/GSH and MT play the role of the first line of defence against oxidative stress and pro/antioxidant imbalance in the course of acute pancreatitis.

  10. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis.

    Science.gov (United States)

    Town, M; Jean, G; Cherqui, S; Attard, M; Forestier, L; Whitmore, S A; Callen, D F; Gribouval, O; Broyer, M; Bates, G P; van't Hoff, W; Antignac, C

    1998-04-01

    Nephropathic cystinosis, an autosomal recessive disorder resulting from defective lysosomal transport of cystine, is the most common inherited cause of renal Fanconi syndrome. The cystinosis gene has been mapped to chromosome 17p13. We found that the locus D17S829 was homozygously deleted in 23 out of 70 patients, and identified a novel gene, CTNS, which mapped to the deletion interval. CTNS encodes an integral membrane protein, cystinosin, with features of a lysosomal membrane protein. Eleven different mutations, all predicted to cause loss of function of the protein, were found to segregate with the disorder.

  11. Antimicrobial Properties of Lysosomal Enzymes Immobilized on NH₂Functionalized Silica-Encapsulated Magnetite Nanoparticles.

    Science.gov (United States)

    Bang, Seung Hyuck; Sekhon, Simranjeet Singh; Cho, Sung-Jin; Kim, So Jeong; Le, Thai-Hoang; Kim, Pil; Ahn, Ji-Young; Kim, Yang-Hoon; Min, Jiho

    2016-01-01

    The immobilization efficiency, antimicrobial activity and recovery of lysosomal enzymes on NH2 functionalized magnetite nanoparticles have been studied under various conditions. The immobi- lization efficiency depends upon the ratio of the amount of enzyme and magnetite and it shows an increase with magnetite concentration which is due to the presence of amine group at the magnetite surface that leads to a strong attraction. The optimized reaction time to immobilize the lysosomal enzymes on magnetite was determined by using a rolling method. The immobilization efficiency increases with reaction time and reached a plateau after 5 minutes and then remained constant for 10 minutes. However, after 30 minutes the immobilization efficiency decreased to 85%, which is due to the weaker electrostatic interactions between magnetite and detached lysosomal enzymes. The recovery and stability of immobilized lysosomal enzymes has also been studied. The antimicrobial activity was almost 100% but it decreased upon reuse and no activity was observed after its reuse for seven times. The storage stability of lysosomal enzymes as an antimicrobial agent was about 88%, which decreased to 53% after one day and all activity of immobilized lysosomal enzymes was maintained after five days. Thus, the lysosomal enzymes immobilized on magnetite nanoparticles could potentially be used as antimicrobial agents to remove bacteria.

  12. Involvement of lysosomes in the uptake of macromolecular material by bloodstream forms of Trypanosoma brucei.

    Science.gov (United States)

    Opperdoes, F R; Van Roy, J

    1982-09-01

    To investigate whether the lysosomes of Trypanosoma brucei are capable of uptake of macromolecules after internalization by the cell, we used Triton WR-1339, a non-digestible macromolecular compound, which is known to cause a marked decrease in the density of hepatic lysosomes due to massive intralysosomal storage. Intraperitoneal administration of 0.4 g/kg Triton WR-1339 to rats infected with T. brucei led to the development of a large vacuole in the trypanosomes between nucleus and kinetoplast within 22 h. Higher doses (2 g/kg) led to the disappearance of the trypanosomes from the blood and resulted in permanent cures (greater than 100 days). Lysosomes isolated from the trypanosomes of animals treated with a sub-curative dose showed a decrease in equilibrium density of 0.03 g/cm3 in sucrose gradients. These lysosomes were partly damaged as evidenced by a reduction in latency and an increase in the non-sedimentable part of lysosomal enzymes. We conclude that acid proteinase and alpha-mannosidase-containing organelles of T. brucei take up exogenous macromolecules and must therefore be considered as true lysosomes and that Triton WR-1339 acts in T. brucei as a true lysosomotropic drug. Its trypanocidal action probably results from an interference with lysosomal function.

  13. TRPML cation channels regulate the specialized lysosomal compartment of vertebrate B-lymphocytes.

    Science.gov (United States)

    Song, Yumei; Dayalu, Rashmi; Matthews, Sharon A; Scharenberg, Andrew M

    2006-12-01

    B-lymphocytes possess a specialized lysosomal compartment, the regulated transformation of which has been implicated in B-cell antigen presentation. Members of the mucolipin (TRPML) family of cation channels have been implicated in regulated vesicular transport in several tissues, but a role for TRPML function in lymphocyte vesicular transport physiology has not been previously described. To address the role of TRPML proteins in lymphocyte vesicular transport, we analyzed the lysosomal compartment in cultured B-lymphocytes engineered to lack TRPML1 or after expression of N- or C-terminal GFP fusion proteins of TRPML1 or TRPML2. Consistent with previous analyses of lymphocytes derived from human patients with mutations in TRPML1, we were not able to detect abnormalities in the lysosomes of TRPML1-deficient DT40 B-lymphocytes. However, while N-terminal GFP fusions of TRPML2 localized to normal appearing lysosomes, C-terminal GFP fusions of either TRPML1 or TRPML2 acted to antagonize endogenous TRPML function, localizing to large vesicular structures, the histological properties of which were indistinguishable from the enlarged lysosomes observed in affected tissues of TRPML1-deficient humans. Endocytosed B-cell receptors were delivered to these enlarged lysosomes, demonstrating that a TRPML-dependent process is required for normal regulation of the specialized lysosome compartment of vertebrate B-lymphocytes.

  14. Chlamydia species-dependent differences in the growth requirement for lysosomes.

    Directory of Open Access Journals (Sweden)

    Scot P Ouellette

    Full Text Available Genome reduction is a hallmark of obligate intracellular pathogens such as Chlamydia, where adaptation to intracellular growth has resulted in the elimination of genes encoding biosynthetic enzymes. Accordingly, chlamydiae rely heavily on the host cell for nutrients yet their specific source is unclear. Interestingly, chlamydiae grow within a pathogen-defined vacuole that is in close apposition to lysosomes. Metabolically-labeled uninfected host cell proteins were provided as an exogenous nutrient source to chlamydiae-infected cells, and uptake and subsequent labeling of chlamydiae suggested lysosomal degradation as a source of amino acids for the pathogen. Indeed, Bafilomycin A1 (BafA1, an inhibitor of the vacuolar H(+/ATPase that blocks lysosomal acidification and functions, impairs the growth of C. trachomatis and C. pneumoniae, and these effects are especially profound in C. pneumoniae. BafA1 induced the marked accumulation of material within the lysosomal lumen, which was due to the inhibition of proteolytic activities, and this response inhibits chlamydiae rather than changes in lysosomal acidification per se, as cathepsin inhibitors also inhibit the growth of chlamydiae. Finally, the addition of cycloheximide, an inhibitor of eukaryotic protein synthesis, compromises the ability of lysosomal inhibitors to block chlamydial growth, suggesting chlamydiae directly access free amino acids in the host cytosol as a preferred source of these nutrients. Thus, chlamydiae co-opt the functions of lysosomes to acquire essential amino acids.

  15. Eucommia ulmoides cortex, geniposide and aucubin regulate lipotoxicity through the inhibition of lysosomal BAX.

    Science.gov (United States)

    Lee, Geum-Hwa; Lee, Mi-Rin; Lee, Hwa-Young; Kim, Seung Hyun; Kim, Hye-Kyung; Kim, Hyung-Ryong; Chae, Han-Jung

    2014-01-01

    In this study we examined the inhibition of hepatic dyslipidemia by Eucommia ulmoides extract (EUE). Using a screening assay for BAX inhibition we determined that EUE regulates BAX-induced cell death. Among various cell death stimuli tested EUE regulated palmitate-induced cell death, which involves lysosomal BAX translocation. EUE rescued palmitate-induced inhibition of lysosomal V-ATPase, α-galactosidase, α-mannosidase, and acid phosphatase, and this effect was reversed by bafilomycin, a lysosomal V-ATPase inhibitor. The active components of EUE, aucubin and geniposide, showed similar inhibition of palmitate-induced cell death to that of EUE through enhancement of lysosome activity. Consistent with these in vitro findings, EUE inhibited the dyslipidemic condition in a high-fat diet animal model by regulating the lysosomal localization of BAX. This study demonstrates that EUE regulates lipotoxicity through a novel mechanism of enhanced lysosomal activity leading to the regulation of lysosomal BAX activation and cell death. Our findings further indicate that geniposide and aucubin, active components of EUE, may be therapeutic candidates for non-alcoholic fatty liver disease.

  16. Structure Dependence of Lysosomal Transit of Chitosan-Based Polyplexes for Gene Delivery.

    Science.gov (United States)

    Thibault, Marc; Lavertu, Marc; Astolfi, Mélina; Buschmann, Michael D

    2016-10-01

    Chitosan-based polyplexes are known to traffic through lysosomes for a relatively long time, independent of the degree of deacetylation (DDA) and the number average molecular weight (Mn) of the polymer, even though both of these parameters have profound effects on polyplex stability and transfection efficiency. A better understanding of the lysosomal barrier is paramount to the rational design of vectors capable of overcoming obstacles to transgene expression. The aim of the present study was to investigate if lysosomal transit affects chitosan-based polyplex transfection efficiency in a structure-dependent (DDA, Mn) manner. Toward this end, we analyzed the effects of intracellular trafficking modifying agents on transfection efficiency and intracellular vesicular trafficking of polyplexes with different structural properties and stabilities or nucleic acid binding affinity. The use of agents that modify endosome/lysosome acidification and transit processes by distinct mechanisms and their effect on cell viability, polyplex uptake, vesicular trafficking, and transfection efficiency revealed novel and strong chitosan structure-dependent consequences of lysosomal transit. Inhibiting lysosomal transit using chloroquine significantly increased the efficiency of unstable polyplexes, while having minimal effects for polyplexes with intermediate or high stability. In parallel, specifically inhibiting the acidification of vesicles abrogated transfection for all formulations, suggesting that vesicular acidification is essential to promote transfection, most probably by facilitating lysosomal escape. These results provide novel insights into the structure-performance relationship of chitosan-based gene delivery systems.

  17. Lysosomal cholesterol accumulation: driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis.

    Science.gov (United States)

    Hendrikx, T; Walenbergh, S M A; Hofker, M H; Shiri-Sverdlov, R

    2014-05-01

    Many studies show an association between the accumulation of cholesterol inside lysosomes and the progression towards inflammatory disease states that are closely related to obesity. While in the past, the knowledge regarding lysosomal cholesterol accumulation was limited to its association with plaque severity during atherosclerosis, recently, a growing body of evidence indicates a causal link between lysosomal cholesterol accumulation and inflammation. These findings make lysosomal cholesterol accumulation an important target for intervention in metabolic diseases that are characterized by the presence of an inflammatory response. In this review, we aim to show the importance of cholesterol trapping inside lysosomes to the development of inflammation by focusing upon cardiovascular disease and non-alcoholic steatohepatitis (NASH) in particular. We summarize current data supporting the hypothesis that lysosomal cholesterol accumulation plays a key role in the development of inflammation during atherosclerosis and NASH. In addition, potential mechanisms by which disturbed lysosomal function can trigger the inflammatory response, the challenges in improving cholesterol trafficking in macrophages and recent successful research directions will be discussed.

  18. Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome.

    Science.gov (United States)

    Horng, Tiffany

    2014-06-01

    The NLRP3 inflammasome is a cytosolic complex that activates Caspase-1, leading to maturation of interleukin-1β (IL-1β) and IL-18 and induction of proinflammatory cell death in sentinel cells of the innate immune system. Diverse stimuli have been shown to activate the NLRP3 inflammasome during infection and metabolic diseases, implicating the pathway in triggering both adaptive and maladaptive inflammation in various clinically important settings. Here I discuss the emerging model that signals associated with mitochondrial destabilization may critically activate the NLRP3 inflammasome. Together with studies indicating an important role for Ca2+ signaling, these findings suggest that many stimuli engage Ca2+ signaling as an intermediate step to trigger mitochondrial destabilization, generating the mitochondrion-associated ligands that activate the NLRP3 inflammasome.

  19. The definition of human rights risks destabilizing the constitutional order in the Russian Federation

    Directory of Open Access Journals (Sweden)

    Zhornik Anna Maksimova

    2016-10-01

    Full Text Available Problems of functioning of the Russian state is directly connected with the security of the constitutional order challenges of the modern time, adversely affecting the constitutional order demand new scientific approaches to their solution not only in theory but mostly in practice. In this regard the subject of the article acted as the totality of constitutional norms pertaining to human rights risks destabilizing the constitutional order in the Russian Federation. The article presents an overview of the Russian legislation allowing correlation of the previously proposed in legal science concept “destabilization”, and the term “human rights risks” in relation to the constitutional order. The authors not only implemented the definition of the claimed concept but also identified and listed the specific types of human rights risks destabilizing the constitutional order in the Russian Federation and proposals for their minimization.

  20. Dispersal-induced destabilization of metapopulations and oscillatory Turing patterns in ecological networks

    Science.gov (United States)

    Hata, Shigefumi; Nakao, Hiroya; Mikhailov, Alexander S.

    2014-01-01

    As shown by Alan Turing in 1952, differential diffusion may destabilize uniform distributions of reacting species and lead to emergence of patterns. While stationary Turing patterns are broadly known, the oscillatory instability, leading to traveling waves in continuous media and sometimes called the wave bifurcation, remains less investigated. Here, we extend the original analysis by Turing to networks and apply it to ecological metapopulations with dispersal connections between habitats. Remarkably, the oscillatory Turing instability does not lead to wave patterns in networks, but to spontaneous development of heterogeneous oscillations and possible extinction of species. We find such oscillatory instabilities for all possible food webs with three predator or prey species, under various assumptions about the mobility of individual species and nonlinear interactions between them. Hence, the oscillatory Turing instability should be generic and must play a fundamental role in metapopulation dynamics, providing a common mechanism for dispersal-induced destabilization of ecosystems.

  1. Quinolin-6-Yloxyacetamides Are Microtubule Destabilizing Agents That Bind to the Colchicine Site of Tubulin

    Directory of Open Access Journals (Sweden)

    Ashwani Sharma

    2017-06-01

    Full Text Available Quinolin-6-yloxyacetamides (QAs are a chemical class of tubulin polymerization inhibitors that were initially identified as fungicides. Here, we report that QAs are potent anti-proliferative agents against human cancer cells including ones that are drug-resistant. QAs act by disrupting the microtubule cytoskeleton and by causing severe mitotic defects. We further demonstrate that QAs inhibit tubulin polymerization in vitro. The high resolution crystal structure of the tubulin-QA complex revealed that QAs bind to the colchicine site on tubulin, which is targeted by microtubule-destabilizing agents such as colchicine and nocodazole. Together, our data establish QAs as colchicine-site ligands and explain the molecular mechanism of microtubule destabilization by this class of compounds. They further extend our structural knowledge on antitubulin agents and thus should aid in the development of new strategies for the rational design of ligands against multidrug-resistant cancer cells.

  2. Chaos in temporarily destabilized regular systems with the slow passage effect

    Energy Technology Data Exchange (ETDEWEB)

    Perc, Matjaz [Department of Physics, Faculty of Education, University of Maribor, Koroska cesta 160, SI-2000 Maribor (Slovenia)] e-mail: matjaz.perc@uni-mb.si; Marhl, Marko [Department of Physics, Faculty of Education, University of Maribor, Koroska cesta 160, SI-2000 Maribor (Slovenia)

    2006-01-01

    We provide evidences for chaotic behaviour in temporarily destabilized regular systems. In particular, we focus on time-continuous systems with the slow passage effect. The extreme sensitivity of the slow passage phase enables the existence of long chaotic transients induced by random pulsatile perturbations, thereby evoking chaotic behaviour in an initially regular system. We confirm the chaotic behaviour of the temporarily destabilized system by calculating the largest Lyapunov exponent. Moreover, we show that the newly obtained unstable periodic orbits can be easily controlled with conventional chaos control techniques, thereby guaranteeing a rich diversity of accessible dynamical states that is usually expected only in intrinsically chaotic systems. Additionally, we discuss the biological importance of presented results.

  3. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease.

    Science.gov (United States)

    Magalhaes, Joana; Gegg, Matthew E; Migdalska-Richards, Anna; Doherty, Mary K; Whitfield, Phillip D; Schapira, Anthony H V

    2016-08-15

    Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD. © The Author 2016. Published by Oxford University Press.

  4. Destabilization kinetics of polyvinylpyrrolidone-iodine in a field of low frequency impacts

    Science.gov (United States)

    Fadeev, G. N.; Ermolaeva, V. I.; Boldyrev, V. S.; Sinkevich, V. V.

    2016-09-01

    Experimental results on the destabilization kinetics of compounds with chelate structure (polyvinylpyrrolidone-iodine) in the field of the impact of low-frequency vibrations (from 2 to 45 Hz) are presented. The optimum frequencies at which the process rate is greatest are found for different impact modes. Based on the experimental data, conclusions are drawn as to the effect the energy of low-frequency impacts has on the studied clathrate and chelate structures.

  5. Critical thinking of destabilizing interpretations of events and phenomena: the role of economic sciences

    Directory of Open Access Journals (Sweden)

    Тетяна Андріївна Непокупна

    2015-03-01

    Full Text Available This article analyzes the global transformations and their impact on the main society life; the specifics of modern interpretations of events and phenomena, their destabilizing effects on behavior, health and life of humans; the role of economic sciences in the formation of critical thinking as a means of combating ignorance and propaganda, formation of an objective world view that grounded on knowledge

  6. Destabilization and recovery of a yeast prion after mild heat shock

    OpenAIRE

    Newnam, Gary P.; Birchmore, Jennifer L.; Chernoff, Yury O.

    2011-01-01

    Yeast prion [PSI+] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI+] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI+]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI+] destabilization, sometimes persisting for several cell divisions after heat shock. Prio...

  7. Posturographic destabilization in eating disorders in female patients exposed to body image related phobic stimuli.

    Science.gov (United States)

    Forghieri, M; Monzani, D; Mackinnon, A; Ferrari, S; Gherpelli, C; Galeazzi, G M

    2016-08-26

    Human postural control is dependent on the central integration of vestibular, visual and proprioceptive inputs. Psychological states can affect balance control: anxiety, in particular, has been shown to influence balance mediated by visual stimuli. We hypothesized that patients with eating disorders would show postural destabilization when exposed to their image in a mirror and to the image of a fashion model representing their body ideal in comparison to body neutral stimuli. Seventeen females patients attending a day centre for the treatment of eating disorders were administered psychometric measures of body dissatisfaction, anxiety, depression and underwent posturographic measures with their eyes closed, open, watching a neutral stimulus, while exposed to a full length mirror and to an image of a fashion model corresponding to their body image. Results were compared to those obtained by eighteen healthy subjects. Eating disordered patients showed higher levels of body dissatisfaction and higher postural destabilization than controls, but this was limited to the conditions in which they were exposed to their mirror image or a fashion model image. Postural destabilization under these conditions correlated with measures of body dissatisfaction. In eating disordered patients, body related stimuli seem to act as phobic stimuli in the posturographic paradigm used. If confirmed, this has the potential to be developed for diagnostic and therapeutic purposes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Study of nonlinear behaviors and modal reductions for friction destabilized systems. Application to an elastic layer

    Science.gov (United States)

    Loyer, A.; Sinou, J.-J.; Chiello, O.; Lorang, X.

    2012-02-01

    As noise reduction tends to be part of environmental directives, predicting squeal noise generated by disc brakes is an important industrial issue. It involves both the transient and stationary nonlinear dynamics of self-excited systems with frictional contact. Time simulation of the phenomenon is an attractive option for reducing experiment costs. However, since such computations using full finite element models of industrial disc brake systems is time-consuming, model reduction has to be performed. In this paper, both the transient and stationary nonlinear behaviors of the friction destabilized system and the effect of dynamical reduction on the nonlinear response of a simple friction destabilized system are carried out. The first part provides a description of the general modeling retained for friction destabilized systems. Then, discretization and solving processes for the stability analysis and the temporal evolution are presented. The third part presents an analysis of a sliding elastic layer for different operating conditions, in order to better understand the nonlinear behavior of such systems. Finally, spatial model reduction is performed with different kinds of reduction bases in order to analyze the different effects of modal reductions. This clearly shows the necessity of including static modes in the reduction basis and that nonlinear interactions between unstable modes are very difficult to represent with reduced bases. Finally, the proposed model and the associated studies are intended to be the benchmark cases for future comparison.

  9. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations.

    Science.gov (United States)

    Alapati, Sudhakar V; Johnson, J Karl; Sholl, David S

    2006-05-04

    Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through alloying with other elements. A very large number of possible destabilized metal hydride reaction schemes exist. The thermodynamic data required to assess the enthalpies of these reactions, however, are not available in many cases. We have used first principles density functional theory calculations to predict the reaction enthalpies for more than 100 destabilization reactions that have not previously been reported. Many of these reactions are predicted not be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low. More importantly, our calculations identify five promising reaction schemes that merit experimental study: 3LiNH(2) + 2LiH + Si --> Li(5)N(3)Si + 4H(2), 4LiBH(4) + MgH(2) --> 4LiH + MgB(4) + 7H(2), 7LiBH(4) + MgH(2) --> 7LiH + MgB(7) + 11.5H(2), CaH(2) + 6LiBH(4) --> CaB(6) + 6LiH + 10H(2), and LiNH(2) + MgH(2) --> LiMgN + 2H(2).

  10. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage.

    Science.gov (United States)

    Alapati, Sudhakar V; Karl Johnson, J; Sholl, David S

    2007-03-28

    Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage, but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through mixing metal hydrides with other compounds. A very large number of possible destabilized metal hydride reaction schemes exist, but the thermodynamic data required to assess the enthalpies of these reactions are not available in many cases. We have used density functional theory calculations to predict the reaction enthalpies for more than 300 destabilization reactions that have not previously been reported. The large majority of these reactions are predicted not to be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low, and hence these reactions need not be investigated experimentally. Our calculations also identify multiple promising reactions that have large enough hydrogen storage capacities to be useful in practical applications and have reaction thermodynamics that appear to be suitable for use in fuel cell vehicles and are therefore promising candidates for experimental work.

  11. Lysosomal glycosphingolipid catabolism by acid ceramidase: formation of glycosphingoid bases during deficiency of glycosidases.

    Science.gov (United States)

    Ferraz, Maria J; Marques, André R A; Appelman, Monique D; Verhoek, Marri; Strijland, Anneke; Mirzaian, Mina; Scheij, Saskia; Ouairy, Cécile M; Lahav, Daniel; Wisse, Patrick; Overkleeft, Herman S; Boot, Rolf G; Aerts, Johannes M

    2016-03-01

    Glycosphingoid bases are elevated in inherited lysosomal storage disorders with deficient activity of glycosphingolipid catabolizing glycosidases. We investigated the molecular basis of the formation of glucosylsphingosine and globotriaosylsphingosine during deficiency of glucocerebrosidase (Gaucher disease) and α-galactosidase A (Fabry disease). Independent genetic and pharmacological evidence is presented pointing to an active role of acid ceramidase in both processes through deacylation of lysosomal glycosphingolipids. The potential pathophysiological relevance of elevated glycosphingoid bases generated through this alternative metabolism in patients suffering from lysosomal glycosidase defects is discussed.

  12. Dynamic destabilization analysis based on AE experiment of deep-seated, steep-inclined and extra-thick coal seam

    Institute of Scientific and Technical Information of China (English)

    Fenhua Ren; Xingping Lai; Meifeng Cai

    2008-01-01

    No. 5 coal seam in Huating Coal Mine is a deep-seated, steep-inclined extra-thick coal seam where excavation disturbance is quite frequent. The maximum and minimum principal stresses differ widely. During mining, dynamical destabilization happens frequently and induce tragedies. Based on the comparison between the acoustic emission (AE) experiment on dynamical destabilization of coal rock and the related in situ testing results, this article provides comprehensive analysis on the regular quantificational AE patterns (energy rate, total events) of coal rock destabilization in complex-variable environment. The comparison parameters include dynamic tension energy rate, deformation resistance to compression, and shear stress.

  13. Partial correction of the CNS lysosomal storage defect in a mouse model of juvenile neuronal ceroid lipofuscinosis by neonatal CNS administration of an adeno-associated virus serotype rh.10 vector expressing the human CLN3 gene.

    Science.gov (United States)

    Sondhi, Dolan; Scott, Emma C; Chen, Alvin; Hackett, Neil R; Wong, Andrew M S; Kubiak, Agnieszka; Nelvagal, Hemanth R; Pearse, Yewande; Cotman, Susan L; Cooper, Jonathan D; Crystal, Ronald G

    2014-03-01

    Juvenile neuronal ceroid lipofuscinosis (JNCL or CLN3 disease) is an autosomal recessive lysosomal storage disease resulting from mutations in the CLN3 gene that encodes a lysosomal membrane protein. The disease primarily affects the brain with widespread intralysosomal accumulation of autofluorescent material and fibrillary gliosis, as well as the loss of specific neuronal populations. As an experimental treatment for the CNS manifestations of JNCL, we have developed a serotype rh.10 adeno-associated virus vector expressing the human CLN3 cDNA (AAVrh.10hCLN3). We hypothesized that administration of AAVrh.10hCLN3 to the Cln3(Δex7/8) knock-in mouse model of JNCL would reverse the lysosomal storage defect, as well as have a therapeutic effect on gliosis and neuron loss. Newborn Cln3(Δex7/8) mice were administered 3 × 10(10) genome copies of AAVrh.10hCLN3 to the brain, with control groups including untreated Cln3(Δex7/8) mice and wild-type littermate mice. After 18 months, CLN3 transgene expression was detected in various locations throughout the brain, particularly in the hippocampus and deep anterior cortical regions. Changes in the CNS neuronal lysosomal accumulation of storage material were assessed by immunodetection of subunit C of ATP synthase, luxol fast blue staining, and periodic acid-Schiff staining. For all parameters, Cln3(Δex7/8) mice exhibited abnormal lysosomal accumulation, but AAVrh.10hCLN3 administration resulted in significant reductions in storage material burden. There was also a significant decrease in gliosis in AAVrh.10hCLN3-treated Cln3(Δex7/8) mice, and a trend toward improved neuron counts, compared with their untreated counterparts. These data demonstrate that AAVrh.10 delivery of a wild-type cDNA to the CNS is not harmful and instead provides a partial correction of the neurological lysosomal storage defect of a disease caused by a lysosomal membrane protein, indicating that this may be an effective therapeutic strategy for JNCL and

  14. Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis

    Directory of Open Access Journals (Sweden)

    Fares Hanna

    2010-06-01

    Full Text Available Abstract Background CUP-5 is a Transient Receptor Potential protein in C. elegans that is the orthologue of mammalian TRPML1. Loss of TRPML1 results in the lysosomal storage disorder Mucolipidosis type IV. Loss of CUP-5 results in embryonic lethality and the accumulation of enlarged yolk granules in developing intestinal cells. The embryonic lethality of cup-5 mutants is rescued by mutations in mrp-4, which is required for gut granule differentiation. Gut granules are intestine-specific lysosome-related organelles that accumulate birefringent material. This link between CUP-5 and gut granules led us to determine the roles of CUP-5 in lysosome and gut granule biogenesis in developing intestinal cells. Results We show that CUP-5 protein localizes to lysosomes, but not to gut granules, in developing intestinal cells. Loss of CUP-5 results in defects in endo-lysosomal transport in developing intestinal cells of C. elegans embryos. This ultimately leads to the appearance of enlarged terminal vacuoles that show defective lysosomal degradation and that have lysosomal and endosomal markers. In contrast, gut granule biogenesis is normal in the absence of CUP-5. Furthermore, loss of CUP-5 does not result in inappropriate fusion or mixing of content between lysosomes and gut granules. Conclusions Using an in vivo model of MLIV, we show that there is a defect in lysosomal transport/biogenesis that is earlier than the presumed function of TRPML1 in terminal lysosomes. Our results indicate that CUP-5 is required for the biogenesis of lysosomes but not of gut granules. Thus, cellular phenotypes in Mucolipidosis type IV are likely not due to defects in lysosome-related organelle biogenesis, but due to progressive defects in lysosomal transport that lead to severe lysosomal dysfunction.

  15. Lysosome dysfunction enhances oxidative stress-induced apoptosis through ubiquitinated protein accumulation in Hela cells.

    Science.gov (United States)

    Yu, Chunyan; Huang, Xiaowei; Xu, Ye; Li, Hongyan; Su, Jing; Zhong, Jiateng; Kang, Jinsong; Liu, Yuhe; Sun, Liankun

    2013-01-01

    The role of lysosomal system in oxidative stress-induced apoptosis in cancer cells is not fully understood. Menadione is frequently used as oxidative stress model. It is indicated that menadione could induce autophagy in Hela cells. In the present study, we examined whether the lysosomal inhibitor, ammonium chloride (NH(4)Cl) could prevent the autophagy flux by inhibiting the fusion of autophagosomes with lysosomes and enhance apoptosis induced by menadione via mitochondrial pathway. The results demonstrated generation and accumulation of reactive oxygen species and increased levels of ubiquitinated proteins and GRP78 in cells treated with both menadione and NH(4)Cl. Our data indicates that lysosomal system through autophagy plays an important role in preventing menadione-induced apoptosis in Hela cells by clearing misfolded proteins, which alleviates endoplasmic reticulum stress.

  16. Lysosomal acid lipase: At the crossroads of normal and atherogenic cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Joshua A Dubland

    2015-02-01

    Full Text Available Unregulated cellular uptake of apolipoprotein B-containing lipoproteins in the arterial intima leads to the formation of foam cells in atherosclerosis. Lysosomal acid lipase (LAL plays a crucial role in both lipoprotein lipid catabolism and excess lipid accumulation as it is the primary enzyme that hydrolyzes cholesteryl esters derived from both low density lipoprotein (LDL and modified forms of LDL. Evidence suggests that as atherosclerosis progresses, accumulation of excess free cholesterol in lysosomes leads to impairment of LAL activity, resulting in accumulation of cholesteryl esters in the lysosome as well as the cytosol in foam cells. Impaired metabolism and release of cholesterol from lysosomes can lead to downstream defects in ATP-binding cassette transporter A1 regulation, needed to offload excess cholesterol from plaque foam cells. This review focuses on the role LAL plays in normal cholesterol metabolism and how the associated changes in its enzymatic activity may ultimately contribute to atherosclerosis progression.

  17. uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV

    DEFF Research Database (Denmark)

    Kjøller, Lars; Engelholm, Lars H; Høyer-Hansen, Maria

    2004-01-01

    transmembrane glycoprotein urokinase plasminogen activator receptor-associated protein (uPARAP/endo180) directs collagen IV for lysosomal delivery and degradation. In wild-type fibroblasts, fluorescently labeled collagen IV was first internalized into vesicular structures with diffuse fluorescence eventually...... appearing uniformly within the wild-type cells after longer incubation times. In these cells, some collagen-containing vesicles were identified as lysosomes by staining for LAMP-1. In contrast, collagen IV remained extracellular and associated with fiber-like structures on uPARAP/endo180-deficient...... fibroblasts. Blocking lysosomal cysteine proteases with the inhibitor E64d resulted in strong accumulation of collagen IV in lysosomes in wild-type cells, but only very weak intracellular fluorescence accumulation in uPARAP/endo180-deficient fibroblasts. We conclude that uPARAP/endo180 is critical...

  18. High resolution crystal structure of human β-glucuronidase reveals structural basis of lysosome targeting

    National Research Council Canada - National Science Library

    Hassan, Md Imtaiyaz; Waheed, Abdul; Grubb, Jeffery H; Klei, Herbert E; Korolev, Sergey; Sly, William S

    2013-01-01

    ...). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases...

  19. High Resolution Crystal Structure of Human [beta]-Glucuronidase Reveals Structural Basis of Lysosome Targeting

    National Research Council Canada - National Science Library

    Hassan, Md; Waheed, Abdul; Grubb, Jeffery; Klei, Herbert; Korolev, Sergey; Sly, William

    2013-01-01

    ...). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases...

  20. Emerging therapies for neurodegenerative lysosomal storage disorders - from concept to reality.

    Science.gov (United States)

    Hemsley, Kim M; Hopwood, John J

    2011-10-01

    Lysosomal storage disorders are inherited metabolic diseases in which a mutation in a gene encoding a lysosomal enzyme or lysosome-related protein results in the intra-cellular accumulation of substrate and reduced cell/tissue function. Few patients with neurodegenerative lysosomal storage disorders have access to safe and effective treatments although many therapeutic strategies have been or are presently being studied in vivo thanks to the availability of a large number of animal models. This review will describe the comparative advancement of a variety of therapeutic strategies through the 'research pipeline'. Our goal is to provide information for clinicians, researchers and patients/families alike on the leading therapeutic candidates at this point in time, and also to provide information on emerging approaches that may provide a safe and effective treatment in the future. The length of the pipeline represents the significant and sustained effort required to move a novel concept from the laboratory into the clinic.

  1. Magnesium Modulates Doxorubicin Activity through Drug Lysosomal Sequestration and Trafficking.

    Science.gov (United States)

    Trapani, Valentina; Luongo, Francesca; Arduini, Daniela; Wolf, Federica I

    2016-03-21

    Magnesium is directly involved in the control of cell growth and survival, but its role in cancer biology and therapy is multifaceted; in particular, it is highly controversial whether magnesium levels can affect therapy outcomes. Here we investigated whether magnesium availability can modulate cellular responses to the widely used chemotherapeutic doxorubicin. We used an in vitro model consisting of mammary epithelial HC11 cells and found that high magnesium availability was correlated with diminished sensitivity both in cells chronically adapted to high magnesium concentrations and in acutely magnesium-supplemented cells. This decrease in sensitivity resulted from reduced intracellular doxorubicin accumulation in the face of a similar drug uptake rate. We observed that high-magnesium conditions caused a decrease in intracellular drug retention by altering drug lysosomal sequestration and trafficking. In our model, magnesium supplementation correspondingly modulated expression of the TRPM7 channel, which is known to control cytoskeletal organization and dynamics and may be involved in the proposed mechanism. Our findings suggest that magnesium supplementation in hypomagnesemic cancer patients may hinder response to therapy.

  2. Less Is More: Substrate Reduction Therapy for Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Maria Francisca Coutinho

    2016-07-01

    Full Text Available Lysosomal storage diseases (LSDs are a group of rare, life-threatening genetic disorders, usually caused by a dysfunction in one of the many enzymes responsible for intralysosomal digestion. Even though no cure is available for any LSD, a few treatment strategies do exist. Traditionally, efforts have been mainly targeting the functional loss of the enzyme, by injection of a recombinant formulation, in a process called enzyme replacement therapy (ERT, with no impact on neuropathology. This ineffectiveness, together with its high cost and lifelong dependence is amongst the main reasons why additional therapeutic approaches are being (and have to be investigated: chaperone therapy; gene enhancement; gene therapy; and, alternatively, substrate reduction therapy (SRT, whose aim is to prevent storage not by correcting the original enzymatic defect but, instead, by decreasing the levels of biosynthesis of the accumulating substrate(s. Here we review the concept of substrate reduction, highlighting the major breakthroughs in the field and discussing the future of SRT, not only as a monotherapy but also, especially, as complementary approach for LSDs.

  3. DNA-Destabilizing Agents as an Alternative Approach for Targeting DNA: Mechanisms of Action and Cellular Consequences

    Directory of Open Access Journals (Sweden)

    Gaëlle Lenglet

    2010-01-01

    Full Text Available DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs. The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy.

  4. The destabilizing effect of external damping: Singular utter boundary for the Pfluger column with vanishing external dissipation

    CERN Document Server

    Tommasini, Mirko; Misseroni, Diego; Bigoni, Davide

    2016-01-01

    Elastic structures loaded by nonconservative positional forces are prone to instabilities induced by dissipation: it is well-known in fact that internal viscous damping destabilizes the marginally stable Ziegler's pendulum and Pfluger column (of which the Beck's column is a special case), two structures loaded by a tangential follower force. The result is the so-called 'destabilization paradox', where the critical force for flutter instability decreases by an order of magnitude when the coefficient of internal damping becomes infinitesimally small. Until now external damping, such as that related to air drag, is believed to provide only a stabilizing effect, as one would intuitively expect. Contrary to this belief, it will be shown that the effect of external damping is qualitatively the same as the effect of internal damping, yielding a pronounced destabilization paradox. Previous results relative to destabilization by external damping of the Ziegler's and Pfluger's elastic structures are corrected in a defi...

  5. Lysosomal Changes in Renal Proximal Tubular Epithelial Cells of Male Sprague Dawley Rats Following Decalin Exposure

    Science.gov (United States)

    1990-01-01

    decalin-treated animal. Note large, pale, rcd-staining lysosome (-). An exfoliated epithelial cell can iu- seen in the tubular lumen containing large...photomicrograph contains an exfoliated epithelial cell (-) with enlarged, intact lysosomes. The tubule on the left half of the photomicrograph contains an...metabolism of proteins. In: Cytology , GH Bourne and JF Danielli (eds). Academ- The Kidney: Physiology and Pathophysiology, DW ic Press, NY, pp. 251-300. - ~- i :- d .L n .- 2

  6. The BH3 Mimetic Obatoclax Accumulates in Lysosomes and Causes Their Alkalinization.

    Directory of Open Access Journals (Sweden)

    Vasileios A Stamelos

    Full Text Available Obatoclax belongs to a class of compounds known as BH3 mimetics which function as antagonists of Bcl-2 family apoptosis regulators. It has undergone extensive preclinical and clinical evaluation as a cancer therapeutic. Despite this, it is clear that obatoclax has additional pharmacological effects that contribute to its cytotoxic activity. It has been claimed that obatoclax, either alone or in combination with other molecularly targeted therapeutics, induces an autophagic form of cell death. In addition, obatoclax has been shown to inhibit lysosomal function, but the mechanism of this has not been elucidated. We have evaluated the mechanism of action of obatoclax in eight ovarian cancer cell lines. Consistent with its function as a BH3 mimetic, obatoclax induced apoptosis in three cell lines. However, in the remaining cell lines another form of cell death was evident because caspase activation and PARP cleavage were not observed. Obatoclax also failed to show synergy with carboplatin and paclitaxel, chemotherapeutic agents which we have previously shown to be synergistic with authentic Bcl-2 family antagonists. Obatoclax induced a profound accumulation of LC-3 but knockdown of Atg-5 or beclin had only minor effects on the activity of obatoclax in cell growth assays suggesting that the inhibition of lysosomal function rather than stimulation of autophagy may play a more prominent role in these cells. To evaluate how obatoclax inhibits lysosomal function, confocal microscopy studies were conducted which demonstrated that obatoclax, which contains two basic pyrrole groups, accumulates in lysosomes. Studies using pH sensitive dyes demonstrated that obatoclax induced lysosomal alkalinization. Furthermore, obatoclax was synergistic in cell growth/survival assays with bafilomycin and chloroquine, two other drugs which cause lysosomal alkalinization. These studies explain, for the first time, how obatoclax inhibits lysosomal function and suggest that

  7. Reduction of mutant huntingtin accumulation and toxicity by lysosomal cathepsins D and B in neurons

    OpenAIRE

    Ouyang Xiaosen; Liang Qiuli; Schneider Lonnie; Zhang Jianhua

    2011-01-01

    Abstract Background Huntington's disease is caused by aggregation of mutant huntingtin (mHtt) protein containing more than a 36 polyQ repeat. Upregulation of macroautophagy was suggested as a neuroprotective strategy to degrade mutant huntingtin. However, macroautophagy initiation has been shown to be highly efficient in neurons whereas lysosomal activities are rate limiting. The role of the lysosomal and other proteases in Huntington is not clear. Some studies suggest that certain protease a...

  8. Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity

    OpenAIRE

    Fröhlich Eleonore; Meindl Claudia; Roblegg Eva; Ebner Birgit; Absenger Markus; Pieber Thomas R

    2012-01-01

    Abstract Background Data from environmental exposure to nanoparticles (NPs) suggest that chronic exposure may increase the incidence of lung, cardiovascular and neurodegenerative diseases. Impairment of cell function by intracellular accumulation of NPs is also suspected. Many types of NPs have been detected in the endosomal-lysosomal system and, upon repeated exposure, alterations of the endosomal-lysosomal system may occur. To identify such effects we compared the effect of carboxyl polysty...

  9. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes

    DEFF Research Database (Denmark)

    Grandal, Michael V; Zandi, Roza; Pedersen, Mikkel W

    2007-01-01

    . Moreover, internalized EGFRvIII is recycled rather than delivered to lysosomes. EGFRvIII binds the ubiquitin ligase c-Cbl via Grb2, whereas binding via phosphorylated tyrosine residue 1045 seems to be limited. Despite c-Cbl binding, the receptor fails to become effectively ubiquitinylated. Thus, our...... results suggest that the long lifetime of EGFRvIII is caused by inefficient internalization and impaired sorting to lysosomes due to lack of effective ubiquitinylation....

  10. Observation of intracellular interactions between DNA origami and lysosomes by the fluorescence localization method.

    Science.gov (United States)

    Fu, Meifang; Dai, Luru; Jiang, Qiao; Tang, Yunqing; Zhang, Xiaoming; Ding, Baoquan; Li, Junbai

    2016-07-28

    We obtained the fluorescence localization images of tube DNA origami nanostructures in NIH 3T3 cells for the first time. The fluorescence localization images of tube DNA origami nanostructures and TIRF images of lysosomes were combined and they revealed the detailed interactions between the two structures. Quantitative analysis illustrated that the tube origami can be captured as well as degraded by lysosomes with time.

  11. Effect of Processing Conditions on the Crystallization behavior and Destabilization Kinetics of Oil-in-Water Emulsions

    OpenAIRE

    Martini, Silvana; Tippetts, Megan

    2008-01-01

    The objective of this research was to systematically study the effect of processing conditions on the crystallization behavior and destabilization mechanisms of oil-in-water emulsions. The effect of crystallization temperature (T c) and homogenization conditions on both thermal behavior and destabilization mechanisms were analyzed. Results show that the crystallization of lipids present in the emulsions was inhibited when compared with bulk lipids as evidenced by a lower onset and peak temper...

  12. Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells.

    Science.gov (United States)

    Tan, Keng-Poo; Ho, Ming-Yi; Cho, Huan-Chieh; Yu, John; Hung, Jung-Tung; Yu, Alice Lin-Tsing

    2016-08-25

    Alpha1,2-fucosyltransferases, FUT1 and FUT2, which transfer fucoses onto the terminal galactose of N-acetyl-lactosamine via α1,2-linkage have been shown to be highly expressed in various types of cancers. A few studies have shown the involvement of FUT1 substrates in tumor cell proliferation and migration. Lysosome-associated membrane protein 1, LAMP-1, has been reported to carry alpha1,2-fucosylated Lewis Y (LeY) antigens in breast cancer cells, however, the biological functions of LeY on LAMP-1 remain largely unknown. Whether or not its family member, LAMP-2, displays similar modifications and functions as LAMP-1 has not yet been addressed. In this study, we have presented evidence supporting that both LAMP-1 and 2 are substrates for FUT1, but not FUT2. We have also demonstrated the presence of H2 and LeY antigens on LAMP-1 by a targeted nanoLC-MS(3) and the decreased levels of fucosylation on LAMP-2 by MALDI-TOF analysis upon FUT1 knockdown. In addition, we found that the expression of LeY was substantial in less invasive ER+/PR+/HER- breast cancer cells (MCF-7 and T47D) but negligible in highly invasive triple-negative MDA-MB-231 cells, of which LeY levels were correlated with the levels of LeY carried by LAMP-1 and 2. Intriguingly, we also observed a striking change in the subcellular localization of lysosomes upon FUT1 knockdown from peripheral distribution of LAMP-1 and 2 to a preferential perinuclear accumulation. Besides that, knockdown of FUT1 led to an increased rate of autophagic flux along with diminished activity of mammalian target of rapamycin complex 1 (mTORC1) and enhanced autophagosome-lysosome fusion. This may be associated with the predominantly perinuclear distribution of lysosomes mediated by FUT1 knockdown as lysosomal positioning has been reported to regulate mTOR activity and autophagy. Taken together, our results suggest that downregulation of FUT1, which leads to the perinuclear localization of LAMP-1 and 2, is correlated with increased

  13. The Novel Neuronal Ceroid Lipofuscinosis Gene MFSD8 Encodes a Putative Lysosomal Transporter

    Science.gov (United States)

    Siintola, Eija ; Topcu, Meral ; Aula, Nina ; Lohi, Hannes ; Minassian, Berge A. ; Paterson, Andrew D. ; Liu, Xiao-Qing ; Wilson, Callum ; Lahtinen, Ulla ; Anttonen, Anna-Kaisa ; Lehesjoki, Anna-Elina 

    2007-01-01

    The late-infantile–onset forms are the most genetically heterogeneous group among the autosomal recessively inherited neurodegenerative disorders, the neuronal ceroid lipofuscinoses (NCLs). The Turkish variant was initially considered to be a distinct genetic entity, with clinical presentation similar to that of other forms of late-infantile–onset NCL (LINCL), including age at onset from 2 to 7 years, epileptic seizures, psychomotor deterioration, myoclonus, loss of vision, and premature death. However, Turkish variant LINCL was recently found to be genetically heterogeneous, because mutations in two genes, CLN6 and CLN8, were identified to underlie the disease phenotype in a subset of patients. After a genomewide scan with single-nucleotide–polymorphism markers and homozygosity mapping in nine Turkish families and one Indian family, not linked to any of the known NCL loci, we mapped a novel variant LINCL locus to chromosome 4q28.1-q28.2 in five families. We identified six different mutations in the MFSD8 gene (previously denoted “MGC33302”), which encodes a novel polytopic 518–amino acid membrane protein that belongs to the major facilitator superfamily of transporter proteins. MFSD8 is expressed ubiquitously, with several alternatively spliced variants. Like the majority of the previously identified NCL proteins, MFSD8 localizes mainly to the lysosomal compartment. However, the function of MFSD8 remains to be elucidated. Analysis of the genome-scan data suggests the existence of at least three more genes in the remaining five families, further corroborating the great genetic heter