WorldWideScience

Sample records for lysosomal enzyme alpha-galactosidase

  1. Fluorometric Assessment Of Lysosomal Enzymes In Garlic Oil ...

    African Journals Online (AJOL)

    The effect of Garlic oil on Lysosomal enzymes in streptozotocin-induced diabetic rats were investigated fluorometrically. The serum lysosomal enzymes assayed include β-glucuronidase, N-acetylglucosaminidase (NAG) β-D-galactosidase and α-D-galactosidase. The results of the study in nMole-4Mu/hr/ml show that ...

  2. Blood group does not correlate with disease severity in patients with Fabry disease (alpha-galactosidase A deficiency)

    NARCIS (Netherlands)

    Linthorst, Gabor E.; Folman, Claudia C.; Aerts, Johannes M. F. G.; Hollak, Carla E. M.

    2003-01-01

    Blood groups B and P1 are substrates for the lysosomal enzyme alpha-galactosidase A. Therefore, patients with alpha-Gal A deficiency and blood groups B or P1 may exhibit more severe disease. In 48 Fabry patients distribution of blood group was not different from that in the Dutch population. No

  3. Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes.

    Science.gov (United States)

    Squillaro, Tiziana; Antonucci, Ivana; Alessio, Nicola; Esposito, Anna; Cipollaro, Marilena; Melone, Mariarosa Anna Beatrice; Peluso, Gianfranco; Stuppia, Liborio; Galderisi, Umberto

    2017-12-01

    Lysosomal storage disorders (LDS) comprise a group of rare multisystemic diseases resulting from inherited gene mutations that impair lysosomal homeostasis. The most common LSDs, Gaucher disease (GD), and Fabry disease (FD) are caused by deficiencies in the lysosomal glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes, respectively. Given the systemic nature of enzyme deficiency, we hypothesized that the stem cell compartment of GD and FD patients might be also affected. Among stem cells, mesenchymal stem cells (MSCs) are a commonly investigated population given their role in hematopoiesis and the homeostatic maintenance of many organs and tissues. Since the impairment of MSC functions could pose profound consequences on body physiology, we evaluated whether GBA and GLA silencing could affect the biology of MSCs isolated from bone marrow and amniotic fluid. Those cell populations were chosen given the former's key role in organ physiology and the latter's intriguing potential as an alternative stem cell model for human genetic disease. Our results revealed that GBA and GLA deficiencies prompted cell cycle arrest along with the impairment of autophagic flux and an increase of apoptotic and senescent cell percentages. Moreover, an increase in ataxia-telangiectasia-mutated staining 1 hr after oxidative stress induction and a return to basal level at 48 hr, along with persistent gamma-H2AX staining, indicated that MSCs properly activated DNA repair signaling, though some damages remained unrepaired. Our data therefore suggest that MSCs with reduced GBA or GLA activity are prone to apoptosis and senescence due to impaired autophagy and DNA repair capacity. © 2017 Wiley Periodicals, Inc.

  4. Alpha Adrenergic Induction of Transport of Lysosomal Enzyme across the Blood-Brain Barrier.

    Directory of Open Access Journals (Sweden)

    Akihiko Urayama

    Full Text Available The impermeability of the adult blood-brain barrier (BBB to lysosomal enzymes impedes the ability to treat the central nervous system manifestations of lysosomal storage diseases. Here, we found that simultaneous stimulation of the alpha1 and alpha2 adrenoreceptor restores in adult mice the high rate of transport for the lysosomal enzyme P-GUS that is seen in neonates but lost with development. Beta adrenergics, other monoamines, and acetylcholine did not restore this transport. A high dose (500 microg/mouse of clonidine, a strong alpha2 and weak alpha1 agonist, was able to act as monotherapy in the stimulation of P-GUS transport. Neither use of alpha1 plus alpha2 agonists nor the high dose clonidine disrupted the BBB to albumin. In situ brain perfusion and immunohistochemistry studies indicated that adrengerics act on transporters already at the luminal surface of brain endothelial cells. These results show that adrenergic stimulation, including monotherapy with clonidine, could be key for CNS enzyme replacement therapy.

  5. Novel alpha-galactosidase A mutation in a female with recurrent strokes.

    Science.gov (United States)

    Tuttolomondo, Antonino; Duro, Giovanni; Miceli, Salvatore; Di Raimondo, Domenico; Pecoraro, Rosaria; Serio, Antonia; Albeggiani, Giuseppe; Nuzzo, Domenico; Iemolo, Francesco; Pizzo, Federica; Sciarrino, Serafina; Licata, Giuseppe; Pinto, Antonio

    2012-11-01

    Anderson-Fabry disease (AFD) is an X-linked inborn error of glycosphingolipid catabolism resulting from the deficient activity of the lysosomal exoglycohydrolase, a-galactosidase A. The complete genomic and cDNA sequences of the human alpha-galactosidase A gene have been determined and to date, several disease-causing alpha-galactosidase A mutations have been identified, including missense mutations, small deletions/insertions, splice mutations, and large gene rearrangements We report a case of a 56-year-old woman with recurrent cryptogenic strokes. Ophthalmological examination revealed whorled opacities of the cornea (cornea verticillata) and dilated tortuous conjunctival vessels. She did not show other typical signs of Fabry disease such as acroparesthesias and angiokeratoma. The patient's alpha-galactosidase A activity was 4.13 nmol/mL/h in whole blood. Alpha-galactosidase A gene sequence analysis revealed a heterozygous single nucleotide point mutation at nucleotide c.550T>A in exon 4 in this woman, leading to the p.Tyr184Asn amino acid substitution. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. Structural and functional analysis of lysosomal ss-galactosidase and its relation to the protective protein.

    NARCIS (Netherlands)

    H. Morreau (Hans)

    1992-01-01

    textabstractLysosomal B-galactosidase is the glycosidase, that cleaves B-linked galactosyl mmenes from a variety of natural and synthetic substrates. In normal tissues of various species this enzyme appears to associate with two other hydrolases, N-acetyl-o:-neuraminidase and the protective protein.

  7. Modifications of small intestine lysosomal enzymes after irradiation at different times of the day

    Energy Technology Data Exchange (ETDEWEB)

    Becciolini, A; Giache, V; Lanini, A; Cremonini, D; Drighi, E [Florence Univ. (Italy). Ist. di Radiologia

    1982-01-01

    The modification of lysosomal enzyme activities in animals irradiated with the same sublethal dose at 4 different times of the day is reported. The results confirmed the absence of circadian fluctuations in all the lysosomal enzymes and in protein content. A difference in behaviour between acid ..beta..-galactosidase and ..beta..-glucuronidase on the one hand and between acid phosphatase and cathepsin D on the other was evident in irradiated animals. The results showed that acid ..beta..-galactosidase and ..beta..-glucuronidase increase from the early intervals after irradiation and reach the highest activity between 36 and 48 h. At these intervals autolysis phenomena, heavy cellular alterations and numerous phlogosis cells are present in the epithelium. Only ..beta..-glucuronidase and acid ..beta..-galactosidase indicate the level of radiation injury.

  8. Influence of diphenylhydantoin on lysosomal enzyme release during bone resorption in vitro

    International Nuclear Information System (INIS)

    Lerner, U.; Haenstroem, L.

    1980-01-01

    The effect of diphenylhydantoin (DPH) on the release of lysosomal enzymes during resorption of cultured mouse calvarial bone was studied. The enzyme activities of β-glucuronidase and β-galactosidase in the culture medium was taken as indicators for lysosomal enzyme release. In concentrations 50 μg/ml or higher, DPH inhibited the release of β-glucuronidase and β-galactosidase in parallel with bone resorption as indicated by reduced release of 4 Ca, Ca 2 , Psub(i) and hydroxyproline. The release of the cytosolic enzyme lactate dehydrogenase was not influenced by concentrations of DPH up to 50 μg/ml but higher concentrations caused an increased release indicating cell injury. When bone resorption was stimulated by prostaglandin E 2 , DPH(50 μg/ml) also reduced the mobilization of bone mineral and the release of β- glucuronidase without influencing the release of lactate dehydrogenase. It is suggested that DPH by interfering with cellular release processes reduces the resorption on bone. (author)

  9. TFEB activation promotes the recruitment of lysosomal glycohydrolases β-hexosaminidase and β-galactosidase to the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Magini, Alessandro [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Department of Medical and Biological Sciences (DSMB), University of Udine, Udine (Italy); Polchi, Alice; Urbanelli, Lorena [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Cesselli, Daniela; Beltrami, Antonio [Department of Medical and Biological Sciences (DSMB), University of Udine, Udine (Italy); Tancini, Brunella [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Emiliani, Carla, E-mail: carla.emiliani@unipg.it [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy)

    2013-10-18

    Highlights: •TFEB activation promotes the increase of Hex and Gal activities. •The increase of Hex and Gal activities is related to transcriptional regulation. •TFEB promotes the recruitment of mature Hex and Gal on cell surface. -- Abstract: Lysosomes are membrane-enclosed organelles containing acid hydrolases. They mediate a variety of physiological processes, such as cellular clearance, lipid homeostasis, energy metabolism and pathogen defence. Lysosomes can secrete their content through a process called lysosome exocytosis in which lysosomes fuse with the plasma membrane realising their content into the extracellular milieu. Lysosomal exocytosis is not only responsible for the secretion of lysosomal enzymes, but it also has a crucial role in the plasma membrane repair. Recently, it has been demonstrated that lysosome response to the physiologic signals is regulated by the transcription factor EB (TFEB). In particular, lysosomal secretion is transcriptionally regulated by TFEB which induces both the docking and fusion of lysosomes with the plasma membrane. In this work we demonstrated that TFEB nuclear translocation is accompanied by an increase of mature glycohydrolases β-hexosaminidase and β-galactosidase on cell surface. This evidence contributes to elucidate an unknown TFEB biological function leading the lysosomal glycohydrolases on plasma membrane.

  10. TFEB activation promotes the recruitment of lysosomal glycohydrolases β-hexosaminidase and β-galactosidase to the plasma membrane

    International Nuclear Information System (INIS)

    Magini, Alessandro; Polchi, Alice; Urbanelli, Lorena; Cesselli, Daniela; Beltrami, Antonio; Tancini, Brunella; Emiliani, Carla

    2013-01-01

    Highlights: •TFEB activation promotes the increase of Hex and Gal activities. •The increase of Hex and Gal activities is related to transcriptional regulation. •TFEB promotes the recruitment of mature Hex and Gal on cell surface. -- Abstract: Lysosomes are membrane-enclosed organelles containing acid hydrolases. They mediate a variety of physiological processes, such as cellular clearance, lipid homeostasis, energy metabolism and pathogen defence. Lysosomes can secrete their content through a process called lysosome exocytosis in which lysosomes fuse with the plasma membrane realising their content into the extracellular milieu. Lysosomal exocytosis is not only responsible for the secretion of lysosomal enzymes, but it also has a crucial role in the plasma membrane repair. Recently, it has been demonstrated that lysosome response to the physiologic signals is regulated by the transcription factor EB (TFEB). In particular, lysosomal secretion is transcriptionally regulated by TFEB which induces both the docking and fusion of lysosomes with the plasma membrane. In this work we demonstrated that TFEB nuclear translocation is accompanied by an increase of mature glycohydrolases β-hexosaminidase and β-galactosidase on cell surface. This evidence contributes to elucidate an unknown TFEB biological function leading the lysosomal glycohydrolases on plasma membrane

  11. Correction of acid beta-galactosidase deficiency in GM1 gangliosidosis human fibroblasts by retrovirus vector-mediated gene transfer: higher efficiency of release and cross-correction by the murine enzyme.

    Science.gov (United States)

    Sena-Esteves, M; Camp, S M; Alroy, J; Breakefield, X O; Kaye, E M

    2000-03-20

    Mutations in the lysosomal acid beta-galactosidase (EC 3.2.1.23) underlie two different disorders: GM1 gangliosidosis, which involves the nervous system and visceral organs to varying extents, and Morquio's syndrome type B (Morquio B disease), which is a skeletal-connective tissue disease without any CNS symptoms. This article shows that transduction of human GM1 gangliosidosis fibroblasts with retrovirus vectors encoding the human acid beta-galactosidase cDNA leads to complete correction of the enzymatic deficiency. The newly synthesized enzyme is correctly processed and targeted to the lysosomes in transduced cells. Cross-correction experiments using retrovirus-modified cells as enzyme donors showed, however, that the human enzyme is transferred at low efficiencies. Experiments using a different retrovirus vector carrying the human cDNA confirmed this observation. Transduction of human GM1 fibroblasts and mouse NIH 3T3 cells with a retrovirus vector encoding the mouse beta-galactosidase cDNA resulted in high levels of enzymatic activity. Furthermore, the mouse enzyme was found to be transferred to human cells at high efficiency. Enzyme activity measurements in medium conditioned by genetically modified cells suggest that the human beta-galactosidase enzyme is less efficiently released to the extracellular space than its mouse counterpart. This study suggests that lysosomal enzymes, contrary to the generalized perception in the field of gene therapy, may differ significantly in their properties and provides insights for design of future gene therapy interventions in acid beta-galactosidase deficiency.

  12. Influence of cultivating conditions on the alpha-galactosidase biosynthesis from a novel strain of Penicillium sp. in solid-state fermentation.

    Science.gov (United States)

    Wang, C L; Li, D F; Lu, W Q; Wang, Y H; Lai, C H

    2004-01-01

    The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Penicillium sp. in solid-state fermentation (SSF). Certain fermentation parameters involving incubation temperature, moisture content, initial pH value, inoculum and load size of medium, and incubation time were investigated separately. The optimal temperature and moisture level for alpha-galactosidase biosynthesis was found to be 30 degrees C and 50%, respectively. The range of pH 5.5-6.5 was favourable. About 40-50 g of medium in 250-ml flask and inoculum over 1.0 x 10(6) spores were suitable for enzyme production. Seventy-five hours of incubation was enough for maximum alpha-galactosidase production. Substrate as wheat bran supplemented with soyabean meal and beet pulp markedly improved the enzyme yield in trays. Under optimum culture conditions, the alpha-galactosidase activity from Penicillium sp. MAFIC-6 indicated 185.2 U g(-1) in tray of SSF. The process on alpha-galactosidase production in laboratory scale may have a potentiality of scaling-up.

  13. Release of lysosomal enzymes in Candida albicans phagocytosis by rat peritoneal macrophages.

    Science.gov (United States)

    Fontenla de Petrino, S E; Sirena, A

    1984-02-15

    The present paper reports the in vitro release of lysosomal enzymes in the supernatant of cultures of rat peritoneal macrophages, with the addition of Candida albicans cells. Macrophages were taken from the rat peritoneal cavity 72 hr after non-specific activation with Brain-Heart-Infusion (B.H.I.) broth containing 10% proteose-peptone No. 3. They were then cultured in Parker medium No. 199 (TC 199). After 24 hr a suspension of Candida albicans cells, in a determined concentration, was added to the peritoneal macrophage cultures. At that time, and during pre-determined periods, the following enzymes in the culture supernatants were studied using colorimetric methods: beta-glucuronidase, beta-galactosidase and acid phosphatase. It is concluded that, under identical conditions, the release of beta-galactosidase and acid phosphatase is higher than for beta-glucuronidase. The release rate of all three enzymes is the highest at a 6 hr incubation period, after which, a gradual decrease leads to the rate down to 50% at 24 hr.

  14. Recombinant enzyme therapy for Fabry disease: Absence of editing of human alpha-galactosidase A mRNA

    NARCIS (Netherlands)

    Blom, Daniël; Speijer, Dave; Linthorst, Gabor E.; Donker-Koopman, Wilma G.; Strijland, Anneke; Aerts, Johannes M. F. G.

    2003-01-01

    For more than a decade, protein-replacement therapy has been employed successfully for the treatment of Gaucher disease. Recently, a comparable therapy has become available for the related lipid-storage disorder Fabry disease. Two differently produced recombinant alpha-galactosidase A (alpha-gal A)

  15. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    International Nuclear Information System (INIS)

    Bame, K.J.

    1986-01-01

    Acetyl-CoA:α-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal α-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The binding of acetyl-CoA to the enzyme is measured by exchange label from [ 3 H]CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with [ 3 H]acetyl-CoA. The acetyl group can be transferred to glucosamine, forming [ 3 H]N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism

  16. Nicotiana benthamiana α-galactosidase A1.1 can functionally complement human α-galactosidase A deficiency associated with Fabry disease.

    Science.gov (United States)

    Kytidou, Kassiani; Beekwilder, Jules; Artola, Marta; van Meel, Eline; Wilbers, Ruud H P; Moolenaar, Geri F; Goosen, Nora; Ferraz, Maria J; Katzy, Rebecca; Voskamp, Patrick; Florea, Bogdan I; Hokke, Cornelis H; Overkleeft, Herman S; Schots, Arjen; Bosch, Dirk; Pannu, Navraj; Aerts, Johannes M F G

    2018-04-19

    α-Galactosidases (EC 3.2.1.22) are retaining glycosidases that cleave terminal α-linked galactose residues from glycoconjugate substrates. α-Galactosidases take part in the turnover of cell wall-associated galactomannans in plants and in the lysosomal degradation of glycosphingolipids in animals. Deficiency of human α-galactosidase A (α-Gal A) causes Fabry disease (FD), a heritable, X-linked lysosomal storage disorder, characterized by accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3). Current management of FD involves enzyme-replacement therapy (ERT). An activity-based probe (ABP) covalently labeling the catalytic nucleophile of α-Gal A has been previously designed to study α-galactosidases for use in FD therapy. Here, we report that this ABP labels proteins in Nicotiana benthamiana leaf extracts, enabling the identification and biochemical characterization of an N. benthamiana α-galactosidase we name here A1.1 (gene accession GJZM-1660). The transiently overexpressed and purified enzyme was a monomer lacking N-glycans and was active toward 4-methylumbelliferyl-α-D-galactopyranoside substrate (Km = 0.17 mM) over a broad pH range. A1.1 structural analysis by X-ray crystallography revealed marked similarities with human α-Gal A, even including A1.1's ability to hydrolyze Gb3 and lysoGb3, which are not endogenous in plants. Of note, A1.1 uptake into FD fibroblasts reduced the elevated lysoGb3 levels in these cells, consistent with A1.1 delivery to lysosomes as revealed by confocal microscopy. The ease of production and the features of A1.1, such as stability over a broad pH range, combined with its capacity to degrade glycosphingolipid substrates, warrant further examination of its value as a potential therapeutic agent for ERT-based FD management. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  17. 21 CFR 173.145 - Alpha-Galactosidase derived from Mortierella vinaceae var. raffinoseutilizer.

    Science.gov (United States)

    2010-04-01

    ... vinaceae var. raffinoseutilizer. 173.145 Section 173.145 Food and Drugs FOOD AND DRUG ADMINISTRATION... Alpha-Galactosidase derived from Mortierella vinaceae var. raffinoseutilizer. The food additive alpha-galactosidase and parent mycelial microorganism Mortierella vinaceae var. raffinoseutilizer may be safely used...

  18. Purification of a-galactosidase from seeds of Sesbania marginata

    Directory of Open Access Journals (Sweden)

    Falco A.L.P.

    2000-01-01

    Full Text Available Alpha-galactosidase taken from a raw extract of Sesbania marginata legume seeds was purified by partitioning in aqueous two-phase systems (ATPS. Initially, galactomannan/dextran 2,000,000 systems were used for the purification, and the partition coefficients of alpha -galactosidase varied from 1.5 to 4.0. However, mass transport in these systems was poor due to the high viscosity of the employed polymers. Therefore, partitioning in polyethyleneglycol (PEG/ sodium phosphate systems and the effect of sodium chloride upon the enzyme purification and the yield of alpha -galactosidase were also investigated. The purification achieved in a single-step was 5.7 with a recovery of 144% of alpha -galactosidase, possibly due to the removal of materials which inhibited alpha -galactosidase activity before the purification. The removal of the main protein contaminants and the highest yields were achieved in PEG 4,000/ sodium phosphate + 6% NaCl system at pH 5.0. Further purification by preparative on-exchange chromatography was also developed.

  19. Lysosomal enzyme activation in irradiated mammary tumors

    International Nuclear Information System (INIS)

    Clarke, C.; Wills, E.D.

    1976-01-01

    Lysosomal enzyme activity of C3H mouse mammary tumors was measured quantitatively by a histochemical method. Following whole-body doses of 3600 rad or less no changes were observed in the lysosomal enzyme activity for 12 hr after the irradiation, but very large increases in acid phosphatase and β-naphthylamidase activity were, however, observed 24 hr after irradiation. Significant increases in enzyme activity were detected 72 hr after a dose of 300 rad and the increases of enzyme activity were dose dependent over the range 300 to 900 rad. Testosterone (80 mg/kg) injected into mice 2 hr before irradiation (850 rad) caused a significant increase of lysosomal enzyme activity over and above that of the same dose of irradiation alone. If the tumor-bearing mice were given 95 percent oxygen/5 percent carbon dioxide to breathe for 8 min before irradiation the effect of 850 rad on lysosomal acid phosphatase was increased to 160 percent/that of the irradiation given alone. Activitation of lysosomal enzymes in mammary tumors is an important primary or secondary consequence of radiation

  20. Permeation of lysosomal membranes in the course of photo-sensitization with methylene blue and hematoporphyrin: study by cellular microspectrofluorometry

    International Nuclear Information System (INIS)

    Santus, R.; Kohen, C.; Kohen, E.; Morliere, P.; Dubertret, L.; Tocci, P.M.

    1983-01-01

    The photodynamically-induced liberation of lysosomal enzymes using β-galactosidase as marker for the lysosomal enzymes has been studied by microspectrofluorometry on mouse L cells. Similar studies have been carried out using N-acetyl-β-glucosaminidase as marker for the lysosomal enzymes of human fibroblasts. The high sensitivity of the fluorescence detection makes it possible to use 4-methylumbelliferyl substrates for the enzymes contained in a single cell. Methylene blue and hematoporphyrin readily incorporate into both cells and upon excitation, sensitize lysosomal membrane damages, leading to enzyme release accompanying strong morphological changes. (author)

  1. In Patients with an α-Galactosidase A Variant, Small Nerve Fibre Assessment Cannot Confirm a Diagnosis of Fabry Disease

    NARCIS (Netherlands)

    van der Tol, Linda; Verhamme, Camiel; van Schaik, Ivo N.; van der Kooi, Anneke J.; Hollak, Carla E. M.; Biegstraaten, Marieke

    2016-01-01

    Fabry disease (FD) is an X-linked lysosomal storage disorder caused by an α-galactosidase A enzyme deficiency due to pathogenic variants in the α-galactosidase A gene (GLA). An increasing number of individuals with a GLA variant, but without characteristic FD features, are identified. A definite

  2. Effect of cadmium on lung lysosomal enzymes in vitro

    International Nuclear Information System (INIS)

    Giri, S.N.; Hollinger, M.A.

    1995-01-01

    Labilization of lysosomal enzymes is often associated with the general process of inflammation. The present study investigated the effect of the pneumotoxin cadmium on the release and activity of two lung lysosomal enzymes. Incubation of rat lung lysosomes with cadmium resulted in the release of β-glucuronidase but not acid phosphatase. The failure to ''release'' acid phosphatase appears to be the result of a direct inhibitory effect of cadmium on this enzyme. The K I for cadmium was determined to be 26.3 μM. The differential effect of cadmium on these two lysosomal enzymes suggests that caution should be exercised in selecting the appropriate enzyme marker for assessing lysosomal fragility in the presence of this toxicant. Furthermore, the differential basal release rate of the two enzymes from lung lysosomes may reflect the cellular heterogeneity of the lung. (orig.)

  3. Protective effect of squalene on certain lysosomal hydrolases and free amino acids in isoprenaline-induced myocardial infarction in rats

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Surendraraj, A.; Anandan, R.

    2010-01-01

    This study was aimed to evaluate the preventive role of squalene on free amino acids and lysosomal alterations in experimentally induced myocardial infarction in rats. The levels of lysosomal enzymes (beta-glucuronidase, beta-galactosidase, beta-glucosidase, acid phosphatase and cathepsin D) in p...

  4. Effect of irradiation on lysosomal enzyme activation in cultured macrophages

    International Nuclear Information System (INIS)

    Clarke, C.; Wills, E.D.

    1980-01-01

    The effect of γrays on lysosomal enzyme activity of normal and immune macrophages of DBA/2 mice cultured in vitro has been studied. A dose of 500 rad did not significantly affect lysosomal enzyme activity 3 hours after irradiation but caused the activity to increase to 1.4 times the control value 22.5 hours after irradiation. 22.5 hours after a dose of 3000 rad the enzyme activity increased to 2.5 times the control. Lysosomal enzyme activity of the macrophages was also markedly increased by immunization of the mice with D lymphoma cells, before culture in vitro, but irradiation of these cells with a dose of 500 rad caused a further increase in lysosomal enzyme activity. The results indicate that immunization and irradiation both cause stimulation of lysosomal enzyme activity in macrophages but that the mechanisms of activation are unlikely to be identical. (author)

  5. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  6. Fabry disease: the importance of the enzyme replacement therapy (TRE, treating quickly and efficiently

    Directory of Open Access Journals (Sweden)

    Juan Manuel Politei

    2014-06-01

    Full Text Available Fabry Disease is a lysosomal disorder due to the absence or deficiency of the Alpha galactosidase A enzyme that causes a pathological accumulation of glycosphingolipids mainly in the endothelial cells, vascular smooth muscle cells and podocytes among others. Enzyme replacement therapy is the only option for a specific treatment at present. Increasing knowledge of the physiopathological mechanisms has changed the management of the disease and above all, when treatment should begin. At present, beginning treatment at an early age seems to be a way of preventing and in some cases reverting some of the signs and symptoms of Fabry disease.

  7. Engineering of GlcNAc-1-Phosphotransferase for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement Therapy.

    Science.gov (United States)

    Liu, Lin; Lee, Wang-Sik; Doray, Balraj; Kornfeld, Stuart

    2017-06-16

    Several lysosomal enzymes currently used for enzyme replacement therapy in patients with lysosomal storage diseases contain very low levels of mannose 6-phosphate, limiting their uptake via mannose 6-phosphate receptors on the surface of the deficient cells. These enzymes are produced at high levels by mammalian cells and depend on endogenous GlcNAc-1-phosphotransferase α/β precursor to phosphorylate the mannose residues on their glycan chains. We show that co-expression of an engineered truncated GlcNAc-1-phosphotransferase α/β precursor and the lysosomal enzyme of interest in the producing cells resulted in markedly increased phosphorylation and cellular uptake of the secreted lysosomal enzyme. This method also results in the production of highly phosphorylated acid β-glucocerebrosidase, a lysosomal enzyme that normally has just trace amounts of this modification.

  8. Study of β-Galactosidase Enzyme Activity Produced by Lactobacilli in Milk and Cheese

    Directory of Open Access Journals (Sweden)

    J. Nowroozi

    2008-04-01

    Full Text Available Background and objectiveLactose intolerance is a discomfort state that occurs in some people after ingestion of milk and it is due to insufficient amount of beta galactosidase in the human gut to digest lactose. The aim of this study was to observe the presence of beta galactosidase enzyme produced by isolated lactobacilli from milk and cheese. Methods In this descriptive study, milk and cheese samples with different brand were bought from different shops. Lactobacilli were identified by plating samples on MRS medium, Gram staining and standard biochemical methods. β-galactosidase production by bacteria was assessed by X-Gal and ONPG methods. β-galactosidase was also detected by SDS-PAGE. ResultsFourteen genus of lactobacillus were isolated From 50 samples. All of the bacteria produced green color colonies on X-Gal plates (but in different times that indicated the presence of enzyme in the bacteria. All isolated lactobacilli were shown β-galactosidase activity in ONPG test. The highest enzymatic activity was seen in one strain of Lactobacillus Delbrueckii (1966 Miller unit /ml. In some bacteria (37% a strong β-galactosidase band(116-kDa was seen by SDS-PAGE.ConclusionAddition of beta galactosidase containing lactobacilli as a probiotic agent to milk, cheese, and other dairy products could ameliorate lactose intolerance. Meanwhile X-gal and ONPG methods which are simple, rapid and cheap can be used instead of SDS-PAGE.Keywords: Lactobacillus, Beta-Galactosidase, Nitrophenylgalactosids

  9. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease

    DEFF Research Database (Denmark)

    Hughes, Derralynn A.; Nicholls, Kathleen; Shankar, Suma P.

    2017-01-01

    Background Fabry disease is an X-linked lysosomal storage disorder caused by GLA mutations, resulting in α-galactosidase (α-Gal) deficiency and accumulation of lysosomal substrates. Migalastat, an oral pharmacological chaperone being developed as an alternative to intravenous enzyme replacement t...

  10. Long term enzyme replacement therapy for Fabry disease: effectiveness on kidney, heart and brain

    NARCIS (Netherlands)

    Rombach, Saskia M.; Smid, Bouwien E.; Bouwman, Machtelt G.; Linthorst, Gabor E.; Dijkgraaf, Marcel G. W.; Hollak, Carla E. M.

    2013-01-01

    Fabry disease is an X-linked lysosomal storage disorder caused by α-galactosidase A deficiency leading to renal, cardiac, cerebrovascular disease and premature death. Treatment with α-galactosidase A (enzyme replacement therapy, ERT) stabilises disease in some patients, but long term effectiveness

  11. The lysosomal enzyme receptor protein (LERP is not essential, but is implicated in lysosomal function in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Medina Hasanagic

    2015-10-01

    Full Text Available The lysosomal enzyme receptor protein (LERP of Drosophila melanogaster is the ortholog of the mammalian cation-independent mannose 6-phosphate (Man 6-P receptor, which mediates trafficking of newly synthesized lysosomal acid hydrolases to lysosomes. However, flies lack the enzymes necessary to make the Man 6-P mark, and the amino acids implicated in Man 6-P binding by the mammalian receptor are not conserved in LERP. Thus, the function of LERP in sorting of lysosomal enzymes to lysosomes in Drosophila is unclear. Here, we analyze the consequence of LERP depletion in S2 cells and intact flies. RNAi-mediated knockdown of LERP in S2 cells had little or no effect on the cellular content or secretion of several lysosomal hydrolases. We generated a novel Lerp null mutation, LerpF6, which abolishes LERP protein expression. Lerp mutants have normal viability and fertility and display no overt phenotypes other than reduced body weight. Lerp mutant flies exhibit a 30–40% decrease in the level of several lysosomal hydrolases, and are hypersensitive to dietary chloroquine and starvation, consistent with impaired lysosome function. Loss of LERP also enhances an eye phenotype associated with defective autophagy. Our findings implicate Lerp in lysosome function and autophagy.

  12. Disturbances in lysosomal enzymes activity in rats, following experimental postradiation disease

    International Nuclear Information System (INIS)

    Drozdz, M.; Piwowarczyk, B.; Olczyk, K.; Pikula-Zachara, M.

    1981-01-01

    The studies were aimed at detecting the biological effects of radiation on rat's organism, through studying the activity of lysosomal enzymes in blood plasma and some organs. The contemporary studies suggest that lysosomes play an important role in the occurrence and course of postradiation disease. The obtained results suggest the multidirectional gamma-rays effects on lysosomal enzymes response in serum, leucocytes, liver lysosomes and in liver, kidneys, lungs, heart. Increased activity of acid phosphatase, beta-glucoronidase and beta-acetyl-glucosaminase in the tissues of irradiated animals indicates that gamma rays labilizate the lysosomal membrane. The range of changes indicates a selective nature of this phenomenon. Kidneys, lungs and liver appeared the most ray-sensitive organs. The activity of acid phosphatase was found to be most increased in blood serum and leucocytes. The activity of all examined enzymes in liver lysosomes was decreased. Acid phosphatase exhibited the greatest activity increases. Lysosomal responses are indicative of the degree of destructive or regenerative changes in the organism. (author)

  13. Effect of whole-body X-irradiation on lysosomal enzymes

    Energy Technology Data Exchange (ETDEWEB)

    D' souza, D W; Vakil, U K; Srinivasan, A [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1974-06-01

    Effects of whole-body x irradiation with sublethal dose (400 rad) on three intestinal lysosomal enzymes, namely, arylsulphatase, cathepsin and acid phosphatases, have been studied. They are almost equally distributed throughout the entire small intestine region. X irradiation adversely affects the integrity of lysosomal membranes. ''Free'' and ''total'' lysosomal enzyme activities exhibit maxima on 6th day. These activities return to normal level on 14th day when there is rapid generation of villi, indicating that lysosomal activities correlate with the progression of injury and of repair mechanism after sublethal dose of x irradiation. The increase in total lysosomal activity may be due to its decreased breakdown, since the rate of protein synthesis in intestinal mucosa is reduced. This is evidenced by reduced incorporation of orally fed /sup 14/C leucine into acid insoluble proteins. (auth)

  14. Evaluation of the Activities of Antioxidant Enzyme and Lysosomal Enzymes of the Longissimus dorsi Muscle from Hanwoo (Korean Cattle) in Various Freezing Conditions

    OpenAIRE

    Kang, Sun Moon; Kang, Geunho; Seong, Pil-Nam; Park, Beomyoung; Kim, Donghun; Cho, Soohyun

    2014-01-01

    This study was conducted to evaluate the activities of antioxidant enzyme (glutathione peroxidase (GSH-Px)) and lysosomal enzymes (alpha-glucopyranosidase (AGP) and beta-N-acetyl-glucosaminidase (BNAG)) of the longissimus dorsi (LD) muscle from Hanwoo (Korean cattle) in three freezing conditions. Following freezing at -20, -60, and -196? (liquid nitrogen), LD samples (48 h post-slaughter) were treated as follows: 1) freezing for 14 d, 2) 1 to 4 freeze-thaw cycles (2 d of freezing in each cycl...

  15. Progranulin acts as a shared chaperone and regulates multiple lysosomal enzymes

    Directory of Open Access Journals (Sweden)

    Jinlong Jian

    2017-09-01

    Full Text Available Multifunctional factor progranulin (PGRN plays an important role in lysosomes, and its mutations and insufficiency are associated with lysosomal storage diseases, including neuronal ceroid lipofuscinosis and Gaucher disease (GD. The first breakthrough in understanding the molecular mechanisms of PGRN as regulator of lysosomal storage diseases came unexpectedly while investigating the role of PGRN in inflammation. Challenged PGRN null mice displayed typical features of GD. In addition, GRN gene variants were identified in GD patients and the serum levels of PGRN were significantly lower in GD patients. PGRN directly binds to and functions as a chaperone of the lysosomal enzyme β-glucocerebrosidase (GCaase, whose mutations cause GD. In addition, its C-terminus containing granulin E domain, termed Pcgin (PGRN C-terminus for GCase Interaction, is required for the association between PGRN and GCase. The concept that PGRN acts as a chaperone of lysosomal enzymes was further supported and extended by a recent article showing that PGRN acts as a chaperone molecule of lysosomal enzyme cathepsin D (CSTD, and the association between PGRN and CSTD is also mediated by PGRN's C-terminal granulin E domain. Collectively, these reports suggest that PGRN may act as a shared chaperone and regulates multiple lysosomal enzymes.

  16. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Ting-Wei Mu

    2008-02-01

    Full Text Available A lysosomal storage disease (LSD results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum-associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil-both US Food and Drug Administration-approved hypertension drugs-partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient-derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely alpha-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety.

  17. Production of lysosomal enzymes in plant-based expression systems

    OpenAIRE

    1996-01-01

    The invention relates to the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which ...

  18. Activation of lysosomal enzymes and tumour regression caused by irradiation and steroid hormones

    International Nuclear Information System (INIS)

    Ball, A.; Barratt, G.M.; Wills, E.D.

    1982-01-01

    The lysosomal enzyme activity and membrane permeability of mouse C3H mammary tumours has been studied using quantitative cytochemical methods following irradiation of the tumours with doses of 1500, 3500 or 6000 rad ν rays. No change in the lysosomal enzyme activity was observed immediately after irradiation, but increased enzyme activity and increased membrane permeability were observed 24 hr after irradiation with doses of 3500 or 6000 rad. Twenty-four hours after injection of prednisolone there was a marked increase of lysosomal membrane permeability and enzyme activity, and injection of prednisolone soon after irradiation enhanced the effect of irradiation. After a dose of 6000 rad and prednisolone, the lysosomal membrane permeability increased to 191% of the control and the enzyme activity to 326% of the value of the control tumours. Measurement of tumour size after irradiation or after a combined treatment with irradiation and prednisolone showed that a close correlation exists between tumour regression and lysosomal enzyme activity. The experiments support the view that lysosomal enzymes play an important role in tumour regression following irradiation. (author)

  19. Prostaglandin levels and lysosomal enzyme activities in irradiated rats

    International Nuclear Information System (INIS)

    Trocha, P.J.; Catravas, G.N.

    1980-01-01

    Whole-body irradiation of rats results in the release of hydrolases from lysosomes, an increase in lysosomal enzyme activities, and changes in the prostaglandin levels in spleen and liver tissues. A transient increase in the concentration of prostaglandins E and F and leakage of lysosomal hydrolases occurred in both spleen and liver tissues 3-6 hours after the animals were irradiated. Maximal values for hydrolase activities, prostaglandin E and F content, and release of lysosomal enzymes were found 4 days postirradiation in rat spleens whereas in the liver only slight increases were observed at this time period for prostaglandin F levels. On day 7 there was a final rise in the spleen's prostaglandin E and F concentrations and leakage of hydrolases from the lysosomes before returning to near normal values on day 11. The prostaglandin F concentration in liver was also slightly elevated on the 7th day after irradiation and then decreased to control levels. (author)

  20. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis.

    Science.gov (United States)

    Muro, Silvia; Schuchman, Edward H; Muzykantov, Vladimir R

    2006-01-01

    Enzyme replacement therapy, a state-of-the-art treatment for many lysosomal storage disorders, relies on carbohydrate-mediated binding of recombinant enzymes to receptors that mediate lysosomal delivery via clathrin-dependent endocytosis. Suboptimal glycosylation of recombinant enzymes and deficiency of clathrin-mediated endocytosis in some lysosomal enzyme-deficient cells limit delivery and efficacy of enzyme replacement therapy for lysosomal disorders. We explored a novel delivery strategy utilizing nanocarriers targeted to a glycosylation- and clathrin-independent receptor, intercellular adhesion molecule (ICAM)-1, a glycoprotein expressed on diverse cell types, up-regulated and functionally involved in inflammation, a hallmark of many lysosomal disorders. We targeted recombinant human acid sphingomyelinase (ASM), deficient in types A and B Niemann-Pick disease, to ICAM-1 by loading this enzyme to nanocarriers coated with anti-ICAM. Anti-ICAM/ASM nanocarriers, but not control ASM or ASM nanocarriers, bound to ICAM-1-positive cells (activated endothelial cells and Niemann-Pick disease patient fibroblasts) via ICAM-1, in a glycosylation-independent manner. Anti-ICAM/ASM nanocarriers entered cells via CAM-mediated endocytosis, bypassing the clathrin-dependent pathway, and trafficked to lysosomes, where delivered ASM displayed stable activity and alleviated lysosomal lipid accumulation. Therefore, lysosomal enzyme targeting using nanocarriers targeted to ICAM-1 bypasses defunct pathways and may improve the efficacy of enzyme replacement therapy for lysosomal disorders, such as Niemann-Pick disease.

  1. Effects of misonidazole, irradiation and hyperthermia on lysosomal enzyme activity in mouse tumours

    International Nuclear Information System (INIS)

    Barratt, G.M.; Wills, E.D.

    1981-01-01

    Male C3H mice bearing transplanted tumours were treated with hyperthermia, gamma radiation and the radiosensitising drug misonidazole. The activity of tumour lysosomal acid phosphatase and β-glucuronidase was determined using quantitative cytochemical techniques which measure both lysosomal membrane permeability and enzyme activity. Misonidazole had no effect on the membrane permeability or enzyme activity of tumour lysosomes 1 hr after injection; but 25 hr after the drug treatment the permeability of the lysosomal membrane to the substrate was increased to 1.7 times control. Increases in the lysosomal enzyme activity and membrane permeability were observed 1 hr after combined treatment with misonidazole and irradiation, although neither the drug nor irradiation given alone affected the lysosomes 1 hr after treatment. Twenty-five hours after treatment of tumours with misonidazole given 25 minutes before irradiation of tumours, permeability of the lysosomal membrane had increased to 2.3 times the control. The effects of the irradiation and the radio-sensitisers were thus synergistic. Hyperthermic treatment of tumours increased and misonidazole decreased the lysosomal membrane permeability and enzyme activity measured immediately after exposure. Thus misonidazole and irradiation act synergistically to cause increased lysosomal activity but misonidazole depresses the effect of hyperthermia on lysosomes. (author)

  2. Enzyme replacement therapy for alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line Gutte; Dali, Christine I.; Fogh, J

    2013-01-01

    Alpha-mannosidosis (OMIM 248500) is a rare lysosomal storage disease (LSD) caused by alpha-mannosidase deficiency. Manifestations include intellectual disabilities, facial characteristics and hearing impairment. A recombinant human alpha-mannosidase (rhLAMAN) has been developed for weekly...

  3. Lysosomal multienzyme complex: pros and cons of working together.

    Science.gov (United States)

    Bonten, Erik J; Annunziata, Ida; d'Azzo, Alessandra

    2014-06-01

    The ubiquitous distribution of lysosomes and their heterogeneous protein composition reflects the versatility of these organelles in maintaining cell homeostasis and their importance in tissue differentiation and remodeling. In lysosomes, the degradation of complex, macromolecular substrates requires the synergistic action of multiple hydrolases that usually work in a stepwise fashion. This catalytic machinery explains the existence of lysosomal enzyme complexes that can be dynamically assembled and disassembled to efficiently and quickly adapt to the pool of substrates to be processed or degraded, adding extra tiers to the regulation of the individual protein components. An example of such a complex is the one composed of three hydrolases that are ubiquitously but differentially expressed: the serine carboxypeptidase, protective protein/cathepsin A (PPCA), the sialidase, neuraminidase-1 (NEU1), and the glycosidase β-galactosidase (β-GAL). Next to this 'core' complex, the existence of sub-complexes, which may contain additional components, and function at the cell surface or extracellularly, suggests as yet unexplored functions of these enzymes. Here we review how studies of basic biological processes in the mouse models of three lysosomal storage disorders, galactosialidosis, sialidosis, and GM1-gangliosidosis, revealed new and unexpected roles for the three respective affected enzymes, Ppca, Neu1, and β-Gal, that go beyond their canonical degradative activities. These findings have broadened our perspective on their functions and may pave the way for the development of new therapies for these lysosomal storage disorders.

  4. Biosensors based on β-galactosidase enzyme: Recent advances and perspectives.

    Science.gov (United States)

    Sharma, Shiv K; Leblanc, Roger M

    2017-10-15

    Many industries are striving for the development of more reliable and robust β-galactosidase biosensors that exhibit high response rate, increased detection limit and enriched useful lifetime. In a newfangled technological atmosphere, a trivial advantage or disadvantage of the developed biosensor may escort to the survival and extinction of the industry. Several alternative strategies to immobilize β-galactosidase enzyme for their utilization in biosensors have been developed in recent years in the quest of maximum utility by controlling the defects seen in the previous biosensors. The overwhelming call for on-line measurement of different sample constituents has directed science and industry to search for best practical solutions and biosensors are witnessed as the best prospect. The main objective of this paper is to serve as a narrow footbridge by comparing the literary works on the β-galactosidase biosensors, critically analyze their use in the construction of best biosensor by showing the pros and cons of the predicted methods for the practical use of biosensors. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. High-throughput assay of 9 lysosomal enzymes for newborn screening.

    Science.gov (United States)

    Spacil, Zdenek; Tatipaka, Haribabu; Barcenas, Mariana; Scott, C Ronald; Turecek, Frantisek; Gelb, Michael H

    2013-03-01

    There is interest in newborn screening of lysosomal storage diseases (LSDs) because of the availability of treatments. Pilot studies have used tandem mass spectrometry with flow injection of samples to achieve multiplex detection of enzyme products. We report a multiplexing method of 9 enzymatic assays that uses HPLC-tandem mass spectrometry (MS/MS). The assay of 9 enzymes was carried out in 1 or 2 buffers with a cassette of substrates and internal standards and 1 or 2 punches of a dried blood spot (DBS) from a newborn screening card as the source of enzymes. The pre-HPLC-MS/MS sample preparation required only 4 liquid transfers before injection into a dual-column HPLC equipped with switching valves to direct the flow to separation and column equilibration. Product-specific and internal standard-specific ion fragmentations were used for MS/MS quantification in the selected reaction monitoring mode. Analysis of blood spots from 58 random newborns and lysosomal storage disease-affected patients showed that the assay readily distinguished affected from nonaffected individuals. The time per 9-plex analysis (1.8 min) was sufficiently short to be compatible with the workflow of newborn screening laboratories. HPLC-MS/MS provides a viable alternative to flow-injection MS/MS for the quantification of lysosomal enzyme activities. It is possible to assay 9 lysosomal enzymes using 1 or 2 reaction buffers, thus minimizing the number of separate incubations necessary.

  6. Mutations of alpha-galactosidase A gene in two unusual cases of Fabry disease

    NARCIS (Netherlands)

    Beyer, EM; Kopishinskaya, SV; Van Amstel, JKP; Tsvetkova, [No Value

    1999-01-01

    The mutation analysis of alpha-galactosidase A gene was carried out in two families with Fabry disease described by us earlier. In the family P. a new point mutation E341K (a G to A transition at position 10999 of the gene) was identified. The mutation causes a Glu341Lys substitution in

  7. Actin Filaments and Myosin I Alpha Cooperate with Microtubules for the Movement of LysosomesV⃞

    OpenAIRE

    Cordonnier, Marie-Neige; Dauzonne, Daniel; Louvard, Daniel; Coudrier, Evelyne

    2001-01-01

    An earlier report suggested that actin and myosin I alpha (MMIα), a myosin associated with endosomes and lysosomes, were involved in the delivery of internalized molecules to lysosomes. To determine whether actin and MMIα were involved in the movement of lysosomes, we analyzed by time-lapse video microscopy the dynamic of lysosomes in living mouse hepatoma cells (BWTG3 cells), producing green fluorescent protein actin or a nonfunctional domain of MMIα. In GFP-actin cells, lysosomes displayed ...

  8. Genetics Home Reference: alpha-mannosidosis

    Science.gov (United States)

    ... the lysosomes , which are compartments that digest and recycle materials in the cell. Within lysosomes, the enzyme ... JC, Saftig P, Fogh J, Malm D. Natural history of alpha mannosidosis a longitudinal study. Orphanet J ...

  9. Non-fusion and fusion expression of beta-galactosidase from Lactobacillus bulgaricus in Lactococcus lactis.

    Science.gov (United States)

    Wang, Chuan; Zhang, Chao-Wu; Liu, Heng-Chuan; Yu, Qian; Pei, Xiao-Fang

    2008-10-01

    To construct four recombinant Lactococcus lactis strains exhibiting high beta-galactosidase activity in fusion or non-fusion ways, and to study the influence factors for their protein expression and secretion. The gene fragments encoding beta-galactosidase from two strains of Lactobacillus bulgaricus, wch9901 isolated from yogurt and 1.1480 purchased from the Chinese Academy of Sciences, were amplified and inserted into lactococcal expression vector pMG36e. For fusion expression, the open reading frame of the beta-galactosidase gene was amplified, while for non-fusion expression, the open reading frame of the beta-galactosidase gene was amplified with its native Shine-Dalgarno sequence upstream. The start codon of the beta-galactosidase gene partially overlapped with the stop codon of vector origin open reading frame. Then, the recombinant plasmids were transformed into Escherichia coli DH5 alpha and Lactococcus lactis subsp. lactis MG1363 and confirmed by determining beta-galactosidase activities. The non-fusion expression plasmids showed a significantly higher beta-galactosidase activity in transformed strains than the fusion expression plasmids. The highest enzyme activity was observed in Lactococcus lactis transformed with the non-fusion expression plasmids which were inserted into the beta-galactosidase gene from Lactobacillus bulgaricus wch9901. The beta-galactosidase activity was 2.75 times as high as that of the native counterpart. In addition, beta-galactosidase expressed by recombinant plasmids in Lactococcus lactis could be secreted into the culture medium. The highest secretion rate (27.1%) was observed when the culture medium contained 20 g/L of lactose. Different properties of the native bacteria may have some effects on the protein expression of recombinant plasmids. Non-fusion expression shows a higher enzyme activity in host bacteria. There may be a host-related weak secretion signal peptide gene within the structure gene of Lb. bulgaricus beta-galactosidase

  10. Burn-induced stimulation of lysosomal enzyme synthesis in skeletal muscle

    International Nuclear Information System (INIS)

    Odessey, R.

    1986-01-01

    A localized burn injury to a rat hindlimb results in atrophy of soleus muscle (in the absence of cellular damage) which is attributable to an increase in muscle protein breakdown. Previous work has shown that lysosomal enzyme activities (cathepsins B, H, L, and D) are elevated in muscle from the burned leg by 50% to 100%. There is no change in endogenous neutral protease activity (+/- Ca ++ ). The increase in protease activity can not be attributed to changes in endogenous protease inhibitors. The latency [(Triton X100 treated - control)/triton treated] of lysosomal enzymes is approximately 50% and is not altered by burn injury. The rate of sucrose uptake is also not altered by burn. These experiments suggest that the rate of substrate supply to the lysosomal apparatus via endocytosis or autophagocytosis is not altered by burn. When muscles are preincubated with 3 H-phenylalanine or 3 H-mannose burn increased incorporation into protein of the fraction containing lysosomes by 100%. Preincubation in the presence of tunicamycin (an inhibitor of glycoprotein synthesis) inhibited incorporation of both labels into a microsomal fraction of the muscle from the burned leg, but has little effect on incorporation in the control muscle. These findings are consistent with the hypothesis that the burn-induced increase in protein breakdown is caused by an increase in lysosomal protease synthesis

  11. Fabry disease mimicking hypertrophic cardiomyopathy: genetic screening needed for establishing the diagnosis in women

    DEFF Research Database (Denmark)

    Havndrup, Ole; Christiansen, Michael; Stoevring, Birgitte

    2010-01-01

    AIMS: Fabry disease, an X-linked storage disorder caused by defective lysosomal enzyme alpha-galactosidase A activity, may resemble sarcomere-gene-associated hypertrophic cardiomyopathy (HCM). The 'cardiac variant' of Fabry disease which only affects the heart may be missed unless specifically te...... therapy, supports systematic testing for Fabry disease. Enzyme measurements are sufficient in men, but genetic testing is needed in women....

  12. Structural prediction and comparative docking studies of psychrophilic β- Galactosidase with lactose, ONPG and PNPG against its counter parts of mesophilic and thermophilic enzymes.

    Science.gov (United States)

    Kumar, Ponnada Suresh; Pulicherla, Kk; Ghosh, Mrinmoy; Kumar, Anmol; Rao, Krs Sambasiva

    2011-01-01

    Enzymes from psychrophiles catalyze the reactions at low temperatures with higher specific activity. Among all the psychrophilic enzymes produced, cold active β-galactosidase from marine psychrophiles revalorizes a new arena in numerous areas at industrial level. The hydrolysis of lactose in to glucose and galactose by cold active β-galactosidase offers a new promising approach in removal of lactose from milk to overcome the problem of lactose intolerance. Herein we propose, a 3D structure of cold active β-galactosidase enzyme sourced from Pseudoalteromonas haloplanktis by using Modeler 9v8 and best model was developed having 88% of favourable region in ramachandran plot. Modelling was followed by docking studies with the help of Auto dock 4.0 against the three substrates lactose, ONPG and PNPG. In addition, comparative docking studies were also performed for the 3D model of psychrophilic β-galactosidase with mesophilic and thermophilic enzymes. Docking studies revealed that binding affinity of enzyme towards the three different substrates is more for psychrophilic enzyme when compared with mesophilic and thermophilic enzymes. It indicates that the enzyme has high specific activity at low temperature when compared with mesophilic and thermophilic enzymes.

  13. The effect of hyperthermia and radiation on lysosomal enzyme activity of mouse mammary tumours

    International Nuclear Information System (INIS)

    Barratt, G.M.; Wills, E.D.

    1979-01-01

    The effects of hyperthermia and radiation have been studied on the acid phosphatase and β-glucuronidase activities in lysosomes of C3H mice mammary tumours and of the spleen. Quantitative histochemical methods have been used. Hyperthermic treatment of both spontaneous and transplanted tumours caused an increase in the activity of both acid phosphatase and β-glucuronase when measured immediately after treatment, but the activities returned to normal after 24 hours. In contrast a radiation dose of 3500 rad did not cause an increase in activity of either enzyme immediately, but a large activation was observed after 24 hr. Combination of hyperthermic and radiation treatment caused increases in enzyme activities which were dependent on the time after treatment. Hyperthermic treatment of the lower body of mice bearing tumours also caused activation of lysosomal enzymes in the spleen. This may be hormone mediated. It is considered that the increased lysosomal enzyme activity observed after hyperthermia may be a consequence of increased permeability of the lysosomal membrane caused by hyperthermia. (author)

  14. Host-Pathogen Interactions: I. A Correlation Between α-Galactosidase Production and Virulence 1

    Science.gov (United States)

    English, Patricia D.; Albersheim, Peter

    1969-01-01

    Resistance or susceptibility of Red Kidney, Pinto and Small White beans (Phaseolus vulgaris) to the alpha, beta, and gamma strains of Colletotrichum lindemuthianum was either confirmed or established. These fungal strains secrete α-galactosidase, β-galactosidase and β-xylosidase when grown on cell walls isolated from the hypocotyls of any of the above bean varieties. These enzymes effectively degrade cell walls isolated from susceptible 5-day old hypocotyls but degrade only slightly the walls isolated from resistant 18-day old hypocotyls. The amounts of the β-galactosidase and β-xylosidase secreted by the 3 fungal strains are relatively low and are approximately equivalent. The secretion of these 2 enzymes is not dependent upon the bean variety from which the hypocotyl cell walls used as a carbon source were isolated. However, the fungal strains secrete greater amounts of α-galactosidase when grown on hypocotyl cell walls isolated from susceptible plants than when grown on walls from resistant plants. Virulent isolates of the fungus, when grown on hypocotyl cell walls isolated from a susceptible plant, secrete more α-galactosidase than do attenuated (avirulent) isolates of the same fungal strain grown under the same conditions. The α-galactosidase secreted by each of the fungal strains is capable of removing galactose from the hypocotyl cell walls of each bean variety tested. Galactose is removed from the cell walls of each variety at the same rate regardless of whether the cell walls were isolated from a susceptible or resistant plant. PMID:16657049

  15. Relationship between sol-gel conditions and enzyme stability: a case study with β-galactosidase/silica biocatalyst for whey hydrolysis.

    Science.gov (United States)

    Escobar, Sindy; Bernal, Claudia; Mesa, Monica

    2015-01-01

    The sol-gel process has been very useful for preparing active and stable biocatalysts, with the possibility of being reused. Especially those based on silica are well known. However, the study of the enzyme behavior during this process is not well understood until now and more, if the surfactant is involved in the synthesis mixture. This work is devoted to the encapsulation of β-galactosidase from Bacillus circulans in silica by sol-gel process, assisted by non-ionic Triton X-100 surfactant. The correlation between enzyme activity results for the β-galactosidase in three different environments (soluble in buffered aqueous reference solution, in the silica sol, and entrapment on the silica matrix) explains the enzyme behavior under stress conditions offered by the silica sol composition and gelation conditions. A stable β-galactosidase/silica biocatalyst is obtained using sodium silicate, which is a cheap source of silica, in the presence of non-ionic Triton X-100, which avoids the enzyme deactivation, even at 40 °C. The obtained biocatalyst is used in the whey hydrolysis for obtaining high value products from this waste. The preservation of the enzyme stability, which is one of the most important challenges on the enzyme immobilization through the silica sol-gel, is achieved in this study.

  16. Recombinant human acid alpha-glucosidase: high level production in mouse milk, biochemical characteristics, correction of enzyme deficiency in GSDII KO mice

    NARCIS (Netherlands)

    A.G.A. Bijvoet (Agnes); M.A. Kroos (Marian); F.R. Pieper (Frank); M. Van der Vliet (Martin); H.A. de Boer (Herman); A.T. van der Ploeg (Ans); M.Ph. Verbeet (Martin); A.J.J. Reuser (Arnold)

    1998-01-01

    textabstractGlycogen storage disease type II (GSDII) is caused by lysosomal acid alpha-glucosidase deficiency. Patients have a rapidly fatal or slowly progressive impairment of muscle function. Enzyme replacement therapy is under investigation. For large-scale, cost-effective

  17. Intrathecal enzyme replacement therapy reduces lysosomal storage in the brain and meninges of the canine model of MPS I.

    Science.gov (United States)

    Kakkis, E; McEntee, M; Vogler, C; Le, S; Levy, B; Belichenko, P; Mobley, W; Dickson, P; Hanson, S; Passage, M

    2004-01-01

    Enzyme replacement therapy (ERT) has been developed for several lysosomal storage disorders, including mucopolysaccharidosis I (MPS I), and is effective at reducing lysosomal storage in many tissues and in ameliorating clinical disease. However, intravenous ERT does not adequately treat storage disease in the central nervous system (CNS), presumably due to effects of the blood-brain barrier on enzyme distribution. To circumvent this barrier, we studied whether intrathecal (IT) recombinant human alpha-L-iduronidase (rhIDU) could penetrate and treat the brain and meninges. An initial dose-response study showed that doses of 0.46-4.14 mg of IT rhIDU successfully penetrated the brain of normal dogs and reached tissue levels 5.6 to 18.9-fold normal overall and 2.7 to 5.9-fold normal in deep brain sections lacking CSF contact. To assess the efficacy and safety in treating lysosomal storage disease, four weekly doses of approximately 1 mg of IT rhIDU were administered to MPS I-affected dogs resulting in a mean 23- and 300-fold normal levels of iduronidase in total brain and meninges, respectively. Quantitative glycosaminoglycan (GAG) analysis showed that the IT treatment reduced mean total brain GAG to normal levels and achieved a 57% reduction in meningeal GAG levels accompanied by histologic improvement in lysosomal storage in all cell types. The dogs did develop a dose-dependent immune response against the recombinant human protein and a meningeal lymphocytic/plasmacytic infiltrate. The IT route of ERT administration may be an effective way to treat the CNS disease in MPS I and could be applicable to other lysosomal storage disorders.

  18. Role of lysosomal enzymes released by alveolar macrophages in the pathogenesis of the acute phase of hypersensitivity pneumonitis

    Directory of Open Access Journals (Sweden)

    J. L. Pérez-Arellano

    1995-01-01

    Full Text Available Hydrolytic enzymes are the major constituents of alveolar macrophages (AM and have been shown to be involved in many aspects of the inflammatory pulmonary response. The aim of this study was to evaluate the role of lysosomal enzymes in the acute phase of hypersensitivity pneumonitis (HPs. An experimental study on AM lysosomal enzymes of an HP-guinea-pig model was performed. The results obtained both in vivo and in vitro suggest that intracellular enzymatic activity decrease is, at least partly, due to release of lysosomal enzymes into the medium. A positive but slight correlation was found between extracellular lysosomal activity and four parameters of lung lesion (lung index, bronchoalveolar fluid total (BALF protein concentration, BALF LDH and BALF alkaline phosphatase activities. All the above findings suggest that the AM release of lysosomal enzymes during HP is a factor involved, although possibly not the only one, in the pulmonary lesions appearing in this disease.

  19. Mutational analysis of the GLA gene in Mexican families with Fabry ...

    Indian Academy of Sciences (India)

    PRONAF CP 32315, Ciudad Juárez, Chihuahua, México. Abstract. Fabry disease (FD) is a lysosomal storage disorder, which develops due to a deficiency in the hydrolytic enzyme, α-galactosidase A (α-Gal A). Alpha-Gal A hydrolyzes glycosphingolipid globotriaosylceramide (Gb3), and an α-Gal A deficiency leads to Gb3 ...

  20. Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases.

    Science.gov (United States)

    Oh, Doo-Byoung

    2015-08-01

    Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy.

  1. Purification and properties of beta-galactosidase from Aspergillus nidulans.

    Science.gov (United States)

    Díaz, M; Pedregosa, A M; de Lucas, J R; Torralba, S; Monistrol, I F; Laborda, F

    1996-12-01

    Beta-Galactosidase from mycelial extract of Aspergillus nidulans has been purified by substrate affinity chromatography and used to obtain anti-beta-galactosidase polyclonal antibodies. A. nidulans growing in lactose as carbon source synthesizes one active form of beta-galactosidase which seems to be a multimeric enzyme of 450 kDa composed of monomers with 120 and 97 kDa. Although the enzyme was not released to the culture medium, some enzymatic activity was detected in a cell-wall extract, thus suggesting that it can be an extracellular enzyme. Beta-Galactosidase of A. nidulans is a very unstable enzyme with an optimum pH value of 7.5 and an optimum temperature of 30 degrees C. It was only active against beta-galactoside substrates like lactose and p-nitrophenyl-beta-D-galactoside (PNPG).

  2. Autonomic skin responses in females with Fabry disease

    DEFF Research Database (Denmark)

    Møller, Anette Torvin; Bach, Flemming W.; Feldt-Rasmussen, Ulla

    2009-01-01

    Fabry disease is a genetic lysosomal disorder with dysfunction of the lysosomal enzyme alpha-galactosidase A causing accumulation of glycolipids in multiple organs including the nervous system and with neuropathy as a prominent manifestation. Neurological symptoms include pain and autonomic...... dysfunction. This study examined peripheral autonomic nerve function in 19 female patients with Fabry disease and 19 sex and age-matched controls by measuring (1) sweat production following acetylcholine challenge; (2) the sympathetically mediated vasoconstrictor responses to inspiratory gasp, stress...

  3. Diagnostic dilemma: a young woman with Fabry disease symptoms, no family history, and a "sequencing cryptic" α-galactosidase a large deletion

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, Ulla; Dobrovolny, Robert; Nazarenko, Irina

    2011-01-01

    Fabry disease, an X-linked lysosomal storage disorder, results from the deficient activity of a-galactosidase A (a-Gal A). In affected males, the clinical diagnosis is confirmed by the markedly decreased a-Gal A activity. However, in female heterozygotes, the a-Gal A activity can range from low t...... on enzyme replacement therapy. Thus, gene dosage analyses can detect large deletions (>50bp) in suspect heterozygotes for X-linked and autosomal dominant diseases that are "sequencing cryptic," resolving molecular diagnostic dilemmas....

  4. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Directory of Open Access Journals (Sweden)

    G.B. Peres

    2014-06-01

    Full Text Available It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old, while 26 age-matched controls received only vehicle. The livers were removed on either the 10th or the 30th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA of cathepsins B and L was also decreased on the 10th, but not on the 30th day. Sulfatase decreased 30% on the 30th day, while glycosidases did not vary (or presented a transitory and slight decrease. There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  5. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Peres, G.B. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Juliano, M.A. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Biofísica, São Paulo, SP, Brasil, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Aguiar, J.A.K.; Michelacci, Y.M. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-05-09

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10{sup th} or the 30{sup th} day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10{sup th}, but not on the 30{sup th} day. Sulfatase decreased 30% on the 30{sup th} day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  6. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    International Nuclear Information System (INIS)

    Peres, G.B.; Juliano, M.A.; Aguiar, J.A.K.; Michelacci, Y.M.

    2014-01-01

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10 th or the 30 th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10 th , but not on the 30 th day. Sulfatase decreased 30% on the 30 th day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver

  7. Color reduction of melanin by lysosomal and peroxisomal enzymes isolated from mammalian cells.

    Science.gov (United States)

    Park, Dong Jun; Sekhon, Simranjeet Singh; Yoon, Jihee; Kim, Yang-Hoon; Min, Jiho

    2016-02-01

    Lysosomes and peroxisomes are organelles with many functions in all eukaryotic cells. Lysosomes contain hydrolytic enzymes (lysozyme) that degrade molecules, whereas peroxisomes contain enzymes such as catalase that convert hydrogen peroxide (H2O2) to water and oxygen and neutralize toxicity. In contrast, melanin is known as a helpful element to protect the skin against harmful ultraviolet rays. However, a high quantity of melanin leads to hyperpigmentation or skin cancer in human. New materials have already been discovered to inhibit tyrosinase in melanogenesis; however, melanin reduction does not suggest their preparation. In this study, we report that the color intensity because of melanin decreased by the cellular activation of lysosomes and peroxisomes. An increase in the superficial intensity of lysosome and peroxisome activities of HeLa cells was observed. In addition, a decrease in the amount of melanin has also been observed in mammalian cells without using any other chemical, showing that the process can work in vivo for treating melanin. Therefore, the results of this study indicate that the amount of melanin decreases by the lysosome and peroxisome activity after entering the cells, and functional organelles are effective in color reduction. This mechanism can be used in vivo for treating melanin.

  8. Methods for Determination of α-Glycosidase, β-Glycosidase, and α-Galactosidase Activities in Dried Blood Spot Samples.

    Science.gov (United States)

    Sozmen, Eser Yıldırım; Sezer, Ebru Demirel

    2017-01-01

    The lysosomal storage diseases (LDSs) are a heterogeneous group of inherited genetic disorders caused by defects of lysosomal proteins. The accumulation of undigested substrates from different catabolic pathways leads to cellular dysfunction. LSDs generally presents during early childhood and have a devastating impact on the families and on public health. Over the years, approaches for treatment of some LSDs have been developed with different strategies. Increasing availability of treatments of these diseases has accelerated the development of new methods and techniques for rapid diagnosis in patients with clinical indication.The use of dried blood spot (DBS) test has been proposed as a first tier test to identify patients with Gaucher, Pompe, and Fabry diseases. DBS usage is advantageous for the purpose of screening as it is non-invasive, sensitive, has low-cost and fast turnaround time compared to measurements in leucocyte and/or fibroblast culture. This chapter focuses on the activity measurement of three lysosomal enzymes (α-glucosidase, β-glucosidase, and α galactosidase) in DBS samples by using fluorescent substrates and by the LC-MS/MS (liquid chromatography-mass spectrometry) method. All steps of the methods, from preparation of the solutions to calculation of the enzyme activity, will be explained in detail.

  9. Functional and structural nerve fiber findings in heterozygote patients with Fabry disease

    DEFF Research Database (Denmark)

    Torvin, Moller A.; Winther, Bach F.; Feldt-Rasmussen, U.

    2009-01-01

    recently disease manifestations in female carriers of Fabry disease have been questioned. To explore the frequency of symptoms and the functional and structural involvement of the nervous system in female patients we examined the presence of pain, manifestations of peripheral neuropathy and nerve density......Fabry disease is an X-linked inherited lysosomal disorder with dysfunction of the lysosomal enzyme alpha-galactosidase A causing accumulation of glycolipids in multiple organs including the nervous system. Pain and somatosensory disturbances are prominent manifestations of this disease. Until...

  10. Thermal inactivation kinetics of β-galactosidase during bread baking

    NARCIS (Netherlands)

    Zhang, L.; Chen, Xiao Dong; Boom, R.M.; Schutyser, M.A.I.

    2017-01-01

    In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during

  11. Treatment of Fabry's Disease with the Pharmacologic Chaperone Migalastat

    DEFF Research Database (Denmark)

    Germain, Dominique P; Hughes, Derralynn A; Nicholls, Kathleen

    2016-01-01

    BACKGROUND: Fabry's disease, an X-linked disorder of lysosomal α-galactosidase deficiency, leads to substrate accumulation in multiple organs. Migalastat, an oral pharmacologic chaperone, stabilizes specific mutant forms of α-galactosidase, increasing enzyme trafficking to lysosomes. METHODS: The...

  12. Activity of enzymes that hydrolyze sucrose and raffinose in the first stages of germination of Lactuca sativa cv. Grand rapids. [Invertase, alpha-galactosidose, and sucrose synthetase were observed

    Energy Technology Data Exchange (ETDEWEB)

    Slabnik, E.; Calderon, P.; Diaz, H.

    1981-01-01

    The activities of enzymes capable of metabolizing raffinose and sucrose on achenes of lettuce were studied. During the first stages of germination, evidence was obtained for the occurrence of invertase in the endosperm and embryonic axis. Alpha-galactosidase was localized in the endosperm and cotyledons. Sucrose synthetase was present in the dry seed.

  13. Effect of 17alpha-ethinylestradiol on activity of rat liver enzymes for synthesis and hydrolysis of cholesterol esters

    International Nuclear Information System (INIS)

    Nikitin, Yu.P.; Dushkin, M.I.; Dolgov, A.V.; Gordienko, I.A.

    1987-01-01

    Administration of estrogens is known to lower the concentration of cholesterol esters in the blood vessel wall and may delay the development of arteriosclerosis. It is also known that under the influence of estrogens the redistribution of concentrations of free cholesterol and cholesterol esters takes place in rats between the blood and liver as a result of the intensification of receptor-dependent uptake of low-density lipoproteins by the hepatocytes. The mechanisms of this intracellular redistribution, however, have been inadequately studied. The purpose of this paper is to study the effects of 17alpha-ethinylestradiol on the activity of lysosomal and cytoplasmic cholesterol esterases, acyl-CoA-cholesterol-O-acyltransferase, lysosomal acid phosphatase, and beta-D-galactosidase. The activity was measured by using cholesterol [1-C 14]-oleate as the substrate. The influence of the estradiol is found to be based on cholesterol redistribution between the blood and liver. Accumulation of free cholesterol in the liver under these conditions stimulates bile acid formation. Depression of cholesterol ester synthesis as a result of direct inhibition of the acyltransferase by the estradiol is found to possibly contribute to the fall in the cholesterol level in the body. Liquid scintillation counting was used to measure distribution and accumulation

  14. Purification of beta-acetylglucosaminase and beta-galactosidase from ram testis.

    Science.gov (United States)

    Caygill, J C; Roston, C P; Jevons, F R

    1966-02-01

    1. The presence of beta-galactosidase (EC 3.2.1.23) in an acetic acid extract of ram testis is reported. Some properties of the crude enzyme preparation were studied. 2. The purification of beta-acetylglucosaminase (EC 3.2.1.30) and of beta-galactosidase from the ram-testis extract by ammonium sulphate precipitation and chromatography on a CM-cellulose column is described. 3. The final purifications of the separated enzymes achieved were for the beta-acetylglucosaminase 35 times and for the beta-galactosidase 99 times. 4. The possibility of using DEAE-cellulose and Sephadex G-200 to purify the enzymes was investigated.

  15. Potential applicaton of β-galactosidase in food science and nutrition

    Directory of Open Access Journals (Sweden)

    Nika ŽIBRAT

    2017-10-01

    Full Text Available β-galactosidase is an enzyme with hydrolytic and transgalactosylation activity. The origin of the enzyme dictates the balance between both activities. Industrially used β-galactosidases are obtained with recombinant production from filamentus funghi Aspergillus sp. and yeasts Kluyveromyces sp. Recently thermostabile β-galactosidases have been subject of many research. The enzyme can be industrially used in free or immobilized form. Immobilization often provides better stability, reusability and lower expenses. Application of β-galactosidase is most common in food processing and nutrition, it is also used in medicine and ecology. Hydrolytic activity of the enzyme has long been used for reducing lactose content in milk, while transgalactosylitic activity is used for synthesis of products such as galactooligosaccharides, lactosucrose and others. The latter have a great potential in food industry for obtaining products with reduced lactose content and increasing of nutritional value by adding dietetic fibers such as galactooligosaccharides. Despite the potential it is vital that reaction mechanisms become better understood and optimization is in place in order to reach the usability of this enzyme at industrial level.

  16. Enzyme activity of β-galactosidase from Kluyveromyces lactis and Aspergillus oryzae on simulated conditions of human gastrointestinal system

    Directory of Open Access Journals (Sweden)

    Alessandra Bosso

    2015-09-01

    Full Text Available An alternative to relieve the symptoms of lactose intolerance is the intake of the enzyme β-galactosidase in pharmaceutical dosage forms. The ability of β-galactosidase produced by Kluyveromyces lactis and Aspergillus oryzae to hydrolyze lactose in simulated conditions of the human gastrointestinal tract was investigated. The experiment was carried out in the optimum temperature for each enzyme activity, 40 and 55°C, respectively, and at the normal human body temperature (37°C at concentrations of 1.5, 3.0, and 5.0 g/L (enzyme from A. oryzae or mL/L (enzyme from K. lactis. Both enzymes were completely inactivated under simulated gastric conditions (pH 2. When the enzymes were subjected to simulated small intestine conditions (pH 7.4, lactose hydrolysis has occurred, but at 37°C the percentage was lower than that under the optimal temperatures. At concentrations of 1.5, 3.0, and 5.0 mL/L the enzyme from K. lactis hydrolyzed 76.63%, 88.91% and 94.80% of lactose at 40°C, and 55.99%, 80.91% and 81.53% at 37°C, respectively. In contrast, the enzyme from A. oryzae hydrolyzed 7.11%, 16.18% and 21.29% at 55°C, and 8.4%, 11.85% and 16.43% at 37°C. It was observed that under simulated intestinal conditions, the enzyme from K. lactis was more effective on lactose hydrolysis as compared to the enzyme from A. oryzae. Considering the findings of this study, it is extremely necessary to use an enteric coating on β-galactosidase capsules so that this enzyme is released only in the small intestine, which is its site of action, thus not suffering the action of the stomach pH.Keywords: Lactase. Hydrolysis. Lactose intolerance. Gastrointestinal tract. RESUMOAtividade de β-galactosidase de Kluyveromyces lactis e Aspergillus oryzae, em condições simuladas do sistema gastrintestinal humanoUma das alternativas para amenizar os sintomas da intolerância à lactose é a ingestão de β-galactosidase em formas farmacêuticas. Neste trabalho avaliou-se a

  17. Potential Applications of Immobilized β-Galactosidase in Food Processing Industries

    Directory of Open Access Journals (Sweden)

    Parmjit S. Panesar

    2010-01-01

    Full Text Available The enzyme β-galactosidase can be obtained from a wide variety of sources such as microorganisms, plants, and animals. The use of β-galactosidase for the hydrolysis of lactose in milk and whey is one of the promising enzymatic applications in food and dairy processing industries. The enzyme can be used in either soluble or immobilized forms but the soluble enzyme can be used only for batch processes and the immobilized form has the advantage of being used in batch wise as well as in continuous operation. Immobilization has been found to be convenient method to make enzyme thermostable and to prevent the loss of enzyme activity. This review has been focused on the different types of techniques used for the immobilization of β-galactosidase and its potential applications in food industry.

  18. Purification of β-acetylglucosaminase and β-galactosidase from ram testis

    Science.gov (United States)

    Caygill, J. C.; Roston, Christine P. J.; Jevons, F. R.

    1966-01-01

    1. The presence of β-galactosidase (EC 3.2.1.23) in an acetic acid extract of ram testis is reported. Some properties of the crude enzyme preparation were studied. 2. The purification of β-acetylglucosaminase (EC 3.2.1.30) and of β-galactosidase from the ram-testis extract by ammonium sulphate precipitation and chromatography on a CM-cellulose column is described. 3. The final purifications of the separated enzymes achieved were for the β-acetylglucosaminase 35 times and for the β-galactosidase 99 times. 4. The possibility of using DEAE-cellulose and Sephadex G-200 to purify the enzymes was investigated. PMID:5949569

  19. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease.

    Science.gov (United States)

    Yi, Haiqing; Sun, Tao; Armstrong, Dustin; Borneman, Scott; Yang, Chunyu; Austin, Stephanie; Kishnani, Priya S; Sun, Baodong

    2017-05-01

    Pompe disease is characterized by accumulation of both lysosomal and cytoplasmic glycogen primarily in skeletal and cardiac muscles. Mannose-6-phosphate receptor-mediated enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) targets the enzyme to lysosomes and thus is unable to digest cytoplasmic glycogen. Studies have shown that anti-DNA antibody 3E10 penetrates living cells and delivers "cargo" proteins to the cytosol or nucleus via equilibrative nucleoside transporter ENT2. We speculate that 3E10-mediated ERT with GAA will target both lysosomal and cytoplasmic glycogen in Pompe disease. A fusion protein (FabGAA) containing a humanized Fab fragment derived from the murine 3E10 antibody and the 110 kDa human GAA precursor was constructed and produced in CHO cells. Immunostaining with an anti-Fab antibody revealed that the Fab signals did not co-localize with the lysosomal marker LAMP2 in cultured L6 myoblasts or Pompe patient fibroblasts after incubation with FabGAA. Western blot with an anti-GAA antibody showed presence of the 150 kDa full-length FabGAA in the cell lysates, in addition to the 95- and 76 kDa processed forms of GAA that were also seen in the rhGAA-treated cells. Blocking of mannose-6-phosphate receptor with mannose-6-phosphate markedly reduced the 95- and the 76 kDa forms but not the 150 kDa form. In GAA-KO mice, FabGAA achieved similar treatment efficacy as rhGAA at an equal molar dose in reducing tissue glycogen contents. Our data suggest that FabGAA retains the ability of rhGAA to treat lysosomal glycogen accumulation and has the beneficial potential over rhGAA to reduce cytoplasmic glycogen storage in Pompe disease. FabGAA can be delivered to both the cytoplasm and lysosomes in cultured cells. FabGAA equally reduced lysosomal glycogen accumulation as rhGAA in GAA-KO mice. FabGAA has the beneficial potential over rhGAA to clear cytoplasmic glycogen. This study suggests a novel antibody-enzyme fusion protein therapy

  20. Lactose Hydrolysis in Milk and Dairy Whey Using Microbial β-Galactosidases

    Directory of Open Access Journals (Sweden)

    Michele Dutra Rosolen

    2015-01-01

    Full Text Available This work aimed at evaluating the influence of enzyme concentration, temperature, and reaction time in the lactose hydrolysis process in milk, cheese whey, and whey permeate, using two commercial β-galactosidases of microbial origins. We used Aspergillus oryzae (at temperatures of 10 and 55°C and Kluyveromyces lactis (at temperatures of 10 and 37°C β-galactosidases, both in 3, 6, and 9 U/mL concentrations. In the temperature of 10°C, the K. lactis β-galactosidase enzyme is more efficient in the milk, cheese whey, and whey permeate lactose hydrolysis when compared to A. oryzae. However, in the enzyme reaction time and concentration conditions evaluated, 100% lactose hydrolysis was not reached using the K. lactis β-galactosidase. The total lactose hydrolysis in whey and permeate was obtained with the A. oryzae enzyme, when using its optimum temperature (55°C, at the end of a 12 h reaction, regardless of the enzyme concentration used. For the lactose present in milk, this result occurred in the concentrations of 6 and 9 U/mL, with the same time and temperature conditions. The studied parameters in the lactose enzymatic hydrolysis are critical for enabling the application of β-galactosidases in the food industry.

  1. β-Galactosidase Deficiency in Colombia

    Directory of Open Access Journals (Sweden)

    Alfredo Uribe PhD

    2015-05-01

    Full Text Available β-Galactosidase (BGal is the first enzyme involved in the catabolism of sphingolipids. Two pathologies have been directly associated with its deficiency: GM1 gangliosidosis and Morquio B. Morquio B is among the rarest types of mucopolysaccharidosis (MPS. We aim to document the β-galactosidase deficiency in Colombia. We evaluated leukocytes from 1492 healthy Colombian individuals and 923 patients, referred between 2005 and August 2014. Dried blood spot (DBS samples from the same number of patients were evaluated. β-Galactosidase was measured with 4-methylumbelliferyl-β- d -galactoside. As a control enzyme, the total hexosaminidase activity was also evaluated. We identified 14 patients with GM1 gangliosidosis, 5 patients with Morquio B, and 1 patient with I-cell disease. We could establish a reference value for Bgal in Colombian leukocyte samples. GM1 gangliosidosis is the main pathology associated with a direct deficiency of BGal. The high number of patients found with MPS IVB indicates that there are patients who could be misdiagnosed due to an unawareness of the disease.

  2. Active-site-directed inactivation of Aspergillus oryzae beta-galactosidase with beta-D-galactopyranosylmethyl-p-nitrophenyltriazene.

    Science.gov (United States)

    Mega, T; Nishijima, T; Ikenaka, T

    1990-04-01

    beta-D-Galactopyranosylmethyl-p-nitrophenyltriazene (beta-GalMNT), a specific inhibitor of beta-galactosidase, was isolated as crystals by HPLC and its chemical and physicochemical characteristics were examined. Aspergillus oryzae beta-galactosidase was inactivated by the compound. We studied the inhibition mechanism in detail. The inhibitor was hydrolyzed by the enzyme to p-nitroaniline and an active intermediate (beta-galactopyranosylmethyl carbonium or beta-galactopyranosylmethyldiazonium), which inactivated the enzyme. The efficiency of inactivation of the enzyme (the ratio of moles of inactivated enzyme to moles of beta-GalMNT hydrolyzed by the enzyme) was 3%; the efficiency of Escherichia coli beta-galactosidase was 49%. In spite of the low efficiency, the rate of inactivation of A. oryzae enzyme was not very different from that of the E. coli enzyme, because the former hydrolyzed beta-GalMNT faster than the latter did. A. oryzae beta-galactosidase was also inactivated by p-chlorophenyl, p-tolyl, and m-nitrophenyl derivatives of beta-galactopyranosylmethyltriazene. However, E. coli beta-galactosidase was not inactivated by these triazene derivatives. The results showed that the inactivation of A. oryzae and E. coli beta-galactosidases by beta-GalMNT was an enzyme-activated and active-site-directed irreversible inactivation. The possibility of inactivation by intermediates produced nonenzymatically was ruled out for E. coli, but not for the A. oryzae enzyme.

  3. Effect of radiotherapy on the activity of lysosomal enzymes in lymphocytes and immunoglobulins in the serum in patients with laryngeal carcinoma

    International Nuclear Information System (INIS)

    Gierek, T.; Lisiewicz, J.; Kusnierczyk, W.; Plich, J.; Sasiadek, U.; Namyslowski, G.

    1980-01-01

    In 30 male patients aged 40 to 70 years treated with radiotherapy for laryngeal carcinoma presence of the lysosomal apparatus of the lymphocytes was observed after 6-9 years, with diffusion of the enzymes (especially beta-glucuronidase and N-acetyl-beta-glucosaminidase, and in a lower degree of acid phosphatase) from the lysosomes into the cytoplasm, and disappearance of normal lysosomal granules. The increased immunological reactivity of the patients was manifested frequently by a rise in the level of immunoglobulins, especially IgA in the serum, and a rise in the number of enzyme-positive lymphocytes (with the above-mentioned enzymes). (author)

  4. Lysosomal processing of sialoglycoconjugates in a wheat germ agglutinin resistant variant of EL4 murine leukemia cells

    International Nuclear Information System (INIS)

    Devino, N.L.

    1989-01-01

    Metabolic studies were undertaken in EL4 murine leukemia in WB6, a wheat germ agglutinin-resistant variant of EL4, in order to identify any differences in lysosomal processing of sialoglyco-conjugates. Five lysosomal acid hydrolases, acetylesterase, acid phosphatase, β-galactosidase, α-mannosidase, and neuraminidase, were studied using fluorescent 4-methylumbelliferyl substrates. No significant differences were found in the total activity of any of these enzymes in EL4 and WB6. Cells were incubated in the presence of N-acetylmannosamine, the metabolic precursor of sialic acid (N-acetylneuraminic acid). Free sialic acid accumulated in the lysosomes of WB6 but not of EL4. The accumulation of lysosomal free sialic acid in WB6 showed a dependence on the concentration of N-acetylmannosamine in the growth medium. Metabolic labelling with [6- 3 H]-N-acetylmannosamine showed that WB6 accumulated lysosomal free sialic acid even at very low concentrations of N-acetylmannosamine. The two cell lines differed in their distribution of radiolabelled neutral sugars, free sialic acid, and sialoglycoproteins. The velocity of 3 H-sialic acid release was 3.7-fold lower in WB6 than in EL4, suggesting that WB6 has a defect in lysosomal sialic acid transport. The metabolic consequences of this defect are examined, in light of other biochemical and immunological data on these cells

  5. Alpha fucosidase and beta galactosidase in serum of a Lyme disease patients as a possible marker of accelerated senescence — a preliminary study

    Directory of Open Access Journals (Sweden)

    Anna Wasiluk

    2012-07-01

    Full Text Available Lyme disease (LD is the most prevalent tick-borne disease in Europe. LD is caused by the spirochete Borrelia burgdorferi. LD is a chronic disease which can attack a number of organs: skin, heart, brain, joints. Chronic, low-grade inflammation involves general production of pro-inflammatory cytokines and inflammatory markers and is a typical feature of aging. So far, the best method of diagnosing LD is a time-consuming and expensive two-stage serological method. The aim of our study was to evaluate the activity of two lysosomal exoglycosidases: α-fucosidase (FUC and β-galactosidase (GAL in the serum of patients with Lyme disease, as potential markers of LD. Due to the increasing number of patients with Lyme disease and a number of false results, new ways to diagnose this disease are still being sought. As elevated level of β-galactosidase is a manifestation of residual lysosomal activity in senescent cells, the increase in its activity in serum during chronic Lyme disease might be a marker of a potentially accelerated senescence process. The study was performed on serum taken from cubital veins of 15 patients with Lyme disease and eight healthy subjects (control group. FUC and GAL activity was measured by the method of Chatterjee et al. as modified by Zwierz et al. In the serum of patients with Lyme disease, GAL activity significantly increased (p = 0.029, and the activity of FUC had a tendency to increase (p = 0.153, compared to the control group. A significant increase in GAL activity in the serum of patients with Lyme disease indicates an increased catabolism of glycoconjugates (glycoproteins, glycolipids, proteoglycans and could be helpful in the diagnosis of Lyme disease, although this requires confirmation in a larger group of patients. As GAL is the most widely used assay for detection of senescent cells, an elevated level of β-galactosidase might be a manifestation of accelerated senescence process in the course of Lyme

  6. Thermal inactivation kinetics of β-galactosidase during bread baking.

    Science.gov (United States)

    Zhang, Lu; Chen, Xiao Dong; Boom, Remko M; Schutyser, Maarten A I

    2017-06-15

    In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during baking at 175 or 205°C. In the wheat flour/water system, the thermostability of β-galactosidase increased with decreased moisture content, and a kinetic model was accurately fitted to the corresponding inactivation data (R 2 =0.99). Interestingly, the residual enzyme activity in the bread crust (about 30%) was hundredfold higher than that in the crumb (about 0.3%) after baking, despite the higher temperature in the crust throughout baking. This result suggested that the reduced moisture content in the crust increased the thermostability of the enzyme. Subsequently, the kinetic model reasonably predicted the enzyme inactivation in the crumb using the same parameters derived from the wheat flour/water system. However, the model predicted a lower residual enzyme activity in the crust compared with the experimental result, which indicated that the structure of the crust may influence the enzyme inactivation mechanism during baking. The results reported can provide a quantitative understanding of the thermal inactivation kinetics of enzyme during baking, which is essential to better retain enzymatic activity in bakery products supplemented with heat-sensitive enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mini review on role of β-galactosidase in lactose intolerance

    Science.gov (United States)

    A, Nivetha; V, Mohanasrinivasan

    2017-11-01

    This review mainly focuses on the role and properties of β-galactosidase in lactose intolerance and its industrial application. β-Galactosidase, hydrolyses the lactose into glucose and galactose and it is most commonly used in food based technology, particularly in the dairy manufacturing industry. This catalyst mainly focus for the improvement of new and novel products with hydrolyzed lactose, which can be appropriate for the lactose-intolerant persons, to improve the technological, texture and scientific properties of non-fermented dairy products. β-Galactosidase derived from the group of saccharides which is a converting enzymes in the family of hydrolases. They are broadly distributed in the several biological living systems. The enzymatic hydrolysis of lactose is also preferred in food based technology due to the low soluble range of lactose. The concentration lactose was found to be high in fermented dairy products such as ice cream, butter, cheese curd, yogurt, etc., can prompt extreme lactose crystallization bringing about items through a coarse, abrasive surface. Lactose hydrolysis in dairy products enhances adaptability also, richness altogether. These products are extra edible. Also for this purpose, the utilization of β-galactosidase enzyme prior to the condensing operation can reduce the lactose content to a point where lactose was no longer a problem industrial application of β-galactosidase. In Industries, due to the positive and constructive effect on intestinal bacterial microflora, different types of applications are possible in β-galactosidase enzyme.

  8. Effects of sub-lethal dose of γ-irradiation on lysosomal enzymes in tissue of pigeon

    International Nuclear Information System (INIS)

    Shah, V.C.; Gadhia, P.K.

    1979-01-01

    Effects of total body γ-irradiation with sub-lethal dose (300 rad) on three lysosomal enzymes namely acid phosphatase, ribonuclease-II and deoxyribonuclease-II have been studied in pigeons. Liver, kidney and spleen were the tissues studied at different intervals like 1-h, 24-h, 48-h, and 72-h of irradiation. The specific activities ('crude' fraction) of acid phosphatase and ribonuclease-II increased significantly in spleen and liver at 48-h of irradiation. The activity of deoxyribonuclease-II in liver and spleen was increased only at 72-h post-irradiation. On the other hand, the total activities of three lysosomal enzymes did not show remarkable change throughout 72-h of irradiation. (author)

  9. Role of Myeloperoxidase Oxidants in the Modulation of Cellular Lysosomal Enzyme Function

    DEFF Research Database (Denmark)

    Ismael, Fahd O; Barrett, Tessa J; Sheipouri, Diba

    2016-01-01

    with the development of atherosclerosis. In this study, we examined the effect of HOCl, HOSCN and LDL pre-treated with these oxidants on the function of lysosomal enzymes responsible for protein catabolism and lipid hydrolysis in murine macrophage-like J774A.1 cells. In each case, the cells were exposed to HOCl...... or HOSCN or LDL pre-treated with these oxidants. Lysosomal cathepsin (B, L and D) and acid lipase activities were quantified, with cathepsin and LAMP-1 protein levels determined by Western blotting. Exposure of J774A.1 cells to HOCl or HOSCN resulted in a significant decrease in the activity of the Cys......-dependent cathepsins B and L, but not the Asp-dependent cathepsin D. Cathepsins B and L were also inhibited in macrophages exposed to HOSCN-modified, and to a lesser extent, HOCl-modified LDL. No change was seen in cathepsin D activity or the expression of the cathepsin proteins or lysosomal marker protein LAMP-1...

  10. High lumenal chloride in the lysosome is critical for lysosome function.

    Science.gov (United States)

    Chakraborty, Kasturi; Leung, KaHo; Krishnan, Yamuna

    2017-07-25

    Lysosomes are organelles responsible for the breakdown and recycling of cellular machinery. Dysfunctional lysosomes give rise to lysosomal storage disorders as well as common neurodegenerative diseases. Here, we use a DNA-based, fluorescent chloride reporter to measure lysosomal chloride in Caenorhabditis elegans as well as murine and human cell culture models of lysosomal diseases. We find that the lysosome is highly enriched in chloride, and that chloride reduction correlates directly with a loss in the degradative function of the lysosome. In nematodes and mammalian cell culture models of diverse lysosomal disorders, where previously only lysosomal pH dysregulation has been described, massive reduction of lumenal chloride is observed that is ~10 3 fold greater than the accompanying pH change. Reducing chloride within the lysosome impacts Ca 2+ release from the lysosome and impedes the activity of specific lysosomal enzymes indicating a broader role for chloride in lysosomal function.

  11. Nucleotide sequence of the melA gene, coding for alpha-galactosidase in Escherichia coli K-12.

    OpenAIRE

    Liljeström, P L; Liljeström, P

    1987-01-01

    Melibiose uptake and hydrolysis in E.coli is performed by the MelB and MelA proteins, respectively. We report the cloning and sequencing of the melA gene. The nucleotide sequence data showed that melA codes for a 450 amino acid long protein with a molecular weight of 50.6 kd. The sequence data also supported the assumption that the mel locus forms an operon with melA in proximal position. A comparison of MelA with alpha-galactosidase proteins from yeast and human origin showed that these prot...

  12. The in vitro synthesis of {beta}-galactosidase induced in a subcellular structure of Escherichia coli (1961); Synthese in vitro de {beta}-galactosidase induite dans une structure subcellulaire d'Escherichia coli (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Nisman, B; Kayser, A; Demailly, J; Genin, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Isopropyl-thio-galactoside (IPTG), an inducer of 3-galactosidase, makes it possible to synthesise this enzyme in vitro with the subcellular structure (P{sub 1}). The enzyme is isolated from the bacteria Escherichia coli K 12 which are inductive but not induced. The incorporation of radioactive amino-acids, which is stimulated by the presence of an inducer, was studied during the course of the enzyme synthesis. Saccharose suppresses the induction of {beta}-galactosidase. The presence of a specific inhibitor in the structure studied is considered. (authors) [French] L'isopropylthiogalactoside (IPTG), inducteur de la 3-galactosidase, permet la synthese in vitro de cette enzyme dans la structure subcellulaire (P{sub 1}) isolee a partir des bacteries d'Escherichia coli K 12, inductibles mais non induites. L'incorporation d'acides amines radioactifs, stimulee par la presence d'inducteur, a ete etudiee au cours de la synthese de l'enzyme. Le saccharose supprime l'induction de la 3-galactosidase. La presence du represseur specifique dans la structure etudiee est consideree. (auteurs)

  13. Comparison of the effects of stimulators and inhibitors of resorption on the release of lysosomal enzymes and radioactive calcium from fetal bone in organ culture

    International Nuclear Information System (INIS)

    Eilon, G.; Raisz, L.G.

    1978-01-01

    The release of lysosomal enzymes, collagenase, and previously incorporated 45 Ca from fetal rat long bones cultured in a chemically defined medium is compared. Parathyroid hormone (PTH) and prostaglandin E 2 increased the release of β-glucuronidase, acetylglucosaminidase, and cathepsin D, but showed little effect on collagenase activity in the medium at 48 h. The dose-response relations for β-glucuronidase and 45 Ca release were similar. However, the increase in lysosomal enzyme release was proportionally greater and occurred earlier than the increase in 45 Ca release. PTH also caused a significant increase in total β-glucuronidase activity in bone plus medium. Several agents which stimulate 45 Ca release at an optimal concentration, but not at a higher concentration, including dibutyryl cAMP, isobutylmethylxanthine, and the calcium ionophore, A23187, all increased lysosomal enzyme release at the concentration which increased 45 Ca release. Three inhibitors of bone resorption (calcitonin, cortisol, and colchicine) blocked lysosomal enzyme release at the same time that 45 Ca release decreased. When the bones escaped from calcitonin inhibition, both 45 Ca and lysosomalenzyme release increased. While colchicine blocked both lysosomal enzymes and 45 CA release, it actually increased the release of bone collagenase, and together with PTH or prostaglandin E 2 caused a large increase in free collagenase activity in the medium. These data indicate that lysosomal enzyme release is closely linked to bone resorption and suggest that lysosomal enzymes may have a primary role in initiating resorption, perhaps by acting on noncollagenous matrix or tissue components before mineral removal and collagen degradation

  14. High lumenal chloride in the lysosome is critical for lysosome function

    Science.gov (United States)

    Chakraborty, Kasturi; Leung, KaHo; Krishnan, Yamuna

    2017-01-01

    Lysosomes are organelles responsible for the breakdown and recycling of cellular machinery. Dysfunctional lysosomes give rise to lysosomal storage disorders as well as common neurodegenerative diseases. Here, we use a DNA-based, fluorescent chloride reporter to measure lysosomal chloride in Caenorhabditis elegans as well as murine and human cell culture models of lysosomal diseases. We find that the lysosome is highly enriched in chloride, and that chloride reduction correlates directly with a loss in the degradative function of the lysosome. In nematodes and mammalian cell culture models of diverse lysosomal disorders, where previously only lysosomal pH dysregulation has been described, massive reduction of lumenal chloride is observed that is ~103 fold greater than the accompanying pH change. Reducing chloride within the lysosome impacts Ca2+ release from the lysosome and impedes the activity of specific lysosomal enzymes indicating a broader role for chloride in lysosomal function. DOI: http://dx.doi.org/10.7554/eLife.28862.001 PMID:28742019

  15. Nano-coating of beta-galactosidase onto the surface of lactose by using an ultrasound-assisted technique

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2010-01-01

    We nano-coated powdered lactose particles with the enzyme beta-galactosidase using an ultrasound-assisted technique. Atomization of the enzyme solution did not change its activity. The amount of surface-attached beta-galactosidase was measured through its enzymatic reaction product D-galactose us......We nano-coated powdered lactose particles with the enzyme beta-galactosidase using an ultrasound-assisted technique. Atomization of the enzyme solution did not change its activity. The amount of surface-attached beta-galactosidase was measured through its enzymatic reaction product D......-galactose using a standardized method. A near-linear increase was obtained in the thickness of the enzyme coat as the treatment proceeded. Interestingly, lactose, which is a substrate for beta-galactosidase, did not undergo enzymatic degradation during processing and remained unchanged for at least 1 month....... Stability of protein-coated lactose was due to the absence of water within the powder, as it was dry after the treatment procedure. In conclusion, we were able to attach the polypeptide to the core particles and determine precisely the coating efficiency of the surface-treated powder using a simple approach....

  16. Thermomyces lanuginosus CBS 395.62/b Strain as Rich Source of α-Galactosidase Enzyme

    Directory of Open Access Journals (Sweden)

    Quang D. Nguyen

    2003-01-01

    Full Text Available Seventeen Thermomyces lanuginosus strains, cultivated on raffinose and sucrose, were ranked on the basis of α-galactosidase activities. T. lanuginosus CBS 395.62/b strain showed the highest α-galactosidase activity on both investigated carbohydrates. Several carbon sources were tested as potential inducers for the α-galactosidase synthesis. On melibiose substrate α-galactosidase activity was higher in the intracellular fraction than in the filtrate of the fermentation broth, although both values were very low and did not reach the value of 1 U/mL. Raffinose, sucrose and Lactosucrose® proved to be inducers for α-galactosidase production. The highest titer (about 30 U/mL was achieved on 1 % sucrose and 0.45 % ammonium acetate. The optimum sucrose and ammonium acetate concentrations, at which about 90 U/mL α-galactosidase activity was reached during an 8-day fermentation, were 3 and 0.9 %, respectively.

  17. Purification of beta-galactosidase from Aspergillus Niger and studies of its kinetics

    International Nuclear Information System (INIS)

    Ali, M.A.A.

    1989-01-01

    The present study was carried out to extract purity and characterize B-galactosidase which was produced by a local strain of the fungus A. Niger. The obtained results were as follows: 1. The extraction of B-galactosidase by the preparation of acetone powder followed by extraction with 0.1M sodium acetate-2m M PMSC buffer, PH 5.0. 2. B-galactosidase was purified by a combination of techniques. The enzyme was purified 113.6 folds with 27% recovery. 3. The isoelectric point of the purified enzyme was 4.6. 7 tabs.; 37 figs.; 67 refs

  18. A hormone pulse induces transient changes in the subcellular distribution and leads to a lysosomal accumulation of the estradiol receptor alpha in target tissues.

    Science.gov (United States)

    Qualmann, B; Kessels, M M; Thole, H H; Sierralta, W D

    2000-06-01

    An intrauterine pulse-stimulation with estradiol induced changes in the subcellular localization of estrogen receptor alpha in porcine endometrium, as detected with F(ab') fragments of various anti-receptor antibodies covalently linked to nanogold. The low-sterically hindered immunoreagents--recognizing different epitopes within the hormone binding domain--allowed for an efficient immunolabeling of estradiol receptor alpha, detecting it both in the cytoplasm and the nucleus of nonstimulated epithelium cells. In the cytoplasm, the receptor often seemed to be associated with actin filaments and the endoplasmatic reticulum. After the stimulation with estradiol, a predominantly nuclear localization and a labeling of nucleoli was observed. Our immunoelectron microscopy study demonstrates a localization of the receptor in cytoplasmic organelles that increased after the hormone pulse. These organelles exhibited the morphological properties of lysosomes and relocated to the perinuclear area. In analogous cytoplasmic organelles, the presence of cathepsin D was detected via indirect immunogold labeling, justifying their classification as lysosomes. Quantitative examinations revealed that not only the number of lysosomes in the proximity of the nucleus but also their immunostaining for estradiol receptor alpha increased significantly after the hormone pulse. Thus, estradiol induces both the rapid shift of receptor into the nucleus, a slower perinuclear accumulation of lysosomes and an increase of lysosomal ERalpha-immunoreactivity. These results suggest a role for lysosomes in the degradation of receptor shuttling out of the nucleus. This could serve as termination of the estradiol receptor alpha-dependent activation of target cells. This hypothesis is strengthened by the fact that the receptor content in uterine tissue declined drastically few hours after the hormone pulse.

  19. Hooked on α-d-galactosidases: from biomedicine to enzymatic synthesis.

    Science.gov (United States)

    Bakunina, Irina Yu; Balabanova, Larissa A; Pennacchio, Angela; Trincone, Antonio

    2016-01-01

    α-d-Galactosidases (EC 3.2.1.22) are enzymes employed in a number of useful bio-based applications. We have depicted a comprehensive general survey of α-d-galactosidases from different origin with special emphasis on marine example(s). The structures of natural α-galactosyl containing compounds are described. In addition to 3D structures and mechanisms of action of α-d-galactosidases, different sources, natural function and genetic regulation are also covered. Finally, hydrolytic and synthetic exploitations as free or immobilized biocatalysts are reviewed. Interest in the synthetic aspects during the next years is anticipated for access to important small molecules by green technology with an emphasis on alternative selectivity of this class of enzymes from different sources.

  20. Lysosomes and radiation injury

    International Nuclear Information System (INIS)

    Watkins, D.K.

    1975-01-01

    Changes in activities of lysosomal enzymes following whole-body treatment with ionizing radiation have long been recognized (e.g., Douglass and Day 1955, Okada et al., 1957). Attempts to explain nuclear damage by cytoplasmic enzyme attack, concentrated most of the earlier work on DNASE II and acid RNASE. Lysosomal enzymes have subsequently been studied in many tissues following whole-body irradiation. The observations coupled with in vitro results from isolated lysosomes, and u.v. and visible light studies on cells in culture, have led to the presentation of tentative mechanisms of action. General methods of detecting lysosomal damage have utilized the consequent activation or leakage of acid hydrolases. As this is of a temporal nature following irradiation, direct damage to the lysosomal membrane has not as yet been measured and the primary lesion either in the membrane itself or at the hypothetical site of acid hydrolase-membrane attachment has still to be discovered. Despite the accumulating evidence of lysosome disruption subsequent to treatment with radiation of various qualities, the role (if any) of these organelles in cell killing remains obscure. In the following pages a review of the many aspects of radiation damage will be presented and an attempt will be made to correlate the results and to draw general conclusions where possible. A final short section will deal with thecontribution that lysosomal damage may make in cell death and tissue injury and possible implications in radiotherapy

  1. Analysis of β-galactosidase production and their genes of two strains of Lactobacillus bulgaricus.

    Science.gov (United States)

    Zhang, Wen; Wang, Chuan; Huang, Cheng-Yu; Yu, Qian; Liu, Heng-Chuan; Zhang, Chao-Wu; Pei, Xiao-Fang; Xu, Xin; Wang, Guo-Qing

    2012-06-01

    A bacterial β-galactosidase delivery system is a potential therapy for lactose intolerance. Currently, two Lactobacillus bulgaricus strains with different biological characteristics are under consideration as potential sources. However, differences in these β-galactosidase genes and their resulting production levels are poorly characterized. The β-galactosidase ORF of L. bulgaricus yogurt isolate had high variability and was terminated at site 1924 due to a stop codon. However, the full 114 kDa β-galactosidase band was still resolved by SDS-PAGE, which may indicate that the interrupted ORF was translated into more than one peptide, and they together were folded into the complete enzyme protein that showed much higher β-galactosidase activity (6.2 U/mg protein) than the enzyme generated from L. bulgaricus reference strain (2.5 U/mg protein).

  2. CNS-directed gene therapy for lysosomal storage diseases

    OpenAIRE

    Sands, Mark S; Haskins, Mark E

    2008-01-01

    Lysosomal storage diseases (LSDs) are a group of inherited metabolic disorders usually caused by deficient activity of a single lysosomal enzyme. As most lysosomal enzymes are ubiquitously expressed, a deficiency in a single enzyme can affect multiple organ systems, including the central nervous system (CNS). At least 75% of all LSDs have a significant CNS component. Approaches such as bone marrow transplantation (BMT) or enzyme replacement therapy (ERT) can effectively treat the systemic dis...

  3. Defects in degradation of blood group A and B glycosphingolipids in Schindler and Fabry diseases.

    NARCIS (Netherlands)

    Asfaw, B.; Ledvinova, J.; Dobrovolny, R.; Bakker, H.; Desnick, R.J.; Diggelen, O.P. van; Jong, J.G.N. de; Kanzaki, T.; Chabas, A.; Maire, I.; Conzelmann, E.; Schindler, D.

    2002-01-01

    Skin fibroblast cultures from patients with inherited lysosomal enzymopathies, alpha-N-acetylgalactosaminidase (alpha-NAGA) and alpha-galactosidase A deficiencies (Schindler and Fabry disease, respectively), and from normal controls were used to study in situ degradation of blood group A and B

  4. Acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase. Evidence for a transmembrane acetylation mechanism

    International Nuclear Information System (INIS)

    Bame, K.J.; Rome, L.H.

    1985-01-01

    The lysosomal membrane enzyme acetyl-CoA: alpha-glucosaminide N-acetyltransferase catalyzes the transfer of an acetyl group from acetyl-CoA to terminal alpha-linked glucosamine residues of heparan sulfate. The reaction mechanism was examined using highly purified lysosomal membranes from rat liver. The reaction was followed by measuring the acetylation of a monosaccharide acetyl acceptor, glucosamine. The enzyme reaction was optimal above pH 5.5, and a 2-3-fold stimulation of activity was observed when the membranes were assayed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicated that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. Further evidence to support this mechanism was provided by characterization of the enzyme half-reactions. Membranes incubated with acetyl-CoA and [ 3 H]CoA were found to produce acetyl-[ 3 H]CoA. This exchange was optimal at pH values above 7.0. Treating membranes with [ 3 H] acetyl-CoA resulted in the formation of an acetyl-enzyme intermediate. The acetyl group could then be transferred to glucosamine, forming [ 3 H]N-acetylglucosamine. The transfer of the acetyl group from the enzyme to glucosamine was optimal between pH 4 and 5. The results suggest that acetyl-CoA does not cross the lysosomal membrane. Instead, the enzyme is acetylated on the cytoplasmic side of the lysosome and the acetyl group is then transferred to the inside where it is used to acetylate heparan sulfate

  5. Genetics Home Reference: GM1 gangliosidosis

    Science.gov (United States)

    ... in the brain. This enzyme is located in lysosomes , which are compartments within cells that break down and recycle different types of molecules. Within lysosomes, β-galactosidase helps break down several molecules, including ...

  6. Future Applications of Apricot (Prunus Armeniaca Kaisa ß Galactosidase in Dairy Industry

    Directory of Open Access Journals (Sweden)

    Ansari Shakeel Ahmed

    2014-09-01

    Full Text Available The present study demonstrates the immobilization of β galactosidase from apricots (Prunus armeniaca kaisa on an inexpensive concanavalin A layered cellulose-alginate hybrid gel. Immobilized β galactosidase retained 78% of the initial activity after crosslinking by glutaraldehyde. It exhibited greater fraction of activity at both acidic and basic pH, and showed broad spectrum temperature optimum as compared to free enzyme. Moreover, immobilized enzyme exhibited higher thermal stability at 60°C and retained 80% of the original enzyme activity in presence of 3% galactose. The crosslinked immobilized enzyme showed improved hydrolysis of lactose from milk and whey in batch processes at 50°C as well as in continuous reactors operated at fl ow rate of 20 mL/h and 30 mL/h even after one month. Moreover, crosslinked adsorbed β galactosidase retained 76% activity even after its sixth repeated use, thereby promoting its use for lactose hydrolysis in various dairy products even for longer durations.

  7. Divergent clinical outcomes of alpha-glucosidase enzyme replacement therapy in two siblings with infantile-onset Pompe disease treated in the symptomatic or pre-symptomatic state

    OpenAIRE

    Matsuoka, Takashi; Miwa, Yoshiyuki; Tajika, Makiko; Sawada, Madoka; Fujimaki, Koichiro; Soga, Takashi; Tomita, Hideshi; Uemura, Shigeru; Nishino, Ichizo; Fukuda, Tokiko; Sugie, Hideo; Kosuga, Motomichi; Okuyama, Torayuki; Umeda, Yoh

    2016-01-01

    Pompe disease is an autosomal recessive, lysosomal glycogen storage disease caused by acid ?-glucosidase deficiency. Infantile-onset Pompe disease (IOPD) is the most severe form and is characterized by cardiomyopathy, respiratory distress, hepatomegaly, and skeletal muscle weakness. Untreated, IOPD generally results in death within the first year of life. Enzyme replacement therapy (ERT) with recombinant human acid alpha glucosidase (rhGAA) has been shown to markedly improve the life expectan...

  8. Adsorption of β-galactosidase on silica and aluminosilicate adsorbents

    Science.gov (United States)

    Atyaksheva, L. F.; Dobryakova, I. V.; Pilipenko, O. S.

    2015-03-01

    It is shown that adsorption of β-galactosidase of Aspergillus oryzae fungi on mesoporous and biporous silica and aluminosilicate adsorbents and the rate of the process grow along with the diameter of the pores of the adsorbent. It is found that the shape of the adsorption isotherms changes as well, depending on the texture of the adsorbent: the Michaelis constant rises from 0.3 mM for the enzyme in solution to 0.4-0.5 mM for the enzyme on a surface in the hydrolysis of o-nitrophenyl-β-D-galactopyranoside. It is concluded that β-galactosidase displays its maximum activity on the surface of biporous adsorbents.

  9. Correction of lysosomal enzyme deficiency in various organs of beta-glucuronidase-deficient mice by allogeneic bone marrow transplantation

    NARCIS (Netherlands)

    Hoogerbrugge, P. M.; Poorthuis, B. J.; Mulder, A. H.; Wagemaker, G.; Dooren, L. J.; Vossen, J. M.; van Bekkum, D. W.

    1987-01-01

    The correction of lysosomal enzyme deficiency was investigated for various organs of beta-glucuronidase-deficient C3H/Rij mice after allogeneic bone marrow transplantation from an enzymatically normal donor strain (C57BL/Rij). In the hemopoietic organs, the enzyme level increased to levels found in

  10. Hydrolysis of lactose with -D-galactosidase

    Directory of Open Access Journals (Sweden)

    Vesna Stehlik-Tomas

    2001-06-01

    Full Text Available The conditions of lactose hydrolysis with enzyme preparation of D-galactosidase were investigated. The aim of this work was to considered the use of whey in fermentative processes with yeast Saccharomyces cerevisiae. Enzymatic hydrolysis was conducted at different temperatures, with different lactose concentrations in medium and different concentrations of added enzyme. The results show that optimal temperature for hydrolysis was 40°C. The optimal amount of enzyme preparation was 2 gL-1 in lactose medium with 5-10 % lactose.

  11. Melibiose permease and alpha-galactosidase of Escherichia coli: Identification by selective labeling using a T7 RNA polymerase/promoter expression system

    International Nuclear Information System (INIS)

    Pourcher, T.; Bassilana, M.; Sarkar, H.K.; Kaback, H.R.; Leblanc, G.

    1990-01-01

    Identification and selective labeling of the melibiose permease and alpha-galactosidase in Escherichia coli, which are encoded by the melB and melA genes, respectively, have been accomplished by selectively labeling the two gene products with a T7 RNA polymerase expression system. Following generation of a novel EcoRI restriction site in the intergenic sequence between the two genes of the mel operon by oligonucleotide-directed, site-specific mutagenesis, melA and melB were separately inserted into plasmid pT7-6 of the T7 expression system. Expression of melB was markedly enhanced by placing a strong, synthetic ribosome binding site at an optimal distance upstream from the initiation codon of melB. Expression of cloned gene products was characterized functionally and by performing autoradiographic analysis on total cell, inner membrane, and cytoplasmic proteins from cells pulse labeled with (35S)methionine in the presence of rifampicin and resolved by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The results first confirm that alpha-galactosidase is a cytoplasmic protein with an Mr of 50K; in contrast, the membrane-bound melibiose permease is identified as a protein with an apparent Mr of 39K, a value significantly higher than that of 30K previously suggested

  12. Structure of .beta.-galactosidase complexes

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan; Skálová, Tereza; Dušková, Jarmila; Petroková, Hana; Hašek, Jindřich; Lipovová, P.; Spiwok, V.; Strnad, Hynek; Králová, B.

    2006-01-01

    Roč. 13, č. 3 (2006), s. 137-138 ISSN 1211-5894. [Czech and Slovak Crystallographic Colloquium. 22.06.2006-24.06.2006, Grenoble] R&D Projects: GA AV ČR KJB500500512 Keywords : .beta.-galactosidase * X-ray diffraction * cold-active enzyme Subject RIV: EB - Genetics ; Molecular Biology http://www. xray .cz/ms/default.htm

  13. Functional analysis of variant lysosomal acid glycosidases of Anderson-Fabry and Pompe disease in a human embryonic kidney epithelial cell line (HEK 293 T).

    Science.gov (United States)

    Ebrahim, Hatim Y; Baker, Robert J; Mehta, Atul B; Hughes, Derralynn A

    2012-03-01

    The functional significance of missense mutations in genes encoding acid glycosidases of lysosomal storage disorders (LSDs) is not always clear. Here we describe a method of investigating functional properties of variant enzymes in vitro using a human embryonic kidney epithelial cell line. Site-directed mutagenesis was performed on the parental plasmids containing cDNA encoding for alpha-galactosidase A (α-Gal A) and acid maltase (α-Glu) to prepare plasmids encoding relevant point mutations. Mutant plasmids were transfected into HEK 293 T cells, and transient over-expression of variant enzymes was measured after 3 days. We have illustrated the method by examining enzymatic activities of four unknown α-Gal A and one α-Glu variants identified in our patients with Anderson-Fabry disease and Pompe diseases respectively. Comparison with control variants known to be either pathogenic or non-pathogenic together with over-expression of wild-type enzyme allowed determination of the pathogenicity of the mutation. One leader sequence novel variant of α-Gal A (p.A15T) was shown not to significantly reduce enzyme activity, whereas three other novel α-Gal A variants (p.D93Y, p.L372P and p.T410I) were shown to be pathogenic as they resulted in significant reduction of enzyme activity. A novel α-Glu variant (p.L72R) was shown to be pathogenic as this significantly reduced enzyme activity. Certain acid glycosidase variants that have been described in association with late-onset LSDs and which are known to have variable residual plasma and leukocyte enzyme activity in patients appear to show intermediate to low enzyme activity (p.N215S and p.Q279E α-Gal A respectively) in the over-expression system.

  14. Impact of cysteine variants on the structure, activity, and stability of recombinant human α-galactosidase A

    Science.gov (United States)

    Qiu, Huawei; Honey, Denise M; Kingsbury, Jonathan S; Park, Anna; Boudanova, Ekaterina; Wei, Ronnie R; Pan, Clark Q; Edmunds, Tim

    2015-01-01

    Recombinant human α-galactosidase A (rhαGal) is a homodimeric glycoprotein deficient in Fabry disease, a lysosomal storage disorder. In this study, each cysteine residue in rhαGal was replaced with serine to understand the role each cysteine plays in the enzyme structure, function, and stability. Conditioned media from transfected HEK293 cells were assayed for rhαGal expression and enzymatic activity. Activity was only detected in the wild type control and in mutants substituting the free cysteine residues (C90S, C174S, and the C90S/C174S). Cysteine-to-serine substitutions at the other sites lead to the loss of expression and/or activity, consistent with their involvement in the disulfide bonds found in the crystal structure. Purification and further characterization confirmed that the C90S, C174S, and the C90S/C174S mutants are enzymatically active, structurally intact and thermodynamically stable as measured by circular dichroism and thermal denaturation. The purified inactive C142S mutant appeared to have lost part of its alpha-helix secondary structure and had a lower apparent melting temperature. Saturation mutagenesis study on Cys90 and Cys174 resulted in partial loss of activity for Cys174 mutants but multiple mutants at Cys90 with up to 87% higher enzymatic activity (C90T) compared to wild type, suggesting that the two free cysteines play differential roles and that the activity of the enzyme can be modulated by side chain interactions of the free Cys residues. These results enhanced our understanding of rhαGal structure and function, particularly the critical roles that cysteines play in structure, stability, and enzymatic activity. PMID:26044846

  15. Optimization of β-galactosidase production from lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Carević Milica

    2015-01-01

    Full Text Available β-galactosidase, commonly known as lactase, represents commercially important enzyme that is prevalently used for lactose hydrolysis in milk and whey. To the date, it has been isolated from various sources. In this study different strains of lactic acid bacteria were assessed for their β-galactosidase productivity, and Lactobacillus acidophilus ATCC 4356 resulted with the highest production potential. Thereafter, optimal conditions for accomplishing high yields of β-galactosidase activity were determined. Maximal specific activity (1.01 IU mL-1 was accomplished after 2 days shake flask culture fermentation (150 rpm at 37ºC, with modified Man Rogosa Sharpe culture broth using lactose (2.5% as sole carbon source. Finally, in order to intensify release of intracellular β-galactosidase different mechanical and chemical methods were conducted. Nevertheless, vortexing with quartz sand (150 μm as abrasive was proven to be the most efficient method of cell disruption. The optimum temperature of obtained β-galactosidase was 45°C and the optimum range pH 6.5-7.5.

  16. The catalytic properties and stability of β-galactosidases from fungi

    Science.gov (United States)

    Pilipenko, O. S.; Atyaksheva, L. F.; Poltorak, O. M.; Chukhrai, E. S.

    2008-12-01

    The catalytic activity of β-galactosidases from fungi Penicillium canescens and Aspergillus oryzae is maximum in a weakly acidic medium and does not depend on the presence of magnesium cations in the reaction medium. The enzyme from Aspergillus oryzae fungi is more active, and that from Penicillium canescens is stabler. One of stability indications is the presence of an induction period in the kinetic curves of thermal inactivation. This period disappears at 54°C for the enzyme from Aspergillus oryzae and at 59°C for the enzyme from Penicillium canescens. The temperature dependences of the effective rate constants for the inactivation of the tetrameric enzyme from Penicillium canescens show that the main reason for enzyme inactivation is the dissociation of oligomeric forms below 66°C ( E act = 85 kJ/mol) and enzyme denaturation at higher temperatures ( E act = 480 kJ/mol). The dissociation stage is absent for monomeric β-galactosidase from Aspergillus oryzae fungi, and the activation energy of inactivation is 450 kJ/mol over the whole temperature range studied (53-60°C).

  17. Kinetic Properties of α-Galactosidase and the Localization of Total Proteins in Erwinia chrysanthemi

    Directory of Open Access Journals (Sweden)

    John Morgan Brand

    2004-01-01

    Full Text Available Erwinia chrysanthemi is an enterobacterium that causes soft-rot in plants in general, resulting in enormous economic losses annually. For the pathogen to survive in the host plant, it has to use the readily assimilable compounds from the host fluids and degrade the host tissue. To accomplish this, E. chrysanthemi produces several extracellular and intracellular enzymes. Among the intracellular enzymes there is a special digestive class, the galactosidases, which can be either periplasmic or cytoplasmic. α-Galactosidase is known to degrade melibiose and raffinose into glucose and galactose, and into galactose and sucrose respectively. The aim of the present study was to investigate the kinetic properties of α-galactosidase in E. chrysanthemi, and the localization of total proteins, after culturing it in the presence of raffinose and melibiose. The α-galactosidase that degrades melibiose seems to be the same enzyme that is also responsible for the breakdown of raffinose in E. chrysanthemi. It is localized mainly in the cytoplasm with a fraction of between 2.4 and 5.4 % localized in the periplasm. The majority of E. chrysanthemi proteins have cytoplasmic localization.

  18. [Application of lysosomal detection in marine pollution monitoring: research progress].

    Science.gov (United States)

    Weng, You-Zhu; Fang, Yong-Qiang; Zhang, Yu-Sheng

    2013-11-01

    Lysosome is an important organelle existing in eukaryotic cells. With the development of the study on the structure and function of lysosome in recent years, lysosome is considered as a target of toxic substances on subcellular level, and has been widely applied abroad in marine pollution monitoring. This paper summarized the biological characteristics of lysosomal marker enzyme, lysosome-autophagy system, and lysosomal membrane, and introduced the principles and methods of applying lysosomal detection in marine pollution monitoring. Bivalve shellfish digestive gland and fish liver are the most sensitive organs for lysosomal detection. By adopting the lysosomal detection techniques such as lysosomal membrane stability (LMS) test, neutral red retention time (NRRT) assay, morphological measurement (MM) of lysosome, immunohistochemical (Ih) assay of lysosomal marker enzyme, and electron microscopy (EM), the status of marine pollution can be evaluated. It was suggested that the lysosome could be used as a biomarker for monitoring marine environmental pollution. The advantages and disadvantages of lysosomal detection and some problems worthy of attention were analyzed, and the application prospects of lysosomal detection were discussed.

  19. Extraction, Purification and Thermodynamic Characterization of Almond (Amygdalus communis β-Galactosidase for the Preparation of Delactosed Milk

    Directory of Open Access Journals (Sweden)

    Melita Lobo

    2013-01-01

    Full Text Available Buffer type, pH and ionic strength, as well as the fraction of polyvinylpyrrolidone were optimized for efficient extraction of β-galactosidase from almond seeds. The enzyme was purified up to electrophoretic homogeneity employing (NH42SO4 (15–60 % fractionation, size exclusion and ion-exchange chromatography. Molecular mass of β-galactosidase as estimated by gel filtration and SDS-PAGE was approx. 62 kDa, confirming its monomeric nature. The optimum activity of the enzyme was at pH=5.5, and it was stable within the range of pH=5.0–6.0. Various kinetic parameters of β-galactosidase thermal inactivation were calculated: ΔH°, ΔS° and ΔG° suggested that the enzyme undergoes significant processes of unfolding during denaturation. Using β-galactosidase from almond seed powder, lactose hydrolysis in milk up to approx. 50 % was observed. The findings indicate the potential use of almond seeds for the production of low/delactosed milk for lactose-intolerant population.

  20. Cellular Uptake and Delivery of Myeloperoxidase to Lysosomes Promote Lipofuscin Degradation and Lysosomal Stress in Retinal Cells*

    Science.gov (United States)

    Yogalingam, Gouri; Lee, Amanda R.; Mackenzie, Donald S.; Maures, Travis J.; Rafalko, Agnes; Prill, Heather; Berguig, Geoffrey Y.; Hague, Chuck; Christianson, Terri; Bell, Sean M.; LeBowitz, Jonathan H.

    2017-01-01

    Neutrophil myeloperoxidase (MPO) catalyzes the H2O2-dependent oxidation of chloride anion to generate hypochlorous acid, a potent antimicrobial agent. Besides its well defined role in innate immunity, aberrant degranulation of neutrophils in several inflammatory diseases leads to redistribution of MPO to the extracellular space, where it can mediate tissue damage by promoting the oxidation of several additional substrates. Here, we demonstrate that mannose 6-phosphate receptor-mediated cellular uptake and delivery of MPO to lysosomes of retinal pigmented epithelial (RPE) cells acts to clear this harmful enzyme from the extracellular space, with lysosomal-delivered MPO exhibiting a half-life of 10 h. Lysosomal-targeted MPO exerts both cell-protective and cytotoxic functions. From a therapeutic standpoint, MPO catalyzes the in vitro degradation of N-retinylidene-N-retinylethanolamine, a toxic form of retinal lipofuscin that accumulates in RPE lysosomes and drives the pathogenesis of Stargardt macular degeneration. Furthermore, chronic cellular uptake and accumulation of MPO in lysosomes coincides with N-retinylidene-N-retinylethanolamine elimination in a cell-based model of macular degeneration. However, lysosomal-delivered MPO also disrupts lysosomal acidification in RPE cells, which coincides with nuclear translocation of the lysosomal stress-sensing transcription factor EB and, eventually, cell death. Based on these findings we predict that under periods of acute exposure, cellular uptake and lysosomal degradation of MPO mediates elimination of this harmful enzyme, whereas chronic exposure results in progressive accumulation of MPO in lysosomes. Lysosomal-accumulated MPO can be both cell-protective, by promoting the degradation of toxic retinal lipofuscin deposits, and cytotoxic, by triggering lysosomal stress and cell death. PMID:28115520

  1. Cellular Uptake and Delivery of Myeloperoxidase to Lysosomes Promote Lipofuscin Degradation and Lysosomal Stress in Retinal Cells.

    Science.gov (United States)

    Yogalingam, Gouri; Lee, Amanda R; Mackenzie, Donald S; Maures, Travis J; Rafalko, Agnes; Prill, Heather; Berguig, Geoffrey Y; Hague, Chuck; Christianson, Terri; Bell, Sean M; LeBowitz, Jonathan H

    2017-03-10

    Neutrophil myeloperoxidase (MPO) catalyzes the H 2 O 2 -dependent oxidation of chloride anion to generate hypochlorous acid, a potent antimicrobial agent. Besides its well defined role in innate immunity, aberrant degranulation of neutrophils in several inflammatory diseases leads to redistribution of MPO to the extracellular space, where it can mediate tissue damage by promoting the oxidation of several additional substrates. Here, we demonstrate that mannose 6-phosphate receptor-mediated cellular uptake and delivery of MPO to lysosomes of retinal pigmented epithelial (RPE) cells acts to clear this harmful enzyme from the extracellular space, with lysosomal-delivered MPO exhibiting a half-life of 10 h. Lysosomal-targeted MPO exerts both cell-protective and cytotoxic functions. From a therapeutic standpoint, MPO catalyzes the in vitro degradation of N -retinylidene- N -retinylethanolamine, a toxic form of retinal lipofuscin that accumulates in RPE lysosomes and drives the pathogenesis of Stargardt macular degeneration. Furthermore, chronic cellular uptake and accumulation of MPO in lysosomes coincides with N -retinylidene- N -retinylethanolamine elimination in a cell-based model of macular degeneration. However, lysosomal-delivered MPO also disrupts lysosomal acidification in RPE cells, which coincides with nuclear translocation of the lysosomal stress-sensing transcription factor EB and, eventually, cell death. Based on these findings we predict that under periods of acute exposure, cellular uptake and lysosomal degradation of MPO mediates elimination of this harmful enzyme, whereas chronic exposure results in progressive accumulation of MPO in lysosomes. Lysosomal-accumulated MPO can be both cell-protective, by promoting the degradation of toxic retinal lipofuscin deposits, and cytotoxic, by triggering lysosomal stress and cell death. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Purification of microbial b-galactosidase from Kluyveromyces fragilis by bioaffinity partitioning Purificação de b-galactosidase de Kluyveromyces fragilis por partição por bioafinidade

    Directory of Open Access Journals (Sweden)

    Maria Estela da Silva

    1999-12-01

    Full Text Available This work investigated the partitioning of b-galactosidase from Kluyveromyces fragilis in aqueous two-phase systems (ATPS by bioaffinity. PEG 4000 was chemically activated with thresyl chloride, and the biospecific ligand p-aminophenyl 1-thio-b-D-galactopyranoside (APGP was attached to the activated PEG 4000. A new two-step method for extraction and purification of the enzyme b-galactosidase from Kluyveromyces fragilis was developed. In the first step, a system composed of 6% PEG 4000-APGP and 8% dextran 505 was used, where b-galactosidase was strongly partitioned to the top phase (K = 2,330. In the second step, a system formed of 13% PEG-APGP and 9% phosphate salt was used to revert the value of the partition coefficient of b-galactosidase (K = 2 x 10-5 in order to provide the purification and recovery of 39% of the enzyme in the bottom salt-rich phase.Foi desenvolvido um método novo de extração e purificação da ß-galactosidase de Kluyveromyces fragilis em sistema de duas fases aquosas (SDFA. PEG 4000 foi ativado quimicamente com cloreto de tresila e o ligante bioespecífico p-aminofenil-ß-D-tiogalactopiranosídeo (APGP foi acoplado ao PEG 4000 ativado. Na primeira etapa foi usado um sistema composto de 6% PEG-APGP e 8% dextrana 505, onde a partição da ß-galactosidase ocorreu na fase superior (K = 2.330. Na segunda etapa foi usado um sistema composto por 13% PEG-APGP e 9% fosfato para reverter o valor do coeficiente de partição da ß-galactosidase (K = 2,2 x 10-5, obtendo-se recuperação de 39% da enzima na fase salina.

  3. Fabry's disease: biochemical and histochemical studies on hair roots for carrier detection.

    Science.gov (United States)

    Vermorken, A J; Weterings, P J; Spierenburg, G T; vanBennekom, C A; Wirtz, P; deBruyn, C H; Oei, T L

    1978-02-01

    A method of assay alpha-galactosidase and acid phosphatase activities in single hair roots is described. Enzyme histochemical studies show that the distribution of acid phosphatase in the human hair root matches that of alpha-galactosidase. Histochemically, the main activity is located in the upper part of the sheath near the orifice of the duct of the sebaceous gland. This is confirmed by enzyme assays on different parts of the hair root after dissection. The variation in the values found in individual hair roots is improved by relating alpha-galactosidase to acid phosphatase activities. Storage experiments indicate a remarkable stability of both alpha-galactosidase and acid phosphatase in human hair roots.

  4. Purification and chemical characterisation of a cell wall-associated β-galactosidase from mature sweet cherry (Prunus avium L.) fruit.

    Science.gov (United States)

    Gerardi, Carmela; Blando, Federica; Santino, Angelo

    2012-12-01

    Using four different chromatographic steps, β-galactosidase was purified from the ripe fruit of sweet cherry to apparent electrophoretic homogeneity with approximately 131-fold purification. The Prunus avium β-galactosidase showed an apparent molecular mass of about 100 kDa and consisted of four different active polypeptides with pIs of about 7.9, 7.4, 6.9 and 6.4 as estimated by native IEF and β-galactosidase-activity staining. The active polypeptides were individually excised from the gel and subjected to SDS-PAGE. Each of the four native enzymes showing β-galactosidase activity was composed of two polypeptides with an estimated mass of 54 and 33 kDa. Both of these polypeptides were subjected to N-terminal amino acid sequence analysis. The 54 kDa polypeptide of sweet cherry β-galactosidase showed a 43% identity with the 44 kDa subunit of persimmon and apple β-galactosidases and the 48 kDa subunit of carambola galactosidase I. The sweet cherry β-galactosidase exhibited a strict specificity towards p-nitrophenyl β-D-galactopyranoside, a pH optimum of 4.0 and K(m) and V(max) values of 0.42 mM and 4.12 mmol min(-1) mg(-1) of protein respectively with this substrate. The enzyme was also active towards complex glycans. Taken together the results of this study prompted a role for this class of enzymes on sweet cherry fruit ripening and softening. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  5. Effects of ambroxol on the autophagy-lysosome pathway and mitochondria in primary cortical neurons.

    Science.gov (United States)

    Magalhaes, J; Gegg, M E; Migdalska-Richards, A; Schapira, A H

    2018-01-23

    Glucocerebrosidase (GBA1) mutations are the major genetic risk factor for Parkinson's Disease (PD). The pathogenic mechanism is still unclear, but alterations in lysosomal-autophagy processes are implicated due to reduction of mutated glucocerebrosidase (GCase) in lysosomes. Wild-type GCase activity is also decreased in sporadic PD brains. Small molecule chaperones that increase lysosomal GCase activity have potential to be disease-modifying therapies for GBA1-associated and sporadic PD. Therefore we have used mouse cortical neurons to explore the effects of the chaperone ambroxol. This chaperone increased wild-type GCase mRNA, protein levels and activity, as well as increasing other lysosomal enzymes and LIMP2, the GCase transporter. Transcription factor EB (TFEB), the master regulator of the CLEAR pathway involved in lysosomal biogenesis was also increased upon ambroxol treatment. Moreover, we found macroautophagy flux blocked and exocytosis increased in neurons treated with ambroxol. We suggest that ambroxol is blocking autophagy and driving cargo towards the secretory pathway. Mitochondria content was also found to be increased by ambroxol via peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α). Our data suggest that ambroxol, besides being a GCase chaperone, also acts on other pathways, such as mitochondria, lysosomal biogenesis, and the secretory pathway.

  6. Three-dimensional immobilization of beta-galactosidase on a silicon surface.

    Science.gov (United States)

    Betancor, Lorena; Luckarift, Heather R; Seo, Jae H; Brand, Oliver; Spain, Jim C

    2008-02-01

    Many alternative strategies to immobilize and stabilize enzymes have been investigated in recent years for applications in biosensors. The entrapment of enzymes within silica-based nanospheres formed through silicification reactions provides high loading capacities for enzyme immobilization, resulting in high volumetric activity and enhanced mechanical stability. Here we report a strategy for chemically associating silica nanospheres containing entrapped enzyme to a silicon support. beta-galactosidase from E. coli was used as a model enzyme due to its versatility as a biosensor for lactose. The immobilization strategy resulted in a three-dimensional network of silica attached directly at the silicon surface, providing a significant increase in surface area and a corresponding 3.5-fold increase in enzyme loading compared to enzyme attached directly at the surface. The maximum activity recovered for a silicon square sample of 0.5 x 0.5 cm was 0.045 IU using the direct attachment of the enzyme through glutaraldehyde and 0.16 IU when using silica nanospheres. The immobilized beta-galactosidase prepared by silica deposition was stable and retained more than 80% of its initial activity after 10 days at 24 degrees C. The ability to generate three-dimensional structures with enhanced loading capacity for biosensing molecules offers the potential to substantially amplify biosensor sensitivity. (c) 2007 Wiley Periodicals, Inc.

  7. The in vitro synthesis of β-galactosidase induced in a subcellular structure of Escherichia coli (1961)

    International Nuclear Information System (INIS)

    Nisman, B.; Kayser, A.; Demailly, J.; Genin, C.

    1961-01-01

    Isopropyl-thio-galactoside (IPTG), an inducer of 3-galactosidase, makes it possible to synthesise this enzyme in vitro with the subcellular structure (P 1 ). The enzyme is isolated from the bacteria Escherichia coli K 12 which are inductive but not induced. The incorporation of radioactive amino-acids, which is stimulated by the presence of an inducer, was studied during the course of the enzyme synthesis. Saccharose suppresses the induction of β-galactosidase. The presence of a specific inhibitor in the structure studied is considered. (authors) [fr

  8. Alfa-Galactosidases and their applications in biotransformations

    Czech Academy of Sciences Publication Activity Database

    Weignerová, Lenka; Simerská, Pavla; Křen, Vladimír

    2009-01-01

    Roč. 27, č. 2 (2009), s. 79-89 ISSN 1024-2422 R&D Projects: GA MŠk(CZ) LC06010; GA ČR GA203/05/0172 Institutional research plan: CEZ:AV0Z50200510 Keywords : -Galactosidase * enzyme * transglycosylation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.017, year: 2009

  9. CARBOXYLATION OF SILVER NANOPARTICLES FOR THE IMMOBILIZATION OF β-GALACTOSIDASE AND ITS EFFICACY IN GALACTO-OLIGOSACCHARIDES PRODUCTION

    Directory of Open Access Journals (Sweden)

    Shakeel Ahmed Ansari

    2015-03-01

    Full Text Available The present study investigated the carboxylation of silver nanoparticles (AgNPs by 1:3 nitric acid-sulfuric acid mixtures for immobilizing Aspergillus oryzae β-galactosidase. Carboxylated AgNPs retained 93% enzyme upon immobilization and the enzyme did not leach out appreciably from the modified nanosupport in the presence of 100 mmol L-1 NaCl. Atomic force micrograph revealed the binding of β-galactosidase on the modified AgNPs. The optimal pH for soluble and carboxylated AgNPs adsorbed β-galactosidase (IβG was observed at pH 4.5 while the optimal operating temperature was broadened from 50 ºC to 60 ºC for IβG. Michaelis constant, Km was increased two and a half fold for IβG while Vmax decreases slightly as compared to soluble enzyme. β-galactosidase immobilized on surface functionalized AgNPs retained 70% biocatalytic activity even at 4% galactose concentration as compared to enzyme in solution. Our study showed that IβG produces greater amount of galacto-oligosaccharides at higher temperatures (50 ºC and 60 ºC from 0.1 mol L-1 lactose solution at pH 4.5 as compared to previous reports.

  10. Production and Characterization of α-Galactosidase by a Multiple Mutant of Aspergillus niger in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Muhammad Siddique Awan

    2009-01-01

    Full Text Available α-Galactosidase is applied in the sugar industry to enhance sugar recovery from sugar beet syrup and to improve nutritional value of the soymilk. In the present investigation, the influence of process variables on the production of this important enzyme has been explored in a newly isolated multiple mutant strain of Aspergillus niger in solid-state fermentation (SSF. Defined fermentation parameters include substrate type (pure lactose and by-products of rice and flour mills as prime substrates, nitrogen source, incubation time, initial pH of the medium and incubation temperature. Extracellular α-galactosidase reached the value of 135.4 IU/g of dry substrate (IU/g after 96 h of fermentation. Supplementation with 2 g of glucose and 3 g of corn steep liquor significantly increased the enzyme production, and maximum value of product yield (318 IU/g by the mutant strain was significantly higher than that reported by the wild type (this work, or other A. niger mutants, recombinants and yeasts reported in literature as producers of elevated levels of α-galactosidase. Among three α-galactosidases, one possessing high subunit molecular mass proteins (99 and 100 kDa has been characterized in both wild and mutant organisms. Thermal properties of the purified enzymes indicate that the mutation decreased the values of activation energy for the formation of enzyme-substrate (ES complex, enthalpy, Gibbs free energy demand for substrate binding, and transition state stabilization. A thermodynamic study of irreversible inactivation of enzymes suggests that the mutant–derived enzyme is more thermostable than the native enzyme, which is attributable to amino acids involved in active catalysis. Because of these properties, the mutant organism is a novel organism and may be exploited for bulk production of thermostable α-galactosidase for the above industrial and nutritional applications.

  11. β-galactosidase from Aspergillus lacticoffeatus: A promising biocatalyst for the synthesis of novel prebiotics.

    Science.gov (United States)

    Cardoso, Beatriz B; Silvério, Sara C; Abrunhosa, Luís; Teixeira, José A; Rodrigues, Lígia R

    2017-09-18

    β-galactosidase (EC 3.2.1.23) are interesting enzymes able to catalyze lactose hydrolysis and transfer reactions to produce lactose-based prebiotics with potential application in the pharmaceutical and food industry. In this work, Aspergillus lacticoffeatus is described, for the first time, as an effective β-galactosidase producer. The extracellular enzyme production was evaluated in synthetic and alternative media containing cheese whey and corn steep liquor. Although β-galactosidase production occurred in all media (expect for the one composed solely by cheese whey), the highest enzymatic activity values (460U/mL) were obtained for the synthetic medium. Ochratoxin A production in synthetic medium was also evaluated and 9days of fermentation was identified as a suitable fermentation time to obtain a crude extract enzyme with mycotoxin concentration below the legal comparable value established for wine and grape juices (2ng/mL). The optimal pH and temperature for the crude extract enzyme was found in the range of 3.5-4.5 and 50-60°C, respectively. The β-galactosidase activity was reduced in the presence of Ba 2+ , Fe 2+ , Li + , K + and galactose, while additives (except for ascorbic acid) and detergents exhibited a positive effect on enzymatic activity. This enzyme was able to catalyze the synthesis of prebiotics, namely lactulose (2.5g/L) and a galacto-oligosaccharide (trisaccharide, 6.3g/L), either when whole cells or crude enzyme was used as biocatalyst. The lactulose production using fungal whole cells is herein reported for the first time. Additionally, A. lacticoffeatus was also found to produce an enzyme with fructosyltransferase activity and other prebiotics, namely fructo-oligosaccharide 1-kestose (2.4g/L). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Study of the transgalactosylation activity of ß-galactosidase from a new strain Kluyveromyces lactis 3

    Directory of Open Access Journals (Sweden)

    ILIA ILIEV

    2012-01-01

    Full Text Available Beta-galactosidase (EC.3.2.1.23 is an important enzyme industrially used for the hydrolysis of lactose from milk and milk whey for several applications. Lately, the importance of this enzyme was enhanced by its galactosyltransferase activity, which is responsible for synthesis of transgalactosylated oligosaccharides that act as prebiotics with several beneficial effects on the consumers. ß-Galactosidase production by Kluyveromyces lactis 3 was studied in shake flask culture. The highest enzymatic activity was obtained at 10-th hour of the fermentation. The optimum temperature for transferase activity was 50°C. When incubated with 30% lactose in 50 mM phosphate buffer (pH 6.0 the enzyme can synthesize up to 41% galacto-oligosaccharides (GalOS. β-Galactosidase from strain Kluyveromyces lactis 3 produces mainly oligosaccharides with degree of polymerization (DP 6 at 40°C and with DP 3 at 50°C.

  13. a-galactosidase: general aspects and its application on soybean oligosaccharides/ a-galactosidase: aspectos gerais e sua aplicação em produtos a base de soja

    Directory of Open Access Journals (Sweden)

    Mara Lucia Luiz Ribeiro

    2002-05-01

    Full Text Available This literature review has the aim to present topics related to a-galactosidase, considering its general characteristics, sources, functions and methods used in its determination. This enzyme, lacking in the human digestive tract, hydrolises µ-(1,6 bonds from oligosaccharides of the raffinose family. These carbohydrates, called flatulents, are found in leguminoses like soybean, a rich source of protein. However, due to the presence of these flatulents sugars, antinutritional factors are attributed to soyben, decreasing its consumption. a-galactosidase produced by some microorganisms and vegetables can be used in soybean based foods to reduce the interaction of the intestinal flora with the oligosaccharides, decreasing in this way the flatulence.This literature review has the aim to present topics related to a-galactosidase, considering its general characteristics, sources, functions and methods used in its determination. This enzyme, lacking in the human digestive tract, hydrolises µ-(1,6 bonds from oligosaccharides of the raffinose family. These carbohydrates, called flatulents, are found in leguminoses like soybean, a rich source of protein. However, due to the presence of these flatulents sugars, antinutritional factors are attributed to soyben, decreasing its consumption. a-galactosidase produced by some microorganisms and vegetables can be used in soybean based foods to reduce the interaction of the intestinal flora with the oligosaccharides, decreasing in this way the flatulence.

  14. Processing of mutant N-acetyl-alpha-glucosaminidase in mucopolysaccharidosis type IIIB fibroblasts cultured at low temperature

    NARCIS (Netherlands)

    Meijer, O. L. M.; te Brinke, H.; Ofman, R.; IJlst, L.; Wijburg, F. A.; van Vlies, N.

    2017-01-01

    Background: The autosomal recessive, neurodegenerative disorder mucopolysaccharidosis type IIIB (MPSIIIB) is caused by a deficiency of the lysosomal enzyme N-acetyl-alpha-glucosaminidase (NAGLU), resulting in accumulation of heparan sulfate. The disease spectrum comprises a severe, rapidly

  15. Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi

    Directory of Open Access Journals (Sweden)

    Karan Ram

    2013-01-01

    Full Text Available Abstract Background Halorubrum lacusprofundi is a cold-adapted halophilic archaeon isolated from Deep Lake, a perennially cold and hypersaline lake in Antarctica. Its genome sequencing project was recently completed, providing access to many genes predicted to encode polyextremophilic enzymes active in both extremely high salinity and cold temperatures. Results Analysis of the genome sequence of H. lacusprofundi showed a gene cluster for carbohydrate utilization containing a glycoside hydrolase family 42 β-galactosidase gene, named bga. In order to study the biochemical properties of the β-galactosidase enzyme, the bga gene was PCR amplified, cloned, and expressed in the genetically tractable haloarchaeon Halobacterium sp. NRC-1 under the control of a cold shock protein (cspD2 gene promoter. The recombinant β-galactosidase protein was produced at 20-fold higher levels compared to H. lacusprofundi, purified using gel filtration and hydrophobic interaction chromatography, and identified by SDS-PAGE, LC-MS/MS, and ONPG hydrolysis activity. The purified enzyme was found to be active over a wide temperature range (−5 to 60°C with an optimum of 50°C, and 10% of its maximum activity at 4°C. The enzyme also exhibited extremely halophilic character, with maximal activity in either 4 M NaCl or KCl. The polyextremophilic β-galactosidase was also stable and active in 10–20% alcohol-aqueous solutions, containing methanol, ethanol, n-butanol, or isoamyl alcohol. Conclusion The H. lacusprofundi β-galactosidase is a polyextremophilic enzyme active in high salt concentrations and low and high temperature. The enzyme is also active in aqueous-organic mixed solvents, with potential applications in synthetic chemistry. H. lacuprofundi proteins represent a significant biotechnology resource and for developing insights into enzyme catalysis under water limiting conditions. This study provides a system for better understanding how H. lacusprofundi is

  16. A distinct urinary biomarker pattern characteristic of female Fabry patients that mirrors response to enzyme replacement therapy.

    Directory of Open Access Journals (Sweden)

    Andreas D Kistler

    Full Text Available Female patients affected by Fabry disease, an X-linked lysosomal storage disorder, exhibit a wide spectrum of symptoms, which renders diagnosis, and treatment decisions challenging. No diagnostic test, other than sequencing of the alpha-galactosidase A gene, is available and no biomarker has been proven useful to screen for the disease, predict disease course and monitor response to enzyme replacement therapy. Here, we used urine proteomic analysis based on capillary electrophoresis coupled to mass spectrometry and identified a biomarker profile in adult female Fabry patients. Urine samples were taken from 35 treatment-naïve female Fabry patients and were compared to 89 age-matched healthy controls. We found a diagnostic biomarker pattern that exhibited 88.2% sensitivity and 97.8% specificity when tested in an independent validation cohort consisting of 17 treatment-naïve Fabry patients and 45 controls. The model remained highly specific when applied to additional control patients with a variety of other renal, metabolic and cardiovascular diseases. Several of the 64 identified diagnostic biomarkers showed correlations with measures of disease severity. Notably, most biomarkers responded to enzyme replacement therapy, and 8 of 11 treated patients scored negative for Fabry disease in the diagnostic model. In conclusion, we defined a urinary biomarker model that seems to be of diagnostic use for Fabry disease in female patients and may be used to monitor response to enzyme replacement therapy.

  17. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro.

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A; Busto, Rebeca

    2016-03-18

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes' internal milieu induced by haloperidol affects lysosomal functionality.

  18. Release of β-galactosidase from poloxamine/α-cyclodextrin hydrogels

    Directory of Open Access Journals (Sweden)

    César A. Estévez

    2014-12-01

    Full Text Available All mammals lose their ability to produce lactase (β-galactosidase, the enzyme that cleaves lactose into galactose and glucose, after weaning. The prevalence of lactase deficiency (LD spans from 2 to 15% among northern Europeans, to nearly 100% among Asians. Following lactose consumption, people with LD often experience gastrointestinal symptoms such as abdominal pain, bowel distension, cramps and flatulence, or even systemic problems such as headache, loss of concentration and muscle pain. These symptoms vary depending on the amount of lactose ingested, type of food and degree of intolerance. Although those affected can avoid the uptake of dairy products, in doing so, they lose a readily available source of calcium and protein. In this work, gels obtained by complexation of Tetronic 90R4 with α-cyclodextrin loaded with β-galactosidase are proposed as a way to administer the enzyme immediately before or with the lactose-containing meal. Both molecules are biocompatible, can form gels in situ, and show sustained erosion kinetics in aqueous media. The complex was characterized by FTIR that evidenced an inclusion complex between the polyethylene oxide block and α-cyclodextrin. The release profiles of β-galactosidase from two different matrices (gels and tablets of the in situ hydrogels have been obtained. The influence of the percentage of Tetronic in media of different pH was evaluated. No differences were observed regarding the release rate from the gel matrices at pH 6 (t50 = 105 min. However, in the case of the tablets, the kinetics were faster and they released a greater amount of 90R4 (25%, t50 = 40–50 min. Also, the amount of enzyme released was higher for mixtures with 25% Tetronic. Using suitable mathematical models, the corresponding kinetic parameters have been calculated. In all cases, the release data fit quite well to the Peppas–Sahlin model equation, indicating that the release of β-galactosidase is governed by a

  19. Lysosomal storage disorders

    CERN Document Server

    Cabrera-Salazar, Mario A; Cabrera-Salazar, Mario

    2007-01-01

    This book describes the nature of the lysosomal dysfunction and diseases as well as potential future treatments and therapies. This is an invaluable resource for researchers in biochemical and molecular genetics, enzyme therapy, and gene transfer.

  20. Autophagy and Mis-targeting of Therapeutic Enzyme in Skeletal Muscle in Pompe Disease

    Science.gov (United States)

    Fukuda, Tokiko; Ahearn, Meghan; Roberts, Ashley; Mattaliano, Robert J.; Zaal, Kristien; Ralston, Evelyn; Plotz, Paul H.; Raben, Nina

    2009-01-01

    Enzyme replacement therapy (ERT) became a reality for patients with Pompe disease, a fatal cardiomyopathy and skeletal muscle myopathy caused by a deficiency of glycogen-degrading lysosomal enzyme acid alpha-glucosidase (GAA). The therapy, which relies on receptor-mediated endocytosis of recombinant human GAA (rhGAA), appears to be effective in cardiac muscle, but less so in skeletal muscle. We have previously shown a profound disturbance of the lysosomal degradative pathway (autophagy) in therapy-resistant muscle of GAA knockout mice (KO). Our findings here demonstrate a progressive age-dependent autophagic build-up in addition to enlargement of glycogen-filled lysosomes in multiple muscle groups in the KO. Trafficking and processing of the therapeutic enzyme along the endocytic pathway appear to be affected by the autophagy. Confocal microscopy of live single muscle fibers exposed to fluorescently labeled rhGAA indicates that a significant portion of the endocytosed enzyme in the KO was trapped as a partially processed form in the autophagic areas instead of reaching its target – the lysosomes. A fluid-phase endocytic marker was similarly mis-targeted and accumulated in vesicular structures within the autophagic areas. These findings may explain why ERT often falls short of reversing the disease process, and point to new avenues for the development of pharmacological intervention. PMID:17008131

  1. Hydrolysis of lactose by β-galactosidase from Kluyveromyces fragilis: characterization of the enzyme Hidrólise da lactose pela β-galactosidase de Kluyveromyces fragilis: caracterização da enzima

    Directory of Open Access Journals (Sweden)

    Graciette Matioli

    2002-03-01

    Full Text Available The β-galactosidase enzyme from Kluyveromyces fragilis was characterized in the soluble form using lactose 5% w/v found in skimmed powdered milk as substrate. Enzyme diluted 50 times hydrolyzed the lactose in batch reactor of 50 mL capacity. Enzyme activity and its activation energy were determined as a function of temperature and pH. Temperature ranged from 20 to 55ºC and pH from 5.5 to 8.0. Activation energy was 9.50 kcal/mol. The energy of deactivation was 33.74 kcal/mol. Although the enzyme presented a high specific activity at 45ºC and pH 6.5 (3.312 U/mg protein, values indicate that the best use of the enzymatic activity occur at 40ºC or below, with half-life higher than 12 hours. The activation energy increased proportionally to pH increase. Therefore, the activation energy depends on pH and varies according to the origin of the enzyme.A enzima β-galactosidase de Kluyveromyces fragilis foi caracterizada na forma solúvel, utilizando como substrato, lactose 5% p/v presente no leite em pó desengordurado. A enzima, diluída 50 vezes, hidrolisou a lactose em reator batelada de 50 ml de capacidade. A atividade da enzima e sua energia de ativação foram determinadas em função da temperatura e pH. A faixa de temperatura analisada foi de 20 a 55ºC e de pH de 5,5 a 8,0. A energia de ativação foi de 9,50 kcal/mol. A energia de desativação foi de 33,74 kcal/mol. Embora a enzima tenha apresentado uma atividade específica alta a 45ºC e pH 6,5 (3,312 U/mg proteína, os valores obtidos indicam que o melhor aproveitamento da atividade enzimática se dá a 40ºC ou abaixo, com um tempo de meia-vida superior a 12 horas. A energia de ativação aumentou proporcionalmente com o aumento de pH. Portanto, a energia de ativação depende diretamente do pH da solução e varia com a origem da enzima.

  2. Cloning, purification and characterization of a thermostable β-galactosidase from Bacillus licheniformis strain KG9.

    Science.gov (United States)

    Matpan Bekler, F; Stougaard, P; Güven, K; Gül Güven, R; Acer, Ö

    2015-06-28

    A thermo— and alkalitolerant Bacillus licheniformis KG9 isolated from Taşlıdere hot water spring in Batman/Turkey was found to produce a thermostable β—galactosidase. Phylogenetic analysis showed that the 16S rRNA gene from B. licheniformis strain KG9 was 99.9% identical to that of the genome sequenced B. licheniformis strain DSM 13. Analysis of the B. licheniformis DSM 13 genomic sequence revealed four putative β—galactosidase genes. PCR primers based on the genome sequence of strain DSM 13 were used to isolate the corresponding β—galactosidase genes from B. licheniformis strain KG9. The calculated molecular weights of the β—galactosidases I, II, III, and IV using sequencing data were 30, 79, 74, and 79 kDa, respectively. The genes were inserted into an expression vector and recombinant β—galactosidase was produced in Escherichia coli. Of the four β—galactosidase genes identified in strain KG9, three of them were expressed as active, intracellular enzymes in E. coli. One of the recombinant enzymes, β—galactosidase III, was purified and characterized. Optimal temperature and pH was determined to be at 60 ºC and pH 6.0, respectively. Km was determined to be 1.3 mM and 13.3 mM with oNPG (ortho—nitrophenyl—β—D—galactopyranoside) and lactose as substrates, respectively, and Vmax was measured to 1.96 μmol/min and 1.55 μmol/min with oNPG and lactose, respectively.

  3. Functionalized agarose as an effective and novel matrix for immobilizing Cicer arietinum β-galactosidase and its application in lactose hydrolysis

    Directory of Open Access Journals (Sweden)

    Rukhsana Satar

    Full Text Available Abstract The present study demonstrates the immobilization of β-galactosidase from Cicer arietinum on a simple and inexpensive matrix, glutaraldehyde functionalized agarose (GFA, to suggest its potential application in hydrolyzing whey lactose in biotechnology industries. The designed matrix provided large surface area for the immobilization of β-galactosidase, apart from exhibiting greater biocatalytic activity in terms of selectivity, loading and stability. GFA retained 83% enzyme activity as a result of immobilization. Soluble and GFA bound Cicer arietinum β-galactosidase showed the same pH and temperature-optima at pH 5.0 and at 50 °C, respectively. However, immobilized enzyme exhibited a greater fraction of activity at both acidic and basic pH, and at higher temperature ranges. GFA bound enzyme lost only 20 % enzyme in the presence of 3% galactose, and retained 70 % activity even after its sixth repeated use. Immobilized enzyme showed pronounced lactose hydrolysis from whey in batch processes at 55 °C as compared to enzyme in solution.

  4. Synthesis of oligosaccharides derived from lactulose (OsLu using soluble and immobilized Aspergillus oryzae b-galactosidase

    Directory of Open Access Journals (Sweden)

    ALEJANDRA eCARDELLE COBAS

    2016-03-01

    Full Text Available b-galactosidase from Aspergillus oryzae offers a high yield for the synthesis of oligosaccharides derived from lactulose (OsLu by transgalactosylation. Oligosaccharides with degree of polymerization (DP ≥ 3 have shown to possess higher in vitro bifidogenic effect than di- and tetrasaccharides. Thus, in this work, an optimization of reaction conditions affecting the specific selectivity of A. oryzae b-galactosidase for synthesis of OsLu has been carried out to enhance OsLu with DP ≥ 3 production. Assays with b-galactosidase immobilized onto a glutaraldehyde-agarose support were also carried out with the aim of making the process cost-effective and industrially viable. Optimal conditions with both soluble and immobilized enzyme for the synthesis of OsLu with DP ≥ 3 were 50 °C, pH 6.5, 450 g/L of lactulose and 8 U/mL of enzyme, reaching yields of ca. 50% (w/v of total OsLu and ca. 20% (w/v of OsLu-3, being 6′-galactosyl-lactulose the major one, after a short reaction time. Selective formation of disaccharides, however, was favored at 60 °C, pH 4.5, 450 g/L of lactulose and 8 U/mL of enzyme. Immobilization increased the enzymatic stability to temperature changes and allowed to reuse the enzyme. We can conclude that the use, under determined optimal conditions, of the A. oryzae b-galactosidase immobilized on a support of glutaraldehyde-agarose constitutes an efficient and cost-effective alternative to the use of soluble b-galactosidases for the synthesis of prebiotic OsLu mixtures.

  5. Elevated globotriaosylsphingosine is a hallmark of Fabry disease

    NARCIS (Netherlands)

    Aerts, Johannes M.; Groener, Johanna E.; Kuiper, Sijmen; Donker-Koopman, Wilma E.; Strijland, Anneke; Ottenhoff, Roelof; van Roomen, Cindy; Mirzaian, Mina; Wijburg, Frits A.; Linthorst, Gabor E.; Vedder, Anouk C.; Rombach, Saskia M.; Cox-Brinkman, Josanne; Somerharju, Pentti; Boot, Rolf G.; Hollak, Carla E.; Brady, Roscoe O.; Poorthuis, Ben J.

    2008-01-01

    Fabry disease is an X-linked lysosomal storage disease caused by deficiency of alpha-galactosidase A that affects males and shows disease expression in heterozygotes. The characteristic progressive renal insufficiency, cardiac involvement, and neuropathology usually are ascribed to

  6. Hydrolysis of whey lactose by immobilized β-galactosidase in a bioreactor with a spirally wound membrane.

    Science.gov (United States)

    Vasileva, Nastya; Ivanov, Yavor; Damyanova, Stanka; Kostova, Iliana; Godjevargova, Tzonka

    2016-01-01

    The β-galactosidase was covalently immobilized onto a modified polypropylene membrane, using glutaraldehyde. The optimal conditions for hydrolysis of lactose (4.7%) by immobilized β-galactosidase in a batch process were determined 13.6 U enzyme activity, 40°C, pH 6.8 and 10h. The obtained degree of hydrolysis was compared with results received by a free enzyme. It was found, that the lactose hydrolysis by an immobilized enzyme was 1.6 times more effective than the lactose hydrolysis by a free enzyme. It was determined that the stability of the immobilized enzyme was 2 times higher in comparison with the stability of free enzyme. The obtained immobilized system β-galactosidase/polypropylene membrane was applied to produce glucose-galactose syrup from waste whey. The whey characteristics and the different preliminary treatments of the whey were investigated. Then the whey lactose hydrolysis in a bioreactor by an immobilized enzyme on a spirally wound membrane was performed. The optimal membrane surface and the optimal flow rate of the whey through the membrane module were determined, respectively 100 cm(2) and 1.0 mL min(-1). After 10h, the degree of lactose hydrolysis was increased to 91%. The operation stability was studied. After 20th cycle the yield of bioreactor was 69.7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Sirec Teja

    2012-08-01

    Full Text Available Abstract Background The Bacillus subtilis spore has long been used as a surface display system with potential applications in a variety of fields ranging from mucosal vaccine delivery, bioremediation and biocatalyst development. More recently, a non-recombinant approach of spore display has been proposed and heterologous proteins adsorbed on the spore surface. We used the well-characterized β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius as a model to study enzyme adsorption, to analyze whether and how spore-adsorption affects the properties of the enzyme and to improve the efficiency of the process. Results We report that purified β-galactosidase molecules were adsorbed to purified spores of a wild type strain of B. subtilis retaining ca. 50% of their enzymatic activity. Optimal pH and temperature of the enzyme were not altered by the presence of the spore, that protected the adsorbed β-galactosidase from exposure to acidic pH conditions. A collection of mutant strains of B. subtilis lacking a single or several spore coat proteins was compared to the isogenic parental strain for the adsorption efficiency. Mutants with an altered outermost spore layer (crust were able to adsorb 60-80% of the enzyme, while mutants with a severely altered or totally lacking outer coat adsorbed 100% of the β-galactosidase molecules present in the adsorption reaction. Conclusion Our results indicate that the spore surface structures, the crust and the outer coat layer, have an negative effect on the adhesion of the β-galactosidase. Electrostatic forces, previously suggested as main determinants of spore adsorption, do not seem to play an essential role in the spore-β-galactosidase interaction. The analysis of mutants with altered spore surface has shown that the process of spore adsorption can be improved and has suggested that such improvement has to be based on a better understanding of the spore surface structure

  8. Lysosomal storage diseases: current diagnostic and therapeutic options

    International Nuclear Information System (INIS)

    Malinova, V.; Honzik, T.

    2013-01-01

    Lysosomal storage diseases are rare genetic diseases caused by insufficient activity of some of the lysosomal enzymes and/or transport proteins. Initial symptoms may appear any time from the neonatal period to late adulthood; early forms tend to have a severe course with rapid progression and unfavorable prognosis. There is multisystem involvement with continuous progression of symptoms and involvement of metabolically active organs or tissues – the bone marrow, liver, bones, skeletal muscles, myocardium, or CNS. The diagnosis is definitively confirmed by demonstration of reduced activity of the particular enzyme and by mutation analysis. Some of the storage diseases can be effectively treated by intravenous administration of recombinant enzymes or by limiting the amount of the substrate stored. In a small number of lysosomal storage diseases, bone marrow transplantation is successful. Multidisciplinary collaboration, including genetic counselling and prenatal diagnosis in patient families, is required. The first part of the paper deals with general characteristics of lysosomal storage diseases and the most common diseases that are currently treatable in the Czech Republic (Gaucher’s disease, Pompe disease, Fabry disease, Niemann–Pick disease, cholesterol ester storage disease). The second part of the paper deals with mucopolysaccharidase, another group of rare lysosomal storage diseases. (author)

  9. Homodimeric β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization.

    Science.gov (United States)

    Nguyen, Tien-Thanh; Nguyen, Hoang Anh; Arreola, Sheryl Lozel; Mlynek, Georg; Djinović-Carugo, Kristina; Mathiesen, Geir; Nguyen, Thu-Ha; Haltrich, Dietmar

    2012-02-22

    The lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, encoding a β-galactosidase of the glycoside hydrolase family GH2, was cloned into different inducible lactobacillal expression vectors for overexpression in the host strain Lactobacillus plantarum WCFS1. High expression levels were obtained in laboratory cultivations with yields of approximately 53000 U of β-galactosidase activity per liter of medium, which corresponds to ~170 mg of recombinant protein per liter and β-galactosidase levels amounting to 63% of the total intracellular protein of the host organism. The wild-type (nontagged) and histidine-tagged recombinant enzymes were purified to electrophoretic homogeneity and further characterized. β-Galactosidase from L. bulgaricus was used for lactose conversion and showed very high transgalactosylation activity. The maximum yield of galacto-oligosaccharides (GalOS) was approximately 50% when using an initial concentration of 600 mM lactose, indicating that the enzyme can be of interest for the production of GalOS.

  10. The D313Y variant in the GLA gene - no evidence of a pathogenic role in Fabry disease

    DEFF Research Database (Denmark)

    Hasholt, Lis; Ballegaard, Martin; Bundgaard, Henning

    2017-01-01

    Fabry disease is an X- linked inherited lysosomal storage disease caused by mutations in the GLA gene encoding the lysosomal enzyme alpha-galactosidase A (α-Gal A). The possible pathological significance of the D313Y variant in the GLA gene has not been verified and it may be a Fabry variant. Our......, and the presence in Fabry females did not significantly enhance the phenotype of a known causative mutation in the GLA gene (G271S). Our findings indicate that the D313Y variant is not causative to nor enhancing Fabry disease phenotype. The D313Y variant in the GLA gene was not disease causative in 2 Danish...... families. Investigating male family members were crucial in excluding the Fabry phenotype, and thus very important for proper genetic counceling of all family members, as well as overdiagnosing a devastating genetic disease....

  11. Tumor necrosis factor alpha converting enzyme: an encouraging target for various inflammatory disorders.

    Science.gov (United States)

    Bahia, Malkeet S; Silakari, Om

    2010-05-01

    Tumor necrosis factor alpha is one of the most common pro-inflammatory cytokines responsible for various inflammatory disorders. It plays an important role in the origin and progression of rheumatoid arthritis and also in other autoimmune disease conditions. Some anti-tumor necrosis factor alpha antibodies like Enbrel, Humira and Remicade have been successfully used in these disease conditions as antagonists of tumor necrosis factor alpha. Inhibition of generation of active form of tumor necrosis factor alpha is a promising therapy for various inflammatory disorders. Therefore, the inhibition of an enzyme (tumor necrosis factor alpha converting enzyme), which is responsible for processing inactive form of tumor necrosis factor alpha into its active soluble form, is an encouraging target. Many tumor necrosis factor alpha converting enzyme inhibitors have been the candidates of clinical trials but none of them have reached in to the market because of their broad spectrum inhibitory activity for other matrix metalloproteases. Selectivity of tumor necrosis factor alpha converting enzyme inhibition over matrix metalloproteases is of utmost importance. If selectivity is achieved successfully, side-effects can be over-ruled and this approach may become a novel therapy for treatment of rheumatoid arthritis and other inflammatory disorders. This cytokine not only plays a pivotal role in inflammatory conditions but also in some cancerous conditions. Thus, successful targeting of tumor necrosis factor alpha converting enzyme may result in multifunctional therapy.

  12. Lysosomal impairment in Parkinson's disease.

    Science.gov (United States)

    Dehay, Benjamin; Martinez-Vicente, Marta; Caldwell, Guy A; Caldwell, Kim A; Yue, Zhenyue; Cookson, Mark R; Klein, Christine; Vila, Miquel; Bezard, Erwan

    2013-06-01

    Impairment of autophagy-lysosomal pathways (ALPs) is increasingly regarded as a major pathogenic event in neurodegenerative diseases, including Parkinson's disease (PD). ALP alterations are observed in sporadic PD brains and in toxic and genetic rodent models of PD-related neurodegeneration. In addition, PD-linked mutations and post-translational modifications of α-synuclein impair its own lysosomal-mediated degradation, thereby contributing to its accumulation and aggregation. Furthermore, other PD-related genes, such as leucine-rich repeat kinase-2 (LRRK2), parkin, and phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), have been mechanistically linked to alterations in ALPs. Conversely, mutations in lysosomal-related genes, such as glucocerebrosidase (GBA) and lysosomal type 5 P-type ATPase (ATP13A2), have been linked to PD. New data offer mechanistic molecular evidence for such a connection, unraveling a causal link between lysosomal impairment, α-synuclein accumulation, and neurotoxicity. First, PD-related GBA deficiency/mutations initiate a positive feedback loop in which reduced lysosomal function leads to α-synuclein accumulation, which, in turn, further decreases lysosomal GBA activity by impairing the trafficking of GBA from the endoplasmic reticulum-Golgi to lysosomes, leading to neurodegeneration. Second, PD-related mutations/deficiency in the ATP13A2 gene lead to a general lysosomal impairment characterized by lysosomal membrane instability, impaired lysosomal acidification, decreased processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished clearance of autophagosomes, collectively contributing to α-synuclein accumulation and cell death. According to these new findings, primary lysosomal defects could potentially account for Lewy body formation and neurodegeneration in PD, laying the groundwork for the prospective development of new neuroprotective/disease-modifying therapeutic strategies

  13. Delivery of Cargo to Lysosomes Using GNeosomes.

    Science.gov (United States)

    Hamill, Kristina M; Wexselblatt, Ezequiel; Tong, Wenyong; Esko, Jeffrey D; Tor, Yitzhak

    2017-01-01

    Liposomes have been used to improve the intracellular delivery of a variety of cargos. Encapsulation of cargos in liposomes leads to improved plasma half-lives and minimized degradation. Here, we present a method for improving the selective delivery of liposomes to the lysosomes using a guanidinylated neomycin (GNeo) transporter. The method for synthesizing GNeo-lipids, incorporating them into liposomes, and the enhanced lysosomal delivery of encapsulated cargo are presented. GNeo-liposomes, termed GNeosomes, are capable of delivering a fluorescent dye to the lysosomes of Chinese hamster ovary cells as shown using confocal microscopy. GNeosomes can also be used to deliver therapeutic quantities of lysosomal enzymes to fibroblasts isolated from patients with a lysosomal storage disorder.

  14. Two Strategies for Microbial Production of an Industrial Enzyme-Alpha-Amylase

    Science.gov (United States)

    Bernhardsdotter, Eva C. M. J.; Garriott, Owen; Pusey, Marc L.; Ng, Joseph D.

    2003-01-01

    Extremophiles are microorganisms that thrive in, from an anthropocentric view, extreme environments including hot springs, soda lakes and arctic water. This ability of survival at extreme conditions has rendered extremophiles to be of interest in astrobiology, evolutionary biology as well as in industrial applications. Of particular interest to the biotechnology industry are the biological catalysts of the extremophiles, the extremozymes, whose unique stabilities at extreme conditions make them potential sources of novel enzymes in industrial applications. There are two major approaches to microbial enzyme production. This entails enzyme isolation directly from the natural host or creating a recombinant expression system whereby the targeted enzyme can be overexpressed in a mesophilic host. We are employing both methods in the effort to produce alpha-amylases from a hyperthermophilic archaeon (Thermococcus) isolated from a hydrothermal vent in the Atlantic Ocean, as well as from alkaliphilic bacteria (Bacillus) isolated from a soda lake in Tanzania. Alpha-amylases catalyze the hydrolysis of internal alpha-1,4-glycosidic linkages in starch to produce smaller sugars. Thermostable alpha-amylases are used in the liquefaction of starch for production of fructose and glucose syrups, whereas alpha-amylases stable at high pH have potential as detergent additives. The alpha-amylase encoding gene from Thermococcus was PCR amplified using carefully designed primers and analyzed using bioinformatics tools such as BLAST and Multiple Sequence Alignment for cloning and expression in E.coli. Four strains of Bacillus were grown in alkaline starch-enriched medium of which the culture supernatant was used as enzyme source. Amylolytic activity was detected using the starch-iodine method.

  15. Glycosylation of phenolic compounds by the site-mutated β-galactosidase from Lactobacillus bulgaricus L3.

    Science.gov (United States)

    Lu, Lili; Xu, Lijuan; Guo, Yuchuan; Zhang, Dayu; Qi, Tingting; Jin, Lan; Gu, Guofeng; Xu, Li; Xiao, Min

    2015-01-01

    β-Galactosidases can transfer the galactosyl from lactose or galactoside donors to various acceptors and thus are especially useful for the synthesis of important glycosides. However, these enzymes have limitations in the glycosylation of phenolic compounds that have many physiological functions. In this work, the β-galactosidase from Lactobacillus bulgaricus L3 was subjected to site-saturation mutagenesis at the W980 residue. The recombinant pET-21b plasmid carrying the enzyme gene was used as the template for mutation. The mutant plasmids were transformed into Escherichia coli cells for screening. One recombinant mutant, W980F, exhibited increased yield of glycoside when using hydroquinone as the screening acceptor. The enzyme was purified and the effects of the mutation on enzyme properties were determined in detail. It showed improved transglycosylation activity on novel phenolic acceptors besides hydroquinone. The yields of the glycosides produced from phenol, hydroquinone, and catechol were increased by 7.6% to 53.1%. Moreover, it generated 32.3% glycosides from the pyrogallol that could not be glycosylated by the wild-type enzyme. Chemical structures of these glycoside products were further determined by MS and NMR analysis. Thus, a series of novel phenolic galactosides were achieved by β-galactosidase for the first time. This was a breakthrough in the enzymatic galactosylation of the challenging phenolic compounds of great values.

  16. Glycosylation of phenolic compounds by the site-mutated β-galactosidase from Lactobacillus bulgaricus L3.

    Directory of Open Access Journals (Sweden)

    Lili Lu

    Full Text Available β-Galactosidases can transfer the galactosyl from lactose or galactoside donors to various acceptors and thus are especially useful for the synthesis of important glycosides. However, these enzymes have limitations in the glycosylation of phenolic compounds that have many physiological functions. In this work, the β-galactosidase from Lactobacillus bulgaricus L3 was subjected to site-saturation mutagenesis at the W980 residue. The recombinant pET-21b plasmid carrying the enzyme gene was used as the template for mutation. The mutant plasmids were transformed into Escherichia coli cells for screening. One recombinant mutant, W980F, exhibited increased yield of glycoside when using hydroquinone as the screening acceptor. The enzyme was purified and the effects of the mutation on enzyme properties were determined in detail. It showed improved transglycosylation activity on novel phenolic acceptors besides hydroquinone. The yields of the glycosides produced from phenol, hydroquinone, and catechol were increased by 7.6% to 53.1%. Moreover, it generated 32.3% glycosides from the pyrogallol that could not be glycosylated by the wild-type enzyme. Chemical structures of these glycoside products were further determined by MS and NMR analysis. Thus, a series of novel phenolic galactosides were achieved by β-galactosidase for the first time. This was a breakthrough in the enzymatic galactosylation of the challenging phenolic compounds of great values.

  17. Lactose hydrolysis potential and thermal stability of commercial β-galactosidase in UHT and skimmed milk

    Directory of Open Access Journals (Sweden)

    Alessandra BOSSO

    2016-03-01

    Full Text Available Abstract The commercial enzyme (E.C. = 3.2.1.23 from Kluyveromyces lactis (liquid and Aspergillus oryzae(lyophilized was investigated for its hydrolysis potential in lactose substrate, UHT milk, and skimmed milk at different concentrations (0.7; 1.0 and 1.5%, pH values (5.0; 6.0; 6.5 and 7.0, and temperature (30; 35; 40 and 55 ºC. High hydrolysis rates were observed for the enzyme from K. lactis at pH 7.0 and 40 ºC, and from A. oryzae at pH 5.0 and 55 ºC. The enzyme from K. lactis showed significantly higher hydrolysis rates when compared to A. oryzae. The effect of temperature and β-galactosidase concentration on the lactose hydrolysis in UHT milk was higher than in skimmed milk, for all temperatures tested. With respect to the thermal stability, a decrease in hydrolysis rate was observed at pH 6.0 at 35 ºC for K. lactisenzyme, and at pH 6.0 at 55 ºC for the enzyme from A. oryzae. This study investigate the hydrolysis of β-galactosidase in UHT and skimmed milk. The knowledge about the characteristics of the β-galactosidase fromK. lactis and A. oryzae enables to use it most efficiently to control the enzyme concentration, temperature, and pH in many industrial processes and product formulations.

  18. Lysosomal lipid storage diseases.

    Science.gov (United States)

    Schulze, Heike; Sandhoff, Konrad

    2011-06-01

    Lysosomal lipid storage diseases, or lipidoses, are inherited metabolic disorders in which typically lipids accumulate in cells and tissues. Complex lipids, such as glycosphingolipids, are constitutively degraded within the endolysosomal system by soluble hydrolytic enzymes with the help of lipid binding proteins in a sequential manner. Because of a functionally impaired hydrolase or auxiliary protein, their lipid substrates cannot be degraded, accumulate in the lysosome, and slowly spread to other intracellular membranes. In Niemann-Pick type C disease, cholesterol transport is impaired and unesterified cholesterol accumulates in the late endosome. In most lysosomal lipid storage diseases, the accumulation of one or few lipids leads to the coprecipitation of other hydrophobic substances in the endolysosomal system, such as lipids and proteins, causing a "traffic jam." This can impair lysosomal function, such as delivery of nutrients through the endolysosomal system, leading to a state of cellular starvation. Therapeutic approaches are currently restricted to mild forms of diseases with significant residual catabolic activities and without brain involvement.

  19. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Directory of Open Access Journals (Sweden)

    Alberto Canfrán-Duque

    2016-03-01

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2 and LBPA (lysobisphosphatidic acid, which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1 and coatomer subunit β (β-COP were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality.

  20. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C.; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A.; Busto, Rebeca

    2016-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality. PMID:26999125

  1. Lysosomal membrane permeability stimulates protein aggregate formation in neurons of a lysosomal disease.

    Science.gov (United States)

    Micsenyi, Matthew C; Sikora, Jakub; Stephney, Gloria; Dobrenis, Kostantin; Walkley, Steven U

    2013-06-26

    Protein aggregates are a common pathological feature of neurodegenerative diseases and several lysosomal diseases, but it is currently unclear what aggregates represent for pathogenesis. Here we report the accumulation of intraneuronal aggregates containing the macroautophagy adapter proteins p62 and NBR1 in the neurodegenerative lysosomal disease late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). CLN2 disease is caused by a deficiency in the lysosomal enzyme tripeptidyl peptidase I, which results in aberrant lysosomal storage of catabolites, including the subunit c of mitochondrial ATP synthase (SCMAS). In an effort to define the role of aggregates in CLN2, we evaluated p62 and NBR1 accumulation in the CNS of Cln2(-/-) mice. Although increases in p62 and NBR1 often suggest compromised degradative mechanisms, we found normal ubiquitin-proteasome system function and only modest inefficiency in macroautophagy late in disease. Importantly, we identified that SCMAS colocalizes with p62 in extra-lysosomal aggregates in Cln2(-/-) neurons in vivo. This finding is consistent with SCMAS being released from lysosomes, an event known as lysosomal membrane permeability (LMP). We predicted that LMP and storage release from lysosomes results in the sequestration of this material as cytosolic aggregates by p62 and NBR1. Notably, LMP induction in primary neuronal cultures generates p62-positive aggregates and promotes p62 localization to lysosomal membranes, supporting our in vivo findings. We conclude that LMP is a previously unrecognized pathogenic event in CLN2 disease that stimulates cytosolic aggregate formation. Furthermore, we offer a novel role for p62 in response to LMP that may be relevant for other diseases exhibiting p62 accumulation.

  2. Studies on the preparation of immobilized enzymes by radio-polymerization, 10. Preparation of. beta. -galactosidase and its utilization for the continuous determination of lactose. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Amarakone, S P [Ceylon Inst. of Scientific and Industrial Research, Colombo (Sri Lanka); Hayashi, Toru; Kawashima, Koji

    1983-03-01

    ..beta..-Galactosidase of E. coli origin was immobilized in the form of beads by the radiopolymerization of different combinations of monomers using a gamma irradiation technique. With the dialysed enzyme, recoveries of over 300 % could be obtained on suitable monomer combinations containing magnesium and sodium acrylates. The recovery of the enzyme also depended on the irradiation time. The immobilized enzyme had better pH and temperature stability and was less affected by the presence of metal ions in the medium, compared to the native enzyme. The optimum pH and temperatures of the immobilized enzyme were different from those of the native enzyme and were 7.0 to 7.5 and 50 deg C respectively. The immobilized enzyme was used in a column for the continuous determination of lactose with a standard type autoanalyser. Good linearity could be observed even up to 3% lactose in the sample.

  3. Kinetics and Thermal Properties of Crude and Purified β-Galactosidase with Potential for the Production of Galactooligosaccharides

    Directory of Open Access Journals (Sweden)

    Anna Rafaela Cavalcante Braga

    2013-01-01

    Full Text Available β-Galactosidase is an enzyme that catalyzes the hydrolysis of lactose. It has potential importance due to various applications in the food and dairy industries, involving lactose-reduced ingredients. The properties of two β-galactosidase enzymes, crude and purified, from different sources, Kluyveromyces marxianus CCT 7082 and Kluyveromyces marxianus ATCC 16045, were analyzed. The pH and temperature optima, deactivation energy, thermal stability and kinetic and thermodynamic parameters were determined, as well as the ability to hydrolyze lactose and produce galactooligosaccharides. Purification process improved the properties of the enzymes, and the results showed that purified enzymes from both strains had a higher optimum temperature, and lower values of Km, thus showing greater affinity for o-nitrophenyl-β-D-galactopiranoside than the crude enzymes. The production of galactooligosaccharides was also greater when using purified enzymes, increasing the synthesis by more than 30 % by both strains.

  4. Characterization of gana-1, a Caenorhabditis elegans gene encoding a single ortholog of vertebrate α-galactosidase and α-N-acetylgalactosaminidase

    Directory of Open Access Journals (Sweden)

    Kostrouchová Marta

    2005-01-01

    Full Text Available Abstract Background Human α-galactosidase A (α-GAL and α-N-acetylgalactosaminidase (α-NAGA are presumed to share a common ancestor. Deficiencies of these enzymes cause two well-characterized human lysosomal storage disorders (LSD – Fabry (α-GAL deficiency and Schindler (α-NAGA deficiency diseases. Caenorhabditis elegans was previously shown to be a relevant model organism for several late endosomal/lysosomal membrane proteins associated with LSDs. The aim of this study was to identify and characterize C. elegans orthologs to both human lysosomal luminal proteins α-GAL and α-NAGA. Results BlastP searches for orthologs of human α-GAL and α-NAGA revealed a single C. elegans gene (R07B7.11 with homology to both human genes (α-galactosidase and α-N-acetylgalactosaminidase – gana-1. We cloned and sequenced the complete gana-1 cDNA and elucidated the gene organization. Phylogenetic analyses and homology modeling of GANA-1 based on the 3D structure of chicken α-NAGA, rice α-GAL and human α-GAL suggest a close evolutionary relationship of GANA-1 to both human α-GAL and α-NAGA. Both α-GAL and α-NAGA enzymatic activities were detected in C. elegans mixed culture homogenates. However, α-GAL activity on an artificial substrate was completely inhibited by the α-NAGA inhibitor, N-acetyl-D-galactosamine. A GANA-1::GFP fusion protein expressed from a transgene, containing the complete gana-1 coding region and 3 kb of its hypothetical promoter, was not detectable under the standard laboratory conditions. The GFP signal was observed solely in a vesicular compartment of coelomocytes of the animals treated with Concanamycin A (CON A or NH4Cl, agents that increase the pH of the cellular acidic compartment. Immunofluorescence detection of the fusion protein using polyclonal anti-GFP antibody showed a broader and coarsely granular cytoplasmic expression pattern in body wall muscle cells, intestinal cells, and a vesicular compartment of

  5. The GlaA signal peptide substantially increases the expression and secretion of α-galactosidase in Aspergillus niger.

    Science.gov (United States)

    Xu, Yue; Wang, Yan-Hui; Liu, Tian-Qi; Zhang, Hui; Zhang, He; Li, Jie

    2018-03-31

    α-Galactosidases are widely used in many fields. It is necessary to improve the production of enzymes through microbiological processes. The aim of this study was to construct recombinant Aspergillus niger strains with high α-galactosidase production. Two recombinant A. niger strains were constructed: AB and AGB. The recombinant AB strain contained the α-galactosidase aglB gene from A. niger with its native AglB signal peptide regulated by the glucoamylase promoter. In the AGB recombinant strain, the AglB signal peptide was replaced with the glucoamylase (GlaA) signal peptide. The extracellular maximum α-galactosidase activity of the AGB strain was 215.7 U/ml and that of the AB strain was 9.8 U/mL. The optimal conditions for α-galactosidase were pH 3.5 and 35 °C. The GlaA signal peptide substantially increased the yield of secreted α-galactosidase in A. niger. This recombinant strain holds great potential for industrial applications.

  6. A new cold-adapted β-D-galactosidase from the Antarctic Arthrobacter sp. 32c – gene cloning, overexpression, purification and properties

    Directory of Open Access Journals (Sweden)

    Kur Józef

    2009-07-01

    Full Text Available Abstract Background The development of a new cold-active β-D-galactosidases and microorganisms that efficiently ferment lactose is of high biotechnological interest, particularly for lactose removal in milk and dairy products at low temperatures and for cheese whey bioremediation processes with simultaneous bio-ethanol production. Results In this article, we present a new β-D-galactosidase as a candidate to be applied in the above mentioned biotechnological processes. The gene encoding this β-D-galactosidase has been isolated from the genomic DNA library of Antarctic bacterium Arthrobacter sp. 32c, sequenced, cloned, expressed in Escherichia coli and Pichia pastoris, purified and characterized. 27 mg of β-D-galactosidase was purified from 1 L of culture with the use of an intracellular E. coli expression system. The protein was also produced extracellularly by P. pastoris in high amounts giving approximately 137 mg and 97 mg of purified enzyme from 1 L of P. pastoris culture for the AOX1 and a constitutive system, respectively. The enzyme was purified to electrophoretic homogeneity by using either one step- or a fast two step- procedure including protein precipitation and affinity chromatography. The enzyme was found to be active as a homotrimeric protein consisting of 695 amino acid residues in each monomer. Although, the maximum activity of the enzyme was determined at pH 6.5 and 50°C, 60% of the maximum activity of the enzyme was determined at 25°C and 15% of the maximum activity was detected at 0°C. Conclusion The properties of Arthrobacter sp. 32cβ-D-galactosidase suggest that this enzyme could be useful for low-cost, industrial conversion of lactose into galactose and glucose in milk products and could be an interesting alternative for the production of ethanol from lactose-based feedstock.

  7. A Novel Method of Imaging Lysosomes in Living Human Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Kristine Glunde

    2003-01-01

    Full Text Available Cancer cells invade by secreting degradative enzymes which, under normal conditions, are sequestered in lysosomal vesicles. The ability to noninvasively label lysosomes and track lysosomal trafficking would be extremely useful to understand the mechanisms by which degradative enzymes are secreted in the presence of pathophysiological environments, such as hypoxia and acidic extracellular pH, which are frequently encountered in solid tumors. In this study, a novel method of introducing a fluorescent label into lysosomes of human mammary epithelial cells (HMECs was evaluated. Highly glycosylated lysosomal membrane proteins were labeled with a newly synthesized compound, 5-dimethylamino-naphthalene-1-sulfonic acid 5-amino-3,4,6-trihydroxy-tetrahydro-pyran-2-ylmethyl ester (6-O-dansyl-GlcNH2. The ability to optically image lysosomes using this new probe was validated by determining the colocalization of the fluorescence from the dansyl group with immunofluorescent staining of two well-established lysosomal marker proteins, LAMP-1 and LAMP-2. The location of the dansyl group in lysosomes was also verified by using an anti-dansyl antibody in Western blots of lysosomes isolated using isopycnic density gradient centrifugation. This novel method of labeling lysosomes biosynthetically was used to image lysosomes in living HMECs perfused in a microscopy-compatible cell perfusion system.

  8. The metabolism of Tay-Sachs ganglioside: catabolic studies with lysosomal enzymes from normal and Tay-Sachs brain tissue

    Science.gov (United States)

    Tallman, John F.; Johnson, William G.; Brady, Roscoe O.

    1972-01-01

    The catabolism of Tay-Sachs ganglioside, N-acetylgalactosaminyl- (N-acetylneuraminosyl) -galactosylglucosylceramide, has been studied in lysosomal preparations from normal human brain and brain obtained at biopsy from Tay-Sachs patients. Utilizing Tay-Sachs ganglioside labeled with 14C in the N-acetylgalactosaminyl portion or 3H in the N-acetylneuraminosyl portion, the catabolism of Tay-Sachs ganglioside may be initiated by either the removal of the molecule of N-acetylgalactosamine or N-acetylneuraminic acid. The activity of the N-acetylgalactosamine-cleaving enzyme (hexosaminidase) is drastically diminished in such preparations from Tay-Sachs brain whereas the activity of the N-acetylneuraminic acid-cleaving enzyme (neuraminidase) is at a normal level. Total hexosaminidase activity as measured with an artificial fluorogenic substrate is increased in tissues obtained from patients with the B variant form of Tay-Sachs disease and it is virtually absent in the O-variant patients. The addition of purified neuraminidase and various purified hexosaminidases exerted only a minimal synergistic effect on the hydrolysis of Tay-Sachs ganglioside in the lysosomal preparations from the control or patient with the O variant of Tay-Sachs disease. Images PMID:4639018

  9. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    International Nuclear Information System (INIS)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload

  10. Hydrolysis of whey lactose by immobilized β-Galactosidase

    Directory of Open Access Journals (Sweden)

    Marcela Panaro Mariotti

    2008-12-01

    Full Text Available Hydrolysis of whey lactose to glucose and galactose by immobilized galactosidase comes as an alternative to enlarge the possibilities of commercial use of this feedstock. To be applied at industrial scale, the process should be performed continuously .This work aimed to study the hydrolysis of whey lactose by an immobilized enzyme reactor. b-Galactosidase from Aspergillus oryzae was immobilized on silica and activity and stability were evaluated. The best immobilization results were attained by using glutaraldehyde as support's activator and enzyme stabilizer. The optimized enzyme proportion for immobilization was 15-20 mg g-1 of support. Treatments of whey were performed (microfiltration, thermal treatment and ultrafiltration, seeking the elimination of sludge, and the effects on operating the fixed bed reactor were evaluated. Ultrafiltration was the best treatment towards a proper substrate solution for feeding the reactor.A hidrólise de lactose de soro de leite, resultando em glicose e galactose, apresenta-se como uma alternativa para ampliar as possibilidades de uso comercial deste insumo. Para ser aplicado em escala industrial, o processo deve ser operado de modo contínuo. Reporta-se o estudo de um sistema objetivando hidrólise de lactose de soro de leite através de um reator com enzima imobilizada. b-Galactosidase de Aspergillus oryzae foi imobilizada em sílica, sendo avaliadas a estabilidade e atividade. Os melhores resultados de imobilização foram obtidos usando glutaraldeído como ativante do suporte e estabilizador da enzima. A proporção otimizada entre enzima e suporte foi 15-20 mg.g-1. Foram estudadas formas de tratamento do soro (microfiltração, tratamento térmico e ultrafiltração, objetivando eliminação de material suspenso, e avaliando os efeitos na operação de reator de leito fixo. A ultrafiltração foi o melhor tratamento, na busca de uma solução de substrato apropriada para o reator contínuo.

  11. A Novel Process to Prepare Chitosan Macrospheres without Shrinkage and its Application to Immobilize β-Galactosidase

    Directory of Open Access Journals (Sweden)

    Su-Fang Sun

    2009-01-01

    Full Text Available A new process for the preparation of chitosan macrospheres, which was simple and practicable, was suggested in this paper and various chitosans with different molecular weight were used as materials to immobilize β-galactosidase and the chitosan macrospheres with the lowest molecular weight (500 000 was selected as enzyme immobilization carrier based on the highest enzyme activity. In order to overcome the shrinkage of chitosan during drying, the wet macrospheres obtained was treated by 30% glycerol solution for 1 h before drying and the results showed that the dried chitosan macrospheres obtained could keep almost the same structure as its wet form, which was very important for chitosan as enzyme carrier in industry. Finally, β-galactosidase from Aspergillus oryzae was immobilized on above dry chitosan macrospheres and a satisfactory result of the immobilized enzyme was obtained in enzyme activity yield, pH stability, thermal stability, operational stability, Michaelis constants Km and the maximum velocity (Vm

  12. Inhibition of β-galactosidase and α-glucosidase synthesis in petroleum refinery effluent bacteria by phenolic compounds

    Directory of Open Access Journals (Sweden)

    Gideon C. Okpokwasili

    2011-04-01

    Full Text Available Inhibition of α-glucosidase (EC 3.2.1.20 and β-galactosidase (EC 3.2.1.23 biosynthesis by phenolic compounds (phenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol in Escherichia coli, Bacillus and Pseudomonas species isolated from petroleum refinery wastewater was assessed. At sufficient concentrations, phenols inhibited the induction of α-glucosidase and β-galactosidase. The patterns of these toxic effects can be mathematically described with logistic and sigmoid dose-response models. The median inhibitory concentrations (IC50 varied among the phenols, the bacteria and enzymes. Quantitative structure–activity relationship (QSAR models based on the logarithm of the octanol–water partition coefficient (log10Kow were developed for each bacterium. The correlation coefficients varied between 0.84and 0.99 for the enzymes. The test results indicated α-glucosidase and β-galactosidase biosynthesis as important microbial indices for evaluation of toxicity of phenolic compounds.

  13. Lysosomal storage disease 2 - Pompe's disease

    NARCIS (Netherlands)

    van der Ploeg, Ans T.; Reuser, Arnold J. J.

    2008-01-01

    Pompe's disease, glycogen-storage disease type II, and acid maltase deficiency are alternative names for the same metabolic disorder. It is a pan-ethnic autosomal recessive trait characterised by acid alpha-glucosidase deficiency leading to lysosomal glycogen storage. Pompe's disease is also

  14. The emerging role of lysosomes in copper homeostasis.

    Science.gov (United States)

    Polishchuk, Elena V; Polishchuk, Roman S

    2016-09-01

    The lysosomal system operates as a focal point where a number of important physiological processes such as endocytosis, autophagy and nutrient sensing converge. One of the key functions of lysosomes consists of regulating the metabolism/homeostasis of metals. Metal-containing components are carried to the lysosome through incoming membrane flows, while numerous transporters allow metal ions to move across the lysosome membrane. These properties enable lysosomes to direct metal fluxes to the sites where metal ions are either used by cellular components or sequestered. Copper belongs to a group of metals that are essential for the activity of vitally important enzymes, although it is toxic when in excess. Thus, copper uptake, supply and intracellular compartmentalization have to be tightly regulated. An increasing number of publications have indicated that these processes involve lysosomes. Here we review studies that reveal the expanding role of the lysosomal system as a hub for the control of Cu homeostasis and for the regulation of key Cu-dependent processes in health and disease.

  15. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells.

    Directory of Open Access Journals (Sweden)

    Gabriel C Baltazar

    Full Text Available Lysosomal enzymes function optimally in acidic environments, and elevation of lysosomal pH can impede their ability to degrade material delivered to lysosomes through autophagy or phagocytosis. We hypothesize that abnormal lysosomal pH is a key aspect in diseases of accumulation and that restoring lysosomal pH will improve cell function. The propensity of nanoparticles to end up in the lysosome makes them an ideal method of delivering drugs to lysosomes. This study asked whether acidic nanoparticles could traffic to lysosomes, lower lysosomal pH and enhance lysosomal degradation by the cultured human retinal pigmented epithelial cell line ARPE-19. Acidic nanoparticles composed of poly (DL-lactide-co-glycolide (PLGA 502 H, PLGA 503 H and poly (DL-lactide (PLA colocalized to lysosomes of ARPE-19 cells within 60 min. PLGA 503 H and PLA lowered lysosomal pH in cells compromised by the alkalinizing agent chloroquine when measured 1 hr. after treatment, with acidification still observed 12 days later. PLA enhanced binding of Bodipy-pepstatin-A to the active site of cathepsin D in compromised cells. PLA also reduced the cellular levels of opsin and the lipofuscin-like autofluorescence associated with photoreceptor outer segments. These observations suggest the acidification produced by the nanoparticles was functionally effective. In summary, acid nanoparticles lead to a rapid and sustained lowering of lysosomal pH and improved degradative activity.

  16. Senescence-associated β-galactosidase activity in the in vitro ovarian stromal fibroblasts

    Directory of Open Access Journals (Sweden)

    Lilian Chuaire-Noack

    2011-04-01

    Full Text Available A growing biological research field is the cellular senescence, a mechanism that has been associated, under certain circumstances, withmalignant transformation. Given the high incidence of ovarian cancerand its main origin from the ovarian surface epithelium, as well asthe possibility that an epithelial-mesenchymal transition occurs, weevaluated both the in vitro growth of stromal fibroblasts from the ovarian cortex and their β-galactosidase activity at pH 6,enzyme whose expression is considered as a marker of replicativesenescence. Methods: 48 samples of ovarian cortical fibroblasts fromdonors without a history of cancer were serially cultured untilthe end of their replicative life. β-galactosidase activity at pH 6was quantified in each passage by the chemiluminiscent method. Ascontrol, we used ovarian epithelial cell cultures from the samedonors. The enzyme activity was also evaluated in fibroblastspreviously induced to senescence by exposure to hydrogen peroxide.Results: The analysis of the enzyme activity and the replicativecapacity taken together showed that the fibroblast cultures reachedthe senescent state at passages 4-5, as what happened with the control epithelial cells. Fibroblasts induced to senescence showed high variability in the values of enzymatic activity. Conclusions:The similarity between both types of cells in reaching the senescent state deserves to be taken into account in relation to theepithelialmesenchymal transition that has been proposed to explaintheir behavior in the genesis of cancer arising from ovarian surfaceepithelium. Low β-galactosidase activity values at pH 6 would suggestpossible inactivation of the response pathways to oxidative stress.

  17. Fabry disease and early stroke

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, U

    2011-01-01

    Fabry disease, an X-linked lysosomal storage disorder, results from deficient activity of the enzyme a-galactosidase A. Affected males with the classic phoenotype have acroparaesthesias, hypohidrosis, and corneal opacities in childhood and develop renal failure, cardiac hypertrophy or strokes in ...

  18. Fabry disease and early stroke

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, U

    2011-01-01

    Fabry disease, an X-linked lysosomal storage disorder, results from deficient activity of the enzyme α-galactosidase A. Affected males with the classic phoenotype have acroparaesthesias, hypohidrosis, and corneal opacities in childhood and develop renal failure, cardiac hypertrophy or strokes in ...

  19. Inhibition of substrate synthesis as a strategy for glycolipid lysosomal storage disease therapy

    NARCIS (Netherlands)

    Platt, F. M.; Jeyakumar, M.; Andersson, U.; Priestman, D. A.; Dwek, R. A.; Butters, T. D.; Cox, T. M.; Lachmann, R. H.; Hollak, C.; Aerts, J. M.; van Weely, S.; Hrebícek, M.; Moyses, C.; Gow, I.; Elstein, D.; Zimran, A.

    2001-01-01

    The glycosphingolipid (GSL) lysosomal storage diseases are caused by mutations in the genes encoding the glycohydrolases that catabolize GSLs within lysosomes. In these diseases the substrate for the defective enzyme accumulates in the lysosome and the stored GSL leads to cellular dysfunction and

  20. Screening and Characterization of Cold-Active β-Galactosidase Producing Psychrotrophic Enterobacter ludwigii from the Sediments of Arctic Fjord.

    Science.gov (United States)

    Alikkunju, Aneesa P; Sainjan, Neethu; Silvester, Reshma; Joseph, Ajith; Rahiman, Mujeeb; Antony, Ally C; Kumaran, Radhakrishnan C; Hatha, Mohamed

    2016-10-01

    Low-temperature-tolerant microorganisms and their cold-active enzymes could be an innovative and invaluable tool in various industrial applications. In the present study, bacterial isolates from the sediment samples of Kongsfjord, Norwegian Arctic, were screened for β-galactosidase production. Among the isolates, KS25, KS85, KS60, and KS92 have shown good potential in β-galactosidase production at 20 °C. 16SrRNA gene sequence analysis revealed the relatedness of the isolates to Enterobacter ludwigii. The optimum growth temperature of the isolate was 25 °C. The isolate exhibited good growth and enzyme production at a temperature range of 15-35 °C, pH 5-10. The isolate preferred yeast extract and lactose for the maximum growth and enzyme production at conditions of pH 7.0, temperature of 25 °C, and agitation speed of 100 rpm. The growth and enzyme production was stimulated by Mn 2+ and Mg 2+ and strongly inhibited by Zn 2+ , Ni 2+ , and Cu + . β-Galactosidases with high specific activity at low temperatures are very beneficial in food industry to compensate the nutritional problem associated with lactose intolerance. The isolate exhibited a remarkable capability to utilize clarified whey, an industrial pollutant, for good biomass and enzyme yield and hence could be well employed in whey bioremediation.

  1. A practical method for screening for beta-galactosidase secreting microbial colonies Método prático de triagem de colônias de microrganismos secretoras de beta-galactosidase

    Directory of Open Access Journals (Sweden)

    Eriana S. Barreto

    2000-03-01

    Full Text Available Microbial colonies were replicated on YNB® agar plates overlaid with soft agar containing the glucose-oxidase/peroxidase (BIOTROL® system. The pink color developed around the colonies was the result of the reaction of the glucose generated by the extracellular hydrolysis of lactose by beta-galactosidase, indicating secretion of this enzyme. This method proved to be very convenient for testing hundreds of colonies grown on agar plates for beta-galactosidase secretion by microbial cells.Colônias microbianas foram replicadas na superfície de ágar YNB® contendo lactose, recoberta com uma camada de ágar semi-sólido contendo o sistema glicose-oxidase/peroxidase (BIOTROL®. Coloração rosa foi desenvolvida ao redor das colônias como resultado da reação de glicose gerada pela hidrólise extracelular de lactose pela beta-galactosidase, indicando secreção da enzima pelo microrganismo.

  2. Structure of human saposin A at lysosomal pH

    International Nuclear Information System (INIS)

    Hill, Chris H.; Read, Randy J.; Deane, Janet E.

    2015-01-01

    A 1.8 Å resolution structure of the sphingolipid activator protein saposin A has been determined at pH 4.8, the physiologically relevant lysosomal pH for hydrolase enzyme activation and lipid-transfer activity. The saposins are essential cofactors for the normal lysosomal degradation of complex glycosphingolipids by acid hydrolase enzymes; defects in either saposin or hydrolase function lead to severe metabolic diseases. Saposin A (SapA) activates the enzyme β-galactocerebrosidase (GALC), which catalyzes the breakdown of β-d-galactocerebroside, the principal lipid component of myelin. SapA is known to bind lipids and detergents in a pH-dependent manner; this is accompanied by a striking transition from a ‘closed’ to an ‘open’ conformation. However, previous structures were determined at non-lysosomal pH. This work describes a 1.8 Å resolution X-ray crystal structure determined at the physiologically relevant lysosomal pH 4.8. In the absence of lipid or detergent at pH 4.8, SapA is observeed to adopt a conformation closely resembling the previously determined ‘closed’ conformation, showing that pH alone is not sufficient for the transition to the ‘open’ conformation. Structural alignments reveal small conformational changes, highlighting regions of flexibility

  3. Structure of human saposin A at lysosomal pH

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Chris H.; Read, Randy J.; Deane, Janet E., E-mail: jed55@cam.ac.uk [University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY (United Kingdom)

    2015-06-27

    A 1.8 Å resolution structure of the sphingolipid activator protein saposin A has been determined at pH 4.8, the physiologically relevant lysosomal pH for hydrolase enzyme activation and lipid-transfer activity. The saposins are essential cofactors for the normal lysosomal degradation of complex glycosphingolipids by acid hydrolase enzymes; defects in either saposin or hydrolase function lead to severe metabolic diseases. Saposin A (SapA) activates the enzyme β-galactocerebrosidase (GALC), which catalyzes the breakdown of β-d-galactocerebroside, the principal lipid component of myelin. SapA is known to bind lipids and detergents in a pH-dependent manner; this is accompanied by a striking transition from a ‘closed’ to an ‘open’ conformation. However, previous structures were determined at non-lysosomal pH. This work describes a 1.8 Å resolution X-ray crystal structure determined at the physiologically relevant lysosomal pH 4.8. In the absence of lipid or detergent at pH 4.8, SapA is observeed to adopt a conformation closely resembling the previously determined ‘closed’ conformation, showing that pH alone is not sufficient for the transition to the ‘open’ conformation. Structural alignments reveal small conformational changes, highlighting regions of flexibility.

  4. Two novel, putatively cell wall-associated and glycosylphosphatidylinositol-anchored alpha-glucanotransferase enzymes of Aspergillus niger.

    Science.gov (United States)

    van der Kaaij, R M; Yuan, X-L; Franken, A; Ram, A F J; Punt, P J; van der Maarel, M J E C; Dijkhuizen, L

    2007-07-01

    In the genome sequence of Aspergillus niger CBS 513.88, three genes were identified with high similarity to fungal alpha-amylases. The protein sequences derived from these genes were different in two ways from all described fungal alpha-amylases: they were predicted to be glycosylphosphatidylinositol anchored, and some highly conserved amino acids of enzymes in the alpha-amylase family were absent. We expressed two of these enzymes in a suitable A. niger strain and characterized the purified proteins. Both enzymes showed transglycosylation activity on donor substrates with alpha-(1,4)-glycosidic bonds and at least five anhydroglucose units. The enzymes, designated AgtA and AgtB, produced new alpha-(1,4)-glycosidic bonds and therefore belong to the group of the 4-alpha-glucanotransferases (EC 2.4.1.25). Their reaction products reached a degree of polymerization of at least 30. Maltose and larger maltooligosaccharides were the most efficient acceptor substrates, although AgtA also used small nigerooligosaccharides containing alpha-(1,3)-glycosidic bonds as acceptor substrate. An agtA knockout of A. niger showed an increased susceptibility towards the cell wall-disrupting compound calcofluor white, indicating a cell wall integrity defect in this strain. Homologues of AgtA and AgtB are present in other fungal species with alpha-glucans in their cell walls, but not in yeast species lacking cell wall alpha-glucan. Possible roles for these enzymes in the synthesis and/or maintenance of the fungal cell wall are discussed.

  5. Lysosomal storage diseases

    Science.gov (United States)

    Ferreira, Carlos R.; Gahl, William A.

    2016-01-01

    Lysosomes are cytoplasmic organelles that contain a variety of different hydrolases. A genetic deficiency in the enzymatic activity of one of these hydrolases will lead to the accumulation of the material meant for lysosomal degradation. Examples include glycogen in the case of Pompe disease, glycosaminoglycans in the case of the mucopolysaccharidoses, glycoproteins in the cases of the oligosaccharidoses, and sphingolipids in the cases of Niemann-Pick disease types A and B, Gaucher disease, Tay-Sachs disease, Krabbe disease, and metachromatic leukodystrophy. Sometimes, the lysosomal storage can be caused not by the enzymatic deficiency of one of the hydrolases, but by the deficiency of an activator protein, as occurs in the AB variant of GM2 gangliosidosis. Still other times, the accumulated lysosomal material results from failed egress of a small molecule as a consequence of a deficient transporter, as in cystinosis or Salla disease. In the last couple of decades, enzyme replacement therapy has become available for a number of lysosomal storage diseases. Examples include imiglucerase, taliglucerase and velaglucerase for Gaucher disease, laronidase for Hurler disease, idursulfase for Hunter disease, elosulfase for Morquio disease, galsulfase for Maroteaux-Lamy disease, alglucosidase alfa for Pompe disease, and agalsidase alfa and beta for Fabry disease. In addition, substrate reduction therapy has been approved for certain disorders, such as eliglustat for Gaucher disease. The advent of treatment options for some of these disorders has led to newborn screening pilot studies, and ultimately to the addition of Pompe disease and Hurler disease to the Recommended Uniform Screening Panel (RUSP) in 2015 and 2016, respectively. PMID:29152458

  6. Acid Glycohydrolases in Rat Spermatocytes, Spermatids and Spermatozoa: Enzyme Activities, Biosynthesis and Immunolocalization

    Directory of Open Access Journals (Sweden)

    Abou-Haila Aida

    2001-01-01

    Full Text Available Mammalian sperm acrosome contains several glycohydrolases thought to aid in the dispersion and digestion of vestments surrounding the egg. In this study, we have used multiple approaches to examine the origin of acrosome-associated glycohdyrdolases. Mixed spermatogenic cells, prepared from rat testis, were separated by unit gravity sedimentation. The purified germ cells (spermatocytes [SP], round spermatids [RS], and elongated/condensed spermatids [E/CS] contained several glycohydrolase activities. Metabolic labeling in the cell culture, immunoprecipitation, and autoradiographic approaches revealed that &bgr;-D-galactosidase was synthesized in SP and RS in 88/90 kDa forms which undergo processing in a cell-specific manner. Immunohistochemical approaches demonstrated that the enzyme was localized in Golgi membranes/vesicles, and lysosome-like structures in SP and RS, and forming/formed acrosome of E/CS.

  7. Improving Properties of a Novel β-Galactosidase from Lactobacillus plantarum by Covalent Immobilization

    Directory of Open Access Journals (Sweden)

    Rocio Benavente

    2015-04-01

    Full Text Available A novel β-galactosidase from Lactobacillus plantarum (LPG was over-expressed in E. coli and purified via a single chromatographic step by using lowly activated IMAC (immobilized metal for affinity chromatography supports. The pure enzyme exhibited a high hydrolytic activity of 491 IU/mL towards o-nitrophenyl β-d-galactopyranoside. This value was conserved in the presence of different divalent cations and was quite resistant to the inhibition effects of different carbohydrates. The pure multimeric enzyme was stabilized by multipoint and multisubunit covalent attachment on glyoxyl-agarose. The glyoxyl-LPG immobilized preparation was over 20-fold more stable than the soluble enzyme or the one-point CNBr-LPG immobilized preparation at 50 °C. This β-galactosidase was successfully used in the hydrolysis of lactose and lactulose and formation of different oligosaccharides was detected. High production of galacto-oligosaccharides (35% and oligosaccharides derived from lactulose (30% was found and, for the first time, a new oligosaccharide derived from lactulose, tentatively identified as 3'-galactosyl lactulose, has been described.

  8. Purification and primary structure determination of human lysosomal dipeptidase.

    Science.gov (United States)

    Dolenc, Iztok; Mihelic, Marko

    2003-02-01

    The lysosomal metallopeptidase is an enzyme that acts preferentially on dipeptides with unsubstituted N- and C-termini. Its activity is highest in slightly acidic pH. Here we describe the isolation and characterization of lysosomal dipeptidase from human kidney. The isolated enzyme has the amino-terminal sequence DVAKAIINLAVY and is a homodimer with a molecular mass of 100 kDa. So far no amino acid sequence has been determined for this metallopeptidase. The complete primary structure as deduced from the nucleotide sequence revealed that the isolated dipeptidase is similar to blood plasma glutamate carboxypeptidase.

  9. Alterations in membrane trafficking and pathophysiological implications in lysosomal storage disorders.

    Science.gov (United States)

    Kuech, Eva-Maria; Brogden, Graham; Naim, Hassan Y

    2016-11-01

    Lysosomal storage disorders are a heterogeneous group of more than 50 distinct inborn metabolic diseases affecting about 1 in 5000 to 7000 live births. The diseases often result from mutations followed by functional deficiencies of enzymes or transporters within the acidic environment of the lysosome, which mediate the degradation of a wide subset of substrates, including glycosphingolipids, glycosaminoglycans, cholesterol, glycogen, oligosaccharides, peptides and glycoproteins, or the export of the respective degradation products from the lysosomes. The progressive accumulation of uncleaved substrates occurs in multiple organs and finally causes a broad spectrum of different pathologies including visceral, neurological, skeletal and hematologic manifestations. Besides deficient lysosomal enzymes and transporters other defects may lead to lysosomal storage disorders, including activator defects, membrane defects or defects in modifier proteins. In this review we concentrate on four different lysosomal storage disorders: Niemann-Pick type C, Fabry disease, Gaucher disease and Pompe disease. While the last three are caused by defective lysosomal hydrolases, Niemann-Pick type C is caused by the inability to export LDL-derived cholesterol out of the lysosome. We want to emphasise potential implications of membrane trafficking defects on the pathology of these diseases, as many mutations interfere with correct lysosomal protein trafficking and alter cellular lipid homeostasis. Current therapeutic strategies are summarised, including substrate reduction therapy as well as pharmacological chaperone therapy which directly aim to improve folding and lysosomal transport of misfolded mutant proteins. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities.

    Directory of Open Access Journals (Sweden)

    Fiona Karen Harlan

    Full Text Available Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson's Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research

  11. Structural features of Aspergillus niger β-galactosidase define its activity against glycoside linkages.

    Science.gov (United States)

    Rico-Díaz, Agustín; Ramírez-Escudero, Mercedes; Vizoso-Vázquez, Ángel; Cerdán, M Esperanza; Becerra, Manuel; Sanz-Aparicio, Julia

    2017-06-01

    β-Galactosidases are biotechnologically interesting enzymes that catalyze the hydrolysis or transgalactosylation of β-galactosides. Among them, the Aspergillus niger β-galactosidase (AnβGal) belongs to the glycoside hydrolase family 35 (GH35) and is widely used in the industry due to its high hydrolytic activity which is used to degrade lactose. We present here its three-dimensional structure in complex with different oligosaccharides, to illustrate the structural determinants of the broad specificity of the enzyme against different glycoside linkages. Remarkably, the residues Phe264, Tyr304, and Trp806 make a dynamic hydrophobic platform that accommodates the sugar at subsite +1 suggesting a main role on the recognition of structurally different substrates. Moreover, complexes with the trisaccharides show two potential subsites +2 depending on the substrate type. This feature and the peculiar shape of its wide cavity suggest that AnβGal might accommodate branched substrates from the complex net of polysaccharides composing the plant material in its natural environment. Relevant residues were selected and mutagenesis analyses were performed to evaluate their role in the catalytic performance and the hydrolase/transferase ratio of AnβGal. Thus, we generated mutants with improved transgalactosylation activity. In particular, the variant Y304F/Y355H/N357G/W806F displays a higher level of galacto-oligosaccharides production than the Aspergillus oryzae β-galactosidase, which is the preferred enzyme in the industry owing to its high transferase activity. Our results provide new knowledge on the determinants modulating specificity and the catalytic performance of fungal GH35 β-galactosidases. In turn, this fundamental background gives novel tools for the future improvement of these enzymes, which represent an interesting target for rational design. Structural data are available in PDB database under the accession numbers 5IFP (native form), 5IHR (in complex with 6

  12. Fabry's Disease: Case Series and Review of Literature | Wani ...

    African Journals Online (AJOL)

    Fabry's disease is an X‑linked lysosomal storage disorder caused by a deficiency of alpha‑galactosidase A enzyme with the progressive accumulation of globotriaosylceramide in vascular endothelial cells leading to cardiovascular, renal, gastrointestinal, neuropathic, lenticular, and dermatological manifestations. It is a rare ...

  13. BACE is degraded via the lysosomal pathway.

    Science.gov (United States)

    Koh, Young Ho; von Arnim, Christine A F; Hyman, Bradley T; Tanzi, Rudolph E; Tesco, Giuseppina

    2005-09-16

    Amyloid plaques are formed by aggregates of amyloid-beta-peptide, a 37-43-amino acid fragment (primarily Abeta(40) and Abeta(42)) generated by proteolytic processing of the amyloid precursor protein (APP) by beta- and gamma-secretases. A type I transmembrane aspartyl protease, BACE (beta-site APP cleaving enzyme), has been identified to be the beta-secretase. BACE is targeted through the secretory pathway to the plasma membrane where it can be internalized to endosomes. The carboxyl terminus of BACE contains a di-leucine-based signal for sorting of transmembrane proteins to endosomes and lysosomes. In this study, we set out to determine whether BACE is degraded by the lysosomal pathway and whether the di-leucine motif is necessary for targeting BACE to the lysosomes. Here we show that lysosomal inhibitors, chloroquine and NH(4)Cl, lead to accumulation of endogenous and ectopically expressed BACE in a variety of cell types, including primary neurons. Furthermore, the inhibition of lysosomal hydrolases results in the redistribution and accumulation of BACE in the late endosomal/lysosomal compartments (lysosome-associated membrane protein 2 (LAMP2)-positive). In contrast, the BACE-LL/AA mutant, in which Leu(499) and Leu(500) in the COOH-terminal sequence (DDISLLK) were replaced by alanines, only partially co-localized with LAMP2-positive compartments following inhibition of lysosomal hydrolases. Collectively, our data indicate that BACE is transported to the late endosomal/lysosomal compartments where it is degraded via the lysosomal pathway and that the di-leucine motif plays a role in sorting BACE to lysosomes.

  14. A novel cold-active β-D-galactosidase from the Paracoccus sp. 32d - gene cloning, purification and characterization

    Directory of Open Access Journals (Sweden)

    Wierzbicka-Woś Anna

    2011-12-01

    Full Text Available Abstract Background β-D-Galactosidases (EC 3.2.1.23 catalyze the hydrolysis of terminal non-reducing β-D-galactose residues in β-D-galactosides. Cold-active β-D-galactosidases have recently become a focus of attention of researchers and dairy product manufactures owing to theirs ability to: (i eliminate of lactose from refrigerated milk for people afflicted with lactose intolerance, (ii convert lactose to glucose and galactose which increase the sweetness of milk and decreases its hydroscopicity, and (iii eliminate lactose from dairy industry pollutants associated with environmental problems. Moreover, in contrast to commercially available mesophilic β-D-galactosidase from Kluyveromyces lactis the cold-active counterparts could make it possible both to reduce the risk of mesophiles contamination and save energy during the industrial process connected with lactose hydrolysis. Results A genomic DNA library was constructed from soil bacterium Paracoccus sp. 32d. Through screening of the genomic DNA library on LB agar plates supplemented with X-Gal, a novel gene encoding a cold-active β-D-galactosidase was isolated. The in silico analysis of the enzyme amino acid sequence revealed that the β-D-galactosidase Paracoccus sp. 32d is a novel member of Glycoside Hydrolase Family 2. However, owing to the lack of a BGal_small_N domain, the domain characteristic for the LacZ enzymes of the GH2 family, it was decided to call the enzyme under study 'BgaL'. The bgaL gene was cloned and expressed in Escherichia coli using the pBAD Expression System. The purified recombinant BgaL consists of two identical subunits with a combined molecular weight of about 160 kDa. The BgaL was optimally active at 40°C and pH 7.5. Moreover, BgaL was able to hydrolyze both lactose and o-nitrophenyl-β-D-galactopyranoside at 10°C with Km values of 2.94 and 1.17 mM and kcat values 43.23 and 71.81 s-1, respectively. One U of the recombinant BgaL would thus be capable

  15. Lysosomes, Lysosomal Storage Diseases, and Inflammation

    Directory of Open Access Journals (Sweden)

    Calogera M. Simonaro PhD

    2016-05-01

    Full Text Available Lysosomes were originally described in the early 1950s by de Duve who was also the first to recognize the importance of these organelles in human disease. We know now that lysosomes are involved in numerous biological processes, and abnormalities in lysosomal function may result in a broad range of diseases. This review will briefly discuss the role of lysosomes in inflammation and how disruption of normal lysosomal function in the lysosomal storage diseases (LSDs leads to abnormalities in inflammation and immunity.

  16. b-GALACTOSIDASE IMMOBILIZATION ON CONTROLLED PORE SILICA

    Directory of Open Access Journals (Sweden)

    H. C. Trevisan

    1997-12-01

    Full Text Available The immobilization of b -galactosidase from Kluyveromyces fragilis on controlled pore silica was investigated. Immobilization was performed on amino silica activated with glutaraldehyde and the product was applied to the hydrolysis of lactose of whey. The behaviors of the soluble and immobilized enzyme were compared by using whey and a lactose solution as the substrate. With the aim of optimizing the method, parameters such as the amount of glutaraldehyde and the size of the particles were evaluated by comparing activities and stabilities on batch and continuously fluidized bed reactors

  17. Production of α-Galactosidase by Aspergillus oryzae through solid-state fermentation and its application in soymilk Galactooligosaccharide hydrolysis

    Directory of Open Access Journals (Sweden)

    Shankar Kapnoor

    2010-02-01

    Full Text Available α-Galactosidase was produced by Aspergillus oryzae on red gram plant waste-wheat bran based media in solid-state fermentation (SSF. Optimum temperature for α-galactosidase production was 35 0C and upto 4 cm of bed height of substrate had no inhibitory effect on enzyme production. Hydrolysis of galactooligosaccharides in soymilk was carried out by α-galactosidase. Optimum temperature and pH for the hydrolysis of raffinose and stachyose of soymilk were 55(0C and 5.2-6.2, respectively. The enzymatic treatment for 3 h completely removed the raffinose oligosaccharides in soymilk. Crude extract also showed considerable amount of invertase activity.

  18. Lysosome Transport as a Function of Lysosome Diameter

    Science.gov (United States)

    Bandyopadhyay, Debjyoti; Cyphersmith, Austin; Zapata, Jairo A.; Kim, Y. Joseph; Payne, Christine K.

    2014-01-01

    Lysosomes are membrane-bound organelles responsible for the transport and degradation of intracellular and extracellular cargo. The intracellular motion of lysosomes is both diffusive and active, mediated by motor proteins moving lysosomes along microtubules. We sought to determine how lysosome diameter influences lysosome transport. We used osmotic swelling to double the diameter of lysosomes, creating a population of enlarged lysosomes. This allowed us to directly examine the intracellular transport of the same organelle as a function of diameter. Lysosome transport was measured using live cell fluorescence microscopy and single particle tracking. We find, as expected, the diffusive component of intracellular transport is decreased proportional to the increased lysosome diameter. Active transport of the enlarged lysosomes is not affected by the increased lysosome diameter. PMID:24497985

  19. Crystallization and preliminary X-ray crystallographic analysis of β-galactosidase from Kluyveromyces lactis

    International Nuclear Information System (INIS)

    Pereira-Rodríguez, Ángel; Fernández-Leiro, Rafael; González Siso, M. Isabel; Cerdán, M. Esperanza; Becerra, Manuel; Sanz-Aparicio, Julia

    2010-01-01

    β-Galactosidase from K. lactis has been expressed in S. cerevisiae, purified by affinity chromatography and crystallized in its native form. β-Galactosidase from Kluyveromyces lactis catalyses the hydrolysis of the β-galactosidic linkage in lactose. Owing to its many industrial applications, the biotechnological potential of this enzyme is substantial. This protein has been expressed in yeast and purified for crystallization trials. However, optimization of the best crystallization conditions yielded crystals with poor diffraction quality that precluded further structural studies. Finally, the crystal quality was improved using the streak-seeding technique and a complete diffraction data set was collected at 2.8 Å resolution

  20. A lysosomal lair for a pathogenic protein pair.

    Science.gov (United States)

    Dawson, Ted M; Dawson, Valina L

    2011-07-13

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects movement. Although many of the causes of PD remain unclear, a consistent finding is the abnormal accumulation of the protein α-synuclein. In a recent issue of Cell, Mazzuli et al. provide a molecular explanation for the unexpected link between PD and Gaucher's disease, a glycolipid lysosomal storage disorder caused by loss of the enzyme glucocerebrosidase (GBA). They report a reciprocal connection between loss of GBA activity and the accumulation of α-synuclein in lysosomes that establishes a bidirectional positive feedback loop with pathogenic consequences. Understanding how lysosomes are implicated in PD may reveal new therapeutic targets for treating this disease.

  1. Effect of Phosphodiesterase in Regulating the Activity of Lysosomes in the HeLa Cell Line.

    Science.gov (United States)

    Hong, Eun-Seon; Kim, Bit-Na; Kim, Yang-Hoon; Min, Jiho

    2017-02-28

    The transport of lysosomal enzymes into the lysosomes depends on the phosphorylation of their chains and the binding of the phosphorylated residues to mannose-6-phosphate receptors. The efficiency of separation depends more on the phosphodiesterases (PDEs) than on the activity of the phosphorylation of mannose residues and can be determined in vitro. PDEs play important roles in regulation of the activation of lysosomes. The expression of proteins was confirmed by western blotting. All PDE4 series protein expression was reduced in high concentrations of rolipram. As a result of observing the fluorescence intensity after rolipram treatment, the lysosomal enzyme was activated at low concentrations and suppressed at high concentrations. High concentrations of rolipram recovered the original function. Antimicrobial activity was not shown in either 10 or 100 µ concentrations of rolipram in treated HeLa cells in vitro. However, the higher anticancer activity at lower rolipram concentration was shown in lysosomal enzyme treated with 10 µ of rolipram. The anticancer activity was confirmed through cathepsin B and D assay. Tranfection allowed examination of the relationship between PDE4 and lysosomal activity in more detail. Protein expression was confirmed to be reduced. Fluorescence intensity showed decreased activity of lysosomes and ROS in cells transfected with the antisense sequences of PDE4 A, B, C, and D. PDE4A showed anticancer activity, whereas lysosome from cells transfected with the antisense sequences of PDE4 B, C, and D had decreased anticancer activity. These results showed the PDE4 A, B, C, and D are conjunctly related with lysosomal activity.

  2. Lysosome destruction and lipoperoxide formation due to active oxygen generated from haematoporphyrin and UV irradiation

    International Nuclear Information System (INIS)

    Torinuki, W.; Miura, T.; Seiji, M.

    1980-01-01

    The lysosomal enzymes, acid-phosphates and β-glucuronidase, were released from rat liver lysosome when exposed to 400 nm irradiation in the presence of haematoporphyrin and the release was prevented by adding vitamin E, diazabicyclo-octane, bovine serum albumin, superoxide dismutase or D-mannitol to the reaction mixture. Monochromatic irradiation with wavelengths from 380 to 410 nm caused no significant differences in the release of lysosomal enzymes, but 420 nm irradiation caused three-fifths of that of 400 nm irradiation. The malondialdeyhde level in rat liver homogenate increased after 400 nm irradiation in the presence of haematoporphyrin Reduction of nitroblue-tetrazolium was not observed when haematoporphyrin was excited by 400 nm; it was considered that superoxide anion radical (0 2 - ) was not primarily generated. The following mechanism was assumed; that porphyrin which had been excited by 400 nm, converted ground-state molecular oxygen ( 3 0 2 ) to excited singlet oxygen ( 1 0 2 ), which formed lipid peroxides in lysosomal membrane resulting in destruction of the membrane; skin changes would occur from these released lysosomal enzymes. (author)

  3. Discovery of Intermediates of lacZ β-Galactosidase Catalyzed Hydrolysis Using dDNP NMR

    DEFF Research Database (Denmark)

    Kjeldsen, Christian; Ardenkjær-Larsen, Jan Henrik; Duus, Jens Ø.

    2018-01-01

    Using dissolution dynamic nuclear polarization, the sensitivity of single scan solution state 13C NMR can be improved up to 4 orders of magnitude. In this study, the enzyme lacZ β-galactosidase from Escherichia coli was subjected to hyperpolarized substrate, and previously unknown reaction...

  4. Discovery of Intermediates of lacZ beta-Galactosidase Catalyzed Hydrolysis Using dDNP NMR

    DEFF Research Database (Denmark)

    Kjeldsen, Christian; Ardenkjær-Larsen, Jan Henrik; Duus, Jens Øllgaard

    2018-01-01

    Using dissolution dynamic nuclear polarization, the sensitivity of single scan solution state C-13 NMR can be improved up to 4 orders of magnitude. In this study, the enzyme lacZ beta-galactosidase from Escherichia coli was subjected to hyperpolarized substrate, and previously unknown reaction...

  5. Enzymatic and ultrastructural study of lysosomes in rats bearing radiation-induced thyroid follicular carcinoma

    International Nuclear Information System (INIS)

    Starling, J.R.; Clifton, K.H.; Norback, D.H.

    1981-01-01

    Radiation-induced well-differentiated and poorly differentiated follicular thyroid cancers were transplanted into the intrascapular fat pads of male Fisher 144 rats. The tumors grew in the recipient rats and after a time interval were removed and studied along with normal rat thyroids for lysosomal activity and ultrastructural characteristics. Plasma from experimental and control rats was also studied for lysosomal activity. Rats with radiation-induced thyroid carcinoma had a decrease in growth rate compared with normal rats. There was no significant increase in plasma lysosomal enzymes in the experimental rats. Well-differentiated thyroid carcinomatous tissue showed increased total activities of lysosomal enzymes as well as a difference in subcellular distribution compared with normal and poorly differentiated carcinomatous tissue. Electron microscopy of normal and carcinomatous tissue demonstrated the greatest number of lysosomes in the well-differentiated carcinoma and the fewest in the poorly differentiated carcinoma

  6. High level production of β-galactosidase exhibiting excellent milk-lactose degradation ability from Aspergillus oryzae by codon and fermentation optimization.

    Science.gov (United States)

    Zhao, Qianqian; Liu, Fei; Hou, Zhongwen; Yuan, Chao; Zhu, Xiqiang

    2014-03-01

    A β-galactosidase gene from Aspergillus oryzae was engineered utilizing codon usage optimization to be constitutively and highly expressed in the Pichia pastoris SMD1168H strain in a high-cell-density fermentation. After fermentation for 96 h in a 50-L fermentor using glucose and glycerol as combined carbon sources, the recombinant enzyme in the culture supernatant had an activity of 4,239.07 U mL(-1) with o-nitrophenyl-β-D-galactopyranoside as the substrate, and produced a total of extracellular protein content of 7.267 g L(-1) in which the target protein (6.24 g L(-1)) occupied approximately 86 %. The recombinant β-galactosidase exhibited an excellent lactose hydrolysis ability. With 1,000 U of the enzyme in 100 mL milk, 92.44 % lactose was degraded within 24 h at 60 °C, and the enzyme could also accomplish the hydrolysis at low temperatures of 37, 25, and 10 °C. Thus, this engineered strain had significantly higher fermentation level of A. oryzae lactase than that before optimization and the β-galactosidase may have a good application potential in whey and milk industries.

  7. [Changes in active cysteine cathepsins in lysosomes from tissues thyroid papillary carcinomas with various biological characteristics].

    Science.gov (United States)

    Kalinichenko, O V; Myshunina, T M; Tron'ko, M D

    2013-01-01

    To clarify possible role of cysteine cathepsin H, B and L in the proteolytic processes that contribute to the progression of tumor growth in the thyroid, we studied their activity in lysosomes isolated from the tissue of papillary carcinomas. It was shown that for these enzymes there is a dependence of the changes in their activity on a number of biological characteristics of the tumors. Thus, the sharp increase in the activity ofcathepsin H observed in lysosomes of tissue carcinomas category T2 and T3, with intra-and ekstrathyroid and lymphatic invasion of tumor cells. An increase in the activity of cathepsin B is set in the lysosomes of tissue heterogeneous follicular structure, especially in the presence of solid areas, in comparison with typical papillary tumors and in the lysosomes of tissue carcinomas in intrathyroid and cathepsin L-at extrathyroid invasion. A common feature of the enzymes is to increase the activity of cathepsins in lysosomes of tissue nonencapsulated papillary carcinomas. These enzymes probably do not take part in the invasion of tumor cells into blood vessels and in the mechanisms of tumor metastasis to regional lymph nodes. The latter shows no changes in the activity of cathepsins in lysosomes of tissue carcinomas category N1. The results indicate the different role of cathepsin H, B and L in thyroid carcinogenesis, where each enzyme has its specific function.

  8. Combined effects of thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Izagirre, Urtzi; Errasti, Aitzpea; Bilbao, Eider; Múgica, María; Marigómez, Ionan, E-mail: ionan.marigomez@ehu.es

    2014-04-01

    Highlights: • Thermal stress and Cd caused lysosomal enlargement and membrane destabilisation. • hex, gusb and ctsl but not hsp70 were up-regulated at elevated temperature but down-regulated by Cd. • Thermal stress influenced lysosomal responses to Cd exposure. • The presence of Cd jeopardised responsiveness against thermal stress. - Abstract: In estuaries and coastal areas, intertidal organisms may be subject to thermal stress resulting from global warming, together with pollution. In the present study, the combined effects of thermal stress and exposure to Cd were investigated in the endo-lysosomal system of digestive cells in mussels, Mytilus galloprovincialis. Mussels were maintained for 24 h at 18 °C and 26 °C seawater temperature in absence and presence of 50 μg Cd/L seawater. Cadmium accumulation in digestive gland tissue, lysosomal structural changes and membrane stability were determined. Semi-quantitative PCR was applied to reveal the changes elicited by the different experimental conditions in hexosaminidase (hex), β-glucuronidase (gusb), cathepsin L (ctsl) and heat shock protein 70 (hsp70) gene transcription levels. Thermal stress provoked lysosomal enlargement whilst Cd-exposure led to fusion of lysosomes. Both thermal stress and Cd-exposure caused lysosomal membrane destabilisation. hex, gusb and ctsl genes but not hsp70 gene were transcriptionally up-regulated as a result of thermal stress. In contrast, all the studied genes were transcriptionally down-regulated in response to Cd-exposure. Cd bioaccumulation was comparable at 18 °C and 26 °C seawater temperatures but interactions between thermal stress and Cd-exposure were remarkable both in lysosomal biomarkers and in gene transcription. hex, gusb and ctsl genes, reacted to elevated temperature in absence of Cd but not in Cd-exposed mussels. Therefore, thermal stress resulting from global warming might influence the use and interpretation of lysosomal biomarkers in marine pollution

  9. Isolation of Lysosomes from Mammalian Tissues and Cultured Cells.

    Science.gov (United States)

    Aguado, Carmen; Pérez-Jiménez, Eva; Lahuerta, Marcos; Knecht, Erwin

    2016-01-01

    Lysosomes participate within the cells in the degradation of organelles, macromolecules, and a wide variety of substrates. In any study on specific roles of lysosomes, both under physiological and pathological conditions, it is advisable to include methods that allow their reproducible and reliable isolation. However, purification of lysosomes is a difficult task, particularly in the case of cultured cells. This is mainly because of the heterogeneity of these organelles, along with their low number and high fragility. Also, isolation methods, while disrupting plasma membranes, have to preserve the integrity of lysosomes, as the breakdown of their membranes releases enzymes that could damage all cell organelles, including themselves. The protocols described below have been routinely used in our laboratory for the specific isolation of lysosomes from rat liver, NIH/3T3, and other cultured cells, but can be adapted to other mammalian tissues or cell lines.

  10. Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer's disease?

    Science.gov (United States)

    Whyte, Lauren S; Lau, Adeline A; Hemsley, Kim M; Hopwood, John J; Sargeant, Timothy J

    2017-03-01

    Alzheimer's disease (AD) is the most common cause of dementia, and its prevalence will increase significantly in the coming decades. Although important progress has been made, fundamental pathogenic mechanisms as well as most hereditary contributions to the sporadic form of the disease remain unknown. In this review, we examine the now substantial links between AD pathogenesis and lysosomal biology. The lysosome hydrolyses and processes cargo delivered by multiple pathways, including endocytosis and autophagy. The endo-lysosomal and autophagic networks are central to clearance of cellular macromolecules, which is important given there is a deficit in clearance of amyloid-β in AD. Numerous studies show prominent lysosomal dysfunction in AD, including perturbed trafficking of lysosomal enzymes and accumulation of the same substrates that accumulate in lysosomal storage disorders. Examination of the brain in lysosomal storage disorders shows the accumulation of amyloid precursor protein metabolites, which further links lysosomal dysfunction with AD. This and other evidence leads us to hypothesise that genetic variation in lysosomal genes modifies the disease course of sporadic AD. © 2016 International Society for Neurochemistry.

  11. Symbiotic Chlorella variabilis incubated under constant dark conditions for 24 hours loses the ability to avoid digestion by host lysosomal enzymes in digestive vacuoles of host ciliate Paramecium bursaria.

    Science.gov (United States)

    Kodama, Yuuki; Fujishima, Masahiro

    2014-12-01

    Endosymbiosis between symbiotic Chlorella and alga-free Paramecium bursaria cells can be induced by mixing them. To establish the endosymbiosis, algae must acquire temporary resistance to the host lysosomal enzymes in the digestive vacuoles (DVs). When symbiotic algae isolated from the alga-bearing paramecia are kept under a constant dark conditions for 24 h before mixing with the alga-free paramecia, almost all algae are digested in the host DVs. To examine the cause of algal acquisition to the host lysosomal enzymes, the isolated algae were kept under a constant light conditions with or without a photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea for 24 h, and were mixed with alga-free paramecia. Unexpectedly, most of the algae were not digested in the DVs irrespective of the presence of the inhibitor. Addition of 1 mM maltose, a main photosynthetic product of the symbiotic algae or of a supernatant of the isolated algae kept for 24 h under a constant light conditions, did not rescue the algal digestion in the DVs. These observations reveal that unknown factors induced by light are a prerequisite for algal resistance to the host lysosomal enzymes. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Prevention of Bacterial Contamination of a Silica Matrix Containing Entrapped β-Galactosidase through the Action of Covalently Bound Lysozymes

    Directory of Open Access Journals (Sweden)

    Heng Li

    2017-02-01

    Full Text Available β-galactosidase was successfully encapsulated within an amino-functionalised silica matrix using a “fish-in-net” approach and molecular imprinting technique followed by covalent binding of lysozyme via a glutaraldehyde-based method. Transmission electron microscopy (TEM, X-ray diffraction (XRD, scanning electron microscopy (SEM, and Fourier transform infrared (FTIR spectroscopy were used to characterise the silica matrix hosting the two enzymes. Both encapsulated β-galactosidase and bound lysozyme exhibited high enzymatic activities and outstanding operational stability in model reactions. Moreover, enzyme activities of the co-immobilised enzymes did not obviously change relative to enzymes immobilised separately. In antibacterial tests, bound lysozyme exhibited 95.5% and 89.6% growth inhibition of Staphylococcus aureus ATCC (American type culture collection 653 and Escherichia coli ATCC 1122, respectively. In milk treated with co-immobilised enzymes, favourable results were obtained regarding reduction of cell viability and high lactose hydrolysis rate. In addition, when both co-immobilised enzymes were employed to treat milk, high operational and storage stabilities were observed. The results demonstrate that the use of co-immobilised enzymes holds promise as an industrial strategy for producing low lactose milk to benefit people with lactose intolerance.

  13. Affective and cognitive behavior in the alpha-galactosidase A deficient mouse model of Fabry disease.

    Directory of Open Access Journals (Sweden)

    Lukas Hofmann

    Full Text Available Fabry disease is an X-linked inherited lysosomal storage disorder with intracellular accumulation of globotriaosylceramide (Gb3 due to α-galactosidase A (α-Gal A deficiency. Fabry patients frequently report of anxiety, depression, and impaired cognitive function. We characterized affective and cognitive phenotype of male mice with α-Gal A deficiency (Fabry KO and compared results with those of age-matched male wildtype (WT littermates. Young (3 months and old (≥ 18 months mice were tested in the naïve state and after i.pl. injection of complete Freund`s adjuvant (CFA as an inflammatory pain model. We used the elevated plus maze (EPM, the light-dark box (LDB and the open field test (OF to investigate anxiety-like behavior. The forced swim test (FST and Morris water maze (MWM were applied to assess depressive-like and learning behavior. The EPM test revealed no intergroup difference for anxiety-like behavior in naïve young and old Fabry KO mice compared to WT littermates, except for longer time spent in open arms of the EPM for young WT mice compared to young Fabry KO mice (p<0.05. After CFA injection, young Fabry KO mice showed increased anxiety-like behavior compared to young WT littermates (p<0.05 and naïve young Fabry KO mice (p<0.05 in the EPM as reflected by shorter time spent in EPM open arms. There were no relevant differences in the LDB and the OF test, except for longer time spent in the center zone of the OF by young WT mice compared to young Fabry KO mice (p<0.05. Complementary to this, depression-like and learning behavior were not different between genotypes and age-groups, except for the expectedly lower memory performance in older age-groups compared to young mice. Our results indicate that genetic influences on affective and cognitive symptoms in FD may be of subordinate relevance, drawing attention to potential influences of environmental and epigenetic factors.

  14. Discriminating Foot-and-Mouth Disease Virus-Infected and Vaccinated Animals by Use of β-Galactosidase Allosteric Biosensors▿ †

    Science.gov (United States)

    Sánchez-Aparicio, M. Teresa; Rosas, María Flora; Ferraz, Rosa Maria; Delgui, Laura; Veloso, Juan J.; Blanco, Esther; Villaverde, Antonio; Sobrino, Francisco

    2009-01-01

    Recombinant β-galactosidases accommodating one or two different peptides from the foot-and-mouth disease virus (FMDV) nonstructural protein 3B per enzyme monomer showed a drastic enzymatic activity reduction, which mainly affected proteins with double insertions. Recombinant β-galactosidases were enzymatically reactivated by 3B-specific murine monoclonal and rabbit polyclonal antibodies. Interestingly, these recombinant β-galactosidases, particularly those including one copy of each of the two 3B sequences, were efficiently reactivated by sera from infected pigs. We found reaction conditions that allowed differentiation between sera of FMDV-infected pigs, cattle, and sheep and those of naïve and conventionally vaccinated animals. These FMDV infection-specific biosensors can provide an effective and versatile alternative for the serological distinction of FMDV-infected animals. PMID:19553549

  15. Lysosomal storage diseases and the blood-brain barrier.

    Science.gov (United States)

    Begley, David J; Pontikis, Charles C; Scarpa, Maurizio

    2008-01-01

    The blood-brain barrier becomes a crucial issue in neuronopathic lysosomal storage diseases for three reasons. Firstly, the function of the blood-brain barrier may be compromised in many of the lysosomal storage diseases and this barrier dysfunction may contribute to the neuropathology seen in the diseases and accelerate cell death. Secondly, the substrate reduction therapies, which successfully reduce peripheral lysosomal storage, because of the blood-brain barrier may not have as free an access to brain cells as they do to peripheral cells. And thirdly, enzyme replacement therapy appears to have little access to the central nervous system as the mannose and mannose-6-phosphate receptors involved in their cellular uptake and transport to the lysosome do not appear to be expressed at the adult blood-brain barrier. This review will discuss in detail these issues and their context in the development of new therapeutic strategies.

  16. Quantitative Proteome Analysis of Mouse Liver Lysosomes Provides Evidence for Mannose 6-phosphate-independent Targeting Mechanisms of Acid Hydrolases in Mucolipidosis II.

    Science.gov (United States)

    Markmann, Sandra; Krambeck, Svenja; Hughes, Christopher J; Mirzaian, Mina; Aerts, Johannes M F G; Saftig, Paul; Schweizer, Michaela; Vissers, Johannes P C; Braulke, Thomas; Damme, Markus

    2017-03-01

    The efficient receptor-mediated targeting of soluble lysosomal proteins to lysosomes requires the modification with mannose 6-phosphate (M6P) residues. Although the absence of M6P results in misrouting and hypersecretion of lysosomal enzymes in many cells, normal levels of lysosomal enzymes have been reported in liver of patients lacking the M6P-generating phosphotransferase (PT). The identity of lysosomal proteins depending on M6P has not yet been comprehensively analyzed. In this study we purified lysosomes from liver of PT-defective mice and 67 known soluble lysosomal proteins were identified that illustrated quantitative changes using an ion mobility-assisted data-independent label-free LC-MS approach. After validation of various differentially expressed lysosomal components by Western blotting and enzyme activity assays, the data revealed a small number of lysosomal proteins depending on M6P, including neuraminidase 1, cathepsin F, Npc2, and cathepsin L, whereas the majority reach lysosomes by alternative pathways. These data were compared with findings on cultured hepatocytes and liver sinusoid endothelial cells isolated from the liver of wild-type and PT-defective mice. Our findings show that the relative expression, targeting efficiency and lysosomal localization of lysosomal proteins tested in cultured hepatic cells resemble their proportion in isolated liver lysosomes. Hypersecretion of newly synthesized nonphosphorylated lysosomal proteins suggest that secretion-recapture mechanisms contribute to maintain major lysosomal functions in liver. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Receptor-mediated endocytosis of α-galactosidase A in human podocytes in Fabry disease.

    Directory of Open Access Journals (Sweden)

    Thaneas Prabakaran

    Full Text Available Injury to the glomerular podocyte is a key mechanism in human glomerular disease and podocyte repair is an important therapeutic target. In Fabry disease, podocyte injury is caused by the intracellular accumulation of globotriaosylceramide. This study identifies in the human podocyte three endocytic receptors, mannose 6-phosphate/insulin-like growth II receptor, megalin, and sortilin and demonstrates their drug delivery capabilities for enzyme replacement therapy. Sortilin, a novel α-galactosidase A binding protein, reveals a predominant intracellular expression but also surface expression in the podocyte. The present study provides the rationale for the renal effect of treatment with α-galactosidase A and identifies potential pathways for future non-carbohydrate based drug delivery to the kidney podocyte and other potential affected organs.

  18. Mitochondrial Dysfunction in Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Mario de la Mata

    2016-10-01

    Full Text Available Lysosomal storage diseases (LSDs describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS, where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm, diminished ATP production and increased generation of reactive oxygen species (ROS. Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD, the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase. Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer and glucosylsphingosine (GlcSph in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs.

  19. β-Galactosidase activity of commercial lactase samples in raw and pasteurized milk at refrigerated temperatures.

    Science.gov (United States)

    Horner, T W; Dunn, M L; Eggett, D L; Ogden, L V

    2011-07-01

    Many consumers are unable to enjoy the benefits of milk due to lactose intolerance. Lactose-free milk is available but at about 2 times the cost of regular milk or greater, it may be difficult for consumers to afford. The high cost of lactose-free milk is due in part to the added cost of the lactose hydrolysis process. Hydrolysis at refrigerated temperatures, possibly in the bulk tank or package, could increase the flexibility of the process and potentially reduce the cost. A rapid β-galactosidase assay was used to determine the relative activity of commercially available lactase samples at different temperatures. Four enzymes exhibited low-temperature activity and were added to refrigerated raw and pasteurized milk at various concentrations and allowed to react for various lengths of time. The degree of lactose hydrolysis by each of the enzymes as a function of time and enzyme concentration was determined by HPLC. The 2 most active enzymes, as determined by the β-galactosidase assay, hydrolyzed over 98% of the lactose in 24h at 2°C using the supplier's recommended dosage. The other 2 enzymes hydrolyzed over 95% of the lactose in 24h at twice the supplier's recommended dosage at 2°C. Results were consistent in all milk types tested. The results show that it is feasible to hydrolyze lactose during refrigerated storage of milk using currently available enzymes. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Lysosomal degradation of membrane lipids.

    Science.gov (United States)

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. The alpha-galactosidase type A gene aglA from Aspergillus niger encodes a fully functional alpha-N-acetylgalactosaminidase

    Czech Academy of Sciences Publication Activity Database

    Kulik, Natallia; Weignerová, L.; Filipi, Tomáš; Pompach, Petr; Novák, Petr; Mrázek, H.; Slámová, Kristýna; Bezouška, K.; Křen, Vladimír; Ettrich, Rüdiger

    2010-01-01

    Roč. 20, č. 11 (2010), s. 1410-1419 ISSN 0959-6658 R&D Projects: GA MŠk(CZ) LC06010; GA ČR GAP207/10/1934; GA ČR GAP207/10/1040; GA ČR GA303/09/0477; GA ČR GAP207/10/0321 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z50200510; CEZ:AV0Z10750506 Keywords : α-N-acetylgalactosaminidase * α-galactosidase * Aspergillus niger * substrate binding * molecular modeling Subject RIV: CE - Biochemistry Impact factor: 3.791, year: 2010

  2. Fiber type conversion by PGC-1α activates lysosomal and autophagosomal biogenesis in both unaffected and Pompe skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Shoichi Takikita

    2010-12-01

    Full Text Available PGC-1α is a transcriptional co-activator that plays a central role in the regulation of energy metabolism. Our interest in this protein was driven by its ability to promote muscle remodeling. Conversion from fast glycolytic to slow oxidative fibers seemed a promising therapeutic approach in Pompe disease, a severe myopathy caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA which is responsible for the degradation of glycogen. The recently approved enzyme replacement therapy (ERT has only a partial effect in skeletal muscle. In our Pompe mouse model (KO, the poor muscle response is seen in fast but not in slow muscle and is associated with massive accumulation of autophagic debris and ineffective autophagy. In an attempt to turn the therapy-resistant fibers into fibers amenable to therapy, we made transgenic KO mice expressing PGC-1α in muscle (tgKO. The successful switch from fast to slow fibers prevented the formation of autophagic buildup in the converted fibers, but PGC-1α failed to improve the clearance of glycogen by ERT. This outcome is likely explained by an unexpected dramatic increase in muscle glycogen load to levels much closer to those observed in patients, in particular infants, with the disease. We have also found a remarkable rise in the number of lysosomes and autophagosomes in the tgKO compared to the KO. These data point to the role of PGC-1α in muscle glucose metabolism and its possible role as a master regulator for organelle biogenesis - not only for mitochondria but also for lysosomes and autophagosomes. These findings may have implications for therapy of lysosomal diseases and other disorders with altered autophagy.

  3. Deproteinization: an integrated-solution approach to increase efficiency in β-galactosidase production using cheese whey powder (CWP solution

    Directory of Open Access Journals (Sweden)

    Leandro Freire dos Santos

    2017-08-01

    Full Text Available Whey is the liquid that results from the coagulation of milk during cheese manufacture. Cheese whey is also an important environmental pollution source. The present experiment sought to compare β-galactosidase (EC 3.2.1.23 production by Aspergillus oryzae from deproteinized and un-deproteinized CWP solutions. β-galactosidase was produced by submerged fermentation in deproteinized or un-deproteinized CWP solutions. To determine the activity of the enzyme, a reaction mixture containing cell-free extract and ortho Nitrophenyl β galactoside (ONPG was used. The results indicated that β-galactosidase induction was greater when using deproteinized CWP solution compared to the un deproteinized CWP solution. These results may enable an alternative management of cheese whey, thereby decreasing its impact on the environment and producing value-added biomacromolecules.

  4. Endocytosis of lysosomal acid phosphatase; involvement of mannose receptor and effect of lectins.

    Science.gov (United States)

    Imai, K; Yoshimura, T

    1994-08-01

    Acid phosphatase and beta-glucosidase are unique among lysosomal enzymes in that they have both high mannose and complex type sugasr chains, whereas oligosaccharide chains of lysosomal enzymes in matrix are of high mannose type. We have previously shown that beta-glucosidase was endocytosed into macrophages via an unidentified receptor different from a mannose/fucose receptor (K. Imai, Cell Struct. Funct. 13, 325-332, 1988). Here, we show that uptake of acid phosphatase purified from rat liver lysosomes into rat macrophages was inhibited by ligands for a mannose/fucose receptor and was mediated via an apparently single binding site with Kuptake of 24.7 nM. These results indicate that acid phosphatase and beta-glucosidase recognize different types of receptors even if they have similar sugar chains. Polyvalent concanavalin A which binds both to the enzyme and to macrophages specifically stimulated the uptake in a dose dependent manner, whereas wheat germ agglutinin and phytohaemagglutinin did not.

  5. MALDI-TOF and cluster-TOF-SIMS imaging of Fabry disease biomarkers

    Science.gov (United States)

    Touboul, David; Roy, Sandrine; Germain, Dominique P.; Chaminade, Pierre; Brunelle, Alain; Laprevote, Olivier

    2007-02-01

    Fabry disease is an X-linked disorder of glycosphingolipid metabolism, in which a partial or total deficiency of [alpha]-galactosidase A, a lysosomal enzyme, results in the progressive accumulation of neutral glycosphingolipids (globotriaosylceramide and digalactosylceramide) in most fluids and tissues of the body. Few information is available about the composition and distribution in tissues of the accumulated glycosphingolipids species. Mass spectrometry imaging is an innovative technique, which can provide pieces of information about the distribution of numerous biological compounds, such as lipids, directly on the tissue sections. MALDI-TOF and cluster-TOF-SIMS imaging approaches were used to study the localization of lipids (cholesterol, cholesterol sulfate, vitamin E, glycosphingolipids ...) on skin and kidney sections of patients affected by the Fabry disease. Numerous information on pathophysiology were enlightened by both techniques.

  6. Effects of mercury on lysosomal protein digestion in the kidney proximal tubule

    International Nuclear Information System (INIS)

    Madsen, K.M.; Christensen, E.I.

    1978-01-01

    The effect of mercury on renal lysosomal protein digestion was studied after administration of mercury in vitro and in vivo. Mercuric chloride or methylmercury chloride was added in vitro to lysosomal enzymes isolated from normal rats, and subsequently, digestion experiments were carried out using 125 I-labeled lysozyme or cytochrome c as substrate proteins. Both mercury compounds produced a concentration-dependent inhibition of the degradation of the proteins, mercuric chloride being the strongest inhibitor. Mercuric chloride was also administered to rats in vivo for 5 to 8 months. Renal lysosomal enzymes from these animals also had a decreased ability to digest the two substrate proteins. Furthermore, the digestion of lysozyme intravenously injected into mercury-intoxicated rats was decreased in renal cortical slices incubated in vitro. Electron microscope autoradiography showed that intravenously injected labeled lysozyme was located primarily over lysosomes in proximal tubule cells 1 hour after injection in both control animals and mercury-intoxicated rats. These results suggest a decreased catabolism of low molecular weight proteins in the kidney during chronic mercury intoxication

  7. Lysosomal cysteine peptidases - Molecules signaling tumor cell death and survival.

    Science.gov (United States)

    Pišlar, Anja; Perišić Nanut, Milica; Kos, Janko

    2015-12-01

    Lysosomal cysteine peptidases - cysteine cathepsins - are general intracellular protein-degrading enzymes that control also a variety of specific physiological processes. They can trigger irreversible events leading to signal transduction and activation of signaling pathways, resulting in cell survival and proliferation or cell death. In cancer cells, lysosomal cysteine peptidases are involved in multiple processes during malignant progression. Their translocation from the endosomal/lysosomal pathway to nucleus, cytoplasm, plasma membrane and extracellular space enables the activation and remodeling of a variety of tumor promoting proteins. Thus, lysosomal cysteine peptidases interfere with cytokine/chemokine signaling, regulate cell adhesion and migration and endocytosis, are involved in the antitumor immune response and apoptosis, and promote cell invasion, angiogenesis and metastasis. Further, lysosomal cysteine peptidases modify growth factors and receptors involved in tyrosine kinase dependent pathways such as MAPK, Akt and JNK, thus representing key signaling tools for the activation of tumor cell growth and proliferation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Avaliação da atividade das enzimas pectina metilesterase e β-Galactosidase em mamões cv. Golden armazenados sob diferentes concentrações de oxigênio Activity of pectin methylesterase and β-Galactosidase enzymes in 'Golden' papaya stored under different oxygen concentrations

    Directory of Open Access Journals (Sweden)

    Luciana Konda de Azevedo Pinto

    2013-03-01

    Full Text Available Este trabalho foi realizado com o objetivo de avaliar o efeito de atmosferas controladas contendo diferentes concentrações de oxigênio sobre a atividade das enzimas β-galactosidase e pectina metilesterase, e sobre a cor da casca e a firmeza da polpa de mamões 'Golden'. Os frutos foram mantidos por 36 dias, nas seguintes atmosferas controladas: 1% de O2 e 0,03% CO2 com adsorvedor de etileno, 3% de O2 e 0,03% de CO2 com adsorvedor de etileno, 5% O2 e 0,03% de CO2 com adsorvedor de etileno e atmosfera ambiente sem adsorvedor de etileno. A UR e a temperatura foram mantidas entre 85-95% e a 13º C, respectivamente. Os frutos estocados sob atmosfera de 1% de O2 e 0,03% CO2 apresentaram retardamento nas atividades das enzimas β-galactosidase e pectina metilesterase comparado com os frutos estocados nas outras atmosferas avaliadas. Os frutos armazenados sob atmosfera de 1% de O2 e 0,03% O2 também apresentaram atraso no desenvolvimento da cor da casca e amolecimento da polpa.This study was carried out with the objective to evaluate the effect of controlled atmospheres containing different concentration of oxygen on the activity of β-galactosidase and pectinmethylesterase enzymes, on the skin color and pulp firmness in 'Golden' papaya. The fruits were kept for 36 days under the following controlled atmospheres: 1% of O2 and 0.03% CO2 with ethylene absorber, 3% of O2 and 0.03% of CO2 with ethylene absorber, 5% O2 and 0.03% of CO2 with ethylene absorber and environmental atmosphere without ethylene absorber. Relative humidity was set at the range 85-95% and temperature maintained at 13ºC. Fruit stored under atmospheres of 1% of O2 and 0.03% CO2 had a β-galactosidase and pectimethylesterase activities delayed compared with the fruits storage under the other atmospheres evaluated. There was also, a delay in the development of color and pulp softening in fruits stored under atmospheres of 1% of O2 and 0.03% O2.

  9. Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease

    DEFF Research Database (Denmark)

    Kovács, Gábor G; Gelpi, Ellen; Ströbel, Thomas

    2007-01-01

    The endosomal-lysosomal system (ELS) has been suggested to play a role in the pathogenesis of prion diseases. The purpose of this study was to examine how experimental observations can be translated to human neuropathology and whether alterations of the ELS relate to neuropathologic changes...... correlate with regional pathology. Overloading of this system might impair the function of lysosomal enzymes and thus may mimic some features of lysosomal storage disorders. Udgivelsesdato: 2007-Jul...

  10. Amylosucrase, a glucan-synthesizing enzyme from the alpha-amylase family

    DEFF Research Database (Denmark)

    Skov, L K; Mirza, Osman Asghar; Henriksen, A

    2001-01-01

    Amylosucrase (E.C. 2.4.1.4) is a member of Family 13 of the glycoside hydrolases (the alpha-amylases), although its biological function is the synthesis of amylose-like polymers from sucrose. The structure of amylosucrase from Neisseria polysaccharea is divided into five domains: an all helical N...... of amylosucrase is at the bottom of a pocket at the molecular surface. A substrate binding site resembling the amylase 2 subsite is not found in amylosucrase. The site is blocked by a salt bridge between residues in the second and eight loops of the (beta/alpha)(8)-barrel. The result is an exo-acting enzyme. Loop......-terminal domain that is not similar to any known fold, a (beta/alpha)(8)-barrel A-domain, B- and B'-domains displaying alpha/beta-structure, and a C-terminal eight-stranded beta-sheet domain. In contrast to other Family 13 hydrolases that have the active site in the bottom of a large cleft, the active site...

  11. Rescue of compromised lysosomes enhances degradation of photoreceptor outer segments and reduces lipofuscin-like autofluorescence in retinal pigmented epithelial cells.

    Science.gov (United States)

    Guha, Sonia; Liu, Ji; Baltazar, Gabe; Laties, Alan M; Mitchell, Claire H

    2014-01-01

    Healthful cell maintenance requires the efficient degradative processing and removal of waste material. Retinal pigmented epithelial (RPE) cells have the onerous task of degrading both internal cellular debris generated through autophagy as well as phagocytosed photoreceptor outer segments. We propose that the inadequate processing material with the resulting accumulation of cellular waste contributes to the downstream pathologies characterized as age-related macular degeneration (AMD). The lysosomal enzymes responsible for clearance function optimally over a narrow range of acidic pH values; elevation of lysosomal pH by compounds like chloroquine or A2E can impair degradative enzyme activity and lead to a lipofuscin-like autofluorescence. Restoring acidity to the lysosomes of RPE cells can enhance activity of multiple degradative enzymes and is therefore a logical target in early AMD. We have identified several approaches to reacidify lysosomes of compromised RPE cells; stimulation of beta-adrenergic, A2A adenosine and D5 dopamine receptors each lowers lysosomal pH and improves degradation of outer segments. Activation of the CFTR chloride channel also reacidifies lysosomes and increases degradation. These approaches also restore the lysosomal pH of RPE cells from aged ABCA4(-/-) mice with chronically high levels of A2E, suggesting that functional signaling pathways to reacidify lysosomes are retained in aged cells like those in patients with AMD. Acidic nanoparticles transported to RPE lysosomes also lower pH and improve degradation of outer segments. In summary, the ability of diverse approaches to lower lysosomal pH and enhance outer segment degradation support the proposal that lysosomal acidification can prevent the accumulation of lipofuscin-like material in RPE cells.

  12. Iron content and acid phosphatase activity in hepatic parenchymal lysosomes of patients with hemochromatosis before and after phlebotomy treatment

    International Nuclear Information System (INIS)

    Cleton, M.I.; de Bruijn, W.C.; van Blokland, W.T.; Marx, J.J.; Roelofs, J.M.; Rademakers, L.H.

    1988-01-01

    Lysosomal structures in liver parenchymal cells of 3 patients with iron overload and of 3 subjects without iron-storage disorders were investigated. A combination of enzyme cytochemistry--with cerium as a captive ion to demonstrate lysosomal acid phosphatase activity--and electron probe X-ray microanalysis (EPMA) was used. We were able (1) to define and quantify lysosomal structures as lysosomes, siderosomes, or residual bodies, (2) to quantify the amount of iron and cerium simultaneously in these structures, and (3) to evaluate a possible relation between iron storage and enzyme activity. With histopathologically increased iron storage, the number of siderosomes had increased at the cost of lysosomes, with a corresponding increase in acid phosphatase activity in both organelles. In histopahtologically severe iron overload, however, acid phosphatase activity was low or not detectable and most of the iron was stored in residual bodies. After phlebotomy treatment, the number of siderosomes had decreased in favor of the lysosomes, approaching values obtained in control subjects, and acid phosphatase activity was present in all iron-containing structures. In this way a relationship between iron storage and enzyme activity was established. The iron content of the individual lysosomal structures per unit area had increased with histopathologically increased iron storage and had decreased after phlebotomy treatment. From this observation, it is concluded that the iron status of the patient is not only reflected by the amount of iron-containing hepatocytes but, as well, by the iron content lysosomal unit area

  13. Overexpression and characterization of a novel transgalactosylic and hydrolytic β-galactosidase from a human isolate Bifidobacterium breve B24.

    Science.gov (United States)

    Yi, Sung Hun; Alli, Inteaz; Park, Kwan Hwa; Lee, Byonghoon

    2011-10-01

    After the complete gene of a β-galactosidase from human isolate Bifidobacterium breve B24 was isolated by PCR and overexpressed in E. coli, the recombinant β-galactosidase was purified to homogeneity and characterized for the glycoside transferase (GT) and glycoside hydrolase (GH) activities on lactose. One complete ORF encoding 691 amino acids (2,076 bp) was the structural gene, LacA (galA) of the β-gal gene. The recombinant enzyme shown by activity staining and gel-filtration chromatography was composed of a homodimer of 75 kDa with a total molecular mass of 150 kDa. The K(m) value for lactose (95.58 mM) was 52.5-fold higher than the corresponding K(m) values for the synthetic substrate ONPG (1.82 mM). This enzyme with the optimum of pH 7.0 and 45°C could synthesize approximately 42.00% of GOS from 1M of lactose. About 97.00% of lactose in milk was also quickly hydrolyzed by this enzyme (50 units) at 45°C for 5h to produce 46.30% of glucose, 46.60% of galactose and 7.10% of GOS. The results suggest that this recombinant β-galactosidase derived from a human isolate B. breve B24 may be suitable for both the hydrolysis and synthesis of galacto-oligosaccharides (GOS) in milk and lactose processing. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Neuroinflammatory paradigms in lysosomal storage diseases

    Directory of Open Access Journals (Sweden)

    Megan Elizabeth Bosch

    2015-10-01

    Full Text Available Lysosomal storage diseases (LSDs include approximately 70 distinct disorders that collectively account for 14% of all inherited metabolic diseases. LSDs are caused by mutations in various enzymes/proteins that disrupt lysosomal function, which impairs macromolecule degradation following endosome-lysosome and phagosome-lysosome fusion and autophagy, ultimately disrupting cellular homeostasis. LSDs are pathologically typified by lysosomal inclusions composed of a heterogeneous mixture of various proteins and lipids that can be found throughout the body. However, in many cases the CNS is dramatically affected, which may result from heightened neuronal vulnerability based on their post-mitotic state. Besides intrinsic neuronal defects, another emerging factor common to many LSDs is neuroinflammation, which may negatively impact neuronal survival and contribute to neurodegeneration. Microglial and astrocyte activation is a hallmark of many LSDs that affect the CNS, which often precedes and predicts regions where eventual neuron loss will occur. However, the timing, intensity, and duration of neuroinflammation may ultimately dictate the impact on CNS homeostasis. For example, a transient inflammatory response following CNS insult/injury can be neuroprotective, as glial cells attempt to remove the insult and provide trophic support to neurons. However, chronic inflammation, as seen in several LSDs, can promote neurodegeneration by creating a neurotoxic environment due to elevated levels of cytokines, chemokines, and pro-apoptotic molecules. Although neuroinflammation has been reported in several LSDs, the cellular basis and mechanisms responsible for eliciting neuroinflammatory pathways are just beginning to be defined. This review highlights the role of neuroinflammation in select LSDs and its potential contribution to neuron loss.

  15. The effect of alpha amylase enzyme on quality of sweet sorghum juice for chrystal sugar

    Science.gov (United States)

    Marwati, T.; Cahyaningrum, N.; Widodo, S.; Astiati, U. T.; Budiyanto, A.; Wahyudiono; Arif, A. B.; Richana, N.

    2018-01-01

    Sweet sorghum juice (Sorghum bicolor L. Moench) has characteristics similar to sugar cane juice and potentially used for sugar substitutes that can support food security. Nevertheless the sweet sorghum juicecontain starch which impede sorghum sugar crystallization. Therefore, research on the enzymatic process is needed to convert starch into reducing sugar. The experimental design used was the Factorial Randomized Design with the first factor was alpha amylase enzyme concentration (0, 20, 40, 60, 80, 100, 120 μL/100 mL) and second factor was incubation time (0, 30, 60, 90 minute) at temperature 100°C. The experiment was conducted on fresh sweet sorghum. The results showed that the addition of the alpha amylase enzyme increased the content of reducing sugar and decreased levels of starch. Elevating concentration of alpha amylase enzyme will increase the reducing sugar content in sweet sorghum juice. The optimum alpha amylase enzyme concentration to produce the highest total sugar was 80 μL/100 mL of sweet sorghum juice with the optimum incubation time was 90 minutes. The results of this study are expected to create a new sweetener for sugar substitution. From the economic prospective aspect, sorghum is a potential crop and can be relied upon to support the success of the food diversification program which further leads to the world food security

  16. Structural and biochemical characterization of novel bacterial α-galactosidases belonging to glycoside hydrolase family 31.

    Science.gov (United States)

    Miyazaki, Takatsugu; Ishizaki, Yuichi; Ichikawa, Megumi; Nishikawa, Atsushi; Tonozuka, Takashi

    2015-07-01

    Glycoside hydrolase family 31 (GH31) proteins have been reportedly identified as exo-α-glycosidases with activity for α-glucosides and α-xylosides. We focused on a GH31 subfamily, which contains proteins with low sequence identity (Pedobacter heparinus and Pedobacter saltans. The enzymes unexpectedly exhibited α-galactosidase activity, but were not active on α-glucosides and α-xylosides. The crystal structures of one of the enzymes, PsGal31A, in unliganded form and in complexes with D-galactose or L-fucose and the catalytic nucleophile mutant in unliganded form and in complex with p-nitrophenyl-α-D-galactopyranoside, were determined at 1.85-2.30 Å (1 Å=0.1 nm) resolution. The overall structure of PsGal31A contains four domains and the catalytic domain adopts a (β/α)8-barrel fold that resembles the structures of other GH31 enzymes. Two catalytic aspartic acid residues are structurally conserved in the enzymes, whereas most residues forming the active site differ from those of GH31 α-glucosidases and α-xylosidases. PsGal31A forms a dimer via a unique loop that is not conserved in other reported GH31 enzymes; this loop is involved in its aglycone specificity and in binding L-fucose. Considering potential genes for α-L-fucosidases and carbohydrate-related proteins within the vicinity of Pedobacter Gal31, the identified Gal31 enzymes are likely to function in a novel sugar degradation system. This is the first report of α-galactosidases which belong to GH31 family. © 2015 Authors; published by Portland Press Limited.

  17. Alpha-mannosidase activity in goats fed with Sida carpinifolia.

    Science.gov (United States)

    Bedin, Marisete; Moleta Colodel, Edson; Viapiana, Marli; Matte, Ursula; Driemeier, David; Giugliani, Roberto

    2010-03-01

    Human alpha-mannosidosis results from alpha-mannosidase deficiency and progressive accumulation of mannose-rich oligosaccharides in lysosomes. Two days before Saanen goats were fed with Sida carpinifolia, alpha-mannosidase activity in leukocytes was 128+/-28 nmoles4-MU/h/mgprotein (first trial) and 104+/-6 nmoles4-MU/h/mgprotein (second trial). At day 5, after the introduction of S. carpinifolia diet, the alpha-mannosidase activity in leukocytes was significantly increased, both in the first (288+/-13 nmoles4-MU/h/mgprotein) and in the second trial (303+/-45 nmoles4-MU/h/mgprotein), and it returned to normal levels 2 days after the withdrawal of the plant from the diet (114+/-7 nmoles4-MU/h/mgprotein in first trial, and 108+/-25 nmoles4-MU/h/mgprotein in the second one). Plasma alpha-mannosidase activity decreased significantly 4 days after animal exposure to the S. carpinifolia diet (769+/-167 nmoles4-MU/h/ml) and returned to normal values 10 days after the withdrawal of the plant from the diet (1289+/-163 nmoles4-MU/h/ml). Thin-layer chromatography showed an abnormal excretion of oligosaccharides in urine as of day 2 after diet exposure, which persisted until one day after the withdrawal of the plant. Animals presented neurological clinical signs beginning at day 37 (in the first trial) and at day 25 (in the second trial) after being fed with the plant. The results obtained herein suggest that oligosaccharides observed in urine are a result of a decrease in alpha-mannosidase activity in plasma. S. carpinifolia seems to have other compounds that act on alpha-mannosidase enzyme in leukocytes in a competitive manner with swainsonine. The increase in alpha-mannosidase enzyme in leukocytes could be attributed to one of these compounds present in S. carpinifolia. Copyright 2009 Elsevier GmbH. All rights reserved.

  18. Purification of lysosomal phospholipase A and demonstration of proteins that inhibit phospholipase A in a lysosomal fraction from rat kidney cortex

    International Nuclear Information System (INIS)

    Hostetler, K.Y.; Gardner, M.F.; Giordano, J.R.

    1986-01-01

    Phospholipase A has been isolated from a crude lysosomal fraction from rat kidney cortex and purified 7600-fold with a recovery of 9.8% of the starting activity. The purified enzyme is a glycoprotein having an isoelectric point of pH 5.4 and an apparent molecular weight of 30,000 by high-pressure liquid chromatography gel permeation. Naturally occurring inhibitors of lysosomal phospholipase A are present in two of the lysosomal-soluble protein fractions obtained in the purification. They inhibit hydrolysis of 1,2-di[1- 14 C]oleoylphosphatidylcholine by purified phospholipase A 1 with IC 50 values of 7-11 μg. The inhibition is abolished by preincubation with trypsin at 37 0 C, but preincubation with trypsin at 4 0 C has no effect, providing evidence that the inhibitors are proteins. The results suggest that the activity of lysosomal phospholipase A may be regulated in part by inhibitory proteins. Lysosomal phospholipase A from rat kidney hydrolyzes the sn-1 acyl group of phosphatidylcholine, does not require divalent cations for full activity, and is not inhibited by ethylenediaminetetraacetic acid. It has an acid pH optimum of 3.6-3.8. Neither rho-bromophenacyl bromide, diisopropyl fluorophosphate, nor mercuric ion inhibits phospholipase A 1 . In contrast to rat liver, which has two major isoenzymes of acid phospholipase A 1 , kidney cortex has only one isoenzyme of lysosomal phospholipase A 1

  19. Purification of lysosomal phospholipase A and demonstration of proteins that inhibit phospholipase A in a lysosomal fraction from rat kidney cortex

    Energy Technology Data Exchange (ETDEWEB)

    Hostetler, K.Y.; Gardner, M.F.; Giordano, J.R.

    1986-10-21

    Phospholipase A has been isolated from a crude lysosomal fraction from rat kidney cortex and purified 7600-fold with a recovery of 9.8% of the starting activity. The purified enzyme is a glycoprotein having an isoelectric point of pH 5.4 and an apparent molecular weight of 30,000 by high-pressure liquid chromatography gel permeation. Naturally occurring inhibitors of lysosomal phospholipase A are present in two of the lysosomal-soluble protein fractions obtained in the purification. They inhibit hydrolysis of 1,2-di(1-/sup 14/C)oleoylphosphatidylcholine by purified phospholipase A/sub 1/ with IC/sub 50/ values of 7-11 ..mu..g. The inhibition is abolished by preincubation with trypsin at 37/sup 0/C, but preincubation with trypsin at 4/sup 0/C has no effect, providing evidence that the inhibitors are proteins. The results suggest that the activity of lysosomal phospholipase A may be regulated in part by inhibitory proteins. Lysosomal phospholipase A from rat kidney hydrolyzes the sn-1 acyl group of phosphatidylcholine, does not require divalent cations for full activity, and is not inhibited by ethylenediaminetetraacetic acid. It has an acid pH optimum of 3.6-3.8. Neither rho-bromophenacyl bromide, diisopropyl fluorophosphate, nor mercuric ion inhibits phospholipase A/sub 1/. In contrast to rat liver, which has two major isoenzymes of acid phospholipase A/sub 1/, kidney cortex has only one isoenzyme of lysosomal phospholipase A/sub 1/.

  20. The Biogenesis of Lysosomes and Lysosome-Related Organelles

    Science.gov (United States)

    Luzio, J. Paul; Hackmann, Yvonne; Dieckmann, Nele M.G.; Griffiths, Gillian M.

    2014-01-01

    Lysosomes were once considered the end point of endocytosis, simply used for macromolecule degradation. They are now recognized to be dynamic organelles, able to fuse with a variety of targets and to be re-formed after fusion events. They are also now known to be the site of nutrient sensing and signaling to the cell nucleus. In addition, lysosomes are secretory organelles, with specialized machinery for regulated secretion of proteins in some cell types. The biogenesis of lysosomes and lysosome-related organelles is discussed, taking into account their dynamic nature and multiple roles. PMID:25183830

  1. Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae

    NARCIS (Netherlands)

    Yin, Huifang; Bultema, Jelle B; Dijkhuizen, Lubbert; van Leeuwen, Sander S

    2017-01-01

    β-Galactosidase enzymes are used in the dairy industry to convert lactose into galactooligosaccharides (GOS) that are added to infant formula to mimic the molecular sizes and prebiotic functions of human milk oligosaccharides. Here we report a detailed analysis of the clearly different GOS profiles

  2. Lysosomal Storage Diseases To date

    OpenAIRE

    HOFFMANN, Björn; MAYATEPEK, Ertan

    2011-01-01

    New therapeutic options and progress of approved therapies have made Lysosomal Storage Diseases (LSDs) one of the most exciting group of diseases. This review aims to summarize current achievements in these particular disorders and to give an outlook towards possible future treatment options. Enzyme replacement therapy is the gold standard for Gaucher disease, Fabry disease, Mucopolysaccharidosis type I, II, and VI, and for Pompe disease. Besides this, substrate reduction has been approved fo...

  3. Lysosome

    Directory of Open Access Journals (Sweden)

    Ursula Matte BSc, PhD

    2016-12-01

    Full Text Available Since Christian de Duve first described the lysosome in the 1950s, it has been generally presented as a membrane-bound compartment containing acid hydrolases that enables the cell to degrade molecules without being digested by autolysis. For those working on the field of lysosomal storage disorders, the lack of one such hydrolase would lead to undegraded or partially degraded substrate storage inside engorged organelles disturbing cellular function by yet poorly explored mechanisms. However, in recent years, a much more complex scenario of lysosomal function has emerged, beyond and above the cellular “digestive” system. Knowledge on how the impairment of this organelle affects cell functioning may shed light on signs and symptoms of lysosomal disorders and open new roads for therapy.

  4. Chlamydia species-dependent differences in the growth requirement for lysosomes.

    Directory of Open Access Journals (Sweden)

    Scot P Ouellette

    2011-03-01

    Full Text Available Genome reduction is a hallmark of obligate intracellular pathogens such as Chlamydia, where adaptation to intracellular growth has resulted in the elimination of genes encoding biosynthetic enzymes. Accordingly, chlamydiae rely heavily on the host cell for nutrients yet their specific source is unclear. Interestingly, chlamydiae grow within a pathogen-defined vacuole that is in close apposition to lysosomes. Metabolically-labeled uninfected host cell proteins were provided as an exogenous nutrient source to chlamydiae-infected cells, and uptake and subsequent labeling of chlamydiae suggested lysosomal degradation as a source of amino acids for the pathogen. Indeed, Bafilomycin A1 (BafA1, an inhibitor of the vacuolar H(+/ATPase that blocks lysosomal acidification and functions, impairs the growth of C. trachomatis and C. pneumoniae, and these effects are especially profound in C. pneumoniae. BafA1 induced the marked accumulation of material within the lysosomal lumen, which was due to the inhibition of proteolytic activities, and this response inhibits chlamydiae rather than changes in lysosomal acidification per se, as cathepsin inhibitors also inhibit the growth of chlamydiae. Finally, the addition of cycloheximide, an inhibitor of eukaryotic protein synthesis, compromises the ability of lysosomal inhibitors to block chlamydial growth, suggesting chlamydiae directly access free amino acids in the host cytosol as a preferred source of these nutrients. Thus, chlamydiae co-opt the functions of lysosomes to acquire essential amino acids.

  5. Lysosome and calcium dysregulation in Alzheimer's disease: partners in crime.

    Science.gov (United States)

    McBrayer, MaryKate; Nixon, Ralph A

    2013-12-01

    Early-onset FAD (familial Alzheimer's disease) is caused by mutations of PS1 (presenilin 1), PS2 (presenilin 2) and APP (amyloid precursor protein). Beyond the effects of PS1 mutations on proteolytic functions of the γ-secretase complex, mutant or deficient PS1 disrupts lysosomal function and Ca2+ homoeostasis, both of which are considered strong pathogenic factors in FAD. Loss of PS1 function compromises assembly and proton-pumping activity of the vacuolar-ATPase on lysosomes, leading to defective lysosomal acidification and marked impairment of autophagy. Additional dysregulation of cellular Ca2+ by mutant PS1 in FAD has been ascribed to altered ion channels in the endoplasmic reticulum; however, rich stores of Ca2+ in lysosomes are also abnormally released in PS1-deficient cells secondary to the lysosomal acidification defect. The resultant rise in cytosolic Ca2+ activates Ca2+-dependent enzymes, contributing substantially to calpain overactivation that is a final common pathway leading to neurofibrillary degeneration in all forms of AD (Alzheimer's disease). In the present review, we discuss the close inter-relationships among deficits of lysosomal function, autophagy and Ca2+ homoeostasis as a pathogenic process in PS1-related FAD and their relevance to sporadic AD.

  6. Purification and characterization of α-galactosidase from ...

    African Journals Online (AJOL)

    α−Galactosidase (α-D-galactoside galactohydrolase [EC 3.2.1.22]) was obtained from Lactobacillus acidofillus which was grown in modified de Man, Rogosa and Sharpe (MRS) medium, supplemented with raffinose. α-Galactosidase was released from the cells by ultrasonic treatment, then precipitated by ...

  7. Effect of neohesperidin dihydrochalcone on the activity and stability of alpha-amylase: a comparative study on bacterial, fungal, and mammalian enzymes.

    Science.gov (United States)

    Kashani-Amin, Elaheh; Ebrahim-Habibi, Azadeh; Larijani, Bagher; Moosavi-Movahedi, Ali Akbar

    2015-10-01

    Neohesperidin dihydrochalcone (NHDC) was recently introduced as an activator of mammalian alpha-amylase. In the current study, the effect of NHDC has been investigated on bacterial and fungal alpha-amylases. Enzyme assays and kinetic analysis demonstrated the capability of NHDC to significantly activate both tested alpha-amylases. The ligand activation pattern was found to be more similar between the fungal and mammalian enzyme in comparison with the bacterial one. Further, thermostability experiments indicated a stability increase in the presence of NHDC for the bacterial enzyme. In silico (docking) test locates a putative binding site for NHDC on alpha-amylase surface in domain B. This domain shows differences in various alpha-amylase types, and the different behavior of the ligand toward the studied enzymes may be attributed to this fact. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Ultraviolet induced lysosome activity in corneal epithelium

    International Nuclear Information System (INIS)

    Cullen, A.P.

    1980-01-01

    A 5.000 W Xe-Hg high pressure lamp and a double monochromator were used to produce a 3.3 nm half-bandpass ultraviolet radiation at 295 nm. Pigmented rabbit eyes were irradiated with radiant exposures from 140 Jm -2 to 10.000 Jm -2 and evaluated by slit-lamp biomicroscopy, light and electron microscopy. Corneal threshold (Hsub(c) was 200 Jm -2 and lens threshold (Hsub(L)) was 7.500 Jm -2 . The most repeatable and reliable corneal response to these levels of UV was the development of corneal epithelial granules. Histological changes included a loss of superficial epithelial cells and selective UV induced autolysis of the wing cells. It is suggested that the biomicroscopically observed granules are the clinical manifestation of the secondary lysosomes revealed by light and electron microscopy. It is proposed that UV breaks down the primary lysosome membranes to release hydrolytic enzymes which in turn form the secondary lysosomes during autolysis. Extreme levels of radiant exposure at 295 nm result in indiscriminate destruction of all layers of the corneal epithelium, but the posterior cornea was spared. (orig.) [de

  9. A Molecular Mechanism to Regulate Lysosome Motility for Lysosome Positioning and Tubulation

    Science.gov (United States)

    Li, Xinran; Rydzewski, Nicholas; Hider, Ahmad; Zhang, Xiaoli; Yang, Junsheng; Wang, Wuyang; Gao, Qiong; Cheng, Xiping; Xu, Haoxing

    2016-01-01

    To mediate the degradation of bio-macromolecules, lysosomes must traffic towards cargo-carrying vesicles for subsequent membrane fusion or fission. Mutations of the lysosomal Ca2+ channel TRPML1 cause lysosome storage disease (LSD) characterized by disordered lysosomal membrane trafficking in cells. Here we show that TRPML1 activity is required to promote Ca2+-dependent centripetal movement of lysosomes towards the perinuclear region, where autophagosomes accumulate, upon autophagy induction. ALG-2, an EF-hand-containing protein, serves as a lysosomal Ca2+ sensor that associates physically with the minus-end directed dynactin-dynein motor, while PI(3,5)P2, a lysosome-localized phosphoinositide, acts upstream of TRPML1. Furthermore, the PI(3,5)P2-TRPML1-ALG-2-dynein signaling is necessary for lysosome tubulation and reformation. In contrast, the TRPML1 pathway is not required for the perinuclear accumulation of lysosomes observed in many LSDs, which is instead likely caused by secondary cholesterol accumulation that constitutively activates Rab7-RILP-dependent retrograde transport. Collectively, Ca2+ release from lysosomes provides an on-demand mechanism regulating lysosome motility, positioning, and tubulation. PMID:26950892

  10. Chinese hamster ovary cell lysosomes retain pinocytized horseradish peroxidase and in situ-radioiodinated proteins

    International Nuclear Information System (INIS)

    Storrie, B.; Sachdeva, M.; Viers, V.S.

    1984-01-01

    We used Chinese hamster ovary cells, a cell line of fibroblastic origin, to investigate whether lysosomes are an exocytic compartment. To label lysosomal contents, Chinese hamster ovary cells were incubated with the solute marker horseradish peroxidase. After an 18-h uptake period, horseradish peroxidase was found in lysosomes by cell fractionation in Percoll gradients and by electron microscope cytochemistry. Over a 24-h period, lysosomal horseradish peroxidase was quantitatively retained by Chinese hamster ovary cells and inactivated with a t 1/2 of 6 to 8 h. Lysosomes were radioiodinated in situ by soluble lactoperoxidase internalized over an 18-h uptake period. About 70% of the radioiodine incorporation was pelleted at 100,000 X g under conditions in which greater than 80% of the lysosomal marker enzyme beta-hexosaminidase was released into the supernatant. By one-dimensional electrophoresis, about 18 protein species were present in the lysosomal membrane fraction, with radioiodine incorporation being most pronounced into species of 70,000 to 75,000 daltons. After a 30-min or 2-h chase at 37 degrees C, radioiodine that was incorporated into lysosomal membranes and contents was retained in lysosomes. These observations indicate that lysosomes labeled by fluid-phase pinocytosis are a terminal component of endocytic pathways in fibroblasts

  11. Lysosomal activation is a compensatory response against protein accumulation and associated synaptopathogenesis--an approach for slowing Alzheimer disease?

    Science.gov (United States)

    Bendiske, Jennifer; Bahr, Ben A

    2003-05-01

    Previous reports suggest that age-related lysosomal disturbances contribute to Alzheimer-type accumulations of protein species, blockage of axonal/dendritic transport, and synaptic decline. Here, we tested the hypothesis that lysosomal enzymes are upregulated as a compensatory response to pathogenic protein accumulation. In the hippocampal slice model, tau deposits and amyloidogenic fragments induced by the lysosomal inhibitor chloroquine were accompanied by disrupted microtubule integrity and by corresponding declines in postsynaptic glutamate receptors and the presynaptic marker synaptophysin. In the same slices, cathepsins B, D, and L, beta-glucuronidase, and elastase were upregulated by 70% to 135%. To address whether this selective activation of the lysosomal system represents compensatory signaling, N-Cbz-L-phenylalanyl-L-alanyl-diazomethylketone (PADK) was used to enhance the lysosome response, generating 4- to 8-fold increases in lysosomal enzymes. PADK-mediated lysosomal modulation was stable for weeks while synaptic components remained normal. When PADK and chloroquine were co-infused, chloroquine no longer increased cellular tau levels. To assess pre-existing pathology, chloroquine was applied for 6 days after which its removal resulted in continued degeneration. In contrast, enhancing lysosomal activation by replacing chloroquine after 6 days with PADK led to clearance of accumulated protein species and restored microtubule integrity. Transport processes lost during chloroquine exposure were consequently re-established, resulting in marked recovery of synaptic components. These data indicate that compensatory activation of lysosomes follows protein accumulation events, and that lysosomal modulation represents a novel approach for treating Alzheimer disease and other protein deposition diseases.

  12. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations.

    Science.gov (United States)

    Lee, Ju-Hyun; Yu, W Haung; Kumar, Asok; Lee, Sooyeon; Mohan, Panaiyur S; Peterhoff, Corrinne M; Wolfe, Devin M; Martinez-Vicente, Marta; Massey, Ashish C; Sovak, Guy; Uchiyama, Yasuo; Westaway, David; Cuervo, Ana Maria; Nixon, Ralph A

    2010-06-25

    Macroautophagy is a lysosomal degradative pathway essential for neuron survival. Here, we show that macroautophagy requires the Alzheimer's disease (AD)-related protein presenilin-1 (PS1). In PS1 null blastocysts, neurons from mice hypomorphic for PS1 or conditionally depleted of PS1, substrate proteolysis and autophagosome clearance during macroautophagy are prevented as a result of a selective impairment of autolysosome acidification and cathepsin activation. These deficits are caused by failed PS1-dependent targeting of the v-ATPase V0a1 subunit to lysosomes. N-glycosylation of the V0a1 subunit, essential for its efficient ER-to-lysosome delivery, requires the selective binding of PS1 holoprotein to the unglycosylated subunit and the Sec61alpha/oligosaccharyltransferase complex. PS1 mutations causing early-onset AD produce a similar lysosomal/autophagy phenotype in fibroblasts from AD patients. PS1 is therefore essential for v-ATPase targeting to lysosomes, lysosome acidification, and proteolysis during autophagy. Defective lysosomal proteolysis represents a basis for pathogenic protein accumulations and neuronal cell death in AD and suggests previously unidentified therapeutic targets.

  13. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury.

    Science.gov (United States)

    Maejima, Ikuko; Takahashi, Atsushi; Omori, Hiroko; Kimura, Tomonori; Takabatake, Yoshitsugu; Saitoh, Tatsuya; Yamamoto, Akitsugu; Hamasaki, Maho; Noda, Takeshi; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2013-08-28

    Diverse causes, including pathogenic invasion or the uptake of mineral crystals such as silica and monosodium urate (MSU), threaten cells with lysosomal rupture, which can lead to oxidative stress, inflammation, and apoptosis or necrosis. Here, we demonstrate that lysosomes are selectively sequestered by autophagy, when damaged by MSU, silica, or the lysosomotropic reagent L-Leucyl-L-leucine methyl ester (LLOMe). Autophagic machinery is recruited only on damaged lysosomes, which are then engulfed by autophagosomes. In an autophagy-dependent manner, low pH and degradation capacity of damaged lysosomes are recovered. Under conditions of lysosomal damage, loss of autophagy causes inhibition of lysosomal biogenesis in vitro and deterioration of acute kidney injury in vivo. Thus, we propose that sequestration of damaged lysosomes by autophagy is indispensable for cellular and tissue homeostasis.

  14. Subcellular distribution of histone-degrading enzyme activities from rat liver

    International Nuclear Information System (INIS)

    Heinrich, P.C.; Raydt, G.; Puschendorf, B.; Jusic, M.

    1976-01-01

    Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity. (orig.) [de

  15. Transient changes of enzyme activity of five acid hydrolases in the supernatants of homogenates of hearts of mice due to ultraviolet irradiation

    International Nuclear Information System (INIS)

    Droba, B.; Jagiellonian Univ., Krakow

    1977-01-01

    Enzymatic activity of five lysosomal hydrolases: acid p-nitrophenyl phosphatase (EC 3.1.3.2), acid β-glycerophosphatase (EC 3.1.3.2), arylsulphatase (EC 3.1.6.1), β-galactosidase (EC 3.2.1.23) and β-N-acetylhexoaminidase (EC 3.2.1.30) was studied in the supernatants of homogenates of hearts of unirradiated mice, serving as controls, and a group of UV-irradiated mice. In the control group, determinations made at 6-hr intervals showed rhythmic diurnal changes in activities of three acid hydrolases. These changes were statistically significant in the case of acid p-nitrophenyl phosphatase, acid β-glycerophosphatase, and β-N-acetylhexosaminidase. The effect of UV-irradiation was manifested mainly by depression of enzyme activities of the acid hydrolases during the first few hours after exposure. Depression of activities of arylsulphatase and β-N-acetylhexosaminidase by UV light was statistically significant. Presumably, the fall in enzyme activities of the acid hydrolases was due to chemical mediators formed in the skin under the influence of UV-radiation and adrenal corticoids secreted into the blood

  16. Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis.

    Directory of Open Access Journals (Sweden)

    David Freeman

    Full Text Available α-synuclein dysregulation is a critical aspect of Parkinson's disease pathology. Recent studies have observed that α-synuclein aggregates are cytotoxic to cells in culture and that this toxicity can be spread between cells. However, the molecular mechanisms governing this cytotoxicity and spread are poorly characterized. Recent studies of viruses and bacteria, which achieve their cytoplasmic entry by rupturing intracellular vesicles, have utilized the redistribution of galectin proteins as a tool to measure vesicle rupture by these organisms. Using this approach, we demonstrate that α-synuclein aggregates can induce the rupture of lysosomes following their endocytosis in neuronal cell lines. This rupture can be induced by the addition of α-synuclein aggregates directly into cells as well as by cell-to-cell transfer of α-synuclein. We also observe that lysosomal rupture by α-synuclein induces a cathepsin B dependent increase in reactive oxygen species (ROS in target cells. Finally, we observe that α-synuclein aggregates can induce inflammasome activation in THP-1 cells. Lysosomal rupture is known to induce mitochondrial dysfunction and inflammation, both of which are well established aspects of Parkinson's disease, thus connecting these aspects of Parkinson's disease to the propagation of α-synuclein pathology in cells.

  17. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes.

    Science.gov (United States)

    Tanaka, Yoshinori; Suzuki, Genjiro; Matsuwaki, Takashi; Hosokawa, Masato; Serrano, Geidy; Beach, Thomas G; Yamanouchi, Keitaro; Hasegawa, Masato; Nishihara, Masugi

    2017-03-01

    Progranulin (PGRN) haploinsufficiency resulting from loss-of-function mutations in the PGRN gene causes frontotemporal lobar degeneration accompanied by TDP-43 accumulation, and patients with homozygous mutations in the PGRN gene present with neuronal ceroid lipofuscinosis. Although it remains unknown why PGRN deficiency causes neurodegenerative diseases, there is increasing evidence that PGRN is implicated in lysosomal functions. Here, we show PGRN is a secretory lysosomal protein that regulates lysosomal function and biogenesis by controlling the acidification of lysosomes. PGRN gene expression and protein levels increased concomitantly with the increase of lysosomal biogenesis induced by lysosome alkalizers or serum starvation. Down-regulation or insufficiency of PGRN led to the increased lysosomal gene expression and protein levels, while PGRN overexpression led to the decreased lysosomal gene expression and protein levels. In particular, the level of mature cathepsin D (CTSDmat) dramatically changed depending upon PGRN levels. The acidification of lysosomes was facilitated in cells transfected with PGRN. Then, this caused degradation of CTSDmat by cathepsin B. Secreted PGRN is incorporated into cells via sortilin or cation-independent mannose 6-phosphate receptor, and facilitated the acidification of lysosomes and degradation of CTSDmat. Moreover, the change of PGRN levels led to a cell-type-specific increase of insoluble TDP-43. In the brain tissue of FTLD-TDP patients with PGRN deficiency, CTSD and phosphorylated TDP-43 accumulated in neurons. Our study provides new insights into the physiological function of PGRN and the role of PGRN insufficiency in the pathogenesis of neurodegenerative diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Kinetics and Regulation Studies of the Production of β-Galactosidase from Kluyveromyces marxianus Grown on Different Substrates

    Directory of Open Access Journals (Sweden)

    Samia Khan

    2003-01-01

    Full Text Available Lactose-intolerance is manifested in 50 % of the world’s population. This can be remediated by removing lactose from the diet or converting it into glucose and galactose with β-galactosidase (EC 3.2.1.23. In this work, batch production of this enzyme in the presence of lactose, galactose, cellobiose, xylose, arabinose, sucrose and glucose was investigated using Kluyveromyces marxianus in shake flask culture studies. Substrate type and temperature were the independent variables that directly regulated the specific growth and β-galactosidase production rates. Lactose (2 % supported the maximum specific product yield (YP/X, followed by galactose, sucrose, cellobiose, xylose, arabinose and glucose. Its synthesis was regulated by an induction and a growth-dependent repression mechanism. The optimum temperature for the production was found to be 35–37 °C. The highest volumetric productivity of enzyme (80.0 IU/L/h occurred on lactose-corn steep liquor medium. This was significantly higher than the calculated values reported in the literature. Thermodynamic studies revealed that the cells provided a defence mechanism against thermal inactivation. The enzyme was stable at 60 °C and pH=5.0–7.0, and it may find application in commercial lactose hydrolysis.

  19. Substrate reduction augments the efficacy of enzyme therapy in a mouse model of Fabry disease.

    Directory of Open Access Journals (Sweden)

    John Marshall

    Full Text Available Fabry disease is an X-linked glycosphingolipid storage disorder caused by a deficiency in the activity of the lysosomal hydrolase α-galactosidase A (α-gal. This deficiency results in accumulation of the glycosphingolipid globotriaosylceramide (GL-3 in lysosomes. Endothelial cell storage of GL-3 frequently leads to kidney dysfunction, cardiac and cerebrovascular disease. The current treatment for Fabry disease is through infusions of recombinant α-gal (enzyme-replacement therapy; ERT. Although ERT can markedly reduce the lysosomal burden of GL-3 in endothelial cells, variability is seen in the clearance from several other cell types. This suggests that alternative and adjuvant therapies may be desirable. Use of glucosylceramide synthase inhibitors to abate the biosynthesis of glycosphingolipids (substrate reduction therapy, SRT has been shown to be effective at reducing substrate levels in the related glycosphingolipidosis, Gaucher disease. Here, we show that such an inhibitor (eliglustat tartrate, Genz-112638 was effective at lowering GL-3 accumulation in a mouse model of Fabry disease. Relative efficacy of SRT and ERT at reducing GL-3 levels in Fabry mouse tissues differed with SRT being more effective in the kidney, and ERT more efficacious in the heart and liver. Combination therapy with ERT and SRT provided the most complete clearance of GL-3 from all the tissues. Furthermore, treatment normalized urine volume and uromodulin levels and significantly delayed the loss of a nociceptive response. The differential efficacies of SRT and ERT in the different tissues indicate that the combination approach is both additive and complementary suggesting the possibility of an improved therapeutic paradigm in the management of Fabry disease.

  20. Investigation of the Effect of Plasma Polymerized Siloxane Coating for Enzyme Immobilization and Microfluidic Device Conception

    Directory of Open Access Journals (Sweden)

    Kalim Belhacene

    2016-12-01

    Full Text Available This paper describes the impact of a physical immobilization methodology, using plasma polymerized 1,1,3,3, tetramethyldisiloxane, on the catalytic performance of β-galactosidase from Aspergillus oryzae in a microfluidic device. The β-galactosidase was immobilized by a polymer coating grown by Plasma Enhanced Chemical Vapor Deposition (PEVCD. Combined with a microchannel patterned in the silicone, a microreactor was obtained with which the diffusion through the plasma polymerized layer and the hydrolysis of a synthetic substrate, the resorufin-β-d-galactopyranoside, were studied. A study of the efficiency of the immobilization procedure was investigated after several uses and kinetic parameters of immobilized β-galactosidase were calculated and compared with those of soluble enzyme. Simulation and a modelling approach were also initiated to understand phenomena that influenced enzyme behavior in the physical immobilization method. Thus, the catalytic performances of immobilized enzymes were directly influenced by immobilization conditions and particularly by the diffusion behavior and availability of substrate molecules in the enzyme microenvironment.

  1. Ethambutol neutralizes lysosomes and causes lysosomal zinc accumulation.

    Science.gov (United States)

    Yamada, Daisuke; Saiki, Shinji; Furuya, Norihiko; Ishikawa, Kei-Ichi; Imamichi, Yoko; Kambe, Taiho; Fujimura, Tsutomu; Ueno, Takashi; Koike, Masato; Sumiyoshi, Katsuhiko; Hattori, Nobutaka

    2016-02-26

    Ethambutol is a common medicine used for the treatment of tuberculosis, which can have serious side effects, such as retinal and liver dysfunction. Although ethambutol has been reported to impair autophagic flux in rat retinal cells, the precise molecular mechanism remains unclear. Using various mammalian cell lines, we showed that ethambutol accumulated in autophagosomes and vacuolated lysosomes, with marked Zn(2+) accumulation. The enlarged lysosomes were neutralized and were infiltrated with Zn(2+) accumulations in the lysosomes, with simultaneous loss of acidification. These results suggest that EB neutralizes lysosomes leading to insufficient autophagy, implying that some of the adverse effects associated with EB in various organs may be of this mechanism. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. The lysosomal membrane protein SCAV-3 maintains lysosome integrity and adult longevity

    Science.gov (United States)

    Li, Yuan; Chen, Baohui; Zou, Wei; Wang, Xin; Wu, Yanwei; Zhao, Dongfeng; Sun, Yanan; Liu, Yubing

    2016-01-01

    Lysosomes degrade macromolecules and recycle metabolites as well as being involved in diverse processes that regulate cellular homeostasis. The lysosome is limited by a single phospholipid bilayer that forms a barrier to separate the potent luminal hydrolases from other cellular constituents, thus protecting the latter from unwanted degradation. The mechanisms that maintain lysosomal membrane integrity remain unknown. Here, we identified SCAV-3, the Caenorhabditis elegans homologue of human LIMP-2, as a key regulator of lysosome integrity, motility, and dynamics. Loss of scav-3 caused rupture of lysosome membranes and significantly shortened lifespan. Both of these phenotypes were suppressed by reinforced expression of LMP-1 or LMP-2, the C. elegans LAMPs, indicating that longevity requires maintenance of lysosome integrity. Remarkably, reduction in insulin/insulin-like growth factor 1 (IGF-1) signaling suppressed lysosomal damage and extended the lifespan in scav-3(lf) animals in a DAF-16–dependent manner. Our data reveal that SCAV-3 is essential for preserving lysosomal membrane stability and that modulation of lysosome integrity by the insulin/IGF-1 signaling pathway affects longevity. PMID:27810910

  3. Effect of diffusion on enzyme activity in a microreactor

    NARCIS (Netherlands)

    Swarts, J.W.; Kolfschoten, R.C.; Jansen, M.C.A.A.; Janssen, A.E.M.; Boom, R.M.

    2010-01-01

    To establish general rules for setting up an enzyme microreactor system, we studied the effect of diffusion on enzyme activity in a microreactor. As a model system we used the hydrolysis of ortho-nitrophenyl-ß-d-galactopyranoside by ß-galactosidase from Kluyveromyces lactis. We found that the

  4. Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines.

    Science.gov (United States)

    Padamsey, Zahid; McGuinness, Lindsay; Bardo, Scott J; Reinhart, Marcia; Tong, Rudi; Hedegaard, Anne; Hart, Michael L; Emptage, Nigel J

    2017-01-04

    Lysosomes have traditionally been viewed as degradative organelles, although a growing body of evidence suggests that they can function as Ca 2+ stores. Here we examined the function of these stores in hippocampal pyramidal neurons. We found that back-propagating action potentials (bpAPs) could elicit Ca 2+ release from lysosomes in the dendrites. This Ca 2+ release triggered the fusion of lysosomes with the plasma membrane, resulting in the release of Cathepsin B. Cathepsin B increased the activity of matrix metalloproteinase 9 (MMP-9), an enzyme involved in extracellular matrix (ECM) remodelling and synaptic plasticity. Inhibition of either lysosomal Ca 2+ signaling or Cathepsin B release prevented the maintenance of dendritic spine growth induced by Hebbian activity. This impairment could be rescued by exogenous application of active MMP-9. Our findings suggest that activity-dependent exocytosis of Cathepsin B from lysosomes regulates the long-term structural plasticity of dendritic spines by triggering MMP-9 activation and ECM remodelling. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  5. Changes of lysosomes in the earliest stages of the development of atherosclerosis.

    Science.gov (United States)

    Bobryshev, Yuri V; Shchelkunova, Tatyana A; Morozov, Ivan A; Rubtsov, Petr M; Sobenin, Igor A; Orekhov, Alexander N; Smirnov, Alexander N

    2013-05-01

    One of hypotheses of atherosclerosis is based on a presumption that the zones prone to the development of atherosclerosis contain lysosomes which are characterized by enzyme deficiency and thus, are unable to dispose of lipoproteins. The present study was undertaken to investigate the characteristics and changes of lysosomes in the earliest stages of the development of atherosclerosis. Electron microscopic immunocytochemistry revealed that there were certain changes in the distribution of CD68 antigen in lysosomes along the 'normal intima-initial lesion-fatty streak' sequence. There were no significant changes found in the key mRNAs encoding for the components of endosome/lysosome compartment in initial atherosclerotic lesions, but in fatty streaks, the contents of EEA1 and Rab5a mRNAs were found to be diminished while the contents of CD68 and p62 mRNAs were increased, compared with the intact tissue. The study reinforces a view that changes occurring in lysosomes play a role in atherogenesis from the very earlier stages of the disease. © 2013 The Authors. Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  6. Reflection on design and testing of pancreatic alpha-amylase inhibitors: an in silico comparison between rat and rabbit enzyme models

    Directory of Open Access Journals (Sweden)

    Khalil-Moghaddam Shiva

    2012-11-01

    Full Text Available Abstract Background Inhibitors of pancreatic alpha-amylase are potential drugs to treat diabetes and obesity. In order to find compounds that would be effective amylase inhibitors, in vitro and in vivo models are usually used. The accuracy of models is limited, but these tools are nonetheless valuable. In vitro models could be used in large screenings involving thousands of chemicals that are tested to find potential lead compounds. In vivo models are still used as preliminary mean of testing compounds behavior in the whole organism. In the case of alpha-amylase inhibitors, both rats and rabbits could be chosen as in vivo models. The question was which animal could present more accuracy with regard to its pancreatic alpha-amylase. Results As there is no crystal structure of these enzymes, a molecular modeling study was done in order to compare the rabbit and rat enzymes with the human one. The overall result is that rabbit enzyme could probably be a better choice in this regard, but in the case of large ligands, which could make putative interactions with the −4 subsite of pancreatic alpha-amylase, interpretation of results should be made cautiously. Conclusion Molecular modeling tools could be used to choose the most suitable model enzyme that would help to identify new enzyme inhibitors. In the case of alpha-amylase, three-dimensional structures of animal enzymes show differences with the human one which should be taken into account when testing potential new drugs.

  7. Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae.

    Science.gov (United States)

    Yin, Huifang; Bultema, Jelle B; Dijkhuizen, Lubbert; van Leeuwen, Sander S

    2017-06-15

    β-Galactosidase enzymes are used in the dairy industry to convert lactose into galactooligosaccharides (GOS) that are added to infant formula to mimic the molecular sizes and prebiotic functions of human milk oligosaccharides. Here we report a detailed analysis of the clearly different GOS profiles of the commercial β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Also the GOS yields of these enzymes differed, varying from 48.3% (B. circulans) to 34.9% (K. lactis), and 19.5% (A. oryzae). Their incubation with lactose plus the monosaccharides Gal or Glc resulted in altered GOS profiles. Experiments with 13 C 6 labelled Gal and Glc showed that both monosaccharides act as acceptor substrates in the transgalactosylation reactions. The data shows that the lactose isomers β-d-Galp-(1→2)-d-Glcp, β-d-Galp-(1→3)-d-Glcp and β-d-Galp-(1→6)-d-Glcp are formed from acceptor reactions with free Glc and not by rearrangement of Glc in the active site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ultraviolet induced lysosome activity in corneal epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, A.P.

    1980-01-01

    A 5.000 W Xe-Hg high pressure lamp and a double monochromator were used to produce a 3.3 nm half-bandpass ultraviolet radiation at 295 nm. Pigmented rabbit eyes were irradiated with radiant exposures from 140 Jm/sup -2/ to 10.000 Jm/sup -2/ and evaluated by slit-lamp biomicroscopy, light and electron microscopy. Corneal threshold (Hsub(c) was 200 Jm/sup -2/ and lens threshold (Hsub(L)) was 7.500 Jm/sup -2/. The most repeatable and reliable corneal response to these levels of UV was the development of corneal epithelial granules. Histological changes included a loss of superficial epithelial cells and selective UV induced autolysis of the wing cells. It is suggested that the biomicroscopically observed granules are the clinical manifestation of the secondary lysosomes revealed by light and electron microscopy. It is proposed that UV breaks down the primary lysosome membranes to release hydrolytic enzymes which in turn form the secondary lysosomes during autolysis. Extreme levels of radiant exposure at 295 nm result in indiscriminate destruction of all layers of the corneal epithelium, but the posterior cornea was spared.

  9. Efficient routing of glucocerebrosidase to lysosomes requires complex oligosaccharide chain formation

    NARCIS (Netherlands)

    Aerts, J. M.; Brul, S.; Donker-Koopman, W. E.; van Weely, S.; Murray, G. J.; Barranger, J. A.; Tager, J. M.; Schram, A. W.

    1986-01-01

    The biosynthesis and intracellular transport of the membrane-associated lysosomal enzyme glucocerebrosidase was studied in the monoblast cell line U937. Addition to the cultures of the oligosaccharide trimming inhibitors swainsonine or deoxymannojirimycin led to an increased intracellular activity

  10. Loss in photosynthesis during senescence is accompanied by an increase in the activity of β-galactosidase in leaves of Arabidopsis thaliana: modulation of the enzyme activity by water stress.

    Science.gov (United States)

    Pandey, Jitendra Kumar; Dash, Sidhartha Kumar; Biswal, Basanti

    2017-07-01

    The precise nature of the developmental modulation of the activity of cell wall hydrolases that breakdown the wall polysaccharides to maintain cellular sugar homeostasis under sugar starvation environment still remains unclear. In this work, the activity of β-galactosidase (EC 3.2.1.23), a cell-wall-bound enzyme known to degrade the wall polysaccharides, has been demonstrated to remarkably enhance during senescence-induced loss in photosynthesis in Arabidopsis thaliana. The enhancement in the enzyme activity reaches a peak at the terminal phase of senescence when the rate of photosynthesis is at its minimum. Although the precise nature of chemistry of the interface between the decline in photosynthesis and enhancement in the activity of the enzyme could not be fully resolved, the enhancement in its activity in dark and its suppression in light or with exogenous sugars may indicate the involvement of loss of photosynthetic production of sugars as a key factor that initiates and stimulates the activity of the enzyme. The hydrolase possibly participates in the catabolic network of cell wall polysaccharides to produce sugars for execution of energy-dependant senescence program in the background of loss of photosynthesis. Drought stress experienced by the senescing leaves accelerates the decline in photosynthesis with further stimulation in the activity of the enzyme. The stress recovery of photosynthesis and suppression of the enzyme activity on withdrawal of stress support the proposition of photosynthetic modulation of the cell-wall-bound enzyme activity.

  11. Failure of lysosome clustering and positioning in the juxtanuclear region in cells deficient in rapsyn

    Science.gov (United States)

    Aittaleb, Mohamed; Chen, Po-Ju; Akaaboune, Mohammed

    2015-01-01

    ABSTRACT Rapsyn, a scaffold protein, is required for the clustering of acetylcholine receptors (AChRs) at contacts between motor neurons and differentiating muscle cells. Rapsyn is also expressed in cells that do not express AChRs. However, its function in these cells remains unknown. Here, we show that rapsyn plays an AChR-independent role in organizing the distribution and mobility of lysosomes. In cells devoid of AChRs, rapsyn selectively induces the clustering of lysosomes at high density in the juxtanuclear region without affecting the distribution of other intracellular organelles. However, when the same cells overexpress AChRs, rapsyn is recruited away from lysosomes to colocalize with AChR clusters on the cell surface. In rapsyn-deficient (Rapsn−/−) myoblasts or cells overexpressing rapsyn mutants, lysosomes are scattered within the cell and highly dynamic. The increased mobility of lysosomes in Rapsn−/− cells is associated with a significant increase in lysosomal exocytosis, as evidenced by increased release of lysosomal enzymes and plasma membrane damage when cells were challenged with the bacterial pore-forming toxin streptolysin-O. These findings uncover a new link between rapsyn, lysosome positioning, exocytosis and plasma membrane integrity. PMID:26330529

  12. Lysosome stabilization in slices of rat liver when incubated with vitamin A excess

    International Nuclear Information System (INIS)

    Morre, D.M.; Morre, D.J.; Bowen, S.; Reutter, W.

    1986-01-01

    An organ culture of slices of livers from adult rats was used to study effect of vitamin A (all-trans retinol) on lysosome stability. Lysosomes were purified by centrifugation in Percoll gradients. Preparations were monitored by electron microscopy and evaluated by morphometry and assays of marker enzymes. Enrichments relative to homogenates and crude pellets were estimated from latent (triton X-100) acid p-nitrophenylphosphatase specific activities. Lysosomes prepared from unincubated slices were enriched 50-fold in latent acid phosphatase relative to homogenates. In contrast, lysosomes prepared from slices incubated for 30 min in PBS alone were enriched only 20-fold. When 25 μg/ml retinol was included in the incubation medium, enrichments of 40-fold were obtained. The integrity of the slices was monitored by electron microscopy and their viability was confirmed by a sustained uptake and incorporation of [ 3 H]leucine into protein (up to 2 h in culture). The loss of lysosomes from homogenates of slices incubated in the absence of retinol was accompanied by a loss of acid phosphatase from the lysosomal pellet to the supernatant during purification. Addition of retinol to slices just prior to homogenization was without effect. The results demonstrate a stabilizing influence of vitamin A on lysosomes during incubation of licer slices. The findings contrast earlier reports of retinol-induced lysosome fragility in other in vitro systems

  13. Dataset and standard operating procedure for newborn screening of six lysosomal storage diseases: By tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Susan Elliott

    2016-09-01

    Full Text Available In this data article we provide a detailed standard operating procedure for performing a tandem mass spectrometry, multiplex assay of 6 lysosomal enzymes for newborn screening of the lysosomal storage diseases Mucopolysaccharidosis-I, Pompe, Fabry, Niemann-Pick-A/B, Gaucher, and Krabbe, (Elliott, et al., 2016 [1]. We also provide the mass spectrometry peak areas for the product and internal standard ions typically observed with a dried blood spot punch from a random newborn, and we provide the daily variation of the daily mean activities for all 6 enzymes.

  14. lysosome tethering and fusion

    Indian Academy of Sciences (India)

    AMIT TULI

    LYSOSOME. MTOC. LATE ENDOSOME. Arl8b promotes the assembly of the HOPS complex on the lysosomes to mediate late endosome-lysosome fusion and cargo delivery to lysosomes. Khatter D et al., J Cell Science 2015. Khatter D et al., Cellular Logistics 2015 ...

  15. An enzyme family reunion - similarities, differences and eccentricities in actions on alpha-glucans

    DEFF Research Database (Denmark)

    Seo, Eun-Seong; Christiansen, Camilla; Abou Hachem, Maher

    2008-01-01

    alpha-Glucans in general, including starch, glycogen and their derived oligosaccharides are processed by a host of more or less closely related enzymes that represent wide diversity in structure, mechanism, specificity and biological role. Sophisticated three-dimensional structures continue to em...

  16. Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content.

    Directory of Open Access Journals (Sweden)

    Hanna Appelqvist

    Full Text Available Alterations in lipid homeostasis are implicated in several neurodegenerative diseases, although the mechanisms responsible are poorly understood. We evaluated the impact of cholesterol accumulation, induced by U18666A, quinacrine or mutations in the cholesterol transporting Niemann-Pick disease type C1 (NPC1 protein, on lysosomal stability and sensitivity to lysosome-mediated cell death. We found that neurons with lysosomal cholesterol accumulation were protected from oxidative stress-induced apoptosis. In addition, human fibroblasts with cholesterol-loaded lysosomes showed higher lysosomal membrane stability than controls. Previous studies have shown that cholesterol accumulation is accompanied by the storage of lipids such as sphingomyelin, glycosphingolipids and sphingosine and an up regulation of lysosomal associated membrane protein-2 (LAMP-2, which may also influence lysosomal stability. However, in this study the use of myriocin and LAMP deficient fibroblasts excluded these factors as responsible for the rescuing effect and instead suggested that primarily lysosomal cholesterol content determineD the cellular sensitivity to toxic insults. Further strengthening this concept, depletion of cholesterol using methyl-β-cyclodextrin or 25-hydroxycholesterol decreased the stability of lysosomes and cells became more prone to undergo apoptosis. In conclusion, cholesterol content regulated lysosomal membrane permeabilization and thereby influenced cell death sensitivity. Our data suggests that lysosomal cholesterol modulation might be used as a therapeutic strategy for conditions associated with accelerated or repressed apoptosis.

  17. Atypical Distribution of Late Gadolinium Enhancement of the Left Ventricle on Cardiac Magnetic Resonance in Classical Anderson-Fabry Disease

    OpenAIRE

    Kasuya, Shusuke; Suzuki, Masayo; Inaoka, Tsutomu; Odashima, Masayuki; Nakatsuka, Tomoya; Ishikawa, Rumiko; Tokuyama, Wataru; Terada, Hitoshi

    2016-01-01

    Anderson-Fabry disease (AFD) is an X-linked lysosomal storage disorder caused by a deficiency of alpha-galactosidase A. Approximately 50% of patients with AFD may have cardiac involvement. Gadolinium-enhanced cardiac magnetic resonance (CMR) is useful for the diagnosis of cardiac involvement of AFD by recognizing typical late gadolinium enhancement (LGE) patterns. We report a 48-year-old man with cardiac involvement in classical AFD, showing atypical distribution of the LGE at the mid-lateral...

  18. Uptake and degradation of cytoplasmic RNA by lysosomes in the perfused rat liver

    International Nuclear Information System (INIS)

    Heydrick, S.J.; Lardeux, B.; Mortimore, G.E.

    1987-01-01

    The release of [ 14 C]cytidine has been shown previously to be a valid marker for RNA degradation in rat hepatocytes. The breakdown of RNA measured with this marker in perfused livers prelabeled in vivo with [6- 14 C]orotic acid was found to be regulated acutely by perfusate amino acids over a wide range, from 0.29 to 3.48%/h. This regulation paralleled that of lysosomal proteolysis. Chloroquine inhibited RNA degradation 60-70%. In subsequent cell fractionation studies labelled cytidine was released; the distribution of this release paralleled that of a lysosomal marker enzyme. The release plateaued after two hours, defining a distinct lysosomal pool of RNA. The lysosomal location of the RNA pool was confirmed in experiments where a 22% increase in the apparent pool size was obtained by lowering the homogenate pH from 7.0 to 5.5. The pool size correlated linearly with the rate of RNA degradation measured during perfusion, giving a turnover constant in reasonable agreement with values reported for autophagy. These results indicate that cytoplasmic RNA degradation occurs primarily in the lysosome and is regulated under these conditions by the amino acid control of lysosomal sequestration of cytoplasm

  19. Transgalactosylation/Hydrolysis Ratios of Various β-Galactosidases Catalyzing Alkyl-β-Galactoside Synthesis in Single-Phased Alcohol Media

    Directory of Open Access Journals (Sweden)

    Eleonora Winkelhausen

    2008-01-01

    Full Text Available Three microbial galactosidases, Aspergillus oryzae, Escherichia coli and Kluyveromyces marxianus β-galactosidase, were used as catalysts for transgalactosylation synthesis of alkyl-β-galactosides in single-phased alcohol media. Their selectivity towards different alcohol nucleophiles was quantified by determining the transgalactosylation/hydrolysis ratio in the water/alcohol mixtures containing water in concentrations below the level of saturation. p-Nitrophenyl-β-galactoside was used as a glycosyl donor at a concentration of 10 mM. Both the total reaction rate (transgalactosylation+hydrolysis and the ratio between the transgalactosylation (alcoholysis and hydrolysis increased with the increase of water activity. Although the A. oryzae β-galactosidase showed relatively low total activity (3.13 μmol/(min·mg protein, it exhibited the highest selectivity towards the hexanol nucleophile among the examined enzymes (0.65. The selectivity values in all the examined cases were below one, which implies that the hydrolysis, and not the synthesis, was the dominating reaction. The total reaction rate (transgalactosylation+hydrolysis was strongly affected by the water activity, and for the specific water activity in the different alcohols, it increased in the following order: n-octanol, n-hexanol, n-butanol.

  20. Cloning a cDNA for the lysosomal alpha-glucosidase

    NARCIS (Netherlands)

    KONINGS, A.; HUPKES, P.; Versteeg, R.; Grosveld, G.; Reuser, A.; Galjaard, H.

    1984-01-01

    Messenger RNA was isolated from monkey testes and size-fractionated on sucrose gradients. In vitro translation of these mRNA fractions resulted in nascent, labeled alpha-glucosidase that could be precipitated with anti human alpha-glucosidase antiserum. A cDNA library was constructed from the most

  1. Lactose hydrolysis by free and fibre-entrapped β-galactosidase from Streptococcus thermophilus

    Directory of Open Access Journals (Sweden)

    Zhennai Yang

    1993-09-01

    Full Text Available To study lactose hydrolysis by β-galactosidase, this enzyme was produced from Streptococcus thermophilus strain 11F and partially purified by acetone and ammonium sulphate fractionation, and ion exchange chromatography on a Q Sepharose FF column. Lactose hydrolysis by the enzyme was affected by lactose concentrations, sugars and milk proteins. The maximum extent of lactose hydrolysis in buffer was obtained with a 15% lactose concentration. Addition of 2% of lactose, glucose, galactose or sucrose in milk inhibited the enzymatic hydrolysis. The enzyme was activated by bovine serum albumin and a combination of αs-casein and β-casein. Of the casein fractions, the principal fraction, αs-casein, was less effective than β-casein and κ-casein. The fibre entrapped enzyme had a temperature optimum of 57°C, and a pH optimum from 7.5 to at least 9.0 with O-nitrophenyl-β-D-galactopyranoside as substrate. By recycling with whey and skim milk through a jacketed glass column (1.6 cm x 30 cm loaded with fibre-entrapped enzyme at 55°C, a lactose hydrolysis of 49.5% and 47.9% was achieved in 11 h and 7 h respectively.

  2. The influence of gamma radiation on catheptic activity and on ultrastructure of lysosomes and postmortem skeletal muscle of poultry Gallus domesticus

    International Nuclear Information System (INIS)

    Ali, Mumtaz.

    1975-01-01

    A three-part study is presented dealing with radiation-induced release of cathepsins from isolated lysosomes, irradiation inactivation of cathepsins, and ultrastructural changes in irradiated lysosomes and skeletal muscle. After chicken liver lysosomes were irradiated with 0.1 to 1.0 Mrad of gamma radiation a decrease in absorbance at 540 nm of lysosomal suspensions and an increase of free enzyme activity due to a release of cathepsins were noted. Examination of irradiated isolated lysosomes by electron microscopy showed leakage of material from weak points in the lysosomal membrane. Examination of irradiated chicken pectoralis muscle revealed an increase in interfibrillar spaces and some breaks in the myofibres. (LL)

  3. Alpha-mannosidosis

    Directory of Open Access Journals (Sweden)

    Nilssen Øivind

    2008-07-01

    Full Text Available Abstract Alpha-mannosidosis is an inherited lysosomal storage disorder characterized by immune deficiency, facial and skeletal abnormalities, hearing impairment, and intellectual disability. It occurs in approximately 1 of 500,000 live births. The children are often born apparently normal, and their condition worsens progressively. Some children are born with ankle equinus or develop hydrocephalus in the first year of life. Main features are immune deficiency (manifested by recurrent infections, especially in the first decade of life, skeletal abnormalities (mild-to-moderate dysostosis multiplex, scoliosis and deformation of the sternum, hearing impairment (moderate-to-severe sensorineural hearing loss, gradual impairment of mental functions and speech, and often, periods of psychosis. Associated motor function disturbances include muscular weakness, joint abnormalities and ataxia. The facial trait include large head with prominent forehead, rounded eyebrows, flattened nasal bridge, macroglossia, widely spaced teeth, and prognathism. Slight strabismus is common. The clinical variability is significant, representing a continuum in severity. The disorder is caused by lysosomal alpha-mannosidase deficiency. Alpha-mannosidosis is inherited in an autosomal recessive fashion and is caused by mutations in the MAN2B1 gene located on chromosome 19 (19 p13.2-q12. Diagnosis is made by measuring acid alpha-mannosidase activity in leukocytes or other nucleated cells and can be confirmed by genetic testing. Elevated urinary secretion of mannose-rich oligosaccharides is suggestive, but not diagnostic. Differential diagnoses are mainly the other lysosomal storage diseases like the mucopolysaccharidoses. Genetic counseling should be given to explain the nature of the disease and to detect carriers. Antenatal diagnosis is possible, based on both biochemical and genetic methods. The management should be pro-active, preventing complications and treating

  4. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology

    DEFF Research Database (Denmark)

    Kirkegaard, Thomas; Roth, Anke G; Petersen, Nikolaj H T

    2010-01-01

    Heat shock protein 70 (Hsp70) is an evolutionarily highly conserved molecular chaperone that promotes the survival of stressed cells by inhibiting lysosomal membrane permeabilization, a hallmark of stress-induced cell death. Clues to its molecular mechanism of action may lay in the recently...... reported stress- and cancer-associated translocation of a small portion of Hsp70 to the lysosomal compartment. Here we show that Hsp70 stabilizes lysosomes by binding to an endolysosomal anionic phospholipid bis(monoacylglycero)phosphate (BMP), an essential co-factor for lysosomal sphingomyelin metabolism......-is also associated with a marked decrease in lysosomal stability, and this phenotype can be effectively corrected by treatment with recombinant Hsp70. Taken together, these data open exciting possibilities for the development of new treatments for lysosomal storage disorders and cancer with compounds...

  5. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease.

    Science.gov (United States)

    Magalhaes, Joana; Gegg, Matthew E; Migdalska-Richards, Anna; Doherty, Mary K; Whitfield, Phillip D; Schapira, Anthony H V

    2016-08-15

    Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD. © The Author 2016. Published by Oxford University Press.

  6. Biogenesis and proteolytic processing of lysosomal DNase II.

    Directory of Open Access Journals (Sweden)

    Susumu Ohkouchi

    Full Text Available Deoxyribonuclease II (DNase II is a key enzyme in the phagocytic digestion of DNA from apoptotic nuclei. To understand the molecular properties of DNase II, particularly the processing, we prepared a polyclonal antibody against carboxyl-terminal sequences of mouse DNase II. In the present study, partial purification of DNase II using Con A Sepharose enabled the detection of endogenous DNase II by Western blotting. It was interesting that two forms of endogenous DNase II were detected--a 30 kDa form and a 23 kDa form. Neither of those forms carried the expected molecular weight of 45 kDa. Subcellular fractionation showed that the 23 kDa and 30 kDa proteins were localized in lysosomes. The processing of DNase II in vivo was also greatly altered in the liver of mice lacking cathepsin L. DNase II that was extracellularly secreted from cells overexpressing DNase II was detected as a pro-form, which was activated under acidic conditions. These results indicate that DNase II is processed and activated in lysosomes, while cathepsin L is involved in the processing of the enzyme.

  7. A role for α-galactosidase in the degradation of the endosperm cell walls of lettuce seeds, cv. Grand Rapids.

    Science.gov (United States)

    Leung, D W; Bewley, J D

    1983-04-01

    Isolated endosperms of Grand Rapids lettuce (Lactuca sativa L.) seeds undergo extensive cell-wall degradation and sugars are released into the surrounding incubation medium. One sugar so released is galactose. α-Galactosidase (EC 3.2.122) is present at the same level in both dry and imbibed isolated endosperms and is responsible for the release of galactose. However, this enzyme does not act upon the native endosperm cell wall, but requires first its partial hydrolysis and the production of oligomers by the action of endo-β-mannanase (EC 3.2.1.787). Galactose is then cleaved from these oligomers, allowing their further subsequent hydrolysis by endo-β-mannanase. Thus α-galactosidase and endo-β-mannanase act cooperatively to effect the hydrolysis of the lettuce endosperm cell walls.

  8. Glucosylceramide accumulation is not confined to the lysosome in fibroblasts from patients with Gaucher disease.

    Science.gov (United States)

    Fuller, Maria; Rozaklis, Tina; Lovejoy, Melanie; Zarrinkalam, Krystyna; Hopwood, John J; Meikle, Peter J

    2008-04-01

    Gaucher disease (GD) is an inborn error of glycosphingolipid metabolism resulting from a deficiency of the lysosomal enzyme beta-glucosidase leading to the accumulation of glucosylceramide (GC) in lysosomes of affected cells. In order to determine the effect of GC accumulation on intracellular lipid content in fibroblasts from patients with GD, we measured individual species of ceramide, di- and trihexosylceramide, sphingomyelin, phosphatidylcholine, phosphatidylinositol and phosphatidylglycerol using electrospray ionisation-tandem mass spectrometry. The different subspecies of each lipid class correlated with each other and were summed to give total lipid concentrations. In addition to GC, we also noted secondary elevations in other lipids, especially in type 2 GD. Sub-cellular fractionation showed that GC was not confined to the lysosome but increased throughout the cell. The sequelae of extra-lysosomal accumulation may have implications in the pathogenic mechanisms of GD by interaction with biochemical and metabolic pathways located outside the lysosome. The elevation of ceramide in confluent type 2 GD fibroblasts redistributed from its primary site of accumulation in the lysosome to the endosomal region at four-weeks post-confluence. The accumulation of lipids in the endosome and lysosome suggests both impaired trafficking of lipids and reduced capacity of the lysosome to degrade lipids.

  9. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  11. Presence of the propeptide on recombinant lysosomal dipeptidase controls both activation and dimerization.

    Science.gov (United States)

    Dolenc, Iztok; Pain, Roger; Turk, Vito

    2007-01-01

    Lysosomal dipeptidase catalyzes the hydrolysis of dipeptides with unsubstituted terminals. It is a homodimer and binds zinc. Dimerization is an important issue in understanding the enzyme's function. In this study, we investigated the influence of the propeptide on the folding and dimerization of recombinant lysosomal dipeptidase. For this purpose, we separately cloned and overexpressed the mature protein and the proenzyme. The overexpressed proteins were localized exclusively to insoluble inclusion bodies. Refolding of the urea-solubilized inclusion bodies showed that only dipeptidase lacking the propeptide was dimeric. The soluble renatured proenzyme was a monomer, although circular dichroism and fluorescence spectra of the proenzyme indicated the formation of secondary and tertiary structure. The propeptide thus controls dimerization, as well as activation, of lysosomal dipeptidase.

  12. Lysosomal enzyme cathepsin B enhances the aggregate forming activity of exogenous α-synuclein fibrils.

    Science.gov (United States)

    Tsujimura, Atsushi; Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tatebe, Harutsugu; Tokuda, Takahiko; Mizuno, Toshiki; Tanaka, Masaki

    2015-01-01

    The formation of intracellular aggregates containing α-synuclein (α-Syn) is one of the key steps in the progression of Parkinson's disease and dementia with Lewy bodies. Recently, it was reported that pathological α-Syn fibrils can undergo cell-to-cell transmission and form Lewy body-like aggregates. However, little is known about how they form α-Syn aggregates from fibril seeds. Here, we developed an assay to study the process of aggregate formation using fluorescent protein-tagged α-Syn-expressing cells and examined the aggregate forming activity of exogenous α-Syn fibrils. α-Syn fibril-induced formation of intracellular aggregates was suppressed by a cathepsin B specific inhibitor, but not by a cathepsin D inhibitor. α-Syn fibrils pretreated with cathepsin B in vitro enhanced seeding activity in cells. Knockdown of cathepsin B also reduced fibril-induced aggregate formation. Moreover, using LAMP-1 immunocytochemistry and live-cell imaging, we observed that these aggregates initially occurred in the lysosome. They then rapidly grew larger and moved outside the boundary of the lysosome within one day. These results suggest that the lysosomal protease cathepsin B is involved in triggering intracellular aggregate formation by α-Syn fibrils. Copyright © 2015. Published by Elsevier Inc.

  13. Clinical and genetic investigation of a Japanese family with cardiac fabry disease. Identification of a novel α-galactosidase A missense mutation (G195V).

    Science.gov (United States)

    Nakagawa, Naoki; Maruyama, Hiroki; Ishihara, Takayuki; Seino, Utako; Kawabe, Jun-ichi; Takahashi, Fumihiko; Kobayashi, Motoi; Yamauchi, Atsushi; Sasaki, Yukie; Sakamoto, Naka; Ota, Hisanobu; Tanabe, Yasuko; Takeuchi, Toshiharu; Takenaka, Toshihiro; Kikuchi, Kenjiro; Hasebe, Naoyuki

    2011-01-01

    Fabry disease is an X-linked lysosomal storage disorder caused by mutations of the α-galactosidase A gene (GLA), and the disease is a relatively prevalent cause of left ventricular hypertrophy mimicking idiopathic hypertrophic cardiomyopathy. We assessed clinically 5 patients of a three-generation family and also searched for GLA mutations in 10 family members. The proband had left ventricular hypertrophy with localized thinning in the basal posterior wall and late gadolinium enhancement (LGE) in the near-circumferential wall in cardiovascular magnetic resonance images and her sister had vasospastic angina pectoris without organic stenosis of the coronary arteries. LGE notably appeared in parallel with decreased α-galactosidase A activity and increased NT-pro BNP in our patients. We detected a new GLA missense mutation (G195V) in exon 4, resulting in a glycine-to-valine substitution. Of the 10 family members, 5 family members each were positive and negative for this mutation. These new data extend our clinical and molecular knowledge of GLA gene mutations and confirm that a novel missense mutation in the GLA gene is important not only for a precise diagnosis of heterozygous status, but also for confirming relatives who are negative for this mutation.

  14. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy.

    Science.gov (United States)

    Papadopoulos, Chrisovalantis; Kirchner, Philipp; Bug, Monika; Grum, Daniel; Koerver, Lisa; Schulze, Nina; Poehler, Robert; Dressler, Alina; Fengler, Sven; Arhzaouy, Khalid; Lux, Vanda; Ehrmann, Michael; Weihl, Conrad C; Meyer, Hemmo

    2017-01-17

    Rupture of endosomes and lysosomes is a major cellular stress condition leading to cell death and degeneration. Here, we identified an essential role for the ubiquitin-directed AAA-ATPase, p97, in the clearance of damaged lysosomes by autophagy. Upon damage, p97 translocates to lysosomes and there cooperates with a distinct set of cofactors including UBXD1, PLAA, and the deubiquitinating enzyme YOD1, which we term ELDR components for Endo-Lysosomal Damage Response. Together, they act downstream of K63-linked ubiquitination and p62 recruitment, and selectively remove K48-linked ubiquitin conjugates from a subpopulation of damaged lysosomes to promote autophagosome formation. Lysosomal clearance is also compromised in MEFs harboring a p97 mutation that causes inclusion body myopathy and neurodegeneration, and damaged lysosomes accumulate in affected patient tissue carrying the mutation. Moreover, we show that p97 helps clear late endosomes/lysosomes ruptured by endocytosed tau fibrils. Thus, our data reveal an important mechanism of how p97 maintains lysosomal homeostasis, and implicate the pathway as a modulator of degenerative diseases. © 2016 The Authors.

  15. Crystal structures of β-galactosidase from Penicillium sp. and its complex with galactose

    International Nuclear Information System (INIS)

    Rojas, A.L.; Nagem, R.A.P.; Garratt, R.C.; Polikarpov, I.; Neustroev, K.N.; Eneyskaya, E.V.; Kulminskaya, A.A.; Golubev, A.M.; Arand, M.; Adamska, M.

    2004-01-01

    Glycosidase belong to a group of enzymes displaying a great variety of protein folds and substrate specificities. Two critically located acidic residues make up the catalytic machinery of these enzymes, which are responsible for the cleavage of glycosidic bonds. The applications of glycosidase in textile, food, and pulp processing and in catalysts and oligosaccharide synthesis have encouraged the engineering of these proteins to improve their catalytic properties and stability. Furthermore, structural studies broaden our understanding of the catalytic mechanism and the role of glycosidase in the recognition processes of their different substrates. In this work, we describe crystallographic studies of a fungi glycosidase. The crystallographic structures of β-galactosidase from Penicillium sp. and its complex with galactose were solved at 1.90 A and 2.10 A resolution, respectively. The X-ray structure of the enzyme-galactose complex was useful in identifying the residue Glu200 as the proton donor and residue Glu 299 as the nucleophiles involved in catalysis. (author)

  16. Crystal structures of {beta}-galactosidase from Penicillium sp. and its complex with galactose

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, A.L.; Nagem, R.A.P.; Garratt, R.C.; Polikarpov, I. [Universidade de Sao Paulo, Sao Carlos, SP (Brazil); Neustroev, K.N.; Eneyskaya, E.V.; Kulminskaya, A.A.; Golubev, A.M. [St. Petersburg, Gatchina (Russian Federation); Arand, M.; Adamska, M. [University of Wuerzburg (Germany)

    2004-07-01

    Glycosidase belong to a group of enzymes displaying a great variety of protein folds and substrate specificities. Two critically located acidic residues make up the catalytic machinery of these enzymes, which are responsible for the cleavage of glycosidic bonds. The applications of glycosidase in textile, food, and pulp processing and in catalysts and oligosaccharide synthesis have encouraged the engineering of these proteins to improve their catalytic properties and stability. Furthermore, structural studies broaden our understanding of the catalytic mechanism and the role of glycosidase in the recognition processes of their different substrates. In this work, we describe crystallographic studies of a fungi glycosidase. The crystallographic structures of {beta}-galactosidase from Penicillium sp. and its complex with galactose were solved at 1.90 A and 2.10 A resolution, respectively. The X-ray structure of the enzyme-galactose complex was useful in identifying the residue Glu200 as the proton donor and residue Glu 299 as the nucleophiles involved in catalysis. (author)

  17. Triptolide induces lysosomal-mediated programmed cell death in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Owa C

    2013-09-01

    Full Text Available Chie Owa, Michael E Messina Jr, Reginald HalabyDepartment of Biology, Montclair State University, Montclair, NJ, USABackground: Breast cancer is a major cause of death; in fact, it is the most common type, in order of the number of global deaths, of cancer in women worldwide. This research seeks to investigate how triptolide, an extract from the Chinese herb Tripterygium wilfordii Hook F, induces apoptosis in MCF-7 human breast cancer cells. Accumulating evidence suggests a role for lysosomal proteases in the activation of apoptosis. However, there is also some controversy regarding the direct participation of lysosomal proteases in activation of key apoptosis-related caspases and release of mitochondrial cytochrome c. In the present study, we demonstrate that triptolide induces an atypical, lysosomal-mediated apoptotic cell death in MCF-7 cells because they lack caspase-3.Methods: MCF-7 cell death was characterized via cellular morphology, chromatin condensation, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide colorimetric cell growth inhibition assay and the expression levels of proapoptotic proteins. Acridine orange and LysoTracker® staining were performed to visualize lysosomes. Lysosomal enzymatic activity was monitored using an acid phosphatase assay and western blotting of cathepsin B protein levels in the cytosolic fraction, which showed increased enzymatic activity in drug-treated cells.Results: These experiments suggest that triptolide-treated MCF-7 cells undergo atypical apoptosis and that, during the early stages, lysosomal enzymes leak into the cytosol, indicating lysosomal membrane permeability.Conclusion: Our results suggest that further studies are warranted to investigate triptolide's potential as an anticancer therapeutic agent.Keywords: triptolide, MCF-7 breast cancer cells, apoptosis, lysosomes, lysosomal membrane permeabilization (LMP

  18. Early Renal Involvement in a Girl with Classic Fabry Disease.

    Science.gov (United States)

    Perretta, Fernando; Antongiovanni, Norberto; Jaurretche, Sebastián

    2017-01-01

    Fabry disease is an X-linked lysosomal storage disorder resulting from the deficiency or absence of the enzyme alpha galactosidase A; this defect leads to the systemic accumulation of globotriaosylceramide and its metabolites. Organic involvement in men is well known, but in women it is controversial, mainly due to the random X-chromosome inactivation in each of their cells (Lyon hypothesis). This would explain why women (heterozygotes) present a wide variability in the severity of their phenotype. The manifestations are multisystemic and begin in early childhood, reaching a severe compromise in adulthood. Typical acroparesthesia in hands and feet, gastrointestinal symptoms, angiokeratomas, dyshidrosis, hearing loss, arrhythmias, hypertrophic cardiomyopathy, cerebrovascular accidents, and renal failure can be observed. Nephropathy is one of the major complications of Fabry disease. Glomerular and vascular changes are present before progression to overt proteinuria and decreased glomerular filtration rate, even in pediatric patients. A case of incipient renal involvement in a girl with classic Fabry disease is reported.

  19. Characterization of recombinant human lysosomal beta-hexosaminidases produced in the methylotrophic yeast Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Angela Johana Espejo Mojica

    2016-08-01

    Full Text Available β-hexosaminidases (Hex are dimeric enzymes involved in the lysosomal degradation of glycolipids and glycans. They are formed by α- and/or β-subunits encoded byHEXA and HEXB genes, respectively. Mutations in these genes lead to Tay Sachs or Sandhoff diseases, which are neurodegenerative disorders caused by the accumulation of non-degraded glycolipids. Although tissue-derived Hex have been widely characterized, limited information is available for recombinant β-hexosaminidases. In this study, human lysosomal recombinant Hex (rhHex-A, rhHex-B, and rhHex-S were produced in the methylotrophic yeast Pichia pastoris GS115. The highest specific enzyme activities were 13,124 for rhHexA; 12,779 for rhHex-B; and 14,606 U .mg-1 for rhHex-S. These results were 25- to 50-fold higher than those obtained from normal human leukocytes. Proteins were purified and characterized at different pH and temperature conditions. All proteins were stable at acidic pH, and at 4 °C and 37 °C. At 45 °C rhHex-S was completely inactivated, while rhHex-A and rhHex-B showed high stability. This study demonstrates P. pastoris GS115 potential for polymeric lysosomal enzyme production, and describes the characterization of recombinant β-hexosaminidases produced within the same host.

  20. Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase

    NARCIS (Netherlands)

    Overkleeft, H. S.; Renkema, G. H.; Neele, J.; Vianello, P.; Hung, I. O.; Strijland, A.; van der Burg, A. M.; Koomen, G. J.; Pandit, U. K.; Aerts, J. M.

    1998-01-01

    The existence of a non-lysosomal glucosylceramidase in human cells has been documented (van Weely, S., Brandsma, M., Strijland, A., Tager, J. M., and Aerts, J. M. F. G. (1993) Biochim. Biophys. Acta 1181, 55-62). Hypothetically, the activity of this enzyme, which is localized near the cell surface,

  1. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase.

    Science.gov (United States)

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes' ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion.

  2. Lysosomal Re-acidification Prevents Lysosphingolipid-Induced Lysosomal Impairment and Cellular Toxicity.

    Directory of Open Access Journals (Sweden)

    Christopher J Folts

    2016-12-01

    Full Text Available Neurodegenerative lysosomal storage disorders (LSDs are severe and untreatable, and mechanisms underlying cellular dysfunction are poorly understood. We found that toxic lipids relevant to three different LSDs disrupt multiple lysosomal and other cellular functions. Unbiased drug discovery revealed several structurally distinct protective compounds, approved for other uses, that prevent lysosomal and cellular toxicities of these lipids. Toxic lipids and protective agents show unexpected convergence on control of lysosomal pH and re-acidification as a critical component of toxicity and protection. In twitcher mice (a model of Krabbe disease [KD], a central nervous system (CNS-penetrant protective agent rescued myelin and oligodendrocyte (OL progenitors, improved motor behavior, and extended lifespan. Our studies reveal shared principles relevant to several LSDs, in which diverse cellular and biochemical disruptions appear to be secondary to disruption of lysosomal pH regulation by specific lipids. These studies also provide novel protective strategies that confer therapeutic benefits in a mouse model of a severe LSD.

  3. Multipoint attachment to a support protects enzyme from inactivation by organic solvents: alpha-Chymotrypsin in aqueous solutions of alcohols and diols.

    Science.gov (United States)

    Mozhaev, V V; Sergeeva, M V; Belova, A B; Khmelnitsky, Y L

    1990-03-25

    Inactivation of alpha-chymotrypsin in aqueous solutions of alcohols and diols proceeds both reversibly and irreversibly. Reversible loss of the specific enzyme activity results from conformational changes (unfolding) of the enzyme detected by fluorescence spectroscopy. Multipoint covalent attachment to the matrix of polyacryl-amide gel by copolymerization method stabilizes alpha-chymotrypsin from denaturation by alcohols, the stabilizing effect increasing with the number of bonds between the protein and the support. Immobilization protects the enzyme also from irreversible inactivation by organic solvents resulting from bimolecular aggregation and autolysis.

  4. A Fungal α-Galactosidase from Tricholoma matsutake with Broad Substrate Specificity and Good Hydrolytic Activity on Raffinose Family Oligosaccharides.

    Science.gov (United States)

    Geng, Xueran; Tian, Guoting; Zhao, Yongchang; Zhao, Liyan; Wang, Hexiang; Ng, Tzi Bun

    2015-07-24

    An acidic α-galactosidase designated as TMG was purified from the fruiting bodies The purification protocol entailed ion exchange chromatography on Q-Sepharose and of Tricholoma matsutake with 136-fold purification and a specific activity of 909 units/mg. Mono-Q and fast protein liquid chromatography on Superdex 75. TMG is a monomeric protein exhibiting a molecular mass of 47 kDa in SDS-PAGE and gel filtration. The purified enzyme was identified by LC-MS/MS and three inner amino acid sequences were obtained. The optimum pH and temperature for TMG with pNPGal as substrate were pH 4.5 and 55 °C, respectively. The α-galactosidase activity was strongly inhibited by K+, Ca2+, Cd2+, Hg2+, Ag+ and Zn2+ ions. The enzyme activity was inhibited by the chemical modification agent N-bromosuccinimide (NBS), indicating the importance of tryptophan residue(s) at or near the active site. Besides hydrolyzing pNPGal, TMG also efficaciously catalyzed the degradation of natural substrates such as stachyose, raffinose, and melibiose. Thus TMG can be exploited commercially for improving the nutritional value of soy milk by degradation of indigestible oligosaccharides.

  5. A Fungal α-Galactosidase from Tricholoma matsutake with Broad Substrate Specificity and Good Hydrolytic Activity on Raffinose Family Oligosaccharides

    Directory of Open Access Journals (Sweden)

    Xueran Geng

    2015-07-01

    Full Text Available An acidic α-galactosidase designated as TMG was purified from the fruiting bodies The purification protocol entailed ion exchange chromatography on Q-Sepharose and of Tricholoma matsutake with 136-fold purification and a specific activity of 909 units/mg. Mono-Q and fast protein liquid chromatography on Superdex 75. TMG is a monomeric protein exhibiting a molecular mass of 47 kDa in SDS-PAGE and gel filtration. The purified enzyme was identified by LC-MS/MS and three inner amino acid sequences were obtained. The optimum pH and temperature for TMG with pNPGal as substrate were pH 4.5 and 55 °C, respectively. The α-galactosidase activity was strongly inhibited by K+, Ca2+, Cd2+, Hg2+, Ag+ and Zn2+ ions. The enzyme activity was inhibited by the chemical modification agent N-bromosuccinimide (NBS, indicating the importance of tryptophan residue(s at or near the active site. Besides hydrolyzing pNPGal, TMG also efficaciously catalyzed the degradation of natural substrates such as stachyose, raffinose, and melibiose. Thus TMG can be exploited commercially for improving the nutritional value of soy milk by degradation of indigestible oligosaccharides.

  6. Pathogenic mechanisms in lysosomal disease: a reappraisal of the role of the lysosome.

    Science.gov (United States)

    Walkley, Steven U

    2007-04-01

    The view that lysosomes simply represent end organelles in the serial degradation of polymeric molecules derived from the cell surface and its interior has led to major misconceptions about the nature of lysosomal storage diseases and the pathogenic cascades that characterize them. Accordingly, lysosomal storage bodies are often considered 'inert', inducing cell dysfunction and death primarily through mechanical overcrowding of normal organelles or by other non-specific means leading to generalized cytotoxicity. However, modern studies of lysosomes and their component proteins provide evidence to support a far greater role for these organelles in cell metabolism. In intimate association with endosomal, autophagosomal and related vesicular systems, the greater lysosomal system can be conceptualized as a vital recycling centre that serves as a central metabolic coordinator, influencing literally every aspect of the cell, from signal transduction to regulation of gene expression. This broader view of the role of lysosomes in cells not only provides insight into how single gene defects impacting on lysosomal function can result in the plethora of complex cellular transformations characteristic of these diseases, but also suggests new and innovative therapies that may hold considerable promise for ameliorating disease progression.

  7. Enzyme Replacement Therapy for Fabry Disease

    Directory of Open Access Journals (Sweden)

    Maria Dolores Sanchez-Niño PhD

    2016-11-01

    Full Text Available Fabry disease is a rare X-linked disease caused by the deficiency of α-galactosidase that leads to the accumulation of abnormal glycolipid. Untreated patients develop potentially lethal complications by age 30 to 50 years. Enzyme replacement therapy is the current standard of therapy for Fabry disease. Two formulations of recombinant human α-galactosidase A (agalsidase are available in most markets: agalsidase-α and agalsidase-β, allowing a choice of therapy. However, the US Food and Drug Administration rejected the application for commercialization of agalsidase-α. The main difference between the 2 enzymes is the dose. The label dose for agalsidase-α is 0.2 mg/kg/2 weeks, while the dose for agalsidase-β is 1.0 mg/kg/2 weeks. Recent evidence suggests a dose-dependent effect of enzyme replacement therapy and agalsidase-β is 1.0 mg/kg/2 weeks, which has been shown to reduce the occurrence of hard end points (severe renal and cardiac events, stroke, and death. In addition, patients with Fabry disease who have developed tissue injury should receive coadjuvant tissue protective therapy, together with enzyme replacement therapy, to limit nonspecific progression of the tissue injury. It is likely that in the near future, additional oral drugs become available to treat Fabry disease, such as chaperones or substrate reduction therapy.

  8. Novel dense CO2 technique for beta-galactosidase immobilization in polystyrene microchannels.

    Science.gov (United States)

    Leclair Ellis, Jeffrey; Tomasko, David L; Dehghani, Fariba

    2008-03-01

    In this study we design new fabrication techniques and demonstrate the potential of using dense CO2 for facilitating crucial steps in the fabrication of polymeric lab-on-a-chip microdevices by embedding biomolecules at temperatures well below the polymer's glass transition temperature (T(g)). These new techniques are environmentally friendly and done without the use of a clean room. Carbon dioxide at 40 degrees C and between 4.48 and 6.89 MPa was used to immobilize the biologically active molecule, beta-galactosidase (beta-gal), on the surface of polystyrene microchannels. To our knowledge, this is the first time dense CO2 has been used to directly immobilize an enzyme in a microchannel. beta-gal activity was maintained and shown via a fluorescent reaction product, after enzyme immobilization and microchannel capping by the designed fabrication steps at 40 degrees C and pressures up to 6.89 MPa.

  9. Phosphorylated alpha(1 leads to 4) glucans as substrate for potato starch-branching enzyme I

    International Nuclear Information System (INIS)

    Vikso-Nielsen, A.; Blennow, A.; Nielsen, T.H.; Moller, B.L.

    1998-01-01

    The possible involvement of potato (Solanum tuberosum L.) starch-branching enzyme I (PSBE-I) in the in vivo synthesis of phosphorylated amylopectin was investigated in in vitro experiments with isolated PSBE-I using 33P-labeled phosphorylated and 3H end-labeled nonphosphorylated alpha(1 leads to 4) glucans as the substrates. From these radiolabeled substrates PSBE-I was shown to catalyze the formation of dual-labeled (3H/33P) phosphorylated branched polysaccharides with an average degree of polymerization of 80 to 85. The relatively high molecular mass indicated that the product was the result of multiple chain-transfer reactions. The presence of alpha(1 leads to 6) branch points was documented by isoamylase treatment and anion-exchange chromatography. Although the initial steps of the in vivo mechanism responsible for phosphorylation of potato starch remains elusive, the present study demonstrates that the enzyme machinery available in potato has the ability to incorporate phosphorylated alpha(1 leads to 4) glucans into neutral polysaccharides in an interchain catalytic reaction. Potato mini tubers synthesized phosphorylated starch from exogenously supplied 33PO4(3-) and [U-14C]Glc at rates 4 times higher than those previously obtained using tubers from fully grown potato plants. This system was more reproducible compared with soil-grown tubers and was therefore used for preparation of 33P-labeled phosphorylated alpha(1 leads to 4) glucan chains

  10. Mechanism-based fluorescent labeling of beta-galactosidases. An efficient method in proteomics for glycoside hydrolases.

    Science.gov (United States)

    Kurogochi, Masaki; Nishimura, Shin-Ichiro; Lee, Yuan Chuan

    2004-10-22

    (4-N-5-Dimethylaminonaphthalene-1-sulfonyl-2-difluoromethylphenyl)-beta-d-galactopyranoside was synthesized and successfully tested on beta-galactosidases from Xanthomonas manihotis (Wong-Madden, S. T., and Landry, D. Glycobiology (1995) 5, 19-28 and Taron, C. H., Benner, J. S., Hornstra, L. J., and Guthrie, E. P. (1995) Glycobiology 5, 603-610), Escherichia coli (Jacobson, R. H., Zhang, X. J., DuBose, R. F., and Matthews, B. W. (1994) Nature 369, 761-766), and Bacillus circulans (Fujimoto, H., Miyasato, M., Ito, Y., Sasaki, T., and Ajisaka, K. (1988) Glycoconj. J. 15, 155-160) for the rapid identification of the catalytic site. Reaction of the irreversible inhibitor with enzymes proceeded to afford a fluorescence-labeled protein suitable for further high throughput characterization by using antidansyl antibody and matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF). Specific probing by a fluorescent aglycon greatly facilitated identification of the labeled peptide fragments from beta-galactosidases. It was demonstrated by using X. manihotis beta-galactosidase that the Arg-58 residue, which is located within a sequence of 56IPRAYWKD63, was labeled by nucleophilic attack of the guanidinyl group. This sequence including Arg-58 (Leu-46 to Tyr-194) was similar to that (Met-1 to Tyr-151) of Thermus thermophilus A4, which is the first known structure of glycoside hydrolases family 42 (Hidaka, M., Fushinobu, S., Ohtsu, N., Motoshima, H., Matsuzawa, H., Shoun, H., and Wakagi, T. (2002) J. Mol. Biol. 322, 79-91). A catalytic glutamic acid (Glu-537) of E. coli beta-galactosidase was proved to be labeled by the same procedure, suggesting that the modification site with this irreversible substrate might depend both on the nucleophilicity of the amino acids and their spatial arrangement in the individual catalytic cavity. Similarly, a Glu-259 in 257TLEE260 was selectively labeled using B. circulans beta-galactosidase, indicating that Glu

  11. Lysosomal Exoglycosidase Profile and Secretory Function in the Salivary Glands of Rats with Streptozotocin-Induced Diabetes.

    Science.gov (United States)

    Maciejczyk, Mateusz; Kossakowska, Agnieszka; Szulimowska, Julita; Klimiuk, Anna; Knaś, Małgorzata; Car, Halina; Niklińska, Wiesława; Ładny, Jerzy Robert; Chabowski, Adrian; Zalewska, Anna

    2017-01-01

    Before this study, there had been no research evaluating the relationship between a lysosomal exoglycosidase profile and secretory function in the salivary glands of rats with streptozotocin- (STZ-) induced type 1 diabetes. In our work, rats were divided into 4 groups of 8 animals each: control groups (C2, C4) and diabetic groups (STZ2, STZ4). The secretory function of salivary glands-nonstimulated and stimulated salivary flow, α -amylase, total protein-and salivary exoglycosidase activities-N-acetyl- β -hexosaminidase (HEX, HEX A, and HEX B), β -glucuronidase, α -fucosidase, β -galactosidase, and α -mannosidase-was estimated both in the parotid and submandibular glands of STZ-diabetic and control rats. The study has demonstrated that the activity of most salivary exoglycosidases is significantly higher in the parotid and submandibular glands of STZ-diabetic rats as compared to the healthy controls and that it increases as the disease progresses. Reduced secretory function of diabetic salivary glands was also observed. A significant inverse correlation between HEX B, α -amylase activity, and stimulated salivary flow in diabetic parotid gland has also been shown. Summarizing, STZ-induced diabetes leads to a change in the lysosomal exoglycosidase profile and reduced function of the salivary glands.

  12. Lysosomal Exoglycosidase Profile and Secretory Function in the Salivary Glands of Rats with Streptozotocin-Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Mateusz Maciejczyk

    2017-01-01

    Full Text Available Before this study, there had been no research evaluating the relationship between a lysosomal exoglycosidase profile and secretory function in the salivary glands of rats with streptozotocin- (STZ- induced type 1 diabetes. In our work, rats were divided into 4 groups of 8 animals each: control groups (C2, C4 and diabetic groups (STZ2, STZ4. The secretory function of salivary glands—nonstimulated and stimulated salivary flow, α-amylase, total protein—and salivary exoglycosidase activities—N-acetyl-β-hexosaminidase (HEX, HEX A, and HEX B, β-glucuronidase, α-fucosidase, β-galactosidase, and α-mannosidase—was estimated both in the parotid and submandibular glands of STZ-diabetic and control rats. The study has demonstrated that the activity of most salivary exoglycosidases is significantly higher in the parotid and submandibular glands of STZ-diabetic rats as compared to the healthy controls and that it increases as the disease progresses. Reduced secretory function of diabetic salivary glands was also observed. A significant inverse correlation between HEX B, α-amylase activity, and stimulated salivary flow in diabetic parotid gland has also been shown. Summarizing, STZ-induced diabetes leads to a change in the lysosomal exoglycosidase profile and reduced function of the salivary glands.

  13. Positive lysosomal modulation as a unique strategy to treat age-related protein accumulation diseases.

    Science.gov (United States)

    Bahr, Ben A; Wisniewski, Meagan L; Butler, David

    2012-04-01

    Lysosomes are involved in degrading and recycling cellular ingredients, and their disruption with age may contribute to amyloidogenesis, paired helical filaments (PHFs), and α-synuclein and mutant huntingtin aggregation. Lysosomal cathepsins are upregulated by accumulating proteins and more so by the modulator Z-Phe-Ala-diazomethylketone (PADK). Such positive modulators of the lysosomal system have been studied in the well-characterized hippocampal slice model of protein accumulation that exhibits the pathogenic cascade of tau aggregation, tubulin breakdown, microtubule destabilization, transport failure, and synaptic decline. Active cathepsins were upregulated by PADK; Rab proteins were modified as well, indicating enhanced trafficking, whereas lysosome-associated membrane protein and proteasome markers were unchanged. Lysosomal modulation reduced the pre-existing PHF deposits, restored tubulin structure and transport, and recovered synaptic components. Further proof-of-principle studies used Alzheimer disease mouse models. It was recently reported that systemic PADK administration caused dramatic increases in cathepsin B protein and activity levels, whereas neprilysin, insulin-degrading enzyme, α-secretase, and β-secretase were unaffected by PADK. In the transgenic models, PADK treatment resulted in clearance of intracellular amyloid beta (Aβ) peptide and concomitant reduction of extracellular deposits. Production of the less pathogenic Aβ(1-38) peptide corresponded with decreased levels of Aβ(1-42), supporting the lysosome's antiamyloidogenic role through intracellular truncation. Amelioration of synaptic and behavioral deficits also indicates a neuroprotective function of the lysosomal system, identifying lysosomal modulation as an avenue for disease-modifying therapies. From the in vitro and in vivo findings, unique lysosomal modulators represent a minimally invasive, pharmacologically controlled strategy against protein accumulation disorders to enhance

  14. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes.

    Science.gov (United States)

    Abu-Remaileh, Monther; Wyant, Gregory A; Kim, Choah; Laqtom, Nouf N; Abbasi, Maria; Chan, Sze Ham; Freinkman, Elizaveta; Sabatini, David M

    2017-11-10

    The lysosome degrades and recycles macromolecules, signals to the cytosol and nucleus, and is implicated in many diseases. Here, we describe a method for the rapid isolation of mammalian lysosomes and use it to quantitatively profile lysosomal metabolites under various cell states. Under nutrient-replete conditions, many lysosomal amino acids are in rapid exchange with those in the cytosol. Loss of lysosomal acidification through inhibition of the vacuolar H + -adenosine triphosphatase (V-ATPase) increased the luminal concentrations of most metabolites but had no effect on those of the majority of essential amino acids. Instead, nutrient starvation regulates the lysosomal concentrations of these amino acids, an effect we traced to regulation of the mechanistic target of rapamycin (mTOR) pathway. Inhibition of mTOR strongly reduced the lysosomal efflux of most essential amino acids, converting the lysosome into a cellular depot for them. These results reveal the dynamic nature of lysosomal metabolites and that V-ATPase- and mTOR-dependent mechanisms exist for controlling lysosomal amino acid efflux. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Lysosomal cell death at a glance

    DEFF Research Database (Denmark)

    Aits, Sonja; Jaattela, Marja

    2013-01-01

    Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form...... of cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream...... mechanisms that lead to lysosomal membrane permeabilization....

  16. Protective effects of positive lysosomal modulation in Alzheimer's disease transgenic mouse models.

    Science.gov (United States)

    Butler, David; Hwang, Jeannie; Estick, Candice; Nishiyama, Akiko; Kumar, Saranya Santhosh; Baveghems, Clive; Young-Oxendine, Hollie B; Wisniewski, Meagan L; Charalambides, Ana; Bahr, Ben A

    2011-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative pathology in which defects in proteolytic clearance of amyloid β peptide (Aβ) likely contribute to the progressive nature of the disorder. Lysosomal proteases of the cathepsin family exhibit up-regulation in response to accumulating proteins including Aβ(1-42). Here, the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK) was used to test whether proteolytic activity can be enhanced to reduce the accumulation events in AD mouse models expressing different levels of Aβ pathology. Systemic PADK injections in APP(SwInd) and APPswe/PS1ΔE9 mice caused 3- to 8-fold increases in cathepsin B protein levels and 3- to 10-fold increases in the enzyme's activity in lysosomal fractions, while neprilysin and insulin-degrading enzyme remained unchanged. Biochemical analyses indicated the modulation predominantly targeted the active mature forms of cathepsin B and markedly changed Rab proteins but not LAMP1, suggesting the involvement of enhanced trafficking. The modulated lysosomal system led to reductions in both Aβ immunostaining as well as Aβ(x-42) sandwich ELISA measures in APP(SwInd) mice of 10-11 months. More extensive Aβ deposition in 20-22-month APPswe/PS1ΔE9 mice was also reduced by PADK. Selective ELISAs found that a corresponding production of the less pathogenic Aβ(1-38) occurs as Aβ(1-42) levels decrease in the mouse models, indicating that PADK treatment leads to Aβ truncation. Associated with Aβ clearance was the elimination of behavioral and synaptic protein deficits evident in the two transgenic models. These findings indicate that pharmacologically-controlled lysosomal modulation reduces Aβ(1-42) accumulation, possibly through intracellular truncation that also influences extracellular deposition, and in turn offsets the defects in synaptic composition and cognitive functions. The selective modulation promotes clearance at different levels of Aβ pathology and provides proof

  17. Role of phospholipids in destabilization of lysosomal membranes in chronic alcohol poisoning

    International Nuclear Information System (INIS)

    Tadevosyan, Y.V.; Batikyan, T.B.; Gevorkyan, G.A.; Karagezyan, K.G.

    1986-01-01

    The aim of this investigation was to study changes in the phospholipids (PL) spectrum and possible activity of membrane-bound phospholipase A 2 in lysosomal membranes from albino rat liver under conditions of the normally metabolizing tissue and during long-term alcohol poisoning. Changes in stability of the lysosomal membranes were determined by measuring nonsedimented acid phosphatase (AP) activity. The substance 1-acyl-2-(1- 14 C)-oleoyl-phosphatidyl-choline ( 14 C-PCh) was synthesized by an enzymic method. Phospholipase A 2 activity was determined in an incubation medium of Tris-Maleate buffer containing 20 nanomoles ( 14 C)-PCH, 8 mM CaC1 2 , and about 100 micrograms protein

  18. Lysosomal exocytosis and lipid storage disorders.

    Science.gov (United States)

    Samie, Mohammad Ali; Xu, Haoxing

    2014-06-01

    Lysosomes are acidic compartments in mammalian cells that are primarily responsible for the breakdown of endocytic and autophagic substrates such as membranes, proteins, and lipids into their basic building blocks. Lysosomal storage diseases (LSDs) are a group of metabolic disorders caused by genetic mutations in lysosomal hydrolases required for catabolic degradation, mutations in lysosomal membrane proteins important for catabolite export or membrane trafficking, or mutations in nonlysosomal proteins indirectly affecting these lysosomal functions. A hallmark feature of LSDs is the primary and secondary excessive accumulation of undigested lipids in the lysosome, which causes lysosomal dysfunction and cell death, and subsequently pathological symptoms in various tissues and organs. There are more than 60 types of LSDs, but an effective therapeutic strategy is still lacking for most of them. Several recent in vitro and in vivo studies suggest that induction of lysosomal exocytosis could effectively reduce the accumulation of the storage materials. Meanwhile, the molecular machinery and regulatory mechanisms for lysosomal exocytosis are beginning to be revealed. In this paper, we first discuss these recent developments with the focus on the functional interactions between lipid storage and lysosomal exocytosis. We then discuss whether lysosomal exocytosis can be manipulated to correct lysosomal and cellular dysfunction caused by excessive lipid storage, providing a potentially general therapeutic approach for LSDs. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Lysosomal exocytosis and lipid storage disorders

    Science.gov (United States)

    Samie, Mohammad Ali; Xu, Haoxing

    2014-01-01

    Lysosomes are acidic compartments in mammalian cells that are primarily responsible for the breakdown of endocytic and autophagic substrates such as membranes, proteins, and lipids into their basic building blocks. Lysosomal storage diseases (LSDs) are a group of metabolic disorders caused by genetic mutations in lysosomal hydrolases required for catabolic degradation, mutations in lysosomal membrane proteins important for catabolite export or membrane trafficking, or mutations in nonlysosomal proteins indirectly affecting these lysosomal functions. A hallmark feature of LSDs is the primary and secondary excessive accumulation of undigested lipids in the lysosome, which causes lysosomal dysfunction and cell death, and subsequently pathological symptoms in various tissues and organs. There are more than 60 types of LSDs, but an effective therapeutic strategy is still lacking for most of them. Several recent in vitro and in vivo studies suggest that induction of lysosomal exocytosis could effectively reduce the accumulation of the storage materials. Meanwhile, the molecular machinery and regulatory mechanisms for lysosomal exocytosis are beginning to be revealed. In this paper, we first discuss these recent developments with the focus on the functional interactions between lipid storage and lysosomal exocytosis. We then discuss whether lysosomal exocytosis can be manipulated to correct lysosomal and cellular dysfunction caused by excessive lipid storage, providing a potentially general therapeutic approach for LSDs. PMID:24668941

  20. Pathogenic lysosomal depletion in Parkinson's disease.

    Science.gov (United States)

    Dehay, Benjamin; Bové, Jordi; Rodríguez-Muela, Natalia; Perier, Celine; Recasens, Ariadna; Boya, Patricia; Vila, Miquel

    2010-09-15

    Mounting evidence suggests a role for autophagy dysregulation in Parkinson's disease (PD). The bulk degradation of cytoplasmic proteins (including α-synuclein) and organelles (such as mitochondria) is mediated by macroautophagy, which involves the sequestration of cytosolic components into autophagosomes (AP) and its delivery to lysosomes. Accumulation of AP occurs in postmortem brain samples from PD patients, which has been widely attributed to an induction of autophagy. However, the cause and pathogenic significance of these changes remain unknown. Here we found in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD that AP accumulation and dopaminergic cell death are preceded by a marked decrease in the amount of lysosomes within dopaminergic neurons. Lysosomal depletion was secondary to the abnormal permeabilization of lysosomal membranes induced by increased mitochondrial-derived reactive oxygen species. Lysosomal permeabilization resulted in a defective clearance and subsequent accumulation of undegraded AP and contributed directly to neurodegeneration by the ectopic release of lysosomal proteases into the cytosol. Lysosomal breakdown and AP accumulation also occurred in PD brain samples, where Lewy bodies were strongly immunoreactive for AP markers. Induction of lysosomal biogenesis by genetic or pharmacological activation of lysosomal transcription factor EB restored lysosomal levels, increased AP clearance and attenuated 1-methyl-4-phenylpyridinium-induced cell death. Similarly, the autophagy-enhancer compound rapamycin attenuated PD-related dopaminergic neurodegeneration, both in vitro and in vivo, by restoring lysosomal levels. Our results indicate that AP accumulation in PD results from defective lysosomal-mediated AP clearance secondary to lysosomal depletion. Restoration of lysosomal levels and function may thus represent a novel neuroprotective strategy in PD.

  1. Progress of pancreatitis disease biomarker alpha amylase enzyme by new nano optical sensor.

    Science.gov (United States)

    Attia, M S; Al-Radadi, Najlaa S

    2016-12-15

    A new nano optical sensor binuclear Pd-(2-aminothiazole) (urea), Pd(atz,ur) complex was prepared and characterized for the assessment of the activity of alpha amylase enzyme in urine and serum samples for early diagnosis of Pancreatitis disease. The assessment of alpha amylase activity is carried out by the quenching of the luminescence intensity of the nano optical sensor binuclear Pd(atz,ur) complex at 457nm by the 2-chloro-4-nitrophenol (2-CNP) which produced from the reaction of the enzyme with 2-chloro-4-nitrophenyl-α-d-maltotrioside (CNPG3) substrate. The remarkable quenching of the luminescence intensity at 457nm of nano Pd(atz,ur) doped in sol-gel matrix by various concentrations of the 2-CNP was successfully used as an optical sensor for the assessment of α-amylase activity. The calibration plot was achieved over the concentration range 8.5×10(-6) to 1.9×10(-9)molL(-1) 2-CNP with a correlation coefficient of (0.999) and a detection limit of (7.4×10(-10)molL(-1)). The method was used satisfactorily for the assessment of the α-amylase activity over activity range (3-321U/L) in different urine and serum samples of pancreatitis patients. The assessment of the alpha amylase biomarker by the proposed method increases its sensitivity (96.88%) and specificity (94.41%) for early diagnosis of pancreatitis diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yusuke; Nada, Shigeyuki; Mori, Shunsuke; Soma-Nagae, Taeko; Oneyama, Chitose [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Masato, E-mail: okadam@biken.osaka-u.ac.jp [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. Black-Right-Pointing-Pointer We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. Black-Right-Pointing-Pointer The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. Black-Right-Pointing-Pointer Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. Black-Right-Pointing-Pointer The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome-lysosome fusion, which is required for processing of various macromolecules.

  3. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    International Nuclear Information System (INIS)

    Takahashi, Yusuke; Nada, Shigeyuki; Mori, Shunsuke; Soma-Nagae, Taeko; Oneyama, Chitose; Okada, Masato

    2012-01-01

    Highlights: ► p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. ► We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. ► The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. ► Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. ► The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome–lysosome fusion, which is required for processing of various macromolecules.

  4. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion.

    Science.gov (United States)

    Zhou, Jing; Tan, Shi-Hao; Nicolas, Valérie; Bauvy, Chantal; Yang, Nai-Di; Zhang, Jianbin; Xue, Yuan; Codogno, Patrice; Shen, Han-Ming

    2013-04-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  5. Developing a Biosensor for Estrogens in Water Samples: Study ofthe Real-time Response of Live Cells of the Estrogen-sensitive YeastStrain RMY/ER-ERE using Fluorescence Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Hermanowicz, S.W.; Holman, H-Y.N.

    2006-01-01

    Using a fluorescein di-{beta}-d-galactopyranoside (FDG) substrate we show that in live cells of an estrogen-sensitive yeast strain RMY/ER-ERE with human estrogen receptor (ER{alpha}) gene and the lacZ gene which encodes {beta}-galactosidase, the uptake of 17{beta}-estradiol (E2) and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximal enzyme-catalyzed product formation evident after about 30 min of exposure to E2. This finding which agrees with the well-known rates of enzyme-catalyzed reactions could have implications for shortening the duration of environmental sample screening and monitoring regimes using yeast-based estrogen assays, and the development of biosensors for environmental estrogens to complement quantification methods.

  6. Developing a Biosensor for Estrogens in Water Samples: Study ofthe Real-time Response of Live Cells of the Estrogen-sensitive YeastStrain RMY/ER-ERE using Fluorescence Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Hermanowicz, S.W.; Holman, H-Y.N.

    2005-07-13

    Using a fluorescein di-{beta}-D-galactopyranoside (FDG) substrate we show that in live cells of an estrogen-sensitive yeast strain RMY/ER-ERE with human estrogen receptor (ER{alpha}) gene and the lacZ gene which encodes {beta}-galactosidase, the uptake of 17 {beta}-estradiol (E2) and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximal enzyme-catalyzed product formation evident after about 30 minutes of exposure to E2. This finding which agrees with the well-known rates of enzyme-catalyzed reactions could have implications for shortening the duration of environmental sample screening and monitoring regimes using yeast-based estrogen assays, and the development of biosensors for environmental estrogens to complement quantification methods.

  7. Estudo da produção de beta-galactosidase por fermentação de soro de queijo com Kluyveromyces marxianus Synthesis of beta-galactosidase by fermentation of cheese whey by Kluyveromyces marxianus

    Directory of Open Access Journals (Sweden)

    Patrícia A. Santiago

    2004-12-01

    Full Text Available A hidrólise enzimática da lactose por beta-galactosidase desempenha importante papel no processamento de produtos lácteos, como na obtenção de leite com baixo teor de lactose para consumo por indivíduos intolerantes à mesma e na prevenção da cristalização em produtos de laticínio. Neste trabalho, a enzima beta-galactosidase foi produzida pelo cultivo do microrganismo Kluyveromyces marxianus, em meio de cultura à base de soro de queijo em diferentes concentrações iniciais de lactose e extrato de levedura, de acordo com um planejamento fatorial. As fermentações foram conduzidas em incubador rotativo a 150rpm, a 30°C e pH inicial 5,5. A concentração celular inicial foi de 10(7 células/mL. Para a extração da enzima beta-galactosidase, foi realizada autólise das células utilizando como solvente o clorofórmio em tampão fosfato. No meio de cultura enriquecido com (NH42SO4, KH2PO4 e MgSO4, nas concentrações iniciais de lactose e de extrato de levedura iguais a 50g/L e 12g/L, respectivamente, obteve-se uma atividade de 28,0UGl/mL e uma concentração celular máxima de 5,3g/L.The enzymatic hydrolysis of lactose by beta-galactosidase plays an important role in the processing of milky products such as the production of lactose-hydrolyzed milk for consumption by intolerant person to lactose and the prevention of the crystallization in dairy products. In this work, the influences of nutrient concentrations in the culture medium based on cheese whey were studied with the objective of producing beta-galactosidase from Kluyveromyces marxianus. The fermentations were carried out in a shaker at 30°C and initial pH 5.5 under agitation, starting with an initial cellular concentration of 10(7 cells/mL, varying the initial concentrations of lactose and yeast extract. For extraction of the enzyme of the cells it was used autolysis with chloroform in potassium phosphate buffer. In the medium with a initial lactose concentration of 50g

  8. Effects of interferon-gamma and tumor necrosis factor-alpha on macrophage enzyme levels

    Science.gov (United States)

    Pierangeli, Silvia S.; Sonnenfeld, Gerald

    1989-01-01

    Murine peritoneal macrophages were treated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF). Measurements of changes in acid phosphatase and beta-glucuronidase levels were made as an indication of activation by cytokine treatment. IFN-gamma or TNF-gamma treatment resulted in a significant increase in the activities of both enzymes measured in the cell lysates. This increase was observable after 6 h of incubation, but reached its maximum level after 24 h of incubation. The effect of the treatment of the cell with both cytokines together was additive. No synergistic effect of addition of both cytokines on the enzyme levels was observed.

  9. Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes.

    Science.gov (United States)

    Aizawa, Shu; Fujiwara, Yuuki; Contu, Viorica Raluca; Hase, Katsunori; Takahashi, Masayuki; Kikuchi, Hisae; Kabuta, Chihana; Wada, Keiji; Kabuta, Tomohiro

    2016-01-01

    Lysosomes are thought to be the major intracellular compartment for the degradation of macromolecules. We recently identified a novel type of autophagy, RNautophagy, where RNA is directly taken up by lysosomes in an ATP-dependent manner and degraded. However, the mechanism of RNA translocation across the lysosomal membrane and the physiological role of RNautophagy remain unclear. In the present study, we performed gain- and loss-of-function studies with isolated lysosomes, and found that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference deficient-1), mediates RNA translocation during RNautophagy. We also observed that SIDT2 is a transmembrane protein, which predominantly localizes to lysosomes. Strikingly, knockdown of Sidt2 inhibited up to ˜50% of total RNA degradation at the cellular level, independently of macroautophagy. Moreover, we showed that this impairment is mainly due to inhibition of lysosomal RNA degradation, strongly suggesting that RNautophagy plays a significant role in constitutive cellular RNA degradation. Our results provide a novel insight into the mechanisms of RNA metabolism, intracellular RNA transport, and atypical types of autophagy.

  10. Response of tissue lysosomes in Gamma-irradiated rats and possible modulation through diclofenac treatment

    International Nuclear Information System (INIS)

    Hassan, S.H.S.; Abu-Ghadeer, A.R.M.; Osman, S.A.A.

    1995-01-01

    The effect of pre and post-irradiation treatment of rats with diclofenac (5 mg kg-1) for modulating the damaging effect of radiation on tissue lysosomes was investigated. The parameters used for this study were the activity level of acid phosphatase (ACP) and acid ribonuclease (RNase) activities, both being hydrolytic enzymes of lysosomes. The activities of ACP and RNase in liver, spleen, intestine, kidney, lung and brain were determined at different times up to 14 days after irradiation (4(Gy). Lysosomal affection was represented by time dependent significant increase in ACP activity in all the tissue homogenates of the investigated organs 3, 7 and 14 days after irradiation at 4 Gy. Gamma irradiation at 4 Gy resulted also in a significant rise in RNase activity of all the tissue organs 3 days post-irradiation. However, gradual decrease in the enzyme activity was recorded 7 and 14 days following irradiation. Diclofenac, pre (as prophylactic) and post (as therapeutic) irradiation treatment of rats successfully restored the increase in the enzymatic activities of ACP and RNase nearly to their normal levels in all the investigated organs. The beneficial effect of diclofenac inhibited completely the effect of irradiation at 14 days post-exposure. 2 figs., 2 tabs

  11. Mechanisms and functions of lysosome positioning

    Science.gov (United States)

    Pu, Jing; Guardia, Carlos M.; Keren-Kaplan, Tal

    2016-01-01

    ABSTRACT Lysosomes have been classically considered terminal degradative organelles, but in recent years they have been found to participate in many other cellular processes, including killing of intracellular pathogens, antigen presentation, plasma membrane repair, cell adhesion and migration, tumor invasion and metastasis, apoptotic cell death, metabolic signaling and gene regulation. In addition, lysosome dysfunction has been shown to underlie not only rare lysosome storage disorders but also more common diseases, such as cancer and neurodegeneration. The involvement of lysosomes in most of these processes is now known to depend on the ability of lysosomes to move throughout the cytoplasm. Here, we review recent findings on the mechanisms that mediate the motility and positioning of lysosomes, and the importance of lysosome dynamics for cell physiology and pathology. PMID:27799357

  12. Biomarkers in the diagnosis of lysosomal storage disorders: proteins, lipids, and inhibodies.

    Science.gov (United States)

    Aerts, Johannes M F G; Kallemeijn, Wouter W; Wegdam, Wouter; Joao Ferraz, Maria; van Breemen, Marielle J; Dekker, Nick; Kramer, Gertjan; Poorthuis, Ben J; Groener, Johanna E M; Cox-Brinkman, Josanne; Rombach, Saskia M; Hollak, Carla E M; Linthorst, Gabor E; Witte, Martin D; Gold, Henrik; van der Marel, Gijs A; Overkleeft, Herman S; Boot, Rolf G

    2011-06-01

    A biomarker is an analyte indicating the presence of a biological process linked to the clinical manifestations and outcome of a particular disease. In the case of lysosomal storage disorders (LSDs), primary and secondary accumulating metabolites or proteins specifically secreted by storage cells are good candidates for biomarkers. Clinical applications of biomarkers are found in improved diagnosis, monitoring disease progression, and assessing therapeutic correction. These are illustrated by reviewing the discovery and use of biomarkers for Gaucher disease and Fabry disease. In addition, recently developed chemical tools allowing specific visualization of enzymatically active lysosomal glucocerebrosidase are described. Such probes, coined inhibodies, offer entirely new possibilities for more sophisticated molecular diagnosis, enzyme replacement therapy monitoring, and fundamental research.

  13. Lysosomal enlargement and lysosomal membrane destabilisation in mussel digestive cells measured by an integrative index

    International Nuclear Information System (INIS)

    Izagirre, Urtzi; Marigomez, Ionan

    2009-01-01

    Lysosomal responses (enlargement and membrane destabilisation) in mussel digestive cells are well-known environmental stress biomarkers in pollution effects monitoring in marine ecosystems. Presently, in laboratory and field studies, both responses were measured separately (in terms of lysosomal volume density - Vv - and labilisation period -LP) and combined (lysosomal response index - LRI) in order to contribute to their understanding and to develop an index useful for decisions makers. LRI integrates Vv and LP, which are not necessarily dependent lysosomal responses. It is unbiased and more sensitive than Vv and LP alone and diminishes background due to confounding factors. LRI provides a simple numerical index (consensus reference = 0; critical threshold = 1) directly related to the pollution impact degree. Moreover, LRI can be represented in a way that allows the interpretation of lysosomal responses, which is useful for environmental scientists. - Lysosomal responses to pollutants measured by an integrative index.

  14. Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease.

    Science.gov (United States)

    Gan-Or, Ziv; Dion, Patrick A; Rouleau, Guy A

    2015-01-01

    Parkinson disease (PD), once considered as a prototype of a sporadic disease, is now known to be considerably affected by various genetic factors, which interact with environmental factors and the normal process of aging, leading to PD. Large studies determined that the hereditary component of PD is at least 27%, and in some populations, single genetic factors are responsible for more than 33% of PD patients. Interestingly, many of these genetic factors, such as LRRK2, GBA, SMPD1, SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved in the autophagy-lysosome pathway (ALP). Some of these genes encode lysosomal enzymes, whereas others correspond to proteins that are involved in transport to the lysosome, mitophagy, or other autophagic-related functions. Is it possible that all these factors converge into a single pathway that causes PD? In this review, we will discuss these genetic findings and the role of the ALP in the pathogenesis of PD and will try to answer this question. We will suggest a novel hypothesis for the pathogenic mechanism of PD that involves the lysosome and the different autophagy pathways.

  15. Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification.

    Science.gov (United States)

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M; Haslett, Luke J; Kumar, Asok; Sato, Yutaka; Lie, Pearl P Y; Mohan, Panaiyur; Coffey, Erin E; Kompella, Uday; Mitchell, Claire H; Lloyd-Evans, Emyr; Nixon, Ralph A

    2015-09-01

    Presenilin 1 (PS1) deletion or Alzheimer's disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO) cells induces abnormal Ca(2+) efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca(2+). In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca(2+) homeostasis, but correcting lysosomal Ca(2+) deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca(2+) homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Lee

    2015-09-01

    Full Text Available Presenilin 1 (PS1 deletion or Alzheimer’s disease (AD-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  17. Caracterização cinética e termodinâmica de β-galactosidase de Kluyveromyces marxianus CCT 7082 fracionada com sulfato de amônio Kinetics and thermodynamic characterization of β-galactosidase from Kluyveromyces marxianus CCT 7082 fractionated with ammonium sulphate

    Directory of Open Access Journals (Sweden)

    Renata Bemvenuti Heidtmann

    2012-03-01

    Full Text Available A β-galactosidase é uma enzima importante que atua na hidrólise da lactose, podendo ser empregada na obtenção de alimentos destinados a consumidores intolerantes a esse dissacarídeo. A levedura Kluyveromyces marxianus apresenta bom rendimento de crescimento, além de ser um micro-organismo seguro em aplicações industriais, e tem sido utilizada para produção da enzima por cultivo submerso. A β-galactosidase obtida foi fracionada com sulfato de amônio e caracterizada quanto a temperatura e pH ótimos, estabilidade térmica, valores D e z, e parâmetros cinéticos e termodinâmicos. A temperatura e pH ótimos foram de 45-50 °C e 7,0, respectivamente. A energia de ativação da reação enzimática foi de 9,8 kcal.mol-1 e da reação de desativação, 64,2 kcal.mol-1. Os valores de Km e Vmax obtidos foram de 3,7 mM e 99,0 U.mL-1, respectivamente. A energia livre de Gibbs reduziu com o aumento de temperatura, sendo a enzima mais estável a 30 °C (∆G* = 106,8 kJ.mol-1. A entalpia foi de 313,04 kJ.mol-1 e a entropia 0,68 kJ.mol-1.k-1. O valor D confirmou que a enzima foi mais estável em temperaturas próximas de 30 °C (D = 11.513,0 min e o valor z foi de 5,8 °C.β-galactosidase is an important enzyme that acts on lactose hydrolysis and can be used to obtain food for consumers intolerant to this disaccharide. The yeast Kluyveromyces marxianus presents a good growth yield, is a safe microorganism for industrial applications and has been used for enzyme production using the submerged process. The β-galactosidase obtained was fractionated with ammonium sulphate and characterized with respect to its optimum temperature and pH, thermal stability and its D and z values, as well as its kinetic and thermodynamic parameters. The optimum temperature and pH were 45-50 °C and 7.0, respectively. The activation energy and the deactivation reaction of the enzymatic reaction were, respectively, 9.8 kcal.mol-1 and 64.2 kcal.mol-1. The Km and Vmax

  18. PGC-1alpha is required for training-induced prevention of age-associated decline in mitochondrial enzymes in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Leick, Lotte; Lyngby, Stine Secher; Wojtaszewski, Jørgen

    2010-01-01

    The aim of the present study was to test the hypothesis that exercise training prevents an age-associated decline in skeletal muscle mitochondrial enzymes through a PGC-1alpha dependent mechanism. Whole body PGC-1alpha knock-out (KO) and littermate wildtype (WT) mice were submitted to long term...

  19. Isolating Lysosomes from Rat Liver.

    Science.gov (United States)

    Pryor, Paul R

    2016-04-01

    This protocol describes the generation of a fraction enriched in lysosomes from rat liver. The lysosomes are rapidly isolated using density-gradient centrifugation with gradient media that retain the osmolarity of the lysosomes such that they are functional and can be used in in vitro assays. © 2016 Cold Spring Harbor Laboratory Press.

  20. Cooperation between two ClpB isoforms enhances the recovery of the recombinant {beta}-galactosidase from inclusion bodies

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Izabela [Department of Biochemistry, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk (Poland); Zolkiewski, Michal [Department of Biochemistry, Kansas State University, Manhattan, KS 66506 (United States); Kedzierska-Mieszkowska, Sabina, E-mail: kedzie@biotech.ug.gda.pl [Department of Biochemistry, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk (Poland)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer An important role of synergistic cooperation between the two ClpB isoforms. Black-Right-Pointing-Pointer Both ClpB isoforms are associated with IBs of {beta}-galactosidase. Black-Right-Pointing-Pointer ClpB is a key chaperone in IB protein release. -- Abstract: Bacterial ClpB is a molecular chaperone that solubilizes and reactivates aggregated proteins in cooperation with the DnaK chaperone system. The mechanism of protein disaggregation mediated by ClpB is linked to translocation of substrates through the central channel within the ring-hexameric structure of ClpB. Two isoforms of ClpB are produced in vivo: the full-length ClpB95 and the truncated ClpB80 (ClpB{Delta}N), which does not contain the N-terminal domain. The functional specificity of the two ClpB isoforms and the biological role of the N-terminal domain are still not fully understood. Recently, it has been demonstrated that ClpB may achieve its full potential as an aggregate-reactivating chaperone through the functional interaction and synergistic cooperation of its two isoforms. It has been found that the most efficient resolubilization and reactivation of stress-aggregated proteins occurred in the presence of both ClpB95 and ClpB80. In this work, we asked if the two ClpB isoforms functionally cooperate in the solubilization and reactivation of proteins from insoluble inclusion bodies (IBs) in Escherichia coli cells. Using the model {beta}-galactosidase fusion protein (VP1LAC), we found that solubilization and reactivation of enzymes entrapped in IBs occurred more efficiently in the presence of ClpB95 with ClpB80 than with either ClpB95 or ClpB80 alone. The two isoforms of ClpB chaperone acting together enhanced the solubility and enzymatic activity of {beta}-galactosidase sequestered into IBs. Both ClpB isoforms were associated with IBs of {beta}-galactosidase, what demonstrates their affinity to this type of aggregates. These results demonstrate a synergistic

  1. Use of yeast spores for microencapsulation of enzymes.

    Science.gov (United States)

    Shi, Libing; Li, Zijie; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2014-08-01

    Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose.This suggests that substrate selectivity could be altered by the encapsulation.

  2. Clinical heterogeneity in Fabry disease

    Directory of Open Access Journals (Sweden)

    G. N. Salogub

    2015-01-01

    Full Text Available Fabry disease is an X-linked, lysosomal storage disease (OMIM: 301500, caused by α-galactosidase A deficiency, resulting in accumulation of its substrates, glycosphingolipids, primarily – globotriaosylceramide, in the lysosomes of multiple cell types with multi-system clinical manifestations, even within the same family, including abnormalities of the central and peripheral nervous system, kidneys, heart, gastrointestinal tract, lungs, organ of vision. Clinical heterogeneity is often the reason of the delayed diagnosis. Nowadays enzyme replacement therapy has proved its efficiency in the treatment of Fabry disease. Including Fabry disease in the differential diagnosis of a large range of disorders is important because of its wide clinical heterogeneity and the possibility of an earlier intervention with a beneficial treatment.

  3. The inactivation of the sortilin gene leads to a partial disruption of prosaposin trafficking to the lysosomes

    International Nuclear Information System (INIS)

    Zeng, Jibin; Racicott, Jesse; Morales, Carlos R.

    2009-01-01

    Lysosomes are intracellular organelles which contain enzymes and activator proteins involved in the digestion and recycling of a variety of cellular and extracellular substances. We have identified a novel sorting receptor, sortilin, which is involved in the lysosomal trafficking of the sphingolipid activator proteins, prosaposin and GM 2 AP, and the soluble hydrolases cathepsin D, cathepsin H, and acid sphingomyelinase. Sortilin belongs to a growing family of receptors with homology to the yeast Vps10 protein, which acts as a lysosomal sorting receptor for carboxypeptidase Y. In this study we examined the effects of the sortilin gene inactivation in mice. The inactivation of this gene did not yield any noticeable lysosomal pathology. To determine the existence of an alternative receptor complementing the sorting function of sortilin, we quantified the concentration of prosaposin in the lysosomes of the nonciliated epithelial cells lining the efferent ducts. These cells were chosen because they express sortilin and have a large number of lysosomes containing prosaposin. In addition, the nonciliated cells are known to endocytose luminal prosaposin that is synthesized and secreted by Sertoli cells into the seminiferous luminal fluids. Consequently, the nonciliated cells are capable of targeting both exogenous and endogenous prosaposin to the lysosomes. Using electron microscope immunogold labeling and quantitative analysis, our results demonstrate that inactivation of the sortilin gene produces a significant decrease of prosaposin in the lysosomes. When luminal prosaposin was excluded from the efferent ducts, the level of prosaposin in lysosomes was even lower in the mutant mice. Nonetheless, a significant amount of prosaposin continues to reach the lysosomal compartment. These results strongly suggest the existence of an alternative receptor that complements the function of sortilin and explains the lack of lysosomal storage disorders in the sortilin-deficient mice.

  4. The inactivation of the sortilin gene leads to a partial disruption of prosaposin trafficking to the lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jibin; Racicott, Jesse [Department of Anatomy and Cell Biology, McGill University, Montreal (Canada); Morales, Carlos R., E-mail: carlos.morales@mcgill.ca [Department of Anatomy and Cell Biology, McGill University, Montreal (Canada)

    2009-11-01

    Lysosomes are intracellular organelles which contain enzymes and activator proteins involved in the digestion and recycling of a variety of cellular and extracellular substances. We have identified a novel sorting receptor, sortilin, which is involved in the lysosomal trafficking of the sphingolipid activator proteins, prosaposin and GM{sub 2}AP, and the soluble hydrolases cathepsin D, cathepsin H, and acid sphingomyelinase. Sortilin belongs to a growing family of receptors with homology to the yeast Vps10 protein, which acts as a lysosomal sorting receptor for carboxypeptidase Y. In this study we examined the effects of the sortilin gene inactivation in mice. The inactivation of this gene did not yield any noticeable lysosomal pathology. To determine the existence of an alternative receptor complementing the sorting function of sortilin, we quantified the concentration of prosaposin in the lysosomes of the nonciliated epithelial cells lining the efferent ducts. These cells were chosen because they express sortilin and have a large number of lysosomes containing prosaposin. In addition, the nonciliated cells are known to endocytose luminal prosaposin that is synthesized and secreted by Sertoli cells into the seminiferous luminal fluids. Consequently, the nonciliated cells are capable of targeting both exogenous and endogenous prosaposin to the lysosomes. Using electron microscope immunogold labeling and quantitative analysis, our results demonstrate that inactivation of the sortilin gene produces a significant decrease of prosaposin in the lysosomes. When luminal prosaposin was excluded from the efferent ducts, the level of prosaposin in lysosomes was even lower in the mutant mice. Nonetheless, a significant amount of prosaposin continues to reach the lysosomal compartment. These results strongly suggest the existence of an alternative receptor that complements the function of sortilin and explains the lack of lysosomal storage disorders in the sortilin

  5. Pathogenic cascades in lysosomal disease-Why so complex?

    Science.gov (United States)

    Walkley, S U

    2009-04-01

    Lysosomal disease represents a large group of more than 50 clinically recognized conditions resulting from inborn errors of metabolism affecting the organelle known as the lysosome. The lysosome is an integral part of the larger endosomal/lysosomal system, and is closely allied with the ubiquitin-proteosomal and autophagosomal systems, which together comprise essential cell machinery for substrate degradation and recycling, homeostatic control, and signalling. More than two-thirds of lysosomal diseases affect the brain, with neurons appearing particularly vulnerable to lysosomal compromise and showing diverse consequences ranging from specific axonal and dendritic abnormalities to neuron death. While failure of lysosomal function characteristically leads to lysosomal storage, new studies argue that lysosomal diseases may also be appropriately viewed as 'states of deficiency' rather than simply overabundance (storage). Interference with signalling events and salvage processing normally controlled by the endosomal/lysosomal system may represent key mechanisms accounting for the inherent complexity of lysosomal disorders. Analysis of lysosomal disease pathogenesis provides a unique window through which to observe the importance of the greater lysosomal system for normal cell health.

  6. Endo-lysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin.

    Directory of Open Access Journals (Sweden)

    Ekaterina A Ivanova

    Full Text Available Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles.

  7. Kluyveromyces lactis β-galactosidase immobilization in calcium alginate spheres and gelatin for hydrolysis of cheese whey lactose

    Directory of Open Access Journals (Sweden)

    Ana Paula Mörschbächer

    2016-05-01

    Full Text Available ABSTRACT: One of the greatest challenges for dairy industries is the correct destination of all the whey generated during cheese making, considering its high impact, the large volume created, and its technological potential. Enzymatic hydrolysis of cheese whey lactose is a biotechnological alternative. However, one of the limiting factors of its use is the relatively high cost of the enzymes, which could be lowered with the immobilization of these biocatalysts. Considering this context, the objective of this research was to evaluate the commercial Kluyveromyces lactis β-galactosidase enzyme immobilized in calcium alginate spheres and gelatin, using glutaraldehyde and concanavalin A (ConA as modifying agents in the hydrolysis of cheese whey lactose process. Results have shown that the enzyme encapsulation complexed with ConA in alginate-gelatin spheres, without glutaraldehyde in the immobilization support, has significantly increased the hydrolysis of lactose rate, achieving a maximum conversion of 72%.

  8. Glucocerebrosidase expression patterns in the non-human primate brain

    OpenAIRE

    Dopeso-Reyes, Iria G.; Sucunza, Diego; Rico, Alberto J.; Pignataro, Diego; Marín-Ramos, David; Roda, Elvira; Rodríguez-Pérez, Ana I.; Labandeira-García, José L.; Lanciego, José L.

    2017-01-01

    Glucocerebrosidase (GCase) is a lysosomal enzyme encoded by the GBA1 gene. Mutations in GBA1 gene lead to Gaucher’s disease, the most prevalent lysosomal storage disorder. GBA1 mutations reduce GCase activity, therefore promoting the aggregation of alpha-synuclein, a common neuropathological finding underlying Parkinson’s disease (PD) and dementia with Lewy bodies. However, it is also worth noting that a direct link between GBA1 mutations and alpha-synuclein aggregation indicating cause and e...

  9. Pressure effects on enzyme reactions in mainly organic media: alpha-chymotrypsin in reversed micelles of Aerosol OT in octane.

    Science.gov (United States)

    Mozhaev, V V; Bec, N; Balny, C

    1994-08-01

    Biocatalytic transformations in reversed micelles formed by anionic surfactant Aerosol OT in octane have been studied at high pressures by an example of alpha-chymotrypsin-catalyzed hydrolysis of N-carbobenzoxy-L-tyrosine p-nitrophenyl ester and N-succinyl-L-phenylalanine p-nitroanilide. For the first time it has been found that the enzyme retains high activity in these water-in-oil microemulsions up to a pressure of 2 kbar. The value of the activation volume (delta V*) for the enzyme reactions shows a dependence on the water content in the system. When the size of the micellar aqueous inner cavity (as evaluated at 1 atm) approaches the molecular size of alpha-chymotrypsin, delta V* becomes significantly different from the value in aqueous solution and in the micelles with a larger size. Possibilities of regulating the enzyme activity by pressure in systems with a low content of water are discussed.

  10. Novel high-performance metagenome β-galactosidases for lactose hydrolysis in the dairy industry.

    Science.gov (United States)

    Erich, Sarah; Kuschel, Beatrice; Schwarz, Thilo; Ewert, Jacob; Böhmer, Nico; Niehaus, Frank; Eck, Jürgen; Lutz-Wahl, Sabine; Stressler, Timo; Fischer, Lutz

    2015-09-20

    The industrially utilised β-galactosidases from Kluyveromyces spp. and Aspergillus spp. feature undesirable kinetic properties in praxis, such as an unsatisfactory lactose affinity (KM) and product inhibition (KI) by galactose. In this study, a metagenome library of about 1.3 million clones was investigated with a three-step activity-based screening strategy in order to find new β-galactosidases with more favourable kinetic properties. Six novel metagenome β-galactosidases (M1-M6) were found with an improved lactose hydrolysis performance in original milk when directly compared to the commercial β-galactosidase from Kluyveromyces lactis (GODO-YNL2). The best metagenome candidate, called "M1", was recombinantly produced in Escherichia coli BL21(DE3) in a bioreactor (volume 35 L), resulting in a total β-galactosidase M1 activity of about 1100 μkatoNPGal,37 °C L(-1). Since milk is a sensitive and complex medium, it has to be processed at 5-10 °C in the dairy industry. Therefore, the β-galactosidase M1 was tested at 8 °C in milk and possessed a good stability (t1/2=21.8 d), a desirably low apparent KM,lactose,8 °C value of 3.8±0.7 mM and a high apparent KI,galactose,8 °C value of 196.6±55.5 mM. A lactose hydrolysis process (milk, 40 nkatlactose mLmilk,8 °C(-1)) was conducted at a scale of 0.5L to compare the performance of M1 with the commercial β-galactosidase from K. lactis (GODO-YNL2). Lactose was completely (>99.99%) hydrolysed by M1 and to 99.6% (w/v) by K. lactis β-galactosidase after 25 h process time. Thus, M1 was able to achieve the limit of lactose per litre milk, which is recommended for dairy products labelled as "lactose-free". Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Enhancement of water soluble wheat bran polyphenolic compounds using different steviol glucosides prepared by thermostable β-galactosidase

    Directory of Open Access Journals (Sweden)

    Hee-jung Lim

    2016-10-01

    Full Text Available Background: Production of wheat bran (WB for human consumption is estimated to be about 90 million tons per year. WB contains an abundant source of dietary fiber, minerals, vitamins, and bioactive compounds. WB is a by-product of milling and contains an abundant source of carbohydrate (60%, protein (12%, fat (0.5%, minerals (2%, and bioactive compounds such as phenolic acids, arabinoxylans, flavonoids, caroteinoids alkylresorcinol and phytosterols. These are known for health promoting properties such as controlling glycemic index, reducing plasma cholesterol level, antioxidant, anti-inflammatory, and anticarcinogenic activities. Several terpene glycosides such as mogroside V, paenoiflorin, geniposide, rubusoside (Ru, stevioside (Ste, rebaudioside A (RebA, steviol monoside, and stevioside glucoside have been discovered to enhance the solubility of a number of pharmaceutically and medically important compounds that normally show poor solubility in water. Context and purpose of this study: In this study, in order to increase soluble extraction of polyphenol compounds of WB using Ru, the expression of β-galactosidase from Thermus thermophilus (T. thermophilus was optimized using different E. coli hosts and a different concentration of lactose inducer rather than of isopropyl-1- thio-β-D-galactopyranoside (IPTG for industrial production. Additionally, the effect of different steviol glucosides (Ru, Ste, RebA, and SG on the enhancement of polyphenol compounds extraction from wheat bran was studied. Results: β-galactosidase from T. thermophilus was used for the specific conversion of stevioside (Ste to rubusoside (Ru with 92% productivity. The enzyme was optimized to be expressed in E. coli. With 7 mM lactose, the β-galactosidase activity expressed was 34.3, 14.2, or 34.4 ± 0.5 U/mL in E. coli BL21(DE3pLysS, Rosetta(DE3pLysS, or BL21(DE3 at 37°C, and 9.8 ± 0.2, 7.0 ± 0.5, or 7.4 ± 0.2 U/mL at 28°C respectively. The expression of β-galactosidase

  12. Drosophila melanogaster cellular repressor of E1A-stimulated genes is a lysosomal protein essential for fly development.

    Science.gov (United States)

    Kowalewski-Nimmerfall, Elisabeth; Schähs, Philipp; Maresch, Daniel; Rendic, Dubravko; Krämer, Helmut; Mach, Lukas

    2014-12-01

    Mammalian cellular repressor of E1A-stimulated genes is a lysosomal glycoprotein implicated in cellular growth and differentiation. The genome of the fruit fly Drosophila melanogaster encodes a putative orthologue (dCREG), suggesting evolutionarily conserved physiological functions of this protein. In D. melanogaster S2 cells, dCREG was found to localize in lysosomes. Further studies revealed that intracellular dCREG is subject of proteolytic maturation. Processing and turnover could be substantially reduced by RNAi-mediated silencing of cathepsin L. In contrast to mammalian cells, lysosomal delivery of dCREG does not depend on its carbohydrate moiety. Furthermore, depletion of the putative D. melanogaster lysosomal sorting receptor lysosomal enzyme receptor protein did not compromise cellular retention of dCREG. We also investigated the developmental consequences of dCREG ablation in whole D. melanogaster flies. Ubiquitous depletion of dCREG proved lethal at the late pupal stage once a knock-down efficiency of >95% was achieved. These results demonstrate that dCREG is essential for proper completion of fly development. Copyright © 2014. Published by Elsevier B.V.

  13. Discovering an Accessible Enzyme: Salivary [alpha]-Amylase--"Prima Digestio Fit in Ore"--A Didactic Approach for High School Students

    Science.gov (United States)

    Marini, Isabella

    2005-01-01

    Human salivary [alpha]-amylase is used in this experimental approach to introduce biology high school students to the concept of enzyme activity in a dynamic way. Through a series of five easy, rapid, and inexpensive laboratory experiments students learn what the activity of an enzyme consists of: first in a qualitative then in a semi-quantitative…

  14. The prevalent deep intronic c. 639+919 G>A GLA mutation causes pseudoexon activation and Fabry disease by abolishing the binding of hnRNPA1 and hnRNP A2/B1 to a splicing silencer

    DEFF Research Database (Denmark)

    Palhais, Bruno; Dembic, Maja; Sabaratnam, Rugivan

    2016-01-01

    Fabry disease is an X-linked recessive inborn disorder of the glycosphingolipid metabolism, caused by total or partial deficiency of the lysosomal α-galactosidase A enzyme due to mutations in the GLA gene. The prevalent c.639+919 G>A mutation in GLA leads to pathogenic insertion of a 57bp pseudoe...... oligonucleotide (SSO) mediated blocking of the pseudoexon 3'ss and 5'ss effectively restores normal GLA splicing. This indicates that SSO based splicing correction may be a therapeutic alternative in the treatment of Fabry disease....

  15. Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethylphosphine as an Optional Coupling Agent

    Directory of Open Access Journals (Sweden)

    Su-Ching Chen

    2015-06-01

    Full Text Available β-Galactosidase was immobilized on chitosan-coated magnetic Fe3O4 nanoparticles and was used to produce galactooligosaccharides (GOS from lactose. Immobilized enzyme was prepared with or without the coupling agent, tris(hydroxymethylphosphine (THP. The two immobilized systems and the free enzyme achieved their maximum activity at pH 6.0 with an optimal temperature of 50 °C. The immobilized enzymes showed higher activities at a wider range of temperatures and pH. Furthermore, the immobilized enzyme coupled with THP showed higher thermal stability than that without THP. However, activity retention of batchwise reactions was similar for both immobilized systems. All the three enzyme systems produced GOS compound with similar concentration profiles, with a maximum GOS yield of 50.5% from 36% (w·v−1 lactose on a dry weight basis. The chitosan-coated magnetic Fe3O4 nanoparticles can be regenerated using a desorption/re-adsorption process described in this study.

  16. Lysosomes as mediators of drug resistance in cancer.

    Science.gov (United States)

    Zhitomirsky, Benny; Assaraf, Yehuda G

    2016-01-01

    Drug resistance remains a leading cause of chemotherapeutic treatment failure and cancer-related mortality. While some mechanisms of anticancer drug resistance have been well characterized, multiple mechanisms remain elusive. In this respect, passive ion trapping-based lysosomal sequestration of multiple hydrophobic weak-base chemotherapeutic agents was found to reduce the accessibility of these drugs to their target sites, resulting in a markedly reduced cytotoxic effect and drug resistance. Recently we have demonstrated that lysosomal sequestration of hydrophobic weak base drugs triggers TFEB-mediated lysosomal biogenesis resulting in an enlarged lysosomal compartment, capable of enhanced drug sequestration. This study further showed that cancer cells with an increased number of drug-accumulating lysosomes are more resistant to lysosome-sequestered drugs, suggesting a model of drug-induced lysosome-mediated chemoresistance. In addition to passive drug sequestration of hydrophobic weak base chemotherapeutics, other mechanisms of lysosome-mediated drug resistance have also been reported; these include active lysosomal drug sequestration mediated by ATP-driven transporters from the ABC superfamily, and a role for lysosomal copper transporters in cancer resistance to platinum-based chemotherapeutics. Furthermore, lysosomal exocytosis was suggested as a mechanism to facilitate the clearance of chemotherapeutics which highly accumulated in lysosomes, thus providing an additional line of resistance, supplementing the organelle entrapment of chemotherapeutics away from their target sites. Along with these mechanisms of lysosome-mediated drug resistance, several approaches were recently developed for the overcoming of drug resistance or exploiting lysosomal drug sequestration, including lysosomal photodestruction and drug-induced lysosomal membrane permeabilization. In this review we explore the current literature addressing the role of lysosomes in mediating cancer drug

  17. Riccardin D-N induces lysosomal membrane permeabilization by inhibiting acid sphingomyelinase and interfering with sphingomyelin metabolism in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012 (China); Niu, Huanmin [Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan 250012 (China); Sun, Bin [Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012 (China); Xiao, Yanan [School of Pharmaceutical Science, Shandong University, Jinan 250012 (China); Li, Wei [Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012 (China); Yuan, Huiqing [Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan 250012 (China); Lou, Hongxiang, E-mail: louhongxiang@sdu.edu.cn [Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012 (China)

    2016-11-01

    Lysosomes are important targets for anticancer drug discovery. Our previous study showed that Riccardin D-N (RD-N), a natural macrocylic bisbibenzyl derivative produced by Mannich reaction, induced cell death by accumulating in lysosomes. Experiments were performed on human lung squamous cell carcinoma tissue from left inferior lobar bronchus of patient xenografts and H460 cells. RD-N was administrated for 25 days. The specimens of xenografts in Balb/c athymic (nu +/nu +) male mice were removed for immunohistochemistry, subcellular fractionation, enzyme activities and Western blotting analysis. mRFP-GFP-LC3 reporter was used to examine autophagy in H460 cells. Sphingomyelin assay was evaluated by thin-layer chromatography and assay kit. Lysosomal membrane permeabilization (LMP) caused by acid sphingomyelinase (ASM) inhibition and subsequent changes of sphingomyelin (SM) metabolism selectively destabilized the cancer cell lysosomes in RD-N-treated H460 cells in vitro and tumor xenograft model in vivo. The destabilized lysosomes induced the release of cathepsins from the lysosomes into the cytosol and further triggered cell death. These results explain the underlying mechanism of RD-N induced LMP. It can be concluded that a more lysosomotropic derivative was synthesized by introduction of an amine group, which could have more potential applications in cancer therapy. - Highlights: • Riccardin D-N (RD-N) significantly downregulated LAMP1 expressions. • RD-N inhibited the acid sphingomyelinase activity. • RD-N induced lysosomal membrane permeabilization in vivo. • RD-N induced SM accumulation in the lysosomal membranes. • RD-N also induced the release of cathepsins from destabilized lysosomes.

  18. Riccardin D-N induces lysosomal membrane permeabilization by inhibiting acid sphingomyelinase and interfering with sphingomyelin metabolism in vivo

    International Nuclear Information System (INIS)

    Li, Lin; Niu, Huanmin; Sun, Bin; Xiao, Yanan; Li, Wei; Yuan, Huiqing; Lou, Hongxiang

    2016-01-01

    Lysosomes are important targets for anticancer drug discovery. Our previous study showed that Riccardin D-N (RD-N), a natural macrocylic bisbibenzyl derivative produced by Mannich reaction, induced cell death by accumulating in lysosomes. Experiments were performed on human lung squamous cell carcinoma tissue from left inferior lobar bronchus of patient xenografts and H460 cells. RD-N was administrated for 25 days. The specimens of xenografts in Balb/c athymic (nu +/nu +) male mice were removed for immunohistochemistry, subcellular fractionation, enzyme activities and Western blotting analysis. mRFP-GFP-LC3 reporter was used to examine autophagy in H460 cells. Sphingomyelin assay was evaluated by thin-layer chromatography and assay kit. Lysosomal membrane permeabilization (LMP) caused by acid sphingomyelinase (ASM) inhibition and subsequent changes of sphingomyelin (SM) metabolism selectively destabilized the cancer cell lysosomes in RD-N-treated H460 cells in vitro and tumor xenograft model in vivo. The destabilized lysosomes induced the release of cathepsins from the lysosomes into the cytosol and further triggered cell death. These results explain the underlying mechanism of RD-N induced LMP. It can be concluded that a more lysosomotropic derivative was synthesized by introduction of an amine group, which could have more potential applications in cancer therapy. - Highlights: • Riccardin D-N (RD-N) significantly downregulated LAMP1 expressions. • RD-N inhibited the acid sphingomyelinase activity. • RD-N induced lysosomal membrane permeabilization in vivo. • RD-N induced SM accumulation in the lysosomal membranes. • RD-N also induced the release of cathepsins from destabilized lysosomes.

  19. Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing.

    Science.gov (United States)

    Vester, Jan Kjølhede; Glaring, Mikkel Andreas; Stougaard, Peter

    2014-05-20

    The use of cold-active enzymes has many advantages, including reduced energy consumption and easy inactivation. The ikaite columns of SW Greenland are permanently cold (4-6°C) and alkaline (above pH 10), and the microorganisms living there and their enzymes are adapted to these conditions. Since only a small fraction of the total microbial diversity can be cultured in the laboratory, a combined approach involving functional screening of a strain collection and a metagenomic library was undertaken for discovery of novel enzymes from the ikaite columns. A strain collection with 322 cultured isolates was screened for enzymatic activities identifying a large number of enzyme producers, with a high re-discovery rate to previously characterized strains. A functional expression library established in Escherichia coli identified a number of novel cold-active enzymes. Both α-amylases and β-galactosidases were characterized in more detail with respect to temperature and pH profiles and one of the β-galactosidases, BGalI17E2, was able to hydrolyze lactose at 5°C. A metagenome sequence of the expression library indicated that the majority of enzymatic activities were not detected by functional expression. Phylogenetic analysis showed that different bacterial communities were targeted with the culture dependent and independent approaches and revealed the bias of multiple displacement amplification (MDA) of DNA isolated from complex microbial communities. Many cold- and/or alkaline-active enzymes of industrial relevance were identified in the culture based approach and the majority of the enzyme-producing isolates were closely related to previously characterized strains. The function-based metagenomic approach, on the other hand, identified several enzymes (β-galactosidases, α-amylases and a phosphatase) with low homology to known sequences that were easily expressed in the production host E. coli. The β-galactosidase BGalI17E2 was able to hydrolyze lactose at low

  20. From bedside to cell biology: a century of history on lysosomal dysfunction.

    Science.gov (United States)

    Coutinho, Maria Francisca; Matos, Liliana; Alves, Sandra

    2015-01-15

    Lysosomal storage disorders (LSDs) are a group of rare genetic diseases, generally caused by a deficiency of specific lysosomal enzymes, which results in abnormal accumulation of undegraded substrates. The first clinical reports describing what were later shown to be LSDs were published more than a hundred years ago. In general, the history and pathophysiology of LSDs has impacted on our current knowledge of lysosomal biology. Classically, depending on the nature of the substrates, LSDs can be divided into different subgroups. The mucopolysaccharidoses (MPSs) are those caused by impaired degradation of glycosaminoglycans (GAGs). Amongst LSDs, the MPSs are a major group of pathologies with crucial historical relevance, since their study has revealed important biological pathways and highlighted interconnecting pathological cascades which are still being unveiled nowadays. Here we review the major historical discoveries in the field of LSDs and their impact on basic cellular knowledge and practical applications. Attention will be focused on the MPSs, with occasional references to other LSDs. We will show as studies on the metabolic basis of this group of diseases have increased our knowledge of the complex degradative pathways associated with the lysosome and established the basis to the development of specific therapeutic approaches aiming at correcting or, at least ameliorating their associated phenotypes. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. SwissProt search result: AK103605 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103605 J033133H04 (P10619) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_HUMAN 6e-20 ...

  2. SwissProt search result: AK067493 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067493 J013111L08 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 2e-58 ...

  3. SwissProt search result: AK112076 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK112076 001-124-A08 (P10619) Lysosomal protective protein precursor (EC 3.4.16.5) ...(Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protecti...ve protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_HUMAN 5e-49 ...

  4. SwissProt search result: AK066671 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066671 J013072A16 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 1e-58 ...

  5. SwissProt search result: AK121476 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121476 J023149B05 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 1e-30 ...

  6. SwissProt search result: AK101382 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101382 J033036E19 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 1e-57 ...

  7. SwissProt search result: AK109766 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109766 002-146-H10 (P10619) Lysosomal protective protein precursor (EC 3.4.16.5) ...(Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protecti...ve protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_HUMAN 4e-22 ...

  8. SwissProt search result: AK069785 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069785 J023031H02 (P10619) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_HUMAN 2e-27 ...

  9. SwissProt search result: AK073936 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073936 J033077J01 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 9e-35 ...

  10. SwissProt search result: AK072954 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072954 J023149K09 (P10619) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_HUMAN 3e-41 ...

  11. SwissProt search result: AK109766 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109766 002-146-H10 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) ...(Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protecti...ve protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 3e-23 ...

  12. SwissProt search result: AK073508 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073508 J033044O22 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 2e-29 ...

  13. SwissProt search result: AK059355 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059355 001-026-D05 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) ...(Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protecti...ve protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 1e-10 ...

  14. SwissProt search result: AK070825 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070825 J023064P05 (P10619) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_HUMAN 2e-20 ...

  15. SwissProt search result: AK104329 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104329 001-031-E12 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) ...(Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protecti...ve protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 4e-48 ...

  16. SwissProt search result: AK107270 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107270 002-125-H11 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) ...(Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protecti...ve protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 5e-48 ...

  17. SwissProt search result: AK111801 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111801 J013059J16 (P10619) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_HUMAN 2e-38 ...

  18. SwissProt search result: AK073508 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073508 J033044O22 (P10619) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_HUMAN 8e-29 ...

  19. SwissProt search result: AK070195 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070195 J023043E04 (P10619) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_HUMAN 5e-53 ...

  20. SwissProt search result: AK112076 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK112076 001-124-A08 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) ...(Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protecti...ve protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 1e-51 ...

  1. SwissProt search result: AK104807 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104807 001-040-E08 (P10619) Lysosomal protective protein precursor (EC 3.4.16.5) ...(Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protecti...ve protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_HUMAN 3e-41 ...

  2. SwissProt search result: AK067247 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067247 J013098N22 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 3e-54 ...

  3. SwissProt search result: AK061997 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061997 001-043-C12 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) ...(Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protecti...ve protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 2e-59 ...

  4. SwissProt search result: AK107218 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107218 002-125-C12 (P10619) Lysosomal protective protein precursor (EC 3.4.16.5) ...(Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protecti...ve protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_HUMAN 5e-37 ...

  5. SwissProt search result: AK068732 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068732 J013159H01 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 8e-63 ...

  6. SwissProt search result: AK106800 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106800 002-116-B10 (P10619) Lysosomal protective protein precursor (EC 3.4.16.5) ...(Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protecti...ve protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_HUMAN 2e-53 ...

  7. SwissProt search result: AK241380 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241380 J065155L15 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 1e-39 ...

  8. SwissProt search result: AK069959 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069959 J023038G19 (P16675) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_MOUSE 6e-48 ...

  9. SwissProt search result: AK064874 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064874 J013000J10 (P10619) Lysosomal protective protein precursor (EC 3.4.16.5) (...Cathepsin A) (Carboxypeptidase C) (Protective protein for beta-galactosidase) [Contains: Lysosomal protectiv...e protein 32 kDa chain; Lysosomal protective protein 20 kDa chain] PPGB_HUMAN 6e-61 ...

  10. Cancer-associated lysosomal changes

    DEFF Research Database (Denmark)

    Kallunki, T; Olsen, O D; Jaattela, Marja

    2013-01-01

    Rapidly dividing and invasive cancer cells are strongly dependent on effective lysosomal function. Accordingly, transformation and cancer progression are characterized by dramatic changes in lysosomal volume, composition and cellular distribution. Depending on one's point of view, the cancer-asso......:10.1038/onc.2012.292....

  11. Branching enzyme assay: selective quantitation of the alpha 1,6-linked glucosyl residues involved in the branching points.

    Science.gov (United States)

    Krisman, C R; Tolmasky, D S; Raffo, S

    1985-06-01

    Methods previously described for glycogen or amylopectin branching enzymatic activity are insufficiently sensitive and not quantitative. A new, more sensitive, specific, and quantitative one was developed. It is based upon the quantitation of the glucose residues joined by alpha 1,6 bonds introduced by varying amounts of branching enzyme. The procedure involved the synthesis of a polysaccharide from Glc-1-P and phosphorylase in the presence of the sample to be tested. The branched polysaccharide was then purified and the glucoses involved in the branching points were quantitated after degradation with phosphorylase and debranching enzymes. This method appeared to be useful, not only in enzymatic activity determinations but also in the study of the structure of alpha-D-glucans when combined with those of total polysaccharide quantitation, such as iodine and phenol-sulfuric acid.

  12. The role of lysosomal proteolytic enzymes in invasion and dissemination of malignant melanoma

    International Nuclear Information System (INIS)

    Bassalyk, L.S.; Tsanev, P.E.; Parshikova, S.M.; Demidov, L.V.

    1992-01-01

    Preoperative chemo- and radiation therapy was followed by a decrease in lysosomal cathepsins activity in metastatic lymph nodes which, however, did not reach the level established for intact lymph nodes. The pathogenetic role of proteolytic endopeptidases in invasion and sissemination of malignant melanoma is discussed as well as the value of their level measurement for assessing metastatic potential of tumor and prognosis of disease of disease on the basis of tumor site, degree of invasion regional lymph node status

  13. Secretion and properties of a hybrid Kluyveromyces lactis-Aspergillus niger β-galactosidase

    Directory of Open Access Journals (Sweden)

    Becerra Manuel

    2006-12-01

    Full Text Available Abstract Background The β-galactosidase from Kluyveromyces lactis is a protein of outstanding biotechnological interest in the food industry and milk whey reutilization. However, due to its intracellular nature, its industrial production is limited by the high cost associated to extraction and downstream processing. The yeast-system is an attractive method for producing many heterologous proteins. The addition of a secretory signal in the recombinant protein is the method of choice to sort it out of the cell, although biotechnological success is not guaranteed. The cell wall acting as a molecular sieve to large molecules, culture conditions and structural determinants present in the protein, all have a decisive role in the overall process. Protein engineering, combining domains of related proteins, is an alternative to take into account when the task is difficult. In this work, we have constructed and analyzed two hybrid proteins from the β-galactosidase of K. lactis, intracellular, and its Aspergillus niger homologue that is extracellular. In both, a heterologous signal peptide for secretion was also included at the N-terminus of the recombinant proteins. One of the hybrid proteins obtained has interesting properties for its biotechnological utilization. Results The highest levels of intracellular and extracellular β-galactosidase were obtained when the segment corresponding to the five domain of K. lactis β-galactosidase was replaced by the corresponding five domain of the A. niger β-galactosidase. Taking into account that this replacement may affect other parameters related to the activity or the stability of the hybrid protein, a thoroughly study was performed. Both pH (6.5 and temperature (40°C for optimum activity differ from values obtained with the native proteins. The stability was higher than the corresponding to the β-galactosidase of K. lactis and, unlike this, the activity of the hybrid protein was increased by the presence

  14. A quantitative method for measurement of lysosomal acid phosphatase latency in cultured rat heart cells with 210Pb

    International Nuclear Information System (INIS)

    Hale, T.W.; Wenzel, D.G.

    1978-01-01

    A method is described for measuring the latency of lysomal acid phosphatase in cultured rat heart endotheloid cells. 210 Pb was added to a medium used to demonstrate acid phosphatase activity by the Gomori lead method, and the amount of lead deposited was measured with a liquid scintillation counter. Deposition rates were measured after enzyme activation pretreatments with acetate buffer (pH 5.0) at various osmolalities, and after formaldehyde fixation. Formaldehyde, alloxan, or fluoride in the Gomori medium were evaluated for their differential effects on lysosomal and non-lysosomal acid phosphatase The method was found to provide a sensitive, rapid and quantitative evaluation of acid phosphatase latency and should be useful for studying the integrity of lysosomes within cells. (author)

  15. Improved management of lysosomal glucosylceramide levels in a mouse model of type 1 Gaucher disease using enzyme and substrate reduction therapy.

    Science.gov (United States)

    Marshall, John; McEachern, Kerry Anne; Chuang, Wei-Lien; Hutto, Elizabeth; Siegel, Craig S; Shayman, James A; Grabowski, Greg A; Scheule, Ronald K; Copeland, Diane P; Cheng, Seng H

    2010-06-01

    Gaucher disease is caused by a deficiency of the lysosomal enzyme glucocerebrosidase (acid beta-glucosidase), with consequent cellular accumulation of glucosylceramide (GL-1). The disease is managed by intravenous administrations of recombinant glucocerebrosidase (imiglucerase), although symptomatic patients with mild to moderate type 1 Gaucher disease for whom enzyme replacement therapy (ERT) is not an option may also be treated by substrate reduction therapy (SRT) with miglustat. To determine whether the sequential use of both ERT and SRT may provide additional benefits, we compared the relative pharmacodynamic efficacies of separate and sequential therapies in a murine model of Gaucher disease (D409V/null). As expected, ERT with recombinant glucocerebrosidase was effective in reducing the burden of GL-1 storage in the liver, spleen, and lung of 3-month-old Gaucher mice. SRT using a novel inhibitor of glucosylceramide synthase (Genz-112638) was also effective, albeit to a lesser degree than ERT. Animals administered recombinant glucocerebrosidase and then Genz-112638 showed the lowest levels of GL-1 in all the visceral organs and a reduced number of Gaucher cells in the liver. This was likely because the additional deployment of SRT following enzyme therapy slowed the rate of reaccumulation of GL-1 in the affected organs. Hence, in patients whose disease has been stabilized by intravenously administered recombinant glucocerebrosidase, orally administered SRT with Genz-112638 could potentially be used as a convenient maintenance therapy. In patients naïve to treatment, ERT followed by SRT could potentially accelerate clearance of the offending substrate.

  16. Enzyme release in the skin of mice as an effect of soft X-irradiation

    International Nuclear Information System (INIS)

    Soltesz, L.

    1976-01-01

    The shaved skin of 7-8 week old male mice was irradiated locally on the back by doses of 100, 500, 1000, 2000 or 4000 R of soft X-ray. The enzyme activity of the washing solution and of the homogenate of the removed skin, the nitrogen content and the incorporation of 3 H-thymidine were measured immediately after irradiation or 1,2,4,8,16 hours later. The activity of lysosomal enzymes (acid phosphatase, beta-glucuronidase, cathepsine D) increased in the washing solution, whereas in the homogenate no significant change was observed. The maximal values were measured on the second day after irradiation with 1000 R. Tha activity of alkaline phosphatase and leucinaminopeptidase (non-lysosomal enzymes) did not change. Neither was any change observed in the nitrogen content of the skin. The incorporation of 3 H-thymidine considerably decreased. It can be concluded that small doses (500-1000 R) of local X-irradiation damage the membrane of lysosoms and lead to a release of cell destructing enzymes. (L.E.)

  17. Coexpression of β-D-galactosidase and L-arabinose isomerase in the production of D-tagatose: a functional sweetener.

    Science.gov (United States)

    Zhan, Yijing; Xu, Zheng; Li, Sha; Liu, Xiaoliu; Xu, Lu; Feng, Xiaohai; Xu, Hong

    2014-03-19

    The functional sweetener, d-tagatose, is commonly transformed from galactose by l-arabinose isomerase. To make use of a much cheaper starting material, lactose, hydrolization, and isomerization are required to take place collaboratively. Therefore, a single-step method involving β-d-galactosidase was explored for d-tagatose production. The two vital genes, β-d-galactosidase gene (lacZ) and l-arabinose isomerase mutant gene (araA') were extracted separately from Escherichia coli strains and incorporated into E. coli simultaneously. This gave us E. coli-ZY, a recombinant producing strain capable of coexpressing the two key enzymes. The resulted cells exhibited maximum d-tagatose producing activity at 34 °C and pH 6.5 and in the presence of borate, 10 mM Fe(2+), and 1 mM Mn(2+). Further monitoring showed that the recombinant cells could hydrolyze more than 95% lactose and convert 43% d-galactose into d-tagatose. This research has verified the feasibility of single-step d-tagatose fermentation, thereby laying down the foundation for industrial usage of lactose.

  18. The impact of the immune system on the safety and efficiency of enzyme replacement therapy in lysosomal storage disorders.

    Science.gov (United States)

    Broomfield, A; Jones, S A; Hughes, S M; Bigger, B W

    2016-07-01

    In the light of clinical experience in infantile onset Pompe patients, the immunological impact on the tolerability and long-term efficacy of enzyme replacement therapy (ERT) for lysosomal storage disorders has come under renewed scrutiny. This article details the currently proposed immunological mechanisms involved in the development of anti-drug antibodies and the current therapies used in their treatment. Given the current understanding of the adaptive immune response, it focuses particularly on T cell dependent mechanisms and the paradigm of using lymphocytic negative selection as a predictor of antibody formation. This concept originally postulated in the 1970s, stipulated that the genotypically determined lack of production or production of a variant protein determines an individual's lymphocytic repertoire. This in turn is the key factor in determining the potential severity of an individual's immunological response to ERT. It also highlights the need for immunological assay standardization particularly those looking at describing the degree of functional impact, robust biochemical or clinical endpoints and detailed patient subgroup identification if the true evaluations of impact are to be realised.

  19. Ability of Lactobacillus fermentum to overcome host α-galactosidase deficiency, as evidenced by reduction of hydrogen excretion in rats consuming soya α-galacto-oligosaccharides

    Directory of Open Access Journals (Sweden)

    Sesma Fernando

    2008-01-01

    Full Text Available Abstract Background Soya and its derivatives represent nutritionally high quality food products whose major drawback is their high content of α-galacto-oligosaccharides. These are not digested in the small intestine due to the natural absence of tissular α-galactosidase in mammals. The passage of these carbohydrates to the large intestine makes them available for fermentation by gas-producing bacteria leading to intestinal flatulence. The aim of the work reported here was to assess the ability of α-galactosidase-producing lactobacilli to improve the digestibility of α-galacto-oligosaccharides in situ. Results Gnotobiotic rats were orally fed with soy milk and placed in respiratory chambers designed to monitor fermentative gas excretion. The validity of the animal model was first checked using gnotobiotic rats monoassociated with a Clostridium butyricum hydrogen (H2-producing strain. Ingestion of native soy milk by these rats caused significant H2 emission while ingestion of α-galacto-oligosaccharide-free soy milk did not, thus validating the experimental system. When native soy milk was fermented using the α-galactosidase-producing Lactobacillus fermentum CRL722 strain, the resulting product failed to induce H2 emission in rats thus validating the bacterial model. When L. fermentum CRL722 was coadministered with native soy milk, a significant reduction (50 %, P = 0.019 in H2 emission was observed, showing that α-galactosidase from L. fermentum CRL722 remained active in situ, in the gastrointestinal tract of rats monoassociated with C. butyricum. In human-microbiota associated rats, L. fermentum CRL722 also induced a significant reduction of H2 emission (70 %, P = 0.004. Conclusion These results strongly suggest that L. fermentum α-galactosidase is able to partially alleviate α-galactosidase deficiency in rats. This offers interesting perspectives in various applications in which lactic acid bacteria could be used as a vector for

  20. Wolman's disease and cholesteryl ester storage disorder: the phenotypic spectrum of lysosomal acid lipase deficiency.

    Science.gov (United States)

    Pericleous, Marinos; Kelly, Claire; Wang, Tim; Livingstone, Callum; Ala, Aftab

    2017-09-01

    Lysosomal acid lipase deficiency is a rare, autosomal recessive condition caused by mutations in the gene encoding lysosomal acid lipase (LIPA) that result in reduced or absent activity of this essential enzyme. The severity of the resulting disease depends on the nature of the underlying mutation and magnitude of its effect on enzymatic function. Wolman's disease is a severe disorder that presents during infancy, resulting in failure to thrive, hepatomegaly, and hepatic failure, and an average life expectancy of less than 4 months. Cholesteryl ester storage disorder arises later in life and is less severe, although the two diseases share many common features, including dyslipidaemia and transaminitis. The prevalence of these diseases has been estimated at one in 40 000 to 300 000, but many cases are undiagnosed and unreported, and awareness among clinicians is low. Lysosomal acid lipase deficiency-which can be diagnosed using dry blood spot testing-is often misdiagnosed as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), hereditary dyslipidaemia, or cryptogenic cirrhosis. There are no formal guidelines for treatment of these patients, and treatment options are limited. In this Review we appraise the existing literature on Wolman's disease and cholesteryl ester storage disease, and discuss available treatments, including enzyme replacement therapy, oral lipid-lowering therapy, stem-cell transplantation, and liver transplantation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cocaine induces a mixed lysosomal lipidosis in cultured fibroblasts, by inactivation of acid sphingomyelinase and inhibition of phospholipase A1

    International Nuclear Information System (INIS)

    Nassogne, Marie-Cecile; Lizarraga, Chantal; N'Kuli, Francisca; Van Bambeke, Francoise; Van Binst, Roger; Wallemacq, Pierre; Tulkens, Paul M.; Mingeot-Leclercq, Marie-Paule; Levade, Thierry; Courtoy, Pierre J.

    2004-01-01

    This paper reports that cocaine may induce a lysosomal storage disorder. Indeed, culture of Rat-1 fibroblasts with 250-500 μM cocaine induced after 2-3 days a major accumulation in lysosomes of electron-dense lamellar structures. By subcellular fractionation, this was reflected by a selective decrease of the buoyant density of several lysosomal enzymes, indicating lysosomal lipid overload. Biochemical analysis confirmed an increased cellular content of major phospholipids and sphingomyelin, but not of cholesterol. Cocaine, a membrane-permeant weak base, is concentrated by acidotropic sequestration, because its accumulation was abrogated by the proton ionophore, monensin and the vacuolar ATPase inhibitor, bafilomycin A 1 . At its estimated lysosomal concentration, cocaine almost completely inhibited phospholipase A 1 activity on liposomes. Cell incubation with cocaine, but not with its inactive metabolite, benzoylecgonine, rapidly inactivated acid sphingomyelinase, as reflected by a 10-fold decrease in V max with identical K m . Acid sphingomyelinase inactivation was fully prevented by the thiol proteinases inhibitors, leupeptin and E64, indicating that cocaine induces selective sphingomyelinase proteolysis. Upon cocaine removal, acid sphingomyelinase activity was rapidly restored, pointing to its fast turnover. In contrast, the cellular content of several other lysosomal hydrolases was increased up to 2-fold. Together, these data show that acidotropic accumulation of cocaine in lysosomes rapidly inhibits acid phospholipase A 1 and inactivates acid sphingomyelinase, which can explain induction of a mixed lysosomal lipidosis

  2. Kinetic Characterization of Galacto-Oligosaccharide (GOS) Synthesis by Three Commercially Important b-Galactosidases

    NARCIS (Netherlands)

    Warmerdam, A.; Zisopoulos, F.K.; Boom, R.M.; Janssen, A.E.M.

    2014-01-01

    Many b-galactosidases show large differences in galacto-oligosaccharide (GOS) production and lactose hydrolysis. In this study, a kinetic model is developed in which the effect of lactose, glucose, galactose, and oligosaccharides on the oNPG converting activity of various b-galactosidases is

  3. Digestion of thyroglobulin with purified thyroid lysosomes: preferential release of iodoamino acids

    International Nuclear Information System (INIS)

    Tokuyama, T.; Yoshinari, M.; Rawitch, A.B.; Taurog, A.

    1987-01-01

    [ 131 I]Thyroglobulin [( 131 I]Tg), prepared by either enzymatic iodination of human goiter Tg in vitro or isolation from the thyroids of rats previously injected with 131 I, was digested with a solubilized enzyme mixture prepared from purified hog thyroid lysosomes. The digestion was performed at 37 C for 24 h under nitrogen at pH 5.0 in the presence of 4 mM dithiothreitol. Under these conditions the release of free [ 131 I] iodoamino acids (MIT, DIT, T4, and T3) was quantitatively very similar to that observed with a standard pronase digestion procedure. To determine whether other amino acids in Tg were released as quantitatively as the iodoamino acids, free amino acids in the lysosomal digest were measured, and total free amino acid release was compared with a similar analysis performed after digestion of [ 131 I]Tg with 6 N HCl. Total amino acid release was much less complete than iodoamino acid release, indicating preferential release of iodoamino acids from Tg by lysosomal digestion. Analysis of the lysosomal digest by HPLC on a size exclusion column indicated that Tg was degraded to peptides with a mol wt less than 4000. Assuming that the in vitro lysosomal digestion system represents a valid model for the physiological proteolytic system that degrades Tg, the results of the present study suggest that a substantial portion of the Tg in the thyroid is not degraded to free amino acids and that peptide fragments of Tg are normally present in the thyroid. In such a case, the fate and possible physiological activity of these fragments require further elucidation

  4. [Regulation of thermal stability of enzymes by changing the composition of media. Native and modified alpha-chymotrypsin].

    Science.gov (United States)

    Levitskiĭ, V Iu; Melik-Nubarov, N S; Slepnev, V I; Shikshnis, V A; Mozhaev, V V

    1990-01-01

    Stabilizing effect of denaturing salts on irreversible thermoinactivation of native and modified alpha-chymotrypsin at elevated temperatures is observed. The effect is caused by a shift of conformational equilibrium, at the primary step of reversible unfolding in the course of thermoinactivation, to a more unfolded form which is not able to refold "incorrectly". The stability of alpha-chymotrypsin is regulated within a wide range by medium alteration: the stabilizing effects are similar to those achieved by multipoint attachment of the enzyme to a support or by hydrophilization of protein by covalent modification.

  5. Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content

    Science.gov (United States)

    Mundy, Dorothy I.; Li, Wei Ping; Luby-Phelps, Katherine; Anderson, Richard G. W.

    2012-01-01

    Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes. Accumulation is both saturable and reversible. At least a portion of the caveolin-1 goes to the plasma membrane upon reversal. Several studies suggest that caveolin-1 is involved in cholesterol transport within the cell. Strikingly, we find that blocking cholesterol export from lysosomes with progesterone or U18666A or treating cells with low concentrations of cyclodextrin also caused caveolin-1 to accumulate on late endosome/lysosomal membranes. Under these conditions, however, live-cell imaging shows cavicles actively docking with lysosomes, suggesting that these structures might be involved in delivering caveolin-1. Targeting of caveolin-1 to late endosome/lysosomes is not observed normally, and the degradation rate of caveolin-1 is not altered by any of these conditions, indicating that caveolin-1 accumulation is not a consequence of blocked degradation. We conclude that caveolin-1 normally traffics to and from the cytoplasmic surface of lysosomes during intracellular cholesterol trafficking. PMID:22238363

  6. Cancer-associated lysosomal changes: friends or foes?

    Science.gov (United States)

    Kallunki, T; Olsen, O D; Jäättelä, M

    2013-04-18

    Rapidly dividing and invasive cancer cells are strongly dependent on effective lysosomal function. Accordingly, transformation and cancer progression are characterized by dramatic changes in lysosomal volume, composition and cellular distribution. Depending on one's point of view, the cancer-associated changes in the lysosomal compartment can be regarded as friends or foes. Most of them are clearly transforming as they promote invasive growth, angiogenesis and drug resistance. The same changes can, however, strongly sensitize cells to lysosomal membrane permeabilization and thereby to lysosome-targeting anti-cancer drugs. In this review we compile our current knowledge on cancer-associated changes in lysosomal composition and discuss the consequences of these alterations to cancer progression and the possibilities they can bring to cancer therapy.

  7. Loss of Mitochondrial Function Impairs Lysosomes.

    Science.gov (United States)

    Demers-Lamarche, Julie; Guillebaud, Gérald; Tlili, Mouna; Todkar, Kiran; Bélanger, Noémie; Grondin, Martine; Nguyen, Angela P; Michel, Jennifer; Germain, Marc

    2016-05-06

    Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Synthesis of the Galactosyl Derivative of Gluconic Acid With the Transglycosylation Activity of β-Galactosidase

    Directory of Open Access Journals (Sweden)

    Aleksandra Wojciechowska

    2017-01-01

    Full Text Available Bionic acids are bioactive compounds demonstrating numerous interesting properties. They are widely produced by chemical or enzymatic oxidation of disaccharides. This paper focuses on the galactosyl derivative of gluconic acid as a result of a new method of bionic acid synthesis which utilises the transglycosylation properties of β-galactosidase and introduces lactose as a substrate. Products obtained in such a process are characterised by different structures (and, potentially, properties than those resulting from traditional oxidation of disaccharides. The aim of this study is to determine the effect of selected parameters (concentration and ratio of substrates, dose of the enzyme, time, pH, presence of salts on the course of the reaction carried out with the enzymatic preparation Lactozym, containing β-galactosidase from Kluyveromyces lactis. Research has shown that increased dry matter content in the baseline solution (up to 50 %, by mass per volume and an addition of NaCl contribute to higher yield. On the other hand, reduced content of the derivative is a result of increased pH from 7.0 to 9.0 and an addition of magnesium and manganese salts. Moreover, exceeding the β-galactosidase dose over approx. 35 000 U per 100 g of lactose also leads to reduced yield of the process. The most favourable molar ratio of sodium gluconate to lactose is 2.225:0.675. Depending on the conditions of the synthesis, the product concentration ranged between 17.3 and 118.3 g/L of the reaction mixture, which corresponded to the mass fraction of 6.64–23.7 % of dry matter. The data obtained as a result of the present study may be useful for designing an industrial process.

  9. Residual glycosaminoglycan accumulation in mitral and aortic valves of a patient with attenuated MPS I (Scheie syndrome after 6 years of enzyme replacement therapy: Implications for early diagnosis and therapy

    Directory of Open Access Journals (Sweden)

    Yohei Sato

    2015-12-01

    Full Text Available Mucopolysaccharidosis (MPS is an inherited metabolic disease caused by deficiency of the enzymes needed for glycosaminoglycan (GAG degradation. MPS type I is caused by the deficiency of the lysosomal enzyme alpha-l-iduronidase and is classified into Hurler syndrome, Scheie syndrome, and Hurler–Scheie syndrome based on disease severity and onset. Cardiac complications such as left ventricular hypertrophy, cardiac valve disease, and coronary artery disease are often observed in MPS type I. Enzyme replacement therapy (ERT has been available for MPS type I, but the efficacy of this treatment for cardiac valve disease is unknown. We report on a 56-year-old female patient with attenuated MPS I (Scheie syndrome who developed aortic and mitral stenosis and coronary artery narrowing. The cardiac valve disease progressed despite ERT and she finally underwent double valve replacement and coronary artery bypass grafting. The pathology of the cardiac valves revealed GAG accumulation and lysosomal enlargement in both the mitral and aortic valves. Zebra body formation was also confirmed using electron microscopy. Our results suggest that ERT had limited efficacy in previously established cardiac valve disease. Early diagnosis and initiation of ERT is crucial to avoid further cardiac complications in MPS type I.

  10. Lysosomal membrane protein SIDT2 mediates the direct uptake of DNA by lysosomes.

    Science.gov (United States)

    Aizawa, Shu; Contu, Viorica Raluca; Fujiwara, Yuuki; Hase, Katsunori; Kikuchi, Hisae; Kabuta, Chihana; Wada, Keiji; Kabuta, Tomohiro

    2017-01-02

    Lysosomes degrade macromolecules such as proteins and nucleic acids. We previously identified 2 novel types of autophagy, RNautophagy and DNautophagy, where lysosomes directly take up RNA and DNA, in an ATP-dependent manner, for degradation. We have also reported that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference defective-1), mediates RNA translocation during RNautophagy. In this addendum, we report that SIDT2 also mediates DNA translocation in the process of DNautophagy. These findings help elucidate the mechanisms underlying the direct uptake of nucleic acids by lysosomes and the physiological functions of DNautophagy.

  11. Progranulin, lysosomal regulation and neurodegenerative disease.

    Science.gov (United States)

    Kao, Aimee W; McKay, Andrew; Singh, Param Priya; Brunet, Anne; Huang, Eric J

    2017-06-01

    The discovery that heterozygous and homozygous mutations in the gene encoding progranulin are causally linked to frontotemporal dementia and lysosomal storage disease, respectively, reveals previously unrecognized roles of the progranulin protein in regulating lysosome biogenesis and function. Given the importance of lysosomes in cellular homeostasis, it is not surprising that progranulin deficiency has pleiotropic effects on neural circuit development and maintenance, stress response, innate immunity and ageing. This Progress article reviews recent advances in progranulin biology emphasizing its roles in lysosomal function and brain innate immunity, and outlines future avenues of investigation that may lead to new therapeutic approaches for neurodegeneration.

  12. Role of Glutaraldehyde in Imparting Stability to Immobilized β-Galactosidase Systems

    Directory of Open Access Journals (Sweden)

    Rukhsana Satar

    2018-01-01

    Full Text Available ABSTRACT This review article highlights the role of glutaraldehyde as a matrix activator/stabilizer in imparting higher operational and thermal stability to β-galactosidase (βG for biotechnological applications. Glutaraldehyde has been used extensively as a crosslinking agent as well as for functionalization of matrices to immobilize β-galactosidase. Immobilized β-galactosidase systems (IβGS obtained as a result of glutaraldehyde treatment has been employed to hydrolyze whey and milk lactose in batch reactors, continuous packed-bed and fluidized bed reactors under various operational conditions. Moreover, these IβGS have also been utilized for the production of galactooligosaccharides in food, dairy and fermentation industries. It was observed that glutaraldehyde provided remarkable stability to immobilize βG against various physical/chemical denaturants, thus enhancing thermal/operational stability and rendering it more suitable for repeated utilization in industrial scale operations.

  13. Partial Characterization of α-Galactosidic Activity from the Antarctic Bacterial Isolate, . LX-20 as a Potential Feed Enzyme Source

    Directory of Open Access Journals (Sweden)

    Inkyung Park

    2012-06-01

    Full Text Available An Antarctic bacterial isolate displaying extracellular α-galactosidic activity was named Paenibacillus sp. LX-20 based on 16S rRNA gene sequence analysis. Optimal activity for the LX-20 α-galactosidase occurred at pH 6.0–6.5 and 45°C. The enzyme immobilized on the smart polymer Eudragit L-100 retained 70% of its original activity after incubation for 30 min at 50°C, while the free enzyme retained 58% of activity. The enzyme had relatively high specificity for α-D-galactosides such as p-nitrophenyl-α-galactopyranoside, melibiose, raffinose and stachyose, and was resistant to some proteases such as trypsin, pancreatin and pronase. Enzyme activity was almost completely inhibited by Ag+, Hg2+, Cu2+, and sodium dodecyl sulfate, but activity was not affected by β-mercaptoethanol or EDTA. LX-20 α-galactosidase may be potentially useful as an additive for soybean processing in the feed industry.

  14. Anti-α-galactosidase A antibody response to agalsidase beta treatment

    DEFF Research Database (Denmark)

    Wilcox, William R; Linthorst, Gabor E; Germain, Dominique P

    2012-01-01

    Agalsidase beta, a form of recombinant human α-galactosidase A (αGAL), is approved for use as enzyme replacement therapy (ERT) for Fabry disease. An immunogenic response against a therapeutic protein could potentially impact its efficacy or safety. The development of anti-αGAL IgG antibodies...... was evaluated in 571 men and 251 women from the Fabry Registry who were treated with agalsidase beta. Most men developed antibodies (416 of 571, 73%), whereas most women did not (31 of 251, 12%). Women were also significantly more likely to tolerize than men; whereas 18 of 31 women tolerized (58%, 95%CI: 52......%-64%), only 47 of 416 men tolerized during the observation period (11%, 95% CI: 8%-15%). Patients who eventually tolerized had lower median peak anti-αGAL IgG antibody titers than patients who remained seropositive at their most recent assessment (400 versus 3200 in men, 200 versus 400 in women, respectively...

  15. ErbB2-associated changes in the lysosomal proteome

    DEFF Research Database (Denmark)

    Nylandsted, Jesper; Becker, Andrea C; Bunkenborg, Jakob

    2011-01-01

    Late endosomes and lysosomes (hereafter referred to as lysosomes) play an essential role in the turnover of cellular macromolecules and organelles. Their biochemical characterization has so far depended on purification methods based on either density gradient centrifugations or magnetic...... purification of iron-loaded organelles. Owing to dramatic changes in lysosomal density and stability associated with lysosomal diseases and cancer, these methods are not optimal for the comparison of normal and pathological lysosomes. Here, we introduce an efficient method for the purification of intact...... lysosomes by magnetic immunoprecipitation with antibodies against the vacuolar-type H(+) -ATPase. Quantitative MS-based proteomics analysis of the obtained lysosomal membranes identified 60 proteins, most of which have previously been associated with the lysosomal compartment. Interestingly, the lysosomal...

  16. Synthesis of galacto-oligosaccharides with ß-galactosidases

    NARCIS (Netherlands)

    Warmerdam, A.

    2013-01-01

    Galacto-oligosaccharides (GOS) are generally enzymatically synthesized with β-galactosidases. GOS are of interest because of their prebiotic effects on human health. They are mainly applied in infant nutrition, because of their resemblance to human milk oligosaccharides, but they are also

  17. Proteasome Failure Promotes Positioning of Lysosomes around the Aggresome via Local Block of Microtubule-Dependent Transport

    Science.gov (United States)

    Zaarur, Nava; Meriin, Anatoli B.; Bejarano, Eloy; Xu, Xiaobin; Gabai, Vladimir L.; Cuervo, Ana Maria

    2014-01-01

    Ubiquitinated proteins aggregate upon proteasome failure, and the aggregates are transported to the aggresome. In aggresomes, protein aggregates are actively degraded by the autophagy-lysosome pathway, but why targeting the aggresome promotes degradation of aggregated species is currently unknown. Here we report that the important factor in this process is clustering of lysosomes around the aggresome via a novel mechanism. Proteasome inhibition causes formation of a zone around the centrosome where microtubular transport of lysosomes is suppressed, resulting in their entrapment and accumulation. Microtubule-dependent transport of other organelles, including autophagosomes, mitochondria, and endosomes, is also blocked in this entrapment zone (E-zone), while movement of organelles at the cell periphery remains unaffected. Following the whole-genome small interfering RNA (siRNA) screen for proteins involved in aggresome formation, we defined the pathway that regulates formation of the E-zone, including the Stk11 protein kinase, the Usp9x deubiquitinating enzyme, and their substrate kinase MARK4. Therefore, upon proteasome failure, targeting of aggregated proteins of the aggresome is coordinated with lysosome positioning around this body to facilitate degradation of the abnormal species. PMID:24469403

  18. A lysosome-locating and acidic pH-activatable fluorescent probe for visualizing endogenous H2O2 in lysosomes.

    Science.gov (United States)

    Liu, Jun; Zhou, Shunqing; Ren, Jing; Wu, Chuanliu; Zhao, Yibing

    2017-11-20

    There is increasing evidence indicating that lysosomal H 2 O 2 is closely related to autophagy and apoptotic pathways under both physiological and pathological conditions. Therefore, fluorescent probes that can be exploited to visualize H 2 O 2 in lysosomes are potential tools for exploring diverse roles of H 2 O 2 in cells. However, functional exploration of lysosomal H 2 O 2 is limited by the lack of fluorescent probes capable of compatibly sensing H 2 O 2 under weak acidic conditions (pH = 4.5) of lysosomes. Lower spatial resolution of the fluorescent visualization of lysosomal H 2 O 2 might be caused by the interference of signals from cytosolic and mitochondrial H 2 O 2 , as well as the non-specific distribution of the probes in cells. In this work, we developed a lysosome-locating and acidic-pH-activatable fluorescent probe for the detection and visualization of H 2 O 2 in lysosomes, which consists of a H 2 O 2 -responsive boronate unit, a lysosome-locating morpholine group, and a pH-activatable benzorhodol fluorophore. The response of the fluorescent probe to H 2 O 2 is significantly more pronounced under acidic pH conditions than that under neutral pH conditions. Notably, the present probe enables the fluorescence sensing of endogenous lysosomal H 2 O 2 in living cells without external stimulations, with signal interference from the cytoplasm and other intracellular organelles being negligible.

  19. Kinetic Analysis of Guanidine Hydrochloride Inactivation of β-Galactosidase in the Presence of Galactose

    Directory of Open Access Journals (Sweden)

    Charles O. Nwamba

    2012-01-01

    Full Text Available Inactivation of purified β-Galactosidase was done with GdnHCl in the absence and presence of varying [galactose] at 50°C and at pH 4.5. Lineweaver-Burk plots of initial velocity data, in the presence and absence of guanidine hydrochloride (GdnHCl and galactose, were used to determine the relevant and max values, with p-nitrophenyl β-D-galactopyranoside (pNPG as substrate, S. Plots of ln([]∞−[] against time in the presence of GdnHCl yielded the inactivation rate constant, A. Plots of A versus [S] at different galactose concentrations were straight lines that became increasingly less steep as the [galactose] increased, showing that A was dependent on [S]. Slopes and intercepts of the 1/[]∞ versus 1/[] yielded +0 and ′+0, the microscopic rate constants for the free enzyme and the enzyme-substrate complex, respectively. Plots of +0 and ′+0 versus [galactose] showed that galactose protected the free enzyme as well as the enzyme-substrate complex (only at the lowest and highest [galactose] against GdnHCl inactivation. In the absence of galactose, GdnHCl exhibited some degree of non-competitive inhibition. In the presence of GdnHCl, galactose exhibited competitive inhibition at the lower [galactose] of 5 mM which changed to non-competitive as the [galactose] increased. The implications of our findings are further discussed.

  20. Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics.

    Science.gov (United States)

    Güleç, Hacı Ali

    2013-04-01

    The aim of this study was to investigate the effects of surface characteristics of plain and plasma modified cellulose acetate (CA) membranes on the immobilization yield of β-galactosidases from Kluyveromyces lactis (KLG) and its galacto-oligosaccharide (GOS) yield, respectively. Low pressure plasma treatments involving oxygen plasma activation, plasma polymerization (PlsP) of ethylenediamine (EDA) and PlsP of 2-mercaptoethanol were used to modify plain CA membrane surfaces. KLG enzyme was immobilized onto plain and oxygen plasma treated membrane surfaces by simple adsorption. Oxygen plasma activation increased the hydrophylicity of CA membrane surfaces and it improved the immobilization yield of the enzyme by 42%. KLG enzyme was also immobilized onto CA membrane surfaces through amino groups created by PlsP of EDA via covalent binding. Plasma action at 60W plasma power and 15 min. exposure time improved the amount of membrane bounded enzyme by 3.5-fold. The enrichment of the amount of amino groups via polyethyleneimine (PEI) addition enhanced this increase from 3.5-fold to 4.5-fold. Although high enzyme loading was achived (65-83%), both of the methods dramatically decreased the enzyme activity (11-12%) and GOS yield due to probably negative effects of active amino groups. KLG enzyme was more effectively immobilized onto thiolated CA membrane surface created by PlsP of 2-mercaptoethanol with high immobilization yield (70%) and especially high enzyme activity (46%). Immobilized enzymes on the CA membranes treated by PlsP were successively reutilized for 5-8 cycles at 25°C and enzymatic derivatives retained approximately 75-80% of their initial activites at the end of the reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Podocytes Degrade Endocytosed Albumin Primarily in Lysosomes

    Science.gov (United States)

    Carson, John M.; Okamura, Kayo; Wakashin, Hidefumi; McFann, Kim; Dobrinskikh, Evgenia; Kopp, Jeffrey B.; Blaine, Judith

    2014-01-01

    Albuminuria is a strong, independent predictor of chronic kidney disease progression. We hypothesize that podocyte processing of albumin via the lysosome may be an important determinant of podocyte injury and loss. A human urine derived podocyte-like epithelial cell (HUPEC) line was used for in vitro experiments. Albumin uptake was quantified by Western blot after loading HUPECs with fluorescein-labeled (FITC) albumin. Co-localization of albumin with lysosomes was determined by confocal microscopy. Albumin degradation was measured by quantifying FITC-albumin abundance in HUPEC lysates by Western blot. Degradation experiments were repeated using HUPECs treated with chloroquine, a lysosome inhibitor, or MG-132, a proteasome inhibitor. Lysosome activity was measured by fluorescence recovery after photo bleaching (FRAP). Cytokine production was measured by ELISA. Cell death was determined by trypan blue staining. In vivo, staining with lysosome-associated membrane protein-1 (LAMP-1) was performed on tissue from a Denys-Drash trangenic mouse model of nephrotic syndrome. HUPECs endocytosed albumin, which co-localized with lysosomes. Choloroquine, but not MG-132, inhibited albumin degradation, indicating that degradation occurs in lysosomes. Cathepsin B activity, measured by FRAP, significantly decreased in HUPECs exposed to albumin (12.5% of activity in controls) and chloroquine (12.8%), and declined further with exposure to albumin plus chloroquine (8.2%, palbumin and chloroquine alone, and these effects were potentiated by exposure to albumin plus chloroquine. Compared to wild-type mice, glomerular staining of LAMP-1 was significantly increased in Denys-Drash mice and appeared to be most prominent in podocytes. These data suggest lysosomes are involved in the processing of endocytosed albumin in podocytes, and lysosomal dysfunction may contribute to podocyte injury and glomerulosclerosis in albuminuric diseases. Modifiers of lysosomal activity may have therapeutic

  2. Hyperthermostable cellulolytic and hemicellulolytic enzymes and their biotechnological applications

    Directory of Open Access Journals (Sweden)

    Tipparat Hongpattarakere

    2002-07-01

    Full Text Available Hyperthermal cellulases and hemicellulases have been intensively studied due to their highly potential applications at extreme temperatures, which mimic industrial processes involving cellulose and hemicellulose degradation. More than 50 species of hyperthermophiles have been isolated, many of which possess hyperthermal enzymes required for hydrolyzing cellulose and hemicelluloses. Endoglucanases, exoglucanases, cellobiohydrolases, xylanases, β-glucosidase and β-galactosidase, which are produced by the hyperthermophiles, are resistant to boiling temperature. The characteristics of these enzymes and the ability to maintain their functional integrity at high temperature as well as their biotechnological application are discussed.

  3. Neuronal sphingolipidoses: Membrane lipids and sphingolipid activator proteins regulate lysosomal sphingolipid catabolism.

    Science.gov (United States)

    Sandhoff, Konrad

    2016-11-01

    Glycosphingolipids and sphingolipids of cellular plasma membranes (PMs) reach luminal intra-lysosomal vesicles (LVs) for degradation mainly by pathways of endocytosis. After a sorting and maturation process (e.g. degradation of sphingomyelin (SM) and secretion of cholesterol), sphingolipids of the LVs are digested by soluble enzymes with the help of activator (lipid binding and transfer) proteins. Inherited defects of lipid-cleaving enzymes and lipid binding and transfer proteins cause manifold and fatal, often neurodegenerative diseases. The review summarizes recent findings on the regulation of sphingolipid catabolism and cholesterol secretion from the endosomal compartment by lipid modifiers, an essential stimulation by anionic membrane lipids and an inhibition of crucial steps by cholesterol and SM. Reconstitution experiments in the presence of all proteins needed, hydrolase and activator proteins, reveal an up to 10-fold increase of ganglioside catabolism just by the incorporation of anionic lipids into the ganglioside carrying membranes, whereas an additional incorporation of cholesterol inhibits GM2 catabolism substantially. It is suggested that lipid and other low molecular modifiers affect the genotype-phenotype relationship observed in patients with lysosomal diseases. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer.

    Science.gov (United States)

    Pangarkar, Chinmay; Dinh, Anh-Tuan; Mitragotri, Samir

    2012-08-20

    Lysosomes play a critical role in intracellular drug delivery. For enzyme-based therapies, they represent a potential target site whereas for nucleic acid or many protein drugs, they represent the potential degradation site. Either way, understanding the mechanisms and processes involved in routing of materials to lysosomes after cellular entry is of high interest to the field of drug delivery. Most therapeutic cargoes other than small hydrophobic molecules enter the cells through endocytosis. Endocytosed cargoes are routed to lysosomes via microtubule-based transport and are ultimately shared by various lysosomes via tethering and clustering of endocytic vesicles followed by exchange of their contents. Using a combined experimental and numerical approach, here we studied the rates of mass transfer into and among the endocytic vesicles in a model cell line, 3T3 fibroblasts. In order to understand the relationship of mass transfer with microtubular transport and vesicle clustering, we varied both properties through various pharmacological agents. At the same time, microtubular transport and vesicle clustering were modeled through diffusion-advection equations and the Smoluchowski equations, respectively. Our analysis revealed that the rate of mass transfer is optimally related to microtubular transport and clustering properties of vesicles. Further, the rate of mass transfer is highest in the innate state of the cell. Any perturbation to either microtubular transport or vesicle aggregation led to reduced mass transfer to lysosome. These results suggest that in the absence of an external intervention the endocytic pathway appears to maximize molecular delivery to lysosomes. Strategies are discussed to reduce mass transfer to lysosomes so as to extend the residence time of molecules in endosomes or late endosomes, thus potentially increasing the likelihood of their escape before disposition in the lysosomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Podocytes degrade endocytosed albumin primarily in lysosomes.

    Science.gov (United States)

    Carson, John M; Okamura, Kayo; Wakashin, Hidefumi; McFann, Kim; Dobrinskikh, Evgenia; Kopp, Jeffrey B; Blaine, Judith

    2014-01-01

    Albuminuria is a strong, independent predictor of chronic kidney disease progression. We hypothesize that podocyte processing of albumin via the lysosome may be an important determinant of podocyte injury and loss. A human urine derived podocyte-like epithelial cell (HUPEC) line was used for in vitro experiments. Albumin uptake was quantified by Western blot after loading HUPECs with fluorescein-labeled (FITC) albumin. Co-localization of albumin with lysosomes was determined by confocal microscopy. Albumin degradation was measured by quantifying FITC-albumin abundance in HUPEC lysates by Western blot. Degradation experiments were repeated using HUPECs treated with chloroquine, a lysosome inhibitor, or MG-132, a proteasome inhibitor. Lysosome activity was measured by fluorescence recovery after photo bleaching (FRAP). Cytokine production was measured by ELISA. Cell death was determined by trypan blue staining. In vivo, staining with lysosome-associated membrane protein-1 (LAMP-1) was performed on tissue from a Denys-Drash trangenic mouse model of nephrotic syndrome. HUPECs endocytosed albumin, which co-localized with lysosomes. Choloroquine, but not MG-132, inhibited albumin degradation, indicating that degradation occurs in lysosomes. Cathepsin B activity, measured by FRAP, significantly decreased in HUPECs exposed to albumin (12.5% of activity in controls) and chloroquine (12.8%), and declined further with exposure to albumin plus chloroquine (8.2%, plysosomes are involved in the processing of endocytosed albumin in podocytes, and lysosomal dysfunction may contribute to podocyte injury and glomerulosclerosis in albuminuric diseases. Modifiers of lysosomal activity may have therapeutic potential in slowing the progression of glomerulosclerosis by enhancing the ability of podocytes to process and degrade albumin.

  6. A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Di Malta, Chiara; Wen, Jiayu

    2014-01-01

    Sulfatases are key enzymatic regulators of sulfate homeostasis with several biological functions including degradation of glycosaminoglycans (GAGs) and other macromolecules in lysosomes. In a severe lysosomal storage disorder, multiple sulfatase deficiency (MSD), global sulfatase activity...... of proteoglycan catabolism and lysosomal function. This blocks autophagy-mediated degradation, causing cytoplasmic accumulation of autophagosomes and autophagic substrates. By targeting miR-95 in cells from MSD patients, we can effectively increase residual SUMF1 expression, allowing for reactivation of sulfatase...

  7. Synthesis of Galactosyl Mannitol Derivative Using β-Galactosidase from Kluyveromyces lactis

    Directory of Open Access Journals (Sweden)

    Klewicki Robert

    2017-03-01

    Full Text Available The purpose of the study was to identify the influence of reactive mixture concentration (23–48 g/100 mL, pH (6.5–9.0, presence of NaCl (0.05–0.25 mol/L and enzyme dose (2850–28,500 LAU/100 g of lactose on the synthesis of galactosyl mannitol derivative using β-galactosidase from Kluyveromyces lactis. The use of the enzyme dose ranging from 2850 to 11,400 LAU/100 g lactose allowed obtaining gal-mannitol at the level of 21.8% total saccharides; higher doses intensified product decomposition. An increase in the concentration of the reactive mixture had a positive impact on the quantity of gal-mannitol obtained every single time, i.e. 4.39 g were obtained from 100 mL of a 23 g/100 mL solution and over 10 g were obtained from a 48 g/100 mL solution. A relatively low increase in product quantity (by ca. 5% occurred after the pH was increased from 6.5 to 9.0. The use of NaCl rendered better results. An increase in the maximum content of gal-mannitol in the total sugar by 12.8% was observed at the concentration of 0.25 mol/L.

  8. Neuronopathic lysosomal storage disorders: Approaches to treat the central nervous system.

    Science.gov (United States)

    Scarpa, Maurizio; Bellettato, Cinzia Maria; Lampe, Christina; Begley, David J

    2015-03-01

    Pharmacological research has always focused on developing new therapeutic strategies capable of modifying a disease's natural history and improving patients' quality of life. Despite recent advances within the fields of medicine and biology, some diseases still represent a major challenge for successful therapy. Neuronopathic lysosomal storage disorders, in particular, have high rates of morbidity and mortality and a devastating socio-economic effect. Many of the available therapies, such as enzyme replacement therapy, can reverse the natural history of the disease in peripheral organs but, unfortunately, are still unable to reach the central nervous system effectively because they cannot cross the blood-brain barrier that surrounds and protects the brain. Moreover, many lysosomal storage disorders are characterized by a number of blood-brain barrier dysfunctions, which may further contribute to disease neuropathology and accelerate neuronal cell death. These issues, and their context in the development of new therapeutic strategies, will be discussed in detail in this chapter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Purification and properties of a beta-galactosidase from carambola fruit with significant activity towards cell wall polysaccharides.

    Science.gov (United States)

    Balasubramaniam, Sumathi; Lee, Heng Chin; Lazan, Hamid; Othman, Roohaida; Ali, Zainon Mohd

    2005-01-01

    beta-Galactosidase (EC. 3.2.1.23) from ripe carambola (Averrhoa carambola L. cv. B10) fruit was fractionated through a combination of ion exchange and gel filtration chromatography into four isoforms, viz. beta-galactosidase I, II, III and IV. This beta-galactosidases had apparent native molecular masses of 84, 77, 58 and 130 kDa, respectively. beta-Galactosidase I, the predominant isoform, was purified to electrophoretic homogeneity; analysis of the protein by SDS-PAGE revealed two subunits with molecular masses of 48 and 36 kDa. N-terminal amino acid sequence of the respective polypeptides shared high similarities albeit at different domains, with the deduced amino acid sequence of certain plant beta-galactosidases, thus, explaining the observed low similarity between the two subunits. beta-Galactosidase I was probably a heterodimer that have glycoprotein properties and a pI value of 7.2, with one of the potential glycosylation sites appeared to reside within the 48-kDa-polypeptide. The purified beta-galactosidase I was substantially active in hydrolyzing (1-->4)beta-linked spruce and a mixture of (1-->3)beta- and (1-->6)beta-linked gum arabic galactans. This isoform also had the capability to solubilize and depolymerize structurally intact pectins as well as to modify alkaline-soluble hemicelluloses, reflecting in part changes that occur during ripening.

  10. Cytotoxic T-Lymphocyte Antigen-2 alpha participates in axial ...

    African Journals Online (AJOL)

    Cytotoxic T-lymphocyte antigen-2 alpha (CTLA-2α) has been discovered and expressed in mouse activated T-cells and mast cells. Structurally, it is homologous to the proregion of mouse cathepsin L, a lysosomal cystein proteinase. Expressed recombinant CTLA-2α is shown to exhibit selective inhibition to cathepsin L and ...

  11. Enzyme Enzyme activities in relation to sugar accumulation in tomato

    International Nuclear Information System (INIS)

    Alam, M.J.; Rahman, M.H.; Mamun, M.A.; Islam, K.

    2006-01-01

    Enzyme activities in tomato juice of five different varieties viz. Ratan, Marglove, BARI-1, BARI-5 and BARI-6, in relation to sugar accumulation were investigated at different maturity stages. The highest amount of invertase and beta-galactosidase was found in Marglove and the lowest in BARI- 6 at all maturity stages. Total soluble sugar and sucrose contents were highest in BARI-1 and lowest in BARI-6. The activity of amylase was maximum in Ratan and minimum in Marglove. Protease activity was highest in Ratan and lowest in BARI-6. BARI-1 contained the highest cellulase activity and the lowest in BARI-5. The amount of total soluble sugar and sucrose increased moderately from premature to ripe stage. The activities of amylase and cellulase increased up to the mature stage and then decreased drastically in the ripe stage. The activities of invertase and protease increased sharply from the premature to the ripe stage while the beta-galactosidase activity decreased remarkably. No detectable amount of reducing sugar was present in the premature stage in all cultivars of tomato but increased thereafter upto the ripe stage. The highest reducing sugar was present in BARI-5 in all of the maturity stages. (author)

  12. From Lysosomal Storage Diseases to NKT Cell Activation and Back

    Directory of Open Access Journals (Sweden)

    Cátia S. Pereira

    2017-02-01

    Full Text Available Lysosomal storage diseases (LSDs are inherited metabolic disorders characterized by the accumulation of different types of substrates in the lysosome. With a multisystemic involvement, LSDs often present a very broad clinical spectrum. In many LSDs, alterations of the immune system were described. Special emphasis was given to Natural Killer T (NKT cells, a population of lipid-specific T cells that is activated by lipid antigens bound to CD1d (cluster of differentiation 1 d molecules at the surface of antigen-presenting cells. These cells have important functions in cancer, infection, and autoimmunity and were altered in a variety of LSDs’ mouse models. In some cases, the observed decrease was attributed to defects in either lipid antigen availability, trafficking, processing, or loading in CD1d. Here, we review the current knowledge about NKT cells in the context of LSDs, including the alterations detected, the proposed mechanisms to explain these defects, and the relevance of these findings for disease pathology. Furthermore, the effect of enzyme replacement therapy on NKT cells is also discussed.

  13. Mechanisms of communication between mitochondria and lysosomes.

    Science.gov (United States)

    Raimundo, Nuno; Fernández-Mosquera, Lorena; Yambire, King Faisal; Diogo, Cátia V

    2016-10-01

    Mitochondria and lysosomes have long been studied in the context of their classic functions: energy factory and recycle bin, respectively. In the last twenty years, it became evident that these organelles are much more than simple industrial units, and are indeed in charge of many of cellular processes. Both mitochondria and lysosomes are now recognized as far-reaching signaling platforms, regulating many key aspects of cell and tissue physiology. It has furthermore become clear that mitochondria and lysosomes impact each other. The mechanisms underlying the cross-talk between these organelles are only now starting to be addressed. In this review, we briefly summarize how mitochondria, lysosomes and the lysosome-related process of autophagy affect each other in physiology and pathology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Determination of frequencies of alleles, associated with the pseudodeficiency of lysosomal hydrolases, in population of Ukraine

    Directory of Open Access Journals (Sweden)

    N. V. Olkhovych

    2016-10-01

    Full Text Available The pseudodeficiency of lysosomal hydrolases described as a significant reduction in enzyme activi­ty in vitro in clinically healthy individuals, can lead to diagnostic errors in the process of biochemical analysis of lysosomal storage disease in case of its combination with pathology of another origin. Pseudodeficiency is mostly caused by some non-pathogenic changes in the corresponding gene. These changes lead to the in vitro lability of the enzyme molecule, whereas in vivo the enzyme retains its functional activity. To assess the prevalence of the most common lysosomal hydrolases pseudodeficiency alleles in Ukraine, we have determined the frequency of alleles c.1055A>G and c.* 96A>G in the ARSA gene, substitutions c.739C>T (R247W and c.745C>T (R249W in the HEXA gene, c.1726G>A (G576S and c.2065G>A (E689K in the GAA gene, c.937G>T (D313Y in the GLA1 gene and c.898G>A (A300T in the IDUA gene in a group of 117 healthy individuals from different regions of the country and 14 heterozygous carriers of pathogenic mutations in the HEXA gene (parents of children with confirmed diagnosis of Tay-Sachs disease. The total frequency of haplotypes, associated with arylsulfatase A pseudodeficiency, in healthy people in Ukraine (c.1055G/c.*96G and c.1055G/c.*96A haplotypes was 10.3%. The frequency of c.739C>T (R247W allele, associated with hexo­saminidase A pseudodeficiency, among Tay-Sachs carriers from Ukraine was 7.1%. The total frequency of α-glucosidase pseudodeficiency haplotypes in healthy individuals in Ukraine (c.1726A/c.2065A and c.1726G/c.2065A haplotypes was 2.6%. No person among examined individuals with the substitution c.937G>T (D313Y in the GLA1 gene and c.898G>A (A300T in the IDUA gene was found. The differential diagnostics of lysosomal storage diseases requires obligatory determination of the presence of the pseudodeficiency alleles, particularly the ones with high incidence in the total population. Ignoring phenomenon of

  15. Determination of frequencies of alleles, associated with the pseudodeficiency of lysosomal hydrolases, in population of Ukraine.

    Science.gov (United States)

    Olkhovych, N V; Gorovenko, N G

    2016-01-01

    The pseudodeficiency of lysosomal hydrolases described as a significant reduction in enzyme activi­ty in vitro in clinically healthy individuals, can lead to diagnostic errors in the process of biochemical analysis of lysosomal storage disease in case of its combination with pathology of another origin. Pseudodeficiency is mostly caused by some non-pathogenic changes in the corresponding gene. These changes lead to the in vitro lability of the enzyme molecule, whereas in vivo the enzyme retains its functional activity. To assess the prevalence of the most common lysosomal hydrolases pseudodeficiency alleles in Ukraine, we have determined the frequency of alleles c.1055A>G and c.* 96A>G in the ARSA gene, substitutions c.739C>T (R247W) and c.745C>T (R249W) in the HEXA gene, c.1726G>A (G576S) and c.2065G>A (E689K) in the GAA gene, c.937G>T (D313Y) in the GLA1 gene and c.898G>A (A300T) in the IDUA gene in a group of 117 healthy individuals from different regions of the country and 14 heterozygous carriers of pathogenic mutations in the HEXA gene (parents of children with confirmed diagnosis of Tay-Sachs disease). The total frequency of haplotypes, associated with arylsulfatase A pseudodeficiency, in healthy people in Ukraine (c.1055G/c.*96G and c.1055G/c.*96A haplotypes) was 10.3%. The frequency of c.739C>T (R247W) allele, associated with hexo­saminidase A pseudodeficiency, among Tay-Sachs carriers from Ukraine was 7.1%. The total frequency of α-glucosidase pseudodeficiency haplotypes in healthy individuals in Ukraine (c.1726A/c.2065A and c.1726G/c.2065A haplotypes) was 2.6%. No person among examined individuals with the substitution c.937G>T (D313Y) in the GLA1 gene and c.898G>A (A300T) in the IDUA gene was found. The differential diagnostics of lysosomal storage diseases requires obligatory determination of the presence of the pseudodeficiency alleles, particularly the ones with high incidence in the total population. Ignoring phenomenon of pseudodeficiency may

  16. Small-fibre neuropathy in female Fabry patients: reduced allodynia and skin blood flow after topical capsaicin

    DEFF Research Database (Denmark)

    Møller, Anette Torvin; Feldt-Rasmussen, Ulla; Rasmussen, Åse K.

    2006-01-01

    affected. Recently, attention has been drawn to female patients whether they also show signs of nerve involvement. An early sign of the disease is painful small-fibre neuropathy. The aim of this study was to evaluate a small-fibre dysfunction in female Fabry patients by using capsaicin applied topically......Fabry disease is a rare X-linked lysosomal storage disorder. The mutations result in a deficiency of the lysosomal enzyme α-galactosidase A causing accumulation of glycosphingolipids in the vascular endothelial cells and many other tissues. Given the X-linked inheritance, male patients are severely....... The response to capsaicin was evaluated by laser Doppler imaging. We found that the female Fabry patients had a significantly smaller increase in blood flow (p = 0.0003) after capsaicin application. The area of static mechanical allodynia and dynamic mechanical hyperalgesia was also significantly smaller (p...

  17. The dual PI3K/mTOR inhibitor NVP-BEZ235 and chloroquine synergize to trigger apoptosis via mitochondrial-lysosomal cross-talk.

    Science.gov (United States)

    Seitz, Christian; Hugle, Manuela; Cristofanon, Silvia; Tchoghandjian, Aurélie; Fulda, Simone

    2013-06-01

    On the basis of our previous identification of aberrant phosphatidylinositol-3-kinase (PI3K)/Akt signaling as a novel poor prognostic factor in neuroblastoma, we evaluated the dual PI3K/mTOR inhibitor BEZ235 in the present study. Here, BEZ235 acts in concert with the lysosomotropic agent chloroquine (CQ) to trigger apoptosis in neuroblastoma cells in a synergistic manner, as calculated by combination index (CI trigger LMP, Bax activation, loss of mitochondrial membrane potential (MMP) and caspase-dependent apoptosis. Lysosome-mediated apoptosis occurs in a ROS-dependent manner, as ROS scavengers significantly reduce BEZ235/CQ-induced loss of MMP, LMP and apoptosis. There is a mitochondrial-lysosomal cross-talk, since lysosomal enzyme inhibitors significantly decrease BEZ235- and CQ-induced drop of MMP and apoptosis. In conclusion, BEZ235 and CQ act in concert to trigger LMP and lysosome-mediated apoptosis via a mitochondrial-lysosomal cross-talk. These findings have important implications for the rational development of PI3K/mTOR inhibitor-based combination therapies. Copyright © 2012 UICC.

  18. Purificação de três diferentes beta-galactosidades microbianas por partição em sistemas de duas fases aquosas Purification of three different microbial beta-galactosidases by partitioning in aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    Maria Estela SILVA

    1997-12-01

    Full Text Available Este trabalho tratou da investigação do efeito do peso molecular de polietilenoglicol (PEG sobre a partição de enzimas beta-galactosidases de diferentes origens microbianas: Escherichia coli, Klueveromyces lactis e Aspergillus orizae em sistemas de duas fases aquosas (SDFA.Foi observado que os melhores sistemas para purificação da enzima de E. coli foram os formados por PEG 4000, 6000 e 8000/fosfato, fornecendo os mais elevados fatores de purificação da enzima. As enzimas de Klueveromyces lactis e Aspergillus orizae não foram eficientemente purificadas nestes sistemas sendo insensíveis à alterações do peso molecular do PEG. Portanto, um outro sistema de duas fases aquosas foi desenvolvido contendo um ligante específico, p-aminofenil 1-tio-beta-D-galactopiranosídeo (APGP, acoplado ao PEG para purificar a enzima de Klueveromyces lactis. Uma etapa simples de partição no SDFA formado por 6% APGP-PEG4000 + 12% dextrana T505.000 foi capaz de recuperar 83% da enzima na fase superior do sistema e de aumentar 1,6 vezes o fator de purificação.This work investigated the effect of the molecular weight of polyethyleneglycol (PEG upon the partition coefficient of beta-galactosidases from three different microorganisms: Escherichia coli, Klueveromyces lactis and Aspergillus orizae. It was found that PEG 6,000 and PEG 8,000/phosphate were the best systems for achieving the highest purification factors of E. coli beta-galactosidase. However, the other two yeast beta-galactosidases were not efficiently separated from their contaminants in any of the PEG/salt systems. In order to improve the separation of Klueveromyces lactis beta-galactosidase from the main protein contaminants, the biospecific ligand p-aminophenyl 1-thio-beta-D-galactopyranoside (APGP was attached to activated PEG 4000. The affinity PEG having APGP bound to its backbone was synthesized in two steps. The partitioning of Klueveromyces lactis beta-galactosidase in aqueous two

  19. CNS penetration of intrathecal-lumbar idursulfase in the monkey, dog and mouse: implications for neurological outcomes of lysosomal storage disorder.

    Directory of Open Access Journals (Sweden)

    Pericles Calias

    Full Text Available A major challenge for the treatment of many central nervous system (CNS disorders is the lack of convenient and effective methods for delivering biological agents to the brain. Mucopolysaccharidosis II (Hunter syndrome is a rare inherited lysosomal storage disorder resulting from a deficiency of iduronate-2-sulfatase (I2S. I2S is a large, highly glycosylated enzyme. Intravenous administration is not likely to be an effective therapy for disease-related neurological outcomes that require enzyme access to the brain cells, in particular neurons and oligodendrocytes. We demonstrate that intracerebroventricular and lumbar intrathecal administration of recombinant I2S in dogs and nonhuman primates resulted in widespread enzyme distribution in the brain parenchyma, including remarkable deposition in the lysosomes of both neurons and oligodendrocytes. Lumbar intrathecal administration also resulted in enzyme delivery to the spinal cord, whereas little enzyme was detected there after intraventricular administration. Mucopolysaccharidosis II model is available in mice. Lumbar administration of recombinant I2S to enzyme deficient animals reduced the storage of glycosaminoglycans in both superficial and deep brain tissues, with concurrent morphological improvements. The observed patterns of enzyme transport from cerebrospinal fluid to the CNS tissues and the resultant biological activity (a warrant further investigation of intrathecal delivery of I2S via lumbar catheter as an experimental treatment for the neurological symptoms of Hunter syndrome and (b may have broader implications for CNS treatment with biopharmaceuticals.

  20. A G {r_arrow} A transition at position IVS-11 +1 of the HEX A {alpha}-chain gene in a non-Ashkenazic Mexican Tay-Sachs infant

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, S.R.P.; Gwon, S.; DeGasperi, R. [New York Univ. Medical Center, NY (United States)] [and others

    1994-09-01

    Tay-Sachs disease (TSD) is an autosomal recessive storage disorder caused by a deficiency of the lysosomal enzyme, {beta}-N-acetylhexosaminidase A (Hex A), a heteropolymer composed of two polypeptides, {alpha} and {beta}. Mutations in the {alpha}-chain gene render the enzyme defective, resulting in the accumulation of g{sub m2} ganglioside in the nervous system. Deficiency of Hex A was detected in a non-Ashkenazic girl of Mexican origin indicating infantile onset of TSD. Molecular investigation of the {alpha}-chain gene excluded the typical Ashkenazic 4 bp insertion in the exon 11 and the intron 12 splice-junction mutations by Hae III and Dde I restriction analysis, respectively. Single strand conformation polymorphism (SSCP) analysis showed a different pattern in the sample where exon 11 and flanking regions were amplified in the patient DNA as compared to the migration of control DNA. Sequencing of PCR amplified genomic DNA containing exon 11 and flanking intronic regions showed a single base substitution (G {r_arrow} A) at position IVS-11 +1. This mutation creates a recognition site for the restriction enzyme Mbo II. Digestion of exon 11 and flanking regions with Mbo II demonstrated homozygosity of the patient for this mutation and heterozygosity in the mother. mRNA from cultured fibroblasts obtained from a normal control and from the propositus was reverse transcribed. The cDNAs coding for Hex A {alpha}-chain were amplified in four overlapping fragments. In the patient sample it was not possible to amplify the fragment containing the exon 11/intron 11 junction, indicating that this mutation alters normal RNA processing of the Hex A pre-mRNA resulting in the deficiency of Hex A activity.

  1. Entrappment of alkaline protease and β-galactosidase in radiation stitched together poly-N-vinylcaprolactam

    International Nuclear Information System (INIS)

    Davidenko, T.I.; Kravchenko, I.A.

    1996-01-01

    The gel formations by poly-N-vinylcaprolactam upon its γ-irradiation by the 20-25 kGy dose as a results of partial polymer stitching together is shown, which is confirmed by the CD-and thermogravimetric data. By the alkaline protease and β-galactosidase entrapment in poly-N- vinylcaprolactam stitched together by γ-irradiation, the active preparations are obtained with 90-98 % and 30-35 % activity retained for alkaline protease and β-galactosidase, respectively. The increased stability of alkaline protease at acidic pH values and higher temperature was noted, and for β-galactosidase - the possibility of repeated use of the obtained preparation for lactose hydrolysis

  2. High proportion of mannosidosis and fucosidosis among lysosomal storage diseases in Cuba.

    Science.gov (United States)

    Menéndez-Sainz, C; González-Quevedo, A; González-García, S; Peña-Sánchez, M; Giugliani, R

    2012-08-13

    Although lysosomal storage disorders (LSDs) are considered individually rare, as a group they present a non-negligible frequency. Few studies have been made of populational occurrence of LSDs; they have been conducted predominantly on Caucasian populations. We studied the occurrence of LSDs in Cuba. Data from individuals who had been referred to the Institute of Neurology and Neurosurgery in Havana from hospitals all over the country between January 1990 and December 2005 were analyzed. This institute was the only laboratory to provide enzyme-based diagnostic testing for 19 LSDs in Cuba during this period. Occurrence rates were calculated by dividing the number of postnatal diagnoses by the number of births during the study period. The combined occurrence of LSDs in Cuba was 5.6 per 100,000, lower than that reported in other studies conducted on Caucasian populations. The most frequent individual LSDs were: mucopolysaccharidosis type I (1.01 per 100,000) and, surprisingly, alpha-mannosidosis (0.72 per 100,000) and fucosidosis (0.62 per 100,000). These findings may be related to specific genetic characteristics and admixture of the Cuban population. This is the first comprehensive study of the occurrence of LSDs in Cuba. We conclude that the epidemiology of these diseases can vary regionally, and we stress the need for similar surveys in other Latin American countries.

  3. Maximization of beta-galactosidase production: a simultaneous investigation of agitation and aeration effects.

    Science.gov (United States)

    Alves, Fernanda Germano; Filho, Francisco Maugeri; de Medeiros Burkert, Janaína Fernandes; Kalil, Susana Juliano

    2010-03-01

    In this work, the agitation and aeration effects in the maximization of the beta-galactosidase production from Kluyveromyces marxianus CCT 7082 were investigated simultaneously, in relation to the volumetric enzyme activity and the productivity, as well as the analysis of the lactose consumption and production of glucose, and galactose of this process. Agitation and aeration effects were studied in a 2 L batch stirred reactor. A central composite design (2(2) trials plus three central points) was carried out. Agitation speed varied from 200 to 500 rpm and aeration rate from 0.5 to 1.5 vvm. It has been shown in this study that the volumetric enzyme production was strongly influenced by mixing conditions, while aeration was shown to be less significant. Linear models for activity and productivity due to agitation and aeration were obtained. The favorable condition was 500 rpm and 1.5 vvm, which lead to the best production of 17 U mL(-1) for enzymatic activity, 1.2 U mL(-1) h(-1) for productivity in 14 h of process, a cellular concentration of 11 mg mL(-1), and a 167.2 h(-1) volumetric oxygen transfer coefficient.

  4. Lysosomal and Mitochondrial Liaisons in Niemann-Pick Disease

    Directory of Open Access Journals (Sweden)

    Sandra Torres

    2017-11-01

    Full Text Available Lysosomal storage disorders (LSD are characterized by the accumulation of diverse lipid species in lysosomes. Niemann-Pick type A/B (NPA/B and type C diseases Niemann-Pick type C (NPC are progressive LSD caused by loss of function of distinct lysosomal-residing proteins, acid sphingomyelinase and NPC1, respectively. While the primary cause of these diseases differs, both share common biochemical features, including the accumulation of sphingolipids and cholesterol, predominantly in endolysosomes. Besides these alterations in lysosomal homeostasis and function due to accumulation of specific lipid species, the lysosomal functional defects can have far-reaching consequences, disrupting intracellular trafficking of sterols, lipids and calcium through membrane contact sites (MCS of apposed compartments. Although MCS between endoplasmic reticulum and mitochondria have been well studied and characterized in different contexts, emerging evidence indicates that lysosomes also exhibit close proximity with mitochondria, which translates in their mutual functional regulation. Indeed, as best illustrated in NPC disease, alterations in the lysosomal-mitochondrial liaisons underlie the secondary accumulation of specific lipids, such as cholesterol in mitochondria, resulting in mitochondrial dysfunction and defective antioxidant defense, which contribute to disease progression. Thus, a better understanding of the lysosomal and mitochondrial interactions and trafficking may identify novel targets for the treatment of Niemann-Pick disease.

  5. Transcription Factor EB Expression in Early Breast Cancer Relates to Lysosomal/Autophagosomal Markers and Prognosis.

    Science.gov (United States)

    Giatromanolaki, Alexandra; Sivridis, Efthimios; Kalamida, Dimitra; Koukourakis, Michael I

    2017-06-01

    Disrupting the autophagic balance to trigger autophagic death may open new strategies for cancer therapy. Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and may play a role in cancer biology and clinical behavior. The expression of TFEB and the lysosomal cancer cell content (expression of lysosomal associated membrane protein 2a [LAMP2a] and cathepsin D) was studied in a series of 100 T1-stage breast carcinomas. Expression patterns were correlated with autophagy/hypoxia-related proteins, angiogenesis, and clinical outcome. The effect of hypoxic/acidic conditions on TFEB kinetics was studied in the MCF-7 cancer cell line. Overexpression of TFEB in cancer cell cytoplasm and the perinuclear/nuclear area was noted in 23 (23%) of 100 cases. High LAMP2a and cathepsin D expression was noted in 30 (30%) of 100 and 28 (28%) of 100 cases, respectively. TFEB expression was directly linked with LAMP2a (P factor 2-alpha (HIF-2α) (P = .01, r = 0.25) expression and inversely with progesterone receptor (P = .01, r = 0.22). High vascular density was directly linked with LAMP2a (P = .05, r = 0.18) and cathepsin D (P = .005, r = 0.28). In Kaplan-Meier survival analysis, TFEB and cathepsin D expression were related to an ominous prognosis (P = .001 and P = .03, respectively). In multivariate analysis, TFEB expression sustained its independent prognostic significance (P = .05, hazard ratio 2.1). In in vitro experiments, acidity triggered overexpression of TFEB and nuclear translocation. Intense TFEB expression and lysosomal biogenesis, evident in one fourth of early breast carcinomas, define poor prognosis. Tumor acidity is among the microenvironmental conditions that trigger TFEB overactivity. TFEB is a sound target for the development of lysosomal targeting therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Salivary alpha-amylase: More than an enzyme Investigating confounders of stress-induced and basal amylase activity

    OpenAIRE

    Strahler, Jana

    2010-01-01

    Summary: Salivary alpha-amylase: More than an enzyme - Investigating confounders of stress-induced and basal amylase activity (Dipl.-Psych. Jana Strahler) The hypothalamus-pituitary-adrenal (HPA) axis and the autonomic nervous system (ANS) are two of the major systems playing a role in the adaptation of organisms to developmental changes that threaten homeostasis. The HPA system involves the secretion of glucocorticoids, including cortisol, into the circulatory system. Numerous studies hav...

  7. Lysosomes as Oxidative Targets for Cancer Therapy.

    Science.gov (United States)

    Dielschneider, Rebecca F; Henson, Elizabeth S; Gibson, Spencer B

    2017-01-01

    Lysosomes are membrane-bound vesicles that contain hydrolases for the degradation and recycling of essential nutrients to maintain homeostasis within cells. Cancer cells have increased lysosomal function to proliferate, metabolize, and adapt to stressful environments. This has made cancer cells susceptible to lysosomal membrane permeabilization (LMP). There are many factors that mediate LMP such as Bcl-2 family member, p53; sphingosine; and oxidative stress which are often altered in cancer. Upon lysosomal disruption, reactive oxygen species (ROS) levels increase leading to lipid peroxidation, mitochondrial dysfunction, autophagy, and reactive iron. Cathepsins are also released causing degradation of macromolecules and cellular structures. This ultimately kills the cancer cell through different types of cell death (apoptosis, autosis, or ferroptosis). In this review, we will explore the contributions lysosomes play in inducing cell death, how this is regulated by ROS in cancer, and how lysosomotropic agents might be utilized to treat cancers.

  8. Functional analysis of lysosomes during mouse preimplantation embryo development.

    Science.gov (United States)

    Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Ohta, Yuki; Wada, Ayako; Ishida, Yuka; Kito, Seiji; Nishikawa, Tetsu; Minami, Naojiro; Sato, Ken; Kokubo, Toshiaki

    2013-01-01

    Lysosomes are acidic and highly dynamic organelles that are essential for macromolecule degradation and many other cellular functions. However, little is known about lysosomal function during early embryogenesis. Here, we found that the number of lysosomes increased after fertilization. Lysosomes were abundant during mouse preimplantation development until the morula stage, but their numbers decreased slightly in blastocysts. Consistently, the protein expression level of mature cathepsins B and D was high from the one-cell to morula stages but low in the blastocyst stage. One-cell embryos injected with siRNAs targeted to both lysosome-associated membrane protein 1 and 2 (LAMP1 and LAMP2) were developmentally arrested at the two-cell stage. Pharmacological inhibition of lysosomes also caused developmental retardation, resulting in accumulation of lipofuscin. Our findings highlight the functional changes in lysosomes in mouse preimplantation embryos.

  9. Hydrolytic enzymes production by Aspergillus section Nigri in presence of butylated hydroxyanisole and propyl paraben on peanut meal extract agar.

    Science.gov (United States)

    Barberis, Carla L; Landa, María F; Barberis, Mauricio G; Giaj-Merlera, Guillermo; Dalcero, Ana M; Magnoli, Carina E

    2014-01-01

    In the last years, food grade antioxidants are used safely as an alternative to traditional fungicides to control fungal growth in several food and agricultural products. In this work, the effect of butylated hydroxyanisole (BHA) and propyl paraben (PP) on two hydrolytic enzyme activity (β-d-glucosidase and α-d-galactosidase) by Aspergillus section Nigri species under different water activity conditions (aW; 0.98, 0.95 and 0.93) and incubation time intervals (24, 48, 72 and 96h) was evaluated on peanut-based medium. The activity of two glycosidases, β-d-glucosidase and α-d-galactosidase, was assayed using as substrates 4-nitrophenyl-β-d-glucopyranosido and 4-nitrophenyl-α-d-galactopyranosido, respectively. The enzyme activity was determined by the increase in optical density at 405nm caused by the liberation of p-nitrophenol by enzymatic hydrolysis of the substrate. Enzyme activity was expressed as micromoles of p-nitrophenol released per minute. The major inhibition in β-d-glucosidase activity of A. carbonarius and A. niger was found with 20mmoll(-1) of BHA or PP at 0.98 and 0.95 aW, respectively, whereas for α-d-galactosidase activity a significant decrease in enzyme activity with respect to control was observed in A. carbonarius among 5 to 20mmoll(-1) of BHA or PP in all conditions assayed. Regarding A. niger, the highest percentages of enzyme inhibition activity were found with 20mmoll(-1) of BHA or PP at 0.95 aW and 96h. The results of this work provide information about the capacity of BHA and PP to inhibit in vitro conditions two of the most important hydrolytic enzymes produced by A. carbonarius and A. niger species. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  10. Property of lysosomal storage disease associated with midbrain pathology in the central nervous system of Lamp-2-deficient mice.

    Science.gov (United States)

    Furuta, Akiko; Kikuchi, Hisae; Fujita, Hiromi; Yamada, Daisuke; Fujiwara, Yuuki; Kabuta, Tomohiro; Nishino, Ichizo; Wada, Keiji; Uchiyama, Yasuo

    2015-06-01

    Lysosome-associated membrane protein-2 (LAMP-2) is the gene responsible for Danon disease, which is characterized by cardiomyopathy, autophagic vacuolar myopathy, and variable mental retardation. To elucidate the function of LAMP-2 in the central nervous system, we investigated the neuropathological changes in Lamp-2-deficient mice. Immunohistochemical observations revealed that Lamp-1 and cathepsin D-positive lysosomal structures increased in the large neurons of the mouse brain. Ubiquitin-immunoreactive aggregates and concanavalin A-positive materials were detected in these neurons. By means of ultrastructural studies, we found various-shaped accumulations, including lipofuscin, glycolipid-like materials, and membranous structures, in the neurons and glial cells of Lamp-2-deficient brains. In deficient mice, glycogen granules accumulated in hepatocyte lysosomes but were not observed in neurons. These pathological features indicate lysosomal storage disease; however, the findings are unlikely a consequence of deficiency of a single lysosomal enzyme. Although previous study results have shown a large amount of autophagic vacuoles in parenchymal cells of the visceral organs, these findings were rarely detected in the brain tissue except for some axons in the substantia nigra, in which abundant activated microglial cells with increased lipid peroxidation were observed. Thus, LAMP-2 in the central nervous system has a possible role in the degradation of the various macromolecules in lysosomes and an additional function concerning protection from oxidative stress, especially in the substantia nigra. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. The use of port-a-caths in adult patients with Lysosomal Storage Disorders receiving Enzyme Replacement Therapy-one centre experience

    Directory of Open Access Journals (Sweden)

    Mairead McLoughlin

    2017-12-01

    Full Text Available Port-a-cath is a widely used device in patients with long-term venous access demand such as frequent or continuous administration of medications such as Enzyme Replacement Therapy (ERT, chemotherapy delivery, blood transfusions, blood products, and fluids. Patients with Lysosomal Storage Diseases (LSDs often require recurrent courses of ERT. We reviewed our experience of using port-a-caths in patients with LSDs with the focus on challenges and complications associated with these catheters. Among 245 adult patients who were treated with ERT, twenty patients (8.2% had a port-a-cath inserted due to poor venous access. Six patients were using their first port whereas five other patients had their port-a-caths replaced at least once. The remaining six patients had inactive port-a-caths. The majority of patients with active port-a-caths never missed more than one consecutive infusion, although one patient missed 2 consecutive infusions whilst on holiday. We identified significant gaps in patients' and their families' understanding of the management of port-a-caths and risks associated with them. It resulted in producing a leaflet and designing an educational program for our LSD patients.

  12. Effect of immobilization conditions on the properties of β-galactosidase immobilized in xanthan/chitosan multilayers

    International Nuclear Information System (INIS)

    Yovcheva, T; Viraneva, A; Bodurov, I; Marudova, M; Vasileva, T; Cholev, D; Bivolarski, V; Iliev, I

    2017-01-01

    The effect of lactose concentration on the activity of the immobilised enzyme β-galactosidase from Aspergillus niger has been evaluated, considering future applications for the production of galactooligosaccahrides with prebiotic potential. The following enzyme was immobilized in xanthan and chitosan polyelectrolyte multilayers (PEMs) deposited by dip coating method on polylactic acid positively corona charged pads. The pads were charged in a corona discharge system, consisting of a corona electrode (needle), a grounded plate, and a metal grid placed between them. Positive 5 kV voltage was applied to the corona electrode. 1 kV voltage of the same polarity as that of the corona electrode was applied to the grid. The chitosan layers were crosslinked with sodium tripolyphosphate (Na-TPP). The enzyme showed a temperature optimum at 50 °C and a pH optimum at 5.0. The immobilization was carried out over the different adsorption time and optimum conditions were determined. These results give insights for further optimization of transgalactosydase reactions in order to produce galactooligosaccharides with specific structure and having pronounced better prebiotic properties. For the determination of the surface morphology of the investigated samples an atomic force microscope was used and root mean square roughness was obtained. (paper)

  13. Enzyme activity and reserve mobilization during Macaw palm ( Acrocomia aculeata seed germination

    Directory of Open Access Journals (Sweden)

    Elisa Monteze Bicalho

    2016-01-01

    Full Text Available ABSTRACT Reserve mobilization in seeds occurs after visible germination, which is marked by the protrusion of the radicle or cotyledonary petiole, as in species of Arecaceae. Acrocomia aculeata (macaw palm, usually produces hard seeds whose endosperm has mannan-rich cell walls. We investigated the composition of storage compounds in macaw palm seed and the roles of two enzymes (endo-β-mannanase, α-galactosidase during and after germination. The seeds were firstly submitted to pre-established protocol to overcome dormancy and promote germination. Enzyme activity in both embryo and endosperm were assayed from the initiation of germinative activities until leaf sheath appearance, and the status of seed structures and reserve compounds were evaluated. Protein content of the embryo decreased with the initiation of imbibition while the lipid content began decreasing six days after removal of the operculum. Increases in enzyme activity and starch content were both observed after visible germination. We suggest that endo-β-mannanase and α-galactosidase become active immediately at germination, facilitating haustorium expansion and providing carbohydrates for initial seedling development. Protein is the first storage compound mobilized during early imbibition, and the observed increase in the starch content of the haustorium was related to lipid degradation in that organ and mannan degradation in the adjacent endosperm.

  14. Co-existence of Phenylketonuria and Fabry disease on a 3 year-old boy: case report

    Directory of Open Access Journals (Sweden)

    Bonapace Giuseppe

    2010-05-01

    Full Text Available Abstract Background The co-existence of two genetically distinct metabolic disorders in the same patient has rarely been reported. Phenylketonuria (PKU is an inborn error of the metabolism resulting from a phenylalanine hydroxylase deficiency. Fabry disease (FD is an X-linked lysosomal storage disorder due to a deficiency of the enzyme alpha-galactosidase A. Case presentation We report a case of a 3 year- old boy affected by classic PKU and FD, both confirmed by molecular data. The FD was suspected at the age of 21 months on the presence of non-specific GI symptoms (severe abdominal pain and periodically appearance of not specific episodes of gastroenteritis apparently non related to PKU. Conclusion This is the first report of co-existence of FD and PKU, two different congenital inborn of metabolism and in consideration of the prevalence of each disease this chance association is a very unusual event. The co-existence of this diseases made very difficult the correct interpretation of clinical symptoms as lack of appetite, severe abdominal pain and non-specific gastroenteritis episodes. Furthermore, this case report helps to define the early clinical phenotype of FD.

  15. Less Is More: Substrate Reduction Therapy for Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Maria Francisca Coutinho

    2016-07-01

    Full Text Available Lysosomal storage diseases (LSDs are a group of rare, life-threatening genetic disorders, usually caused by a dysfunction in one of the many enzymes responsible for intralysosomal digestion. Even though no cure is available for any LSD, a few treatment strategies do exist. Traditionally, efforts have been mainly targeting the functional loss of the enzyme, by injection of a recombinant formulation, in a process called enzyme replacement therapy (ERT, with no impact on neuropathology. This ineffectiveness, together with its high cost and lifelong dependence is amongst the main reasons why additional therapeutic approaches are being (and have to be investigated: chaperone therapy; gene enhancement; gene therapy; and, alternatively, substrate reduction therapy (SRT, whose aim is to prevent storage not by correcting the original enzymatic defect but, instead, by decreasing the levels of biosynthesis of the accumulating substrate(s. Here we review the concept of substrate reduction, highlighting the major breakthroughs in the field and discussing the future of SRT, not only as a monotherapy but also, especially, as complementary approach for LSDs.

  16. Investigations on the mechanism of chlorpromazine phototoxicity: effects on lysosomes of cultured human fibroblasts

    International Nuclear Information System (INIS)

    Hasei, K.; Ichihashi, M.; Mojamdar, M.

    1984-01-01

    The effect of chlorpromazine (CPZ) and UVA on lysosomes of cultured normal human fibroblasts has been investigated. Acid phosphatase (ACPase) activity in 12000 g pellet of cells treated with CPZ (10 μg/ml) and UVA (6 x 10 4 J/m 2 ) was found to be decreased as compared with non-treated, CPZ or UVA treated control cells. This decrease, however, was not accompanied by a concomitant increase in ACPase activity in the 12000 g supernatant. The addition of Triton X-100 to cells pre-treated with CPZ + UVA resulted in only a moderate increase in ACPase activity of the 12000 g supernatant. ACPase activity of the cells incubated in media containing pre-irradiated CPZ was also found to be decreased. These results indicate that CPZ + UVA directly inactivate lysosomal enzymes, possibly without affecting the membrane. (author)

  17. A novel transgenic mouse model of lysosomal storage disorder.

    Science.gov (United States)

    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A; Greiner, Dale L; Bortell, Rita; Gregg, Ronald G; Cheng, Alan; Hennings, Leah J; Rittenhouse, Ann R

    2016-11-01

    Knockout technology has proven useful for delineating functional roles of specific genes. Here we describe and provide an explanation for striking pathology that occurs in a subset of genetically engineered mice expressing a rat Ca V β2a transgene under control of the cardiac α-myosin heavy chain promoter. Lesions were limited to mice homozygous for transgene and independent of native Cacnb2 genomic copy number. Gross findings included an atrophied pancreas; decreased adipose tissue; thickened, orange intestines; and enlarged liver, spleen, and abdominal lymph nodes. Immune cell infiltration and cell engulfment by macrophages were associated with loss of pancreatic acinar cells. Foamy macrophages diffusely infiltrated the small intestine's lamina propria, while similar macrophage aggregates packed liver and splenic red pulp sinusoids. Periodic acid-Schiff-positive, diastase-resistant, iron-negative, Oil Red O-positive, and autofluorescent cytoplasm was indicative of a lipid storage disorder. Electron microscopic analysis revealed liver sinusoids distended by clusters of macrophages containing intracellular myelin "swirls" and hepatocytes with enlarged lysosomes. Additionally, build up of cholesterol, cholesterol esters, and triglycerides, along with changes in liver metabolic enzyme levels, were consistent with a lipid processing defect. Because of this complex pathology, we examined the transgene insertion site. Multiple transgene copies inserted into chromosome 19; at this same site, an approximate 180,000 base pair deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95 Loss of gene function can account for the altered lipid processing, along with hypertrophy of the immune system, which define this phenotype, and serendipitously provides a novel mouse model of lysosomal storage disorder. Copyright © 2016 the American Physiological Society.

  18. Characterization of the activity of β-galactosidase from Escherichia coli and Drosophila melanogaster in fixed and non-fixed Drosophila tissues

    Directory of Open Access Journals (Sweden)

    Mizuki Tomizawa

    2016-12-01

    Full Text Available β-Galactosidase encoded by the Escherichia coli lacZ gene, is widely used as a reporter molecule in molecular biology in a wide variety of animals. β-Galactosidase retains its enzymatic activity in cells or tissues even after fixation and can degrade X-Gal, a frequently used colormetric substrate, producing a blue color. Therefore, it can be used for the activity staining of fixed tissues. However, the enzymatic activity of the β-galactosidase that is ectopically expressed in the non-fixed tissues of animals has not been extensively studied. Here, we report the characterization of β-galactosidase activity in Drosophila tissues with and without fixation in various experimental conditions comparing the activity of two evolutionarily orthologous β-galactosidases derived from the E. coli lacZ and Drosophila melanogaster DmelGal genes. We performed quantitative analysis of the activity staining of larval imaginal discs and an in vitro assay using larval lysates. Our data showed that both E. coli and Drosophila β-galactosidase can be used for cell-type-specific activity staining, but they have their own preferences in regard to conditions. E. coli β-galactosidase showed a preference for neutral pH but not for acidic pH compared with Drosophila β-galactosidase. Our data suggested that both E. coli and Drosophila β-galactosidase show enzymatic activity in the physiological conditions of living animals when they are ectopically expressed in a desired specific spatial and temporal pattern. This may enable their future application to studies of chemical biology using model animals.

  19. Cardiopulmonary involvement in Fabry's disease.

    Science.gov (United States)

    Koskenvuo, Juha W; Kantola, Ilkka M; Nuutila, Pirjo; Knuuti, Juhani; Parkkola, Riitta; Mononen, Ilkka; Hurme, Saija; Kalliokoski, Riikka; Viikari, Jorma S; Wendelin-Saarenhovi, Maria; Kiviniemi, Tuomas O; Hartiala, Jaakko J

    2010-04-01

    Fabry's disease is an X-linked lysosomal storage disease caused by deficiency of alpha-galactosidase A enzyme activity. Decreased enzyme activity leads to accumulation of glycosphingolipid in different tissues, including endothelial and smooth-muscle cells and cardiomyocytes. There is controversial data on cardiopulmonary involvement in Fabry's disease, because many reports are based on small and selected populations with Fabry's disease. Furthermore, the aetiology of cardiopulmonary symptoms in Fabry's disease is poorly understood. We studied cardiopulmonary involvement in seventeen patients with Fabry's disease (20-65 years, 6 men) using ECG, bicycle stress, cardiac magnetic resonance imaging, spirometry, diffusing capacity and pulmonary high-resolution computed tomography (HRCT) tests. Cardiopulmonary symptoms were compared to observed parameters in cardiopulmonary tests. Left ventricular hypertrophy (LVH) and reduced exercise capacity are the most apparent cardiac changes in both genders with Fabry's disease. ECG parameters were normal when excluding changes related to LVH. Spirometry showed mild reduction in vital capacity and forced expiratory volume in one second (FEV I), and mean values in diffusing capacity tests were within normal limits. Generally, only slight morphological pulmonary changes were detected using pulmonary HRCT, and they were not associated with changes in pulmonary function. The self-reported amount of pulmonary symptoms associated only with lower ejection fraction (P routine cardiopulmonary evaluation in Fabry's disease using echocardiography is maybe enough when integrated to counselling for aerobic exercise training.

  20. Effect of radioprotectant WR 2721 on cyclic nucleotides, prostaglandins, and lysosomes

    International Nuclear Information System (INIS)

    Trocha, P.J.; Catravas, G.N.

    1983-01-01

    Within 1 hr after ip injection of the radioprotectant WR 2721 into rats, splenic cGMP levels dropped and remained suppressed for 6 hr before returning to normal. However, if rats were exposed to ionizing radiation 30-40 min after WR 2721 treatment, they had higher cGMP levels at 3 hr postirradiation than the nonirradiUted, drug-treated controls, but the cGMP content was still found to be lower than that of the irradiated nondrug-treated controls. Radiation exposure of animals pretreated with WR 2721 also resulted in higher liver and spleen levels of cAMP and additional elevations in spleen prostaglandin content, compared with irradiated controls at 3-6 hr after radiation treatment. The secondary fluctuations of lysosomal enzyme activities, prostaglandin content, and cyclic nucleotide levels were also altered in irradiated rats pretreated with WR 2721 when compared with irradiated controls. Liver and spleen lysosomal β-glucuronidase activities, spleen cAMP and cGMP levels, and spleen prostaglandin concentrations were closer to physiological levels at 3 days postirradiation in rats given WR 2721 before the radiation treatment

  1. UVA Causes Dual Inactivation of Cathepsin B and L Underlying Lysosomal Dysfunction in Human Dermal Fibroblasts

    Science.gov (United States)

    Lamore, Sarah D.; Wondrak, Georg T.

    2013-01-01

    Cutaneous exposure to chronic solar UVA-radiation is a causative factor in photocarcinogenesis and photoaging. Recently, we have identified the thiol-dependent cysteine-protease cathepsin B as a novel UVA-target undergoing photo-oxidative inactivation upstream of autophagic-lysosomal dysfunction in fibroblasts. In this study, we examined UVA effects on a wider range of cathepsins and explored the occurrence of UVA-induced cathepsin inactivation in other cultured skin cell types. In dermal fibroblasts, chronic exposure to non-cytotoxic doses of UVA caused pronounced inactivation of the lysosomal cysteine-proteases cathepsin B and L, effects not observed in primary keratinocytes and occurring only to a minor extent in primary melanocytes. In order to determine if UVA-induced lysosomal impairment requires single or dual inactivation of cathepsin B and/or L, we used a genetic approach (siRNA) to selectively downregulate enzymatic activity of these target cathepsins. Monitoring an established set of protein markers (including LAMP1, LC3-II, and p62) and cell ultrastructural changes detected by electron microscopy, we observed that only dual genetic antagonism (targeting both CTSB and CTSL expression) could mimic UVA-induced autophagic-lysosomal alterations, whereas single knockdown (targeting CTSB or CTSL only) did not display ‘UVA-mimetic’ effects failing to reproduce the UVA-induced phenotype. Taken together, our data demonstrate that chronic UVA inhibits both cathepsin B and L enzymatic activity and that dual inactivation of both enzymes is a causative factor underlying UVA-induced impairment of lysosomal function in dermal fibroblasts. PMID:23603447

  2. Síntese de galacto-oligossacarídeos a partir de lactose usando β-galactosidase comercial de Kluyveromyces lactis Synthesis of galactooligosaccharides from lactose using commercial β-galactosidase from Kluyveromyces lactis

    Directory of Open Access Journals (Sweden)

    Cristiane Reinaldo Lisboa

    2012-03-01

    Full Text Available O objetivo deste trabalho foi estudar a influência de parâmetros reacionais na obtenção via enzimática de galacto-oligossacarídeos (GOS, utilizando-se a enzima comercial β-galactosidase de Kluyveromyces lactis (Lactozym® 3000 L, tendo como substrato a lactose. Foi proposto um planejamento experimental 2³, verificando a influência da temperatura (30 a 40 °C, da concentração de lactose (200 a 400 mg.mL-1 e da concentração de enzima (5 a 10 U.mL-1 no desempenho da reação enzimática. Os ensaios foram conduzidos a 180 rpm e pH 7,0 (tampão fosfato de sódio 0,1 M. A enzima Lactozym® 3000 L apresentou atividade de transgalactosilação, tendo sido atingido rendimento do processo igual a 41,9% e concentração de GOS de 167,5 mg.mL-1 no sistema reacional composto por 400 mg.mL-1 de lactose e 5 U.mL-1 de enzima a 30 °C em 14 h de reação. Nessa condição, a conversão de lactose foi de 65,0%. Maior concentração de lactose foi favorável ao mecanismo de transgalactosilação, enquanto que, em menores concentrações, o mecanismo hidrolítico predominou.The main goal of this work was to study the influence of the reaction parameters on the enzymatic production of galactooligosaccharides (GOS using the commercial β-galactosidase from Kluyveromyces lactis (Lactozym® 3000 L and lactose as the substrate. A 2³ experimental design was proposed, verifying the influence of the temperature (30 to 40 °C, lactose concentration (200 to 400 mg.mL-1 and enzyme concentration (5 to 10 U.mL-1 on the performance of the enzymatic reaction. The assays were carried out at 180 rpm and pH 7.0 (0.1 M sodium phosphate buffer. The enzyme Lactozym® 3000 L presented transgalactosylation activity, reaching a yield of 41.9% and GOS concentration of 167.5 mg.mL-1 in a reaction system composed of 400 mg.mL-1 of lactose and 5 U.mL-1 of enzyme at 30 °C and 14 h of reaction. Under these conditions the lactose conversion was 65.0%. Higher lactose concentrations

  3. BAX channel activity mediates lysosomal disruption linked to Parkinson disease.

    Science.gov (United States)

    Bové, Jordi; Martínez-Vicente, Marta; Dehay, Benjamin; Perier, Celine; Recasens, Ariadna; Bombrun, Agnes; Antonsson, Bruno; Vila, Miquel

    2014-05-01

    Lysosomal disruption is increasingly regarded as a major pathogenic event in Parkinson disease (PD). A reduced number of intraneuronal lysosomes, decreased levels of lysosomal-associated proteins and accumulation of undegraded autophagosomes (AP) are observed in PD-derived samples, including fibroblasts, induced pluripotent stem cell-derived dopaminergic neurons, and post-mortem brain tissue. Mechanistic studies in toxic and genetic rodent PD models attribute PD-related lysosomal breakdown to abnormal lysosomal membrane permeabilization (LMP). However, the molecular mechanisms underlying PD-linked LMP and subsequent lysosomal defects remain virtually unknown, thereby precluding their potential therapeutic targeting. Here we show that the pro-apoptotic protein BAX (BCL2-associated X protein), which permeabilizes mitochondrial membranes in PD models and is activated in PD patients, translocates and internalizes into lysosomal membranes early following treatment with the parkinsonian neurotoxin MPTP, both in vitro and in vivo, within a time-frame correlating with LMP, lysosomal disruption, and autophagosome accumulation and preceding mitochondrial permeabilization and dopaminergic neurodegeneration. Supporting a direct permeabilizing effect of BAX on lysosomal membranes, recombinant BAX is able to induce LMP in purified mouse brain lysosomes and the latter can be prevented by pharmacological blockade of BAX channel activity. Furthermore, pharmacological BAX channel inhibition is able to prevent LMP, restore lysosomal levels, reverse AP accumulation, and attenuate mitochondrial permeabilization and overall nigrostriatal degeneration caused by MPTP, both in vitro and in vivo. Overall, our results reveal that PD-linked lysosomal impairment relies on BAX-induced LMP, and point to small molecules able to block BAX channel activity as potentially beneficial to attenuate both lysosomal defects and neurodegeneration occurring in PD.

  4. Studies on the preparation of immobilized enzymes by radio-polymerization, 10

    International Nuclear Information System (INIS)

    Amarakone, S.P.; Hayashi, Toru; Kawashima, Koji.

    1983-01-01

    β-Galactosidase of E. coli origin was immobilized in the form of beads by the radiopolymerization of different combinations of monomers using a gamma irradiation technique. With the dialysed enzyme, recoveries of over 300 % could be obtained on suitable monomer combinations containing magnesium and sodium acrylates. The recovery of the enzyme also depended on the irradiation time. The immobilized enzyme had better pH and temperature stability and was less affected by the presence of metal ions in the medium, compared to the native enzyme. The optimum pH and temperatures of the immobilized enzyme were different from those of the native enzyme and were 7.0 to 7.5 and 50 deg C respectively. The immobilized enzyme was used in a column for the continuous determination of lactose with a standard type autoanalyser. Good linearity could be observed even up to 3 % lactose in the sample. (author)

  5. Storage stability and improved quality of fish products by enzyme suppression and gamma-irradiation

    International Nuclear Information System (INIS)

    Ninjoor, V.; Doke, S.N.; Nadkarni, G.B.

    1981-01-01

    The occurrence and distribution of lysosomal hydrolases in the skeletal muscle and skin of a variety of fish species have been demonstrated. As compared with the skeletal muscle, the skin contained two to ten times more activity of hydrolytic enzymes. In the case of Bombay duck (Harpodon nehereus), the drip represented a rich source of lysosomal enzymes. The involvement of these hydrolases in accentuating fish spoilage was examined by measuring the release of cathepsin D and accumulated hydrolytic end-products during progressive autolysis. The data showed that the shelf-life of fresh-water fish Tilapia mossambica could be extended by removing the skin, while that of Bombay duck by eliminating drip. Sodium tripolyphosphate (NaTPP) dip treatment was shown to inhibit the activity of lysosomal hydrolases of Bombay duck. Combination treatment consisting of NaTPP dip and irradiation (100 krad) resulted in a two-week extension in the shelf-life of Bombay duck fillets when stored at 0-4 0 C. (author)

  6. Arf6 controls beta-amyloid production by regulating macropinocytosis of the Amyloid Precursor Protein to lysosomes.

    Science.gov (United States)

    Tang, Weihao; Tam, Joshua H K; Seah, Claudia; Chiu, Justin; Tyrer, Andrea; Cregan, Sean P; Meakin, Susan O; Pasternak, Stephen H

    2015-07-14

    Alzheimer's disease (AD) is characterized by the deposition of Beta-Amyloid (Aβ) peptides in the brain. Aβ peptides are generated by cleavage of the Amyloid Precursor Protein (APP) by the β - and γ - secretase enzymes. Although this process is tightly linked to the internalization of cell surface APP, the compartments responsible are not well defined. We have found that APP can be rapidly internalized from the cell surface to lysosomes, bypassing early and late endosomes. Here we show by confocal microscopy and electron microscopy that this pathway is mediated by macropinocytosis. APP internalization is enhanced by antibody binding/crosslinking of APP suggesting that APP may function as a receptor. Furthermore, a dominant negative mutant of Arf6 blocks direct transport of APP to lysosomes, but does not affect classical endocytosis to endosomes. Arf6 expression increases through the hippocampus with the development of Alzheimer's disease, being expressed mostly in the CA1 and CA2 regions in normal individuals but spreading through the CA3 and CA4 regions in individuals with pathologically diagnosed AD. Disruption of lysosomal transport of APP reduces both Aβ40 and Aβ42 production by more than 30 %. Our findings suggest that the lysosome is an important site for Aβ production and that altering APP trafficking represents a viable strategy to reduce Aβ production.

  7. Dysregulated autophagy contributes to podocyte damage in Fabry's disease.

    Directory of Open Access Journals (Sweden)

    Max C Liebau

    Full Text Available Fabry's disease results from an inborn error of glycosphingolipid metabolism that is due to deficiency of the lysosomal hydrolase α-galactosidase A. This X-linked defect results in the accumulation of enzyme substrates with terminally α-glycosidically bound galactose, mainly the neutral glycosphingolipid Globotriaosylceramide (Gb3 in various tissues, including the kidneys. Although end-stage renal disease is one of the most common causes of death in hemizygous males with Fabry's disease, the pathophysiology leading to proteinuria, hematuria, hypertension, and kidney failure is not well understood. Histological studies suggest that the accumulation of Gb3 in podocytes plays an important role in the pathogenesis of glomerular damage. However, due to the lack of appropriate animal or cellular models, podocyte damage in Fabry's disease could not be directly studied yet. As murine models are insufficient, a human model is needed. Here, we developed a human podocyte model of Fabry's disease by combining RNA interference technology with lentiviral transduction of human podocytes. Knockdown of α-galactosidase A expression resulted in diminished enzymatic activity and slowly progressive accumulation of intracellular Gb3. Interestingly, these changes were accompanied by an increase in autophagosomes as indicated by an increased abundance of LC3-II and a loss of mTOR kinase activity, a negative regulator of the autophagic machinery. These data suggest that dysregulated autophagy in α-galactosidase A-deficient podocytes may be the result of deficient mTOR kinase activity. This finding links the lysosomal enzymatic defect in Fabry's disease to deregulated autophagy pathways and provides a promising new direction for further studies on the pathomechanism of glomerular injury in Fabry patients.

  8. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation.

    Science.gov (United States)

    Chang, Jaerak; Lee, Seongju; Blackstone, Craig

    2014-12-01

    Autophagy allows cells to adapt to changes in their environment by coordinating the degradation and recycling of cellular components and organelles to maintain homeostasis. Lysosomes are organelles critical for terminating autophagy via their fusion with mature autophagosomes to generate autolysosomes that degrade autophagic materials; therefore, maintenance of the lysosomal population is essential for autophagy-dependent cellular clearance. Here, we have demonstrated that the two most common autosomal recessive hereditary spastic paraplegia gene products, the SPG15 protein spastizin and the SPG11 protein spatacsin, are pivotal for autophagic lysosome reformation (ALR), a pathway that generates new lysosomes. Lysosomal targeting of spastizin required an intact FYVE domain, which binds phosphatidylinositol 3-phosphate. Loss of spastizin or spatacsin resulted in depletion of free lysosomes, which are competent to fuse with autophagosomes, and an accumulation of autolysosomes, reflecting a failure in ALR. Moreover, spastizin and spatacsin were essential components for the initiation of lysosomal tubulation. Together, these results link dysfunction of the autophagy/lysosomal biogenesis machinery to neurodegeneration.

  9. Protecting cells by protecting their vulnerable lysosomes: Identification of a new mechanism for preserving lysosomal functional integrity upon oxidative stress.

    Science.gov (United States)

    Pascua-Maestro, Raquel; Diez-Hermano, Sergio; Lillo, Concepción; Ganfornina, Maria D; Sanchez, Diego

    2017-02-01

    Environmental insults such as oxidative stress can damage cell membranes. Lysosomes are particularly sensitive to membrane permeabilization since their function depends on intraluminal acidic pH and requires stable membrane-dependent proton gradients. Among the catalog of oxidative stress-responsive genes is the Lipocalin Apolipoprotein D (ApoD), an extracellular lipid binding protein endowed with antioxidant capacity. Within the nervous system, cell types in the defense frontline, such as astrocytes, secrete ApoD to help neurons cope with the challenge. The protecting role of ApoD is known from cellular to organism level, and many of its downstream effects, including optimization of autophagy upon neurodegeneration, have been described. However, we still cannot assign a cellular mechanism to ApoD gene that explains how this protection is accomplished. Here we perform a comprehensive analysis of ApoD intracellular traffic and demonstrate its role in lysosomal pH homeostasis upon paraquat-induced oxidative stress. By combining single-lysosome in vivo pH measurements with immunodetection, we demonstrate that ApoD is endocytosed and targeted to a subset of vulnerable lysosomes in a stress-dependent manner. ApoD is functionally stable in this acidic environment, and its presence is sufficient and necessary for lysosomes to recover from oxidation-induced alkalinization, both in astrocytes and neurons. This function is accomplished by preventing lysosomal membrane permeabilization. Two lysosomal-dependent biological processes, myelin phagocytosis by astrocytes and optimization of neurodegeneration-triggered autophagy in a Drosophila in vivo model, require ApoD-related Lipocalins. Our results uncover a previously unknown biological function of ApoD, member of the finely regulated and evolutionary conserved gene family of extracellular Lipocalins. They set a lipoprotein-mediated regulation of lysosomal membrane integrity as a new mechanism at the hub of many cellular

  10. Electrochemical magneto immunosensor based on endogenous β-galactosidase enzyme to determine enterotoxicogenic Escherichia coli F4 (K88) in swine feces using square wave voltammetry.

    Science.gov (United States)

    Viviana Tarditto, Lorena; Alicia Zon, María; García Ovando, Hugo; Roberto Vettorazzi, Nelio; Javier Arévalo, Fernando; Fernández, Héctor

    2017-11-01

    Diseases caused by enterotoxicogenic Escherichia coli F4 (K88) (ETEC F4) are a problem in swine production establishments. Due to the high rate of mortality and morbidity of E. coli infections, a rapid and accurate diagnosis is important in order to choose an appropriate treatment to reduce the economic impact. Therefore, an electrochemical magneto-immunosensor (EMI) was developed to detect and quantify ETEC F4 in swine feces samples through a direct non-competitive immunoassay. ETEC F4 was selectively captured by immunomagnetic separation. The detection principle was based on the activity of β-galactosidase endogenous enzyme (β-gal), which hydrolyses the p-aminophenyl-β-D-galactopyranoside (p-APG) producing p-aminophenol (p-AP), which was oxidized on a carbon screen printed electrode (CSPE) using square wave voltammetry (SWV). All parameters related to construction and electrochemical responses were optimized. The total analysis time to quantify ETEC F4 using the EMI was less than 2h and the limit of detection (LOD) was 33CFUmL -1 . The perceptual relative error (%E r ) was 20%. The magneto-immunosensor was validated versus conventional method of culture and plate count, obtaining a very good agreement. The EMI is simple, fast and economical to detect and quantify ETEC F4 in swine feces samples, being thus a valuable tool in swine production. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Activity of β-Galactosidase and Polygalacturonase in Zucchini Squash (Cucurbita pepo L. Stored at Low Temperatures

    Directory of Open Access Journals (Sweden)

    René Renato Balandrán-Quintana

    2007-01-01

    Full Text Available When fruits are exposed to chilling temperatures, enzymatic systems are affected and normal cell metabolism is altered; cell wall enzymes are the least studied in this respect. Our objective is to determine the effect of storage temperature and/or kind of tissue on the activity of the enzymes polygalacturonase (PG and β-galactosidase (β-gal in zucchini squash (Cucurbita pepo L. subjected to 2.5 and/or 12 °C for 16 days. Exocarp and endocarp samples were analyzed every 4 days for PG and β-gal activities. The highest β-gal activity was found in the exocarp at 12 °C; in both tissues β-gal decreased with time at 2.5 °C, but increased at 12 °C. PG activity was higher in the endocarp (highest activity at 2.5 °C than in the exocarp (highest activity at 12 °C. It was concluded that PG activity in the exocarp constitutes an adequate system for studying the relationship between chilling injury and cell wall biological activity.

  12. Decreased T2 signal in the thalami may be a sign of lysosomal storage disease

    International Nuclear Information System (INIS)

    Autti, Taina; Joensuu, Raimo; Aaberg, Laura

    2007-01-01

    Lysosomal disorders are rare and are caused by genetically transmitted lysosomal enzyme deficiencies. A decreased T2 signal in the thalamus has occasionally been reported. Because the finding of bilateral abnormal signal intensity of the thalamus on T2-weighted images has not been systematically reviewed, and its value as a diagnostic tool critically evaluated, we carried out a systematic review of the literature. Articles in English with 30 trios of keywords were collected from PubMed. Exclusion criteria were lack of conventional T2-weighted images in the protocol and not being a human study. Finally, 111 articles were included. The thalamus was considered affected only if mentioned in the text or in the figure legends. Some 117 patients with various lysosomal diseases and five patients with ceruloplasmin deficiency were reported to have a bilateral decrease in T2 signal intensity. At least one article reported a bilateral decrease in signal intensity of the thalami on T2-weighted images in association with GM1 and GM2 gangliosidosis and with Krabbe's disease, aspartylglucosaminuria, mannosidosis, fucosidosis, and mucolipidosis IV. Furthermore, thalamic alteration was a consistent finding in several types of neuronal ceroid lipofuscinosis (NCL) including CLN1 (infantile NCL), CLN2 (classic late infantile NCL), CLN3 (juvenile NCL), CLN5 (Finnish variant late infantile NCL), and CLN7 (Turkish variant late infantile NCL). A decrease in T2 signal intensity in the thalami seems to be a sign of lysosomal disease. (orig.)

  13. Pathogenic Cascades in Lysosomal Disease – Why so Complex?

    OpenAIRE

    Walkley, Steven U.

    2009-01-01

    Lysosomal disease represents a large group of more than 50 clinically recognized conditions resulting from inborn errors of metabolism affecting the organelle known as the lysosome.The lysosome is an integral part of the larger endosomal/lysosomal system, and is closely allied with the ubiquitin-proteosomal and autophagosomal systems, which together comprise essential cell machinery for substrate degradation and recycling, homeostatic control, as well as signaling. More than two-thirds of lys...

  14. Crosstalk between Lysosomes and Mitochondria in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Nicoletta Plotegher

    2017-12-01

    Full Text Available Parkinson's disease (PD is the most common motor neurodegenerative disorder. In most cases the cause of the disease is unknown, while in about 10% of subjects, it is associated with mutations in a number of different genes. Several different mutations in 15 genes have been identified as causing familial forms of the disease, while many others have been identified as risk factors. A striking number of these genes are either involved in the regulation of mitochondrial function or of endo-lysosomal pathways. Mutations affecting one of these two pathways are often coupled with defects in the other pathway, suggesting a crosstalk between them. Moreover, PD-linked mutations in genes encoding proteins with other functions are frequently associated with defects in mitochondrial and/or autophagy/lysosomal function as a secondary effect. Even toxins that impair mitochondrial function and cause parkinsonian phenotypes, such as rotenone, also impair lysosomal function. In this review, we explore the reciprocal relationship between mitochondrial and lysosomal pathways in PD. We will discuss the impact of mitochondrial dysfunction on the lysosomal compartment and of endo-lysosomal defects on mitochondrial function, and explore the roles of both causative genes and genes that are risk factors for PD. Understanding the pathways that govern these interactions should help to define a framework to understand the roles and mechanisms of mitochondrial and lysosomal miscommunication in the pathophysiology of PD.

  15. Intestinal enzyme distribution after supralethal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Becciolini, A; Gerber, G B; Buracchi, A; Deroo, J [Florence Univ. (Italy). Istituto di Radiologia; Centre d' Etude de l' Energie Nucleaire, Mol (Belgium). Dept. de Radiobiologie)

    1977-07-01

    The activity of some intestinal enzymes has been studied after 2 kR irradiation. Brush border enzymes, maltase and leucineaminopeptidase (LAP) show an increase 20 hours after irradiation, while after 72 hours their activities are reduced to very low levels. Lysosomal enzymes show a completely different behaviour: acid phosphatase activity increases only 72 hours after irradiation, whereas ..beta.. glucuronidase increases significantly after 20 hours and reaches values two or three times higher than controls after 72 hours. The histologic picture at the first interval after irradiation shows gross alterations in the crypt region, but the villi appear nearly normal. Seventy-two hours after irradiation the whole epithelium is affected and very numerous leukocytes are present in the stroma.

  16. Analyzing Lysosome-Related Organelles by Electron Microscopy

    KAUST Repository

    Hurbain, Ilse; Romao, Maryse; Bergam, Ptissam; Heiligenstein, Xavier; Raposo, Graç a

    2017-01-01

    and their dynamics at the cellular level. Deciphering the biogenesis and functions of lysosomes and lysosome-related organelles (LROs) and their dysfunctions requires their visualization and detailed characterization at high resolution by electron microscopy. Here

  17. β-galactosidase Production by Aspergillus niger ATCC 9142 Using Inexpensive Substrates in Solid-State Fermentation: Optimization by Orthogonal Arrays Design.

    Science.gov (United States)

    Kazemi, Samaneh; Khayati, Gholam; Faezi-Ghasemi, Mohammad

    2016-01-01

    Enzymatic hydrolysis of lactose is one of the most important biotechnological processes in the food industry, which is accomplished by enzyme β-galactosidase (β-gal, β-D-galactoside galactohydrolase, EC 3.2.1.23), trivial called lactase. Orthogonal arrays design is an appropriate option for the optimization of biotechnological processes for the production of microbial enzymes. Design of experimental (DOE) methodology using Taguchi orthogonal array (OA) was employed to screen the most significant levels of parameters, including the solid substrates (wheat straw, rice straw, and peanut pod), the carbon/nitrogen (C/N) ratios, the incubation time, and the inducer. The level of β-gal production was measured by a photometric enzyme activity assay using the artificial substrate ortho-Nitrophenyl-β-D-galactopyranoside. The results showed that C/N ratio (0.2% [w/v], incubation time (144 hour), and solid substrate (wheat straw) were the best conditions determined by the design of experiments using the Taguchi approach. Our finding showed that the use of rice straw and peanut pod, as solid-state substrates, led to 2.041-folds increase in the production of the enzyme, as compared to rice straw. In addition, the presence of an inducer did not have any significant impact on the enzyme production levels.

  18. Activation of lysosomal cathepsins in pregnant bovine leukocytes.

    Science.gov (United States)

    Talukder, Md Abdus Shabur; Balboula, Ahmed Zaky; Shirozu, Takahiro; Kim, Sung Woo; Kunii, Hiroki; Suzuki, Toshiyuki; Ito, Tsukino; Kimura, Koji; Takahashi, Masashi

    2018-06-01

    In ruminants, interferon-tau (IFNT) - mediated expression of interferon-stimulated genes in peripheral blood leukocytes (PBLs) can indicate pregnancy. Recently, type 1 IFN-mediated activation of lysosomes and lysosomal cathepsins (CTSs) was observed in immune cells. This study investigated the status of lysosomal CTSs and lysosomes in PBLs collected from pregnant (P) and non-pregnant (NP) dairy cows, and conducted in vitro IFNT stimulation of NP blood leukocytes. Blood samples were collected 0, 7, 14 and 18 days post-artificial insemination, and the peripheral blood mononuclear cells (PBMCs) and polymorphonuclear granulocytes (PMNs) separated. The fluorescent activity of CTSB and CTSK in PMNs significantly increased with the progress of pregnancy, especially on day 18. In vitro supplementation of IFNT significantly increased the activities of CTSB and CTSK in NP PBMCs and PMNs. CTSB expression was significantly higher in PBMCs and PMNs collected from P day-18 cows than from NP cows, whereas there was no difference in CTSK expression. IFNT increased CTSB expression but did not affect CTSK expression. Immunodetection showed an increase of CTSB in P day-18 PBMCs and PMNs. In vitro stimulation of IFNT increased CTSB in NP PBMCs and PMNs. Lysosomal acidification showed a significant increase in P day-18 PBMCs and PMNs. IFNT also stimulated lysosomal acidification. Expressions of lysosome-associated membrane protein (LAMP) 1 and LAMP2 were significantly higher in P day-18 PBMCs and PMNs. The results suggest that pregnancy-specific activation of lysosomal functions by CTS activation in blood leukocytes is highly associated with IFNT during maternal and fetal recognition of pregnancy. © 2018 Society for Reproduction and Fertility.

  19. Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG.

    Science.gov (United States)

    Takala, T M; Saris, P E J; Tynkkynen, S S H

    2003-01-01

    A new food-grade host/vector system for Lactobacillus casei based on lactose selection was constructed. The wild-type non-starter host Lb. casei strain E utilizes lactose via a plasmid-encoded phosphotransferase system. For food-grade cloning, a stable lactose-deficient mutant was constructed by deleting a 141-bp fragment from the phospho-beta-galactosidase gene lacG via gene replacement. The deletion resulted in an inactive phospho-beta-galactosidase enzyme with an internal in-frame deletion of 47 amino acids. A complementation plasmid was constructed containing a replicon from Lactococcus lactis, the lacG gene from Lb. casei, and the constitutive promoter of pepR for lacG expression from Lb. rhamnosus. The expression of the lacG gene from the resulting food-grade plasmid pLEB600 restored the ability of the lactose-negative mutant strain to grow on lactose to the wild-type level. The vector pLEB600 was used for expression of the proline iminopeptidase gene pepI from Lb. helveticus in Lb. casei. The results show that the food-grade expression system reported in this paper can be used for expression of foreign genes in Lb. casei.

  20. Lysosomes and unfolded protein response, determinants of differential resistance of melanoma cells to vinca alkaloids.

    Science.gov (United States)

    Vincent, Laure-Anais; Attaoua, Chaker; Bellis, Michel; Rozkydalova, Lucie; Hadj-Kaddour, Kamel; Vian, Laurence; Cuq, Pierre

    2015-04-01

    On account of its strong ability to become chemoresistant after a primary response to drugs, malignant melanoma (MM) remains a therapeutic challenge. This study focuses on acquired resistance to vinca alkaloids (VAs) using VA-resistant MM cell lines (CAL1R-VCR, CAL1R-VDS, and CAL1R-VRB), established by long-term continuous exposure of parental CAL1-wt cells to vincristine (VCR), vindesine (VDS), or vinorelbine (VRB), respectively. Transcriptomic profiling using rma and rdam methods led to distinguish two cell groups: CAL1R-VCR and CAL1R-VDS, CAL1R-VRB, and CAL1-wt. mgsa of the specifically altered genes in the first group evidenced the GO terms 'lysosomal lumen' and 'vacuolar lumen' linked to underexpressed genes, and 'endoplasmic reticulum (ER) stress response' associated with overexpressed genes. A specific reduction of lysosomal enzymes, independent of acidic vacuole organelle (AVO) turnover, was observed (LTG probe) in CAL1R-VCR and CAL1R-VDS cells. It was associated with the specific lowering of cathepsin B and L, known to be involved in the lysosomal pathway of apoptosis. Confirming gene profiling, the same groups (CAL1R-VCR and CAL1R-VDS, CAL1-wt and CAL1R-VRB) could be distinguished regarding the VA-mediated changes on mean size areas and on acidic compartment volumes. These two parameters were reduced in CAL1R-VCR and CAL1R-VDS cells, suggesting a smaller AVO accumulation and thus a reduced sensitivity to lysosomal membrane permeabilization-mediated apoptosis. In addition, 'ER stress response' inhibition by tauroursodeoxycholic acid induced a higher VA sensitization of the first cell group. In conclusion, lysosomes and unfolded protein response could be key determinants of the differential resistance of MM to VAs. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  1. Purification of Lysosomes Using Supraparamagnetic Iron Oxide Nanoparticles (SPIONs).

    Science.gov (United States)

    Rofe, Adam P; Pryor, Paul R

    2016-04-01

    Lysosomes can be rapidly isolated from tissue culture cells using supraparamagnetic iron oxide particles (SPIONs). In this protocol, colloidal iron dextran (FeDex) particles, a type of SPION, are taken up by cultured mouse macrophage cells via the endocytic pathway. The SPIONs accumulate in lysosomes, the end point of the endocytic pathway, permitting the lysosomes to be isolated magnetically. The purified lysosomes are suitable for in vitro fusion assays or for proteomic analysis. © 2016 Cold Spring Harbor Laboratory Press.

  2. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Ana, E-mail: baptista-ana@hotmail.com; Magalhães, Pedro; Leão, Sílvia; Carvalho, Sofia; Mateus, Pedro; Moreira, Ilídio [Centro Hospitalar de Trás-os-Montes e Alto Douro, Unidade de Vila Real (Portugal)

    2015-08-15

    Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m{sup 2} for women or ≥ 116 g/m{sup 2} for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. A total of 47 patients with a mean left ventricular mass index of 141.1 g/m{sup 2} (± 28.5; 99.2 to 228.5 g/m{sup 2}] were included. Most of the patients were females (51.1%). Nine (19.1%) showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5), a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5)

  3. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    International Nuclear Information System (INIS)

    Baptista, Ana; Magalhães, Pedro; Leão, Sílvia; Carvalho, Sofia; Mateus, Pedro; Moreira, Ilídio

    2015-01-01

    Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m 2 for women or ≥ 116 g/m 2 for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. A total of 47 patients with a mean left ventricular mass index of 141.1 g/m 2 (± 28.5; 99.2 to 228.5 g/m 2 ] were included. Most of the patients were females (51.1%). Nine (19.1%) showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5), a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5)

  4. Activation of lysosomal P2X4 by ATP transported into lysosomes via VNUT/SLC17A9 using V‐ATPase generated voltage gradient as the driving force

    Science.gov (United States)

    Zhong, Xi Zoë; Cao, Qi; Sun, Xue

    2016-01-01

    Key points SLC17A9 proteins function as a lysosomal ATP transporter responsible for lysosomal ATP accumulation.P2X4 receptors act as lysosomal ion channels activated by luminal ATP.SLC17A9‐mediated ATP transport across the lysosomal membrane is suppressed by Bafilomycin A1, the V‐ATPase inhibitor.SLC17A9 mainly uses voltage gradient but not pH gradient generated by the V‐ATPase as the driving force to transport ATP into the lysosome to activate P2X4. Abstract The lysosome contains abundant ATP which plays important roles in lysosome functions and in cell signalling. Recently, solute carrier family 17 member 9 (SLC17A9, also known as VNUT for vesicular nucleotide transporter) proteins were suggested to function as a lysosomal ATP transporter responsible for lysosomal ATP accumulation, and P2X4 receptors were suggested to be lysosomal ion channels that are activated by luminal ATP. However, the molecular mechanism of SLC17A9 transporting ATP and the regulatory mechanism of lysosomal P2X4 are largely unknown. In this study, we report that SLC17A9‐mediated ATP transport across lysosomal membranes is suppressed by Bafilomycin A1, the V‐ATPase inhibitor. By measuring P2X4 activity, which is indicative of ATP transport across lysosomal membranes, we further demonstrated that SLC17A9 mainly uses voltage gradient but not pH gradient as the driving force to transport ATP into lysosomes. This study provides a molecular mechanism for lysosomal ATP transport mediated by SLC17A9. It also suggests a regulatory mechanism of lysosomal P2X4 by SLC17A9. PMID:27477609

  5. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting β-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c

    Directory of Open Access Journals (Sweden)

    Wanarska Marta

    2012-08-01

    Full Text Available Abstract Background D-Tagatose is a natural monosaccharide which can be used as a low-calorie sugar substitute in food, beverages and pharmaceutical products. It is also currently being tested as an anti-diabetic and obesity control drug. D-Tagatose is a rare sugar, but it can be manufactured by the chemical or enzymatic isomerization of D-galactose obtained by a β-D-galactosidase-catalyzed hydrolysis of milk sugar lactose and the separation of D-glucose and D-galactose. L-Arabinose isomerases catalyze in vitro the conversion of D-galactose to D-tagatose and are the most promising enzymes for the large-scale production of D-tagatose. Results In this study, the araA gene from psychrotolerant Antarctic bacterium Arthrobacter sp. 22c was isolated, cloned and expressed in Escherichia coli. The active form of recombinant Arthrobacter sp. 22c L-arabinose isomerase consists of six subunits with a combined molecular weight of approximately 335 kDa. The maximum activity of this enzyme towards D-galactose was determined as occurring at 52°C; however, it exhibited over 60% of maximum activity at 30°C. The recombinant Arthrobacter sp. 22c L-arabinose isomerase was optimally active at a broad pH range of 5 to 9. This enzyme is not dependent on divalent metal ions, since it was only marginally activated by Mg2+, Mn2+ or Ca2+ and slightly inhibited by Co2+ or Ni2+. The bioconversion yield of D-galactose to D-tagatose by the purified L-arabinose isomerase reached 30% after 36 h at 50°C. In this study, a recombinant Pichia pastoris yeast strain secreting β-D-galactosidase Arthrobacter chlorophenolicus was also constructed. During cultivation of this strain in a whey permeate, lactose was hydrolyzed and D-glucose was metabolized, whereas D-galactose was accumulated in the medium. Moreover, cultivation of the P. pastoris strain secreting β-D-galactosidase in a whey permeate supplemented with Arthrobacter sp. 22c L-arabinose isomerase resulted in a 90% yield

  6. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting β-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c.

    Science.gov (United States)

    Wanarska, Marta; Kur, Józef

    2012-08-23

    D-Tagatose is a natural monosaccharide which can be used as a low-calorie sugar substitute in food, beverages and pharmaceutical products. It is also currently being tested as an anti-diabetic and obesity control drug. D-Tagatose is a rare sugar, but it can be manufactured by the chemical or enzymatic isomerization of D-galactose obtained by a β-D-galactosidase-catalyzed hydrolysis of milk sugar lactose and the separation of D-glucose and D-galactose. L-Arabinose isomerases catalyze in vitro the conversion of D-galactose to D-tagatose and are the most promising enzymes for the large-scale production of D-tagatose. In this study, the araA gene from psychrotolerant Antarctic bacterium Arthrobacter sp. 22c was isolated, cloned and expressed in Escherichia coli. The active form of recombinant Arthrobacter sp. 22c L-arabinose isomerase consists of six subunits with a combined molecular weight of approximately 335 kDa. The maximum activity of this enzyme towards D-galactose was determined as occurring at 52°C; however, it exhibited over 60% of maximum activity at 30°C. The recombinant Arthrobacter sp. 22c L-arabinose isomerase was optimally active at a broad pH range of 5 to 9. This enzyme is not dependent on divalent metal ions, since it was only marginally activated by Mg2+, Mn2+ or Ca2+ and slightly inhibited by Co2+ or Ni2+. The bioconversion yield of D-galactose to D-tagatose by the purified L-arabinose isomerase reached 30% after 36 h at 50°C. In this study, a recombinant Pichia pastoris yeast strain secreting β-D-galactosidase Arthrobacter chlorophenolicus was also constructed. During cultivation of this strain in a whey permeate, lactose was hydrolyzed and D-glucose was metabolized, whereas D-galactose was accumulated in the medium. Moreover, cultivation of the P. pastoris strain secreting β-D-galactosidase in a whey permeate supplemented with Arthrobacter sp. 22c L-arabinose isomerase resulted in a 90% yield of lactose hydrolysis, the complete utilization

  7. Activity-dependent trafficking of lysosomes in dendrites and dendritic spines.

    Science.gov (United States)

    Goo, Marisa S; Sancho, Laura; Slepak, Natalia; Boassa, Daniela; Deerinck, Thomas J; Ellisman, Mark H; Bloodgood, Brenda L; Patrick, Gentry N

    2017-08-07

    In neurons, lysosomes, which degrade membrane and cytoplasmic components, are thought to primarily reside in somatic and axonal compartments, but there is little understanding of their distribution and function in dendrites. Here, we used conventional and two-photon imaging and electron microscopy to show that lysosomes traffic bidirectionally in dendrites and are present in dendritic spines. We find that lysosome inhibition alters their mobility and also decreases dendritic spine number. Furthermore, perturbing microtubule and actin cytoskeletal dynamics has an inverse relationship on the distribution and motility of lysosomes in dendrites. We also find trafficking of lysosomes is correlated with synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. Strikingly, lysosomes traffic to dendritic spines in an activity-dependent manner and can be recruited to individual spines in response to local activation. These data indicate the position of lysosomes is regulated by synaptic activity and thus plays an instructive role in the turnover of synaptic membrane proteins. © 2017 Goo et al.

  8. alpha-Tocopheryl succinate promotes selective cell death induced by vitamin K3 in combination with ascorbate.

    Science.gov (United States)

    Tomasetti, M; Strafella, E; Staffolani, S; Santarelli, L; Neuzil, J; Guerrieri, R

    2010-04-13

    A strategy to reduce the secondary effects of anti-cancer agents is to potentiate the therapeutic effect by their combination. A combination of vitamin K3 (VK3) and ascorbic acid (AA) exhibited an anti-cancer synergistic effect, associated with extracellular production of H(2)O(2) that promoted cell death. The redox-silent vitamin E analogue alpha-tocopheryl succinate (alpha-TOS) was used in combination with VK3 and AA to evaluate their effect on prostate cancer cells. Prostate cancer cells were sensitive to alpha-TOS and VK3 treatment, but resistant to AA upto 3.2 mM. When combined, a synergistic effect was found for VK3-AA, whereas alpha-TOS-VK3 and alpha-TOS-AA combination showed an antagonist and additive effect, respectively. However, sub-lethal doses of AA-VK3 combination combined with a sub-toxic dose of alpha-TOS showed to induce efficient cell death that resembles autoschizis. Associated with this cell demise, lipid peroxidation, DNA damage, cytoskeleton alteration, lysosomal-mitochondrial perturbation, and release of cytochrome c without caspase activation were observed. Inhibition of lysosomal proteases did not attenuate cell death induced by the combined agents. Furthermore, cell deaths by apoptosis and autoschizis were detected. These finding support the emerging idea that synergistic combinations of some agents can overcome toxicity and other side-effects associated with high doses of single drugs creating the opportunity for therapeutically relevant selectivity.

  9. Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications.

    Science.gov (United States)

    Logan, Randall; Funk, Ryan S; Axcell, Erick; Krise, Jeffrey P

    2012-08-01

    Many commercially available, weakly basic drugs have been shown to be lysosomotropic, meaning they are subject to extensive sequestration in lysosomes through an ion trapping-type mechanism. The extent of lysosomal trapping of a drug is an important therapeutic consideration because it can influence both activity and pharmacokinetic disposition. The administration of certain drugs can alter lysosomes such that their accumulation capacity for co-administered and/or secondarily administered drugs is altered. In this review the authors explore what is known regarding the mechanistic basis for drug-drug interactions involving lysosomes. Specifically, the authors address the influence of drugs on lysosomal pH, volume and lipid processing. Many drugs are known to extensively accumulate in lysosomes and significantly alter their structure and function; however, the therapeutic and toxicological implications of this remain controversial. The authors propose that drug-drug interactions involving lysosomes represent an important potential source of variability in drug activity and pharmacokinetics. Most evaluations of drug-drug interactions involving lysosomes have been performed in cultured cells and isolated tissues. More comprehensive in vivo evaluations are needed to fully explore the impact of this drug-drug interaction pathway on therapeutic outcomes.

  10. Generation and Characterization of Environmentally Sensitive Variants of the β-Galactosidase from Lactobacillus delbrueckii subsp. bulgaricus

    Science.gov (United States)

    Yoast, Sienna; Adams, Robin M.; Mainzer, Stanley E.; Moon, Keith; Palombella, Anthony L.; Schmidt, Brian F.

    1994-01-01

    A method is described for generating and screening variants of the β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus sensitive to several environmental stresses, with potential application in the food industry. Chemical mutagenesis with hydroxylamine or methoxylamine was performed on the β-galactosidase gene carried on an Escherichia coli expression vector. Mutants sensitive to cold, heat, low pH, low magnesium concentration, and the presence of urea were isolated by screening for reduced color development on β-galactosidase indicator plates. The mutations responsible for three variant β-galactosidases were localized, and the base substitutions were determined by DNA sequencing. The amino acid alterations associated with one low-pH-sensitive (pHs) and two urea-sensitive (Us) variants correspond to P584L (pHs1), G400S/R479Q (Us26), and G167E/E168K/E363K/V492M (Us17), respectively. Mutant pHs1 is also heat, cold, low magnesium, and urea sensitive; Us26 is also cold sensitive; and Us17 is also low-pH sensitive. PMID:16349230

  11. Divergent clinical outcomes of alpha-glucosidase enzyme replacement therapy in two siblings with infantile-onset Pompe disease treated in the symptomatic or pre-symptomatic state.

    Science.gov (United States)

    Matsuoka, Takashi; Miwa, Yoshiyuki; Tajika, Makiko; Sawada, Madoka; Fujimaki, Koichiro; Soga, Takashi; Tomita, Hideshi; Uemura, Shigeru; Nishino, Ichizo; Fukuda, Tokiko; Sugie, Hideo; Kosuga, Motomichi; Okuyama, Torayuki; Umeda, Yoh

    2016-12-01

    Pompe disease is an autosomal recessive, lysosomal glycogen storage disease caused by acid α-glucosidase deficiency. Infantile-onset Pompe disease (IOPD) is the most severe form and is characterized by cardiomyopathy, respiratory distress, hepatomegaly, and skeletal muscle weakness. Untreated, IOPD generally results in death within the first year of life. Enzyme replacement therapy (ERT) with recombinant human acid alpha glucosidase (rhGAA) has been shown to markedly improve the life expectancy of patients with IOPD. However, the efficacy of ERT in patients with IOPD is affected by the presence of symptoms and cross-reactive immunologic material (CRIM) status. We have treated two siblings with IOPD with ERT at different ages: the first was symptomatic and the second was asymptomatic. The female proband (Patient 1) was diagnosed with IOPD and initiated ERT at 4 months of age. Her younger sister (Patient 2) was diagnosed with IOPD at 10 days of age and initiated ERT at Day 12. Patient 1, now 6 years old, is alive but bedridden, and requires 24-hour invasive ventilation due to gradually progressive muscle weakness. In Patient 2, typical symptoms of IOPD, including cardiac failure, respiratory distress, progressive muscle weakness, hepatomegaly and myopathic facial features were largely absent during the first 12 months of ERT. Her cardiac function and mobility were well-maintained for the first 3 years, and she had normal motor development. However, she developed progressive hearing impairment and muscle weakness after 3 years of ERT. Both siblings have had low anti-rhGAA immunoglobulin G (IgG) antibody titers during ERT and have tolerated the treatment well. These results suggest that initiation of ERT during the pre-symptomatic period can prevent and/or attenuate the progression of IOPD, including cardiomyopathy, respiratory distress, and muscle weakness for first several years of ERT. However, to improve the long-term efficacy of ERT for IOPD, new strategies

  12. Class IA phosphatidylinositol 3-kinase p110α regulates phagosome maturation.

    Directory of Open Access Journals (Sweden)

    Emily P Thi

    Full Text Available Of the various phosphatidylinositol 3- kinases (PI3Ks, only the class III enzyme Vps34 has been shown to regulate phagosome maturation. During studies of phagosome maturation in THP-1 cells deficient in class IA PI3K p110α, we discovered that this PI3K isoform is required for vacuole maturation to progress beyond acquisition of Rab7 leading to delivery of lysosomal markers. Bead phagosomes from THP-1 cells acquired p110α and contained PI3P and PI(3,4,5P3; however, p110α and PI(3,4,5P3 levels in phagosomes from p110α knockdown cells were decreased. Phagosomes from p110α knock down cells showed normal acquisition of both Rab5 and EEA-1, but were markedly deficient in the lysosomal markers LAMP-1 and LAMP-2, and the lysosomal hydrolase, β-galactosidase. Phagosomes from p110α deficient cells also displayed impaired fusion with Texas Red dextran-loaded lysosomes. Despite lacking lysosomal components, phagosomes from p110α deficient cells recruited normal levels of Rab7, Rab-interacting lysosomal protein (RILP and homotypic vacuole fusion and protein sorting (HOPs components Vps41 and Vps16. The latter observations demonstrated that phagosomal Rab7 was active and capable of recruiting effectors involved in membrane fusion. Nevertheless, active Rab7 was not sufficient to bring about the delivery of lysosomal proteins to the maturing vacuole, which is shown for the first time to be dependent on a class I PI3K.

  13. Mutation Analysis of 16 Mucolipidosis II and III Alpha/Beta Chinese Children Revealed Genotype-Phenotype Correlations.

    Directory of Open Access Journals (Sweden)

    Shuang Liu

    Full Text Available Mucolipidosis II and III alpha/beta are autosomal recessive diseases caused by mutations in the GNPTAB gene which encodes the α and β subunits of the N-acetylglucosamine-1-phosphotransferase. Clinically, mucolipidosis II (MLII is characterized by severe developmental delay, coarse facial features, skeletal deformities, and other systemic involvement. In contrast, MLIII alpha/beta is a much milder disorder, the symptoms of which include progressive joint stiffness, short stature, and scoliosis. To study the relationship between the genotypes and phenotypes of the MLII and MLIII alpha/beta patients, we analyzed the GNPTAB gene in 16 Chinese MLII and MLIII alpha/beta patients. We collected and analyzed the patients' available clinical data and all showed clinical features typical of MLII or MLIII alpha/beta. Moreover, the activity of several lysosomal enzymes was measured in the plasma and finally the GNPTAB gene was sequenced. We detected 30 mutant alleles out of 32 alleles in our patients. These include 10 new mutations (c.99delC, c.118-1G>A, c.523_524delAAinsG, c.1212C>G, c.2213C>A, c.2345C>T, c.2356C>T, c.2455G>T, c.2821dupA, and c.3136-2A>G and 5 previously reported mutations (c.1071G>A, c.1090C>T, c.2715+1G>A, c.2550_2554delGAAA, and c.3613C>T. The most frequent mutation was the splicing mutation c.2715+1G>A, which accounted for 28% of the mutations. The majority of the mutations reported in the Chinese patients (57% were located on exon 13 or in its intronic flanking regions.

  14. The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes

    Science.gov (United States)

    Garrity, Abigail G; Wang, Wuyang; Collier, Crystal MD; Levey, Sara A; Gao, Qiong; Xu, Haoxing

    2016-01-01

    Impaired homeostasis of lysosomal Ca2+ causes lysosome dysfunction and lysosomal storage diseases (LSDs), but the mechanisms by which lysosomes acquire and refill Ca2+ are not known. We developed a physiological assay to monitor lysosomal Ca2+ store refilling using specific activators of lysosomal Ca2+ channels to repeatedly induce lysosomal Ca2+ release. In contrast to the prevailing view that lysosomal acidification drives Ca2+ into the lysosome, inhibiting the V-ATPase H+ pump did not prevent Ca2+ refilling. Instead, pharmacological depletion or chelation of Endoplasmic Reticulum (ER) Ca2+ prevented lysosomal Ca2+ stores from refilling. More specifically, antagonists of ER IP3 receptors (IP3Rs) rapidly and completely blocked Ca2+ refilling of lysosomes, but not in cells lacking IP3Rs. Furthermore, reducing ER Ca2+ or blocking IP3Rs caused a dramatic LSD-like lysosome storage phenotype. By closely apposing each other, the ER may serve as a direct and primary source of Ca2+for the lysosome. DOI: http://dx.doi.org/10.7554/eLife.15887.001 PMID:27213518

  15. The P2Y12 Receptor Antagonist Ticagrelor Reduces Lysosomal pH and Autofluorescence in Retinal Pigmented Epithelial Cells From the ABCA4-/- Mouse Model of Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Wennan Lu

    2018-04-01

    Full Text Available The accumulation of partially degraded lipid waste in lysosomal-related organelles may contribute to pathology in many aging diseases. The presence of these lipofuscin granules is particularly evident in the autofluorescent lysosome-associated organelles of the retinal pigmented epithelial (RPE cells, and may be related to early stages of age-related macular degeneration. While lysosomal enzymes degrade material optimally at acidic pH levels, lysosomal pH is elevated in RPE cells from the ABCA4-/- mouse model of Stargardt’s disease, an early onset retinal degeneration. Lowering lysosomal pH through cAMP-dependent pathways decreases accumulation of autofluorescent material in RPE cells in vitro, but identification of an appropriate receptor is crucial for manipulating this pathway in vivo. As the P2Y12 receptor for ADP is coupled to the inhibitory Gi protein, we asked whether blocking the P2Y12 receptor with ticagrelor could restore lysosomal acidity and reduce autofluorescence in compromised RPE cells from ABCA4-/- mice. Oral delivery of ticagrelor giving rise to clinically relevant exposure lowered lysosomal pH in these RPE cells. Ticagrelor also partially reduced autofluorescence in the RPE cells of ABCA4-/- mice. In vitro studies in ARPE-19 cells using more specific antagonists AR-C69931 and AR-C66096 confirmed the importance of the P2Y12 receptor for lowering lysosomal pH and reducing autofluorescence. These observations identify P2Y12 receptor blockade as a potential target to lower lysosomal pH and clear lysosomal waste in RPE cells.

  16. Development of a sensitive chemiluminometric assay for the detection of beta-galactosidase in permeabilized coliform bacteria and comparison with fluorometry and colorimetry.

    Science.gov (United States)

    Van Poucke, S O; Nelis, H J

    1995-01-01

    We developed a chemiluminometric assay of beta-galactosidase in coliform bacteria, using a phenylgalactose-substituted 1,2-dioxetane derivative as a substrate. Permeabilization of cells is required to ensure the efficient cellular uptake of this compound. By this method, one coliform seeded in 100 ml of sterile water can be detected after a 6- to 9-h propagation phase followed by a 45-min enzyme assay in the presence of polymyxin B. Compared with fluorometry and colorimetry, chemiluminometry afforded 4- and 1,000-fold increases in sensitivity and 1- and 6-h increases in the speed of detection, respectively. PMID:8534120

  17. Screening for late-onset Pompe disease in western Denmark

    DEFF Research Database (Denmark)

    Hansen, Julie Schjødtz; Pedersen, E G; Gaist, D

    2018-01-01

    OBJECTIVE: Late-onset Pompe disease (LOPD) is a rare autosomal recessively inherited metabolic myopathy caused by reduced activity of the lysosomal enzyme alpha-glucosidase. In a previous screening study at two large neuromuscular university clinics in Denmark, three patients with LOPD were...

  18. Lysosomes in cancer-living on the edge (of the cell).

    Science.gov (United States)

    Hämälistö, Saara; Jäättelä, Marja

    2016-04-01

    The lysosomes have definitely polished their status inside the cell. Being discovered as the last resort of discarded cellular biomass, the steady rising of this versatile signaling organelle is currently ongoing. This review discusses the recent data on the unconventional functions of lysosomes, focusing mainly on the less studied lysosomes residing in the cellular periphery. We emphasize our discussion on the emerging paths the lysosomes have taken in promoting cancer progression to metastatic disease. Finally, we address how the altered cancerous lysosomes in metastatic cancers may be specifically targeted and what are the pending questions awaiting for elucidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes.

    Science.gov (United States)

    Lee, Sook-Jeong; Koh, Jae-Young

    2010-10-26

    Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress.Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity.The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the pathogenesis of various neurological

  20. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes

    Directory of Open Access Journals (Sweden)

    Lee Sook-Jeong

    2010-10-01

    Full Text Available Abstract Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress. Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity. The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the