WorldWideScience

Sample records for lysine methyltransferases g9a

  1. Discovery of Potent and Selective Inhibitors for G9a-Like Protein (GLP) Lysine Methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yan; Li, Fengling; Babault, Nicolas; Dong, Aiping; Zeng, Hong; Wu, Hong; Chen, Xin; Arrowsmith, Cheryl H.; Brown, Peter J.; Liu, Jing; Vedadi, Masoud; Jin, Jian

    2017-02-14

    G9a-like protein (GLP) and G9a are highly homologous protein lysine methyltransferases (PKMTs) sharing approximately 80% sequence identity in their catalytic domains. GLP and G9a form a heterodimer complex and catalyze mono- and dimethylation of histone H3 lysine 9 and nonhistone substrates. Although they are closely related, GLP and G9a possess distinct physiological and pathophysiological functions. Thus, GLP or G9a selective small-molecule inhibitors are useful tools to dissect their distinct biological functions. We previously reported potent and selective G9a/GLP dual inhibitors including UNC0638 and UNC0642. Here we report the discovery of potent and selective GLP inhibitors including 4 (MS0124) and 18 (MS012), which are >30-fold and 140-fold selective for GLP over G9a and other methyltransferases, respectively. The cocrystal structures of GLP and G9a in the complex with either 4 or 18 displayed virtually identical binding modes and interactions, highlighting the challenges in structure-based design of selective inhibitors for either enzyme.

  2. Protein lysine methyltransferase G9a acts on non-histone targets

    Science.gov (United States)

    Rathert, Philipp; Dhayalan, Arunkumar; Murakami, Marie; Zhang, Xing; Tamas, Raluca; Jurkowska, Renata; Komatsu, Yasuhiko; Shinkai, Yoichi; Cheng, Xiaodong; Jeltsch, Albert

    2009-01-01

    By methylation of peptide arrays, we determined the specificity profile of the protein methyltransferase G9a. We show that it mostly recognizes an Arg-Lys sequence and that its activity is inhibited by methylation of the arginine residue. Using the specificity profile, we identified new non-histone protein targets of G9a, including CDYL1, WIZ, ACINUS and G9a (automethylation), as well as peptides derived from CSB. We demonstrate potential downstream signaling pathways for methylation of non-histone proteins. PMID:18438403

  3. Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells

    Directory of Open Access Journals (Sweden)

    Sharma Shikhar

    2012-01-01

    Full Text Available Abstract Background DNA methylation, histone modifications and nucleosome occupancy act in concert for regulation of gene expression patterns in mammalian cells. Recently, G9a, a H3K9 methyltransferase, has been shown to play a role in establishment of DNA methylation at embryonic gene targets in ES cells through recruitment of de novo DNMT3A/3B enzymes. However, whether G9a plays a similar role in maintenance of DNA methylation in somatic cells is still unclear. Results Here we show that G9a is not essential for maintenance of DNA methylation in somatic cells. Knockdown of G9a has no measurable effect on DNA methylation levels at G9a-target loci. DNMT3A/3B remain stably anchored to nucleosomes containing methylated DNA even in the absence of G9a, ensuring faithful propagation of methylated states in cooperation with DNMT1 through somatic divisions. Moreover, G9a also associates with nucleosomes in a DNMT3A/3B and DNA methylation-independent manner. However, G9a knockdown synergizes with pharmacologic inhibition of DNMTs resulting in increased hypomethylation and inhibition of cell proliferation. Conclusions Taken together, these data suggest that G9a is not involved in maintenance of DNA methylation in somatic cells but might play a role in re-initiation of de novo methylation after treatment with hypomethylating drugs, thus serving as a potential target for combinatorial treatments strategies involving DNMTs inhibitors.

  4. The Histone Methyltransferase Inhibitor A-366 Uncovers a Role for G9a/GLP in the Epigenetics of Leukemia.

    Directory of Open Access Journals (Sweden)

    William N Pappano

    Full Text Available Histone methyltransferases are epigenetic regulators that modify key lysine and arginine residues on histones and are believed to play an important role in cancer development and maintenance. These epigenetic modifications are potentially reversible and as a result this class of enzymes has drawn great interest as potential therapeutic targets of small molecule inhibitors. Previous studies have suggested that the histone lysine methyltransferase G9a (EHMT2 is required to perpetuate malignant phenotypes through multiple mechanisms in a variety of cancer types. To further elucidate the enzymatic role of G9a in cancer, we describe herein the biological activities of a novel peptide-competitive histone methyltransferase inhibitor, A-366, that selectively inhibits G9a and the closely related GLP (EHMT1, but not other histone methyltransferases. A-366 has significantly less cytotoxic effects on the growth of tumor cell lines compared to other known G9a/GLP small molecule inhibitors despite equivalent cellular activity on methylation of H3K9me2. Additionally, the selectivity profile of A-366 has aided in the discovery of a potentially important role for G9a/GLP in maintenance of leukemia. Treatment of various leukemia cell lines in vitro resulted in marked differentiation and morphological changes of these tumor cell lines. Furthermore, treatment of a flank xenograft leukemia model with A-366 resulted in growth inhibition in vivo consistent with the profile of H3K9me2 reduction observed. In summary, A-366 is a novel and highly selective inhibitor of G9a/GLP that has enabled the discovery of a role for G9a/GLP enzymatic activity in the growth and differentiation status of leukemia cells.

  5. Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis

    OpenAIRE

    Wang, Lifeng; Xu, Shiliyang; Lee, Ji-Eun; Baldridge, Anne; Grullon, Sean; Peng, Weiqun; Ge, Kai

    2012-01-01

    PPARγ promotes adipogenesis while Wnt proteins inhibit adipogenesis. However, the mechanisms that control expression of these positive and negative master regulators of adipogenesis remain incompletely understood. By genome-wide histone methylation profiling in preadipocytes, we find that among gene loci encoding adipogenesis regulators, histone methyltransferase (HMT) G9a-mediated repressive epigenetic mark H3K9me2 is selectively enriched on the entire PPARγ locus. H3K9me2 and G9a levels dec...

  6. Inhibition of H3K9 methyltransferase G9a ameliorates methylglyoxal-induced peritoneal fibrosis

    Science.gov (United States)

    Maeda, Kazuya; Doi, Shigehiro; Nakashima, Ayumu; Nagai, Takuo; Irifuku, Taisuke; Ueno, Toshinori; Masaki, Takao

    2017-01-01

    Activity of H3K9 histone methyltransferase G9a is reportedly induced by transforming growth factor-β1 (TGF-β1) and plays an important role in the progression of cancer and fibrosis. In this study, we investigated whether inhibition of G9a-mediated H3K9 methylation attenuates peritoneal fibrosis in mice and human peritoneal mesothelial cells (HPMCs). Nonadherent cells of peritoneal dialysis (PD) patients were isolated from PD effluent to examine expression of G9a. Peritoneal fibrosis was induced by peritoneal injection of methylglyoxal (MGO) in male C57/B6 mice for 3 weeks. BIX01294, a G9a inhibitor, was administered by subcutaneous injection. Effects of BIX01294 on MGO-induced pathological and functional changes in mice were evaluated by immunohistochemistry and a peritoneal equilibration test. HPMCs were isolated from human omentum, and the inhibitory effect of BIX01294 on TGF-β1-induced fibrotic changes was investigated in the HPMCs by western blotting. G9a was upregulated in nonadherent cells of human PD effluent, the peritoneum of MGO-injected mice, and TGF-β1-stimulated HPMCs. BIX01294 significantly reduced the submesothelial zone thickness and cell density in MGO-injected mice. Immunohistochemical staining revealed that BIX01294 treatment decreased not only mono-methylation of H3K9 (H3K9me1), but also the number of mesenchymal cells, accumulation of collagen, and infiltration of monocytes. In addition to the pathological changes, BIX01294 reduced the level of TGF-β1 in peritoneal fluid and improved peritoneal functions. Furthermore, BIX01294 inhibited TGF-β1-induced fibrotic changes along with suppression of H3K9me1 in HPMCs. Therefore, inhibition of H3K9 methyltransferase G9a suppresses peritoneal fibrosis through a reduction of H3K9me1. PMID:28278257

  7. Inhibition of H3K9 methyltransferase G9a induces autophagy and apoptosis in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Aishu; Qiu, Yu [Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 401147 (China); Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, 401147 (China); Cui, Hongjuan [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 (China); Fu, Gang, E-mail: fg.ras@hotmail.com [Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 401147 (China); Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, 401147 (China)

    2015-03-27

    Objective: To explore whether inhibition of H3K9 Methyltransferase G9a could exert an antitumoral effect in oral squamous cell carcinoma (OSCC). Materials and methods: First we checked G9a expression in two OSCC cell lines Tca8113 and KB. Next we used a special G9a inhibitor BIX01294 (BIX) to explore the effect of inhibition of G9a on OSCC in vitro. Cell growth was tested by typlan blue staining, MTT assay and Brdu immunofluorescence staining. Cell autophagy was examined by monodansylcadaverine (MDC) staining, LC3-II immunofluorescence staining and LC3-II western blot assay. Cell apoptosis was checked by FITC Annexin-V and PI labeling, tunnel staining and caspase 3 western blot assay. Finally, the effect of inhibition of G9a on clonogenesis and tumorigenesis capacity of OSCC was analyzed by soft agar growth and xenograft model. Results: Here we showed that G9a was expressed in both Tca8113 and KB cells. Inhibition of G9a using BIX significantly reduced cell growth and proliferation in Tca8113 and KB. Inhibition of G9a induced cell autophagy with conversion of LC3-I to LC3-II and cell apoptosis with the expression of cleaved caspase 3. We also found that inhibition of G9a reduced colony formation in soft agar and repressed tumor growth in mouse xenograph model. Conclusion: Our results suggested that G9a might be a potential epigenetic target for OSCC treatment. - Highlights: • Inhibition of G9a reduced cell growth and proliferation in OSCC cells. • Inhibition of G9a induces autophagy and apoptosis in OSCC cells. • Inhibition of G9a repressed tumor growth in mouse xenograph model.

  8. Histone methyltransferase G9a contributes to H3K27 methylation in vivo

    Institute of Scientific and Technical Information of China (English)

    Hui Wu; Bing Zhu; Xiuzhen Chen; Jun Xiong; Yingfeng Li; Hong Li; Xiaojun Ding; Sheng Liu; She Chen; Shaorong Gao

    2011-01-01

    @@ Dear Editor, Histone modifications play a vital role in the conformation and function of their associated chromatin templates[1].Histone H3K27 methylation mediated by the PRC2 complex is critical for transcriptional regulation,Polycomb silencing,Drosophila segmentation,mammalian X inactivation and cancer[1].Interestingly,H3K27me1(H3 mono-methylated at residue K27)levels in vivo remain unaffected after PRC2 disruption[2,3],which is an indication for the existence of other contributing histone methyltransferase(s)to H3K27me1.

  9. Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D

    Directory of Open Access Journals (Sweden)

    Weiss Thomas

    2010-03-01

    Full Text Available Abstract Background The linker histone H1 has a key role in establishing and maintaining higher order chromatin structure and in regulating gene expression. Mammals express up to 11 different H1 variants, with H1.2 and H1.4 being the predominant ones in most somatic cells. Like core histones, H1 has high levels of covalent modifications; however, the full set of modifications and their biological role are largely unknown. Results In this study, we used a candidate screen to identify enzymes that methylate H1 and to map their corresponding methylation sites. We found that the histone lysine methyltransferases G9a/KMT1C and Glp1/KMT1D methylate H1.2 in vitro and in vivo, and we mapped this novel site to lysine 187 (H1.2K187 in the C-terminus of H1. This H1.2K187 methylation is variant-specific. The main target for methylation by G9a in H1.2, H1.3, H1.5 and H1.0 is in the C-terminus, whereas H1.4 is preferentially methylated at K26 (H1.4K26me in the N-terminus. We found that the readout of these marks is different; H1.4K26me can recruit HP1, but H1.2K187me cannot. Likewise, JMJD2D/KDM4 only reverses H1.4K26 methylation, clearly distinguishing these two methylation sites. Further, in contrast to C-terminal H1 phosphorylation, H1.2K187 methylation level is steady throughout the cell cycle. Conclusions We have characterised a novel methylation site in the C-terminus of H1 that is the target of G9a/Glp1 both in vitro and in vivo. To our knowledge, this is the first demonstration of variant-specific histone methylation by the same methyltransferases, but with differing downstream readers, thereby supporting the hypothesis of H1 variants having specific functions.

  10. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9.

    Science.gov (United States)

    Tachibana, Makoto; Ueda, Jun; Fukuda, Mikiko; Takeda, Naoki; Ohta, Tsutomu; Iwanari, Hiroko; Sakihama, Toshiko; Kodama, Tatsuhiko; Hamakubo, Takao; Shinkai, Yoichi

    2005-04-01

    Histone H3 Lys 9 (H3-K9) methylation is a crucial epigenetic mark for transcriptional silencing. G9a is the major mammalian H3-K9 methyltransferase that targets euchromatic regions and is essential for murine embryogenesis. There is a single G9a-related methyltransferase in mammals, called GLP/Eu-HMTase1. Here we show that GLP is also important for H3-K9 methylation of mouse euchromatin. GLP-deficiency led to embryonic lethality, a severe reduction of H3-K9 mono- and dimethylation, the induction of Mage-a gene expression, and HP1 relocalization in embryonic stem cells, all of which were phenotypes of G9a-deficiency. Furthermore, we show that G9a and GLP formed a stoichiometric heteromeric complex in a wide variety of cell types. Biochemical analyses revealed that formation of the G9a/GLP complex was dependent on their enzymatic SET domains. Taken together, our new findings revealed that G9a and GLP cooperatively exert H3-K9 methyltransferase function in vivo, likely through the formation of higher-order heteromeric complexes.

  11. G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation.

    Science.gov (United States)

    Gupta-Agarwal, Swati; Franklin, Aimee V; Deramus, Thomas; Wheelock, Muriah; Davis, Robin L; McMahon, Lori L; Lubin, Farah D

    2012-04-18

    Learning triggers alterations in gene transcription in brain regions such as the hippocampus and the entorhinal cortex (EC) that are necessary for long-term memory (LTM) formation. Here, we identify an essential role for the G9a/G9a-like protein (GLP) lysine dimethyltransferase complex and the histone H3 lysine 9 dimethylation (H3K9me2) marks it catalyzes, in the transcriptional regulation of genes in area CA1 of the rat hippocampus and the EC during memory consolidation. Contextual fear learning increased global levels of H3K9me2 in area CA1 and the EC, with observable changes at the Zif268, DNMT3a, BDNF exon IV, and cFOS gene promoters, which occurred in concert with mRNA expression. Inhibition of G9a/GLP in the EC, but not in the hippocampus, enhanced contextual fear conditioning relative to control animals. The inhibition of G9a/GLP in the EC induced several histone modifications that include not only methylation but also acetylation. Surprisingly, we found that downregulation of G9a/GLP activity in the EC enhanced H3K9me2 in area CA1, resulting in transcriptional silencing of the non-memory permissive gene COMT in the hippocampus. In addition, synaptic plasticity studies at two distinct EC-CA1 cellular pathways revealed that G9a/GLP activity is critical for hippocampus-dependent long-term potentiation initiated in the EC via the perforant pathway, but not the temporoammonic pathway. Together, these data demonstrate that G9a/GLP differentially regulates gene transcription in the hippocampus and the EC during memory consolidation. Furthermore, these findings support the possibility of a role for G9a/GLP in the regulation of cellular and molecular cross talk between these two brain regions during LTM formation.

  12. Inhibition of histone methyltransferases SUV39H1 and G9a leads to neuroprotection in an in vitro model of cerebral ischemia.

    Science.gov (United States)

    Schweizer, Sophie; Harms, Christoph; Lerch, Heike; Flynn, Jennifer; Hecht, Jochen; Yildirim, Ferah; Meisel, Andreas; Märschenz, Stefanie

    2015-10-01

    Cerebral ischemia induces a complex transcriptional response with global changes in gene expression. It is essentially regulated by transcription factors as well as epigenetic players. While it is well known that the inhibition of transcriptionally repressive histone deacetylases leads to neuroprotection, the role of histone methyltransferases in the postischemic transcriptional response remains elusive. We investigated the effects of inhibition of the repressive H3K9 histone methyltransferases SUV39H1 and G9a on neuronal survival, H3K9 promoter signatures and gene expression. Their inhibition either with the specific blocker chaetocin or by use of RNA interference promoted neuronal survival in oxygen glucose deprivation (OGD). Brain-derived neurotrophic factor (BDNF) was upregulated and BDNF promoter regions showed an increase in histone marks characteristic for active transcription. The BDNF blockade with K252a abrogated the protective effect of chaetocin treatment. In conclusion, inhibition of histone methyltransferases SUV39H1 and G9a confers neuroprotection in a model of hypoxic metabolic stress, which is at least in part mediated by BDNF.

  13. Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells

    Directory of Open Access Journals (Sweden)

    Yoda Satoshi

    2008-11-01

    Full Text Available Abstract Background Alterations in the processing of the genetic information in carcinogenesis result from stable genetic mutations or epigenetic modifications. It is becoming clear that nucleosomal histones are central to proper gene expression and that aberrant DNA methylation of genes and histone methylation plays important roles in tumor progression. To date, several histone lysine methyltransferases (HKMTs have been identified and histone lysine methylation is now considered to be a critical regulator of transcription. However, still relatively little is known about the role of HKMTs in tumorigenesis. Results We observed differential HKMT expression in a lung cancer model in which normal human bronchial epithelial (NHBE cells expressing telomerase, SV40 large T antigen, and Ras were immortal, formed colonies in soft agar, and expressed specific HKMTs for H3 lysine 9 and 27 residues but not for H3 lysine 4 residue. Modifications in the H3 tails affect the binding of proteins to the histone tails and regulate protein function and the position of lysine methylation marks a gene to be either activated or repressed. In the present study, suppression by siRNA of HKMTs (EZH2, G9A, SETDB1 and SUV39H1 that are over-expressed in immortalized and transformed cells lead to reduced cell proliferation and much less anchorage-independent colony growth. We also found that the suppression of H3-K9, G9A and SUV39H1 induced apoptosis and the suppression of H3-K27, EZH2 caused G1 arrest. Conclusion Our results indicate the potential of these HKMTs in addition to the other targets for epigenetics such as DNMTs and HDACs to be interesting therapeutic targets.

  14. Depletion of G9a gene induces cell apoptosis in human gastric carcinoma.

    Science.gov (United States)

    Lin, Xiaolei; Huang, Yiqun; Zou, Yong; Chen, Xingsheng; Ma, Xudong

    2016-05-01

    G9a is a mammalian histone methyltransferase that contributes to the epigenetic silencing of tumor suppressor genes. Evidence suggests that G9a is required to maintain the malignant phenotype, but little documentation show the role of G9a function in mediating tumor growth. We retrospectively analyzed the protein of G9a and monomethylated histone H3 lysine 9 (H3K9 me1), and dimethylated histone H3 lysine 9 (H3K9 me2) in 175 cases of gastric carcinoma by immunohistochemistry. RNAi-based inhibition of G9a in MGC803 cancer cell line was studied. G9a depletion was done by transient transfection using Lipofectamine 2000. Depletion efficiency of G9a was tested using real-time PCR and western blot analysis. Cell apoptosis and proliferation were detected by TUNEL assay and MTT, respectively. The proteins of H3K9 me1, me2, trimethylation of H3K9 (H3K9 me3), monomethylated histone H3 lysine 27 (H3K27 me1), dimethylated histone H3 lysine 27 (H3K27 me2) and histone acetylated H3, apoptotic proteins were studied by western blot analysis. G9a and H3K9 me2 expression was higher in gastric cancer cells compared to the control (pgastric carcinoma, (pgastric cancer. It might be of therapeutic benefit in gastric cancers.

  15. Alternative Splicing of G9a Regulates Neuronal Differentiation

    Directory of Open Access Journals (Sweden)

    Ana Fiszbein

    2016-03-01

    Full Text Available Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10 through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10+ isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.

  16. Inhibition of histone methyltransferases SUV39H1 and G9a leads to neuroprotection in an in vitro model of cerebral ischemia

    OpenAIRE

    Schweizer, Sophie; Harms, Christoph; Lerch, Heike; Flynn,Jennifer; Hecht, Jochen; Yildirim, Ferah; Meisel, Andreas; Märschenz, Stefanie

    2015-01-01

    Cerebral ischemia induces a complex transcriptional response with global changes in gene expression. It is essentially regulated by transcription factors as well as epigenetic players. While it is well known that the inhibition of transcriptionally repressive histone deacetylases leads to neuroprotection, the role of histone methyltransferases in the postischemic transcriptional response remains elusive. We investigated the effects of inhibition of the repressive H3K9 histone methyltransferas...

  17. The Role of Nuclear Receptor-Binding SET Domain Family Histone Lysine Methyltransferases in Cancer.

    Science.gov (United States)

    Bennett, Richard L; Swaroop, Alok; Troche, Catalina; Licht, Jonathan D

    2017-06-01

    The nuclear receptor-binding SET Domain (NSD) family of histone H3 lysine 36 methyltransferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin integrity and gene expression. The growing number of reports demonstrating that alterations or translocations of these genes fundamentally affect cell growth and differentiation leading to developmental defects illustrates the importance of this family. In addition, overexpression, gain of function somatic mutations, and translocations of NSDs are associated with human cancer and can trigger cellular transformation in model systems. Here we review the functions of NSD family members and the accumulating evidence that these proteins play key roles in tumorigenesis. Because epigenetic therapy is an important emerging anticancer strategy, understanding the function of NSD family members may lead to the development of novel therapies. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. 5-Aza-2'-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation.

    Science.gov (United States)

    Wozniak, R J; Klimecki, W T; Lau, S S; Feinstein, Y; Futscher, B W

    2007-01-04

    The epigenetic silencing of tumor suppressor genes is a common event during carcinogenesis, and often involves aberrant DNA methylation and histone modification of gene regulatory regions, resulting in the formation of a transcriptionally repressive chromatin state. Two examples include the antimetastatic, tumor suppressor genes, desmocollin 3 (DSC3) and MASPIN, which are frequently silenced in this manner in human breast cancer. Treatment of the breast tumor cell lines MDA-MB-231 and UACC 1179 with 5-aza-2'-deoxycytidine (5-aza-CdR) induced transcriptional reactivation of both genes in a dose-dependent manner. Importantly, DSC3 and MASPIN reactivation was closely and consistently linked with significant decreases in promoter H3 K9 di-methylation. Moreover, 5-aza-CdR treatment also resulted in global decreases in H3 K9 di-methylation, an effect that was linked to its ability to mediate dose-dependent, post-transcriptional decreases in the key enzyme responsible for this epigenetic modification, G9A. Finally, small interfering RNA (siRNA)-mediated knockdown of G9A and DNMT1 led to increased MASPIN expression in MDA-MB-231 cells, to levels that were supra-additive, verifying the importance of these enzymes in maintaining multiple layers of epigenetic repression in breast tumor cells. These results highlight an additional, complimentary mechanism of action for 5-aza-CdR in the reactivation of epigenetically silenced genes, in a manner that is independent of its effects on DNA methylation, further supporting an important role for H3 K9 methylation in the aberrant repression of tumor suppressor genes in human cancer.

  19. Ubiquitination of Lysine 867 of the Human SETDB1 Protein Upregulates Its Histone H3 Lysine 9 (H3K9) Methyltransferase Activity

    Science.gov (United States)

    Ishimoto, Kenji; Kawamata, Natsuko; Uchihara, Yoshie; Okubo, Moeka; Fujimoto, Reiko; Gotoh, Eiko; Kakinouchi, Keisuke; Mizohata, Eiichi; Hino, Nobumasa; Okada, Yoshiaki; Mochizuki, Yasuhiro; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Inoue, Tsuyoshi; Tachibana, Keisuke; Doi, Takefumi

    2016-01-01

    Posttranslational modifications (PTMs) of proteins play a crucial role in regulating protein-protein interactions, enzyme activity, subcellular localization, and stability of the protein. SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that regulates the methylation of histone H3 on lysine 9 (H3K9), gene silencing, and transcriptional repression. The C-terminal region of SETDB1 is a key site for PTMs, and is essential for its enzyme activity in mammalian and insect cells. In this study, we aimed to evaluate more precisely the effect of PTMs on the H3K9 methyltransferase activity of SETDB1. Using mass spectrometry analysis, we show that the C-terminal region of human SETDB1 purified from insect cells is ubiquitinated. We also demonstrate that the ubiquitination of lysine 867 of the human SETDB1 is necessary for full H3K9 methyltransferase activity in mammalian cells. Finally, we show that SETDB1 ubiquitination regulates the expression of its target gene, serpin peptidase inhibitor, clade E, member 1 (SERPINE1) by methylating H3K9. These results suggest that the ubiquitination of SETDB1 at lysine 867 controls the expression of its target gene by activating its H3K9 methyltransferase activity. PMID:27798683

  20. Essential roles of G9a in cell proliferation and differentiation during tooth development.

    Science.gov (United States)

    Kamiunten, Taichi; Ideno, Hisashi; Shimada, Akemi; Arai, Yoshinori; Terashima, Tatsuo; Tomooka, Yasuhiro; Nakamura, Yoshiki; Nakashima, Kazuhisa; Kimura, Hiroshi; Shinkai, Yoichi; Tachibana, Makoto; Nifuji, Akira

    2017-08-15

    Teeth develop through interactions between epithelial and mesenchymal tissues mediated by a signaling network comprised of growth factors and transcription factors. However, little is known about how epigenetic modifiers affect signaling pathways and thereby regulate tooth formation. We previously reported that the histone 3 lysine 9 (H3K9) methyltransferase (MTase) G9a is specifically enriched in the tooth mesenchyme during mouse development. In this study, we investigated the functions of G9a in tooth development using G9a conditional knockout (KO) mice. We used Sox9-Cre mice to delete G9a in the tooth mesenchyme because Sox9 is highly expressed in the mesenchyme derived from the cranial neural crest. Immunohistochemical analyses revealed that G9a expression was significantly decreased in the mesenchyme of Sox9-Cre;G9afl/fl (G9a cKO) mice compared with that in Sox9-Cre;G9a fl/+(control) mice. Protein levels of the G9a substrate H3K9me2 were also decreased in the tooth mesenchyme. G9a cKO mice showed smaller tooth germ after embryonic day (E) 16.5 and E17.5, but not at E15.5. The developing cusp tips, which were visible in control mice, were absent in G9a cKO mice at E17.5. At 3 weeks after birth, small first molars with smaller cusps and unseparated roots were formed. Organ culture of tooth germs derived from E15.5 cKO mouse embryos showed impaired tooth development, suggesting that tooth development per se is affected independently of skull development. BrdU labeling experiments revealed that the proliferation rates were decreased in the mesenchyme in G9a cKO mice at E17.5. In addition, the proliferation rates in the tooth inner enamel epithelium were also decreased. In situ hybridization revealed altered localization of genes associated with tooth development. In cKO mice, intensively localized expression of mRNAs encoding bone morphogenic protein (Bmp2 and Bmp4) was observed in the tooth mesenchyme at E17.5, similar to the expression patterns observed in

  1. Selenium-based S-adenosylmethionine analog reveals the mammalian seven-beta-strand methyltransferase METTL10 to be an EF1A1 lysine methyltransferase.

    Directory of Open Access Journals (Sweden)

    Tadahiro Shimazu

    Full Text Available Lysine methylation has been extensively studied in histones, where it has been shown to provide specific epigenetic marks for the regulation of gene expression; however, the molecular mechanism and physiological function of lysine methylation in proteins other than histones remains to be fully addressed. To better understand the substrate diversity of lysine methylation, S-adenosylmethionine (SAM derivatives with alkyne-moieties have been synthesized. A selenium-based SAM analog, propargylic Se-adenosyl-l-selenomethionine (ProSeAM, has a wide spectrum of reactivity against various lysine methyltransferases (KMTs with sufficient stability to support enzymatic reactions in vitro. By using ProSeAM as a chemical probe for lysine methylation, we identified substrates for two seven-beta-strand KMTs, METTL21A and METTL10, on a proteomic scale in mammalian cells. METTL21A has been characterized as a heat shock protein (HSP-70 methyltransferase. Mammalian METTL10 remains functionally uncharacterized, although its ortholog in yeast, See1, has been shown to methylate the translation elongation factor eEF1A. By using ProSeAM-mediated alkylation followed by purification and quantitative MS analysis, we confirmed that METTL21A labels HSP70 family proteins. Furthermore, we demonstrated that METTL10 also methylates the eukaryotic elongation factor EF1A1 in mammalian cells. Subsequent biochemical characterization revealed that METTL10 specifically trimethylates EF1A1 at lysine 318 and that siRNA-mediated knockdown of METTL10 decreases EF1A1 methylation levels in vivo. Thus, our study emphasizes the utility of the synthetic cofactor ProSeAM as a chemical probe for the identification of non-histone substrates of KMTs.

  2. Holocarboxylasesynthetase interacts physically with euchromatic histone-lysine N-methyltransferase, linking histone biotinylation with methylation events*

    Science.gov (United States)

    Li, Yong; Hassan, Yousef I.; Moriyama, Hideaki; Zempleni, Janos

    2012-01-01

    Holocarboxylasesynthetase (HCS) catalyzes the binding of the vitamin biotin to histonesH3 and H4, thereby creating rare histonebiotinylation marks in the epigenome. These marksco-localize with K9-methylated histone H3 (H3K9me), an abundant gene repression mark. The abundance of H3K9me marks in transcriptionally competent loci decreases when HCS is knocked down and when cells are depleted of biotin. Here we tested the hypothesis that the creation of H3K9me marks is at least partially explained by physical interactions between HCS and histone-lysine N-methyltransferases. Using a novel in silico protocol, we predicted that HCS-interacting proteins contain a GGGG(K/R)G(I/M)R motif. Thismotif, with minor variations, is present in the histone-lysine N-methyltransferase EHMT1. Physical interactions between HCS and the N-terminal, ankyrin, and SET domains in EHMT1 were confirmed using yeast-two-hybrid assays, limited proteolysis assays, and co-immunoprecipitation. The interactions were stronger between HCS and the N-terminus in EHMT1 compared with the ankyrin and SET domains, consistent with the localization of the HCS-binding motif in the EHMT1 N-terminus. HCS has the catalytic activity to biotinylate K161 within the binding motif in EHMT1. Mutation of K161 weakenedthe physical interaction between EHMT1 and HCS, but it is unknown whether this effect was caused by loss of biotinylation or loss of the motif. Importantly, HCS knockdown decreased the abundance of H3K9me marks in repeats, suggesting that HCS plays a role in creating histone methylation marks in these loci. We conclude that physical interactionsbetween HCS and EHMT1 mediate epigenomic synergies between biotinylation and methylation events. PMID:23337344

  3. Holocarboxylase synthetase interacts physically with euchromatic histone-lysine N-methyltransferase, linking histone biotinylation with methylation events.

    Science.gov (United States)

    Li, Yong; Hassan, Yousef I; Moriyama, Hideaki; Zempleni, Janos

    2013-08-01

    Holocarboxylase synthetase (HCS) catalyzes the binding of the vitamin biotin to histones H3 and H4, thereby creating rare histone biotinylation marks in the epigenome. These marks co-localize with K9-methylated histone H3 (H3K9me), an abundant gene repression mark. The abundance of H3K9me marks in transcriptionally competent loci decreases when HCS is knocked down and when cells are depleted of biotin. Here we tested the hypothesis that the creation of H3K9me marks is at least partially explained by physical interactions between HCS and histone-lysine N-methyltransferases. Using a novel in silico protocol, we predicted that HCS-interacting proteins contain a GGGG(K/R)G(I/M)R motif. This motif, with minor variations, is present in the histone-lysine N-methyltransferase EHMT1. Physical interactions between HCS and the N-terminal, ankyrin and SET domains in EHMT1 were confirmed using yeast-two-hybrid assays, limited proteolysis assays and co-immunoprecipitation. The interactions were stronger between HCS and the N-terminus in EHMT1 compared with the ankyrin and SET domains, consistent with the localization of the HCS-binding motif in the EHMT1 N-terminus. HCS has the catalytic activity to biotinylate K161 within the binding motif in EHMT1. Mutation of K161 weakened the physical interaction between EHMT1 and HCS, but it is unknown whether this effect was caused by loss of biotinylation or loss of the motif. Importantly, HCS knockdown decreased the abundance of H3K9me marks in repeats, suggesting that HCS plays a role in creating histone methylation marks in these loci. We conclude that physical interactions between HCS and EHMT1 mediate epigenomic synergies between biotinylation and methylation events. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. LLY-507, a Cell-active, Potent, and Selective Inhibitor of Protein-lysine Methyltransferase SMYD2.

    Science.gov (United States)

    Nguyen, Hannah; Allali-Hassani, Abdellah; Antonysamy, Stephen; Chang, Shawn; Chen, Lisa Hong; Curtis, Carmen; Emtage, Spencer; Fan, Li; Gheyi, Tarun; Li, Fengling; Liu, Shichong; Martin, Joseph R; Mendel, David; Olsen, Jonathan B; Pelletier, Laura; Shatseva, Tatiana; Wu, Song; Zhang, Feiyu Fred; Arrowsmith, Cheryl H; Brown, Peter J; Campbell, Robert M; Garcia, Benjamin A; Barsyte-Lovejoy, Dalia; Mader, Mary; Vedadi, Masoud

    2015-05-29

    SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex with LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys(370) at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. These findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Purification of Histone Lysine Methyltransferase SMYD2 and Co-Crystallization with a Target Peptide from Estrogen Receptor α.

    Science.gov (United States)

    Jiang, Yuanyuan; Holcomb, Joshua; Spellmon, Nicholas; Yang, Zhe

    2016-01-01

    Methylation of estrogen receptor α by the histone lysine methyltransferase SMYD2 regulates ERα chromatin recruitment and its target gene expression. This protocol describes SMYD2 purification and crystallization of SMYD2 in complex with an ERα peptide. Recombinant SMYD2 is overexpressed in Escherichia coli cells. After release from the cells by French Press, SMYD2 is purified to apparent homogeneity with multiple chromatography methods. Nickel affinity column purifies SMYD2 based on specific interaction of its 6×His tag with the bead-immobilized nickel ions. Desalting column is used for protein buffer exchange. Gel filtration column purifies SMYD2 based on molecular size. The entire purification process is monitored and analyzed by SDS-polyacrylamide gel electrophoresis. Crystallization of SMYD2 is performed with the hanging drop vapor diffusion method. Crystals of the SMYD2-ERα peptide complex are obtained by microseeding using seeding bead. This method can give rise to large size of crystals which are suitable for X-ray diffraction data collection. X-ray crystallographic study of the SMYD2-ERα complex can provide structural insight into posttranslational regulation of ERα signaling.

  6. Virtual screening of novel histone methyltransferase G9a inhibitors by using phar-macophore modeling and molecular docking%采用药效团模型和分子对接方法筛选新型的组蛋白甲基转移酶 G9a抑制剂

    Institute of Scientific and Technical Information of China (English)

    刘文强; 黄露义; 李国菠

    2016-01-01

    目的:利用药效团模型和分子对接方法对商业化合物库ChemDiv中的G9a focused‐libraries进行筛选,希望发现新骨架结构的G9a抑制剂。方法首先,使用Discovery studio 3.1软件分别构建基于配体的药效团模型和基于配体‐受体复合物的药效团模型,并根据构建的2个模型再重新定义2个新的药效团模型。然后,构建测试集并测试药效团模型的预测能力。最后,选取最优药效团模型对G9a focused‐libraries进行筛选,对筛选出的化合物使用CDOCKER分子对接进行分析与评价。结果测试结果显示,所构建的药效团模型具有一定的预测能力,通过该药效团筛选得到了2个结构新颖的潜在的G9a抑制剂。结论所构建的药效团模型具有一定的可靠性,虚拟筛选发现的G9a抑制剂还需进一步的实验证明。%Objective To discover novel G9a inhibitors with new chemical scaffolds by screening G9a focused‐libraries of the com‐mercial chemical library ChemDiv using pharmacophore modeling and molecular docking .Methods Firstly ,a ligand‐based phar‐macophore model and a receptor‐ligand complex‐based pharmacophore model were generated using Discovery Studio 3 .1 .Accord‐ing to these two models ,we constructed two new pharmacophore hypotheses .Then ,a test set was constructed and used to evalu‐ate the four established models .Finally ,the optimal model was selected and used as 3D search query to screen G9a focused‐librar‐ies ,and the hit compounds were subjected to be evaluated by using CDOCKER molecular docking program .Results Two com‐pounds with novel scaffolds were obtained .Conclusion The established pharmacophore model is relatively reliable ,and two po‐tential G9a inhibitors were selected .

  7. QM/MM MD and free energy simulations of G9a-like protein (GLP and its mutants: understanding the factors that determine the product specificity.

    Directory of Open Access Journals (Sweden)

    Yuzhuo Chu

    Full Text Available Certain lysine residues on histone tails could be methylated by protein lysine methyltransferases (PKMTs using S-adenosyl-L-methionine (AdoMet as the methyl donor. Since the methylation states of the target lysines play a fundamental role in the regulation of chromatin structure and gene expression, it is important to study the property of PKMTs that allows a specific number of methyl groups (one, two or three to be added (termed as product specificity. It has been shown that the product specificity of PKMTs may be controlled in part by the existence of specific residues at the active site. One of the best examples is a Phe/Tyr switch found in many PKMTs. Here quantum mechanical/molecular mechanical (QM/MM molecular dynamics (MD and free energy simulations are performed on wild type G9a-like protein (GLP and its F1209Y and Y1124F mutants for understanding the energetic origin of the product specificity and the reasons for the change of product specificity as a result of single-residue mutations at the Phe/Tyr switch as well as other positions. The free energy barriers of the methyl transfer processes calculated from our simulations are consistent with experimental data, supporting the suggestion that the relative free energy barriers may determine, at least in part, the product specificity of PKMTs. The changes of the free energy barriers as a result of the mutations are also discussed based on the structural information obtained from the simulations. The results suggest that the space and active-site interactions around the ε-amino group of the target lysine available for methyl addition appear to among the key structural factors in controlling the product specificity and activity of PKMTs.

  8. The SUVR4 histone lysine methyltransferase binds ubiquitin and converts H3K9me1 to H3K9me3 on transposon chromatin in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Silje V Veiseth

    2011-03-01

    Full Text Available Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3 is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation-dependent and -independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity.

  9. Structural Insights into Substrate Recognition and Catalysis in Outer Membrane Protein B (OmpB) by Protein-lysine Methyltransferases from Rickettsia.

    Science.gov (United States)

    Abeykoon, Amila H; Noinaj, Nicholas; Choi, Bok-Eum; Wise, Lindsay; He, Yi; Chao, Chien-Chung; Wang, Guanghui; Gucek, Marjan; Ching, Wei-Mei; Chock, P Boon; Buchanan, Susan K; Yang, David C H

    2016-09-16

    Rickettsia belong to a family of Gram-negative obligate intracellular infectious bacteria that are the causative agents of typhus and spotted fever. Outer membrane protein B (OmpB) occurs in all rickettsial species, serves as a protective envelope, mediates host cell adhesion and invasion, and is a major immunodominant antigen. OmpBs from virulent strains contain multiple trimethylated lysine residues, whereas the avirulent strain contains mainly monomethyllysine. Two protein-lysine methyltransferases (PKMTs) that catalyze methylation of recombinant OmpB at multiple sites with varying sequences have been identified and overexpressed. PKMT1 catalyzes predominantly monomethylation, whereas PKMT2 catalyzes mainly trimethylation. Rickettsial PKMT1 and PKMT2 are unusual in that their primary substrate appears to be limited to OmpB, and both are capable of methylating multiple lysyl residues with broad sequence specificity. Here we report the crystal structures of PKMT1 from Rickettsia prowazekii and PKMT2 from Rickettsia typhi, both the apo form and in complex with its cofactor S-adenosylmethionine or S-adenosylhomocysteine. The structure of PKMT1 in complex with S-adenosylhomocysteine is solved to a resolution of 1.9 Å. Both enzymes are dimeric with each monomer containing an S-adenosylmethionine binding domain with a core Rossmann fold, a dimerization domain, a middle domain, a C-terminal domain, and a centrally located open cavity. Based on the crystal structures, residues involved in catalysis, cofactor binding, and substrate interactions were examined using site-directed mutagenesis followed by steady state kinetic analysis to ascertain their catalytic functions in solution. Together, our data reveal new structural and mechanistic insights into how rickettsial methyltransferases catalyze OmpB methylation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Leptin-STAT3-G9a Signaling Promotes Obesity-Mediated Breast Cancer Progression.

    Science.gov (United States)

    Chang, Chao-Ching; Wu, Meng-Ju; Yang, Jer-Yen; Camarillo, Ignacio G; Chang, Chun-Ju

    2015-06-01

    Obesity has been linked to breast cancer progression but the underlying mechanisms remain obscure. Here we report how leptin, an obesity-associated adipokine, regulates a transcriptional pathway to silence a genetic program of epithelial homeostasis in breast cancer stem-like cells (CSC) that promotes malignant progression. Using genome-wide ChIP-seq and RNA expression profiling, we defined a role for activated STAT3 and G9a histone methyltransferase in epigenetic silencing of miR-200c, which promotes the formation of breast CSCs defined by elevated cell surface levels of the leptin receptor (OBR(hi)). Inhibiting the STAT3/G9a pathway restored expression of miR-200c, which in turn reversed the CSC phenotype to a more differentiated epithelial phenotype. In a rat model of breast cancer driven by diet-induced obesity, STAT3 blockade suppressed the CSC-like OBR(hi) population and abrogated tumor progression. Together, our results show how targeting STAT3-G9a signaling regulates CSC plasticity during obesity-related breast cancer progression, suggesting a novel therapeutic paradigm to suppress CSC pools and limit breast malignancy. ©2015 American Association for Cancer Research.

  11. Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis

    National Research Council Canada - National Science Library

    Wang, Lifeng; Xu, Shiliyang; Lee, Ji‐Eun; Baldridge, Anne; Grullon, Sean; Peng, Weiqun; Ge, Kai

    PPARγ promotes adipogenesis while Wnt proteins inhibit adipogenesis. However, the mechanisms that control expression of these positive and negative master regulators of adipogenesis remain incompletely understood. By genome...

  12. Prenatal Exposure to apoE Deficiency and Postnatal Hypercholesterolemia Are Associated with Altered Cell-Specific Lysine Methyltransferase and Histone Methylation Patterns in the Vasculature

    Science.gov (United States)

    Alkemade, Fanneke E.; van Vliet, Patrick; Henneman, Peter; van Dijk, Ko Willems; Hierck, Beerend P.; van Munsteren, J. Conny; Scheerman, Joyce A.; Goeman, Jelle J.; Havekes, Louis M.; Gittenberger-de Groot, Adriana C.; van den Elsen, Peter J.; DeRuiter, Marco C.

    2010-01-01

    We recently demonstrated that neointima formation of adult heterozygous apolipoprotein E (apoE+/−) offspring from hypercholesterolemic apoE−/− mothers was significantly increased as compared with genetically identical apoE+/− offspring from normocholesterolemic wild-type mothers. Since atherosclerosis is the consequence of a complex microenvironment and local cellular interactions, the effects of in utero programming and type of postnatal diet on epigenetic histone modifications in the vasculature were studied in both groups of offspring. An immunohistochemical approach was used to detect cell-specific histone methylation modifications and expression of accompanying lysine methyltransferases in the carotid arteries. Differences in histone triple-methylation modifications in vascular endothelial and smooth muscle cells revealed that the offspring from apoE−/− mothers had significantly different responses to a high cholesterol diet when compared with offspring from wild-type mothers. Our results suggest that both in utero programming and postnatal hypercholesterolemia affect epigenetic patterning in the vasculature, thereby providing novel insights regarding initiation and progression of vascular disease in adults. PMID:20035052

  13. A PWWP Domain of Histone-Lysine N-Methyltransferase NSD2 Binds to Dimethylated Lys-36 of Histone H3 and Regulates NSD2 Function at Chromatin*

    Science.gov (United States)

    Sankaran, Saumya M.; Wilkinson, Alex W.; Elias, Joshua E.; Gozani, Or

    2016-01-01

    The readout of histone modifications plays a critical role in chromatin-regulated processes. Dimethylation at Lys-36 on histone H3 (H3K36me2) is associated with actively transcribed genes, and global up-regulation of this modification is associated with several cancers. However, the molecular mechanism by which H3K36me2 is sensed and transduced to downstream biological outcomes remains unclear. Here we identify a PWWP domain within the histone lysine methyltransferase and oncoprotein NSD2 that preferentially binds to nucleosomes containing H3K36me2. In cells, the NSD2 PWWP domain interaction with H3K36me2 plays a role in stabilizing NSD2 at chromatin. Furthermore, NSD2's ability to induce global increases in H3K36me2 via its enzymatic activity, and consequently promote cellular proliferation, is compromised by mutations within the PWWP domain that specifically abrogate H3K36me2-recognition. Together, our results identify a pivotal role for NSD2 binding to its catalytic product in regulating its cellular functions, and suggest a model for how this interaction may facilitate epigenetic spreading and propagation of H3K36me2. PMID:26912663

  14. Structural biology of human H3K9 methyltransferases.

    Directory of Open Access Journals (Sweden)

    Hong Wu

    Full Text Available UNLABELLED: SET domain methyltransferases deposit methyl marks on specific histone tail lysine residues and play a major role in epigenetic regulation of gene transcription. We solved the structures of the catalytic domains of GLP, G9a, Suv39H2 and PRDM2, four of the eight known human H3K9 methyltransferases in their apo conformation or in complex with the methyl donating cofactor, and peptide substrates. We analyzed the structural determinants for methylation state specificity, and designed a G9a mutant able to tri-methylate H3K9. We show that the I-SET domain acts as a rigid docking platform, while induced-fit of the Post-SET domain is necessary to achieve a catalytically competent conformation. We also propose a model where long-range electrostatics bring enzyme and histone substrate together, while the presence of an arginine upstream of the target lysine is critical for binding and specificity. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  15. Inhibition of G9a/GLP Complex Promotes Long-Term Potentiation and Synaptic Tagging/Capture in Hippocampal CA1 Pyramidal Neurons.

    Science.gov (United States)

    Sharma, Mahima; Razali, Nuralyah Bte; Sajikumar, Sreedharan

    2016-06-01

    Epigenetic regulations play an important role in regulating the learning and memory processes. G9a/G9a-like protein (GLP) lysine dimethyltransferase complex controls a prominent histone H3 lysine9 dimethylation (H3K9me2) that results in transcriptional silencing of the chromatin. Here, we report that the inhibition of G9a/GLP complex by either of the substrate competitive inhibitors UNC 0638 or BIX 01294 reinforces protein synthesis-independent long-term potentiation (early-LTP) to protein synthesis-dependent long-term potentiation (late-LTP). The reinforcement effect was observed if the inhibitors were present during the induction of early-LTP and in addition when G9a/GLP complex inhibition was carried out by priming of synapses within an interval of 30 min before or after the induction of early-LTP. Surprisingly, the reinforced LTP by G9a/GLP complex inhibition was able to associate with a weak plasticity event from nearby independent synaptic populations, resulting in synaptic tagging/capture (STC). We have identified brain-derived neurotrophic factor (BDNF) as a critical plasticity protein that maintains G9a/GLP complex inhibition-mediated LTP facilitation and its STC. Our study reveals an epigenetic mechanism for promoting plasticity and associativity by G9a/GLP complex inhibition, and it may engender a promising epigenetic target for enhancing memory in neural networks.

  16. Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex

    Directory of Open Access Journals (Sweden)

    Gottlieb Paul D

    2006-06-01

    Full Text Available Abstract Background Disrupting the balance of histone lysine methylation alters the expression of genes involved in tumorigenesis including proto-oncogenes and cell cycle regulators. Methylation of lysine residues is commonly catalyzed by a family of proteins that contain the SET domain. Here, we report the identification and characterization of the SET domain-containing protein, Smyd2. Results Smyd2 mRNA is most highly expressed in heart and brain tissue, as demonstrated by northern analysis and in situ hybridization. Over-expressed Smyd2 localizes to the cytoplasm and the nucleus in 293T cells. Although accumulating evidence suggests that methylation of histone 3, lysine 36 (H3K36 is associated with actively transcribed genes, we show that the SET domain of Smyd2 mediates H3K36 dimethylation and that Smyd2 represses transcription from an SV40-luciferase reporter. Smyd2 associates specifically with the Sin3A histone deacetylase complex, which was recently linked to H3K36 methylation within the coding regions of active genes in yeast. Finally, we report that exogenous expression of Smyd2 suppresses cell proliferation. Conclusion We propose that Sin3A-mediated deacetylation within the coding regions of active genes is directly linked to the histone methyltransferase activity of Smyd2. Moreover, Smyd2 appears to restrain cell proliferation, likely through direct modulation of chromatin structure.

  17. Epigenetic regulation of learning and memory by Drosophila EHMT/G9a.

    Directory of Open Access Journals (Sweden)

    Jamie M Kramer

    Full Text Available The epigenetic modification of chromatin structure and its effect on complex neuronal processes like learning and memory is an emerging field in neuroscience. However, little is known about the "writers" of the neuronal epigenome and how they lay down the basis for proper cognition. Here, we have dissected the neuronal function of the Drosophila euchromatin histone methyltransferase (EHMT, a member of a conserved protein family that methylates histone 3 at lysine 9 (H3K9. EHMT is widely expressed in the nervous system and other tissues, yet EHMT mutant flies are viable. Neurodevelopmental and behavioral analyses identified EHMT as a regulator of peripheral dendrite development, larval locomotor behavior, non-associative learning, and courtship memory. The requirement for EHMT in memory was mapped to 7B-Gal4 positive cells, which are, in adult brains, predominantly mushroom body neurons. Moreover, memory was restored by EHMT re-expression during adulthood, indicating that cognitive defects are reversible in EHMT mutants. To uncover the underlying molecular mechanisms, we generated genome-wide H3K9 dimethylation profiles by ChIP-seq. Loss of H3K9 dimethylation in EHMT mutants occurs at 5% of the euchromatic genome and is enriched at the 5' and 3' ends of distinct classes of genes that control neuronal and behavioral processes that are corrupted in EHMT mutants. Our study identifies Drosophila EHMT as a key regulator of cognition that orchestrates an epigenetic program featuring classic learning and memory genes. Our findings are relevant to the pathophysiological mechanisms underlying Kleefstra Syndrome, a severe form of intellectual disability caused by mutations in human EHMT1, and have potential therapeutic implications. Our work thus provides novel insights into the epigenetic control of cognition in health and disease.

  18. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2 in human oral cancer cell line.

    Directory of Open Access Journals (Sweden)

    Daisuke Yamamoto

    Full Text Available BACKGROUND: Methylation of CpG islands of genome DNA and lysine residues of histone H3 and H4 tails regulates gene transcription. Inhibition of polyamine synthesis by ornithine decarboxylase antizyme-1 (OAZ in human oral cancer cell line resulted in accumulation of decarboxylated S-adenosylmethionine (dcSAM, which acts as a competitive inhibitor of methylation reactions. We anticipated that accumulation of dcSAM impaired methylation reactions and resulted in hypomethylation of genome DNA and histone tails. METHODOLOGY/PRINCIPAL FINDINGS: Global methylation state of genome DNA and lysine residues of histone H3 and H4 tails were assayed by Methylation by Isoschizomers (MIAMI method and western blotting, respectively, in the presence or absence of OAZ expression. Ectopic expression of OAZ mediated hypomethylation of CpG islands of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2. Protein level of DNA methyltransferase 3B (DNMT3B and histone H3K9me specific methyltransferase G9a were down-regulated in OAZ transfectant. CONCLUSIONS/SIGNIFICANCE: OAZ induced hypomethylation of CpG islands of global genome DNA and H3K9me2 by down-regulating DNMT3B and G9a protein level. Hypomethylation of CpG islands of genome DNA and histone H3K9me2 is a potent mechanism of induction of the genes related to tumor suppression and DNA double strand break repair.

  19. A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Chun-Min; Wang, Jiyong; Xu, Ke; Chen, Huijie; Yue, Jia-Xing; Andrews, Stuart; Moresco, James J.; Yates, John R.; Nagy, Peter L.; Tong, Liang; Jia, Songtao

    2016-09-20

    Histone lysine-to-methionine (K-to-M) mutations are associated with multiple cancers, and they function in a dominant fashion to block the methylation of corresponding lysines on wild type histones. However, their mechanisms of function are controversial. Here we show that in fission yeast, introducing the K9M mutation into one of the three histone H3 genes dominantly blocks H3K9 methylation on wild type H3 across the genome. In addition, H3K9M enhances the interaction of histone H3 tail with the H3K9 methyltransferase Clr4 in a SAM (S-adenosyl-methionine)-dependent manner, and Clr4 is trapped at nucleation sites to prevent its spreading and the formation of large heterochromatin domains. We further determined the crystal structure of an H3K9M peptide in complex with human H3K9 methyltransferase G9a and SAM, which reveales that the methionine side chain had enhanced van der Waals interactions with G9a. Therefore, our results provide a detailed mechanism by which H3K9M regulates H3K9 methylation.

  20. The histone 3 lysine 9 methyltransferase inhibitor chaetocin improves prognosis in a rat model of high salt diet-induced heart failure

    Science.gov (United States)

    Ono, Tomohiko; Kamimura, Naomi; Matsuhashi, Tomohiro; Nagai, Toshihiro; Nishiyama, Takahiko; Endo, Jin; Hishiki, Takako; Nakanishi, Tsuyoshi; Shimizu, Noriaki; Tanaka, Hirotoshi; Ohta, Shigeo; Suematsu, Makoto; Ieda, Masaki; Sano, Motoaki; Fukuda, Keiichi; Kaneda, Ruri

    2017-01-01

    Histone acetylation has been linked to cardiac hypertrophy and heart failure. However, the pathological implications of changes in histone methylation and the effects of interventions with histone methyltransferase inhibitors for heart failure have not been fully clarified. Here, we focused on H3K9me3 status in the heart and investigated the effects of the histone H3K9 methyltransferase inhibitor chaetocin on prognoses in Dahl salt-sensitive rats, an animal model of chronic heart failure. Chaetocin prolonged survival and restored mitochondrial dysfunction. ChIP-seq analysis demonstrated that chronic stress to the heart induced H3K9me3 elevation in thousands of repetitive elements, including intronic regions of mitochondria-related genes, such as the gene encoding peroxisome proliferator-activated receptor-gamma coactivator 1 alpha. Furthermore, chaetocin reversed this effect on these repetitive loci. These data suggested that excessive heterochromatinization of repetitive elements of mitochondrial genes in the failing heart may lead to the silencing of genes and impair heart function. Thus, chaetocin may be a potential therapeutic agent for chronic heart failure. PMID:28051130

  1. Loss of LSD1 (lysine-specific demethylase 1) suppresses growth and alters gene expression of human colon cancer cells in a p53- and DNMT1(DNA methyltransferase 1)-independent manner.

    Science.gov (United States)

    Jin, Lihua; Hanigan, Christin L; Wu, Yu; Wang, Wei; Park, Ben Ho; Woster, Patrick M; Casero, Robert A

    2013-01-15

    Epigenetic silencing of gene expression is important in cancer. Aberrant DNA CpG island hypermethylation and histone modifications are involved in the aberrant silencing of tumour-suppressor genes. LSD1 (lysine-specific demethylase 1) is a H3K4 (histone H3 Lys4) demethylase associated with gene repression and is overexpressed in multiple cancer types. LSD1 has also been implicated in targeting p53 and DNMT1 (DNA methyltransferase 1), with data suggesting that the demethylating activity of LSD1 on these proteins is necessary for their stabilization. To examine the role of LSD1 we generated LSD1 heterozygous (LSD1+/-) and homozygous (LSD1-/-) knockouts in the human colorectal cancer cell line HCT116. The deletion of LSD1 led to a reduced cell proliferation both in vitro and in vivo. Surprisingly, the knockout of LSD1 in HCT116 cells did not result in global increases in its histone substrate H3K4me2 (dimethyl-H3K4) or changes in the stability or function of p53 or DNMT1. However, there was a significant difference in gene expression between cells containing LSD1 and those null for LSD1. The results of the present study suggested that LSD1 is critical in the regulation of cell proliferation, but also indicated that LSD1 is not an absolute requirement for the stabilization of either p53 or DNMT1.

  2. Selective interactions between vertebrate polycomb homologs and the SUV39H1 histone lysine methyltransferase suggest that histone H3-K9 methylation contributes to chromosomal targeting of Polycomb group proteins.

    Science.gov (United States)

    Sewalt, Richard G A B; Lachner, Monika; Vargas, Mark; Hamer, Karien M; den Blaauwen, Jan L; Hendrix, Thijs; Melcher, Martin; Schweizer, Dieter; Jenuwein, Thomas; Otte, Arie P

    2002-08-01

    Polycomb group (PcG) proteins form multimeric chromatin-associated protein complexes that are involved in heritable repression of gene activity. Two distinct human PcG complexes have been characterized. The EED/EZH2 PcG complex utilizes histone deacetylation to repress gene activity. The HPC/HPH PcG complex contains the HPH, RING1, BMI1, and HPC proteins. Here we show that vertebrate Polycomb homologs HPC2 and XPc2, but not M33/MPc1, interact with the histone lysine methyltransferase (HMTase) SUV39H1 both in vitro and in vivo. We further find that overexpression of SUV39H1 induces selective nuclear relocalization of HPC/HPH PcG proteins but not of the EED/EZH2 PcG proteins. This SUV39H1-dependent relocalization concentrates the HPC/HPH PcG proteins to the large pericentromeric heterochromatin domains (1q12) on human chromosome 1. Within these PcG domains we observe increased H3-K9 methylation. Finally, we show that H3-K9 HMTase activity is associated with endogenous HPC2. Our findings suggest a role for the SUV39H1 HMTase and histone H3-K9 methylation in the targeting of human HPC/HPH PcG proteins to modified chromatin structures.

  3. Increased expression of the histone H3 lysine 4 methyltransferase MLL4 and the histone H3 lysine 27 demethylase UTX prolonging the overall survival of patients with glioblastoma and a methylated MGMT promoter.

    Science.gov (United States)

    Kim, Jinho; Lee, Sung-Hun; Jang, Ji Hwan; Kim, Mee-Seon; Lee, Eun Hee; Kim, Young Zoon

    2016-07-01

    OBJECTIVE The purpose of the present study was to investigate the epigenetic and prognostic roles of an H3K4 methyltransferase (mixed lineage leukemia 4 [MLL4]) and H3K27 demethylase (ubiquitously transcribed tetratricopeptide repeat gene on X chromosome [UTX]) in progression-free survival (PFS) and overall survival (OS) of patients with glioblastoma (GBM) who were treated with radiotherapy, chemotherapy, or both after resection. In addition, the authors examined methylation at the promoter of the O-6-methylguanine-DNA methyltransferase (MGMT) gene and other prognostic factors predicting length of PFS and OS in these patients. METHODS The medical records of 76 patients having a new diagnosis of histologically ascertained GBM in the period of January 2002 to December 2013 at the authors' institution were retrospectively reviewed. Immunohistochemical staining for MLL4 and UTX was performed on archived paraffin-embedded tissues obtained by biopsy or resection. The methylation status of the MGMT promoter in these tissues was determined by methylation-specific PCR analysis. RESULTS During the follow-up period (mean length 18.1 months, range 4.1-43.5 months), 68 (89.5%) of the patients died. The MGMT promoter was methylated in 49 patients (64.5%) and unmethylated in 27 (35.5%). The immunoreactivity pattern of UTX was identical to that of MLL4; increased expression of these 2 proteins was observed in samples from 34 patients (44.7%) and decreased expression in 42 patients (55.3%). The mean length of PFS was 9.2 months (95% CI 6.8-11.6 months). Extent of surgery, recursive partitioning analysis (RPA) class, and methylation status of the MGMT promoter were all associated with increased PFS in the multivariate analysis of factors predicting PFS. The mean length of OS was 18.6 months (95% CI 14.3-22.9 months). Patient age (p = 0.004), WHO performance status score (p = 0.019), extent of surgery (p = 0.007), RPA class (p = 0.036), methylation status of the MGMT promoter (p = 0

  4. G9a is transactivated by C/EBPβ to facilitate mitotic clonal expansion during 3T3-L1 preadipocyte differentiation.

    Science.gov (United States)

    Li, Shu-Fen; Guo, Liang; Qian, Shu-Wen; Liu, Yuan; Zhang, You-You; Zhang, Zhi-Chun; Zhao, Yue; Shou, Jian-Yong; Tang, Qi-Qun; Li, Xi

    2013-05-01

    In 3T3-L1 preadipocyte differentiation, the CCAAT/enhancer-binding protein-β (C/EBPβ) is an important early transcription factor that activates cell cycle genes during mitotic clonal expansion (MCE), sequentially activating peroxisome proliferator-activated receptor-γ (PPARγ) and C/EBPα during terminal differentiation. Although C/EBPβ acquires its DNA binding activity via dual phosphorylation at about 12-16 h postinduction, the expression of PPARγ and C/EBPα is not induced until 36-72 h. The delayed expression of PPARγ and C/EBPα ensures the progression of MCE, but the mechanism responsible for the delay remains elusive. We provide evidence that G9a, a major euchromatic methyltransferase, is transactivated by C/EBPβ and represses PPARγ and C/EBPα through H3K9 dimethylation of their promoters during MCE. Inhibitor- or siRNA-mediated G9a downregulation modestly enhances PPARγ and C/EBPα expression and adipogenesis in 3T3-L1 preadipocytes. Conversely, forced expression of G9a impairs the accumulation of triglycerides. Thus, this study elucidates an epigenetic mechanism for the delayed expression of PPARγ and C/EBPα.

  5. An update on histone lysine methylation in plants

    Institute of Scientific and Technical Information of China (English)

    Yu Yu; Zhongyuan Bu; Wen-Hui Shen; Aiwu Dong

    2009-01-01

    Histone methylation plays crucial roles in epigenetic regulation.The SET domain proteins are now recognized as generally having methyltransferase activity targeted to specific lysine residues of histones.The enzymes and their specific histone lysine methylation have enormous impacts on the regulation of chromatin structure and function.In this review,we discuss recent advances made on histone lysine methylations and their diverse functions in plant growth and development.

  6. Specificity of the chromodomain Y chromosome family of chromodomains for lysine-methylated ARK(S/T) motifs.

    Science.gov (United States)

    Fischle, Wolfgang; Franz, Henriette; Jacobs, Steven A; Allis, C David; Khorasanizadeh, Sepideh

    2008-07-11

    Previous studies have shown two homologous chromodomain modules in the HP1 and Polycomb proteins exhibit discriminatory binding to related methyllysine residues (embedded in ARKS motifs) of the histone H3 tail. Methylated ARK(S/T) motifs have recently been identified in other chromatin factors (e.g. linker histone H1.4 and lysine methyltransferase G9a). These are thought to function as peripheral docking sites for the HP1 chromodomain. In vertebrates, HP1-like chromodomains are also present in the chromodomain Y chromosome (CDY) family of proteins adjacent to a putative catalytic motif. The human genome encodes three CDY family proteins, CDY, CDYL, and CDYL2. These have putative functions ranging from establishment of histone H4 acetylation during spermiogenesis to regulation of transcription co-repressor complexes. To delineate the biochemical functions of the CDY family chromodomains, we analyzed their specificity of methyllysine recognition. We detected substantial differences among these factors. The CDY chromodomain exhibits discriminatory binding to lysine-methylated ARK(S/T) motifs, whereas the CDYL2 chromodomain binds with comparable strength to multiple ARK(S/T) motifs. Interestingly, subtle amino acid changes in the CDYL chromodomain prohibit such binding interactions in vitro and in vivo. However, point mutations can rescue binding. In support of the in vitro binding properties of the chromodomains, the full-length CDY family proteins exhibit substantial variability in chromatin localization. Our studies underscore the significance of subtle sequence differences in a conserved signaling module for diverse epigenetic regulatory pathways.

  7. Histone H3-K9 methyltransferase ESET is essential for early development.

    Science.gov (United States)

    Dodge, Jonathan E; Kang, Yong-Kook; Beppu, Hideyuki; Lei, Hong; Li, En

    2004-03-01

    Methylation of histone H3 at lysine 9 (H3-K9) mediates heterochromatin formation by forming a binding site for HP1 and also participates in silencing gene expression at euchromatic sites. ESET, G9a, SUV39-h1, SUV39-h2, and Eu-HMTase are histone methyltransferases that catalyze H3-K9 methylation in mammalian cells. Previous studies demonstrate that the SUV39-h proteins are preferentially targeted to the pericentric heterochromatin, and mice lacking both Suv39-h genes show cytogenetic abnormalities and an increased incidence of lymphoma. G9a methylates H3-K9 in euchromatin, and G9a null embryos die at 8.5 days postcoitum (dpc). G9a null embryo stem (ES) cells show altered DNA methylation in the Prader-Willi imprinted region and ectopic expression of the Mage genes. So far, an Eu-HMTase mouse knockout has not been reported. ESET catalyzes methylation of H3-K9 and localizes mainly in euchromatin. To investigate the in vivo function of Eset, we have generated an allele that lacks the entire pre- and post-SET domains and that expresses lacZ under the endogenous regulation of the Eset gene. We found that zygotic Eset expression begins at the blastocyst stage and is ubiquitous during postimplantation mouse development, while the maternal Eset transcripts are present in oocytes and persist throughout preimplantation development. The homozygous mutations of Eset resulted in peri-implantation lethality between 3.5 and 5.5 dpc. Blastocysts null for Eset were recovered but in less than Mendelian ratios. Upon culturing, 18 of 24 Eset(-/-) blastocysts showed defective growth of the inner cell mass and, in contrast to the approximately 65% recovery of wild-type and Eset(+/-) ES cells, no Eset(-/-) ES cell lines were obtained. Global H3-K9 trimethylation and DNA methylation at IAP repeats in Eset(-/-) blastocyst outgrowths were not dramatically altered. Together, these results suggest that Eset is required for peri-implantation development and the survival of ES cells.

  8. Extensive lysine methylation in hyperthermophilic crenarchaea : potential implications for protein stability and recombinant enzymes

    OpenAIRE

    Botting, Catherine H.; Paul Talbot; Sonia Paytubi; White, Malcolm F

    2010-01-01

    In eukarya and bacteria, lysine methylation is relatively rare and is catalysed by sequence-specific lysine methyltransferases that typically have only a single-protein target. Using RNA polymerase purified from the thermophilic crenarchaeum Sulfolobus solfataricus, we identified 21 methyllysines distributed across 9 subunits of the enzyme. The modified lysines were predominantly in alpha-helices and showed no conserved sequence context. A limited survey of the Thermoproteus tenax proteome re...

  9. Extensive Lysine Methylation in Hyperthermophilic Crenarchaea: Potential Implications for Protein Stability and Recombinant Enzymes

    Directory of Open Access Journals (Sweden)

    Catherine H. Botting

    2010-01-01

    Full Text Available In eukarya and bacteria, lysine methylation is relatively rare and is catalysed by sequence-specific lysine methyltransferases that typically have only a single-protein target. Using RNA polymerase purified from the thermophilic crenarchaeum Sulfolobus solfataricus, we identified 21 methyllysines distributed across 9 subunits of the enzyme. The modified lysines were predominantly in α-helices and showed no conserved sequence context. A limited survey of the Thermoproteus tenax proteome revealed widespread modification with 52 methyllysines in 30 different proteins. These observations suggest the presence of an unusual lysine methyltransferase with relaxed specificity in the crenarchaea. Since lysine methylation is known to enhance protein thermostability, this may be an adaptation to a thermophilic lifestyle. The implications of this modification for studies and applications of recombinant crenarchaeal enzymes are discussed.

  10. Probing China's Lysine Market

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The lysine sector in China developed further in 2006. Both the capacity and the output hit new highs and China had a major impact on the global lysine market. The import amount of lysine satisfied only a very small portion of the domestic market's demand.

  11. The histone methyltransferase and putative oncoprotein MMSET is overexpressed in a large variety of human tumors

    DEFF Research Database (Denmark)

    Hudlebusch, Heidi Rye; Santoni-Rugiu, Eric; Simon, Ronald

    2011-01-01

    Multiple myeloma SET (Suppressor of variegation, Enhancer of zeste, and Trithorax) domain (MMSET) is a histone lysine methyltransferase deregulated in a subgroup of multiple myelomas with the t(4;14)(p16;q32) translocation and poor prognosis. With the aim of understanding, if MMSET can be involve...

  12. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity

    DEFF Research Database (Denmark)

    Pasini, Diego; Bracken, Adrian P; Jensen, Michael R

    2004-01-01

    SUZ12 is a recently identified Polycomb group (PcG) protein, which together with EZH2 and EED forms different Polycomb repressive complexes (PRC2/3). These complexes contain histone H3 lysine (K) 27/9 and histone H1 K26 methyltransferase activity specified by the EZH2 SET domain. Here we show tha...

  13. Study of methyl transferase (G9aMT) and methylated histone (H3-K9) expressions in unexplained recurrent spontaneous abortion (URSA) and normal early pregnancy.

    Science.gov (United States)

    Fatima, Nishat; Ahmed, S H; Salhan, Sudha; Rehman, S M F; Kaur, Jatinder; Owais, M; Chauhan, Shyam S

    2011-11-01

    We investigated the expression of methyl transferase G9a and methylated histone H3-K9 in fresh human decidual/endometrial tissue of 12 normal early pregnancies and 15 unexplained recurrent spontaneous abortions (URSA). The samples were obtained through dilatation and curettage and collected as per strict inclusion-exclusion criteria. The tissue was subjected to immunohistochemical analysis (IHC), western blotting (WB) and RT-PCR analysis. The results demonstrated methyl transferase G9a to have a lower expression in abortions when compared with that in normal pregnancy (P K9 was significantly lower (P < 0.0001) in URSA tissues than in controls. This study suggests that methylation may cause URSA and indicates the need for further work to explore the role of methylation in URSA and its possible prevention through locally acting methylating/demethylating agents.

  14. Targeting protein lysine methylation and demethylation in cancers

    Institute of Scientific and Technical Information of China (English)

    Yunlong He; Ilia Korboukh; Jian Jin; Jing Huang

    2012-01-01

    During the last decade,we saw an explosion of studies investigating the role of lysine methylation/demethylation of histones and non-histone proteins,such as p53,NF-kappaB,and E2F1.These ‘Ying-Yang' post-translational modifications are important to fine-tuning the activity of these proteins. Lysine methylation and demethylation are catalyzed by protein lysine methyltransferases (PKMTs) and protein lysine demethylases (PKDMs).PKMTs,PKDMs,and their substrates have been shown to play important roles in cancers.Although the underlying mechanisms of tumorigenesis are still largely unknown,growing evidence is starting to link aberrant regulation of methylation to tumorigenesis.This review focuses on summarizing the recent progress in understanding of the function of protein lysine methylation,and in the discovery of small molecule inhibitors for PKMTs and PKDMs.We also discuss the potential and the caveats of targeting protein lysine methylation for the treatment of cancer.

  15. Involvement of EZH2, SUV39H1, G9a and associated molecules in pathogenesis of urethane induced mouse lung tumors: Potential targets for cancer control

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Manuraj; Sahay, Satya; Tiwari, Prakash [Carcinogenesis Laboratory, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow –226001 (India); Upadhyay, Daya S. [Laboratory Animals Services, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow (India); Sultana, Sarwat [Dept. Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi (India); Gupta, Krishna P., E-mail: krishnag522@yahoo.co.in [Carcinogenesis Laboratory, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow –226001 (India)

    2014-10-15

    In the present study, we showed the correlation of EZH2, SUV39H1 or G9a expression and histone modifications with the urethane induced mouse lung tumorigenesis in the presence or absence of antitumor agent, inositol hexaphosphate (IP6). Tumorigenesis and the molecular events involved therein were studied at 1, 4, 12 or 36 weeks after the exposure. There were no tumors at 1 or 4 weeks but tumors started appearing at 12 weeks and grew further till 36 weeks after urethane exposure. Among the molecular events, upregulation of EZH2 and SUV39H1 expressions appeared to be time dependent, but G9a expression was altered significantly only at later stages of 12 or 36 weeks. Alteration in miR-138 expression supports the upregulation of its target, EZH2. H3K9me2, H3K27me3 or H4K20me3 was found to be altered at 12 or 36 weeks. However, ChIP analysis of p16 and MLH1 promoters showed their binding with H3K9me2 and H3K27me3 which was maximum at 36 weeks. Thus, histone modification and their interactions with gene promoter resulted in the reduced expression of p16 and MLH1. IP6 prevented the incidence and the size of urethane induced lung tumors. IP6 also prevented the urethane induced alterations in EZH2, SUV39H1, G9a expressions and histone modifications. Our results suggest that the alterations in the histone modification pathways involving EZH2 and SUV39H1 expressions are among the early events in urethane induced mouse lung tumorigenesis and could be exploited for cancer control. - Highlights: • Urethane induces mouse lung tumor in a time dependent manner. • EZH2, SUV39H1, G9a induced by urethane and progress with time • Downregulation of miRNA-138 supports the EZH2 upregulation. • Methylation of histones showed a consequence of upregulated EZH2, SUV39H1 and G9a. • IP6 inhibits urethane induced changes and prevents tumor development.

  16. Effect of dietary lysine on hepatic lysine catabolism in broilers

    Science.gov (United States)

    Lysine is frequently a first- or second-limiting amino acid in poultry diets. Improving the efficiency of lysine use for protein synthesis would effectively lower the lysine requirement and decrease feed costs. Understanding how lysine is degraded and how the degradation is regulated would identif...

  17. Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation.

    Science.gov (United States)

    Ferry, Laure; Fournier, Alexandra; Tsusaka, Takeshi; Adelmant, Guillaume; Shimazu, Tadahiro; Matano, Shohei; Kirsh, Olivier; Amouroux, Rachel; Dohmae, Naoshi; Suzuki, Takehiro; Filion, Guillaume J; Deng, Wen; de Dieuleveult, Maud; Fritsch, Lauriane; Kudithipudi, Srikanth; Jeltsch, Albert; Leonhardt, Heinrich; Hajkova, Petra; Marto, Jarrod A; Arita, Kyohei; Shinkai, Yoichi; Defossez, Pierre-Antoine

    2017-08-17

    DNA methylation is an essential epigenetic mark in mammals that has to be re-established after each round of DNA replication. The protein UHRF1 is essential for this process; it has been proposed that the protein targets newly replicated DNA by cooperatively binding hemi-methylated DNA and H3K9me2/3, but this model leaves a number of questions unanswered. Here, we present evidence for a direct recruitment of UHRF1 by the replication machinery via DNA ligase 1 (LIG1). A histone H3K9-like mimic within LIG1 is methylated by G9a and GLP and, compared with H3K9me2/3, more avidly binds UHRF1. Interaction with methylated LIG1 promotes the recruitment of UHRF1 to DNA replication sites and is required for DNA methylation maintenance. These results further elucidate the function of UHRF1, identify a non-histone target of G9a and GLP, and provide an example of a histone mimic that coordinates DNA replication and DNA methylation maintenance. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Protein Methyltransferases: A Distinct, Diverse, and Dynamic Family of Enzymes.

    Science.gov (United States)

    Boriack-Sjodin, P Ann; Swinger, Kerren K

    2016-03-22

    Methyltransferase proteins make up a superfamily of enzymes that add one or more methyl groups to substrates that include protein, DNA, RNA, and small molecules. The subset of proteins that act upon arginine and lysine side chains are characterized as epigenetic targets because of their activity on histone molecules and their ability to affect transcriptional regulation. However, it is now clear that these enzymes target other protein substrates, as well, greatly expanding their potential impact on normal and disease biology. Protein methyltransferases are well-characterized structurally. In addition to revealing the overall architecture of the subfamilies of enzymes, structures of complexes with substrates and ligands have permitted detailed analysis of biochemical mechanism, substrate recognition, and design of potent and selective inhibitors. This review focuses on how knowledge gained from structural studies has impacted the understanding of this large class of epigenetic enzymes.

  19. Strategy to target the substrate binding site of SET domain protein methyltransferases.

    Science.gov (United States)

    Nguyen, Kong T; Li, Fengling; Poda, Gennadiy; Smil, David; Vedadi, Masoud; Schapira, Matthieu

    2013-03-25

    Protein methyltransferases (PMTs) are a novel gene family of therapeutic relevance involved in chromatin-mediated signaling and other biological mechanisms. Most PMTs are organized around the structurally conserved SET domain that catalyzes the methylation of a substrate lysine. A few potent chemical inhibitors compete with the protein substrate, and all are anchored in the channel recruiting the methyl-accepting lysine. We propose a novel strategy to design focused chemical libraries targeting the substrate binding site, where a limited number of warheads each occupying the lysine-channel of multiple enzymes would be decorated by different substituents. A variety of sequence and structure-based approaches used to analyze the diversity of the lysine channel of SET domain PMTs support the relevance of this strategy. We show that chemical fragments derived from published inhibitors are valid warheads that can be used in the design of novel focused libraries targeting other PMTs.

  20. Lysine methylation: beyond histones

    Institute of Scientific and Technical Information of China (English)

    Xi Zhang; Hong Wen; Xiaobing Shi

    2012-01-01

    Posttranslational modifications (PTMs) of histone proteins,such as acetylation,methylation,phosphorylation,and ubiquitylation,play essential roles in regulating chromatin dynamics.Combinations of different modifications on the histone proteins,termed 'histone code' in many cases,extend the information potential of the genetic code by regulating DNA at the epigenetic level.Many PTMs occur on non-histone proteins as well as histones,regulating protein-protein interactions,stability,localization,and/or enzymatic activities of proteins involved in diverse cellular processes.Although protein phosphorylation,ubiquitylation,and acetylation have been extensively studied,only a few proteins other than histones have been reported that can be modified by lysine methylation.This review summarizes the current progress on lysine methylation of nonhistone proteins,and we propose that lysine methylation,like phosphorylation and acetylation,is a common PTM that regulates proteins in diverse cellular processes.

  1. Histone H3 lysine 27 and 9 hypermethylation within the Bad promoter region mediates 5-Aza-2'-deoxycytidine-induced Leydig cell apoptosis: implications of 5-Aza-2'-deoxycytidine toxicity to male reproduction.

    Science.gov (United States)

    Choi, Ji-Young; Lee, Sangmi; Hwang, Soojin; Jo, Sangmee Ahn; Kim, Miji; Kim, Young Ju; Pang, Myung-Geol; Jo, Inho

    2013-01-01

    5-Aza-2'-deoxycitidine (5-Aza), an anticancer agent, results in substantial toxicity to male reproduction, causing a decline in sperm quality associated with reduced testosterone. Here, we report that 5-Aza increased the apoptotic protein Bad epigenetically in the testosterone-producing mouse TM3 Leydig cell line. 5-Aza decreased cell viability in a dose- and time-dependent manner with concomitant increase in Bad protein. This increase is accompanied by increased cleavages of both poly ADP ribose polymerase and caspase-3. Flow cytometric analysis further supported 5-Aza-derived apoptosis in TM3 cells. Bisulfite sequencing analysis failed to identify putative methylcytosine site(s) in CpG islands of the Bad promoter. A chromatin immunoprecipitation assay revealed decreased levels of trimethylation at lysine 27 of histone H3 (H3K27-3me) and H3K9-3me in the Bad promoter region in response to 5-Aza treatment. Knock-down by siRNA of enhancer of zeste homologue 2 (EZH2), a histone methyltransferase responsible for H3K27-3me, or demethylation of H3K9-3me by BIX-01294 showed significantly increased levels in Bad expression and consequent Leydig cell apoptosis. In conclusion, our results demonstrate for the first time that Bad expression is regulated at least by EZH2-mediated H3K27-3me or G9a-like protein/euchromatic histone methyltransferase 1 (GLP/Eu-HMTase1)-mediated H3K9-3me in mouse TM3 Leydig cells, which may be implicated in 5-Aza-derived toxicity to male reproduction.

  2. Histone methyltransferases in cancer

    DEFF Research Database (Denmark)

    Albert, Mareike; Helin, Kristian

    2009-01-01

    Cancer is perceived as a heterogeneous group of diseases that is characterized by aberrant patterns of gene expression. In the last decade, an increasing amount of data has pointed to a key role for epigenetic alterations in human cancer. In this review, we focus on a subclass of epigenetic...... regulators, namely histone methyltransferases (HMTs). Several HMTs have been linked to different types of cancer; however, in most cases we only have limited knowledge regarding the molecular mechanisms by which the HMTs contribute to disease development. We summarize the current knowledge regarding some...

  3. Virtual screening and biological characterization of novel histone arginine methyltransferase PRMT1 inhibitors.

    Science.gov (United States)

    Heinke, Ralf; Spannhoff, Astrid; Meier, Rene; Trojer, Patrick; Bauer, Ingo; Jung, Manfred; Sippl, Wolfgang

    2009-01-01

    Lysine and arginine methyltransferases participate in the posttranslational modification of histones and regulate key cellular functions. Protein arginine methyltransferase 1 (PRMT1) has been identified as an essential component of mixed lineage leukemia (MLL) oncogenic complexes, revealing its potential as a novel therapeutic target in human cancer. The first potent arginine methyltransferase inhibitors were recently discovered by random- and target-based screening approaches. Herein we report virtual and biological screening for novel inhibitors of PRMT1. Structure-based virtual screening (VS) of the Chembridge database composed of 328 000 molecules was performed with a combination of ligand- and target-based in silico approaches. Nine inhibitors were identified from the top-scored docking solutions; these were experimentally tested using human PRMT1 and an antibody-based assay with a time-resolved fluorescence readout. Among several aromatic amines, an aliphatic amine and an amide were also found to be active in the micromolar range.

  4. Weaver Syndrome‐Associated EZH2 Protein Variants Show Impaired Histone Methyltransferase Function In Vitro

    Science.gov (United States)

    Yap, Damian B.; Lewis, M.E. Suzanne; Chijiwa, Chieko; Ramos‐Arroyo, Maria A.; Tkachenko, Natália; Milano, Valentina; Fradin, Mélanie; McKinnon, Margaret L.; Townsend, Katelin N.; Xu, Jieqing; Van Allen, M.I.; Ross, Colin J.D.; Dobyns, William B.; Weaver, David D.; Gibson, William T.

    2016-01-01

    ABSTRACT Weaver syndrome (WS) is a rare congenital disorder characterized by generalized overgrowth, macrocephaly, specific facial features, accelerated bone age, intellectual disability, and susceptibility to cancers. De novo mutations in the enhancer of zeste homolog 2 (EZH2) have been shown to cause WS. EZH2 is a histone methyltransferase that acts as the catalytic agent of the polycomb‐repressive complex 2 (PRC2) to maintain gene repression via methylation of lysine 27 on histone H3 (H3K27). Functional studies investigating histone methyltransferase activity of mutant EZH2 from various cancers have been reported, whereas WS‐associated mutations remain poorly characterized. To investigate the role of EZH2 in WS, we performed functional studies using artificially assembled PRC2 complexes containing mutagenized human EZH2 that reflected the codon changes predicted from patients with WS. We found that WS‐associated amino acid alterations reduce the histone methyltransferase function of EZH2 in this in vitro assay. Our results support the hypothesis that WS is caused by constitutional mutations in EZH2 that alter the histone methyltransferase function of PRC2. However, histone methyltransferase activities of different EZH2 variants do not appear to correlate directly with the phenotypic variability between WS patients and individuals with a common c.553G>C (p.Asp185His) polymorphism in EZH2. PMID:26694085

  5. Genetics Home Reference: guanidinoacetate methyltransferase deficiency

    Science.gov (United States)

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions guanidinoacetate methyltransferase deficiency guanidinoacetate methyltransferase ...

  6. Methylation of histone H3 lysine 9 occurs during translation

    Science.gov (United States)

    Rivera, Carlos; Saavedra, Francisco; Alvarez, Francisca; Díaz-Celis, César; Ugalde, Valentina; Li, Jianhua; Forné, Ignasi; Gurard-Levin, Zachary A.; Almouzni, Geneviève; Imhof, Axel; Loyola, Alejandra

    2015-01-01

    Histone post-translational modifications are key contributors to chromatin structure and function, and participate in the maintenance of genome stability. Understanding the establishment and maintenance of these marks, along with their misregulation in pathologies is thus a major focus in the field. While we have learned a great deal about the enzymes regulating histone modifications on nucleosomal histones, much less is known about the mechanisms establishing modifications on soluble newly synthesized histones. This includes methylation of lysine 9 on histone H3 (H3K9), a mark that primes the formation of heterochromatin, a critical chromatin landmark for genome stability. Here, we report that H3K9 mono- and dimethylation is imposed during translation by the methyltransferase SetDB1. We discuss the importance of these results in the context of heterochromatin establishment and maintenance and new therapeutic opportunities in pathologies where heterochromatin is perturbed. PMID:26405197

  7. Lysine methylation regulates the pRb tumour suppressor protein.

    Science.gov (United States)

    Munro, S; Khaire, N; Inche, A; Carr, S; La Thangue, N B

    2010-04-22

    The pRb tumour suppressor protein has a central role in coordinating early cell cycle progression. An important level of control imposed on pRb occurs through post-translational modification, for example, phosphorylation. We describe here a new level of regulation on pRb, mediated through the targeted methylation of lysine residues, by the methyltransferase Set7/9. Set7/9 methylates the C-terminal region of pRb, both in vitro and in cells, and methylated pRb interacts with heterochromatin protein HP1. pRb methylation is required for pRb-dependent cell cycle arrest and transcriptional repression, as well as pRb-dependent differentiation. Our results indicate that methylation can influence the properties of pRb, and raise the interesting possibility that methylation modulates pRb tumour suppressor activity.

  8. Methyltransferase and demethylase profiling studies during brown adipocyte differentiation.

    Science.gov (United States)

    Son, Min Jeong; Kim, Won Kon; Oh, Kyoung-Jin; Park, Anna; Lee, Da Som; Han, Baek Soo; Lee, Sang Chul; Bae, Kwang-Hee

    2016-07-01

    Although brown adipose tissue is important with regard to energy balance, the molecular mechanism of brown adipocyte differentiation has not been extensively studied. Specifically, regulation factors at the level of protein modification are largely unknown. In this study, we examine the changes in the expression level of enzymes which are involved in protein lysine methylation during brown adipocyte differentiation. Several enzymes, in this case SUV420H2, PRDM9, MLL3 and JHDM1D, were found to be up-regulated. On the other hand, Set7/9 was significantly down-regulated. In the case of SUV420H2, the expression level increased sharply during brown adipocyte differentiation, whereas the expression of SUV420H2 was marginally enhanced during the white adipocyte differentiation. The knock-down of SUV420H2 caused the suppression of brown adipocyte differentiation, as compared to a scrambled control. These results suggest that SUV420H2, a methyltransferase, is involved in brown adipocyte differentiation, and that the methylation of protein lysine is important in brown adipocyte differentiation. [BMB Reports 2016; 49(7): 388-393].

  9. MLL2 Is Required in Oocytes for Bulk Histone 3 Lysine 4 Trimethylation and Transcriptional Silencing

    Science.gov (United States)

    Andreu-Vieyra, Claudia V.; Chen, Ruihong; Agno, Julio E.; Glaser, Stefan; Anastassiadis, Konstantinos; Stewart, A. Francis; Matzuk, Martin M.

    2010-01-01

    During gametogenesis and pre-implantation development, the mammalian epigenome is reprogrammed to establish pluripotency in the epiblast. Here we show that the histone 3 lysine 4 (H3K4) methyltransferase, MLL2, controls most of the promoter-specific chromatin modification, H3K4me3, during oogenesis and early development. Using conditional knockout mutagenesis and a hypomorph model, we show that Mll2 deficiency in oocytes results in anovulation and oocyte death, with increased transcription of p53, apoptotic factors, and Iap elements. MLL2 is required for (1) bulk H3K4me3 but not H3K4me1, indicating that MLL2 controls most promoters but monomethylation is regulated by a different H3K4 methyltransferase; (2) the global transcriptional silencing that preceeds resumption of meiosis but not for the concomitant nuclear reorganization into the surrounded nucleolus (SN) chromatin configuration; (3) oocyte survival; and (4) normal zygotic genome activation. These results reveal that MLL2 is autonomously required in oocytes for fertility and imply that MLL2 contributes to the epigenetic reprogramming that takes place before fertilization. We propose that once this task has been accomplished, MLL2 is not required until gastrulation and that other methyltransferases are responsible for bulk H3K4me3, thereby revealing an unexpected epigenetic control switch amongst the H3K4 methyltransferases during development. PMID:20808952

  10. MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing.

    Directory of Open Access Journals (Sweden)

    Claudia V Andreu-Vieyra

    Full Text Available During gametogenesis and pre-implantation development, the mammalian epigenome is reprogrammed to establish pluripotency in the epiblast. Here we show that the histone 3 lysine 4 (H3K4 methyltransferase, MLL2, controls most of the promoter-specific chromatin modification, H3K4me3, during oogenesis and early development. Using conditional knockout mutagenesis and a hypomorph model, we show that Mll2 deficiency in oocytes results in anovulation and oocyte death, with increased transcription of p53, apoptotic factors, and Iap elements. MLL2 is required for (1 bulk H3K4me3 but not H3K4me1, indicating that MLL2 controls most promoters but monomethylation is regulated by a different H3K4 methyltransferase; (2 the global transcriptional silencing that preceeds resumption of meiosis but not for the concomitant nuclear reorganization into the surrounded nucleolus (SN chromatin configuration; (3 oocyte survival; and (4 normal zygotic genome activation. These results reveal that MLL2 is autonomously required in oocytes for fertility and imply that MLL2 contributes to the epigenetic reprogramming that takes place before fertilization. We propose that once this task has been accomplished, MLL2 is not required until gastrulation and that other methyltransferases are responsible for bulk H3K4me3, thereby revealing an unexpected epigenetic control switch amongst the H3K4 methyltransferases during development.

  11. Histone methyltransferases and demethylases:regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Peng Deng; Qian-Ming Chen; Christine Hong; Cun-Yu Wang

    2015-01-01

    Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-based regenerative medicine, such as craniofacial bone regeneration, and in new treatments for metabolic bone diseases, such as osteoporosis. In recent years, histone modification has been a growing topic in the field of MSC lineage specification, in which the Su(var)3–9, enhancer-of-zeste, trithorax (SET) domain-containing family and the Jumonji C (JmjC) domain-containing family represent the major histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), respectively. In this review, we summarize the current understanding of the epigenetic mechanisms by which SET domain-containing KMTs and JmjC domain-containing KDMs balance the osteogenic and adipogenic differentiation of MSCs.

  12. Digestible lysine requirements of broilers

    Directory of Open Access Journals (Sweden)

    LEP Bernal

    2014-03-01

    Full Text Available Modern broilers have been submitted to continuous genetic improvement, and therefore, their nutritional requirements must be constantly updated to ensure their performance. Two experiments were carried out to evaluate different digestible lysine levels for starter (1021 days and grower (22-35 days phases. The experiments were carried out with male and female Cobb 500 broilers, distributed according to a randomized block experimental design in a 5x2 factorial arrangement (5 increasing digestible lysine levels x 2 sexes, totaling 10 treatments, with 8 replicates of 22 and 20 birds during the starter and grower phase, respectively. Digestible lysine levels of 1.06, 1.12, 1.18, 1.24, and 1.30 were used in the starter diets (10-21 days and 0.9, 0.98, 1.04, 1.10, and 1.16% in the grower diets (22-35 days. Based on the statistical analyses of the evaluated performance parameters, digestible lysine requirements for maximum performance were determined as 1.22% for males and 1.24% for females in the starter phase, and 1.16% for both sexes in the grower phase. Carcass and performance results indicate that digestible lysine requirements vary with sex and evaluated production parameter. Considering the most relevant broiler production parameters, in 22- to 35-d-old males, digestible lysine requirement for breast meat yield (1.16% was higher than those for feed conversion ratio (1.07% and weight gain (1.05%.

  13. Enzymology of Mammalian DNA Methyltransferases.

    Science.gov (United States)

    Jurkowska, Renata Z; Jeltsch, Albert

    2016-01-01

    DNA methylation is currently one of the hottest topics in basic and biomedical research. Despite tremendous progress in understanding the structures and biochemical properties of the mammalian DNA nucleotide methyltransferases (DNMTs), principles of their regulation in cells have only begun to be uncovered. In mammals, DNA methylation is introduced by the DNMT1, DNMT3A, and DNMT3B enzymes, which are all large multi-domain proteins. These enzymes contain a catalytic C-terminal domain with a characteristic cytosine-C5 methyltransferase fold and an N-terminal part with different domains that interacts with other proteins and chromatin and is involved in targeting and regulation of the DNMTs. The subnuclear localization of the DNMT enzymes plays an important role in their biological function: DNMT1 is localized to replicating DNA via interaction with PCNA and UHRF1. DNMT3 enzymes bind to heterochromatin via protein multimerization and are targeted to chromatin by their ADD and PWWP domains. Recently, a novel regulatory mechanism has been discovered in DNMTs, as latest structural and functional data demonstrated that the catalytic activities of all three enzymes are under tight allosteric control of their N-terminal domains having autoinhibitory functions. This mechanism provides numerous possibilities for the precise regulation of the methyltransferases via controlling the binding and release of autoinhibitory domains by protein factors, noncoding RNAs, or by posttranslational modifications of the DNMTs. In this chapter, we summarize key enzymatic properties of DNMTs, including their specificity and processivity, and afterward we focus on the regulation of their activity and targeting via allosteric processes, protein interactors, and posttranslational modifications.

  14. SET7/9 Catalytic Mutants Reveal the Role of Active Site Water Molecules in Lysine Multiple Methylation

    Energy Technology Data Exchange (ETDEWEB)

    Del Rizzo, Paul A.; Couture, Jean-François; Dirk, Lynnette M.A.; Strunk, Bethany S.; Roiko, Marijo S.; Brunzelle, Joseph S.; Houtz, Robert L.; Trievel, Raymond C. (Michigan); (NWU); (Kentucky)

    2010-11-15

    SET domain lysine methyltransferases (KMTs) methylate specific lysine residues in histone and non-histone substrates. These enzymes also display product specificity by catalyzing distinct degrees of methylation of the lysine {epsilon}-amino group. To elucidate the molecular mechanism underlying this specificity, we have characterized the Y245A and Y305F mutants of the human KMT SET7/9 (also known as KMT7) that alter its product specificity from a monomethyltransferase to a di- and a trimethyltransferase, respectively. Crystal structures of these mutants in complex with peptides bearing unmodified, mono-, di-, and trimethylated lysines illustrate the roles of active site water molecules in aligning the lysine {epsilon}-amino group for methyl transfer with S-adenosylmethionine. Displacement or dissociation of these solvent molecules enlarges the diameter of the active site, accommodating the increasing size of the methylated {epsilon}-amino group during successive methyl transfer reactions. Together, these results furnish new insights into the roles of active site water molecules in modulating lysine multiple methylation by SET domain KMTs and provide the first molecular snapshots of the mono-, di-, and trimethyl transfer reactions catalyzed by these enzymes.

  15. Biological function and regulation of histone and non-histone lysine methylation in response to DNA damage

    Institute of Scientific and Technical Information of China (English)

    Yongcan Chen; Wei-Guo Zhu

    2016-01-01

    DNA damage response (DDR) signaling network is initiated to protect cells from various exogenous and endogenous damage resources.Timely and accurate regulation of DDR proteins is required for distinct DNA damage repair pathways.Post-translational modifications of histone and non-histone proteins play a vital role in the DDR factor foci formation and signaling pathway.Phosphorylation,ubiquitylation,SUMOylation,neddylation,poly(ADP-ribosyl)ation,acetylation,and methylation are all involved in the spatial-temporal regulation of DDR,among which phosphorylation and ubiquitylation are well studied.Studies in the past decade also revealed extensive roles of lysine methylation in response to DNA damage.Lysine methylation is finely regulated by plenty of lysine methyltransferases,lysine demethylases,and can be recognized by proteins with chromodomain,plant homeodomain,Tudor domain,malignant brain tumor domain,or prolinetryptophan-tryptophan-proline domain.In this review,we outline the dynamics and regulation of histone lysine methylation at canonical (H3K4,H3K9,H3K27,H3K36,H3K79,and H4K20) and non-canonical sites after DNA damage,and discuss their context-specific functions in DDR protein recruitment or extraction,chromatin environment establishment,and transcriptional regulation.We also present the emerging advances of lysine methylation in non-histone proteins during DDR.

  16. Expansion of the Lysine Acylation Landscape

    DEFF Research Database (Denmark)

    Olsen, Christian A.

    2012-01-01

    Leaving marks: The number of known posttranslational modifications for lysine has been expanded considerably. In addition to acetylation of side-chain amino functionalities of lysine residues in proteins, crotonylation, succinylation, and malonylation have now been identified as posttranslational...

  17. The Histone Methyltransferase Activity of MLL1 Is Dispensable for Hematopoiesis and Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Bibhu P. Mishra

    2014-05-01

    Full Text Available Despite correlations between histone methyltransferase (HMT activity and gene regulation, direct evidence that HMT activity is responsible for gene activation is sparse. We address the role of the HMT activity for MLL1, a histone H3 lysine 4 (H3K4 methyltransferase critical for maintaining hematopoietic stem cells (HSCs. Here, we show that the SET domain, and thus HMT activity of MLL1, is dispensable for maintaining HSCs and supporting leukemogenesis driven by the MLL-AF9 fusion oncoprotein. Upon Mll1 deletion, histone H4 lysine 16 (H4K16 acetylation is selectively depleted at MLL1 target genes in conjunction with reduced transcription. Surprisingly, inhibition of SIRT1 is sufficient to prevent the loss of H4K16 acetylation and the reduction in MLL1 target gene expression. Thus, recruited MOF activity, and not the intrinsic HMT activity of MLL1, is central for the maintenance of HSC target genes. In addition, this work reveals a role for SIRT1 in opposing MLL1 function.

  18. Histone methyltransferase 1 regulates the encystation process in the parasite Giardia lamblia.

    Science.gov (United States)

    Salusso, Agostina; Zlocowski, Natacha; Mayol, Gonzalo F; Zamponi, Nahuel; Rópolo, Andrea S

    2017-08-01

    In eukaryotes, histone lysine methylation is associated with either active or repressed chromatin states, depending on the status of methylation. Even when the amino-terminus of Giardia lamblia histones diverges from other organisms, these regions contain lysine residues that are potential targets for methylation. When we examined the role of the histone methyltransferase 1 (HMT1) in the regulation of the encystation process by giardial histone methyltransferase 1 (GlHMT1) overexpression or downregulation, we observed an increase or a decrease in cyst production, respectively, compared to wild-type trophozoites. A time-lapse analysis of encystation showed that overexpression of GlHMT1 induced an earlier and faster process than in wild-type cells together with an upregulation of mRNA expression of cyst wall proteins. Subcellular localization studies indicated that GlHMT1-hemaglutinin was mainly associated with the nuclear and perinuclear region in both growing and encysting parasites, in agreement with bioinformatics analyses showing that GlHMT-1 possesses nuclear localization signals in addition to the classical SU(var)3-9, Enhancer-of-Zeste, Trithorax (SET), and post-SET domains. Altogether, these findings suggest that the function of HMT1 is critical for the success and timing of the encystation process, and reinforce the idea that epigenetic marks are critical for cyst formation in G. lamblia. © 2017 Federation of European Biochemical Societies.

  19. Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase

    Institute of Scientific and Technical Information of China (English)

    Bin-Zhong Li; Guo-Liang Xu; Zheng Huang; Qing-Yan Cui; Xue-Hui Song; Lin Du; Albert Jeltsch; Ping Chen; Guohong Li; En Li

    2011-01-01

    Cytosine methylation of genomic DNA controls gene expression and maintains genome stability. How a specific DNA sequence is targeted for methylation by a methyltransferase is largely unknown. Here, we show that histone H3 tails lacking lysine 4 (K4) methylation function as an allosteric activator for methyltransferase Dnmt3a by binding to its plant homeodomain (PHD). In vitro, histone H3 peptides stimulated the methylation activity of Dnmt3a up to 8-fold, in a manner reversely correlated with the level of K4 methylation. The biological significance of allosteric regulation was manifested by molecular modeling and identification of key residues in both the PHD and the catalytic domain of Dnmt3a whose mutations impaired the stimulation of methylation activity by H3 peptides but not the binding of H3 peptides. Significantly, these mutant Dnmt3a proteins were almost inactive in DNA methylation when expressed in mouse embryonic stem cells while their recruitment to genomic targets was unaltered. We therefore propose a two-step mechanism for de novo DNA methylation - first recruitment of the methyltransferase probably assisted by a chromatin- or DNA-binding factor, and then allosteric activation depending on the interaction between Dnmt3a and the histone tails - the latter might serve as a checkpoint for the methylation activity.

  20. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation.

    Science.gov (United States)

    Baubec, Tuncay; Colombo, Daniele F; Wirbelauer, Christiane; Schmidt, Juliane; Burger, Lukas; Krebs, Arnaud R; Akalin, Altuna; Schübeler, Dirk

    2015-04-09

    DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined genomic binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG-dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity.

  1. Available lysine in canned fish

    OpenAIRE

    Rao, D. Ramananda; Gadre, Ujjwala V.

    1984-01-01

    Otolithus argenteus was canned in brine by heat processing at two different steam pressures either at 0.70 kg/cm super(2) or 1.05 kg/cm super(2) for 25 minutes. The nutritive value of canned fish as evaluated by the total nitrogen and available lysine did not alter much either during heat processing or during storage over a period of nine months at 28 degree plus or minus 5 degree C.

  2. involvement of methyltransferases enzymes during the energy ...

    African Journals Online (AJOL)

    Mgina

    semesiae sp. nov. to evaluate whether the enzyme systems involved were constitutive or inductive. ... methyl transfer reaction in DMS conversion proceeds in a manner similar to methyltransferases ..... influence the rate of methanogenesis.

  3. A Novel 3-Methylhistidine Modification of Yeast Ribosomal Protein Rpl3 Is Dependent upon the YIL110W Methyltransferase*

    Science.gov (United States)

    Webb, Kristofor J.; Zurita-Lopez, Cecilia I.; Al-Hadid, Qais; Laganowsky, Arthur; Young, Brian D.; Lipson, Rebecca S.; Souda, Puneet; Faull, Kym F.; Whitelegge, Julian P.; Clarke, Steven G.

    2010-01-01

    We have shown that Rpl3, a protein of the large ribosomal subunit from baker's yeast (Saccharomyces cerevisiae), is stoichiometrically monomethylated at position 243, producing a 3-methylhistidine residue. This conclusion is supported by top-down and bottom-up mass spectrometry of Rpl3, as well as by biochemical analysis of Rpl3 radiolabeled in vivo with S-adenosyl-l-[methyl-3H]methionine. The results show that a +14-Da modification occurs within the GTKKLPRKTHRGLRKVAC sequence of Rpl3. Using high-resolution cation-exchange chromatography and thin layer chromatography, we demonstrate that neither lysine nor arginine residues are methylated and that a 3-methylhistidine residue is present. Analysis of 37 deletion strains of known and putative methyltransferases revealed that only the deletion of the YIL110W gene, encoding a seven β-strand methyltransferase, results in the loss of the +14-Da modification of Rpl3. We suggest that YIL110W encodes a protein histidine methyltransferase responsible for the modification of Rpl3 and potentially other yeast proteins, and now designate it Hpm1 (Histidine protein methyltransferase 1). Deletion of the YIL110W/HPM1 gene results in numerous phenotypes including some that may result from abnormal interactions between Rpl3 and the 25 S ribosomal RNA. This is the first report of a methylated histidine residue in yeast cells, and the first example of a gene required for protein histidine methylation in nature. PMID:20864530

  4. Effect of bacteriophage lysin on lysogens

    Institute of Scientific and Technical Information of China (English)

    Balaji Subramanyam; Vanaja Kumar

    2011-01-01

    Objective: To study the effect of phage lysin on the growth of lysogens. Methods: Sputum specimens processed by modified Petroff's method were respectively treated with phagebiotics in combination with lysin and lysin alone. The specimens were incubated at 37℃ for 4 days. At the end of day 1, 2, 3 and day 4, the specimens were streaked on blood agar plates and incubated at 37℃ for 18-24 hours. The growth of normal flora observed after day 1 was considered as lysogens.Results:When specimens treated with lysin alone, lysogen formation was avoided and normal flora was controlled. Conclusions: Lysin may have no effect on the growth of lysogens. Sputum specimens treated with phagebiotics-lysin showed the growth of lysogens.

  5. Caffeine synthase and related methyltransferases in plants.

    Science.gov (United States)

    Misako, Kato; Kouichi, Mizuno

    2004-05-01

    Caffeine (1,3,7-trimethylxanthine) is a purine alkaloid present in high concentrations in tea and coffee and it is also found in a number of beverages such as coca cola. It is necessary to elucidate the caffeine biosynthetic pathway and to clone the genes related to the production of caffeine not only to determine the metabolism of the purine alkaloid but also to control the content of caffeine in tea and coffee. The available data support the operation of a xanthosine-->7-methylxanthosine-->7-methylxanthine-->theobromine-->caffeine pathway as the major route to caffeine. Since the caffeine biosynthetic pathway contains three S-adenosyl-L-methionine (SAM) dependent methylation steps, N-methyltransferases play important roles. This review focuses on the enzymes and genes involved in the methylation of purine ring. Caffeine synthase, the SAM-dependent methyltransferase involved in the last two steps of caffeine biosynthesis, was originally purified from young tea leaves (Camellia sinensis). The isolated cDNA, termed TCS1, consists of 1,483 base pairs and encodes a protein of 369 amino acids. Subsequently, the homologous genes that encode caffeine biosynthetic enzymes from coffee (Coffea arabica) were isolated. The recombinant proteins are classified into the three types on the basis of their substrate specificity i.e. 7-methylxanthosine synthase, theobromine synthase and caffeine synthase. The predicted amino acid sequences of caffeine biosynthetic enzymes derived from C. arabica exhibit more than 80% homology with those of the clones and but show only 40% homology with TCS1 derived from C. sinensis. In addition, they share 40% homology with the amino acid sequences of salicylic carboxyl methyltransferase, benzoic acid carboxyl methyltransferase and jasmonic acid carboxyl methyltransferase which belong to a family of motif B' methyltransferases which are novel plant methyltransferases with motif B' instead of motif B as the conserved region.

  6. Hemoglobin Labeled by Radioactive Lysine

    Science.gov (United States)

    Bale, W. F.; Yuile, C. L.; DeLaVergne, L.; Miller, L. L.; Whipple, G. H.

    1949-12-08

    This paper reports on the utilization of tagged epsilon carbon of DL-lysine by a dog both anemic and hypoproteinemic due to repeated bleeding plus a diet low in protein. The experiment extended over period of 234 days, a time sufficient to indicate an erythrocyte life span of at least 115 days based upon the rate of replacement of labeled red cell proteins. The proteins of broken down red cells seem not to be used with any great preference for the synthesis of new hemoglobin.

  7. PENILAIAN PENGARUH PENAMBAHAN LYSINE PADA NASI

    Directory of Open Access Journals (Sweden)

    Ignatius Tarwotjo

    2012-11-01

    Full Text Available Pengaruh penambahan lysine pada mutu protein nasi dilakukan pada tikus putih dengan mengukur Protein Efficiency Ratio. Nasi dan Nasi dengan sayur beserta laukpauk, seperti dikonsumsi oleh kebanyakan keluarga di Indonesia, yang berasnya lebih dulu ditambahi butiran premix berisi lysine, thiamine dan riboflavin ternaya menghasilkan Protein Efficiency Ratio lebih tinggi dari pada yang tidak ditambahi.

  8. Engineering a Lysine-ON Riboswitch for Metabolic Control of Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Zhou, Li-Bang; Zeng, An-Ping

    2015-12-18

    Riboswitches are natural RNA elements that regulate gene expression by binding a ligand. Here, we demonstrate the possibility of altering a natural lysine-OFF riboswitch from Eschericia coli (ECRS) to a synthetic lysine-ON riboswitch and using it for metabolic control. To this end, a lysine-ON riboswitch library was constructed using tetA-based dual genetic selection. After screening the library, the functionality of the selected lysine-ON riboswitches was examined using a report gene, lacZ. Selected lysine-ON riboswitches were introduced into the lysE gene (encoding a lysine transport protein) of Corynebacterium glutamicum and used to achieve dynamic control of lysine transport in a recombinant lysine-producing strain, C. glutamicum LPECRS, which bears a deregulated aspartokinase and a lysine-OFF riboswitch for dynamic control of the enzyme citrate synthase. Batch fermentation results of the strains showed that the C. glutamicum LPECRS strain with an additional lysine-ON riboswitch for the control of lysE achieved a 21% increase in the yield of lysine compared to that of the C. glutamicum LPECRS strain and even a 89% increase in yield compared to that of the strain with deregulated aspartokinase. This work provides a useful approach to generate lysine-ON riboswitches for C. glutamicum metabolic engineering and demonstrates for the first time a synergetic effect of lysine-ON and -OFF riboswitches for improving lysine production in this industrially important microorganism. The approach can be used to dynamically control other genes and can be applied to other microorganisms.

  9. Role of the EZH2 histone methyltransferase as a therapeutic target in cancer.

    Science.gov (United States)

    Italiano, Antoine

    2016-09-01

    Besides being a genetic disease, cancer is also an epigenetic disease. The histone methyltransferase EZH2 is the catalytic subunit of PRC2, a highly conserved protein complex that regulates gene expression by methylating lysine 27 on histone H3. Given its role in tumorigenesis and its prognostic value in several tumor types, this protein appears a relevant therapeutic target. This review focuses on the preclinical and preliminary clinical results of studies investigating EZH2 inhibitors in human malignancies. These emerging data suggest that EZH2 inhibitors represent a very promising class of drugs, which will probably have a major impact on improving outcome and reducing toxicity for patients with indolent and aggressive B-cell lymphomas and other specific solid tumors.

  10. Ash2 acts as an ecdysone receptor coactivator by stabilizing the histone methyltransferase Trr.

    Science.gov (United States)

    Carbonell, Albert; Mazo, Alexander; Serras, Florenci; Corominas, Montserrat

    2013-02-01

    The molting hormone ecdysone triggers chromatin changes via histone modifications that are important for gene regulation. On hormone activation, the ecdysone receptor (EcR) binds to the SET domain-containing histone H3 methyltransferase trithorax-related protein (Trr). Methylation of histone H3 at lysine 4 (H3K4me), which is associated with transcriptional activation, requires several cofactors, including Ash2. We find that ash2 mutants have severe defects in pupariation and metamorphosis due to a lack of activation of ecdysone-responsive genes. This transcriptional defect is caused by the absence of the H3K4me3 marks set by Trr in these genes. We present evidence that Ash2 interacts with Trr and is required for its stabilization. Thus we propose that Ash2 functions together with Trr as an ecdysone receptor coactivator.

  11. A Proteomic Strategy Identifies Lysine Methylation of Splicing Factor snRNP70 by the SETMAR Enzyme*

    Science.gov (United States)

    Carlson, Scott M.; Moore, Kaitlyn E.; Sankaran, Saumya M.; Reynoird, Nicolas; Elias, Joshua E.; Gozani, Or

    2015-01-01

    The lysine methyltransferase (KMT) SETMAR is implicated in the response to and repair of DNA damage, but its molecular function is not clear. SETMAR has been associated with dimethylation of histone H3 lysine 36 (H3K36) at sites of DNA damage. However, SETMAR does not methylate H3K36 in vitro. This and the observation that SETMAR is not active on nucleosomes suggest that H3K36 methylation is not a physiologically relevant activity. To identify potential non-histone substrates, we utilized a strategy on the basis of quantitative proteomic analysis of methylated lysine. Our approach identified lysine 130 of the mRNA splicing factor snRNP70 as a SETMAR substrate in vitro, and we show that the enzyme primarily generates monomethylation at this position. Furthermore, we show that SETMAR methylates snRNP70 Lys-130 in cells. Because snRNP70 is a key early regulator of 5′ splice site selection, our results suggest a model in which methylation of snRNP70 by SETMAR regulates constitutive and/or alternative splicing. In addition, the proteomic strategy described here is broadly applicable and is a promising route for large-scale mapping of KMT substrates. PMID:25795785

  12. Reactive lysine content in commercially available pet foods

    NARCIS (Netherlands)

    Rooijen, van C.; Bosch, G.; Poel, van der A.F.B.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H.

    2014-01-01

    The Maillard reaction can occur during processing of pet foods. During this reaction, the e-amino group of lysine reacts with reducing sugars to become unavailable for metabolism. The aim of the present study was to determine the reactive lysine (RL; the remaining available lysine) to total lysine (

  13. SPOTing Acetyl-Lysine Dependent Interactions

    Directory of Open Access Journals (Sweden)

    Sarah Picaud

    2015-08-01

    Full Text Available Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation.

  14. Oligo(L-lysine)-induced titanium dioxide: Effects of consecutive lysine on precipitation

    Science.gov (United States)

    Ahn, Sungjun; Park, Sangwoo; Lee, Sang-Yup

    2011-11-01

    Biomineralization of metal oxide utilizes biomolecular substances, such as peptides and proteins, to induce mineralization of metal precursors in a mild aqueous solution. In this study, we investigated biomineralization of an abiological substance, titanium dioxide (TiO 2), by oligo(L-lysine). Specifically, we systemically studied the influence of the number of consecutive lysine on TiO 2 precipitation. Oligo(L-lysine) was chosen as a homopeptide lysine source whose lysine quantity was adjusted. When oligo(L-lysine) contains more than three consecutive lysine, it induces notably fast precipitation, while single and dilysine do not readily form TiO 2 precipitates. Precipitation of TiO 2 was promoted with the length of oligo(L-lysine). The oligo(L-lysine) was associated with TiO 2 precipitate, which was confirmed by spectroscopic and thermogravitational analyses. The outcomes of this research provide a plausible rationale for explaining precipitation of the Ti precursor that is highly dependent on peptide sequences.

  15. Lysine requirement of growing male Pekin ducks.

    Science.gov (United States)

    Bons, A; Timmler, R; Jeroch, H

    2002-12-01

    1. One growth experiment and one balance test were conducted to study the response to increasing levels of dietary lysine supplementation in male Pekin ducks with special reference to the growth periods from 1 to 3 weeks and 4 to 7 weeks of age. 2. Two different low-lysine diets were used as basal diets in both periods. The basal lysine levels were 7.6 g/kg (d 1 to 21) and 6.2 g/kg (d 22 to 49) and the ranges in lysine concentration were 7.6 to 12.6 g/kg (d 1 to 21) and 6.2 to 11.2 g/kg (d 22 to 49). 3. Growth performance, feed conversion efficiency and meat yield increased (P < 0.05) with increasing lysine concentration (requirement defined as 95% of the asymptote). 4. It is concluded that the dietary lysine concentration should be 0.93 g/MJ nitrogen corrected apparent metabolisable energy (AMEN) (11.7 g/kg) for the starter period (until d 21) and 0.75 g/MJ AMEN (10.0 g/kg) for the grower period (from d 22 onwards).

  16. Bioavailability of free lysine and protein-bound lysine from casein and fishmeal in juvenile turbot (Psetta maxima).

    Science.gov (United States)

    Kroeckel, Saskia; Dietz, Carsten; Schulz, Carsten; Susenbeth, Andreas

    2015-03-14

    In the present study, a linear regression analysis between lysine intake and lysine retention was conducted to investigate the efficiency of lysine utilisation (k(Lys)) at marginal lysine intake of either protein-bound or free lysine sources in juvenile turbot (Psetta maxima). For this purpose, nine isonitrogenous and isoenergetic diets were formulated to contain 2·25-4·12 g lysine/100 g crude protein (CP) to ensure that lysine was the first-limiting amino acid in all diets. The basal diet contained 2·25 g lysine/100 g CP. Graded levels of casein (Cas), fishmeal (FM) and L-lysine HCl (Lys) were added to the experimental diets to achieve stepwise lysine increments. A total of 240 fish (initial weight 50·1 g) were hand-fed all the experimental diets once daily until apparent satiation over a period of 56 d. Feed intake was significantly affected by dietary lysine concentration rather than by dietary lysine source. Specific growth rate increased significantly at higher lysine concentrations (PCas, Lys or FM were 0·833, 0·857 and 0·684, respectively. The bioavailability of lysine from the respective lysine sources was determined by a slope-ratio approach. The bioavailability of lysine (relative to the reference lysine source Cas) from FM and Lys was 82·1 and 103 %, respectively. Nutrient requirement for maintenance was in the range of 16·7-23·4 mg/kg(0·8) per d, and did not differ between the treatments. There were no significant differences in lysine utilisation efficiency or bioavailability of protein-bound or crystalline lysine from the respective sources observed when lysine was confirmed to be the first-limiting nutrient.

  17. COBALAMIN- AND COBAMIDE-DEPENDENT METHYLTRANSFERASES

    Science.gov (United States)

    Matthews, Rowena G.; Koutmos, Markos; Datta, Supratim

    2008-01-01

    Methyltransferases that employ cobalamin cofactors, or their analogues the cobamides, as intermediates in catalysis of methyl transfer play vital roles in energy generation in anaerobic unicellular organisms. In a broader range of organisms they are involved in the conversion of homocysteine to methionine. Although the individual methyl transfer reactions catalyzed are simple SN2 displacements, the required change in coordination at the cobalt of the cobalamin or cobamide cofactors and the lability of the reduced Co+1 intermediates introduces the necessity for complex conformational changes during the catalytic cycle. Recent spectroscopic and structural studies on several of these methyltransferases have helped to reveal the strategies by which these conformational changes are facilitated and controlled. PMID:19059104

  18. Catechol-O-methyltransferase and Parkinson's disease.

    OpenAIRE

    Tai CH; Wu RM

    2002-01-01

    Parkinson's disease (PD) is one of the main causes of neurological disability in the elderly. Levodopa is the gold standard for treating this disease, but chronic levodopa therapy is complicated by motor fluctuation and dyskinesia. The catechol-O-methyltransferase (COMT) inhibitors represent a new class of antiparkinsonian drugs. When coadministered with levodopa/decarboxylase inhibitor, 2 COMT inhibitors, tolcapone and entacapone have been shown to improve the clinical benefit of levodopa. C...

  19. Lysine-Rich Proteins in High-Lysine Hordeum Vulgare Grain

    DEFF Research Database (Denmark)

    Ingversen, J.; Køie, B.

    1973-01-01

    The salt-soluble proteins in barley grain selected for high-lysine content (Hiproly, CI 7115 and the mutants 29 and 86) and of a control (Carlsberg II) with normal lysine content, contain identical major proteins as determined by MW and electrophoretic mobility. The concentration of a protein group...

  20. Reduced Expression of Histone Methyltransferases KMT2C and KMT2D Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma.

    Science.gov (United States)

    Dawkins, Joshua B N; Wang, Jun; Maniati, Eleni; Heward, James A; Koniali, Lola; Kocher, Hemant M; Martin, Sarah A; Chelala, Claude; Balkwill, Frances R; Fitzgibbon, Jude; Grose, Richard P

    2016-08-15

    Genes encoding the histone H3 lysine 4 methyltransferases KMT2C and KMT2D are subject to deletion and mutation in pancreatic ductal adenocarcinoma (PDAC), where these lesions identify a group of patients with a more favorable prognosis. In this study, we demonstrate that low KMT2C and KMT2D expression in biopsies also defines better outcome groups, with median survivals of 15.9 versus 9.2 months (P = 0.029) and 19.9 versus 11.8 months (P = 0.001), respectively. Experiments with eight human pancreatic cell lines showed attenuated cell proliferation when these methyltransferases were depleted, suggesting that this improved outcome may reflect a cell-cycle block with diminished progression from G0-G1 RNA-seq analysis of PDAC cell lines following KMT2C or KMT2D knockdown identified 31 and 124 differentially expressed genes, respectively, with 19 genes in common. Gene-set enrichment analysis revealed significant downregulation of genes related to cell-cycle and growth. These data were corroborated independently by examining KMT2C/D signatures extracted from the International Cancer Genome Consortium and The Cancer Genome Atlas datasets. Furthermore, these experiments highlighted a potential role for NCAPD3, a condensin II complex subunit, as an outcome predictor in PDAC using existing gene expression series. Kmt2d depletion in KC/KPC cell lines also led to an increased response to the nucleoside analogue 5-fluorouracil, suggesting that lower levels of this methyltransferase may mediate the sensitivity of PDAC to particular treatments. Therefore, it may also be therapeutically beneficial to target these methyltransferases in PDAC, especially in those patients demonstrating higher KTM2C/D expression. Cancer Res; 76(16); 4861-71. ©2016 AACR.

  1. Reduced Expression of Histone Methyltransferases KMT2C and KMT2D Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma

    Science.gov (United States)

    Dawkins, Joshua B.N.; Wang, Jun; Maniati, Eleni; Heward, James A.; Koniali, Lola; Kocher, Hemant M.; Martin, Sarah A.; Chelala, Claude; Balkwill, Frances R.; Fitzgibbon, Jude; Grose, Richard P.

    2017-01-01

    Genes encoding the histone H3 lysine 4 methyltransferases KMT2C and KMT2D are subject to deletion and mutation in pancreatic ductal adenocarcinoma (PDAC), where these lesions identify a group of patients with a more favorable prognosis. In this study, we demonstrate that low KMT2C and KMT2D expression in biopsies also defines better outcome groups, with median survivals of 15.9 versus 9.2 months (P = 0.029) and 19.9 versus 11.8 months (P = 0.001), respectively. Experiments with eight human pancreatic cell lines showed attenuated cell proliferation when these methyltransferases were depleted, suggesting that this improved outcome may reflect a cell-cycle block with diminished progression from G0–G1. RNA-seq analysis of PDAC cell lines following KMT2C or KMT2D knockdown identified 31 and 124 differentially expressed genes, respectively, with 19 genes in common. Gene-set enrichment analysis revealed significant downregulation of genes related to cell-cycle and growth. These data were corroborated independently by examining KMT2C/D signatures extracted from the International Cancer Genome Consortium and The Cancer Genome Atlas datasets. Furthermore, these experiments highlighted a potential role for NCAPD3, a condensin II complex subunit, as an outcome predictor in PDAC using existing gene expression series. Kmt2d depletion in KC/KPC cell lines also led to an increased response to the nucleoside analogue 5-fluorouracil, suggesting that lower levels of this methyltransferase may mediate the sensitivity of PDAC to particular treatments. Therefore, it may also be therapeutically beneficial to target these methyltransferases in PDAC, especially in those patients demonstrating higher KTM2C/D expression. PMID:27280393

  2. DNA methyltransferases as targets for cancer therapy.

    Science.gov (United States)

    Ghoshal, Kalpana; Bai, Shoumei

    2007-06-01

    Methylation of DNA at 5-position of cytosine, catalyzed by DNA methyltransferases, is the predominant epigenetic modification in mammals. Aberrations in methylation play a causal role in a variety of diseases, including cancer. Recent studies have established that like mutation, methylation-mediated gene silencing often leads to tumorigenesis. Paradoxically, genome-wide DNA hypomethylation may also play a causal role in carcinogenesis by inducing chromosomal instability and spurious gene expression. Since methylation does not alter DNA base sequence, much attention has been focused recently on developing small molecule inhibitors of DNA methyltransferases that can potentially be used as anticancer agents. Vidaza (5-azacytidine), marketed by Pharmion (Boulder, CO, USA), was the first DNA methyltransferase inhibitor approved by the U.S. Food and Drug Administration (FDA) for chemotherapy against myelodysplastic syndrome (MDS), a heterogeneous bone marrow disorder. Recently MGI Pharma Inc. (Bloomington, MN, USA) got FDA approval to market Dacogen (5-aza-2'-deoxycytidine, or decitabine) for treating MDS patients. These drugs were used earlier against certain anemias to induce expression of fetal globin genes. Interest in clinical trials of these drugs as anticancer agents has been renewed only recently because of reversal of methylation-mediated silencing of critical genes in cancer. Clinical trials have shown that both drugs have therapeutic potential against leukemia such as MDS, acute myeloid leukemia, chronic myelogenous leukemia and chronic myelomonocytic leukemia. In contrast, their effectiveness with solid tumors appears to be less promising, which challenges researchers to develop inhibitors with more efficacy and less toxicity. The major hindrance of their usage as anticancer agents is their instability in vivo as well as the toxicity secondary to their excessive incorporation into DNA, which causes cell cycle arrest. Gene expression profiling in cancer cells

  3. Diverse roles of WDR5-RbBP5-ASH2L-DPY30 (WRAD) complex in the functions of the SET1 histone methyltransferase family

    Indian Academy of Sciences (India)

    AAMIR ALI; SHWETA TYAGI

    2017-03-01

    WD repeat containing protein 5 (WDR5), Retinoblastoma Binding Protein 5 (RbBP5), Absent-Small-Homeotic-2-Like protein (ASH2L), and Dumpy-30 (Dpy30) have been reported to be the integral and shared components of all theSET1 family of histone 3 lysine 4 histone methyltransferase (HMT) complexes. Collectively called the WRADcomplex, these proteins are pivotal to the HMT activity of the SET1 complexes. Recent reports highlight the novelnon-canonical functions of WRAD in cellular processes other than its well-studied role in histone methylation andgene expression. In this review, we examine the diversity in emerging transcription-independent functions of WRAD.

  4. Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II.

    Directory of Open Access Journals (Sweden)

    Shrividhya Srinivasan

    2008-10-01

    Full Text Available Polycomb and trithorax group proteins regulate cellular pluripotency and differentiation by maintaining hereditable states of transcription. Many Polycomb and trithorax group proteins have been implicated in the covalent modification or remodeling of chromatin, but how they interact with each other and the general transcription machinery to regulate transcription is not well understood. The trithorax group protein Kismet-L (KIS-L is a member of the CHD subfamily of chromatin-remodeling factors that plays a global role in transcription by RNA polymerase II (Pol II. Mutations in CHD7, the human counterpart of kis, are associated with CHARGE syndrome, a developmental disorder affecting multiple tissues and organs. To clarify how KIS-L activates gene expression and counteracts Polycomb group silencing, we characterized defects resulting from the loss of KIS-L function in Drosophila. These studies revealed that KIS-L acts downstream of P-TEFb recruitment to stimulate elongation by Pol II. The presence of two chromodomains in KIS-L suggested that its recruitment or function might be regulated by the methylation of histone H3 lysine 4 by the trithorax group proteins ASH1 and TRX. Although we observed significant overlap between the distributions of KIS-L, ASH1, and TRX on polytene chromosomes, KIS-L did not bind methylated histone tails in vitro, and loss of TRX or ASH1 function did not alter the association of KIS-L with chromatin. By contrast, loss of kis function led to a dramatic reduction in the levels of TRX and ASH1 associated with chromatin and was accompanied by increased histone H3 lysine 27 methylation-a modification required for Polycomb group repression. A similar increase in H3 lysine 27 methylation was observed in ash1 and trx mutant larvae. Our findings suggest that KIS-L promotes early elongation and counteracts Polycomb group repression by recruiting the ASH1 and TRX histone methyltransferases to chromatin.

  5. Critical role of lysine 134 methylation on histone H2AX for γ-H2AX production and DNA repair

    OpenAIRE

    Sone, Kenbun; Piao, Lianhua; Nakakido, Makoto; Ueda, Koji; Jenuwein, Thomas; Nakamura, Yusuke; Hamamoto, Ryuji

    2014-01-01

    The presence of phosphorylated histone H2AX (γ-H2AX) is associated with the local activation of DNA-damage repair pathways. Although γ-H2AX deregulation in cancer has previously been reported, the molecular mechanism involved and its relationship with other histone modifications remain largely unknown. Here we find that the histone methyltransferase SUV39H2 methylates histone H2AX on lysine 134. When H2AX was mutated to abolish K134 methylation, the level of γ-H2AX became significantly reduce...

  6. Efficient Production of Enantiopure d-Lysine from l-Lysine by a Two-Enzyme Cascade System

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-10-01

    Full Text Available The microbial production of d-lysine has been of great interest as a medicinal raw material. Here, a two-step process for d-lysine production from l-lysine by the successive microbial racemization and asymmetric degradation with lysine racemase and decarboxylase was developed. The whole-cell activities of engineered Escherichia coli expressing racemases from the strains Proteus mirabilis (LYR and Lactobacillus paracasei (AAR were first investigated comparatively. When the strain BL21-LYR with higher racemization activity was employed, l-lysine was rapidly racemized to give dl-lysine, and the d-lysine yield was approximately 48% after 0.5 h. Next, l-lysine was selectively catabolized to generate cadaverine by lysine decarboxylase. The comparative analysis of the decarboxylation activities of resting whole cells, permeabilized cells, and crude enzyme revealed that the crude enzyme was the best biocatalyst for enantiopure d-lysine production. The reaction temperature, pH, metal ion additive, and pyridoxal 5′-phosphate content of this two-step production process were subsequently optimized. Under optimal conditions, 750.7 mmol/L d-lysine was finally obtained from 1710 mmol/L l-lysine after 1 h of racemization reaction and 0.5 h of decarboxylation reaction. d-lysine yield could reach 48.8% with enantiomeric excess (ee ≥ 99%.

  7. Improving cancer immunotherapy with DNA methyltransferase inhibitors.

    Science.gov (United States)

    Saleh, Mohammad H; Wang, Lei; Goldberg, Michael S

    2016-07-01

    Immunotherapy confers durable clinical benefit to melanoma, lung, and kidney cancer patients. Challengingly, most other solid tumors, including ovarian carcinoma, are not particularly responsive to immunotherapy, so combination with a complementary therapy may be beneficial. Recent findings suggest that epigenetic modifying drugs can prime antitumor immunity by increasing expression of tumor-associated antigens, chemokines, and activating ligands by cancer cells as well as cytokines by immune cells. This review, drawing from both preclinical and clinical data, describes some of the mechanisms of action that enable DNA methyltransferase inhibitors to facilitate the establishment of antitumor immunity.

  8. Radioactive Lysine in Protein Metabolism Studies

    Science.gov (United States)

    Miller, L. L.; Bale, W. F.; Yuile, C. L.; Masters, R. E.; Tishkoff, G. H.; Whipple,, G. H.

    1950-01-09

    Studies of incorporation of DL-lysine in various body proteins of the dog; the time course of labeled blood proteins; and apparent rate of disappearance of labeled plasma proteins for comparison of behavior of the plasma albumin and globulin fractions; shows more rapid turn over of globulin fraction.

  9. Lysine and arginine requirements of Salminus brasiliensis

    Directory of Open Access Journals (Sweden)

    Jony Koji Dairiki

    2013-08-01

    Full Text Available The objective of this work was to determine the dietary lysine (DL and dietary arginine (DA requirements of dourado (Salminus brasiliensis, through dose-response trials using the amino acid profiles of whole carcasses as a reference. Two experiments were carried out in a completely randomized design (n=4. In the first experiment, groups of 12 feed-conditioned dourado juveniles (11.4±0.2 g were stocked in 60 L cages placed in 300 L plastic indoor tanks in a closed circulation system. Fish were fed for 60 days on diets containing 1.0, 1.5, 2.0, 2.5, 3.0, or 3.5 % dietary lysine. In the second experiment, dourado juveniles (27.0±0.8 g were fed for 60 days on semipurified diets containing arginine at 1.0, 1.5, 2.0, 2.5 or 3.0%, in similar conditions to those of the first experiment. Optimal DL requirements, as determined by broken-line analysis method for final weight, weight gain and specific growth rate, were 2.15% DL or 5% lysine in dietary protein, and 1.48% DA or 3.43% arginine in dietary protein. The best feed conversion ratio is attained with 2.5% DL or 5.8% lysine in dietary protein and 1.4% DA or 3.25% arginine in dietary protein.

  10. Lysine kinetics in preterm infants: the importance of enteral feeding

    NARCIS (Netherlands)

    S.R.D. van der Schoor (Sophie); P.J. Reeds; F. Stellaard; J.L.D. Wattimena (Josias); P.J.J. Sauer (Pieter); H.A. Büller (Hans); J.B. van Goudoever (Hans)

    2004-01-01

    textabstractINTRODUCTION: Lysine is the first limiting essential amino acid in the diet of newborns. First pass metabolism by the intestine of dietary lysine has a direct effect on systemic availability. We investigated whether first pass lysine metabolism in the intestine is high

  11. Lysine kinetics in preterm infants : the importance of enteral feeding

    NARCIS (Netherlands)

    van der Schoor, SRD; Reeds, PJ; Stellaard, F; Wattimena, JDL; Sauer, PJJ; Buller, HA; van Goudoever, JB

    2004-01-01

    Introduction: Lysine is the first limiting essential amino acid in the diet of newborns. First pass metabolism by the intestine of dietary lysine has a direct effect on systemic availability. We investigated whether first pass lysine metabolism in the intestine is high in preterm infants, particular

  12. Novel non-specific DNA adenine methyltransferases

    Science.gov (United States)

    Drozdz, Marek; Piekarowicz, Andrzej; Bujnicki, Janusz M.; Radlinska, Monika

    2012-01-01

    The mom gene of bacteriophage Mu encodes an enzyme that converts adenine to N6-(1-acetamido)-adenine in the phage DNA and thereby protects the viral genome from cleavage by a wide variety of restriction endonucleases. Mu-like prophage sequences present in Haemophilus influenzae Rd (FluMu), Neisseria meningitidis type A strain Z2491 (Pnme1) and H. influenzae biotype aegyptius ATCC 11116 do not possess a Mom-encoding gene. Instead, at the position occupied by mom in Mu they carry an unrelated gene that encodes a protein with homology to DNA adenine N6-methyltransferases (hin1523, nma1821, hia5, respectively). Products of the hin1523, hia5 and nma1821 genes modify adenine residues to N6-methyladenine, both in vitro and in vivo. All of these enzymes catalyzed extensive DNA methylation; most notably the Hia5 protein caused the methylation of 61% of the adenines in λ DNA. Kinetic analysis of oligonucleotide methylation suggests that all adenine residues in DNA, with the possible exception of poly(A)-tracts, constitute substrates for the Hia5 and Hin1523 enzymes. Their potential ‘sequence specificity’ could be summarized as AB or BA (where B = C, G or T). Plasmid DNA isolated from Escherichia coli cells overexpressing these novel DNA methyltransferases was resistant to cleavage by many restriction enzymes sensitive to adenine methylation. PMID:22102579

  13. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit epsilon N-methyltransferase

    Science.gov (United States)

    Houtz, Robert L.

    1999-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the .epsilon.-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed.

  14. Human calmodulin methyltransferase: expression, activity on calmodulin, and Hsp90 dependence.

    Directory of Open Access Journals (Sweden)

    Sophia Magen

    Full Text Available Deletion of the first exon of calmodulin-lysine N-methyltransferase (CaM KMT, previously C2orf34 has been reported in two multigene deletion syndromes, but additional studies on the gene have not been reported. Here we show that in the cells from 2p21 deletion patients the loss of CaM KMT expression results in accumulation of hypomethylated calmodulin compared to normal controls, suggesting that CaM KMT is essential for calmodulin methylation and there are no compensatory mechanisms for CaM methylation in humans. We have further studied the expression of this gene at the transcript and protein levels. We have identified 2 additional transcripts in cells of the 2p21 deletion syndrome patients that start from alternative exons positioned outside the deletion region. One of them starts in the 2(nd known exon, the other in a novel exon. The transcript starting from the novel exon was also identified in a variety of tissues from normal individuals. These new transcripts are not expected to produce proteins. Immunofluorescent localization of tagged CaM KMT in HeLa cells indicates that it is present in both the cytoplasm and nucleus of cells whereas the short isoform is localized to the Golgi apparatus. Using Western blot analysis we show that the CaM KMT protein is broadly expressed in mouse tissues. Finally we demonstrate that the CaM KMT interacts with the middle portion of the Hsp90 molecular chaperon and is probably a client protein since it is degraded upon treatment of cells with the Hsp90 inhibitor geldanamycin. These findings suggest that the CaM KMT is the major, possibly the single, methyltransferase of calmodulin in human cells with a wide tissue distribution and is a novel Hsp90 client protein. Thus our data provides basic information for a gene potentially contributing to the patient phenotype of two contiguous gene deletion syndromes.

  15. Distinction between the Cfr Methyltransferase Conferring Antibiotic Resistance and the Housekeeping RlmN Methyltransferase

    DEFF Research Database (Denmark)

    Atkinson, Gemma C; Hansen, Lykke H; Tenson, Tanel

    2013-01-01

    The cfr gene encodes the Cfr methyltransferase that primarily methylates C-8 in A2503 of 23S rRNA in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to six classes of antibiotics of clinical and veterinary importance. The rlmN gene encodes the Rlm......N methyltransferase that methylates C-2 in A2503 in 23S rRNA and A37 in tRNA, but RlmN does not significantly influence antibiotic resistance. The enzymes are homologous and use the same mechanism involving radical S-adenosyl methionine to methylate RNA via an intermediate involving a methylated cysteine....... The differentiation between the two classes is supported by previous and new experimental evidence from antibiotic resistance, primer extensions, and mass spectrometry. Finally, evolutionary aspects of the distribution of Cfr- and RlmN-like enzymes are discussed....

  16. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase.

    Science.gov (United States)

    Ticak, Tomislav; Kountz, Duncan J; Girosky, Kimberly E; Krzycki, Joseph A; Ferguson, Donald J

    2014-10-28

    COG5598 comprises a large number of proteins related to MttB, the trimethylamine:corrinoid methyltransferase. MttB has a genetically encoded pyrrolysine residue proposed essential for catalysis. MttB is the only known trimethylamine methyltransferase, yet the great majority of members of COG5598 lack pyrrolysine, leaving the activity of these proteins an open question. Here, we describe the function of one of the nonpyrrolysine members of this large protein family. Three nonpyrrolysine MttB homologs are encoded in Desulfitobacterium hafniense, a Gram-positive strict anaerobe present in both the environment and human intestine. D. hafniense was found capable of growth on glycine betaine with electron acceptors such as nitrate or fumarate, producing dimethylglycine and CO2 as products. Examination of the genome revealed genes for tetrahydrofolate-linked oxidation of a methyl group originating from a methylated corrinoid protein, but no obvious means to carry out corrinoid methylation with glycine betaine. DSY3156, encoding one of the nonpyrrolysine MttB homologs, was up-regulated during growth on glycine betaine. The recombinant DSY3156 protein converts glycine betaine and cob(I)alamin to dimethylglycine and methylcobalamin. To our knowledge, DSY3156 is the first glycine betaine:corrinoid methyltransferase described, and a designation of MtgB is proposed. In addition, DSY3157, an adjacently encoded protein, was shown to be a methylcobalamin:tetrahydrofolate methyltransferase and is designated MtgA. Homologs of MtgB are widely distributed, especially in marine bacterioplankton and nitrogen-fixing plant symbionts. They are also found in multiple members of the human microbiome, and may play a beneficial role in trimethylamine homeostasis, which in recent years has been directly tied to human cardiovascular health.

  17. Structures of NS5 Methyltransferase from Zika Virus

    Directory of Open Access Journals (Sweden)

    Javier Coloma

    2016-09-01

    Full Text Available The Zika virus (ZIKV poses a major public health emergency. To aid in the development of antivirals, we present two high-resolution crystal structures of the ZIKV NS5 methyltransferase: one bound to S-adenosylmethionine (SAM and the other bound to SAM and 7-methyl guanosine diphosphate (7-MeGpp. We identify features of ZIKV NS5 methyltransferase that lend to structure-based antiviral drug discovery. Specifically, SAM analogs with functionalities on the Cβ atom of the methionine portion of the molecules that occupy the RNA binding tunnel may provide better specificity relative to human RNA methyltransferases.

  18. Downregulation of histone methyltransferase EHMT2 in CD4(+) T-cells may protect HTLV-1-infected individuals against HAM/TSP development.

    Science.gov (United States)

    Colaço, Camila Schoueri; de Matos, Adriano Reis; Estrêla, Martha Silva; Rocha-Júnior, Maurício Cristiano; Otaguiri, Kátia Kaori; Rodrigues, Evandra Strazza; Takayanagui, Osvaldo Massaiti; Covas, Dimas Tadeu; Kashima, Simone; Pittella Silva, Fabio; Haddad, Rodrigo

    2017-06-12

    Approximately 5% of human T-cell leukemia virus type 1 (HTLV-1)-infected individuals will develop one of the HTLV-1-related diseases, such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) or adult T-cell leukemia. However, the mechanisms responsible for the appearance of symptoms have not been fully clarified. It is believed that viral factors, host genetic and epigenetic mechanisms are implicated in this process. Studies have shown the involvement of histone methyltransferases in retrovirus infection, but no study observed their expression in HTLV-1-infected patients. Among them, euchromatic histone-lysine N-methyltransferase (EHMT)-1 and EHMT-2 were related to retroviral latency in HIV-1 infection. We investigated whether histone methyltransferases EHMT1 and EHMT2 exert any influence on HAM/TSP development by assessing their expression levels in CD4(+) T-cells from HTLV-1-infected patients. CD4(+) T-cells were immunomagnetically isolated from peripheral blood mononuclear cells of HTLV-1-infected or non-infected individuals and the expression levels of EHMT1 and EHMT2 were determined by RT-qPCR. We observed that EHMT2 was negatively regulated in HTLV-1 asymptomatic carriers compared to non-infected individuals. No difference was observed for EHMT1. These results suggest that EHMT2 downregulation in CD4(+) T-cells may be linked to a protection mechanism against the development of HAM/TSP.

  19. Interactions within the mammalian DNA methyltransferase family

    Directory of Open Access Journals (Sweden)

    Ehrenhofer-Murray Ann E

    2003-05-01

    Full Text Available Abstract Background In mammals, epigenetic information is established and maintained via the postreplicative methylation of cytosine residues by the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 is required for maintenance methylation whereas Dnmt3a and Dnmt3b are responsible for de novo methylation. Contrary to Dnmt3a or Dnmt3b, the isolated C-terminal region of Dnmt1 is catalytically inactive, despite the presence of the sequence motifs typical of active DNA methyltransferases. Deletion analysis has revealed that a large part of the N-terminal domain is required for enzymatic activity. Results The role played by the N-terminal domain in this regulation has been investigated using the yeast two-hybrid system. We show here the presence of an intra-molecular interaction in Dnmt1 but not in Dnmt3a or Dnmt3b. This interaction was confirmed by immunoprecipitation and was localized by deletion mapping. Furthermore, a systematic analysis of interactions among the Dnmt family members has revealed that DNMT3L interacts with the C-terminal domain of Dnmt3a and Dnmt3b. Conclusions The lack of methylating ability of the isolated C-terminal domain of Dnmt1 could be explained in part by a physical interaction between N- and C-terminal domains that apparently is required for activation of the catalytic domain. Our deletion analysis suggests that the tertiary structure of Dnmt1 is important in this process rather than a particular sequence motif. Furthermore, the interaction between DNMT3L and the C-terminal domains of Dnmt3a and Dnmt3b suggests a mechanism whereby the enzymatically inactive DNMT3L brings about the methylation of its substrate by recruiting an active methylase.

  20. nucleoside DNA methyltransferase 1 inhibitors for treating epi ...

    African Journals Online (AJOL)

    Keywords: Epi-mutation, DNA methyltransferase, Non-nucleoside, DNMT1 inhibitor, Docking .... associated genes [18] and the effect could not be ... compound that may inhibit DNA methylation non- ... potential of which is over estimated [16];.

  1. Monolignol 4-O-methyltransferases and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang-Jun; Bhuiya, Mohammad-Wadud; Zhang, Kewei

    2014-11-18

    Modified (iso)eugenol 4-O-methyltransferase enzymes having novel capacity for methylation of monolignols and reduction of lignin polymerization in plant cell wall are disclosed. Sequences encoding the modified enzymes are disclosed.

  2. Lysine fortification: past, present, and future.

    Science.gov (United States)

    Pellett, Peter L; Ghosh, Shibani

    2004-06-01

    Fortification with lysine to improve the protein value of human diets that are heavily based on cereals has received support from the results of these recent studies [1,2]. Support also comes from examination of average food and nutrient availability data derived from food balance sheets. Whereas nutritional status is influenced by the nutrient content of foods consumed in relation to need, the requirements for protein and amino acids are influenced by many additional factors [10, 12, 14, 28, 29]. These include age, sex, body size, physical activity, growth, pregnancy and lactation, infection, and the efficiency of nutrient utilization. Even if the immune response was influenced by the added lysine, adequate water and basic sanitation would remain essential. Acute and chronic undernutrition and most micronutrient deficiencies primarily affect poor and deprived people who do not have access to food of adequate nutritional value, live in unsanitary environments without access to clean water and basic services, and lack access to appropriate education and information [30]. A further variable is the possible interaction between protein and food energy availability [31]. This could affect the protein value of diets when food energy is limiting to a significant degree. Thus, the additional effects of food energy deficiency on protein utilization could well be superimposed on the very poorest. The improvement of dietary diversity must be the long-term aim, with dietary fortification considered only a short-term solution. The former should take place as wealth improves and the gaps between rich and poor diminish. Although such changes are taking place, they are highly uneven. Over the last several decades, increases have occurred in the availability of food energy, total protein, and animal protein for both developed and developing countries. However, for the very poorest developing countries over the same period, changes have been almost nonexistent, and the values for

  3. Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum.

    Science.gov (United States)

    Zhou, Li-Bang; Zeng, An-Ping

    2015-06-19

    Riboswitch, a regulatory part of an mRNA molecule that can specifically bind a metabolite and regulate gene expression, is attractive for engineering biological systems, especially for the control of metabolic fluxes in industrial microorganisms. Here, we demonstrate the use of lysine riboswitch and intracellular l-lysine as a signal to control the competing but essential metabolic by-pathways of lysine biosynthesis. To this end, we first examined the natural lysine riboswitches of Eschericia coli (ECRS) and Bacillus subtilis (BSRS) to control the expression of citrate synthase (gltA) and thus the metabolic flux in the tricarboxylic acid (TCA) cycle in E. coli. ECRS and BSRS were then successfully used to control the gltA gene and TCA cycle activity in a lysine producing strain Corynebacterium glutamicum LP917, respectively. Compared with the strain LP917, the growth of both lysine riboswitch-gltA mutants was slower, suggesting a reduced TCA cycle activity. The lysine production was 63% higher in the mutant ECRS-gltA and 38% higher in the mutant BSRS-gltA, indicating a higher metabolic flux into the lysine synthesis pathway. This is the first report on using an amino acid riboswitch for improvement of lysine biosynthesis. The lysine riboswitches can be easily adapted to dynamically control other essential but competing metabolic pathways or even be engineered as an "on-switch" to enhance the metabolic fluxes of desired metabolic pathways.

  4. Elucidating the effects of arginine and lysine on a monoclonal antibody C-terminal lysine variation in CHO cell cultures.

    Science.gov (United States)

    Zhang, Xintao; Tang, Hongping; Sun, Ya-Ting; Liu, Xuping; Tan, Wen-Song; Fan, Li

    2015-08-01

    C-terminal lysine variants are commonly observed in monoclonal antibodies (mAbs) and found sensitive to process conditions, especially specific components in culture medium. The potential roles of media arginine (Arg) and lysine (Lys) in mAb heavy chain C-terminal lysine processing were investigated by monitoring the lysine variant levels under various Arg and Lys concentrations. Both Arg and Lys were found to significantly affect lysine variant level. Specifically, lysine variant level increased from 18.7 to 31.8 % when Arg and Lys concentrations were increased from 2 to 10 mM. Since heterogeneity of C-terminal lysine residues is due to the varying degree of proteolysis by basic carboxypeptidases (Cps), enzyme (basic Cps) level, pH conditions, and product (Arg and Lys) inhibition, which potentially affect the enzymatic reaction, were investigated under various Arg and Lys conditions. Enzyme level and pH conditions were found not to account for the different lysine variant levels, which was evident from the minimal variation in transcription level and intracellular pH. On the other hand, product inhibition effect of Arg and Lys on basic Cps was evident from the notable intracellular and extracellular Arg and Lys concentrations comparable with Ki values (inhibition constant) of basic Cps and further confirmed by cell-free assays. Additionally, a kinetic study of lysine variant level during the cell culture process enabled further characterization of the C-terminal lysine processing.

  5. Antimicrobial activity of chicken NK-lysin against Eimeria sporozoites.

    Science.gov (United States)

    Hong, Yeong H; Lillehoj, Hyun S; Siragusa, Gregory R; Bannerman, Douglas D; Lillehoj, Erik P

    2008-06-01

    NK-lysin is an antimicrobial and antitumor polypeptide that is considered to play an important role in innate immunity. Chicken NK-lysin is a member of the saposin-like protein family and exhibits potent antitumor cell activity. To evaluate the antimicrobial properties of chicken NK-lysin, we examined its ability to reduce the viability of various bacterial strains and two species of Eimeria parasites. Culture supernatants from COS7 cells transfected with a chicken NK-lysin cDNA and His-tagged purified NK-lysin from the transfected cells both showed high cytotoxic activity against Eimeria acervulina and Eimeria maxima sporozoites. In contrast, no bactericidal activity was observed. Further studies using synthetic peptides derived from NK-lysin may be useful for pharmaceutical and agricultural uses in the food animal industry.

  6. Impact of histone H4 lysine 20 methylation on 53BP1 responses to chromosomal double strand breaks.

    Directory of Open Access Journals (Sweden)

    Andrea J Hartlerode

    Full Text Available Recruitment of 53BP1 to chromatin flanking double strand breaks (DSBs requires γH2AX/MDC1/RNF8-dependent ubiquitination of chromatin and interaction of 53BP1 with histone H4 methylated on lysine 20 (H4K20me. Several histone methyltransferases have been implicated in 53BP1 recruitment, but their quantitative contributions to the 53BP1 response are unclear. We have developed a multi-photon laser (MPL system to target DSBs to subfemtoliter nuclear volumes and used this to mathematically model DSB response kinetics of MDC1 and of 53BP1. In contrast to MDC1, which revealed first order kinetics, the 53BP1 MPL-DSB response is best fitted by a Gompertz growth function. The 53BP1 MPL response shows the expected dependency on MDC1 and RNF8. We determined the impact of altered H4K20 methylation on 53BP1 MPL response kinetics in mouse embryonic fibroblasts (MEFs lacking key H4K20 histone methyltransferases. This revealed no major requirement for the known H4K20 dimethylases Suv4-20h1 and Suv4-20h2 in 53BP1 recruitment or DSB repair function, but a key role for the H4K20 monomethylase, PR-SET7. The histone methyltransferase MMSET/WHSC1 has recently been implicated in 53BP1 DSB recruitment. We found that WHSC1 homozygous mutant MEFs reveal an alteration in balance of H4K20 methylation patterns; however, 53BP1 DSB responses in these cells appear normal.

  7. The methyltransferase Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos.

    Science.gov (United States)

    Eymery, Angeline; Liu, Zichuan; Ozonov, Evgeniy A; Stadler, Michael B; Peters, Antoine H F M

    2016-08-01

    Oocytes develop the competence for meiosis and early embryogenesis during their growth. Setdb1 is a histone H3 lysine 9 (H3K9) methyltransferase required for post-implantation development and has been implicated in the transcriptional silencing of genes and endogenous retroviral elements (ERVs). To address its role in oogenesis and pre-implantation development, we conditionally deleted Setdb1 in growing oocytes. Loss of Setdb1 expression greatly impaired meiosis. It delayed meiotic resumption, altered the dynamics of chromatin condensation, and impaired kinetochore-spindle interactions, bipolar spindle organization and chromosome segregation in more mature oocytes. The observed phenotypes related to changes in abundance of specific transcripts in mutant oocytes. Setdb1 maternally deficient embryos arrested during pre-implantation development and showed comparable defects during cell cycle progression and in chromosome segregation. Finally, transcriptional profiling data indicate that Setdb1 downregulates rather than silences expression of ERVK and ERVL-MaLR retrotransposons and associated chimearic transcripts during oogenesis. Our results identify Setdb1 as a newly discovered meiotic and embryonic competence factor safeguarding genome integrity at the onset of life. © 2016. Published by The Company of Biologists Ltd.

  8. Analysis of the subcellular localization of the human histone methyltransferase SETDB1

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Keisuke, E-mail: nya@phs.osaka-u.ac.jp [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Gotoh, Eiko; Kawamata, Natsuko [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ishimoto, Kenji [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Uchihara, Yoshie [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Iwanari, Hiroko [Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Sugiyama, Akira; Kawamura, Takeshi [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Mochizuki, Yasuhiro [Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Tanaka, Toshiya [Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Sakai, Juro [Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Hamakubo, Takao [Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Kodama, Tatsuhiko [Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); and others

    2015-10-02

    SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that methylates lysine 9 on histone H3. Although it is important to know the localization of proteins to elucidate their physiological function, little is known of the subcellular localization of human SETDB1. In the present study, to investigate the subcellular localization of hSETDB1, we established a human cell line constitutively expressing enhanced green fluorescent protein fused to hSETDB1. We then generated a monoclonal antibody against the hSETDB1 protein. Expression of both exogenous and endogenous hSETDB1 was observed mainly in the cytoplasm of various human cell lines. Combined treatment with the nuclear export inhibitor leptomycin B and the proteasome inhibitor MG132 led to the accumulation of hSETDB1 in the nucleus. These findings suggest that hSETDB1, localized in the nucleus, might undergo degradation by the proteasome and be exported to the cytosol, resulting in its detection mainly in the cytosol. - Highlights: • Endogenous human SETDB1 was localized mainly in the cytoplasm. • Combined treatment with LMB and MG132 led to accumulation of human SETDB1 in the nucleus. • HeLa cells expressing EFGP-hSETDB1 are useful for subcellular localization analyses.

  9. Involvement of histone methyltransferase GLP in HIV-1 latency through catalysis of H3K9 dimethylation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Donglin; Qu, Xiying; Li, Lin; Zhou, Xin; Liu, Sijie; Lin, Shiguan; Wang, Pengfei; Liu, Shaohui; Kong, Chuijin; Wang, Xiaohui; Liu, Lin; Zhu, Huanzhang, E-mail: hzzhu@fudan.edu.cn

    2013-06-05

    Understanding the mechanism of HIV-1 latency is crucial to eradication of the viral reservoir in HIV-1-infected individuals. However, the role of histone methyltransferase (HMT) G9a-like protein (GLP) in HIV-1 latency is still unclear. In the present work, we established four clonal cell lines containing HIV-1 vector. We found that the integration sites of most clonal cell lines favored active gene regions. However, we also observed hypomethylation of CpG of HIV 5′LTR in all four clonal cell lines. Additionally, 5′-deoxy-5′-methylthioadenosine (MTA), a broad-spectrum histone methyltransferase inhibitor, was used to examine the role of histone methylation in HIV-1 latency. MTA was found to decrease the level of H3K9 dimethylation, causing reactivation of latent HIV-1 in C11 cells. GLP knockdown by small interfering RNA clearly induced HIV-1 LTR expression. Results suggest that GLP may play a significant role in the maintenance of HIV-1 latency by catalyzing dimethylation of H3K9. - Highlights: ► We have established an in vitro model of HIV-1 latency. ► The integration sites of most clonal cell lines favor in active gene regions. ► Hypomethylation occurs in CpG islands of HIV 5′LTR in all four clonal cell lines. ► MTA can reactivate latent HIV-1 by decreasing the level of H3K9 me2 in C11 cells. ► HMT GLP may play a significant role in the maintenance of HIV-1 latency.

  10. Master redox regulator Trx1 upregulates SMYD1 & modulates lysine methylation.

    Science.gov (United States)

    Liu, Tong; Wu, Changgong; Jain, Mohit Raja; Nagarajan, Narayani; Yan, Lin; Dai, Huacheng; Cui, Chuanlong; Baykal, Ahmet; Pan, Stacey; Ago, Tetsuro; Sadoshima, Junichi; Li, Hong

    2015-12-01

    Thioredoxin 1 (Trx1) is а antioxidant protein that regulates protein disulfide bond reduction, transnitrosylation, denitrosylation and other redox post-translational modifications. In order to better understand how Trx1 modulates downstream protective cellular signaling events following cardiac ischemia, we conducted an expression proteomics study of left ventricles (LVs) after thoracic aortic constriction stress treatment of transgenic mice with cardiac-specific over-expression of Trx1, an animal model that has been proven to withstand more stress than its non-transgenic littermates. Although previous redox post-translational modifications proteomics studies found that several cellular protein networks are regulated by Trx1-mediated disulfide reduction and transnitrosylation, we found that Trx1 regulates the expression of a limited number of proteins. Among the proteins found to be upregulated in this study was SET and MYND domain-containing protein 1 (SMYD1), a lysine methyltransferase highly expressed in cardiac and other muscle tissues and an important regulator of cardiac development. The observation of SMYD1 induction by Trx1 following thoracic aortic constriction stress is consistent with the retrograde fetal gene cardiac protection hypothesis. The results presented here suggest for the first time that, in addition to being a master redox regulator of protein disulfide bonds and nitrosation, Trx1 may also modulate lysine methylation, a non-redox post-translational modification, via the regulation of SMYD1 expression. Such crosstalk between redox signaling and a non-redox PTM regulation may provide novel insights into the functions of Trx1 that are independent from its immediate function as a protein reductase.

  11. Global analysis of lysine acetylation in strawberry leaves

    Directory of Open Access Journals (Sweden)

    Xianping eFang

    2015-09-01

    Full Text Available Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants.

  12. Histone H4 Lysine 20 methylation

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Schotta, Gunnar; Sørensen, Claus Storgaard

    2013-01-01

    of histones have emerged as key regulators of genomic integrity. Intense research during the past few years has revealed histone H4 lysine 20 methylation (H4K20me) as critically important for the biological processes that ensure genome integrity, such as DNA damage repair, DNA replication and chromatin...... instability, demonstrating the important functions of H4K20 methylation in genome maintenance. In this review, we explain molecular mechanisms underlying these defects and discuss novel ideas for furthering our understanding of genome maintenance in higher eukaryotes....

  13. Optimization of lysine metabolism in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Rytter, Jakob Vang

    the project intends to eliminate. PGI catalyzes the conversion of alpha-D-glucose-6-phosphate to fructose-6-phosphate just downstream of the branch in the glycolysis, but it also catalyzes the reverse reaction. It is unknown whether up- or down-regulation of the pgi is required to increase the flux through......, and increased NADPH availability is therefore a potential way to enhance lysine production. The generation of NADPH is mainly located in the pentose phosphate pathway (PPP). Using the genome scale model the phosphoglucoisomerase enzyme (PGI) has been identified as a possible bottleneck in the metabolism, which...

  14. Purification and properties of thioether methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Mozier, N.M.

    1988-01-01

    A method to assay activity was developed which measures acceptance of methyl groups from (methyl-{sup 3}H)-S-adenosylmethionine by dimethyl selenide. The product, ({sup 3}H)trimethylselenonium ion, is separated by HPLC and quantitated by scintillation counting. Thioether methyltransferase from mouse liver and lung resides primarily in the cytosol. In terms of specific activity the enzyme is most active in the lung and liver. Purification from lung cytosol requires a three-step process of DEAE and gel filtration column chromatographies followed by chromatofocusing. SDS-Polyacrylamide gel electrophoresis shows a single homogeneous band with a molecular mass of 28,000 daltons. Vmax and Km values for dimethyl selenide as a substrate are 15. 7 pmol/min and 0.44 {mu}M, respectively. Our studies have also shown that this purified enzyme is capable of methylating a wide range of compounds. To further test the enzyme's role in detoxification, in vivo studies were performed by injecting mice with substrate and (methyl-{sup 3}H)methionine and analyzing tissue extracts and urine for (methyl-{sup 3}H)sulfonium.

  15. Systematic Comparisons of Orthologous Selenocysteine Methyltransferase and Homocysteine Methyltransferase Genes from Seven Monocots Species

    Directory of Open Access Journals (Sweden)

    De-yong ZHAO

    2015-06-01

    Full Text Available Identifying and manipulating genes underlying selenium metabolism could be helpful for increasing selenium content in crop grain, which is an important way to overcome diseases resulted from selenium deficiency. A reciprocal smallest distance algorithm (RSD approach was applied using two experimentally confirmed Homocysteine S-Methyltransferases genes (HMT1 and HMT2 and a putative Selenocysteine Methyltransferase (SMT from dicots plant Arabidopsis thaliana, to explore their orthologs in seven sequenced diploid monocot species: Oryza sativa, Zea mays, Sorghum bicolor, Brachypodium distachyon, Hordeum vulgare, Aegilops tauschii (the D-genome donor of common wheat and Triticum urartu (the A-genome donor of common wheat. HMT1 was apparently diverged from HMT2 and most of SMT orthologs were the same with that of HMT2 in this study, leading to the hypothesis that SMT and HMT originate from one common ancestor gene. Identifying orthologs provide candidates for further experimental confirmation; also it could be helpful in designing primers to clone SMT or HMT orthologs in other crops.

  16. File list: Oth.Unc.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Unclassified ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Unc.50.Crotonyl_lysine.AllCell.bed ...

  17. File list: Oth.Pan.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.05.Crotonyl_lysine.AllCell.bed ...

  18. File list: Oth.Plc.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Plc.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Placenta http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Plc.20.Crotonyl_lysine.AllCell.bed ...

  19. File list: Oth.Unc.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Unclassified ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Unc.10.Crotonyl_lysine.AllCell.bed ...

  20. File list: Oth.Unc.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Unclassified ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Unc.20.Crotonyl_lysine.AllCell.bed ...

  1. File list: Oth.Pan.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.50.Crotonyl_lysine.AllCell.bed ...

  2. File list: Oth.Plc.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Plc.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Placenta http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Plc.50.Crotonyl_lysine.AllCell.bed ...

  3. File list: Oth.Prs.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Prostate http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Prs.10.Crotonyl_lysine.AllCell.bed ...

  4. File list: Oth.Prs.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Prostate http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Prs.05.Crotonyl_lysine.AllCell.bed ...

  5. File list: Oth.Prs.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Prostate http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Prs.20.Crotonyl_lysine.AllCell.bed ...

  6. File list: Oth.Plc.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Plc.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Placenta http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Plc.05.Crotonyl_lysine.AllCell.bed ...

  7. File list: Oth.Pan.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.10.Crotonyl_lysine.AllCell.bed ...

  8. File list: Oth.Plc.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Plc.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Placenta http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Plc.10.Crotonyl_lysine.AllCell.bed ...

  9. File list: Oth.Prs.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Prostate http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Prs.50.Crotonyl_lysine.AllCell.bed ...

  10. File list: Oth.Unc.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Unclassified ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Unc.05.Crotonyl_lysine.AllCell.bed ...

  11. The Dnmt3a PWWP Domain Reads Histone 3 Lysine 36 Trimethylation and Guides DNA Methylation*

    Science.gov (United States)

    Dhayalan, Arunkumar; Rajavelu, Arumugam; Rathert, Philipp; Tamas, Raluca; Jurkowska, Renata Z.; Ragozin, Sergey; Jeltsch, Albert

    2010-01-01

    The Dnmt3a DNA methyltransferase contains in its N-terminal part a PWWP domain that is involved in chromatin targeting. Here, we have investigated the interaction of the PWWP domain with modified histone tails using peptide arrays and show that it specifically recognizes the histone 3 lysine 36 trimethylation mark. H3K36me3 is known to be a repressive modification correlated with DNA methylation in mammals and heterochromatin in Schizosaccharomyces pombe. These results were confirmed by equilibrium peptide binding studies and pulldown experiments with native histones and purified native nucleosomes. The PWWP-H3K36me3 interaction is important for the subnuclear localization of enhanced yellow fluorescent protein-fused Dnmt3a. Furthermore, the PWWP-H3K36me3 interaction increases the activity of Dnmt3a for methylation of nucleosomal DNA as observed using native nucleosomes isolated from human cells after demethylation of the DNA with 5-aza-2′-deoxycytidine as substrate for methylation with Dnmt3a. These data suggest that the interaction of the PWWP domain with H3K36me3 is involved in targeting of Dnmt3a to chromatin carrying that mark, a model that is in agreement with several studies on the genome-wide distribution of DNA methylation and H3K36me3. PMID:20547484

  12. Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry

    NARCIS (Netherlands)

    Troise, A.D.; Fiore, A.; Wiltafsky, M.; Fogliano, V.

    2015-01-01

    The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML),

  13. STUDY OF LYSINE AND ALANINE DELIVERANCE THROUGH POLYPYRROLE MEMBRANE

    Directory of Open Access Journals (Sweden)

    Adhitasari Suratman

    2010-06-01

    Full Text Available Electropolymerization processes of pyrrole and the usage of polypyrrole membrane as lysine and alanine deliverance have been studied by cyclic voltammetry technique. Polypyrrole membrane was prepared by electropolymerization processes of pyrrole in water based solvent containing sodium perchlorate as supporting electrolyte. Electropolymerization processes were carried out within potential range of 0-1100 mV vs Ag/AgCl reference electrode and at the scanning rate of 100 mV/s. In this study, lysine and alanine have been used as molecules which could easily be loaded on and released from polypyrrole membrane. The presence of lysine or alanine during electropolymerization process reduced the rate of electropolymerization of polypyrrole. In lysine or alanine transfer processes into polypyrrole membrane, the interaction between polypyrrole and lysine or alanine showed by the curve of E½ oxidation in respect of - log C. It proved that the E½ oxidation shifted to more positive potential showed by the increasing of concentration of lysine or alanine. Beside that, voltammetric responses of lysine and alanine transfered into polypyrrole membrane were found to be Nernstian. The results indicated that polypyrrole could be used as a sensor of lysine and alanine.   Keywords: Electropolymerization, polypyrrole membrane, voltammetry technique

  14. Digestible lysine levels in diets supplemented with ractopamine

    Directory of Open Access Journals (Sweden)

    Evelar de Oliveira Souza

    2011-10-01

    Full Text Available In order evaluate digestible lysine levels in diets supplemented with 20 ppm of ractopamine on the performance and carcass traits, 64 barrows with high genetic potential at finishing phase were allotted in a completely randomized block design with four digestible lysine levels (0.80, 0.90, 1.00, and 1.10%, eight replicates and two pigs per experimental unit. Initial body weight and pigs' kinship were used as criteria in the blocks formation. Diets were mainly composed of corn and soybean meal supplemented with minerals, vitamins and amino acids to meet pigs' nutritional requirements at the finishing phase, except for digestible lysine. No effect of digestible lysine levels was observed in animal performance. The digestible lysine intake increased linearly by increasing the levels of digestible lysine in the diets. Carcass traits were not influenced by the dietary levels of digestible lysine. The level of 0.80% of digestible lysine in diets supplemented with 20 ppm ractopamine meets the nutritional requirements of castrated male pigs during the finishing phase.

  15. The Tale of Protein Lysine Acetylation in the Cytoplasm

    Directory of Open Access Journals (Sweden)

    Karin Sadoul

    2011-01-01

    Full Text Available Reversible posttranslational modification of internal lysines in many cellular or viral proteins is now emerging as part of critical signalling processes controlling a variety of cellular functions beyond chromatin and transcription. This paper aims at demonstrating the role of lysine acetylation in the cytoplasm driving and coordinating key events such as cytoskeleton dynamics, intracellular trafficking, vesicle fusion, metabolism, and stress response.

  16. Bioavailability of lysine in heat-treated foods and feedstuffs

    NARCIS (Netherlands)

    McArtney Rutherfurd, S.

    2010-01-01

    During the processing of foodstuffs, lysine can react with other compounds present to form nutritionally unavailable derivatives, the most common example of which are Maillard products. Maillard products can cause serious problems when determining the available lysine content of processed foods or f

  17. Bioavailability of lysine in heat-treated foods and feedstuffs

    NARCIS (Netherlands)

    McArtney Rutherfurd, S.

    2010-01-01

    During the processing of foodstuffs, lysine can react with other compounds present to form nutritionally unavailable derivatives, the most common example of which are Maillard products. Maillard products can cause serious problems when determining the available lysine content of processed foods or

  18. Creative lysins: Listeria and the engineering of antimicrobial enzymes.

    Science.gov (United States)

    Van Tassell, Maxwell L; Angela Daum, M; Kim, Jun-Seob; Miller, Michael J

    2016-02-01

    Cell wall lytic enzymes have been of increasing interest as antimicrobials for targeting Gram-positive spoilage and pathogenic bacteria, largely due to the development of strains resistant to antibiotics and bacteriophage therapy. Such lysins show considerable promise against Listeria monocytogenes, a primary concern in food-processing environments, but there is room for improvement via protein engineering. Advances in antilisterial applications could benefit from recent developments in lysin biotechnology that have largely targeted other organisms. Herein we present various considerations for the future development of lysins, including environmental factors, cell physiology concerns, and dynamics of protein architecture. Our goal is to review key developments in lysin biotechnology to provide a contextual framework for the current models of lysin-cell interactions and highlight key considerations for the characterization and design of novel lytic enzymes.

  19. The Cj0588 protein is a Campylobacter jejuni RNA methyltransferase.

    Science.gov (United States)

    Sałamaszyńska-Guz, Agnieszka; Taciak, Bartłomiej; Kwiatek, Agnieszka; Klimuszko, Danuta

    2014-06-06

    TlyA proteins belong to 2'-O-methyltransferases. Methylation is a common posttranscriptional RNA modification. The Campylobacter jejuni Cj0588 protein belongs to the TlyA(I) protein family and is a rRNA methyltransferase. Methylation of ribosomal RNA catalyzed by Cj0588 appears to have an impact on the biology of the cell. Presence of the cj0588 gene in bacteria appears to be important for ribosome stability and virulence properties. Absence of the Cj0588 protein causes accumulation of the 50S ribosomal subunits, reduction in the amount of functional 70S ribosomes and confers increase resistance to capreomycin.

  20. Lysine Acetylation and Deacetylation in Brain Development and Neuropathies

    Directory of Open Access Journals (Sweden)

    Alicia Tapias

    2017-02-01

    Full Text Available Embryonic development is critical for the final functionality and maintenance of the adult brain. Brain development is tightly regulated by intracellular and extracellular signaling. Lysine acetylation and deacetylation are posttranslational modifications that are able to link extracellular signals to intracellular responses. A wealth of evidence indicates that lysine acetylation and deacetylation are critical for brain development and functionality. Indeed, mutations of the enzymes and cofactors responsible for these processes are often associated with neurodevelopmental and psychiatric disorders. Lysine acetylation and deacetylation are involved in all levels of brain development, starting from neuroprogenitor survival and proliferation, cell fate decisions, neuronal maturation, migration, and synaptogenesis, as well as differentiation and maturation of astrocytes and oligodendrocytes, to the establishment of neuronal circuits. Hence, fluctuations in the balance between lysine acetylation and deacetylation contribute to the final shape and performance of the brain. In this review, we summarize the current basic knowledge on the specific roles of lysine acetyltransferase (KAT and lysine deacetylase (KDAC complexes in brain development and the different neurodevelopmental disorders that are associated with dysfunctional lysine (deacetylation machineries.

  1. Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34

    DEFF Research Database (Denmark)

    Suryadinata, Randy; Holien, Jessica K; Yang, George

    2013-01-01

    The attachment of ubiquitin (Ub) to lysines on substrates or itself by ubiquitin-conjugating (E2) and ubiquitin ligase (E3) enzymes results in protein ubiquitination. Lysine selection is important for generating diverse substrate-Ub structures and targeting proteins to different fates; however......, the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines....... Evaluation of the relative importance of different residues positioned -2, -1, +1 and +2 toward ubiquitination of its substrate, Sic1, on lysine 50 showed that charged residues in the -1 and -2 positions negatively impact on ubiquitination. Modeling suggests that charged residues at these positions alter...

  2. Histone Lysine Methylation in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Guang-dong Sun

    2014-01-01

    Full Text Available Diabetic nephropathy (DN belongs to debilitating microvascular complications of diabetes and is the leading cause of end-stage renal diseases worldwide. Furthermore, outcomes from the DCCT/EDIC study showed that DN often persists and progresses despite intensive glucose control in many diabetes patients, possibly as a result of prior episode of hyperglycemia, which is called “metabolic memory.” The underlying mechanisms responsible for the development and progression of DN remain poorly understood. Activation of multiple signaling pathways and key transcription factors can lead to aberrant expression of DN-related pathologic genes in target renal cells. Increasing evidence suggests that epigenetic mechanisms in chromatin such as DNA methylation, histone acetylation, and methylation can influence the pathophysiology of DN and metabolic memory. Exciting researches from cell culture and experimental animals have shown that key histone methylation patterns and the related histone methyltransferases and histone demethylases can play important roles in the regulation of inflammatory and profibrotic genes in renal cells under diabetic conditions. Because histone methylation is dynamic and potentially reversible, it can provide a window of opportunity for the development of much-needed novel therapeutic potential for DN in the future. In this minireview, we discuss recent advances in the field of histone methylation and its roles in the pathogenesis and progression of DN.

  3. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    Science.gov (United States)

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-01

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor.

  4. Yorkie Promotes Transcription by Recruiting a Histone Methyltransferase Complex

    Directory of Open Access Journals (Sweden)

    Hyangyee Oh

    2014-07-01

    Full Text Available Hippo signaling limits organ growth by inhibiting the transcriptional coactivator Yorkie. Despite the key role of Yorkie in both normal and oncogenic growth, the mechanism by which it activates transcription has not been defined. We report that Yorkie binding to chromatin correlates with histone H3K4 methylation and is sufficient to locally increase it. We show that Yorkie can recruit a histone methyltransferase complex through binding between WW domains of Yorkie and PPxY sequence motifs of NcoA6, a subunit of the Trithorax-related (Trr methyltransferase complex. Cell culture and in vivo assays establish that this recruitment of NcoA6 contributes to Yorkie’s ability to activate transcription. Mammalian NcoA6, a subunit of Trr-homologous methyltransferase complexes, can similarly interact with Yorkie’s mammalian homolog YAP. Our results implicate direct recruitment of a histone methyltransferase complex as central to transcriptional activation by Yorkie, linking the control of cell proliferation by Hippo signaling to chromatin modification.

  5. Diversity in mechanism and function of tRNA methyltransferases

    Science.gov (United States)

    Swinehart, William E; Jackman, Jane E

    2015-01-01

    tRNA molecules undergo extensive post-transcriptional processing to generate the mature functional tRNA species that are essential for translation in all organisms. These processing steps include the introduction of numerous specific chemical modifications to nucleotide bases and sugars; among these modifications, methylation reactions are by far the most abundant. The tRNA methyltransferases comprise a diverse enzyme superfamily, including members of multiple structural classes that appear to have arisen independently during evolution. Even among closely related family members, examples of unusual substrate specificity and chemistry have been observed. Here we review recent advances in tRNA methyltransferase mechanism and function with a particular emphasis on discoveries of alternative substrate specificities and chemistry associated with some methyltransferases. Although the molecular function for a specific tRNA methylation may not always be clear, mutations in tRNA methyltransferases have been increasingly associated with human disease. The impact of tRNA methylation on human biology is also discussed. PMID:25626150

  6. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells

    DEFF Research Database (Denmark)

    Freiesleben, Ulrik Von

    1996-01-01

    Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome...

  7. IDENTIFYING CRITICAL CYSTEINE RESIDUES IN ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE

    Science.gov (United States)

    Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes methylation of inorganic arsenic to mono, di, and trimethylated arsenicals. Orthologous AS3MT genes in genomes ranging from simple echinoderm to human predict a protein with five conserved cysteine (C) residues. In ...

  8. Yorkie promotes transcription by recruiting a histone methyltransferase complex.

    Science.gov (United States)

    Oh, Hyangyee; Slattery, Matthew; Ma, Lijia; White, Kevin P; Mann, Richard S; Irvine, Kenneth D

    2014-07-24

    Hippo signaling limits organ growth by inhibiting the transcriptional coactivator Yorkie. Despite the key role of Yorkie in both normal and oncogenic growth, the mechanism by which it activates transcription has not been defined. We report that Yorkie binding to chromatin correlates with histone H3K4 methylation and is sufficient to locally increase it. We show that Yorkie can recruit a histone methyltransferase complex through binding between WW domains of Yorkie and PPxY sequence motifs of NcoA6, a subunit of the Trithorax-related (Trr) methyltransferase complex. Cell culture and in vivo assays establish that this recruitment of NcoA6 contributes to Yorkie's ability to activate transcription. Mammalian NcoA6, a subunit of Trr-homologous methyltransferase complexes, can similarly interact with Yorkie's mammalian homolog YAP. Our results implicate direct recruitment of a histone methyltransferase complex as central to transcriptional activation by Yorkie, linking the control of cell proliferation by Hippo signaling to chromatin modification. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Convergent Mechanistic Features between the Structurally Diverse N- and O-Methyltransferases: Glycine N-Methyltransferase and Catechol O-Methyltransferase.

    Science.gov (United States)

    Zhang, Jianyu; Klinman, Judith P

    2016-07-27

    Although an enormous and still growing number of biologically diverse methyltransferases have been reported and identified, a comprehensive understanding of the enzymatic methyl transfer mechanism is still lacking. Glycine N-methyltransferase (GNMT), a member of the family that acts on small metabolites as the substrate, catalyzes methyl transfer from S-adenosyl-l-methionine (AdoMet) to glycine to form S-adenosyl-l-homocysteine and sarcosine. We report primary carbon ((12)C/(14)C) and secondary ((1)H3/(3)H3) kinetic isotope effects at the transferred methyl group, together with (1)H3/(3)H3 binding isotope effects for wild-type GNMT and a series of Tyr21 mutants. The data implicate a compaction effect in the methyl transfer step that is conferred by the protein structure. Furthermore, a remarkable similarity of properties is observed between GNMT and catechol O-methyltransferase, despite significant differences between these enzymes with regard to their active site structures and catalyzed reactions. We attribute these results to a catalytically relevant reduction in the methyl donor-acceptor distance that is dependent on a tyrosine side chain positioned behind the methyl-bearing sulfur of AdoMet.

  10. Structure and Function of Flavivirus NS5 Methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Zhou,Y.; Ray, D.; Zhao, Y.; Dong, H.; Ren, S.; Li, Z.; Guo, Y.; Bernard, K.; Shi, P.; Li, H.

    2007-01-01

    The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m{sup 7}GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA {yields} m{sup 7}GpppA {yields} m{sup 7}GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m{sup 7}GpppA-RNA can be readily methylated to m{sup 7}GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 {angstrom} resolution showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K{sub 61}-D{sub 146}-K{sub 182}-E{sub 218} motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.

  11. protein, tryptophan and lysine contents in quality protien maize ...

    African Journals Online (AJOL)

    owner

    for human nutrition recommended by Food and Agriculture Organization in ... METHODS: The protein, tryptophan and lysine contents of improved ... This study revealed the fact that genetic factor influences the protein, ... Ethiop J Health Sci.

  12. Digestible lysine levels in diets for laying Japanese quails

    Directory of Open Access Journals (Sweden)

    Cleverson Luís Nascimento Ribeiro

    2013-07-01

    Full Text Available The objective of this study was to estimate the digestible lysine requirement of Japanese quails in the egg-laying phase. A total of 336 female Japanese quails (Coturnix coturnix japonica of average initial age of 207 days were distributed in a completely randomized experimental design, composed of 6 treatments (lysine levels with 7 replicates and 8 birds per experimental unit, with duration of 84 days. Experimental diets were formulated from a basal diet, with corn and soybean meal, with 2.800 kcal ME/kg and 203.70 g/kg crude protein, showing levels of 9.50; 10.00; 10.50; 11.00; 11.50; and 12.00 g/kg digestible lysine; diets remained isoprotein and isocaloric. The following variables were studied: feed intake (FI; lysine intake (LI; egg production per bird per day (EPBD; egg production per bird housed (EPBH; production of marketable eggs (PME; egg weight (EW; egg mass (EM; utilization efficiency of lysine for egg mass production (UELEM; feed conversion per mass (FCEM; feed conversion per dozen eggs (FCDZ; bird availability (BA; percentages of yolk (Y, albumen (A and shell (S; specific egg weight (SW; nitrogen ingested (NI; nitrogen excreted (NE; and nitrogen balance (NB. Significant effect was only observed for LI, EW, EM, UELEM, FCEM, Y, A and SW. The digestible lysine level estimated in diets for laying Japanese quails is 11.20 g digestible lysine/kg diet, corresponding to an average daily intake of 272.23 mg lysine.

  13. ß-Lysine discrimination by lysyl-tRNA synthetase

    DEFF Research Database (Denmark)

    Gilreath, Marla S; Roy, Hervé; Bullwinkle, Tammy J

    2011-01-01

    guided by the PoxA structure. A233S LysRS behaved as wild type with a-lysine, while the G469A and A233S/G469A variants decreased stable a-lysyl-adenylate formation. A233S LysRS recognized ß-lysine better than wildtype, suggesting a role for this residue in discriminating a- and ß-amino acids. Both...

  14. Maintenance requirement and deposition efficiency of lysine in pigs

    Directory of Open Access Journals (Sweden)

    Marcos Speroni Ceron

    2013-09-01

    Full Text Available The objective of this work was to determine the maintenance requirement and the deposition efficiency of lysine in growing pigs. It was used the incomplete changeover experimental design, with replicates over time. Twelve castrated pigs with average body weight (BW of 52±2 kg were kept in metabolism crates with a controlled temperature of 22ºC. The diets were formulated to supply 30, 50, 60, and 70% of the expected requirements of standardized lysine, and provided at 2.6 times the energy requirements for maintenance. The trial lasted 24 days and was divided into two periods of 12 days: seven days for animal adaptation to the diet and five days for sample collection. The increasing content of lysine in the diet did not affect dry matter intake of the pigs. The amount of nitrogen excreted was 47% of the nitrogen intake, of which 35% was excreted through feces and 65% through urine. The estimated endogenous losses of lysine were 36.4 mg kg-1 BW0.75. The maintenance requirement of lysine for pigs weighing around 50 kg is 40.4 mg kg-1 BW0.75, and the deposition efficiency of lysine is 90%.

  15. Enzymic and chemical synthesis of epilson-N-(L-propionyl-2)-L-lysine.

    Science.gov (United States)

    Fujioka, M; Tanaka, M

    1978-10-01

    Pyruvate was shown to act as an oxo acid substrate in the reverse direction of saccharopine dehydrogenase [epsilon N-(L-glutaryl-2)-L-lysine: NAD oxidoreductase (L-lysine-forming)] reaction. The enzymic condensation product of lysine and pyruvate was isolated and identified as epsilon-N-(L-propionyl-2)-L-lysine by comparison with the synthetic compound. A method for the chemical preparation of diastereoisomers of epsilon-N-(propionyl-2)-L-lysine is also described.

  16. l-lysine production by Bacillus methanolicus: Genome-based mutational analysis and l-lysine secretion engineering.

    Science.gov (United States)

    Nærdal, Ingemar; Netzer, Roman; Irla, Marta; Krog, Anne; Heggeset, Tonje Marita Bjerkan; Wendisch, Volker F; Brautaset, Trygve

    2017-02-20

    Bacillus methanolicus is a methylotrophic bacterium with an increasing interest in academic research and for biotechnological applications. This bacterium was previously applied for methanol-based production of l-glutamate, l-lysine and the five-carbon diamine cadaverine by wild type, classical mutant and recombinant strains. The genomes of two different l-lysine secreting B. methanolicus classical mutant strains, NOA2#13A52-8A66 and M168-20, were sequenced. We focused on mutational mapping in genes present in l-lysine and other relevant amino acid biosynthetic pathways, as well as in the primary cell metabolism important for precursor supply. In addition to mutations in the aspartate pathway genes dapG, lysA and hom-1, new mutational target genes like alr, proA, proB1, leuC, odhA and pdhD were identified. Surprisingly, no mutations were found in the putative l-lysine transporter gene lysE(MGA3). Inspection of the wild type B. methanolicus strain PB1 genome sequence identified two homologous putative l-lysine transporter genes, lysE(PB1) and lysE2(PB1). The biological role of these putative l-lysine transporter genes, together with the heterologous l-lysine exporter gene lysE(Cg) from Corynebacterium glutamicum, were therefore investigated. Our results demonstrated that the titer of secreted l-lysine in B. methanolicus was significantly increased by overexpression of lysE(Cg) while overexpression of lysE(MGA3), lysE(PB1) and lysE2(PB1) had no measurable effect.

  17. Critical Roles of the Histone Methyltransferase MLL4/KMT2D in Murine Hepatic Steatosis Directed by ABL1 and PPARγ2

    Directory of Open Access Journals (Sweden)

    Dae-Hwan Kim

    2016-11-01

    Full Text Available The pathophysiologic continuum of non-alcoholic fatty liver disease begins with steatosis. Despite recent advances in our understanding of the gene regulatory program directing steatosis, how it is orchestrated at the chromatin level is unclear. PPARγ2 is a hepatic steatotic transcription factor induced by overnutrition. Here, we report that the histone H3 lysine 4 methyltransferase MLL4/KMT2D directs overnutrition-induced murine steatosis via its coactivator function for PPARγ2. We demonstrate that overnutrition facilitates the recruitment of MLL4 to steatotic target genes of PPARγ2 and their transactivation via H3 lysine 4 methylation because PPARγ2 phosphorylated by overnutrition-activated ABL1 kinase shows enhanced interaction with MLL4. We further show that Pparg2 (encoding PPARγ2 is also a hepatic target gene of ABL1-PPARγ2-MLL4. Consistently, inhibition of ABL1 improves the fatty liver condition of mice with overnutrition by suppressing the pro-steatotic action of MLL4. Our results uncover a murine hepatic steatosis regulatory axis consisting of ABL1-PPARγ2-MLL4, which may serve as a target of anti-steatosis drug development.

  18. Cobalamin-dependent and cobamide-dependent methyltransferases.

    Science.gov (United States)

    Matthews, Rowena G; Koutmos, Markos; Datta, Supratim

    2008-12-01

    Methyltransferases that employ cobalamin cofactors, or their analogs the cobamides, as intermediates in catalysis of methyl transfer play vital roles in energy generation in anaerobic unicellular organisms. In a broader range of organisms they are involved in the conversion of homocysteine to methionine. Although the individual methyl transfer reactions catalyzed are simple S(N)2 displacements, the required change in coordination at the cobalt of the cobalamin or cobamide cofactors and the lability of the reduced Co(+1) intermediates introduces the necessity for complex conformational changes during the catalytic cycle. Recent spectroscopic and structural studies on several of these methyltransferases have helped to reveal the strategies by which these conformational changes are facilitated and controlled.

  19. The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2017-02-01

    Full Text Available Cellular senescence is an irreversible growth arrest that contributes to development, tumor suppression, and age-related conditions. Senescent cells show active metabolism compared with proliferating cells, but the underlying mechanisms remain unclear. Here we show that the SETD8/PR-Set7 methyltransferase, which catalyzes mono-methylation of histone H4 at lysine 20 (H4K20me1, suppresses nucleolar and mitochondrial activities to prevent cellular senescence. SETD8 protein was selectively downregulated in both oncogene-induced and replicative senescence. Inhibition of SETD8 alone was sufficient to trigger senescence. Under these states, the expression of genes encoding ribosomal proteins (RPs and ribosomal RNAs as well as the cyclin-dependent kinase (CDK inhibitor p16INK4A was increased, with a corresponding reduction of H4K20me1 at each locus. As a result, the loss of SETD8 concurrently stimulated nucleolar function and retinoblastoma protein-mediated mitochondrial metabolism. In conclusion, our data demonstrate that SETD8 acts as a barrier to prevent cellular senescence through chromatin-mediated regulation of senescence-associated metabolic remodeling.

  20. Histone methyltransferase EZH2 is transcriptionally induced by estradiol as well as estrogenic endocrine disruptors bisphenol-A and diethylstilbestrol.

    Science.gov (United States)

    Bhan, Arunoday; Hussain, Imran; Ansari, Khairul I; Bobzean, Samara A M; Perrotti, Linda I; Mandal, Subhrangsu S

    2014-10-09

    Enhancer of Zeste homolog 2 (EZH2), a methyltransferase specific to histone 3 lysine 27, is a critical player in gene silencing and is overexpressed in breast cancer. Our studies demonstrate that EZH2 is transcriptionally induced by estradiol in cultured breast cancer cells and in the mammary glands of ovariectomized rats. EZH2 promoter contains multiple functional estrogen-response elements. Estrogen receptors (ERs) and ER coregulators such as mixed lineage leukemia (MLL) histone methylases (MLL2 and MLL3) and histone acetyltransferase CBP/P300 bind to the EZH2 promoter in the presence of estradiol and regulate estradiol-induced EZH2 expression. EZH2 expression is also increased upon exposure to estrogenic endocrine disrupting chemicals (EDCs) such as bisphenol-A (BPA) and diethylstilbestrol (DES). Similar to estradiol, BPA and DES-induced EZH2 expression is coordinated by ERs, MLLs and CBP/P300. In summary, we demonstrate that EZH2 is transcriptionally regulated by estradiol in vitro and in vivo, and its expression is potentially dysregulated upon exposure to estrogenic EDCs.

  1. Caenorhabditis elegans histone methyltransferase MET-2 shields the male X chromosome from checkpoint machinery and mediates meiotic sex chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Paula M Checchi

    2011-09-01

    Full Text Available Meiosis is a specialized form of cellular division that results in the precise halving of the genome to produce gametes for sexual reproduction. Checkpoints function during meiosis to detect errors and subsequently to activate a signaling cascade that prevents the formation of aneuploid gametes. Indeed, asynapsis of a homologous chromosome pair elicits a checkpoint response that can in turn trigger germline apoptosis. In a heterogametic germ line, however, sex chromosomes proceed through meiosis with unsynapsed regions and are not recognized by checkpoint machinery. We conducted a directed RNAi screen in Caenorhabditis elegans to identify regulatory factors that prevent recognition of heteromorphic sex chromosomes as unpaired and uncovered a role for the SET domain histone H3 lysine 9 histone methyltransferase (HMTase MET-2 and two additional HMTases in shielding the male X from checkpoint machinery. We found that MET-2 also mediates the transcriptional silencing program of meiotic sex chromosome inactivation (MSCI but not meiotic silencing of unsynapsed chromatin (MSUC, suggesting that these processes are distinct. Further, MSCI and checkpoint shielding can be uncoupled, as double-strand breaks targeted to an unpaired, transcriptionally silenced extra-chromosomal array induce checkpoint activation in germ lines depleted for met-2. In summary, our data uncover a mechanism by which repressive chromatin architecture enables checkpoint proteins to distinguish between the partnerless male X chromosome and asynapsed chromosomes thereby shielding the lone X from inappropriate activation of an apoptotic program.

  2. Caenorhabditis elegans histone methyltransferase MET-2 shields the male X chromosome from checkpoint machinery and mediates meiotic sex chromosome inactivation.

    Science.gov (United States)

    Checchi, Paula M; Engebrecht, JoAnne

    2011-09-01

    Meiosis is a specialized form of cellular division that results in the precise halving of the genome to produce gametes for sexual reproduction. Checkpoints function during meiosis to detect errors and subsequently to activate a signaling cascade that prevents the formation of aneuploid gametes. Indeed, asynapsis of a homologous chromosome pair elicits a checkpoint response that can in turn trigger germline apoptosis. In a heterogametic germ line, however, sex chromosomes proceed through meiosis with unsynapsed regions and are not recognized by checkpoint machinery. We conducted a directed RNAi screen in Caenorhabditis elegans to identify regulatory factors that prevent recognition of heteromorphic sex chromosomes as unpaired and uncovered a role for the SET domain histone H3 lysine 9 histone methyltransferase (HMTase) MET-2 and two additional HMTases in shielding the male X from checkpoint machinery. We found that MET-2 also mediates the transcriptional silencing program of meiotic sex chromosome inactivation (MSCI) but not meiotic silencing of unsynapsed chromatin (MSUC), suggesting that these processes are distinct. Further, MSCI and checkpoint shielding can be uncoupled, as double-strand breaks targeted to an unpaired, transcriptionally silenced extra-chromosomal array induce checkpoint activation in germ lines depleted for met-2. In summary, our data uncover a mechanism by which repressive chromatin architecture enables checkpoint proteins to distinguish between the partnerless male X chromosome and asynapsed chromosomes thereby shielding the lone X from inappropriate activation of an apoptotic program.

  3. Neuronal Kmt2a/Mll1 histone methyltransferase is essential for prefrontal synaptic plasticity and working memory.

    Science.gov (United States)

    Jakovcevski, Mira; Ruan, Hongyu; Shen, Erica Y; Dincer, Aslihan; Javidfar, Behnam; Ma, Qi; Peter, Cyril J; Cheung, Iris; Mitchell, Amanda C; Jiang, Yan; Lin, Cong L; Pothula, Venu; Stewart, A Francis; Ernst, Patricia; Yao, Wei-Dong; Akbarian, Schahram

    2015-04-01

    Neuronal histone H3-lysine 4 methylation landscapes are defined by sharp peaks at gene promoters and other cis-regulatory sequences, but molecular and cellular phenotypes after neuron-specific deletion of H3K4 methyl-regulators remain largely unexplored. We report that neuronal ablation of the H3K4-specific methyltransferase, Kmt2a/Mixed-lineage leukemia 1 (Mll1), in mouse postnatal forebrain and adult prefrontal cortex (PFC) is associated with increased anxiety and robust cognitive deficits without locomotor dysfunction. In contrast, only mild behavioral phenotypes were observed after ablation of the Mll1 ortholog Kmt2b/Mll2 in PFC. Impaired working memory after Kmt2a/Mll1 ablation in PFC neurons was associated with loss of training-induced transient waves of Arc immediate early gene expression critical for synaptic plasticity. Medial prefrontal layer V pyramidal neurons, a major output relay of the cortex, demonstrated severely impaired synaptic facilitation and temporal summation, two forms of short-term plasticity essential for working memory. Chromatin immunoprecipitation followed by deep sequencing in Mll1-deficient cortical neurons revealed downregulated expression and loss of the transcriptional mark, trimethyl-H3K4, at neurons critically depend on maintenance of Mll1-regulated H3K4 methylation at a subset of genes with an essential role in cognition and emotion. Copyright © 2015 the authors 0270-6474/15/355097-12$15.00/0.

  4. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray

    Directory of Open Access Journals (Sweden)

    M. David Stewart

    2016-03-01

    Full Text Available The Smyd1 gene encodes a lysine methyltransferase specifically expressed in striated muscle. Because Smyd1-null mouse embryos die from heart malformation prior to formation of skeletal muscle, we developed a Smyd1 conditional-knockout allele to determine the consequence of SMYD1 loss in mammalian skeletal muscle. Ablation of SMYD1 specifically in skeletal myocytes after myofiber differentiation using Myf6cre produced a non-degenerative myopathy. Mutant mice exhibited weakness, myofiber hypotrophy, prevalence of oxidative myofibers, reduction in triad numbers, regional myofibrillar disorganization/breakdown and a high percentage of myofibers with centralized nuclei. Notably, we found broad upregulation of muscle development genes in the absence of regenerating or degenerating myofibers. These data suggest that the afflicted fibers are in a continual state of repair in an attempt to restore damaged myofibrils. Disease severity was greater for males than females. Despite equivalent expression in all fiber types, loss of SMYD1 primarily affected fast-twitch muscle, illustrating fiber-type-specific functions for SMYD1. This work illustrates a crucial role for SMYD1 in skeletal muscle physiology and myofibril integrity.

  5. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray.

    Science.gov (United States)

    Stewart, M David; Lopez, Suhujey; Nagandla, Harika; Soibam, Benjamin; Benham, Ashley; Nguyen, Jasmine; Valenzuela, Nicolas; Wu, Harry J; Burns, Alan R; Rasmussen, Tara L; Tucker, Haley O; Schwartz, Robert J

    2016-03-01

    The Smyd1 gene encodes a lysine methyltransferase specifically expressed in striated muscle. Because Smyd1-null mouse embryos die from heart malformation prior to formation of skeletal muscle, we developed a Smyd1 conditional-knockout allele to determine the consequence of SMYD1 loss in mammalian skeletal muscle. Ablation of SMYD1 specifically in skeletal myocytes after myofiber differentiation using Myf6(cre) produced a non-degenerative myopathy. Mutant mice exhibited weakness, myofiber hypotrophy, prevalence of oxidative myofibers, reduction in triad numbers, regional myofibrillar disorganization/breakdown and a high percentage of myofibers with centralized nuclei. Notably, we found broad upregulation of muscle development genes in the absence of regenerating or degenerating myofibers. These data suggest that the afflicted fibers are in a continual state of repair in an attempt to restore damaged myofibrils. Disease severity was greater for males than females. Despite equivalent expression in all fiber types, loss of SMYD1 primarily affected fast-twitch muscle, illustrating fiber-type-specific functions for SMYD1. This work illustrates a crucial role for SMYD1 in skeletal muscle physiology and myofibril integrity. © 2016. Published by The Company of Biologists Ltd.

  6. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure.

    Directory of Open Access Journals (Sweden)

    Brendan Jones

    Full Text Available Dot1 is an evolutionarily conserved histone methyltransferase specific for lysine 79 of histone H3 (H3K79. In Saccharomyces cerevisiae, Dot1-mediated H3K79 methylation is associated with telomere silencing, meiotic checkpoint control, and DNA damage response. The biological function of H3K79 methylation in mammals, however, remains poorly understood. Using gene targeting, we generated mice deficient for Dot1L, the murine Dot1 homologue. Dot1L-deficient embryos show multiple developmental abnormalities, including growth impairment, angiogenesis defects in the yolk sac, and cardiac dilation, and die between 9.5 and 10.5 days post coitum. To gain insights into the cellular function of Dot1L, we derived embryonic stem (ES cells from Dot1L mutant blastocysts. Dot1L-deficient ES cells show global loss of H3K79 methylation as well as reduced levels of heterochromatic marks (H3K9 di-methylation and H4K20 tri-methylation at centromeres and telomeres. These changes are accompanied by aneuploidy, telomere elongation, and proliferation defects. Taken together, these results indicate that Dot1L and H3K79 methylation play important roles in heterochromatin formation and in embryonic development.

  7. Plant isoflavone and isoflavanone O-methyltransferase genes

    Science.gov (United States)

    Broeckling, Bettina E.; Liu, Chang-Jun; Dixon, Richard A.

    2014-08-19

    The invention provides enzymes that encode O-methyltransferases (OMTs) from Medicago truncatula that allow modification to plant (iso)flavonoid biosynthetic pathways. In certain aspects of the invention, the genes encoding these enzymes are provided. The invention therefore allows the modification of plants for isoflavonoid content. Transgenic plants comprising such enzymes are also provided, as well as methods for improving disease resistance in plants. Methods for producing food and nutraceuticals, and the resulting compositions, are also provided.

  8. Hepatitis viruses exploitation of host DNA methyltransferases functions.

    Science.gov (United States)

    Pazienza, Valerio; Panebianco, Concetta; Andriulli, Angelo

    2016-08-01

    Hepatitis B virus (HBV), hepatitis C virus (HCV) and Delta (HDV) infections are a global health burden. With different routes of infection and biology, HBV, HCV and HDV are capable to induce liver cirrhosis and cancer by impinging on epigenetic mechanisms altering host cell's pathways. In the present manuscript, we reviewed the published studies taking into account the relationship between the hepatitis viruses and the DNA methyltransferases proteins.

  9. Crystal Structure of the Lysine Riboswitch Regulatory mRNA Element

    Energy Technology Data Exchange (ETDEWEB)

    Garst, A.; Heroux, A; Rambo, R; Batey, R

    2008-01-01

    Riboswitches are metabolite-sensitive elements found in mRNAs that control gene expression through a regulatory secondary structural switch. Along with regulation of lysine biosynthetic genes, mutations within the lysine-responsive riboswitch (L-box) play a role in the acquisition of resistance to antimicrobial lysine analogs. To understand the structural basis for lysine binding, we have determined the 2.8{angstrom} resolution crystal structure of lysine bound to the Thermotoga maritima asd lysine riboswitch ligand-binding domain. The structure reveals a complex architecture scaffolding a binding pocket completely enveloping lysine. Mutations conferring antimicrobial resistance cluster around this site as well as highly conserved long range interactions, indicating that they disrupt lysine binding or proper folding of the RNA. Comparison of the free and bound forms by x-ray crystallography, small angle x-ray scattering, and chemical probing reveals almost identical structures, indicating that lysine induces only limited and local conformational changes upon binding.

  10. Transfer RNA Methyltransferases from Thermoplasma acidophilum, a Thermoacidophilic Archaeon

    Directory of Open Access Journals (Sweden)

    Takuya Kawamura

    2014-12-01

    Full Text Available We investigated tRNA methyltransferase activities in crude cell extracts from the thermoacidophilic archaeon Thermoplasma acidophilum. We analyzed the modified nucleosides in native initiator and elongator tRNAMet, predicted the candidate genes for the tRNA methyltransferases on the basis of the tRNAMet and tRNALeu sequences, and characterized Trm5, Trm1 and Trm56 by purifying recombinant proteins. We found that the Ta0997, Ta0931, and Ta0836 genes of T. acidophilum encode Trm1, Trm56 and Trm5, respectively. Initiator tRNAMet from T. acidophilum strain HO-62 contained G+, m1I, and m22G, which were not reported previously in this tRNA, and the m2G26 and m22G26 were formed by Trm1. In the case of elongator tRNAMet, our analysis showed that the previously unidentified G modification at position 26 was a mixture of m2G and m22G, and that they were also generated by Trm1. Furthermore, purified Trm1 and Trm56 could methylate the precursor of elongator tRNAMet, which has an intron at the canonical position. However, the speed of methyl-transfer by Trm56 to the precursor RNA was considerably slower than that to the mature transcript, which suggests that Trm56 acts mainly on the transcript after the intron has been removed. Moreover, cellular arrangements of the tRNA methyltransferases in T. acidophilum are discussed.

  11. Structural characterization of the mitomycin 7-O-methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shanteri; Chang, Aram; Goff, Randal D.; Bingman, Craig A.; Grüschow, Sabine; Sherman, David H.; Phillips, Jr., George N.; Thorson, Jon S. (Michigan); (UW)

    2014-10-02

    Mitomycins are quinone-containing antibiotics, widely used as antitumor drugs in chemotherapy. Mitomycin-7-O-methyltransferase (MmcR), a key tailoring enzyme involved in the biosynthesis of mitomycin in Streptomyces lavendulae, catalyzes the 7-O-methylation of both C9{beta}- and C9{alpha}-configured 7-hydroxymitomycins. We have determined the crystal structures of the MmcR-S-adenosylhomocysteine (SAH) binary complex and MmcR-SAH-mitomycin A (MMA) ternary complex at resolutions of 1.9 and 2.3 {angstrom}, respectively. The study revealed MmcR to adopt a common S-adenosyl-L-methionine-dependent O-methyltransferase fold and the presence of a structurally conserved active site general acid-base pair is consistent with a proton-assisted methyltransfer common to most methyltransferases. Given the importance of C7 alkylation to modulate mitomycin redox potential, this study may also present a template toward the future engineering of catalysts to generate uniquely bioactive mitomycins.

  12. Effects of lysine-induced acute renal failure in dogs.

    Science.gov (United States)

    Asanuma, Kentaro; Adachi, Kenji; Sugimoto, Tetsuro; Chiba, Shuichi

    2006-05-01

    This study investigates the effects of lysine-induced acute renal failure. Female dogs received a lysine hydrochloride (lysine) of 4500 mg/kg/day (3.75 ml/kg/hr) for 3 consecutive days. The dogs were observed for clinical signs. Body weights were recorded, food consumption and water consumption calculated, and urinalysis and blood biochemistry were performed daily. Plasma samples for amino acid determinations were obtained from all dogs, which were necropsied on Day 3. Histopathological examinations were done on all test animals. Compound-related findings include the following. Blood biochemistry results showed increases in ammonia, blood urea nitrogen, blood urea nitrogen/creatinine ratio, and creatinine. Urinary changes consisted of increases in urine volume, total protein, albumin, gamma-glutamyl transpeptidase, and N-acetyl-beta-D-glucosaminidase. In addition, macroscopic findings consisted of pale, congested capsule; microscopic findings consisted of hypertrophy of proximal convoluted tubule (mainly S1 segment), and degeneration/desquamation of urinary tubule (mainly S3 segment with hyaline casts) in the kidney. From these findings, it can be concluded that lysine is nephrotoxic in dogs. Nephrotoxicity of lysine may relate to direct tubular toxicity and to tubular obstruction.

  13. Antioxidant activity of carbocysteine lysine salt monohydrate.

    Science.gov (United States)

    Pinamonti, S; Venturoli, L; Leis, M; Chicca, M; Barbieri, A; Sostero, S; Ravenna, F; Daffonchio, L; Novellini, R; Ciaccia, A

    2001-09-01

    Reactive oxygen radicals are involved in many respiratory diseases, including chronic obstructive pulmonary disease (COPD). Carbocysteine lysine salt monohydrate (CLS) is a mucoactive drug effective in the treatment of bronchopulmonary diseases characterized by mucus alterations, including COPD. In the present study, the antioxidant activity of CLS was studied in vitro in three different oxygen radical producing systems, i.e. bronchoalveolar lavages (BAL) from patients affected by COPD, ultrasound treated human serum and cultured human lung endothelial cells challenged with elastase. BAL, exposed or not to different concentrations of CLS (1.5-30 mM), was assayed for free radical content by fluorometric analysis of DNA unwinding (FADU) or by cytochrome c reduction kinetics. Human serum was treated with ultrasound in the presence or absence of CLS (1.5, 2.5 mM) or N-acetyl cysteine (NAC; 4, 5 mM) and assayed for free radical content by FADU. Human endothelial cells cultured in vitro from pulmonary artery were incubated with elastase (0.3 IU/mL), in the presence or absence of glutathione (GSH; 0.65 mM) or CLS (0.16 mM). The supernatant was tested for cytochrome c reduction kinetics whereas cell homogenates were assessed for xanthine oxidase (XO) content by SDS-PAGE. Results showed that CLS is more effective as an in vitro scavenger in comparison to GSH and NAC. CLS reduced the damage of DNA from healthy donors exposed to COPD-BAL and was able to quench clastogenic activity induced in human serum by exposure to ultrasound at concentrations as low as 2.5 mM. NAC protect DNA from radical damage, starting from 5 mM. In human lung endothelial cells cultured in presence of elastase, CLS (0.16 mM) decreased xanthine oxidase activity. These results suggest that CLS could act by interfering with the conversion of xanthine dehydrogenase into superoxide-producing xanthine oxidase. The antioxidant activity of CLS could contribute to its therapeutic activity by reducing radical

  14. Oligo-lysine Induced Formation of Silica Particles in Neutral Silicate Solution

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Oligo-(lysine)n (n = 1-4) containing different numbers of lysine residues was used to induce the condensation of silicic acid to form silica particles in neutral silicate solution. It was found that the condensation rate and the formation of silica particles are dependent on the number of lysine residues in an oligo-lysine. Oligo-lysine with more lysine residues can link more silicic acid together to form a matrix that promotes the effective aggregation of the condensed silica pieces to form large silica particles.

  15. Seed-Specific Expression of a Lysine-Rich Protein Gene, GhLRP, from Cotton Significantly Increases the Lysine Content in Maize Seeds

    Directory of Open Access Journals (Sweden)

    Jing Yue

    2014-03-01

    Full Text Available Maize seed storage proteins are a major source of human and livestock consumption. However, these proteins have poor nutritional value, because they are deficient in lysine and tryptophan. Much research has been done to elevate the lysine content by reducing zein content or regulating the activities of key enzymes in lysine metabolism. Using the naturally lysine-rich protein genes, sb401 and SBgLR, from potato, we previously increased the lysine and protein contents of maize seeds. Here, we examined another natural lysine-rich protein gene, GhLRP, from cotton, which increased the lysine content of transgenic maize seeds at levels varying from 16.2% to 65.0% relative to the wild-type. The total protein content was not distinctly different, except in the six transgenic lines. The lipid and starch levels did not differ substantially in Gossypium hirsutum L. lysine-rich protein (GhLRP transgenic kernels when compared to wild-type. The agronomic characteristics of all the transgenic maize were also normal. GhLRP is a high-lysine protein candidate gene for increasing the lysine content of maize. This study provided a valuable model system for improving maize lysine content.

  16. Seed-specific expression of a lysine-rich protein gene, GhLRP, from cotton significantly increases the lysine content in maize seeds.

    Science.gov (United States)

    Yue, Jing; Li, Cong; Zhao, Qian; Zhu, Dengyun; Yu, Jingjuan

    2014-03-27

    Maize seed storage proteins are a major source of human and livestock consumption. However, these proteins have poor nutritional value, because they are deficient in lysine and tryptophan. Much research has been done to elevate the lysine content by reducing zein content or regulating the activities of key enzymes in lysine metabolism. Using the naturally lysine-rich protein genes, sb401 and SBgLR, from potato, we previously increased the lysine and protein contents of maize seeds. Here, we examined another natural lysine-rich protein gene, GhLRP, from cotton, which increased the lysine content of transgenic maize seeds at levels varying from 16.2% to 65.0% relative to the wild-type. The total protein content was not distinctly different, except in the six transgenic lines. The lipid and starch levels did not differ substantially in Gossypium hirsutum L. lysine-rich protein (GhLRP) transgenic kernels when compared to wild-type. The agronomic characteristics of all the transgenic maize were also normal. GhLRP is a high-lysine protein candidate gene for increasing the lysine content of maize. This study provided a valuable model system for improving maize lysine content.

  17. Lysine-iron agar in the detection of Arizona cultures.

    Science.gov (United States)

    EDWARDS, P R; FIFE, M A

    1961-11-01

    A lysine-iron agar is described and recommended for the detection of Arizona strains which ferment lactose rapidly. Black colonies which appear on bismuth sulfite agar should be transferred to the medium. Salmonellae and Arizona cultures produce a distinctive reaction since they are the only recognized groups of enteric bacteria which regularly produce lysine decarboxylase rapidly and form large amounts of hydrogen sulfide. Use of the medium is particularly recommended in the examination of specimens from enteric infections in which shigellae and salmonellae are not detected.

  18. Sugar Substrates for l-Lysine Fermentation by Ustilago maydis

    Science.gov (United States)

    Sánchez-Marroquín, A.; Ledezma, M.; Carreño, R.

    1970-01-01

    The extracellular production of l-lysine in media with cane sugar, blackstrap molasses, or clarified sugar-cane juice by a previously obtained mutant of Ustilago maydis was studied. Enzymatically inverted clarified juice (medium J-3) gave 2.9 g of lysine per liter under the following conditions: inoculum, 5%; pH 5.8; temperature, 30 C; KLa in the fermentors, 0.41 mmoles of O2 per liter per min; fermentation time, 72 hr. The concentrate, obtained by direct evaporation and drying of the fermentation broth, could be used as a possible feed supplement because of its amino-acid and vitamin content. PMID:5485081

  19. Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions

    Directory of Open Access Journals (Sweden)

    Xiangjun Li

    2016-01-01

    Full Text Available Diabetic nephropathy (DN, a common complication associated with type 1 and type 2 diabetes mellitus (DM, characterized by glomerular mesangial expansion, inflammation, accumulation of extracellular matrix (ECM protein, and hypertrophy, is the major cause of end-stage renal disease (ESRD. Increasing evidence suggested that p21-dependent glomerular and mesangial cell (MC hypertrophy play key roles in the pathogenesis of DN. Recently, posttranscriptional modifications (PTMs have uncovered novel molecular mechanisms involved in DN. However, precise regulatory mechanism of histone lysine methylation (HKme mediating p21 related hypertrophy associated with DN is not clear. We evaluated the roles of HKme and histone methyltransferase (HMT SET7/9 in p21 gene expression in glomeruli of diabetic rats and in high glucose- (HG- treated rat mesangial cells (RMCs. p21 gene expression was upregulated in diabetic rats glomeruli; chromatin immunoprecipitation (ChIP assays showed decreased histone H3-lysine9-dimethylation (H3K9me2 accompanied with enhanced histone H3-lysine4-methylation (H3K4me1/3 and SET7/9 occupancies at the p21 promoter. HG-treated RMCs exhibited increased p21 mRNA, H3K4me level, SET7/9 recruitment, and inverse H3K9me, which were reversed by TGF-β1 antibody. These data uncovered key roles of H3Kme and SET7/9 responsible for p21 gene expression in vivo and in vitro under diabetic conditions and confirmed preventive effect of TGF-β1 antibody on DN.

  20. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    National Research Council Canada - National Science Library

    Lurling, M; Van Oosterhout, F

    2014-01-01

    We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43...

  1. Installation of site-specific methylation into histones using methyl lysine analogs.

    Science.gov (United States)

    Simon, Matthew D

    2010-04-01

    Chromatin structure is influenced by post-translational modifications on histones, the principal basic protein component of chromatin. In order to study one of these modifications, lysine methylation, in the context of reconstituted chromatin, this unit describes the installation of analogs of methyl lysine residues into recombinant histones. The modification site is specified by mutating the lysine of interest to cysteine. The mutant histones are expressed and purified, and the cysteine residue alkylated to produce N-methyl aminoethylcysteine, an isosteric analog of methyl lysine. Using different alkylating reagents, it is possible to install analogs of mono-, di-, or trimethyl lysine. While these analogs are not identical to methyl lysine residues, they show similar biochemical properties to their natural counterparts. The ease of synthesis of methyl lysine analog (MLA) histones, especially on a large scale, makes them particularly useful reagents for studying the effects of histone lysine methylation on chromatin structure, biophysics and biochemistry. (c) 2010 by John Wiley & Sons, Inc.

  2. YccW is the m5C methyltransferase specific for 23S rRNA nucleotide 1962

    DEFF Research Database (Denmark)

    Purta, Elzbieta; O'Connor, Michelle; Bujnicki, Janusz M

    2008-01-01

    . coli marginally reduces its growth rate. YccW had previously eluded identification because it displays only limited sequence similarity to the m(5)C methyltransferases RsmB and RsmF and is in fact more similar to known m(5)U (5-methyluridine) RNA methyltransferases. In keeping with the previously...... proposed nomenclature system for bacterial rRNA methyltransferases, yccW is now designated as the rRNA large subunit methyltransferase gene rlmI....

  3. Association of myasthenia gravis with polymorphisms in the gene of histamine N-methyltransferase

    DEFF Research Database (Denmark)

    Kellermayer, Blanka; Polgar, Noemi; Pal, Jozsef

    2013-01-01

    Histamine N-methyltransferase (HNMT) is the main metabolizing enzyme of histamine. Histamine modulates immune responses and plays a role in the pathogenesis of autoimmune disorders.......Histamine N-methyltransferase (HNMT) is the main metabolizing enzyme of histamine. Histamine modulates immune responses and plays a role in the pathogenesis of autoimmune disorders....

  4. Protein arginine N-methyltransferase 1 promotes the proliferation and metastasis of hepatocellular carcinoma cells.

    Science.gov (United States)

    Gou, Qing; He, ShuJiao; Zhou, ZeJian

    2017-02-01

    Hepatocellular carcinoma is the most common subtype of liver cancer. Protein arginine N-methyltransferase 1 was shown to be upregulated in various cancers. However, the role of protein arginine N-methyltransferase 1 in hepatocellular carcinoma progression remains incompletely understood. We investigated the clinical and functional significance of protein arginine N-methyltransferase 1 in a series of clinical hepatocellular carcinoma samples and a panel of hepatocellular carcinoma cell lines. We performed suppression analysis of protein arginine N-methyltransferase 1 using small interfering RNA to determine the biological roles of protein arginine N-methyltransferase 1 in hepatocellular carcinoma. In addition, the expression of epithelial-mesenchymal transition indicators was verified by western blotting in hepatocellular carcinoma cell lines after small interfering RNA treatment. Protein arginine N-methyltransferase 1 expression was found to be significantly upregulated in hepatocellular carcinoma cell lines and clinical tissues. Moreover, downregulation of protein arginine N-methyltransferase 1 in hepatocellular carcinoma cells by small interfering RNA could inhibit cell proliferation, migration, and invasion in vitro. These results indicate that protein arginine N-methyltransferase 1 may contribute to hepatocellular carcinoma progression and serves as a promising target for the treatment of hepatocellular carcinoma patients.

  5. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin

    Science.gov (United States)

    Chahine, Sarah; Okafor, Darius; Ong, Ana C.; Maybank, Rosslyn; Kwak, Yoon I.; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2015-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test. PMID:26537447

  6. Negative in vitro selection identifies the rRNA recognition motif for ErmE methyltransferase

    DEFF Research Database (Denmark)

    Nielsen, A K; Douthwaite, S; Vester, B

    1999-01-01

    Erm methyltransferases modify bacterial 23S ribosomal RNA at adenosine 2058 (A2058, Escherichia coli numbering) conferring resistance to macrolide, lincosamide, and streptogramin B (MLS) antibiotics. The motif that is recognized by Erm methyltransferases is contained within helix 73 of 23S rRNA a...

  7. Coordinate regulation of DNA methyltransferase expression during oogenesis

    Directory of Open Access Journals (Sweden)

    Bestor Timothy H

    2007-04-01

    Full Text Available Abstract Background Normal mammalian development requires the action of DNA methyltransferases (DNMTs for the establishment and maintenance of DNA methylation within repeat elements and imprinted genes. Here we report the expression dynamics of Dnmt3a and Dnmt3b, as well as a regulator of DNA methylation, Dnmt3L, in isolated female germ cells. Results Our results indicate that these enzymes are coordinately regulated and that their expression peaks during the stage of postnatal oocyte development when maternal methylation imprints are established. We find that Dnmt3a, Dnmt3b, Dnmt3L and Dnmt1o transcript accumulation is related to oocyte diameter. Furthermore, DNMT3L deficient 15 dpp oocytes have aberrantly methylated Snrpn, Peg3 and Igf2r DMRs, but normal IAP and LINE-1 methylation levels, thereby highlighting a male germ cell specific role for DNMT3L in the establishment of DNA methylation at repeat elements. Finally, real-time RT-PCR analysis indicates that the depletion of either DNMT3L or DNMT1o in growing oocytes results in the increased expression of the de novo methyltransferase Dnmt3b, suggesting a potential compensation mechanism by this enzyme for the loss of one of the other DNA methyltransferases. Conclusion Together these results provide a better understanding of the developmental regulation of Dnmt3a, Dnmt3b and Dnmt3L at the time of de novo methylation during oogenesis and demonstrate that the involvement of DNMT3L in retrotransposon silencing is restricted to the male germ line. This in turn suggests the existence of other factors in the oocyte that direct DNA methylation to transposons.

  8. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nan [ORNL; Ferrer, Jean-Luc [Universite Joseph Fourier, France; Moon, Hong S [Department of Plant Sciences, University of Tennessee; Kapteyn, Jeremy [Institute of Biological Chemistry, Washington State University; Zhuang, Xiaofeng [Department of Plant Sciences, University of Tennessee; Hasebe, Mitsuyasu [Laboratory of Evolutionary Biology, National Institute for Biology, 38 Nishigounaka; Stewart, Neal C. [Department of Plant Sciences, University of Tennessee; Gang, David R. [Institute of Biological Chemistry, Washington State University; Chen, Feng [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested for methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5 lM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.

  9. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial

    Directory of Open Access Journals (Sweden)

    María F. Villegas

    2017-09-01

    Full Text Available This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR studies of lysine-grafted MCM-41 (MCM-LYS simultaneously showed bands at 3080 and 1540 cm−1 and bands at 1625 and 1415 cm−1 corresponding to -NH3+/COO− pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%. This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.

  10. The structural feature surrounding glycated lysine residues in human hemoglobin.

    Science.gov (United States)

    Ito, Shigenori; Nakahari, Takashi; Yamamoto, Daisuke

    2011-06-01

    Complications derived from diabetes mellitus are caused by nonenzymatic protein glycation at the specific sites. LC/MS/MS was performed for the identification of the tryptic peptides of glycated hemoglobins using glyceraldehyde. After the identification of the glycation or non-glycation site, computer analysis of the structure surrounding the sites was carried out using PDB data (1BZ0). Five glycated lysine residues (Lys-16(α), -56(α), -8(β), -82(β), and -144(β)) and four non-glycated lysine residues (Lys-7(α), -40(α), -99(α), and -132(β)) were identified. The non-glycated lysine residues, Lys-7(α), -40(α), and -132(β), are most likely to form electrostatic interactions with the β carboxyl group of Asp-74(α), C-terminal His-146(β), and Glu-7(β) by virtue of their proximity, which is 2.67-2.91 Å (N-O). Additionally, there are histidine residues within 4.55-7.38 Å (N-N) around eight sites except for Lys-7(α). We conclude that the following factors seem to be necessary for glycation of lysine residues: (i) the apparent absence of aspartate or glutamate residues to inhibit the glycation reaction by forming an electrostatic interaction, (ii) the presence of histidine residues for acid-base catalysis of the Amadori rearrangement, and (iii) the presence of an amino acid residue capable of stabilizing a phosphate during proton transfer.

  11. [Modification of the lysine-iron agar (author's transl)].

    Science.gov (United States)

    Wauters, G

    1975-12-01

    The addition of L-phenylalanine to the lysine-iron agar described by Edwards and Fife ]1] allows a more valuable screening of the Proteus group based on its deamination properties. Some minor modifications of the indicator and thiosulfate content lead to improve and earlier recording of the results.

  12. Detection of salt bridges to lysines in solution in barnase

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Williamson, Michael P.; Hounslow, Andrea M.

    2013-01-01

    We show that salt bridges involving lysines can be detected by deuterium isotope effects on NMR chemical shifts of the sidechain amine. Lys27 in the ribonuclease barnase is salt bridged, and mutation of Arg69 to Lys retains a partially buried salt bridge. The salt bridges are functionally important....

  13. Requirement of the laying hen for apparent fecal digestible lysine

    NARCIS (Netherlands)

    Schutte, J.B.; Smink, W.

    1998-01-01

    A study was conducted to determine the requirement for lysine of a White Leghorn strain of hens with a body weight of approximately 1,600 g. Before starting the experiment, apparent fecal digestibility of amino acids of the basal diet was determined in an in vivo digestibility trial with six individ

  14. Predicting post-translational lysine acetylation using support vector machines

    DEFF Research Database (Denmark)

    Gnad, Florian; Ren, Shubin; Choudhary, Chunaram

    2010-01-01

    spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering most of the previously annotated sites and providing the most comprehensive acetylome so far. This dataset should provide an excellent source to train support vector machines (SVMs) allowing the high accuracy in silico...

  15. effects of dietary chromium tripicolinate and lysine on growth ...

    African Journals Online (AJOL)

    AISA

    Six traitements ont été répétés quatre fois, avec quatre porcs par répétition. Au cours de cette ... The potential capability of lysine to improve ... (chromium picolinate) on animal productivity has ... cholesterol (Sigma, 1989a), and total proteins.

  16. Amino acid nutrition beyond methionine and lysine for milk protein

    Science.gov (United States)

    Amino acids are involved in many important physiological processes affecting the production, health, and reproduction of high-producing dairy cows. Most research and recommendations for lactating dairy cows has focused on methionine and lysine for increasing milk protein yield. This is because these...

  17. File list: Oth.Gon.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Gonad SRX1060...566,SRX1060567,SRX1060557 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.50.Crotonyl_lysine.AllCell.bed ...

  18. File list: His.Bon.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Bo...ne http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bon.50.Pan_lysine_crotonylation.AllCell.bed ...

  19. File list: His.Bld.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Bl...ood http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.05.Pan_lysine_crotonylation.AllCell.bed ...

  20. File list: His.Utr.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ut...erus http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Utr.05.Pan_lysine_crotonylation.AllCell.bed ...

  1. File list: His.Emb.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Em...bryo http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.50.Pan_lysine_crotonylation.AllCell.bed ...

  2. File list: His.PSC.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pl...uripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.50.Pan_lysine_crotonylation.AllCell.bed ...

  3. File list: His.ALL.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Al...l cell types SRX099897,SRX099894 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.ALL.10.Pan_lysine_crotonylation.AllCell.bed ...

  4. File list: His.Epd.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation E...pidermis http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Epd.50.Pan_lysine_crotonylation.AllCell.bed ...

  5. File list: His.Plc.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...lacenta http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Plc.50.Pan_lysine_crotonylation.AllCell.bed ...

  6. File list: His.Bon.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Bo...ne http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bon.20.Pan_lysine_crotonylation.AllCell.bed ...

  7. File list: His.Neu.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation N...eural http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.50.Pan_lysine_crotonylation.AllCell.bed ...

  8. File list: His.Bld.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Bl...ood http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.10.Pan_lysine_crotonylation.AllCell.bed ...

  9. File list: His.CDV.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ca...rdiovascular http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.50.Pan_lysine_crotonylation.AllCell.bed ...

  10. File list: His.Oth.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ot...hers http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.10.Pan_lysine_crotonylation.AllCell.bed ...

  11. File list: His.Adp.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation A...dipocyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.Pan_lysine_crotonylation.AllCell.bed ...

  12. File list: His.Dig.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation D...igestive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.05.Pan_lysine_crotonylation.AllCell.bed ...

  13. File list: His.Gon.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation G...onad http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Gon.05.Pan_lysine_crotonylation.AllCell.bed ...

  14. File list: His.Dig.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Di...gestive tract http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Dig.20.Pan_lysine_crotonylation.AllCell.bed ...

  15. File list: Oth.Dig.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Digestive tra...ct http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Dig.50.Crotonyl_lysine.AllCell.bed ...

  16. File list: His.Liv.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Li...ver http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Liv.10.Pan_lysine_crotonylation.AllCell.bed ...

  17. File list: His.Kid.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Kid.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation K...idney http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Kid.20.Pan_lysine_crotonylation.AllCell.bed ...

  18. File list: His.Pan.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...ancreas http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.50.Pan_lysine_crotonylation.AllCell.bed ...

  19. File list: His.Unc.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Un...classified http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Unc.50.Pan_lysine_crotonylation.AllCell.bed ...

  20. File list: His.Kid.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Kid.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ki...dney http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Kid.50.Pan_lysine_crotonylation.AllCell.bed ...

  1. File list: His.Lng.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation L...ung SRX099891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.05.Pan_lysine_crotonylation.AllCell.bed ...

  2. File list: His.Liv.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation L...iver http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.20.Pan_lysine_crotonylation.AllCell.bed ...

  3. File list: His.PSC.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...luripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.50.Pan_lysine_crotonylation.AllCell.bed ...

  4. File list: His.CDV.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ca...rdiovascular http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.05.Pan_lysine_crotonylation.AllCell.bed ...

  5. File list: His.Lng.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Lu...ng http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Lng.20.Pan_lysine_crotonylation.AllCell.bed ...

  6. File list: His.ALL.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation A...ll cell types SRX099891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.ALL.10.Pan_lysine_crotonylation.AllCell.bed ...

  7. File list: His.Neu.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ne...ural http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.Pan_lysine_crotonylation.AllCell.bed ...

  8. File list: His.Bld.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Bl...ood http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.20.Pan_lysine_crotonylation.AllCell.bed ...

  9. File list: His.Liv.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Li...ver http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Liv.20.Pan_lysine_crotonylation.AllCell.bed ...

  10. File list: His.Utr.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ut...erus http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Utr.20.Pan_lysine_crotonylation.AllCell.bed ...

  11. File list: Oth.Gon.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Gonad SRX1060...566,SRX1060567,SRX1060557 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.20.Crotonyl_lysine.AllCell.bed ...

  12. File list: His.Myo.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation M...uscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Myo.50.Pan_lysine_crotonylation.AllCell.bed ...

  13. File list: His.Plc.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...lacenta http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Plc.05.Pan_lysine_crotonylation.AllCell.bed ...

  14. File list: His.Unc.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation U...nclassified http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Unc.20.Pan_lysine_crotonylation.AllCell.bed ...

  15. File list: His.Brs.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Br...east http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.05.Pan_lysine_crotonylation.AllCell.bed ...

  16. File list: Oth.NoD.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine No descriptio...n http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.NoD.50.Crotonyl_lysine.AllCell.bed ...

  17. File list: His.Pan.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pa...ncreas http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.20.Pan_lysine_crotonylation.AllCell.bed ...

  18. File list: His.Liv.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation L...iver http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.05.Pan_lysine_crotonylation.AllCell.bed ...

  19. File list: His.Brs.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...reast http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.20.Pan_lysine_crotonylation.AllCell.bed ...

  20. File list: His.Gon.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation G...onad http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Gon.20.Pan_lysine_crotonylation.AllCell.bed ...

  1. File list: Oth.Adp.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Adipocyte htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.Crotonyl_lysine.AllCell.bed ...

  2. File list: His.ALL.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Al...l cell types SRX099894,SRX099897 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.ALL.20.Pan_lysine_crotonylation.AllCell.bed ...

  3. File list: His.Bon.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...one http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bon.10.Pan_lysine_crotonylation.AllCell.bed ...

  4. File list: His.Myo.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Mu...scle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.50.Pan_lysine_crotonylation.AllCell.bed ...

  5. File list: His.Bld.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...lood http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.10.Pan_lysine_crotonylation.AllCell.bed ...

  6. File list: His.Liv.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Li...ver http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Liv.05.Pan_lysine_crotonylation.AllCell.bed ...

  7. File list: His.Epd.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ep...idermis http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Epd.20.Pan_lysine_crotonylation.AllCell.bed ...

  8. File list: His.Kid.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Kid.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation K...idney http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Kid.50.Pan_lysine_crotonylation.AllCell.bed ...

  9. File list: His.Lng.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Lu...ng http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Lng.50.Pan_lysine_crotonylation.AllCell.bed ...

  10. File list: His.Lng.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation L...ung SRX099891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.10.Pan_lysine_crotonylation.AllCell.bed ...

  11. File list: His.PSC.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...luripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.10.Pan_lysine_crotonylation.AllCell.bed ...

  12. File list: His.Emb.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Em...bryo http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.10.Pan_lysine_crotonylation.AllCell.bed ...

  13. File list: His.Kid.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Kid.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation K...idney http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Kid.05.Pan_lysine_crotonylation.AllCell.bed ...

  14. File list: His.Unc.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Un...classified http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Unc.20.Pan_lysine_crotonylation.AllCell.bed ...

  15. File list: His.Unc.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation U...nclassified http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Unc.50.Pan_lysine_crotonylation.AllCell.bed ...

  16. File list: His.Kid.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Kid.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ki...dney http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Kid.05.Pan_lysine_crotonylation.AllCell.bed ...

  17. File list: His.Pan.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...ancreas http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.05.Pan_lysine_crotonylation.AllCell.bed ...

  18. File list: His.Adp.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation A...dipocyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.Pan_lysine_crotonylation.AllCell.bed ...

  19. File list: His.Prs.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...rostate http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Prs.05.Pan_lysine_crotonylation.AllCell.bed ...

  20. File list: His.Utr.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation U...terus http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.50.Pan_lysine_crotonylation.AllCell.bed ...

  1. File list: His.Bld.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...lood http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.05.Pan_lysine_crotonylation.AllCell.bed ...

  2. File list: Oth.Dig.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Digestive tra...ct http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Dig.05.Crotonyl_lysine.AllCell.bed ...

  3. File list: His.Kid.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Kid.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation K...idney http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Kid.10.Pan_lysine_crotonylation.AllCell.bed ...

  4. File list: Oth.NoD.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine No descriptio...n http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.NoD.20.Crotonyl_lysine.AllCell.bed ...

  5. File list: Oth.EmF.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.EmF.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Embryonic fib...roblast http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.EmF.05.Crotonyl_lysine.AllCell.bed ...

  6. File list: His.CDV.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ca...rdiovascular http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.20.Pan_lysine_crotonylation.AllCell.bed ...

  7. File list: His.Pan.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pa...ncreas http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.10.Pan_lysine_crotonylation.AllCell.bed ...

  8. File list: His.PSC.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pl...uripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.20.Pan_lysine_crotonylation.AllCell.bed ...

  9. File list: His.Dig.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Di...gestive tract http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Dig.10.Pan_lysine_crotonylation.AllCell.bed ...

  10. File list: His.Brs.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...reast http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.10.Pan_lysine_crotonylation.AllCell.bed ...

  11. File list: His.Bld.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...lood http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.50.Pan_lysine_crotonylation.AllCell.bed ...

  12. File list: Oth.Dig.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Digestive tra...ct http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Dig.20.Crotonyl_lysine.AllCell.bed ...

  13. File list: His.Myo.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation M...uscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Myo.05.Pan_lysine_crotonylation.AllCell.bed ...

  14. File list: His.Adp.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ad...ipocyte http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.50.Pan_lysine_crotonylation.AllCell.bed ...

  15. File list: His.Emb.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Em...bryo http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.20.Pan_lysine_crotonylation.AllCell.bed ...

  16. File list: His.Oth.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation O...thers http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.20.Pan_lysine_crotonylation.AllCell.bed ...

  17. File list: His.Plc.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...lacenta http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Plc.20.Pan_lysine_crotonylation.AllCell.bed ...

  18. File list: His.Myo.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation M...uscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Myo.10.Pan_lysine_crotonylation.AllCell.bed ...

  19. File list: Oth.CDV.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Cardiovascula...r http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.20.Crotonyl_lysine.AllCell.bed ...

  20. File list: His.Bon.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...one http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bon.05.Pan_lysine_crotonylation.AllCell.bed ...

  1. File list: His.Dig.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.50.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Diges...tive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.50.Pan_lysine_acetylation.AllCell.bed ...

  2. File list: His.Pan.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Pancre...as http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.05.Pan_lysine_acetylation.AllCell.bed ...

  3. File list: His.Unc.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Uncla...ssified http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Unc.10.Pan_lysine_acetylation.AllCell.bed ...

  4. File list: His.Pan.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Pancr...eas http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.20.Pan_lysine_acetylation.AllCell.bed ...

  5. File list: His.Neu.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Neural... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.Pan_lysine_acetylation.AllCell.bed ...

  6. File list: His.Epd.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.05.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Epide...rmis http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Epd.05.Pan_lysine_acetylation.AllCell.bed ...

  7. File list: His.Brs.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Breast... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.20.Pan_lysine_acetylation.AllCell.bed ...

  8. File list: His.Dig.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.05.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Diges...tive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.05.Pan_lysine_acetylation.AllCell.bed ...

  9. File list: His.Prs.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Prosta...te http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Prs.20.Pan_lysine_acetylation.AllCell.bed ...

  10. File list: His.Liv.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Liver ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Liv.50.Pan_lysine_acetylation.AllCell.bed ...

  11. File list: His.Myo.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.20.Pan_lysine_acetylation.AllCell.bed ...

  12. File list: His.ALL.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation All ce...ll types SRX099893,SRX099896 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.ALL.10.Pan_lysine_acetylation.AllCell.bed ...

  13. File list: His.Emb.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Embryo... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.10.Pan_lysine_acetylation.AllCell.bed ...

  14. File list: His.Pan.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Pancr...eas http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.10.Pan_lysine_acetylation.AllCell.bed ...

  15. File list: His.Unc.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Unclas...sified http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Unc.05.Pan_lysine_acetylation.AllCell.bed ...

  16. File list: His.Adp.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Adipo...cyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.Pan_lysine_acetylation.AllCell.bed ...

  17. File list: His.Neu.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Neura...l http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.10.Pan_lysine_acetylation.AllCell.bed ...

  18. File list: His.Utr.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Uterus... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Utr.20.Pan_lysine_acetylation.AllCell.bed ...

  19. File list: His.ALL.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation All ce...ll types SRX099893,SRX099896 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.ALL.50.Pan_lysine_acetylation.AllCell.bed ...

  20. File list: His.Bld.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.10.Pan_lysine_acetylation.AllCell.bed ...

  1. File list: His.CDV.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Cardi...ovascular http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.20.Pan_lysine_acetylation.AllCell.bed ...

  2. File list: His.Bld.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Blood ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.20.Pan_lysine_acetylation.AllCell.bed ...

  3. File list: His.Bld.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Blood ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.50.Pan_lysine_acetylation.AllCell.bed ...

  4. File list: His.Dig.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Diges...tive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.20.Pan_lysine_acetylation.AllCell.bed ...

  5. File list: His.Oth.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Others... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.10.Pan_lysine_acetylation.AllCell.bed ...

  6. File list: His.Prs.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Prost...ate http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Prs.20.Pan_lysine_acetylation.AllCell.bed ...

  7. File list: His.Epd.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Epider...mis http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Epd.20.Pan_lysine_acetylation.AllCell.bed ...

  8. File list: His.Neu.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Neural... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.Pan_lysine_acetylation.AllCell.bed ...

  9. File list: His.Unc.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.05.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Uncla...ssified http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Unc.05.Pan_lysine_acetylation.AllCell.bed ...

  10. File list: His.Brs.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Breas...t http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.20.Pan_lysine_acetylation.AllCell.bed ...

  11. File list: His.Lng.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Lung h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Lng.20.Pan_lysine_acetylation.AllCell.bed ...

  12. File list: His.Kid.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Kid.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Kidney... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Kid.05.Pan_lysine_acetylation.AllCell.bed ...

  13. File list: His.Adp.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Adipo...cyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.Pan_lysine_acetylation.AllCell.bed ...

  14. File list: His.Oth.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Others... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.20.Pan_lysine_acetylation.AllCell.bed ...

  15. File list: His.Bon.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Bone h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bon.05.Pan_lysine_acetylation.AllCell.bed ...

  16. File list: His.Bld.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Blood ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.10.Pan_lysine_acetylation.AllCell.bed ...

  17. File list: His.Adp.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Adipo...cyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.Pan_lysine_acetylation.AllCell.bed ...

  18. File list: His.Adp.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Adipoc...yte http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.Pan_lysine_acetylation.AllCell.bed ...

  19. File list: His.CDV.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Cardio...vascular http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.50.Pan_lysine_acetylation.AllCell.bed ...

  20. File list: His.Neu.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Neural... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.Pan_lysine_acetylation.AllCell.bed ...

  1. File list: His.Lng.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Lung h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Lng.50.Pan_lysine_acetylation.AllCell.bed ...

  2. File list: His.PSC.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Plurip...otent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.10.Pan_lysine_acetylation.AllCell.bed ...

  3. File list: His.Plc.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Placen...ta http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Plc.20.Pan_lysine_acetylation.AllCell.bed ...

  4. File list: His.Oth.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Others... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.50.Pan_lysine_acetylation.AllCell.bed ...

  5. File list: His.Oth.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Others... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.05.Pan_lysine_acetylation.AllCell.bed ...

  6. File list: His.Lng.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Lung h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Lng.05.Pan_lysine_acetylation.AllCell.bed ...

  7. File list: His.Prs.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.50.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Prost...ate http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Prs.50.Pan_lysine_acetylation.AllCell.bed ...

  8. File list: His.Myo.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Muscl...e http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Myo.20.Pan_lysine_acetylation.AllCell.bed ...

  9. File list: His.Unc.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Unclas...sified http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Unc.50.Pan_lysine_acetylation.AllCell.bed ...

  10. File list: His.Epd.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Epide...rmis http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Epd.20.Pan_lysine_acetylation.AllCell.bed ...

  11. File list: His.Prs.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Prosta...te http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Prs.05.Pan_lysine_acetylation.AllCell.bed ...

  12. File list: His.Bld.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.05.Pan_lysine_acetylation.AllCell.bed ...

  13. File list: His.ALL.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation All ce...ll types SRX099893,SRX099896 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.ALL.05.Pan_lysine_acetylation.AllCell.bed ...

  14. File list: His.Neu.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Neura...l http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.20.Pan_lysine_acetylation.AllCell.bed ...

  15. File list: His.PSC.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Plurip...otent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.20.Pan_lysine_acetylation.AllCell.bed ...

  16. File list: His.Pan.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.05.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Pancr...eas http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.05.Pan_lysine_acetylation.AllCell.bed ...

  17. File list: His.ALL.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation All c...ell types SRX099890 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.ALL.20.Pan_lysine_acetylation.AllCell.bed ...

  18. File list: His.Liv.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Liver ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Liv.20.Pan_lysine_acetylation.AllCell.bed ...

  19. File list: His.Gon.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.50.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Gonad... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Gon.50.Pan_lysine_acetylation.AllCell.bed ...

  20. File list: His.ALL.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation All c...ell types SRX099890 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.ALL.10.Pan_lysine_acetylation.AllCell.bed ...

  1. File list: His.PSC.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Pluri...potent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.50.Pan_lysine_acetylation.AllCell.bed ...

  2. File list: His.Prs.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Prosta...te http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Prs.50.Pan_lysine_acetylation.AllCell.bed ...

  3. File list: His.CDV.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.05.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Cardi...ovascular http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.05.Pan_lysine_acetylation.AllCell.bed ...

  4. File list: His.Gon.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Gonad ...SRX099893,SRX099896 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.10.Pan_lysine_acetylation.AllCell.bed ...

  5. File list: His.Bon.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Bone ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bon.20.Pan_lysine_acetylation.AllCell.bed ...

  6. File list: His.Dig.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Digest...ive tract http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Dig.10.Pan_lysine_acetylation.AllCell.bed ...

  7. File list: His.Bld.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.20.Pan_lysine_acetylation.AllCell.bed ...

  8. File list: His.Unc.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.50.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Uncla...ssified http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Unc.50.Pan_lysine_acetylation.AllCell.bed ...

  9. File list: His.Utr.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.05.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Uteru...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.05.Pan_lysine_acetylation.AllCell.bed ...

  10. File list: His.Liv.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Liver ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Liv.05.Pan_lysine_acetylation.AllCell.bed ...

  11. File list: His.Lng.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Lung h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Lng.10.Pan_lysine_acetylation.AllCell.bed ...

  12. File list: His.Liv.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Liver ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Liv.10.Pan_lysine_acetylation.AllCell.bed ...

  13. File list: His.Bld.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Blood ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.05.Pan_lysine_acetylation.AllCell.bed ...

  14. File list: His.Epd.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Epider...mis http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Epd.10.Pan_lysine_acetylation.AllCell.bed ...

  15. File list: His.Pan.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.50.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Pancr...eas http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.50.Pan_lysine_acetylation.AllCell.bed ...

  16. File list: His.PSC.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Plurip...otent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.50.Pan_lysine_acetylation.AllCell.bed ...

  17. File list: His.Plc.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Placen...ta http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Plc.10.Pan_lysine_acetylation.AllCell.bed ...

  18. File list: His.Plc.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Place...nta http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Plc.10.Pan_lysine_acetylation.AllCell.bed ...

  19. File list: His.Prs.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Prost...ate http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Prs.10.Pan_lysine_acetylation.AllCell.bed ...

  20. File list: His.Bon.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Bone h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bon.50.Pan_lysine_acetylation.AllCell.bed ...

  1. File list: His.Lng.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Lung ...SRX099890 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.20.Pan_lysine_acetylation.AllCell.bed ...

  2. File list: His.Unc.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Unclas...sified http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Unc.10.Pan_lysine_acetylation.AllCell.bed ...

  3. File list: His.Utr.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Uteru...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.10.Pan_lysine_acetylation.AllCell.bed ...

  4. File list: His.Adp.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Adipoc...yte http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.20.Pan_lysine_acetylation.AllCell.bed ...

  5. File list: His.Gon.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Gonad ...SRX099893,SRX099896 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.50.Pan_lysine_acetylation.AllCell.bed ...

  6. File list: His.Dig.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Digest...ive tract http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Dig.05.Pan_lysine_acetylation.AllCell.bed ...

  7. File list: His.Dig.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Diges...tive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.10.Pan_lysine_acetylation.AllCell.bed ...

  8. File list: His.Brs.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Breast... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.10.Pan_lysine_acetylation.AllCell.bed ...

  9. File list: His.Myo.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.10.Pan_lysine_acetylation.AllCell.bed ...

  10. File list: His.CDV.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Cardio...vascular http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.10.Pan_lysine_acetylation.AllCell.bed ...

  11. File list: His.Bon.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Bone h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bon.20.Pan_lysine_acetylation.AllCell.bed ...

  12. File list: His.Epd.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Epider...mis http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Epd.05.Pan_lysine_acetylation.AllCell.bed ...

  13. File list: His.Oth.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Other...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.10.Pan_lysine_acetylation.AllCell.bed ...

  14. File list: Oth.Adp.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Adipocyte htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.Crotonyl_lysine.AllCell.bed ...

  15. File list: Oth.NoD.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine No descriptio...n http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.NoD.05.Crotonyl_lysine.AllCell.bed ...

  16. File list: Oth.PSC.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pluripotent s...tem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.50.Crotonyl_lysine.AllCell.bed ...

  17. File list: Oth.PSC.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pluripotent s...tem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.10.Crotonyl_lysine.AllCell.bed ...

  18. File list: His.Myo.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Mu...scle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.05.Pan_lysine_crotonylation.AllCell.bed ...

  19. File list: His.Prs.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pr...ostate http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Prs.50.Pan_lysine_crotonylation.AllCell.bed ...

  20. File list: His.ALL.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation A...ll cell types SRX099891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.ALL.20.Pan_lysine_crotonylation.AllCell.bed ...

  1. File list: His.Gon.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Go...nad SRX099894,SRX099897 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.20.Pan_lysine_crotonylation.AllCell.bed ...

  2. File list: His.Oth.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation O...thers http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.10.Pan_lysine_crotonylation.AllCell.bed ...

  3. File list: Oth.EmF.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.EmF.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Embryonic fib...roblast http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.EmF.20.Crotonyl_lysine.AllCell.bed ...

  4. File list: His.PSC.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...luripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.05.Pan_lysine_crotonylation.AllCell.bed ...

  5. File list: His.Lng.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Lu...ng http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Lng.10.Pan_lysine_crotonylation.AllCell.bed ...

  6. File list: His.Emb.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Em...bryo http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.05.Pan_lysine_crotonylation.AllCell.bed ...

  7. File list: Oth.CDV.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Cardiovascula...r http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.05.Crotonyl_lysine.AllCell.bed ...

  8. File list: His.Epd.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ep...idermis http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Epd.10.Pan_lysine_crotonylation.AllCell.bed ...

  9. File list: His.Bon.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Bo...ne http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bon.10.Pan_lysine_crotonylation.AllCell.bed ...

  10. File list: His.Bld.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...lood http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.20.Pan_lysine_crotonylation.AllCell.bed ...

  11. File list: His.Spl.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Spl.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Sp...leen http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Spl.20.Pan_lysine_crotonylation.AllCell.bed ...

  12. File list: His.Liv.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Li...ver http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Liv.50.Pan_lysine_crotonylation.AllCell.bed ...

  13. File list: His.Pan.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pa...ncreas http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.05.Pan_lysine_crotonylation.AllCell.bed ...

  14. File list: His.Unc.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Un...classified http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Unc.05.Pan_lysine_crotonylation.AllCell.bed ...

  15. Optimization of lysine production in Corynebacteriumglutamicum ATCC15032 by Response surface methodology

    Directory of Open Access Journals (Sweden)

    Mehrnaz Haghi

    2017-03-01

    Discussion and conclusion: According to the results, the proposed culture media by response surface methodology causes 1400 times increase in the lysine production compared with M9 culture media and methionine had an important role in the production of lysine, probably by inhibiting the other metabolic pathway which has common metabolic precursor with lysine production metabolic pathway.

  16. File list: Oth.Gon.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Gonad SRX1060...567,SRX1060566,SRX1060557 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.10.Crotonyl_lysine.AllCell.bed ...

  17. File list: Oth.Adp.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Adipocyte htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.10.Crotonyl_lysine.AllCell.bed ...

  18. File list: Oth.ALL.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine All cell type...s SRX1060566,SRX1060567,SRX1060557 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.20.Crotonyl_lysine.AllCell.bed ...

  19. File list: Oth.Epd.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Epd.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Epidermis htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Epd.20.Crotonyl_lysine.AllCell.bed ...

  20. File list: Oth.Epd.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Epd.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Epidermis htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Epd.50.Crotonyl_lysine.AllCell.bed ...

  1. File list: Oth.ALL.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine All cell type...s SRX1060567,SRX1060566,SRX1060557 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.10.Crotonyl_lysine.AllCell.bed ...

  2. File list: Oth.Adp.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Adipocyte htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.05.Crotonyl_lysine.AllCell.bed ...

  3. File list: Oth.Dig.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Digestive tra...ct http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Dig.10.Crotonyl_lysine.AllCell.bed ...

  4. File list: Oth.EmF.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.EmF.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Embryonic fib...roblast http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.EmF.50.Crotonyl_lysine.AllCell.bed ...

  5. File list: Oth.CDV.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Cardiovascula...r http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.50.Crotonyl_lysine.AllCell.bed ...

  6. File list: Oth.Gon.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Gonad SRX1060...566,SRX1060567,SRX1060557 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.05.Crotonyl_lysine.AllCell.bed ...

  7. File list: Oth.NoD.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine No descriptio...n http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.NoD.10.Crotonyl_lysine.AllCell.bed ...

  8. File list: Oth.PSC.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pluripotent s...tem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.05.Crotonyl_lysine.AllCell.bed ...

  9. File list: Oth.Epd.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Epd.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Epidermis htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Epd.10.Crotonyl_lysine.AllCell.bed ...

  10. File list: Oth.ALL.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine All cell type...s SRX1060566,SRX1060567,SRX1060557 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.05.Crotonyl_lysine.AllCell.bed ...

  11. File list: Oth.PSC.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pluripotent s...tem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.20.Crotonyl_lysine.AllCell.bed ...

  12. File list: Oth.Epd.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Epd.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Epidermis htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Epd.05.Crotonyl_lysine.AllCell.bed ...

  13. File list: His.Oth.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation O...thers http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.50.Pan_lysine_crotonylation.AllCell.bed ...

  14. File list: His.Bon.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...one http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bon.20.Pan_lysine_crotonylation.AllCell.bed ...

  15. File list: His.Plc.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pl...acenta http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Plc.10.Pan_lysine_crotonylation.AllCell.bed ...

  16. File list: His.Prs.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pr...ostate http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Prs.20.Pan_lysine_crotonylation.AllCell.bed ...

  17. File list: His.Epd.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ep...idermis http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Epd.05.Pan_lysine_crotonylation.AllCell.bed ...

  18. File list: His.PSC.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...luripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.20.Pan_lysine_crotonylation.AllCell.bed ...

  19. File list: His.Plc.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...lacenta http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Plc.10.Pan_lysine_crotonylation.AllCell.bed ...

  20. File list: His.Pan.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pa...ncreas http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.50.Pan_lysine_crotonylation.AllCell.bed ...

  1. File list: His.Neu.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation N...eural http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.10.Pan_lysine_crotonylation.AllCell.bed ...

  2. File list: His.Utr.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation U...terus http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.10.Pan_lysine_crotonylation.AllCell.bed ...

  3. File list: His.Spl.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Spl.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Sp...leen http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Spl.05.Pan_lysine_crotonylation.AllCell.bed ...

  4. File list: His.Utr.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ut...erus http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Utr.10.Pan_lysine_crotonylation.AllCell.bed ...

  5. File list: His.Epd.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation E...pidermis http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Epd.10.Pan_lysine_crotonylation.AllCell.bed ...

  6. File list: His.Oth.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ot...hers http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.20.Pan_lysine_crotonylation.AllCell.bed ...

  7. File list: His.Dig.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation D...igestive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.50.Pan_lysine_crotonylation.AllCell.bed ...

  8. File list: His.Prs.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pr...ostate http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Prs.05.Pan_lysine_crotonylation.AllCell.bed ...

  9. File list: His.Spl.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Spl.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Sp...leen http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Spl.50.Pan_lysine_crotonylation.AllCell.bed ...

  10. File list: His.Gon.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Go...nad SRX099894,SRX099897 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.50.Pan_lysine_crotonylation.AllCell.bed ...

  11. File list: His.Neu.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation N...eural http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.20.Pan_lysine_crotonylation.AllCell.bed ...

  12. Identification of a novel DNA methyltransferase 2 from the brine shrimp, Artemia franciscana.

    Science.gov (United States)

    Feng, Chen-Zhuo; Zhu, Xiao-Jing; Dai, Zhong-Min; Liu, Feng-Qi; Xiang, Jian-Hai; Yang, Wei-Jun

    2007-06-01

    DNA methyltransferase 2 (Dnmt2) is a dual-specificity DNA methyltransferase, which contains a weak DNA methyltransferase and novel tRNA methyltransferase activity. However, its biological function is still enigmatic. To elucidate the expression profiles of Dnmt2 in Artemia franciscana, we isolated the gene encoding a Dnmt2 from A. franciscana and named it as AfDnmt2. The cDNA of AfDnmt2 contained a 1140-bp open reading frame that encoded a putative Dnmt2 protein of 379 amino acids exhibiting 32% approximately 39% identities with other known Dnmt2 homologs. This is the first report of a DNA methyltransferase gene in Crustacean. By using semi-quantitative RT-PCR, AfDnmt2 was found to be expressed through all developmental stages and its expression increased during resumption of diapause cysts development. Southern blot analysis indicated the presence of multiple copies of AfDnmt2 genes in A. franciscana.

  13. Expression of exogenous DNA methyltransferases: application in molecular and cell biology.

    Science.gov (United States)

    Dyachenko, O V; Tarlachkov, S V; Marinitch, D V; Shevchuk, T V; Buryanov, Y I

    2014-02-01

    DNA methyltransferases might be used as powerful tools for studies in molecular and cell biology due to their ability to recognize and modify nitrogen bases in specific sequences of the genome. Methylation of the eukaryotic genome using exogenous DNA methyltransferases appears to be a promising approach for studies on chromatin structure. Currently, the development of new methods for targeted methylation of specific genetic loci using DNA methyltransferases fused with DNA-binding proteins is especially interesting. In the present review, expression of exogenous DNA methyltransferase for purposes of in vivo analysis of the functional chromatin structure along with investigation of the functional role of DNA methylation in cell processes are discussed, as well as future prospects for application of DNA methyltransferases in epigenetic therapy and in plant selection.

  14. The biology of lysine acetylation integrates transcriptional programming and metabolism

    Directory of Open Access Journals (Sweden)

    Mujtaba Shiraz

    2011-03-01

    Full Text Available Abstract The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT, there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylated proteins with human diseases. These findings not only support lysine acetylation as a widespread cellular phenomenon, but also impel questions to clarify the underlying molecular and cellular mechanisms governing target selectivity by KATs. Present challenges are to understand the molecular basis for the overlapping roles of KAT-containing co-activators, to differentiate between global versus dynamic acetylation marks, and to elucidate the physiological roles of acetylated proteins in biochemical pathways. In addition to discussing the cellular 'acetylome', a focus of this work is to present the widespread and dynamic nature of lysine acetylation and highlight the nexus that exists between epigenetic-directed transcriptional regulation and metabolism.

  15. Severe dietary lysine restriction affects growth and body composition and hepatic gene expression for nitrogen metabolism in growing rats.

    Science.gov (United States)

    Kim, J; Lee, K S; Kwon, D-H; Bong, J J; Jeong, J Y; Nam, Y S; Lee, M S; Liu, X; Baik, M

    2014-02-01

    Dietary lysine restriction may differentially affect body growth and lipid and nitrogen metabolism, depending on the degree of lysine restriction. This study was conducted to examine the effect of dietary lysine restriction on growth and lipid and nitrogen metabolism with two different degree of lysine restriction. Isocaloric amino acid-defined diets containing 1.4% lysine (adequate), 0.70% lysine (50% moderate lysine restriction) and 0.35% lysine (75% severe lysine restriction) were fed from the age of 52 to 77 days for 25 days in male Sprague-Dawley rats. The 75% severe lysine restriction increased (p muscle lipid contents and abdominal fat accumulation, increased (p  0.05) affect body growth and lipid and nitrogen metabolism. Our results demonstrate that severe 75% lysine restriction has detrimental effects on body growth and deregulate lipid and nitrogen metabolism.

  16. An allosteric inhibitor of protein arginine methyltransferase 3.

    Science.gov (United States)

    Siarheyeva, Alena; Senisterra, Guillermo; Allali-Hassani, Abdellah; Dong, Aiping; Dobrovetsky, Elena; Wasney, Gregory A; Chau, Irene; Marcellus, Richard; Hajian, Taraneh; Liu, Feng; Korboukh, Ilia; Smil, David; Bolshan, Yuri; Min, Jinrong; Wu, Hong; Zeng, Hong; Loppnau, Peter; Poda, Gennadiy; Griffin, Carly; Aman, Ahmed; Brown, Peter J; Jin, Jian; Al-Awar, Rima; Arrowsmith, Cheryl H; Schapira, Matthieu; Vedadi, Masoud

    2012-08-01

    PRMT3, a protein arginine methyltransferase, has been shown to influence ribosomal biosynthesis by catalyzing the dimethylation of the 40S ribosomal protein S2. Although PRMT3 has been reported to be a cytosolic protein, it has been shown to methylate histone H4 peptide (H4 1-24) in vitro. Here, we report the identification of a PRMT3 inhibitor (1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexenylethyl)urea; compound 1) with IC50 value of 2.5 μM by screening a library of 16,000 compounds using H4 (1-24) peptide as a substrate. The crystal structure of PRMT3 in complex with compound 1 as well as kinetic analysis reveals an allosteric mechanism of inhibition. Mutating PRMT3 residues within the allosteric site or using compound 1 analogs that disrupt interactions with allosteric site residues both abrogated binding and inhibitory activity. These data demonstrate an allosteric mechanism for inhibition of protein arginine methyltransferases, an emerging class of therapeutic targets.

  17. Putrescine N-methyltransferase--the start for alkaloids.

    Science.gov (United States)

    Biastoff, Stefan; Brandt, Wolfgang; Dräger, Birgit

    2009-01-01

    Putrescine N-methyltransferase (PMT) catalyses S-adenosylmethionine (SAM) dependent methylation of the diamine putrescine. The product N-methylputrescine is the first specific metabolite on the route to nicotine, tropane, and nortropane alkaloids. PMT cDNA sequences were cloned from tobacco species and other Solanaceae, also from nortropane-forming Convolvulaceae and enzyme proteins were synthesised in Escherichia coli. PMT activity was measured by HPLC separation of polyamine derivatives and by an enzyme-coupled colorimetric assay using S-adenosylhomocysteine. PMT cDNA sequences resemble those of plant spermidine synthases (putrescine aminopropyltransferases) and display little similarity to other plant methyltransferases. PMT is likely to have evolved from the ubiquitous enzyme spermidine synthase. PMT and spermidine synthase proteins share the same overall protein structure; they bind the same substrate putrescine and similar co-substrates, SAM and decarboxylated S-adenosylmethionine. The active sites of both proteins, however, were shaped differentially in the course of evolution. Phylogenetic analysis of both enzyme groups from plants revealed a deep bifurcation and confirmed an early descent of PMT from spermidine synthase in the course of angiosperm development.

  18. Hypnotizability and Catechol-O-Methyltransferase (COMT polymorphysms in Italians

    Directory of Open Access Journals (Sweden)

    Silvano ePresciuttini

    2014-01-01

    Full Text Available Higher brain dopamine content depending on lower activity of Catechol-O-Methyltransferase (COMT in subjects with high hypnotisability scores (highs has been considered responsible for their attentional characteristics. However, the results of the previous genetic studies on association between hypnotisability and the Catechol-O-Methyltransferase (COMT single nucleotide polymorphism (SNP rs4680 (Val158Met were inconsistent. Here, we used a selective genotyping approach to re-evaluate the association between hypnotisability and COMT in the context of a two-SNP haplotype analysis, considering not only the Val158Met polymorphism, but also the closely located rs4818 SNP. An Italian sample of 53 highs, 49 low hypnotizable subjects (lows and 57 controls, were genotyped for a segment of 805 bp of the COMT gene, including Val158Met and the closely located rs4818 SNP. Our selective genotyping approach had 97.1% power to detect the previously reported strongest association at the significance level of 5%. We found no evidence of association at the SNP, haplotype and diplotype levels. Thus, our results challenge the dopamine-based theory of hypnosis and indirectly support recent neuropsychological and neurophysiological findings reporting the lack of any association between hypnotisability and focused attention abilities.

  19. Impact of dry heating on physicochemical properties of corn starch and lysine mixture.

    Science.gov (United States)

    Ji, Ying; Yu, Jicheng; Xu, Yongbin; Zhang, Yinghui

    2016-10-01

    Corn starch was modified with lysine by dry heat treatment and to investigate how they can affect the pasting and structural properties of the treated starches. Dry heating with lysine reduced the pasting temperature and resulting in viscosity increase. The particle size of heated starch-lysine mixture increased, suggesting that starch granules were cross-linked to lysine. After dry heating, the onset temperature, peak temperature and conclusion temperature of corn starch-lysine mixture were lower than those of other starches. The degree of crystallinity decreased for the starch after dry heat treatment while these heated starch samples still have the same X-ray diffraction types as the original starch.

  20. MoSET1 (Histone H3K4 Methyltransferase in Magnaporthe oryzae Regulates Global Gene Expression during Infection-Related Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Kieu Thi Minh Pham

    2015-07-01

    Full Text Available Here we report the genetic analyses of histone lysine methyltransferase (KMT genes in the phytopathogenic fungus Magnaporthe oryzae. Eight putative M. oryzae KMT genes were targeted for gene disruption by homologous recombination. Phenotypic assays revealed that the eight KMTs were involved in various infection processes at varying degrees. Moset1 disruptants (Δmoset1 impaired in histone H3 lysine 4 methylation (H3K4me showed the most severe defects in infection-related morphogenesis, including conidiation and appressorium formation. Consequently, Δmoset1 lost pathogenicity on wheat host plants, thus indicating that H3K4me is an important epigenetic mark for infection-related gene expression in M. oryzae. Interestingly, appressorium formation was greatly restored in the Δmoset1 mutants by exogenous addition of cAMP or of the cutin monomer, 16-hydroxypalmitic acid. The Δmoset1 mutants were still infectious on the super-susceptible barley cultivar Nigrate. These results suggested that MoSET1 plays roles in various aspects of infection, including signal perception and overcoming host-specific resistance. However, since Δmoset1 was also impaired in vegetative growth, the impact of MoSET1 on gene regulation was not infection specific. ChIP-seq analysis of H3K4 di- and tri-methylation (H3K4me2/me3 and MoSET1 protein during infection-related morphogenesis, together with RNA-seq analysis of the Δmoset1 mutant, led to the following conclusions: 1 Approximately 5% of M. oryzae genes showed significant changes in H3K4-me2 or -me3 abundance during infection-related morphogenesis. 2 In general, H3K4-me2 and -me3 abundance was positively associated with active transcription. 3 Lack of MoSET1 methyltransferase, however, resulted in up-regulation of a significant portion of the M. oryzae genes in the vegetative mycelia (1,491 genes, and during infection-related morphogenesis (1,385 genes, indicating that MoSET1 has a role in gene repression either

  1. Lysine metabolism in antisense C-hordein barley grains

    DEFF Research Database (Denmark)

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A

    2015-01-01

    ) and five antisense C-hordein transgenic barley lines. Considering the amounts of soluble and protein-bound aspartate-derived amino acids together with the analysis of key enzymes of aspartate metabolic pathway, we suggest that the C-hordein suppression did not only alter the metabolism of at least one......The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition......, with increased lysine, methionine and threonine contents. The objective of the study was to investigate the possible changes in the regulation of key enzymes of the aspartate metabolic pathway and the contents of aspartate-derived amino acids in the nontransgenic line (Hordeum vulgare L. cv. Golden Promise...

  2. Coacervate-like microspheres from lysine-rich proteinoid

    Science.gov (United States)

    Rohlfing, D. L.

    1975-01-01

    Microspheres form isothermally from lysine-rich proteinoid when the ionic strength of the solution is increased with NaCl or other salts. Studies with different monovalent anions and with polymers of different amino acid composition indicate that charge neutralization and hydrophobic bonding contribute to microsphere formation. The particles also form in sea water, especially if heated or made slightly alkaline. The microspheres differ from those made from acidic proteinoid but resemble coacervate droplets in some ways (isothermal formation, limited stability, stabilization by quinone, uptake of dyes). Because the constituent lysine-rich proteinoid is of simulated prebiotic origin, the study is interpreted to add emphasis to and suggest an evolutionary continuity for coacervation phenomena.

  3. Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development.

    Directory of Open Access Journals (Sweden)

    Danhua Jiang

    2011-03-01

    Full Text Available Histone H3 lysine-4 (H3K4 methylation is associated with transcribed genes in eukaryotes. In Drosophila and mammals, both di- and tri-methylation of H3K4 are associated with gene activation. In contrast to animals, in Arabidopsis H3K4 trimethylation, but not mono- or di-methylation of H3K4, has been implicated in transcriptional activation. H3K4 methylation is catalyzed by the H3K4 methyltransferase complexes known as COMPASS or COMPASS-like in yeast and mammals. Here, we report that Arabidopsis homologs of the COMPASS and COMPASS-like complex core components known as Ash2, RbBP5, and WDR5 in humans form a nuclear subcomplex during vegetative and reproductive development, which can associate with multiple putative H3K4 methyltransferases. Loss of function of ARABIDOPSIS Ash2 RELATIVE (ASH2R causes a great decrease in genome-wide H3K4 trimethylation, but not in di- or mono-methylation. Knockdown of ASH2R or the RbBP5 homolog suppresses the expression of a crucial Arabidopsis floral repressor, FLOWERING LOCUS C (FLC, and FLC homologs resulting in accelerated floral transition. ASH2R binds to the chromatin of FLC and FLC homologs in vivo and is required for H3K4 trimethylation, but not for H3K4 dimethylation in these loci; overexpression of ASH2R causes elevated H3K4 trimethylation, but not H3K4 dimethylation, in its target genes FLC and FLC homologs, resulting in activation of these gene expression and consequent late flowering. These results strongly suggest that H3K4 trimethylation in FLC and its homologs can activate their expression, providing concrete evidence that H3K4 trimethylation accumulation can activate eukaryotic gene expression. Furthermore, our findings suggest that there are multiple COMPASS-like complexes in Arabidopsis and that these complexes deposit trimethyl but not di- or mono-methyl H3K4 in target genes to promote their expression, providing a molecular explanation for the observed coupling of H3K4 trimethylation (but not H3

  4. PLMD: An updated data resource of protein lysine modifications.

    Science.gov (United States)

    Xu, Haodong; Zhou, Jiaqi; Lin, Shaofeng; Deng, Wankun; Zhang, Ying; Xue, Yu

    2017-05-20

    Post-translational modifications (PTMs) occurring at protein lysine residues, or protein lysine modifications (PLMs), play critical roles in regulating biological processes. Due to the explosive expansion of the amount of PLM substrates and the discovery of novel PLM types, here we greatly updated our previous studies, and presented a much more integrative resource of protein lysine modification database (PLMD). In PLMD, we totally collected and integrated 284,780 modification events in 53,501 proteins across 176 eukaryotes and prokaryotes for up to 20 types of PLMs, including ubiquitination, acetylation, sumoylation, methylation, succinylation, malonylation, glutarylation, glycation, formylation, hydroxylation, butyrylation, propionylation, crotonylation, pupylation, neddylation, 2-hydroxyisobutyrylation, phosphoglycerylation, carboxylation, lipoylation and biotinylation. Using the data set, a motif-based analysis was performed for each PLM type, and the results demonstrated that different PLM types preferentially recognize distinct sequence motifs for the modifications. Moreover, various PLMs synergistically orchestrate specific cellular biological processes by mutual crosstalks with each other, and we totally found 65,297 PLM events involved in 90 types of PLM co-occurrences on the same lysine residues. Finally, various options were provided for accessing the data, while original references and other annotations were also present for each PLM substrate. Taken together, we anticipated the PLMD database can serve as a useful resource for further researches of PLMs. PLMD 3.0 was implemented in PHP + MySQL and freely available at http://plmd.biocuckoo.org. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  5. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs.

    Directory of Open Access Journals (Sweden)

    Ah-Young So

    Full Text Available Epigenetic regulation of gene expression is well known mechanism that regulates cellular senescence of cancer cells. Here we show that inhibition of DNA methyltransferases (DNMTs with 5-azacytidine (5-AzaC or with specific small interfering RNA (siRNA against DNMT1 and 3b induced the cellular senescence of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs and increased p16(INK4A and p21(CIP1/WAF1 expression. DNMT inhibition changed histone marks into the active forms and decreased the methylation of CpG islands in the p16(INK4A and p21(CIP1/WAF1 promoter regions. Enrichment of EZH2, the key factor that methylates histone H3 lysine 9 and 27 residues, was decreased on the p16(INK4A and p21(CIP1/WAF1 promoter regions. We found that DNMT inhibition decreased expression levels of Polycomb-group (PcG proteins and increased expression of microRNAs (miRNAs, which target PcG proteins. Decreased CpG island methylation and increased levels of active histone marks at genomic regions encoding miRNAs were observed after 5-AzaC treatment. Taken together, DNMTs have a critical role in regulating the cellular senescence of hUCB-MSCs through controlling not only the DNA methylation status but also active/inactive histone marks at genomic regions of PcG-targeting miRNAs and p16(INK4A and p21(CIP1/WAF1 promoter regions.

  6. Mechanisms of transcriptional repression by histone lysine methylation

    DEFF Research Database (Denmark)

    Hublitz, Philip; Albert, Mareike; Peters, Antoine H F M

    2009-01-01

    . In this report, we review the recent literature to deduce mechanisms underlying Polycomb and H3K9 methylation mediated repression, and describe the functional interplay with activating H3K4 methylation. We summarize recent data that indicate a close relationship between GC density of promoter sequences......, transcription factor binding and the antagonizing activities of distinct epigenetic regulators such as histone methyltransferases (HMTs) and histone demethylases (HDMs). Subsequently, we compare chromatin signatures associated with different types of transcriptional outcomes from stable repression to highly...... dynamic regulated genes, strongly suggesting that the interplay of different epigenetic pathways is essential in defining specific types of heritable chromatin and associated transcriptional states....

  7. Synthesis and Phase Behavior of Poly(N-isopropylacrylamide)-b-Poly(L-Lysine Hydrochloride) and Poly(N-Isopropylacrylamide-co-Acrylamide)-b-Poly(L-Lysine Hydrochloride)

    NARCIS (Netherlands)

    Spasojevic, Milica; Vorenkamp, Eltjo; Jansen, Mark R. P. A. C. S.; de Vos, Paul; Schouten, Arend Jan

    2014-01-01

    The synthesis of poly(N-isopropylacrylamide)-b-poly(L-lysine) and poly(N-isopropylacrylamide- co-acrylamide)-b-poly(L-lysine) copolymers was accomplished by combining atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP). For this purpose, a di-functional initiator with p

  8. RNA methyltransferase NSUN2 promotes stress-induced HUVEC senescence.

    Science.gov (United States)

    Cai, Xiaoyu; Hu, Yuanyuan; Tang, Hao; Hu, Han; Pang, Lijun; Xing, Junyue; Liu, Zhenyun; Luo, Yuhong; Jiang, Bin; Liu, Te; Gorospe, Myriam; Chen, Chuan; Wang, Wengong

    2016-04-12

    The tRNA methyltransferase NSUN2 delays replicative senescence by regulating the translation of CDK1 and CDKN1B mRNAs. However, whether NSUN2 influences premature cellular senescence remains untested. Here we show that NSUN2 methylates SHC mRNA in vitro and in cells, thereby enhancing the translation of the three SHC proteins, p66SHC, p52SHC, and p46SHC. Our results further show that the elevation of SHC expression by NSUN2-mediated mRNA methylation increased the levels of ROS, activated p38MAPK, thereby accelerating oxidative stress- and high-glucose-induced senescence of human vascular endothelial cells (HUVEC). Our findings highlight the critical impact of NSUN2-mediated mRNA methylation in promoting premature senescence.

  9. Proteome identification of proteins interacting with histone methyltransferase SET8

    Institute of Scientific and Technical Information of China (English)

    Yi Qin; Huafang Ouyang; Jing Liu; Youhua Xie

    2013-01-01

    SET8 (also known as PR-Set7/9,SETD8,KMT5A),a member of the SET domain containing methyltransferase family,which specifically catalyzes mono-methylation of K20 on histone H4 (H4K20me1),has been implicated in multiple biological processes,such as gene transcriptional regulation,cell cycle control,genomic integrity maintenance and development.In this study,we used GST-SET8 fusion protein as bait to search for SET8 interaction partners to elucidate physiological functions of SET8.In combination with mass spectrometry,we identified 40 proteins that potentially interact with SET8.DDX21,a nucleolar protein,was further confirmed to associate with SET8.Furthermore,we discovered a novel function of SET8 in the regulation of rRNA transcription.

  10. Cell and molecular biology of DNA methyltransferase 1.

    Science.gov (United States)

    Mohan, K Naga; Chaillet, J Richard

    2013-01-01

    The DNA cytosine methyltransferase 1 (DNMT1) is a ubiquitous nuclear enzyme that catalyzes the well-established reaction of placing methyl groups on the unmethylated cytosines in methyl-CpG:CpG base pairs in the hemimethylated DNA formed by methylated parent and unmethylated daughter strands. This activity regenerates fully methylated methyl-CpG:methyl-CpG pairs. Despite the straightforward nature of its catalytic activity, detailed biochemical, genetic, and developmental studies revealed intricate details of the central regulatory role of DNMT1 in governing the epigenetic makeup of the nuclear genome. DNMT1 mediates demethylation and also participates in seemingly wide cellular functions unrelated to maintenance DNA methylation. This review brings together mechanistic details of maintenance methylation by DNMT1, its regulation at transcriptional and posttranscriptional levels, and the seemingly unexpected functions of DNMT1 in the context of DNA methylation which is central to epigenetic changes that occur during development and the process of cell differentiation.

  11. Development of fluorescent methods for DNA methyltransferase assay

    Science.gov (United States)

    Li, Yueying; Zou, Xiaoran; Ma, Fei; Tang, Bo; Zhang, Chun-yang

    2017-03-01

    DNA methylation modified by DNA methyltransferase (MTase) plays an important role in regulating gene transcription, cell growth and proliferation. The aberrant DNA MTase activity may lead to a variety of human diseases including cancers. Therefore, accurate and sensitive detection of DNA MTase activity is crucial to biomedical research, clinical diagnostics and therapy. However, conventional DNA MTase assays often suffer from labor-intensive operations and time-consuming procedures. Alternatively, fluorescent methods have significant advantages of simplicity and high sensitivity, and have been widely applied for DNA MTase assay. In this review, we summarize the recent advances in the development of fluorescent methods for DNA MTase assay. These emerging methods include amplification-free and the amplification-assisted assays. Moreover, we discuss the challenges and future directions of this area.

  12. Characterization of phosphoethanolamine-N-methyltransferases in green algae.

    Science.gov (United States)

    Hirashima, Takashi; Toyoshima, Masakazu; Moriyama, Takashi; Nakamura, Yuki; Sato, Naoki

    2017-06-17

    Phosphatidylcholine (PtdCho) is a common and abundant phospholipid in most eukaryotic organisms. Although it has been known that the model green alga Chlamydomonas reinhardtii lacks PtdCho, we recently detected PtdCho in four Chlamydomonas species. Homology search of draft genomic sequences of the four PtdCho-containing algae suggested existence of phosphoethanolamine-N-methyltransferase (PEAMT) in C. applanata and C. asymmetrica, which is the key enzyme in PtdCho biosynthesis in land plants. Here we analyzed the putative genes encoding PEAMT in C. applanata and C. asymmetrica, named CapPEAMT and CasPEAMT, respectively. In vitro assays with recombinant CapPEAMT and CasPEAMT indicated that they have the methylation activity for phosphoethanolamine, but not the methylation activity for phosphomonomethylethanolamine, in contrast with land plant PEAMTs, that possess the three successive methylation activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Clinical utility of thiopurine S-methyltransferase genotyping.

    Science.gov (United States)

    Corominas, Hèctor; Baiget, Montserrat

    2004-01-01

    Thiopurine S-methyltransferase (TPMT) is a cytosolic enzyme that plays a major role in the metabolism of thiopurine drugs such as mercaptopurine and azathioprine. The interindividual differences in response to thiopurine administration is in part due to the presence of genetic polymorphisms in the gene that regulates TPMT activity. TPMT genotype correlates well with the in vivo enzyme activity within erythrocytes. Patients with genetically determined decreased TPMT activity develop severe myelosuppression when treated with standard doses of thiopurine drugs because an excess of thioguanine nucleotides accumulates in hematopoietic tissues. TPMT genotyping provides clinicians with a reliable method for identifying TPMT-deficient patients who can benefit from low doses of thiopurine drugs in order to reduce the risk of developing adverse effects. Moreover, the administration of higher doses of the drug could improve therapeutic response in patients in whom the TPMT genotyping demonstrates the absence of mutated alleles.

  14. Digestible Lysine on Live Performance of Chicken Type Naked Neck During the Starter Phase

    Directory of Open Access Journals (Sweden)

    RG de Oliveira

    2015-12-01

    Full Text Available ABSTRACT The poultry market has changed due to a higher consumer interest on products with differentiated organoleptic characteristics, making of free-range broiler production a promising activity. This experiment was conducted to determine the digestible lysine requirements of Redbro Cou Nu male and female chickens during the starter phase (one to 21 days of age. Six hundred and thirty Redbro Cou Nu broilers were distributed into 30 pens (21 chickens/pen according to a randomized complete design in a 5 x 2 factorial arrangement, consisting of five levels of digestible lysine and two sexes, with three replicates (pens per treatments. Diets with increasing digestible lysine levels (8.1, 9.5, 10.9, 12.3 and 13.7 g of digestible lysine per kg of diet were offered ad libitum. The following performance traits were evaluated at the end of the experiment (d 21: feed intake, lysine intake, body weight gain, and feed conversion ratio. No interaction between dietary lysine level and sex was observed for the evaluated traits. The effect of sex was only detected on body weight gain, while effects of dietary lysine level were only detected on the feed intake. Males presented higher body weight gain than females. Lysine intake and body weight gain increased, and feed conversion ratio decreased as the level of dietary lysine increased. The best feed conversion ratio was obtained when birds were fed 12.95 g of digestible lysine per kg of diet.

  15. Immobilization of lysine oxidase on a gold-platinum nanoparticles modified Au electrode for detection of lysine.

    Science.gov (United States)

    Chauhan, N; Narang, J; Sunny; Pundir, C S

    2013-04-10

    A commercial lysine oxidase (LyOx) from Trichoderma viride was immobilized covalently onto gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) electrodeposited onto Au electrode using 3-aminopropyltriethoxy silane (3-APTES) and glutaraldehyde cross linking chemistry. A lysine biosensor was fabricated using LyOx/3-APTES/AuNPs-PtNPs/Au electrode as a working electrode, Ag/AgCl (3M KCl) as standard electrode and Pt wire as auxiliary electrode connected through a potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The cumulative effect of AuNPs and PtNPs showed excellent electrocatalytic activity at low applied potential for detection of H2O2, a product of LyOx reaction. The sensor showed its optimum response within 4s, when polarized at 0.2V vs. Ag/AgCl in 0.1M phosphate buffer, pH 7.5 at 30°C. The linear range and detection limit of the sensor were 1.0-600μM and 1.0μM (S/N=3), respectively. Biosensor measured lysine level in sera, milk and amino acid tablet, which correlated well with those by standard HPLC method. The enzyme electrode lost 50% of its initial activity after 200 uses over a period of 4 months.

  16. The Sulfolobus solfataricus Lrp-like protein LysM regulates lysine biosynthesis in response to lysine availability.

    Science.gov (United States)

    Brinkman, Arie B; Bell, Stephen D; Lebbink, Robert Jan; de Vos, Willem M; van der Oost, John

    2002-08-16

    Although the archaeal transcription apparatus resembles the eukaryal RNA polymerase II system, many bacterial-like regulators can be found in archaea. Particularly, all archaeal genomes sequenced to date contain genes encoding homologues of Lrp (leucine-responsive regulatory protein). Whereas Lrp-like proteins in bacteria are involved in regulation of amino acid metabolism, their physiological role in archaea is unknown. Although several archaeal Lrp-like proteins have been characterized recently, no target genes apart from their own coding genes have been discovered yet, and no ligands for these regulators have been identified so far. In this study, we show that the Lrp-like protein LysM from Sulfolobus solfataricus is involved in the regulation of lysine and possibly also arginine biosynthesis, encoded by the lys gene cluster. Exogenous lysine is the regulatory signal for lys gene expression and specifically serves as a ligand for LysM by altering its DNA binding affinity. LysM binds directly upstream of the TFB-responsive element of the intrinsically weak lysW promoter, and DNA binding is favored in the absence of lysine, when lysWXJK transcription is maximal. The combined in vivo and in vitro data are most compatible with a model in which the bacterial-like LysM activates the eukarya-like transcriptional machinery. As with transcriptional activation by Escherichia coli Lrp, activation by LysM is apparently dependent on a co-activator, which remains to be identified.

  17. Betaine-homocysteine methyltransferase (BHMT) : genomic sequencing and relevance to hyperhomocysteinemia and vascular disease in humans

    NARCIS (Netherlands)

    Heil, S.G.; Lievers, K.J.A.; Boers, G.H.; Verhoef, P.; Heijer, den M.; Trijbels, F.J.M.; Blom, H.J.

    2000-01-01

    Elevated homocysteine levels have been associated with arteriosclerosis and thrombosis. Hyperhomocysteinemia is caused by altered functioning of enzymes of its metabolism due to either inherited or acquired factors. Betaine-homocysteine methyltransferase (BHMT) serves, next to methionine synthase, a

  18. Successful treatment of a guanidinoacetate methyltransferase deficient patient : Findings with relevance to treatment strategy and pathophysiology

    NARCIS (Netherlands)

    Verbruggen, Krijn T.; Sijens, Paul E.; Schulze, Andreas; Lunsing, Roelineke J.; Jakobs, Cornelis; Salomons, Gajja S.; van Spronsen, Francian J.

    2007-01-01

    Biochemical and developmental results of treatment of a guanidinoacetate methyltransferase (GAMT) deficient patient with a mild clinical presentation and remarkable developmental improvement after treatment are presented. Treatment with creatine (Cr) supplementation resulted in partial normalization

  19. An audit of thiopurine methyltransferase genotyping and phenotyping before intended azathioprine treatment for dermatological conditions

    DEFF Research Database (Denmark)

    Vestergaard, T; Bygum, A

    2009-01-01

    Summary Background. Determining thiopurine methyltransferase (TPMT) genotype and phenotype before azathioprine treatment predicts which patients are most likely to develop myelosuppression. Aim. To evaluate the course of azathioprine treatment in people with TPMT heterozygosity and whether this d...

  20. Characterization and crystal structure of lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase (cDHDPS) protein.

    Science.gov (United States)

    Rice, Elena A; Bannon, Gary A; Glenn, Kevin C; Jeong, Soon Seog; Sturman, Eric J; Rydel, Timothy J

    2008-12-15

    The lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase enzyme (cDHDPS) was recently successfully introduced into maize plants to enhance the level of lysine in the grain. To better understand lysine insensitivity of the cDHDPS, we expressed, purified, kinetically characterized the protein, and solved its X-ray crystal structure. The cDHDPS enzyme has a fold and overall structure that is highly similar to other DHDPS proteins. A noteworthy feature of the active site is the evidence that the catalytic lysine residue forms a Schiff base adduct with pyruvate. Analyses of the cDHDPS structure in the vicinity of the putative binding site for S-lysine revealed that the allosteric binding site in the Escherichia coli DHDPS protein does not exist in cDHDPS due to three non-conservative amino acids substitutions, and this is likely why cDHDPS is not feedback inhibited by lysine.

  1. Conformational Studies of ε- CBz- L- Lysine and L- Valine Block Copolypeptides

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2010-01-01

    Full Text Available Conformational studies of ε-CBz-L-lysine and L-valine block copoylpeptides using x- ray diffraction and CD spectra are described. The block copolypeptides contain valine block in the center and on both side of the valine are ε-CBz-L-lysine blocks. The conformation of the copolypeptides changes with increases in the chain length of ε- CBz-L- lysine blocks. When length of ε- CBZ- L- lysine blocks is 9, the block copolypeptide has exclusive beta sheet structure. With the increase in chain length of ε-CBz-L-lysine blocks from 9 to 14, the block copolypeptide shows presence of both alpha helix and beta sheet components. With further increase in chain length of ε- CBz- L- lysine blocks, the beta sheet component disappears and block copolypeptides exhibits exclusive α -helix conformation.

  2. Using a bacteriocin structure to engineer a phage lysin that targets Yersinia pestis.

    Science.gov (United States)

    Lukacik, Petra; Barnard, Travis J; Buchanan, Susan K

    2012-12-01

    Purified phage lysins present an alternative to traditional antibiotics and work by hydrolysing peptidoglycan. Phage lysins have been developed against Gram-positive pathogens such as Bacillus anthracis and Streptococcus pneumoniae, where the peptidoglycan layer is exposed on the cell surface. Addition of the lysin to a bacterial culture results in rapid death of the organism. Gram-negative bacteria are resistant to phage lysins because they contain an outer membrane that protects the peptidoglycan from degradation. We solved crystal structures of a Yersinia pestis outer-membrane protein and the bacteriocin that targets it, which informed engineering of a bacterial-phage hybrid lysin that can be transported across the outer membrane to kill specific Gram-negative bacteria. This work provides a template for engineering phage lysins against a wide variety of bacterial pathogens.

  3. The fungus Neurospora crassa displays telomeric silencing mediated by multiple sirtuins and by methylation of histone H3 lysine 9

    Directory of Open Access Journals (Sweden)

    Smith Kristina M

    2008-11-01

    Full Text Available Abstract Background Silencing of genes inserted near telomeres provides a model to investigate the function of heterochromatin. We initiated a study of telomeric silencing in Neurospora crassa, a fungus that sports DNA methylation, unlike most other organisms in which telomeric silencing has been characterized. Results The selectable marker, hph, was inserted at the subtelomere of Linkage Group VR in an nst-1 (neurospora sir two-1 mutant and was silenced when nst-1 function was restored. We show that NST-1 is an H4-specific histone deacetylase. A second marker, bar, tested at two other subtelomeres, was similarly sensitive to nst-1 function. Mutation of three additional SIR2 homologues, nst-2, nst-3 and nst-5, partially relieved silencing. Two genes showed stronger effects: dim-5, which encodes a histone H3 K9 methyltransferase and hpo, which encodes heterochromatin protein-1. Subtelomeres showed variable, but generally low, levels of DNA methylation. Elimination of DNA methylation caused partial derepression of one telomeric marker. Characterization of histone modifications at subtelomeric regions revealed H3 trimethyl-K9, H3 trimethyl-K27, and H4 trimethyl-K20 enrichment. These modifications were slightly reduced when telomeric silencing was compromised. In contrast, acetylation of histones H3 and H4 increased. Conclusion We demonstrate the presence of telomeric silencing in Neurospora and show a dependence on histone deacetylases and methylation of histone H3 lysine 9. Our studies also reveal silencing functions for DIM-5 and HP1 that appear independent of their role in de novo DNA methylation.

  4. Crystal structure of dengue virus methyltransferase without S-adenosyl-L-methionine.

    Science.gov (United States)

    Noble, Christian G; Li, Shi-Hua; Dong, Hongping; Chew, Sock Hui; Shi, Pei-Yong

    2014-11-01

    Flavivirus methyltransferase is a genetically-validated antiviral target. Crystal structures of almost all available flavivirus methyltransferases contain S-adenosyl-L-methionine (SAM), the methyl donor molecule that co-purifies with the enzymes. This raises a possibility that SAM is an integral structural component required for the folding of dengue virus (DENV) methyltransferase. Here we exclude this possibility by solving the crystal structure of DENV methyltransferase without SAM. The SAM ligand was removed from the enzyme through a urea-mediated denaturation-and-renaturation protocol. The crystal structure of the SAM-depleted enzyme exhibits a vacant SAM-binding pocket, with a conformation identical to that of the SAM-enzyme co-crystal structure. Functionally, equivalent enzymatic activities (N-7 methylation, 2'-O methylation, and GMP-enzyme complex formation) were detected for the SAM-depleted and SAM-containing recombinant proteins. These results clearly indicate that the SAM molecule is not an essential component for the correct folding of DENV methyltransferase. Furthermore, the results imply a potential antiviral approach to search for inhibitors that can bind to the SAM-binding pocket and compete against SAM binding. To demonstrate this potential, we have soaked crystals of DENV methyltransferase without a bound SAM with the natural product Sinefungin and show that preformed crystals are capable of binding ligands in this pocket.

  5. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation.

  6. Bioavailability of lysine for kittens in overheated casein is underestimated by the rat growth assay method.

    Science.gov (United States)

    Larsen, J A; Fascetti, A J; Calvert, C C; Rogers, Q R

    2010-10-01

    Growth assays were performed to determine lysine bioavailability for kittens and rats in untreated and heated casein; these values were compared with estimates obtained with an in vitro method. Body weight, food intake, nitrogen and dry matter digestibility, and plasma lysine were determined during an 80-day growth trial using kittens (n = 16). Body weight and food intake were determined during a 21-day growth trial using weanling rats (n = 80). The growth data showed bioavailable lysine to be 102.4% and 100.2% (for untreated casein) and 66.1% and 51.7% (for heated casein) for kittens and rats, respectively. There was no relationship between plasma lysine and dietary lysine concentrations for kittens. There were no significant differences in nitrogen or dry matter digestibility among diets for kittens. The chemically reactive lysine content of untreated casein was 99.6%, and of heated casein was 67.1%. Heat treatment of casein resulted in significantly decreased lysine bioavailability as estimated by all methods. For untreated casein, both growth assays showed good agreement with the in vitro method for available lysine. For heated casein, the rat growth assay significantly underestimated bioavailable lysine as determined in kittens while the in vitro method closely approximated this value for the cat.

  7. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level

    DEFF Research Database (Denmark)

    Danielsen, Jannie M R; Sylvestersen, Kathrine B; Bekker-Jensen, Simon;

    2011-01-01

    The covalent attachment of ubiquitin to proteins regulates numerous processes in eukaryotic cells. Here we report the identification of 753 unique lysine ubiquitylation sites on 471 proteins using higher-energy collisional dissociation on the LTQ Orbitrap Velos. In total 5756 putative ubiquitin...... substrates were identified. Lysine residues targeted by the ubiquitin-ligase system show no unique sequence feature. Surface accessible lysine residues located in ordered secondary regions, surrounded by smaller and positively charged amino acids are preferred sites of ubiquitylation. Lysine ubiquitylation...

  8. Minoxidil specifically decreases the expression of lysine hydroxylase in cultured human skin fibroblasts.

    Science.gov (United States)

    Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R

    1992-01-01

    The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568

  9. Concerted Activities of Distinct H4K20 Methyltransferases at DNA Double-Strand Breaks Regulate 53BP1 Nucleation and NHEJ-Directed Repair

    Directory of Open Access Journals (Sweden)

    Creighton T. Tuzon

    2014-07-01

    Full Text Available Although selective binding of 53BP1 to dimethylated histone H4 lysine 20 (H4K20me2 at DNA double-strand breaks (DSBs is a necessary and pivotal determinant of nonhomologous end joining (NHEJ-directed repair, the enzymes that generate H4K20me2 at DSBs were unclear. Here, we determined that the PR-Set7 monomethyltransferase (H4K20me1 regulates de novo H4K20 methylation at DSBs. Rapid recruitment of PR-Set7 to DSBs was dependent on the NHEJ Ku70 protein and necessary for NHEJ-directed repair. PR-Set7 monomethyltransferase activity was required, but insufficient, for H4K20me2 and 53BP1 nucleation at DSBs. We determined that PR-Set7-mediated H4K20me1 facilitates Suv4-20 methyltransferase recruitment and catalysis to generate H4K20me2 necessary for 53BP1 binding. The orchestrated and concerted activities of PR-Set7 and Suv4-20 were required for proficient 53BP1 nucleation and DSB repair. This report identifies PR-Set7 as an essential component of NHEJ and implicates PR-Set7 as a central determinant of NHEJ-directed repair early in mammalian DSB repair pathway choice.

  10. Determination of the dietary lysine requirement by measuring plasma free lysine concentrations in rainbow trout Oncorhynchus mykiss after dorsal aorta cannulation

    Directory of Open Access Journals (Sweden)

    Hyeonho Yun

    2016-03-01

    Full Text Available Abstract This study evaluated the dietary lysine requirement by measuring the plasma free lysine concentrations in rainbow trout, Oncorhynchus mykiss after dorsal aorta cannulation. A basal diet containing 36.6 % crude protein (29.6 % crystalline amino acids mixture, 5 % casein and 2 % gelatin was formulated to one of the seven L-amino acid based diets containing graded levels of lysine (0.72, 1.12, 1.52, 1.92, 2.32, 2.72 or 3.52 % dry diet. A total of 35 fish averaging 512 ± 6.8 g (mean ± SD were randomly distributed into seven groups with five fish in each group. After 48 h of feed deprivation, each group of fish was fed one of the experimental diets by intubation at 1 % body weight. Blood samples were taken at 0, 5 and 24 h after intubation. Post-prandial plasma free lysine concentrations (PPlys, 5 h after intubation of fish fed diets containing ≥ 2.32 % lysine were higher than those of fish fed diets containing ≤ 1.92 % lysine. Post-absorptive free lysine concentrations (PAlys, 24 h after intubation of fish fed diets containing 2.32 and 3.52 % lysine were higher than those of fish fed diets containing ≤ 1.52 % lysine. The broken-line regression analysis on the basis of PPlys and PAlys indicated that the lysine requirement of rainbow trout could be 2.34 and 2.20 % in diet. Therefore, these results strongly suggested that the dietary lysine requirement based on the broken-line model analyses of PPlys and PAlys could be greater than 2.2 but less than 2.34 % (corresponding to be 6.01 % ≤, but ≤ 6.39 % in dietary protein basis, respectively in rainbow trout. Also, these results shown that the quantitative estimation of lysine requirement by using PPlys and PAlys could be an acceptable method in fish.

  11. Selection and Characterization of a Lysine Yielding Mutant of Corynebacterium glutamicum - a Soil Isolate from Pakistan

    Directory of Open Access Journals (Sweden)

    Habib-ur-Rehman§٭, Abdul Hameed and Safia Ahmed

    2012-01-01

    Full Text Available L-lysine is the second limiting amino acid for poultry and supplemented in broiler feed for optimal performance. Lysine can be produced by inducing mutation in glutamate producing bacteria. The study was conducted to enhance lysine production from a local strain of Corynebacterium glutamicum. The bacterium was mutated by exposure to UV. Mutants resistant to s-2-aminoethyle L-cystein (AEC and showing auxotrophy for L-homoserine were screened for lysine production qualitatively and quantitatively. A mutant showing highest production of lysine (8.2 mg/mL was selected for optimization of physical and nutritional parameters for maximum production of lysine in shake flask. An initial pH 7.6, 30˚C temperature, 300 rpm and 60 h incubation time were the optimized values of physical requirements. Cane molasses and corn starch hydrolysate were required at 15% (w/v in the fermentation media which provided around 9% total sugars to produce maximum lysine (17 to 18 mg/mL. When amonium sulphate was used at 3.5% (w/v level in molasses or corn starch hydrolysate based fermentation media, production of lysine slightly increased above 18 mg/mL. It is concluded that industrial by products like cane molasses, corn steep liquor, and corn starch hydrolysate can be used as carbon and organic nitrogen sources in fermentation medium for scale up process of lysine production and this lysine enriched broth may be used in broiler feed later. However, more potent lysine producing mutant and additional in vivo trials would be required to commercialize this product.

  12. Autoacetylation of the MYST lysine acetyltransferase MOF protein.

    Science.gov (United States)

    Yang, Chao; Wu, Jiang; Sinha, Sarmistha H; Neveu, John M; Zheng, Yujun George

    2012-10-12

    The MYST family of histone acetyltransferases (HATs) plays critical roles in diverse cellular processes, such as the epigenetic regulation of gene expression. Lysine autoacetylation of the MYST HATs has recently received considerable attention. Nonetheless, the mechanism and function of the autoacetylation process are not well defined. To better understand the biochemical mechanism of MYST autoacetylation and the impact of autoacetylation on the cognate histone acetylation, we carried out detailed analyses of males-absent-on-the-first (MOF), a key member of the MYST family. A number of mutant MOF proteins were produced with point mutations at several key residues near the active site of the enzyme. Autoradiography and immunoblotting data showed that mutation of these residues affects the autoacetylation activity and HAT activity of MOF by various degrees demonstrating that MOF activity is highly sensitive to the chemical changes in those residues. We produced MOF protein in the deacetylated form by using a nonspecific lysine deacetylase. Interestingly, both the autoacetylation activity and the histone acetylation activity of the deacetylated MOF were found to be very close to that of wild-type MOF, suggesting that autoacetylation of MOF only marginally modulates the enzymatic activity. Also, we found that the autoacetylation rates of MOF and deacetylated MOF were much slower than the cognate substrate acetylation. Thus, autoacetylation does not seem to contribute to the intrinsic enzymatic activity in a significant manner. These data provide new insights into the mechanism and function of MYST HAT autoacetylation.

  13. Autoacetylation of the MYST Lysine Acetyltransferase MOF Protein*

    Science.gov (United States)

    Yang, Chao; Wu, Jiang; Sinha, Sarmistha H.; Neveu, John M.; Zheng, Yujun George

    2012-01-01

    The MYST family of histone acetyltransferases (HATs) plays critical roles in diverse cellular processes, such as the epigenetic regulation of gene expression. Lysine autoacetylation of the MYST HATs has recently received considerable attention. Nonetheless, the mechanism and function of the autoacetylation process are not well defined. To better understand the biochemical mechanism of MYST autoacetylation and the impact of autoacetylation on the cognate histone acetylation, we carried out detailed analyses of males-absent-on-the-first (MOF), a key member of the MYST family. A number of mutant MOF proteins were produced with point mutations at several key residues near the active site of the enzyme. Autoradiography and immunoblotting data showed that mutation of these residues affects the autoacetylation activity and HAT activity of MOF by various degrees demonstrating that MOF activity is highly sensitive to the chemical changes in those residues. We produced MOF protein in the deacetylated form by using a nonspecific lysine deacetylase. Interestingly, both the autoacetylation activity and the histone acetylation activity of the deacetylated MOF were found to be very close to that of wild-type MOF, suggesting that autoacetylation of MOF only marginally modulates the enzymatic activity. Also, we found that the autoacetylation rates of MOF and deacetylated MOF were much slower than the cognate substrate acetylation. Thus, autoacetylation does not seem to contribute to the intrinsic enzymatic activity in a significant manner. These data provide new insights into the mechanism and function of MYST HAT autoacetylation. PMID:22918831

  14. Lysine Acetylation Facilitates Spontaneous DNA Dynamics in the Nucleosome.

    Science.gov (United States)

    Kim, Jongseong; Lee, Jaehyoun; Lee, Tae-Hee

    2015-12-01

    The nucleosome, comprising a histone protein core wrapped around by DNA, is the fundamental packing unit of DNA in cells. Lysine acetylation at the histone core elevates DNA accessibility in the nucleosome, the mechanism of which remains largely unknown. By employing our recently developed hybrid single molecule approach, here we report how the structural dynamics of DNA in the nucleosome is altered upon acetylation at histone H3 lysine 56 (H3K56) that is critical for elevated DNA accessibility. Our results indicate that H3K56 acetylation facilitates the structural dynamics of the DNA at the nucleosome termini that spontaneously and repeatedly open and close on a ms time scale. The results support a molecular mechanism of histone acetylation in catalyzing DNA unpacking whose efficiency is ultimately limited by the spontaneous DNA dynamics at the nucleosome temini. This study provides the first and unique experimental evidence revealing a role of protein chemical modification in directly regulating the kinetic stability of the DNA packing unit.

  15. Euchromatin histone methyltransferase 1 regulates cortical neuronal network development

    Science.gov (United States)

    Bart Martens, Marijn; Frega, Monica; Classen, Jessica; Epping, Lisa; Bijvank, Elske; Benevento, Marco; van Bokhoven, Hans; Tiesinga, Paul; Schubert, Dirk; Nadif Kasri, Nael

    2016-01-01

    Heterozygous mutations or deletions in the human Euchromatin histone methyltransferase 1 (EHMT1) gene cause Kleefstra syndrome, a neurodevelopmental disorder that is characterized by autistic-like features and severe intellectual disability (ID). Neurodevelopmental disorders including ID and autism may be related to deficits in activity-dependent wiring of brain circuits during development. Although Kleefstra syndrome has been associated with dendritic and synaptic defects in mice and Drosophila, little is known about the role of EHMT1 in the development of cortical neuronal networks. Here we used micro-electrode arrays and whole-cell patch-clamp recordings to investigate the impact of EHMT1 deficiency at the network and single cell level. We show that EHMT1 deficiency impaired neural network activity during the transition from uncorrelated background action potential firing to synchronized network bursting. Spontaneous bursting and excitatory synaptic currents were transiently reduced, whereas miniature excitatory postsynaptic currents were not affected. Finally, we show that loss of function of EHMT1 ultimately resulted in less regular network bursting patterns later in development. These data suggest that the developmental impairments observed in EHMT1-deficient networks may result in a temporal misalignment between activity-dependent developmental processes thereby contributing to the pathophysiology of Kleefstra syndrome. PMID:27767173

  16. The Role of Protein Arginine Methyltransferases in Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Ji Hye Kim

    2016-01-01

    Full Text Available Protein arginine methyltransferases (PRMTs mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I–IV. Although most PRMTs do not require posttranslational modification (PTM to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6 in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses.

  17. Isoprenyl carboxyl methyltransferase inhibitors: a brief review including recent patents.

    Science.gov (United States)

    Yang, Woo Seok; Yeo, Seung-Gu; Yang, Sungjae; Kim, Kyung-Hee; Yoo, Byong Chul; Cho, Jae Youl

    2017-06-19

    Among the enzymes involved in the post-translational modification of Ras, isoprenyl carboxyl methyltransferase (ICMT) has been explored by a number of researchers as a significant enzyme controlling the activation of Ras. Indeed, inhibition of ICMT exhibited promising anti-cancer activity against various cancer cell lines. This paper reviews patents and research articles published between 2009 and 2016 that reported inhibitors of ICMT as potential chemotherapeutic agents targeting Ras-induced growth factor signaling. Since ICMT inhibitors can modulate Ras signaling pathway, it might be possible to develop a new class of anti-cancer drugs targeting Ras-related cancers. Researchers have discovered indole-based small-molecular ICMT inhibitors through high-throughput screening. Researchers at Duke University identified a prototypical inhibitor, cysmethynil. At Singapore University, Ramanujulu and his colleagues patented more potent compounds by optimizing cysmethynil. In addition, Rodriguez and Stevenson at Universidad Complutense De Madrid and Cancer Therapeutics CRC PTY Ltd., respectively, have developed inhibitors based on formulas other than the indole base. However, further optimization of chemicals targeted to functional groups is needed to improve the characteristics of ICMT inhibitors related to their application as drugs, such as solubility, effectiveness, and safety, to facilitate clinical use.

  18. DNA Electrochemistry Shows DNMT1 Methyltransferase Hyperactivity in Colorectal Tumors.

    Science.gov (United States)

    Furst, Ariel L; Barton, Jacqueline K

    2015-07-23

    DNMT1, the most abundant human methyltransferase, is responsible for translating the correct methylation pattern during DNA replication, and aberrant methylation by DNMT1 has been linked to tumorigenesis. We have developed a sensitive signal-on electrochemical assay for the measurement of DNMT1 activity in crude tissue lysates. We have further analyzed ten tumor sets and have found a direct correlation between DNMT1 hyperactivity and tumorous tissue. In the majority of samples analyzed, the tumorous tissue has significantly higher DNMT1 activity than the healthy adjacent tissue. No such correlation is observed in measurements of DNMT1 expression by qPCR, DNMT1 protein abundance by western blotting, or DNMT1 activity using a radiometric DNA labeling assay. DNMT1 hyperactivity can result from both protein overexpression and enzyme hyperactivity. DNMT1 activity measured electrochemically provides a direct measure of activity in cell lysates and, as a result, provides a sensitive and early indication of cancerous transformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Hypnotizability and Catechol-O-Methyltransferase (COMT) polymorphysms in Italians

    Science.gov (United States)

    Presciuttini, Silvano; Gialluisi, Alessandro; Barbuti, Serena; Curcio, Michele; Scatena, Fabrizio; Carli, Giancarlo; Santarcangelo, Enrica L.

    2014-01-01

    Higher brain dopamine content depending on lower activity of Catechol-O-Methyltransferase (COMT) in subjects with high hypnotizability scores (highs) has been considered responsible for their attentional characteristics. However, the results of the previous genetic studies on association between hypnotizability and the COMT single nucleotide polymorphism (SNP) rs4680 (Val158Met) were inconsistent. Here, we used a selective genotyping approach to re-evaluate the association between hypnotizability and COMT in the context of a two-SNP haplotype analysis, considering not only the Val158Met polymorphism, but also the closely located rs4818 SNP. An Italian sample of 53 highs, 49 low hypnotizable subjects (lows), and 57 controls, were genotyped for a segment of 805 bp of the COMT gene, including Val158Met and the closely located rs4818 SNP. Our selective genotyping approach had 97.1% power to detect the previously reported strongest association at the significance level of 5%. We found no evidence of association at the SNP, haplotype, and diplotype levels. Thus, our results challenge the dopamine-based theory of hypnosis and indirectly support recent neuropsychological and neurophysiological findings reporting the lack of any association between hypnotizability and focused attention abilities. PMID:24431998

  20. Theoretical insights into catalytic mechanism of protein arginine methyltransferase 1.

    Directory of Open Access Journals (Sweden)

    Ruihan Zhang

    Full Text Available Protein arginine methyltransferase 1 (PRMT1, the major arginine asymmetric dimethylation enzyme in mammals, is emerging as a potential drug target for cancer and cardiovascular disease. Understanding the catalytic mechanism of PRMT1 will facilitate inhibitor design. However, detailed mechanisms of the methyl transfer process and substrate deprotonation of PRMT1 remain unclear. In this study, we present a theoretical study on PRMT1 catalyzed arginine dimethylation by employing molecular dynamics (MD simulation and quantum mechanics/molecular mechanics (QM/MM calculation. Ternary complex models, composed of PRMT1, peptide substrate, and S-adenosyl-methionine (AdoMet as cofactor, were constructed and verified by 30-ns MD simulation. The snapshots selected from the MD trajectory were applied for the QM/MM calculation. The typical SN2-favored transition states of the first and second methyl transfers were identified from the potential energy profile. Deprotonation of substrate arginine occurs immediately after methyl transfer, and the carboxylate group of E144 acts as proton acceptor. Furthermore, natural bond orbital analysis and electrostatic potential calculation showed that E144 facilitates the charge redistribution during the reaction and reduces the energy barrier. In this study, we propose the detailed mechanism of PRMT1-catalyzed asymmetric dimethylation, which increases insight on the small-molecule effectors design, and enables further investigations into the physiological function of this family.